
To Ask or Explore: A Systematic Approach to Advice

by

Amirmohsen Sattarifard

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Amirmohsen Sattarifard, 2024

Abstract

Reinforcement learning (RL) has shown great promise in sequential decision-

making tasks. However, one of the significant challenges RL faces is poor

sample efficiency, which restricts its applicability in many real-world scenar-

ios. Addressing this challenge has the potential to expand the reach of RL

techniques. One class of problems that offer insights into this challenge is

the multi-armed bandits (MAB) setting, which can be viewed as a simplified

version of RL. By investigating and addressing sample efficiency in MAB, we

hope to gain insights that can later be generalized to broader RL contexts.

In this thesis, our primary focus is the Beta-Bernoulli Bayesian multi-

armed bandit with an online finite horizon setting. We adopt two strategies

to tackle the sample efficiency challenge: 1- Knowledge reuse through advice

and 2- Near-optimal exploration. While the advice-seeking approach has been

touched upon in earlier research, it has largely been unstructured. Our work

aims to provide a more systematic approach to the problem of advice in MAB,

addressing two essential questions: “when to ask for advice?” and “what arm

to ask about?”. Finally, we investigate the problem of near-optimal explo-

ration. We provide a myopic approximation to the Bayes-optimal policy and

show that we can reach near-optimal performance using a myopic approxima-

tion.

Our key contributions include:

• Assuming an advice budget of one, we derive an optimal solution for

ii

which arm the agent should seek advice, using the value of information

(VOI) as a metric for each advice’s utility.

• Providing and investigating some approximations of the VOI based on

our myopic horizon approximation to the Bayes-optimal policy.

• Drawing parallels between the Bayes-optimal policy and the value of

information, and revealing the intertwined nature of these two aspects.

• Demonstrating that in some cases, it is beneficial for an agent to post-

pone seeking advice, even when it is free, and providing the optimal

solution for such delays in a Bayesian bandit setting.

• Investigating a myopic horizon approximation to the Bayes-optimal pol-

icy and showing its efficacy in achieving near-optimal results.

iii

To my mother

whose unwavering support and encouragement have been the driving force

behind my academic journey.

iv

The greatest glory in living lies not in never falling,

but in rising every time we fall.

– Nelson Mandela

v

Acknowledgements

I would like to express my deepest gratitude and appreciation to all those who

have contributed to the completion of this master’s thesis. Their support,

guidance, and encouragement have been invaluable throughout this challenging

journey.

First and foremost, I am immensely grateful to my supervisors, James

Wright and Matt Taylor, for their unwavering guidance, bearing with me

through ups and downs, and constant encouragement. Their insightful feed-

back, constructive criticism, and commitment to excellence have played a piv-

otal role in shaping the direction and quality of this research. I am truly

fortunate to have had their mentorship, which has not only enhanced my aca-

demic growth but also enriched my overall learning experience.

I am indebted to my mother and sister for their unwavering support and

understanding throughout this journey. Their love, encouragement, and belief

in my abilities have been the driving force behind my determination to com-

plete this thesis. Their constant presence and encouragement, even during the

most challenging times, have meant the world to me.

I am also grateful to my friends, Kiarash, Azali and Pooyayi, Nazi and

Farazi, Bedir, Hamza, and many others. They have supported me throughout

this process. Their words of encouragement have provided much-needed solace

during moments of stress.

Finally, I want to thank me for doing all this hard work. I want to thank

me for never quitting. I want to thank me for always being a giver and trying

to give more than I receive. I want to thank me for trying to do more right

and wrong. I want to thank me for just being me at all times.

In conclusion, this master’s thesis represents the culmination of countless

vi

hours of hard work, support, and guidance from numerous individuals. Each

person mentioned, and many others who may not be explicitly named have

contributed in their own unique way to the successful completion of this re-

search. I am truly grateful for their contributions and the lasting impact they

have had on my academic and personal growth.

Thank you all from the bottom of my heart.

Amir

vii

Contents

1 Introduction 1

2 Background Material 4
2.1 Stochastic Multi-Armed Bandit 4
2.2 Bayesian Learning in Multi-Armed Bandit 6

2.2.1 Bayesian Stochastic Multi-armed Bandit 7
2.2.2 Bernoulli Distribution with Beta Prior Belief 7
2.2.3 Bayesian Update . 9

2.3 Markov Decision Process . 10
2.4 Partially Observable Markov Decision Process 12

2.4.1 The Bayes-Optimal Policy in POMDPs 14
2.4.2 Bayes-Adaptive MDP in Multi-Armed Bandits 15

2.5 Value of Information . 18
2.5.1 Utility-Based Value of Information 18
2.5.2 Value Of Information in POMDPs 19
2.5.3 Myopic Value Of Information in BAMDP 20

2.6 Exploration Baseline policies 21
2.6.1 Upper Confidence Bound 22
2.6.2 Thompson Sampling 22
2.6.3 Bayes-Optimal Policy for Finite Horizon MAB 24
2.6.4 Finite-Horizon Gittins’ Index 25
2.6.5 Bayesian Q-learning 27

2.7 Conclusion . 28

3 What Arm to Ask About 29
3.1 Optimal Solution to the Problem of What Arm to Ask About 30
3.2 Value of Current Sample Information 30

3.2.1 Cross-action-Value Function vs. Action-Value Function
in BAMDP . 31

3.2.2 Value of Current Information in BAMDP 32
3.2.3 Value of Current Sample Information in BAMDP . . . 33

3.3 Bayes-Optimal Policy vs. VOCSI 35
3.4 Approximation of the Optimal Solution to What Arm to About 37

3.4.1 Myopic Value Of Information 40
3.5 Experiments . 42

3.5.1 Design . 42
3.5.2 Analysis . 43

3.6 Conclusion . 45

viii

4 When To Ask For Advice 47
4.1 Optimal Solution to the Problem of When to Ask for Advice . 47
4.2 Approximation of the Optimal Solution to “When and What to

Ask about” . 53
4.3 Experiments . 53

4.3.1 Design . 53
4.3.2 Analysis . 56

4.4 Conclusion . 69

5 Optimal Exploration 73
5.1 Bayesian Q-learning vs. Bayes-optimal Policy 73
5.2 Approximate Optimal Exploration 74

5.2.1 H-myopic Optimal . 75
5.2.2 H-myopic FH-Gittins 75

5.3 Experiments . 75
5.3.1 Design . 76
5.3.2 Baselines . 76
5.3.3 Results . 78

5.4 Conclusion . 83

6 Conclusion 86
6.1 Future Work . 87

References 89

Appendix A Appendix 91
A.1 Proof of claim 1 . 91
A.2 Proof of claim 5 . 94

ix

List of Figures

2.1 Decision graph for a POMDP. Squares represent decision vari-
ables, circles represent random variables, diamonds represent
utility variables, and arrows indicate dependencies among the
mentioned variables. The double-dotted line represents the hid-
den steps {1, . . . , t− 1}. 12

2.2 Example BAMDP: The rectangles represent belief-augmented
states, with blue color indicating intermediate states and gray
color indicating terminal states. 17

3.1 Example of a BAMDP for the “What arm to ask about prob-
lem.” The rectangles represent belief-augmented states, with
the blue color indicating intermediate states and the gray color
representing terminal states. The yellow circle numbers the
states, and the gray rectangle provides the optimal action value
for their adjacent state and a specified arm. 34

3.2 Bayes-optimal value function decomposition visualization. The
gray bar represents the action value for arm a for the Bayes-
optimal policy with horizon n + 1 and belief b. The blue bar
represents the expected value of arm a, the green bar represents
the VOCSI value for arm a with horizon n and belief b, and the
yellow bar represents the value function of the Bayes-optimal
policy with horizon n and belief b. 36

3.3 Relative error of Gittins’ argmax approximation and h-myopic
approximation for i = {1, . . . , 15}. The relative error is com-
puted as the difference between the optimal solution value and
the approximation solution value, divided by the optimal solu-
tion value. 42

3.4 Absolute error of Gittins’ argmax approximation and h-myopic
approximation for i = {1, . . . , 15}. The absolute error is com-
puted as the difference between the optimal solution value and
the approximation solution value. 43

3.5 Average time taken by Gittins’ argmax and VOCSI algorithm to
determine which arm to ask for advice, based on the problem-
setting horizon (T). These results were run on an “11th gen
intel(R) core(TM) i7-11700F @ 2.5GHz” CPU. 44

x

4.1 Example of the “When to ask for advice algorithm”: The blue
rectangles represent belief-augmented states, with the red arms
indicating the actions chosen by the Bayes-optimal policy in
each corresponding belief state. The light yellow rectangles
denote the probabilities of reaching those states following the
Bayes-optimal policy. The light blue rectangles represent the
maximum VOCSI value associated with the adjacent belief state.
The yellow rectangles indicate the expected VOCSI values for
the respective horizon. 51

4.2 Example MDP of the “When to ask for advice problem”: The
green rectangles correspond to belief states in which the agent
requests advice. The dark blue rectangles represent belief states
in which exploration actions are taken, with the light blue rect-
angle indicating the horizon of the belief state. The green arrows
depict actions involving advice-seeking, while the black arrows
represent exploration actions. The gray rectangles represent the
action values for the corresponding actions in this example MDP. 52

4.3 This figure presents four types of algorithm based on using the
optimal solution or approximated solution for “When to ask for
advice problem”and “What arm to ask about problem.” The
algorithm, in which we use approximate solution for “What
arm to ask about problem” and the optimal solution for “When
to ask for advice problem,” is not available due to time-wise
intractability. 54

4.4 This figure presents a normalized histogram and the 98% con-
fidence optimal window predictions when utilizing the optimal
solution for the “what arm to ask about problem.” The opti-
mal window prediction represents the minimum number of steps
we need to look ahead into the future to capture the optimal
solution with 98% confidence for the “When to ask for advice
problem.” The black line represents the 98% confidence win-
dow size, while the remaining portion displays the normalized
histogram of the optimal window sizes. 58

4.5 This figure illustrates the percentage of belief states in which
postponing advice is more beneficial across different problem-
setting horizons T . 59

4.6 This figure displays the average gain and average relative gain
for different algorithms across various problem-setting horizons
T . 61

4.7 This figure presents the average loss for different algorithms
across various problem-setting horizons T 62

4.8 This figure illustrates the average relative loss for different al-
gorithms across various problem-setting horizons T 63

4.9 Performance measures including true positive (TP), true neg-
ative (TN), false positive (FP), false negative (FN), precision,
recall, and accuracy. The optimal solution is denoted by Y , and
Ŷ represents the algorithm prediction. The symbol A represents
the decision to ask right away (negative prediction), while W
represents the decision to wait (positive prediction). 64

4.10 True Positive (TP) rate for different algorithms at varying problem-
setting horizons (T). 65

4.11 True Negative (TN) rate for different algorithms at varying
problem-setting horizons (T). 66

xi

4.12 False Negative (FN) rate for different algorithms at varying
problem-setting horizons (T). 67

4.13 False Positive (FP) rate for different algorithms at varying problem-
setting horizons (T). 68

4.14 Recall percentage for different algorithms at varying problem-
setting horizons (T). 69

4.15 Precision percentage for different algorithms at varying problem-
setting horizons (T). 70

4.16 Accuracy percentage for different algorithms at varying problem-
setting horizons (T). 71

4.17 F1-score percentage for different algorithms at varying problem-
setting horizons (T). 72

5.1 Bayes regret of the dynamic horizon h-FH-Gittins policy com-
pared to the UCB, TS, and Bayes-optimal policies, with a true
horizon of T = 50. For example, the parameter “h-fhgittin=32”
represents the dynamic horizon h-FH-Gittins policy with a hori-
zon of 32. 77

5.2 Bayes regret of the constant horizon h-FH-Gittins policy com-
pared to the UCB, TS, and Bayes-optimal policies, with a true
horizon of T = 50. For example, the parameter “h-fhgittin-
const-h=32” represents the constant horizon h-FH-Gittins pol-
icy with a horizon of 32. 78

5.3 Bayes regret of the dynamic horizon h-myopic optimal policy
compared to the UCB, TS, and Bayes-optimal policies, with
a true horizon of T = 50. For example, the parameter “h-
myopic=4” represents the dynamic horizon h-myopic optimal
policy with a horizon of 4. 79

5.4 Bayes regret of the constant horizon h-myopic optimal policy
compared to the UCB, TS, and Bayes-optimal policies, with a
true horizon of T = 50. For example, the parameter “h-myopic-
const-h=4” represents the constant horizon h-myopic optimal
policy with a horizon of 4. 80

5.5 Comparison of Bayes regret between the constant horizon h-FH-
Gittins and dynamic horizon h-FH-Gittins strategies for differ-
ent pairs of myopic horizons, with a true horizon of T = 50. For
example, the parameter “h-fhgittin=32” represents the dynamic
horizon h-FH-Gittins policy with a horizon of 32. 81

5.6 Comparison of Bayes regret between the constant horizon h-
Myopic Optimal and dynamic horizon h-Myopic Optimal strate-
gies for different pairs of myopic horizons, with a true horizon of
T = 50. For example, the parameter “h-myopic=4” represents
the dynamic horizon h-myopic optimal policy with a horizon of 4. 82

5.7 Comparison of Bayes regret between the constant horizon h-
Myopic Optimal and constant horizon h-FH-Gittins strategies,
with a true horizon of T = 50. For example, the parameter “h-
myopic-const-h=4” represents the constant horizon h-myopic
optimal policy with a horizon of 4. 83

5.8 Time-wise comparison of “h-myopic-const-h” and “h-FHGittin-
const-h” algorithms for different horizon approximation values. 85

xii

List of Symbols

The notations used throughout this thesis are summarized in the table below.
Note: these notations are defined in the order they are first encountered in

the main body of this thesis.

Symbol Description
k Number of arms in a multi-armed bandit (k-armed ban-

dit).
T ∈ N+ The problem setting’s horizon.
t ∈ [T] Time step.
n ∈ [T] number of time steps left till the end of the horizon:

n = T − t+ 1
A =
{1, 2, . . . , k}

Set of possible actions.

R The set of all possible reward outcomes.
P(R) The set of all possible probability density functions of

rewards for all the arms.
R ∈ P(R) The probability density function (PDF) of the reward

for all the arms.
R(·|a) The PDF of rewards for arm a.
at ∼ At Agent’s action at time step t, and the random variable

associated with agent’s action at time step t, respec-
tively.

Xa
t ∈ R The random variable associated with the PDF of arm

a at time step t
a∗ Represents the optimal single action to take:

argmax
a

E[Xa]

θ Represents the parameters of the environment (e.g.
bandit model)

B Denotes the set of possible belief distributions that the
agent can hold over the parameters θ of the environ-
ment. b0 ∈ B is the agent’s prior belief over the pa-
rameters of the environment.

bt ∈ B The agent’s belief about the parameters of the envi-
ronment at time step t. bit is the agent’s belief at time
step t about arm i.

S The set of states (state space)
As Represents the set of actions available at state s
T The probability density function of the transition for

an MDP, which conditions the next state on the cur-
rent state and action: T (s′|s, a) == Pr(st+1 = s′|st =
s, at = a)

xiii

Symbol Description
p The probability p is the parameter of the Bernoulli

distribution. In a single Bernoulli trial, p represents
the probability of the event of interest (usually termed
“success”) occurring.

(α, β) These are the parameters of the Beta distribution,
which in the case of the Beta-Bernoulli model, repre-
sent the prior knowledge about the probability of suc-
cess (usually denoted as p) in a Bernoulli trial. Alpha
(α): This parameter can represent the number of prior
successes. Beta (β): This parameter represents the
number of prior failures.

Beta(α, β) The Beta function, denoted as Beta(α, β), is defined for

positive α and β as: Beta(α, β) =
∫︁ 1

0
tα−1(1− t)β−1dt.

The Beta function is a special mathematical function
that arises in probability theory, particularly in the
normalization of the Beta distribution.

b|x Represents b(θ | x) for the simplicity.
R The probability density function of the reward for an

MDP, which conditions the immediate reward on the
current state and action: R(r|s, a) == Pr(rt+1 =
r|st = s, at = a)

Z The set of possible observations (observation space).
zt ∼ Zt observation at time step t, and the random variable

associated with the observation at time step t.
O The probability density function of the observation for

a POMDP, which conditions the current observation
on the current state and the last action taken. It can
be defined as follows: O(s, a, z) = Pr[zt = z|st =
s, at−1 = a]

V The value function, which can be defined as V =
E[
∑︁n

t=0 rt]

ui(b, a, o,Θ) The update function. After observing an observation z,
the agent updates its belief using the update function
defined as ui(b, a, z,Θ) = Pr[st+1 = i | at = a, bt =
b, zt+1 = z, θ].

M The set of all possible MDPs
µa The mean reward for arm or action a: µa = E[ra]
Qa Represents the unbiased estimate of the mean reward

of arm a (µa)
M The set of all possible MDPs for a specific function

class valid for the environment
Ω = S × B The hyper-state in a BAMDP, where B is the set of all

possible beliefs (probability measures) onM.

xiv

Symbol Description
T ′ The probability density function of the BAMDP’s tran-

sition, which conditions the next state and belief on the
current state, belief, and action. It can be defined as
T ′(s′, b′|s, b, a) = Pr(st+1 = s′, bt+1 = b′|st = s, bt =
b, at = a)

R′ The probability density function of the reward for the
BAMDP, which conditions the immediate reward on
the current state, belief, and action. It can be defined
as R′(r|s, a) = Pr(rt+1 = r|st = s, bt = b, at = a)

Φ Represent the advice budget.

xv

Chapter 1

Introduction

The field of reinforcement learning (RL) [20] has seen its applications expand

to tackle increasingly intricate problems, such as robotics tasks. While RL

remains one of the most effective methods for autonomous learning in sequen-

tial decision-making problems, RL needs interaction with the environment to

gather samples. This interaction can make the learning process prohibitively

expensive or hazardous for various real-world applications. As a result, recent

investigations focus on minimizing the number of required samples during the

learning process. Sample efficiency in RL can be accomplished by incorporat-

ing external information or enhancing the RL algorithms.

This thesis dives deep into discovering efficient strategies for incorporat-

ing external information and enhancing the RL algorithms to bridge this gap

and enhance the efficiency and feasibility of RL. For ease of computation, this

thesis shifts the focus to the multi-armed bandits (MAB) setting, a simplified

version and a critical component of RL. MAB provides a more controlled and

manageable environment, allowing for more detailed and focused exploration

strategies to improve sample efficiency. The selection of the MAB setting offers

a platform to address the significant challenge of sample efficiency, reinforc-

ing the interdependence between RL and bandit problems and underscoring

the importance of MAB. In this thesis, we specifically use the Beta-Bernoulli

Bayesian multi-armed bandit with a finite horizon since Bernoulli distribu-

tion only has two outcomes, and helps to make the analysis computationally

tractable.

1

In the case of the first solution, incorporating external information, a learn-

ing agent (student) can leverage information (referred to as the “advice”) pro-

vided by an oracle that possesses knowledge of the true underlying parameter

of the environment. This advice helps minimize the need for random explo-

ration, which can be potentially risky or harmful. However, the use of ad-

vice presents some challenges. For example, the availability of advice is often

constrained by human availability, or there is a communication cost. Conse-

quently, the learning agent must optimize the use of the available advice. This

research examines what is the optimal time to ask for advice and which arm

will provide the most useful advice, employing the metric of the value of in-

formation (VOI) to evaluate the utilities of each piece of advice. By providing

a detailed analysis and myopic approximations to the Bayes-optimal policy,

this work illuminates the relationship between VOI and the Bayes-optimal

strategy.

As for the second solution, enhancing the sample efficiency of RL algo-

rithms, optimal approaches such as the Bayes-optimal policy cannot be em-

ployed due to their computational intractability. Therefore, it becomes neces-

sary to devise approximations that are both sufficiently close to the optimal

solution and computationally feasible. We achieve this approximation by using

myopic estimation of the environment’s underlying horizon.

The following chapters offer are organized as follows. Chapter 2 lays down

the background foundation, illuminating the underlying concepts of Bayesian

learning, Bayes-optimal policy, and VOI. Chapters 3 and 4 present a struc-

tured exploration of the advice-seeking problem, providing clear solutions and

approaches for the “When to ask for advice problem”and the “when to ask for

advice problem,” respectively. Chapter 5 further explores the Bayes-optimal

policy and provides insight into its efficacy through myopic approximations,

illustrating their potential to achieve near-optimal results. Finally, we con-

clude with a summary of our findings and suggestions for future research in

Chapter 6.

This thesis contributes to the ongoing efforts in understanding and en-

hancing the sample efficiency in both the multi-armed bandit settings and

2

the broader RL contexts, thereby promising a pathway towards more efficient,

effective, and practical RL applications in diverse real-world scenarios.

3

Chapter 2

Background Material

This chapter provides an overview of the key concepts and frameworks rele-

vant to this thesis. We begin by describing the multi-armed bandit setting

(2.1), which serves as the primary focus of our study. We chose this setting

due to its simplicity and its suitability for analyzing the algorithms discussed

in the subsequent chapters (3, 4, and 5). After establishing the multi-armed

bandit, we dive into Bayesian learning in a specific environment known as the

Beta-Bernoulli multi-armed bandit in Section 2.2. We then proceed to explain

various formulations of sequential decision-making known as Markov decision

processes (MDPs), partially observable Markov decision processes (POMDPs),

and belief-augmented MDPs (BAMDPs) in Sections 2.3, 2.4, and 2.4.2, respec-

tively. Next, we discuss VOI (Section 2.5) and its variation in the context of

POMDPs. And also, we discuss definitions that are prerequisites for under-

standing the material presented in Chapters 3, 4, and 5. Finally, in Section 2.6,

we explain chosen baseline algorithms, such as the Bayes-optimal exploration

strategy and Thompson sampling.

2.1 Stochastic Multi-Armed Bandit

In the fields of machine learning and probability theory, a multi-armed bandit

(k-armed bandit) refers to a sequential decision-making process involving a

learner (agent) and an environment. The goal is to maximize the expected

cumulative rewards [15]. Some of the bandit’s parameters are not known

to the agent beforehand. In this thesis, the environment is only partially

4

observable since we want to be as close to conventional RL environments as

possible. The interaction between the agent and the environment consists

of T rounds, where T ∈ N+ represents the horizon. In each round, at time

step t ∈ [T], the agent selects an action (an arm) at ∼ At, in which At is

the random variable associated with the actions at time step t, from a given

set of possible actions A = {1, 2, . . . , k}. Subsequently, the agent receives an

observation from the environment, typically in the form of rewards xt ∼ Xt ∈

R. The observed reward can be a stochastic value that varies based on the

environment’s underlying reward distributions. The agent only has access to

the previous actions and observations, collectively referred to as the history

Ht−1 = {A1, X1, . . . , Xt−1, At−1, Xt}.

Here, we present a formal model of the stochastic k-armed bandit as a

tuple ⟨A,R,P⟩:

• A represents the set of actions (arms), where |A| = k.

• R denotes the set of all possible reward outcomes R for all the arms.

• R ∈ P(R) denotes the probability density function (PDF) of the reward

for all the arms, in which P(R) denotes the set of all possible probability

density functions of rewards for all the arms.

◦ R(·|a) is the PDF of rewards for arm a.

◦ Xa is the random variable associated with R(·|a).

In this problem setting, a policy refers to a mapping from past observations

(histories) to a distribution over the set of actions, which the agent learns in

order to interact with the environment. The goal of this interaction is to

plan actions in a manner that maximizes the expected return. There are

other performance measures, such as regret, which have different definitions

depending on the frequentist or Bayesian perspective.

If the performance measure is the expected return, defined by the for-

mula E[
∑︁T

t=1 x
at], the objective is to maximize this expected return. Simi-

larly, if the performance measure is frequentist regret, given by the formula

5

E[
∑︁T

t=1(x
a∗−xat)] where a∗ is the optimal action, argmax

a
E[Xa], the objective

is to minimize this frequentist regret. The objective of optimizing the agent’s

policy is based on the expected return, while regret serves as a performance

measure. In cases where there is a prior belief about the environment, it is

common to use Bayesian regret (Definition 1 in Section 2.4.1); otherwise, fre-

quentist regret is employed. In this work, Bayesian regret will be used since we

are in a Bayesian setting and hold a prior belief regarding the environment’s

parameters.

Due to the agent’s lack of knowledge regarding the environment’s under-

lying probability distribution, a trade-off arises between exploration and ex-

ploitation at each step. Exploration involves gathering more information about

the environment and potentially discovering the most rewarding actions, while

exploitation focuses on selecting the most rewarding action as frequently as

possible based on the agent’s current knowledge, referred to as the belief b.

This trade-off is a fundamental challenge known as the exploration-exploitation

dilemma.

2.2 Bayesian Learning in Multi-Armed Bandit

This thesis focuses on parametric bandit models due to the ease of incorpo-

rating prior knowledge. Parametric models can more readily incorporate prior

knowledge through the choice of the distribution and its parameters. This

can be especially useful in domains where prior knowledge is available such

as Bayesian learning. A parametric bandit model is a type of MAB model

where the reward distributions of each arm are parameterized by some known

functions of unknown parameters. The task in a parametric bandit problem is

to learn the unknown parameters while simultaneously optimizing the cumu-

lative reward or minimizing regret. In learning theory, two main approaches

are commonly used: the frequentist approach and the Bayesian approach. The

key distinction between these approaches lies in the ability of the Bayesian ap-

proach to incorporate probability distributions over the parameters of the ban-

dit model. In the following sections, we explore the fundamentals of Bayesian

6

stochastic multi-armed bandits and discuss a specific case known as the Beta-

Bernoulli multi-armed bandit, which serves as the problem setting for the

subsequent chapters (3, 4, and 5).

2.2.1 Bayesian Stochastic Multi-armed Bandit

In this problem-setting, in addition to the tuple ⟨A,R,P⟩ representing the

multi-armed bandit, we also maintain a belief distribution over the parameters

of the environment. Here is the addition to the model in Section 2.1, defining

the Bayesian stochastic k-armed bandit as a tuple ⟨b0,A,R,P⟩:

• b0 ∈ B is the prior belief while B denotes the set of possible belief distri-

butions that the agent can hold over the parameters of the environment.

– At each time step, after receiving an observation from the environ-

ment, the agent updates its previous belief bt−1 to obtain a new

belief bt (posterior distribution).

As mentioned earlier, the probability distribution over the parameters θ of

the bandit model is represented as the belief b. The transition (update rule)

between different beliefs after each observation is achieved through Bayesian

inference. The following subsection dive into the Beta-Bernoulli distribution,

a fundamental component of our Beta-Bernoulli bandit framework. followed

by a review of the Bayesian update rule.

2.2.2 Bernoulli Distribution with Beta Prior Belief

Bernoulli Distribution

The Bernoulli distribution is a discrete probability distribution that models

binary events with a single parameter p. It represents the probability of suc-

cess, denoted as p, or the probability of observing a reward x = 1, while the

probability of failure or observing a reward x = 0 is 1 − p. The probability

mass function (PMF) of the Bernoulli distribution is given by:

f(x ∼ X | p) =
{︃

p if x = 1
q = 1− p if x = 0

(2.1)

7

In Equation 2.1, X is the random variable representing the reward, which

can take on the values 0 or 1. The mean of the Bernoulli distribution is given

by E(X) = p, and the variance is Var(X) = pq = p(1− p).

Beta Distribution

The Beta distribution can be used as a prior belief for the Bernoulli distri-

bution. The Beta distribution is a continuous probability distribution defined

on the interval [0, 1]. This distribution is widely employed in learning theory

as it serves as a conjugate prior distribution for the binomial and Bernoulli

distributions. The Beta distribution has two parameters, denoted as α and

β, both of which are positive. The probability density function (PDF) of the

Beta distribution is given by:

B(α, β)
∆
= f(x | α, β) = 1

Beta(α, β)
x(α−1)(1− x)(β−1) (2.2)

Beta(α, β) =

∫︂ 1

0

tα−1(1− t)β−1dt (2.3)

In Equation 2.2, Beta(α, β) (Equation 2.3 is the Beta function, which acts

as a normalizer for the PDF to be a valid probability distribution, which is

to ensure that the total area under the PDF curve equals 1. The mean of

the Beta distribution is given by E(X) = α
α+β

, and the variance is V ar(X) =

αβ
(α+β)2(α+β+1)

. The variance of the Beta distribution decreases as α and β

become larger, resulting in a distribution that is more concentrated around

the mean. Notably, the Beta distribution with parameters α = 1 and β = 1 is

equivalent to a uniform distribution.

Modeling the Bernoulli Parameter With Beta Distribution

When modeling the parameter p of a Bernoulli distribution, the most common

choice is to choose conjugate priors such as the Beta distribution in this thesis.

The reason behind this choice is that the posterior distribution is also a Beta

distribution, which simplifies the computations of calculating the posterior

distribution. We consider θ = p as the parameter of interest in the Bernoulli

8

distribution, and we use the Beta distribution as the probability distribution

for modeling the Bernoulli parameter. The probability density function (PDF)

of the Bernoulli parameter model given the parameters α and β of the Beta

distribution is as follows.

f(p | α, β) = 1

B(α, β)
p(α−1)(1− p)(β−1) (2.4)

2.2.3 Bayesian Update

Bayesian statistics employs a framework where beliefs about the unknown

parameters of the environment (in this case, the multi-armed bandit) are rep-

resented by probability distributions [12]. Let θ denote the parameter of arm

a of a multi-armed bandit model, in which P (·|a) = P (·|θa) is the reward

distribution for arm a with parameter θ. Also, let bt = Pr(θ | x) represent the

posterior density that reflects our belief about the value of θ after observing

x. Furthermore, let b0 = Pr(θ) be our prior belief about the parameter of

the multi-armed bandit model. The update rule for transforming the prior

distribution into the posterior distribution after an observation y is given by

Bayes’ rule:

b1(θ) = b0(θ | x) =
Pr(x | θ)b0(θ)∫︁
θ
Pr(x | θ)b0(θ)

This update rule can be extended to a sequence of observation steps, mak-

ing it suitable for sequential decision-making problems [8]. The posterior belief

at each step becomes the prior for the next step, as expressed by the equation:

bt(θ) = bt−1(θ | x) =
Pr(x | θ)bt−1(θ)∫︁
θ
Pr(x | θ)bt−1(θ)

(2.5)

For convenience, we denote b(θ | x) as b|x from now on.

Although this framework is very general, it is useful for the families of

beliefs called conjugates, in which the prior and the posterior have the same

distribution family. One of these distribution families is called Beta distribu-

tion (refer to Section 2.2.2 for more information about Beta distribution). For

Bernoulli observations, the Beta family provides conjugate beliefs, which gives

us a closed-form solution for the update rule.

9

Consider a Bernoulli multi-armed bandit with k arms, where θi = pi rep-

resents the parameter for the ith arm, and the parameter model follows a Beta

distribution with parameters α and β as the belief bt = B(αt, βt). The update

rule for the ith arm, based on Equation 2.5, is as follows:

bit = B(αit, β
i
t)← bit−1|Xt

= B(αit−1 +X i
t , β

i
t−1 + (1−X i

t)) (2.6)

Here, X i
t represents the observation reward variable for arm i at time-step

t, and the tuple (αit, β
i
t) represents the parameters for the Beta distribution

of arm i at time-step t. From now on, whenever we talk about belief b for a

Beta-Bernoulli environment, we only use the Beta parameters b =

⎡⎢⎣(α1, β1)
...

(αk, βk)

⎤⎥⎦
to denote the Beta-Bernoulli beliefs, which is equivalent to b =

⎡⎢⎣B(α1, β1)
...

B(αk, βk)

⎤⎥⎦.
Example 2.2.1. Consider an example of a Beta-Bernoulli multi-armed bandit

with two arms and a uniform distribution (α = 1, β = 1) as the prior belief

for each arm. The prior belief for time 0 is thus given by b0 =

⎡⎣(1, 1)(1, 1)
(1, 1)

⎤⎦. Now,
suppose the agent chooses arm 2 as the action to take and on time step 1

receives a reward of X2
1 = 1. Based on Equation 2.6, the agent updates its

belief to b1 = b0|X2
1=1 =

⎡⎣(1, 1)(2, 1)
(1, 1)

⎤⎦.
2.3 Markov Decision Process

A Markov decision process (MDP) is a type of stochastic sequential decision

process. It provides a framework for modeling the dynamics of an environ-

ment and solving optimization problems such as reinforcement learning or the

multi-armed bandit setting. In an MDP, decisions are made at discrete time

steps, and the agent’s actions are determined solely based on the information

available from the current state.

At each time step t, the agent is in an observed state st and selects an action

at. This decision leads to the environment transitioning to the next state

10

st+1 according to its underlying dynamic function T , which is conditionally

independent of the history. Additionally, the agent receives a corresponding

reward xt based on the reward function R.

A Markov decision process is defined by the collection of the tuple ⟨S,A, T, R⟩,

where:

• S is the set of states (state space).

• A is the set of actions (action space), where As represents the set of

actions available at state s.

• T ∈ T is the probability density function of the transition for an MDP,

which conditions the next state on the current state and action.

T (s′|s, a) = Pr(st+1 = s′|st = s, at = a)

The transition PDF satisfies the Markov property:

Pr(st+1|st, at) = Pr(st+1|st, at, st−1, at−1, . . .)

• R is the probability density function of the reward for an MDP, which

conditions the immediate reward on the current state and action.

R(x|s, a) = Pr(xt+1 = x|st = s, at = a)

The state and action spaces can be either finite or infinite, but in this

thesis, we assume they are finite. The rewards are real numbers, and in the

bandit setting, their distributions’ parameters are unknown to the agent.

The objective of the agent in an MDP is to find a policy π : S → P(A),

which represents a distribution over actions, that maximizes the performance

over the decision-making horizon. In this thesis, we assume that a policy is

deterministic π : S → A, which is a mapping from a state to an action. The

policy aims to optimize the agent’s return, which is the sum of rewards, over

time. To achieve this, the agent needs to consider the future consequences

of its actions. More specifically, the agent seeks a policy π that maximizes

the sum (or discounted sum with a discount factor γ) of rewards over the

11

horizon, not just the immediate step. It is worth noting that the k-armed

bandit setting mentioned earlier in Section 2.1 is a special case of an MDP

with only one state.

2.4 Partially Observable Markov Decision Pro-

cess

The partially observable Markov decision process (POMDP) framework is sim-

ilar to the MDP framework but it is more general. In an MDP, the environ-

ment’s state st ∈ S (a finite set) is observed by the agent, which selects an

action at ∈ A. Based on the current state st and the action taken at, the

agent receives a reward xt. The expected reward is determined by the re-

ward function R(s, a) = E[xt|st = s, at = a]. Following the agent’s action,

the state changes, possibly stochastically, based on the transition function

T (s, a, s′) = P [st+1 = s′|st = s, at = a].

Unlike in an MDP, the POMDP does not assume full observability of the

state st. Instead, at each time step, the agent only has access to partial

information about the current state, summarized by the observation zt ∈ Z.

The observation function O(s, a, z) = P [zt = z|st = s, at−1 = a] defines the

relationship between observations and states.

Figure 2.1: Decision graph for a POMDP. Squares represent decision variables,
circles represent random variables, diamonds represent utility variables, and
arrows indicate dependencies among the mentioned variables. The double-
dotted line represents the hidden steps {1, . . . , t− 1}.

Figure 2.1 presents a graphical model representation of a POMDP, as de-

12

scribed in Barber’s textbook [2]. As mentioned earlier, the agent has partial

observations (depicted by the grey variables). At time step t0, the hidden state

is s0, and the agent selects action a0, receiving reward x0. Subsequently, time

steps pass, leading the state to transition to s1, but the agent can only observe

a partial observation z1. After observing z1, the agent selects action a1 based

on the observation, receives reward x1, and the state transitions to s2.

In this problem setting, in addition to the tuple ⟨S,A, T, R⟩ represent-

ing the MDP, we also maintain a belief distribution b0 over the parameters

of the environment, observation space Z, and observation probability distri-

bution. Here is the formal model of the POMDP as a tuple ⟨S,Z,A,Θ =

{T,O,R},b0⟩:

• Z is the set of possible observations (observation space).

• O The probability density function of the observation for a POMDP,

which conditions the current observation on the current state and the

last action taken. It can be defined as follows:

O(z | a, s) = Pr[zt = z|st = s, at−1 = a]

• b0 is the agent’s initial belief, which represents the agent’s prior distri-

bution over states. The agent’s belief at time step t based on the history

{āt, z̄t} is denoted as bt and can be defined as follows:

◦ āt = {a0, . . . , at−1} is the history of actions.

◦ z̄t = {z1, . . . zt} is the history of observations.

The POMDP framework allows for modeling decision-making problems in

which the agent has incomplete information about the underlying state of the

environment. By maintaining a belief state and incorporating observations,

the agent can make informed decisions based on the available information,

aiming to maximize its expected cumulative reward over time.

13

2.4.1 The Bayes-Optimal Policy in POMDPs

This section discusses the Bayes-optimal policy in the context of finite horizon

partially observable Markov decision processes (POMDPs). The objective of

the agent is to maximize the value function V , which represents the expected

cumulative rewards over a finite horizon. The value function can be defined

as V = E[
∑︁n

t=0 rt].

At time step t, the agent’s knowledge about the current state is rep-

resented by a probability distribution bt = [bt(1), bt(2), . . . , bt(|S|)], where

bt(i) = Pr[st = i|z̄t, āt]. After observing an observation z, the agent up-

dates its belief using the update function defined as ui(b, a, z,Θ) = Pr[st+1 =

i | at = a, bt = b, zt+1 = z,Θ]. Θ is the parameter for the underlying distri-

butions for the POMDP, Θ = {T,O,R}. The agent’s policy π is a mapping

from its belief to an action, and at each time step, the agent selects its action

based on at = π(bt). The value function V depends on the policy π through

the recursive equation known as the Bellman equation:

V π(b,Θ) = r(b, π(b),Θ) + γ

|Z|∑︂
z=1

ez(b, π(b),Θ)V π(u(b, π(b), z,Θ),Θ) (2.7)

In Equation 2.7, r(b, a,Θ) =
∑︁|S|

s=1 b(s)R(s, a) and ez(b, a,Θ) = Pr(zt+1 =

z | at = a.bt = b,Θ). The update operator u(b, a, z,Θ) represents the belief

update after observing z, and it can be defined as:

u(b, a, z,Θ) = [u0(b, a, z,Θ), u1(b, a, z,Θ,) . . . , u|S|(b, a, z,Θ)]

Each ui(b, a, z,Θ) corresponds to Pr(st+1 = i | at = a, bt = b, zt+1 = z).

The optimal value function is defined by the optimal Bellman equation:

V ∗(b,Θ) = max
a∈A
{r(b, a,Θ) +

|Z|∑︂
z=1

ez(b, π(b),Θ)V π(u(b, a, z,Θ),Θ)} (2.8)

The policy that acts greedily with respect to the optimal value function is

the optimal policy:

14

π∗ (b,Θ) = argmax
a∈A

⎧⎨⎩r(b, π(b),Θ) +

|Z|∑︂
z=1

ez(b, a,Θ)V π(u(b, a, z,Θ),Θ)

⎫⎬⎭
This policy is known as the Bayes-optimal policy, as it strikes the optimal

balance between exploration and exploitation. Exploration involves gathering

more information to improve the policy, while exploitation involves maximiz-

ing rewards based on the current knowledge. By following the Bayes-optimal

policy, the agent minimizes Bayesian regret, which measures the difference be-

tween the cumulative rewards obtained and the rewards that would have been

obtained by always choosing the optimal action.

For the case of a finite-horizon bandit, the Bayesian cumulative regret is

defined as follows:

Definition 1. Let π be the agent’s policy, b the belief about the environment,

θ the true parameters of the environment, and T the horizon of the problem.

In this context, xθπ∗ denotes the reward for the optimal action in a bandit envi-

ronment characterized by parameter θ, and xθπt represents the reward obtained

by following policy π at time step t under the same environmental parameters.

The Bayesian regret, which quantifies the performance of the policy π over the

horizon T , is defined as:

Bayesian regret = E
θ∼b

[xθπ∗ × T −
T∑︂
t=1

xθπt] (2.9)

2.4.2 Bayes-Adaptive MDP in Multi-Armed Bandits

In the previous section, we introduced the Bayes-optimal policy in POMDPs.

In this section, we explore the Bayes-optimal policy in Bayes-adaptive MDP

(BAMDP) since it can be used in an MAB problem. BAMDP is a special

case of the POMDP framework that incorporates the exploration-exploitation

trade-off, in which the observation variable is the reward z = x [7]. Solv-

ing the BAMDP provides an optimal solution to balancing exploration and

exploitation.

15

Let M be the set of all MDPs. When the parameters of the underlying

environment (MDP) are unknown, the Bayesian framework can represent the

uncertainty about the MDP. This uncertainty can be incorporated into a prob-

ability distribution called the belief bt ∈ B, which captures the likelihood of

each MDP m ∈M corresponding to the environment at time step t.

The BAMDP is defined by the tuple ⟨Ω,A, T ′
, R

′⟩, where:

• Ω = S × B, where B is the set of all possible beliefs overM.

• A is the set of actions (action space), andAs is the set of actions available

at state s.

• T ′ is the probability density function of the BAMDP’s transition, which

conditions the next state and belief on the current state, belief, and

action. It can be defined as

T ′(s′, b′|s, b, a) = Pr(st+1 = s′, bt+1 = b′|st = s, bt = b, at = a)

Since the belief update function is deterministic, we can define the tran-

sition as

Pr(wt+1|wt, a) = Pr(st+1, bt+1|st, bt, at)

Note: st, bt together form a Markov state, called the hyper-state w.

• R′ is the probability density function of the reward for the BAMDP,

which conditions the immediate reward on the current state, belief, and

action. It can be defined as

R′(r|s, a) = Pr(rt+1 = r|st = s, bt = b, at = a)

In this thesis, we assume that both the state space and action space are

finite. The belief b can be any arbitrary distribution, and the rewards are real

numbers, and its domain is known to the agent. In the case of a k-armed

bandit setting, the state space S corresponds to the number of pulls left in

the finite horizon or the number of pulls so far in the discounted infinite hori-

zon. Figure 2.2 illustrates an example BAMDP, where the rectangles represent

16

Figure 2.2: Example BAMDP: The rectangles represent belief-augmented
states, with blue color indicating intermediate states and gray color indicating
terminal states.

17

hyper-states, with blue color indicating intermediate states and gray color in-

dicating terminal states.

Example 2.4.1. Here is an example of a BAMDP (Figure 2.2) for a Beta-

Bernoulli Multi-armed bandit with two arms. The prior belief b0 at time step

0 is

[︃
(3, 2)
(4, 3)

]︃
for each arm, and the horizon of the problem is T = 2.

BAMDP provides a framework for finding the optimal exploration-exploitation

policy. However, computing such a policy becomes computationally expensive

as the environment grows larger.

2.5 Value of Information

This section delves into the concept of the value of information (VOI) and

its various definitions. We begin by discussing the utility-based definition

and then proceed to explore VOI in the context of POMDP and BAMDP.

Additionally, we examine a specific definition in BAMDP called the Value of

Current Sample Information (VOCI), which is utilized in Chapters 3 and 4.

Finally, we investigate a myopic definition of VOI known as myopic-VOI.

2.5.1 Utility-Based Value of Information

The utility-based value of information was initially introduced as the “Value

of Clairvoyance” or expected value of perfect information (EVPI) [11] and has

since been further investigated by researchers such as Lawrence et al. [16] and

Raiffa et al. [18].

Let us now define the utility-based value of information. Suppose ut(a, θ)

represents the measurable utility function of taking action a in experiment

e with parameter θ at time t, where the action space is denoted as A =

{1, . . . , k}. Additionally, let ut(aθ, θ) denote the maximum utility achievable

from experiment e at time t, where aθ = argmax
a

(u(a, θ)). Furthermore, let

bt represent the belief (probability distribution) over the parameter θ of ex-

periment e at time t. We can then define the conditional value of perfect

information as:

18

VPIθ = ut(aθ, θ)− ut(a′, θ)

In the above equation, θ denotes the perfect information (true parameter

of experiment e), and a′ represents the action chosen without the perfect infor-

mation (a′ = argmax
a

(E
θ∼bt

[u(a, θ)])). Since the true parameter θ is unknown,

we need to take the expectation of VPI over the belief bt. In other words, EVPI

is the agent’s perception of the average VPI value. Therefore, the expected

value of perfect information or EVPI is given by:

EVPI = E
θ∼bt

[VPIθ]

As evident, the Expected Value of Perfect Information (EVPI) quantifies

the expected increase in utility resulting from knowledge of the perfect infor-

mation regarding the experiment’s true parameter.

2.5.2 Value Of Information in POMDPs

The concept of the value of information (VOI) focuses on the additional value

gained in terms of long-term reward by permanently integrating a new informa-

tion source into the problem setting. This idea has been explored in the field of

infrastructure management engineering, specifically within the POMDP frame-

work, by Srinivasan et al. [19] and Memarzadeh et al. [17]. The information

considered in these studies refers to an added information source, typically a

monitoring system, within the system.

Multiple definitions of VOI have been proposed in these works, and we will

discuss two: (1) the value of the flow of information, which examines different

methods of information availability for the agent, assuming the information

source is accessible throughout all time steps until the terminal step; and (2)

the value of the current information, which focuses solely on the value provided

by the information at the present time step. For the subsequent steps, a policy

for information availability can be assumed, such as assuming no information

is available.

19

Here is a formal definition of the value of information. When referring to a

POMDP with parameter θ, we consider a POMDP defined by the following tu-

ple: ⟨S,Z,A,Θ = {T,O,R},b0⟩. Additionally, let V ∗(b,Θ) denote the value

function for the optimal exploration-exploitation strategy, which is equivalent

to the Bayes-optimal policy discussed in Section 2.4. Now, we introduce two

distinct POMDPs as follows:

• Θ: The parameter for the POMDP without the source of information.

• Θ′: The parameter for the POMDP that incorporates an information

source with a fixed availability method throughout all time steps (same

availability method through all steps).

The value of the flow of information for a given belief state b, V OIf (b), is

defined as:

V OIf (b) = V ∗(b,Θ′)− V ∗(b,Θ)

Depending on the chosen information availability method, different POMDPs

(Θ′) can be considered, resulting in various variants of the V OIf definition.

One example of an availability method is that the information source is avail-

able at each step with probability p.

2.5.3 Myopic Value Of Information in BAMDP

One variation of the value of information (VOI) concept is the myopic value

of information. This notion focuses on the impact of information only for the

immediate next step and is referred to as the Value of Perfect Information

(VPI) [6]. To define VPI, we first introduce the concept of information gain,

which quantifies the benefit the agent would obtain if it knew the reward for

the next action a:

gain(x = xa) =

{︄
[E[Xα2]− x]+ if a = α1

[x− E[Xα1]]+ if a ̸= α1

(2.10)

20

In the above equation, α1 represents the action suggested by the greedy

policy, and α2 denotes the second choice of action based on the greedy policy

after α1. The x
a is the observed reward after choosing action a.

The “gain” is a concept used to quantify the additional benefit an agent

could accrue from knowing the reward for a forthcoming action, denoted as

a. Gain is computed based on whether the action a is the one suggested

by a greedy policy (α1) or not. Let us assume that the agent chose to ask

advice for arm a = α1. If the agent learns that the reward for the action

a = α1 suggested by the greedy policy is not as beneficial as initially thought,

it would then switch to the next best action (α2). In this scenario, the gain

is calculated as the difference between the expected reward of action α2 and

the actual reward for action a = α1, provided that this difference is positive.

This is represented by the formula: gain(x = xa) = [E[Xα2] − x]+ a = α1.

On the other hand, let us assume that the agent chose to ask advice for arm

a ̸= α1. If the information about the reward for any other action suggests that

this action is more rewarding than the action a suggested by the greedy policy

(α1), the agent would switch to that action. In this case, the gain is calculated

as the difference between the reward for action a and the expected reward of

action α1, again only if this difference is positive. This is represented by the

formula: gain(x = xa) = [x− E[Xα1]]+ a ̸= α1.

Now, let us define the VPI, which involves calculating the weighted average

across all possible observable values for action a based on the agent’s belief b:

V PI(b, a) = E
x∼Pr(.|θa)
θa∼ba

[gain(x = xa)] (2.11)

2.6 Exploration Baseline policies

In the subsequent chapters, our primary focus is on Bayesian learning algo-

rithms as we aim to approximate the Bayes-optimal policy discussed in Chap-

ter 5. These algorithms are rooted in Bayesian learning and serve as baselines

throughout this thesis. The following algorithms are used as baselines in our

study: UCB, Thompson sampling (TS), Bayes-optimal policy, FH-Gittin, and

21

Bayesian Q-Learning.

2.6.1 Upper Confidence Bound

The Upper Confidence Bound (UCB) algorithm is rooted in the principle of

optimism in the face of uncertainty. It suggests that the agent should act

under the assumption that the environment provides the best possible reward.

This algorithm is widely used in the domain of multi-armed bandit problems.

UCB employs a specific action selection policy defined as:

At = argmax
a

⎡⎢⎢⎣Qa +

√︃
2 log t

Na⏞ ⏟⏟ ⏞
bonus

⎤⎥⎥⎦ (2.12)

Here, Qa represents the unbiased estimate of the mean reward of arm a

(µa), while Na denotes the number of times arm a has been pulled until time-

step t. The UCB algorithm uses a bonus-based approach to strike a balance

between exploration and exploitation. This balance is achieved by assigning

a “bonus” to each arm based on two factors: (1) the expected reward of the

arm, as estimated from previous pulls, and (2) the uncertainty or variance

in that estimate. The bonus term encourages the algorithm to explore arms

with higher uncertainty, promoting exploration. At the same time, it favors

arms with higher expected rewards, promoting exploitation. By adjusting

the balance through the bonus term, the UCB algorithm aims to maximize

the total reward accumulated over time. Notably, the UCB algorithm exhibits

optimal asymptotic performance [15]. This implies that as the number of pulls

(or rounds) increases indefinitely, the algorithm converges to the best possible

expected reward.

2.6.2 Thompson Sampling

The Thompson sampling (TS) algorithm, a cornerstone in the realm of multi-

armed bandit problems, embodies a distinctive approach to balance explo-

ration and exploitation. Unlike the Upper Confidence Bound (UCB) algo-

rithm, which leans on optimism in the face of uncertainty, Thompson Sampling

22

navigates the uncertainty landscape through a probability-matching mecha-

nism, as it tries to pick an arm according to its optimal probability. This

optimal probability is the likelihood, based on current belief, that a given

arm will provide the best outcome among all available options [21]. Thomp-

son sampling stands out for its elegance and simplicity in approximating the

Bayes-optimal policy, making it a popular choice in various applications de-

spite being only asymptotically optimal.

Thompson Sampling operates on a fundamentally different principle com-

pared to UCB. Instead of adding a calculated bonus to encourage exploration,

it leverages the underlying probability distributions to guide its choices, mak-

ing it inherently probabilistic in nature. This probabilistic approach allows

Thompson sampling to dynamically adjust its exploration-exploitation balance

based on the evolving understanding of each arm’s reward potential. While

it may not match the exact performance of a Bayes-optimal policy, its ability

to efficiently converge to optimal actions through sampling-based exploration

makes it a robust and effective algorithm in practical scenarios.

The agent starts with a prior belief distribution over the parameters of the

arms and the reward distribution according to that belief, called Ba andQ(Ba),

respectively. At each step, the agent will sample from its belief distribution

and then pick the action greedily with respect to the sampled values.

Algorithm 1 Thompson Sampling Algorithm

Require: Prior distributions for the arms (b0), problem setting horizon T
1: for t = 1 to T do
2: Sample arm parameters from the belief for all the arms: θt ∼ b (with
θi,t the parameter for arm i)

3: Select Arm at = argmaxi E
θi,t

[X i]

4: Observe reward xatt
5: Update the belief based on the observed reward xatt (Section 2.5)
6: end for

This algorithm has been proven to have optimal asymptotic performance

[15].

23

2.6.3 Bayes-Optimal Policy for Finite Horizon MAB

Let us assume that we are in the BAMDP (mentioned in Section 2.4.2) de-

scribed as the tuple ⟨Ω,A, T ′
, R

′⟩. Our objective is to maximize the sum of

rewards for a finite horizon T , and (Xπ
t) is the value function for policy π

defined by

V π(w = (T, b)) = E
b

[︄
T∑︂
t=1

Xπ
t

]︄
The Bayes-optimal policy achieves the solution to Bayes’ risk minimization

[13]. Bayes’ risk minimization is equivalent to solving the planning problem

in the above BAMDP with a finite horizon criterion, that is, finding a policy

that maximizes the V π(w = (T, b)).

From learning theory [20], there exists a policy π∗ that is optimal and its

value function V ∗ satisfies the dynamic programming equation below:

V ∗(w = (n, b)) = max
a=1...K

(E
xa∼Pr(.|θa)

θa∼ba

[xa] + E
xa∼Pr(.|θa)

θa∼ba

[V ∗(w = (n− 1, b|xa))])

V π(w = (0, b)) = 0
(2.13)

The optimal value function can be calculated from the dynamic programming

equation above (2.13) and the optimal policy π∗ in state w = (n, b), where n

is the remaining time to play and b is the agent’s belief, respectively, chooses

an action π(w = (n, b)) that manage to reach the maximum in Equation 2.13.

So, the optimal policy for the Bayesian MAB problem with a finite horizon is

at = π∗(w = (T − t+ 1, bt−1)).

Unfortunately, due to the extremely large state space of Equation 2.13, the

common methods to compute the optimal policy, such as dynamic program-

ming, are often intractable. But, in some small scenarios, the optimal policy

can be calculated and analyzed. The space of Equation 2.13 is extremely large

because as we proceed into later steps, we build a large decision tree. The fan-

out of this tree is equal to |bt|× |T ′|, which is rather a large number; therefore,

the decision tree is extremely large.

Example 2.6.1. Here is an example of Bayes-optimal policy on top of problem

setting in Example 2.4.1. Our problem-setting is Beta-Bernoulli multi-armed

24

bandit with two arms, b0 as prior belief (b0 =

[︃
(3, 2)
(4, 3)

]︃
) for each arm, and the

problem-setting horizon is T = 2. The dynamic programming equation (2.13)

yields the following result for the optimal value function V ∗ (which depends on

the b0 and the horizon T = 2)

V ∗(T = 2, b0) = max{V1, V2}

V1 = E
x1∼Pr(.|θ1)

θ1∼b1

[x1]

+ P (x1 = 1 | b1)V ∗(w = (T = 1, b|x1=1))

+ P (x1 = 0 | b1)V ∗(w = (T = 1, b|x1=0))

=
3

5
+

3

5
max

(︃
4

6
,
4

7

)︃
⏞ ⏟⏟ ⏞
Non-recursive
since T = 1

+
2

5
max

(︃
3

6
,
4

7

)︃
⏞ ⏟⏟ ⏞
Non-recursive
since T = 1

≈ 1.23

V2 = E
x2∼Pr(.|θ2)

θ2∼b2

[x2]

+ P (x2 = 1 | b2)V ∗(w = (T = 1, b|x2=1))

+ P (x2 = 0 | b2)V ∗(w = (T = 1, b|x2=0))

=
4

7
+

4

7
max

(︃
3

5
,
5

8

)︃
⏞ ⏟⏟ ⏞
Non-recursive
since T = 1

+
3

7
max

(︃
3

5
,
4

8

)︃
⏞ ⏟⏟ ⏞
Non-recursive
since T = 1

≈ 1.19

and as V1 > V2, the Bayes-optimal policy chooses arm 1.”

2.6.4 Finite-Horizon Gittins’ Index

An index-based policy in the MAB setting is a policy in which a numerical

value can be assigned to each arm, given the state of the arms, independently

of other arms, and then the arm with the greatest index is chosen. In Section

2.6.3 we talked about the Bayes-optimal solution. Gittin’s theorem [10] says

that the solution to Bayes-optimal policy for an infinite discounted setting

with independent arms can be reduced to an index policy, later called Gittins

indices. Moreover, the Gittins indices are only optimal in the discounted

setting, but empirically, it is shown that they are near-optimal in a finite-

horizon case [13]. In this thesis, we introduce Gittins’ indices only in the

context of (Bayesian) MAB models with independent arms for simplicity.

25

There are several interpretations of Gittins’ indices, and one of the defini-

tions relies on a calibration problem called the “one-armed bandit problem” for

each arm [3] [13]. Let the “one-armed bandit problem” as Cλ. Let θ ∼ b and,

conditionally on b, let (Xt) be an i.i.d. sequence with distribution vθ, that is a

one-armed bandit. For λ ∈ R, we consider the following strategy, denoted by

Cλ. At each time-step t, the agent has to choose between receiving a (known)

reward λ or drawing the unknown arm and receiving a random reward drawn

from the distribution vθ. The agent’s goal is to maximize its rewards with

respect to one of the criteria previously mentioned: either the sum of rewards

for horizon T in a finite-horizon case or the sum of the discounted rewards in

the infinite-horizon case.

Throughout the rest of this section, we focus on the finite-horizon case [14].

This strategy is a planning problem in an MDP, and by writing the dynamic

programming equations for it, we can see that the optimal policy is a stopping

policy. This stopping policy means that the unknown arm is played until some

stopping time τ , which is a random variable, and after that, the known arm

with reward λ is chosen until the end. One observation from Cλ is that as we

increase the λ, the agent has less incentive to pull the unknown arm. There

exists a critical value λ∗ such that for a larger value of λ, the optimal policy

for Cλ never draws the unknown arm. This critical value represents the price

worth paying for playing the unknown arm, which is the Gittins’ index.

In the finite-horizon one-armed bandit, the near-optimal policy plays the

unknown arm as long as the current belief b on the parameter θ and the

remaining time to pull an arm, n, are such that G(n, b) > λ, with G(n, b) is

the finite-horizon Gittins’ index, defined as the following:

G(n, b) = inf{λ ∈ R : sup
0≤τ≤n

E
b
[
τ∑︂
t=1

Xt + λ(n− τ)] = nλ} (2.14)

The definition of the Gittins’ index from the original paper (in the dis-

counted case only) is different than the definition above (2.14). It is not

difficult to show that the following two definitions, 2.14 and 2.15, are the same

26

[9]. Here is the original definition of the FH-Gittins’ index:

G(n, b) = sup
0<τ≤n

E
b
[
∑︁τ

t=1Xt]

E
b
[τ]

(2.15)

The procedure for the computation of the FH-Gittins’ indices is provided

by E. Kaufmann [13]. In Beta-Bernoulli bandit, and for n = 1, 2, we can have

an explicit expression of the Gittins’ indices [4]. Here are these expressions:

G((α, β), 1) =
α

α + β
and G((α, β), 2) =

α

α + β
×

1 + α+1
α+β+1

1 + α
α+β

(2.16)

In Equation 2.16, α and β are the Beta parameters of the arm that we are

trying to calculate the FH-Gittins’ index for.

Example 2.6.2. Here is an example of the FH-Gittins policy on top of problem

setting in Example 2.4.1. Our problem-setting will be Beta-Bernoulli multi-

armed bandit with two arms, b0 as prior belief (b0 =

[︃
(3, 2)
(4, 3)

]︃
) for both arms,

and the problem-setting horizon will be T = 2. From Equation 2.16, we have:

G1 = G((3, 2), 2) =
3

5
×

1 + 4
6

1 + 3
5

= 1.6

G2 = G((4, 3), 2) =
4

7
×

1 + 5
8

1 + 4
7

≈ 1.46

and as G1 > G2, the FH-Gittin policy chooses arm 1. In this particular exam-

ple, the Gittins policy is optimal, but generally, it is not.

2.6.5 Bayesian Q-learning

The Bayesian Q-learning algorithm is based on the idea of myopic VOI [6].

This algorithm uses myopic VOI as an incentive in a bonus-based policy, which

essentially guides the selection of actions. This mechanism is somewhat remi-

niscent of the UCB policy; however, it employs myopic VOI as a bonus term

added to the mean estimate of an arm’s reward. The intuition behind this is

to reflect not only the expected reward of an action but also the potential in-

formational benefit associated with it. In particular, the myopic VOI provides

27

an estimate of the average gain in value that could be obtained if the agent

had knowledge of the next step reward for a given arm. This added insight,

encapsulated in the bonus term, steers the agent towards actions that are not

only promising in terms of expected reward but also in terms of the informa-

tional value they carry. Here is the pseudo-code for the Bayesian q-learning

algorithm:

Algorithm 2 Bayesian q-learning

Require: Prior distributions for the arms (b0), problem setting horizon T
1: for t = 1 to T do
2: n = T-(t-1)
3: bonusa =VPI(bt−1, a)

4: Select Arm at = argmax
a

(︃
E
bt−1

[Xa] + bonus

)︃
5: Observe reward xatt
6: Update the belief based on the observed reward xatt (Section 2.5)
7: end for

2.7 Conclusion

In this chapter, we explored the essential knowledge required to grasp the

concepts explored in this thesis. This includes a thorough understanding of

the Bayes-optimal policy in BAMDP as well as the notion of value of in-

formation (VOI). These foundational concepts and definitions are crucial for

comprehending the advice problem-setting. Also, we showed that following

the Bayes-optimal policy is intractable even in small problem settings, which

yields the need for approximation. In Chapters 3 and 4, we develop a frame-

work for formalizing the advice problem. Additionally, in Chapter 5, we ex-

plore various approximations and conduct analyses of those approximations

for the Bayes-optimal policy.

28

Chapter 3

What Arm to Ask About

In this chapter, we investigate the problem of how to determine which arm an

agent should seek advice about (“What arm to ask about problem”). First, we

provide the optimal solution for this problem. Then, we further explore this

problem within the context of an online finite-horizon Beta-Bernoulli multi-

armed bandit with a specific type of advice: a single free sample from the arm

selected by the agent as advice. In general, there are sometimes constraints

on advice. For example, there may be a cost associated with each piece of

advice or a budget for the number of times advice can be asked. In this work,

we focus on advice with a budget. For the sake of simplicity and ease of

analysis, throughout this chapter, we assume that the agent can only ask for

advice once, and for the remaining steps, the agent follows the Bayes-optimal

policy while interacting with the MAB in an online learning manner. Thus,

the advice budget (Φ) is set to Φ = 1. Additionally, we represent the time

step horizon of the problem-setting as T . The type of advice mentioned above,

which involves obtaining a sample from an arm, is related to the Bayes-optimal

policy discussed in Chapter 5. This connection is one of the reasons we chose

this type of advice and will be further explained in Section 3.3.

We need to mention that throughout the rest of this thesis, the problem

setting will remain the same, online finite-horizon Beta-Bernoulli multi-armed

bandit, with the Bernoulli parameters of arms’ rewards being unknown to the

agent.

29

3.1 Optimal Solution to the Problem of What

Arm to Ask About

When the agent is seeking advice by observing a sample from a particular arm,

one of the fundamental questions we encounter is, “What arm to ask about?”

To answer this question, we need to assume a model for the advice. Given

that we employ Bayesian learning, we maintain a belief distribution, repre-

sented by a Beta distribution in our case. This belief distribution incorporates

the information acquired through the agent’s interactions with the environ-

ment (multi-armed bandit). Since the true parameter of the environment is

unknown, we assume that the advice model is based on the agent’s belief.

Let us assume that the agent has decided to seek advice at the current time

step. The optimal arm for the agent to seek advice from is the arm that, on

average, yields the highest return after seeking a piece of advice for that arm.

This value is captured by the value of current sample information (VOCSI),

which will be explained in detail in the next Section, 3.2.

3.2 Value of Current Sample Information

In Section 2.5 of the background chapter, we discussed the fundamentals of the

value of information and its definition within a partially observable Markov

decision process (POMDP) setting (Section 2.5.2). In this section, we present

a derivation of the value function for a Bayesian adaptive Markov decision

process (BAMDP) that we have developed. This value function is essential for

defining the value of current information (VOCI) in BAMDPs. Subsequently,

we investigate a derivation of the value of information in our specific setting

(BAMDP), referred to as the value of current information (VOCI) in BAMDP.

The VOCI will later be employed to define the value of current sample infor-

mation (VOCSI), which incorporates a single sample from an arm as used in

this thesis for advice.

30

3.2.1 Cross-action-Value Function vs. Action-Value Func-
tion in BAMDP

The cross-action-value function for BAMDP is useful when we want our policy

to use a belief b′ for decision-making that differs from the belief b used for the

reward distribution. More specifically, at each step, the possible rewards are

drawn from belief b, while the belief used in the policy to choose an action is

b′. The equation for the action-value function, where the belief used for reward

distribution is the same as the one used in the policy, is as follows:

q∗(w = (n, b), a) = E
xa∼Pr(.|θa)

θa∼ba

[xa] + E
xa∼Pr(.|θa)

θa∼ba

[V ∗(w = (n− 1, b|xa))]

q∗(w = (0, b), a) = 0

(3.1)

The cross-action-value function, on the other hand, is given by the follow-

ing:

qb
′
(w = (n, b), a) = E

xa∼Pr(.|θa)
θa∼ba

[xa] + E
xa∼Pr(.|θa)

θa∼ba

[V b′|xa (w = (k − 1, b|xa))]

qb
′
(w = (0, b), a) = 0

(3.2)

In the above equations (3.1 and 3.2), “a” represents the arm chosen by

the agent, and V b′(w = (n, b)) = qb
′
(w = (n, b), argmax

a
q∗(n, b′, a)) with the

constraint V b′(w = (0, b)) = 0. As you can see, there is a relationship between

the optimal value function and the cross values function, as well as between

the optimal action-value function and cross action-value function, which is

depicted in the following:

V b(w = (n, b)) = V ∗(w = (n, b))

qb(w = (n, b), a) = q∗(w = (n, b), a)
(3.3)

The two key equations in the BAMDP framework, Equations 3.1 and 3.2,

serve different purposes:

• Standard Action-Value Function (Equation 3.1): Defines q∗ for sce-

narios where the policy and reward distribution are based on the same

belief b. It is essential for traditional decision processes in BAMDPs.

31

• Cross-Action-Value Function (Equation 3.2): Introduces qb
′
for cases

where the decision-making belief b′ differs from the reward distribution

belief b.

Having both functions allows us to formulate the value of current informa-

tion in a BAMDP in the upcoming Section 3.2.2.

3.2.2 Value of Current Information in BAMDP

The concept of the value of information, as discussed in Chapter 2.5.2, has been

previously explored in the POMDP setting with predefined information struc-

tures. In this section, we extend this concept to the finite-horizon BAMDP

setting, considering a general structure for information in the MAB problem-

setting.

Let us consider a finite-horizon BAMDP with a horizon of n, described

by the tuple (Ω,A, T ′
, R

′
). Let V ∗(w = (n, b)) denote the value function for

Bayes-optimal policy, where w is the hyper-state that represents the number of

pulls left n and a belief b. The source of information is modeled by a random

variable Ψ. When we observe a sample from this variable, denoted as ψ ∼ Ψ

(receiving a piece of advice), the current belief state b is updated to b′ using the

update function b′ = b|ψ = Pr(· | Ψ = ψ). Moreover, the perfect information

about an arm in an MAB setting is the value for the true underlying parameter

of that arm.

Now, in order to define the value of current information (VOCI), first, let us

define the gain as the increase in the value function by observing information

for the current state, resulting in the current belief state b being updated to

b′:

gain(n, b, b′) = vb
′
(w = (n, b′))− vb(w = (n, b′))

= v∗(w = (n, b′))− vb(w = (n, b′))
(3.4)

In the above Equation 3.4, we have used Equation 3.3 to transition from

the first line to the second line.

Next, let us define the value of current information (VOCI) with informa-

tion modeled by the random variable Ψ:

32

VOCI(n, b,Ψ) = E
ψ∼Ψ

[gain(n, b, b|ψ)] (3.5)

As you can observe, there is an analogy between the gain and the VOCI def-

inition in this section and the utility-based VOI definition from Section 2.5.1.

Gain is similar to the value of perfect information (VPI), and VOCI is similar

to the expected value of perfect information (EVPI). Moreover, the notion of

VOCI used here is analogous to VOIf from Section 2.5.2. VOIf defines the

current value of information while assuming that no additional information is

available for the remaining steps.

3.2.3 Value of Current Sample Information in BAMDP

Once the VOCI with the general model Ψ for information is defined, we can

explore a specific information model that represents a free sample from an

action a. The VOCI notion that uses a free sample from an action is the Value

of Current Sample Information (VOCSI). More specifically, the information

structure is defined as Ψa = Pr(Xa|ba), indicating that the agent’s obtained

information is equivalent to taking action a, observing the resulting reward,

and subsequently updating its belief based on that acquired information. Let

us define the VOCSI as follows:

VOCSI(n, b, a) = E
xa∼Pr(.|θa)

θa∼ba

[gain(n, b, b|xa)]

= E
xa∼Pr(.|θa)

θa∼ba

[v∗(w = (n, b|xa))− vb(w = (n, b|xa))]

= E
xa∼Pr(.|θa)

θa∼ba

[v∗(w = (n, b|xa))]− E
xa∼Pr(.|θa)

θa∼ba

[vb(w = (n, b|xa))]⏞ ⏟⏟ ⏞
claim1:=V ∗(w=(n,b)))

= E
xa∼Pr(.|θa)

θa∼ba

[v∗(w = (n, b|xa))]− v∗(w = (n, b))

(3.6)

Claim 1.

E
xa∼Pr(.|θa)

θa∼ba

[qb(n, b|xa , a
∗(n, b))] = q∗(n, b, a∗(n, b)) = v∗(n, b)

33

In the above equation, a∗(n, b) = argmax
a

q∗(n, b, a).

Proof. Proof of the above Claim 1 is provided in the appendix (Section A.1).

Figure 3.1: Example of a BAMDP for the “What arm to ask about problem.”
The rectangles represent belief-augmented states, with the blue color indicat-
ing intermediate states and the gray color representing terminal states. The
yellow circle numbers the states, and the gray rectangle provides the optimal
action value for their adjacent state and a specified arm.

34

Example 3.2.1. Here is an example of a BAMDP for the optimal “What

arm to ask about algorithm,” illustrated in Figure 3.1. The example considers

a Beta-Bernoulli multi-armed bandit with two arms, where b0 represents the

prior belief for each arm.

b0 =

[︃
(3, 2)
(4, 3)

]︃
The horizon of the problem-setting is T = 1. From the optimal solution to

the “What arm to ask about problem” (Section 3.1), we know that the optimal

solution to the “What arm to ask about problem” is argmax
a

VOCSI(n, b, a).

Based on Equation 3.6, we can simplify the expression for VOCSI by ignoring

the second term since it doesn’t depend on action a. Thus,

argmax
a

VOCSI(n, b, a) = argmax
a

E
xa∼Pr(.|θa)

θa∼ba

[v∗(w = (n, b|xa))]

From Figure 3.1, we can observe the BAMDP representation of the below ex-

pression.

E
xa∼Pr(.|θa)

θa∼ba

[v∗(w = (n, b|xa))]

The green lines in Figure 3.1 are associated with asking for advice for different

arms in the current step.

The values of the expression E
xa∼Pr(.|θa)

θa∼ba

[v∗(w = (n = 1, b0|xa))] for differ-

ent arms are shown in the gray box adjacent to state number 1. As can

be seen, the value for arm 1 is greater than that for arm 2, indicating that

argmax
a

VOCSI(n, b, a) = arm 1.

3.3 Bayes-Optimal Policy vs. VOCSI

In this section, we discuss the close relationship between the Bayes-optimal pol-

icy and VOCSI in a finite-horizon Bayesian setting. Let q∗(n, b, a) be the action

value function of action a for the Bayes-optimal policy and let VOCSI(n, b, a)

be the value of current sample information for action a given belief b and

horizon n. We claim that the relation between these two is as follows:

35

Claim 2.

q∗(n+ 1, b, a) = E
b
[Xa] + VOCSI(n, b, a) + v∗(n, b)

Proof. From Equation 2.13, we have:

q∗(n, b, a) = E
xa∼Pr(.|θa)

θa∼ba

[xa] + E
xa∼Pr(.|θa)

θa∼ba

[max
a′

q∗(n− 1, b|xa , a
′)]

= E
xa∼Pr(.|θa)

θa∼ba

[xa] + E
xa∼Pr(.|θa)

θa∼ba

[v∗(n− 1, b|xa)] (3.7)

Equation 3.7 & 3.6−−−−−−−−−−→ q∗(n+ 1, b, a) =E
b
[Xa] + VOCSI(n, b, a) + max

a′
q∗(n, b, a′)

=E
b
[Xa] + VOCSI(n, b, a) + v∗(n, b)

Figure 3.2: Bayes-optimal value function decomposition visualization. The
gray bar represents the action value for arm a for the Bayes-optimal policy
with horizon n+1 and belief b. The blue bar represents the expected value of
arm a, the green bar represents the VOCSI value for arm a with horizon n and
belief b, and the yellow bar represents the value function of the Bayes-optimal
policy with horizon n and belief b.

As shown in Claim 2, the action value function for the Bayes-optimal pol-

icy with horizon n + 1 can be decomposed into three terms. The first term

represents the expected value of action a. The second term represents the

value of current sample information (VOCSI) for action a with horizon n and

36

belief b. These first two terms are dependent on the chosen action a. Finally,

the third term represents the value function for the Bayes-optimal policy with

horizon n, which is independent of the action chosen. Figure 3.2 visualizes

this decomposition.

Based on Claim 2, we can provide an equivalent action selection policy to

the Bayes-optimal exploration strategy (Claim 3). In this equivalent policy,

we consider only the first two terms on the right-hand side of Claim 2 since

they are the only terms dependent on the action.

Claim 3. If a∗ is the action selected by the Bayes-optimal policy at state (n, b):

a∗ = argmax
a

q∗(n, b, a), we claim that the following policy provides the same

best action selection policy as a∗:

a∗ = argmax
a

(E
b
[Xa] + V OCSI(n− 1, b, a)) (3.8)

Proof.

a∗ = argmax
a

q∗(n, b, a)

Claim 2−−−−→ = argmax
a

(E
b
[Xa] + V OCSI(n− 1, b, a) +max

a′
q∗(n, b, a′)⏞ ⏟⏟ ⏞

independent of a

)

= argmax
a

(E
b
[Xa] + V OCSI(n− 1, b, a))

3.4 Approximation of the Optimal Solution to

What Arm to About

The optimal solution presented in Section 3.1 becomes intractable when problem-

setting parameters are increased, such as the number of arms or the horizon.

Therefore, it is necessary to propose approximations for this problem in or-

der to reduce the computational cost of optimal methods. In the next two

sections, we introduce two types of approximations, which are the h-myopic

approximation and the Gittins’ argmax approximation of VOCSI alongside

37

with their pros and cons. Additionally, in Section 3.4.1, we explore the my-

opic approximation used in the literature and its relationship to the h-myopic

approximation.

H-myopic Approximation

One approach to approximate the optimal solution to the “What arm to ask

about problem” is by approximating the problem-setting horizon. We refer

to this approximation type as the “h-myopic” approximation, with h repre-

senting the approximation horizon. For example, when we mention “3-myopic

VOCSI,” we assume the algorithm’s horizon is three. Specifically, we calculate

the values based on the assumption that the problem-setting horizon is h = 3,

even though the problem-setting’s true horizon may differ. For the “What

arm to ask about problem,” when approximating the VOCSI, the myopic ap-

proximation is as follows:

• Constant horizon: In this horizon approximation, we assume that the

horizon is a fixed number and does not decrease as we progress. For

instance, if we use a 3-myopic approximation, VOCSI (n, b, a) is approx-

imated by VOCSI (3, b, a) for all n.

This myopic approximation enables us to obtain an approximate value for

VOCSI, which can then be used to determine the argmax approximation of

VOCSI by taking argmax over the approximated values. Here are the pros

and cons of h-myopic approximation of VOCSI:

Pros:

• Value Estimation: Offers an estimated value for VOCSI, useful in

scenarios requiring a comprehensive understanding of VOCSI, such as

when evaluating costs associated with asking for advice.

• Customizable Horizon: Allows for setting a specific horizon, providing

flexibility in balancing foresight and computational resources.

Cons:

38

• Less Efficient for Equivalent Horizon: Slower compared to Gittins’

argmax approximation when using the same horizon, leading to higher

computational costs.

• Accuracy Dependent on Horizon Length: May not adequately cap-

ture long-term effects or the dynamics of the decision-making environ-

ment if the horizon is set too short.

However, there is another type of approximation that can only provide

us with the argmax approximation of VOCSI, known as “Gittins’ argmax

approximation of VOCSI.” The “Gittins’ argmax approximation of VOCSI”

is introduced in the following section.

Gittins’ Argmax Approximation of VOCSI

In Section 2.6.4, we discussed the FH-Gittins’ index, a technique that provides

a policy close to optimal when compared to the Bayes-optimal policy. This

closeness to optimality will be empirically demonstrated in the upcoming opti-

mal exploration chapter (5.3.3). Consequently, it is reasonable to approximate

FH-GittinsMindex ≈ argmax
a

q∗(n, b, a), where M corresponds to the underlying

MDP for the q∗(n, b, a) optimal action-value function. Considering the nature

of the advice in VOCSI and its relation to the Bayes-optimal policy (Section

3.3), we propose applying the FH-Gittins technique to an augmented MDP

(M ′), which will be described shortly, to approximate the argmax of VOCSI.

Based on Claim 2, we have V OCSI(n, b, a) = q∗(n+1, b, a)−E
b
[Xa]−v∗(n, b);

therefore, argmax
a

VOCSI(n, b, a) = argmax
a

(q∗(n+1, b, a)−E
b
[Xa]). Now, let

us define an augmented MDP M ′ such that its optimal action-value function

(q
′∗) is given by q

′∗(n + 1, b, a) = q∗(n + 1, b, a) − E
b
[Xa]. To achieve this,

we modify the MDP M such that the starting state’s action reward is zero.

By applying the FH-Gittins’ technique to this augmented MDP, we obtain an

approximation denoted as FH-GittinsM
′

index, which can be used as an approx-

imation for argmax
a

VOCSI(n, b, a). Here are the pros and cons of Gittins’

argmax approximation of VOCSI:

Pros:

39

• Optimal Action Focus: Excellently suited for scenarios primarily con-

cerned with identifying the best action, due to its focus on the argmax

of VOCSI.

• Greater Efficiency: Significantly faster than the h-myopic approxima-

tion, especially valuable when dealing with the same horizon lengths.

Cons:

• Limited to Action Selection: Does not provide an actual value esti-

mate for VOCSI, making it less suitable for scenarios where understand-

ing the full value of VOCSI is necessary.

The choice between these two approximations hinges on the specific needs

of the decision-making process. If the goal is to understand the full value of

VOCSI, especially when additional factors like advice cost are in play, the h-

myopic approximation is more appropriate despite its computational intensity.

In contrast, for scenarios where quick and efficient identification of the best

action is paramount, Gittins’ argmax approximation is the superior choice,

offering significant speed advantages, particularly at the same horizon lengths.

The decision should be guided by the balance between the need for compre-

hensive value analysis and the efficiency of action selection.

3.4.1 Myopic Value Of Information

In the background (Section 2.5.3), we discussed myopic VOI (VPI), and now

let us explore its relation to V OCSI. According to Claim 4 below, the VPI

notion (Equation 2.11) is equivalent to 1-myopic VOCSI.

Claim 4. If b represents the agent’s current belief and a denotes an arm, then:

1-myopic VOCSI(b, a) = VOCSI(n = 1, b, a) = VPI(b, a)

Proof. As we can observe, the expectation in Equation 2.11:

V PI(b, a) = E
x∼Pr(.|θa)
θa∼ba

[gain(x = xa)]

40

is the same as the second line of Equation 3.6:

VOCSI(n, b, a) = E
xa∼Pr(.|θa)

θa∼ba

[v∗(w = (n, b|xa))− vb(w = (n, b|xa))]

Therefore the proof is complete if the expressions inside these expectations are

equal.

Now, let us compare Equation 2.10:

gain(x = xa) =

{︄
[E[Xα2]− x]+ if a = α1

[x− E[Xα1]]+ if a ̸= α1

to the expression inside the expectation in the second line of Equation 3.6:

v∗(w = (n, b|xa))− vb(w = (n, b|xa))

As indicated in Equation 2.10, when we obtain perfect information from the

action suggested by the greedy policy, the gain is the difference between the

expected value of the second greedy action and the reward obtained from the

information. Additionally, if the gain is negative, we set the gain to zero

since we won’t switch to the second greedy action. Therefore, if we determine

that the true value of the second greedy action is higher than that of the

highest greedy action, we choose the second greedy action instead. It can be

observed that [E[Xα2] − r]+, where a = α1, is equal to v∗(w = (n, b|xa)) −

vb(w = (n, b|xa)), where E[Xα2] = v∗(w = (n, b|xa)) and r = vb(w = (n, b|xa)).

Similarly, suppose we obtain perfect information from the action not suggested

by the greedy policy. In that case, the gain is the difference between the

reward obtained from the information and the expected value of the greedy

action. Therefore, if we receive information indicating that an action other

than the greedy action has a higher value, we switch to that action. In doing

so, it can be observed that [r − E[Xα1]]+, where a ̸= α1, is also equal to

v∗(w = (n, b|xa))− vb(w = (n, b|xa)), where r = v∗(w = (n, b|xa)) and E[Xα1] =

vb(w = (n, b|xa)).

41

Figure 3.3: Relative error of Gittins’ argmax approximation and h-myopic
approximation for i = {1, . . . , 15}. The relative error is computed as the
difference between the optimal solution value and the approximation solution
value, divided by the optimal solution value.

3.5 Experiments

In this section, we outline the experimental design (Section 3.5.1) and provide

an analysis of the results (Section 3.5.2).

3.5.1 Design

The experimental evaluation compares the performance of the optimal ap-

proach and the approximation approach for the ”What arm to ask about”

algorithm, as described in Section 3.4. We conduct two sets of experiments:

• Optimal solution: We evaluate the performance of the optimal ap-

proach for the “What arm to ask about problem.”

42

Figure 3.4: Absolute error of Gittins’ argmax approximation and h-myopic
approximation for i = {1, . . . , 15}. The absolute error is computed as the
difference between the optimal solution value and the approximation solution
value.

• Approximate solution: We assess the effectiveness of the approxima-

tion approach for the “What arm to ask about problem.”

For ease of analysis in the subsequent section (Section 3.5.2), we use a Beta-

Bernoulli multi-armed bandit model with three arms, each having a uniform

prior belief. Furthermore, we vary the initial beliefs over a range of values

(106 different values) B =

⎧⎨⎩
⎡⎣(α1, β1)
(α2, β2)
(α3, β3)

⎤⎦ ⃓⃓⃓⃓
⃓⃓∀αi, βi ∈ {1, . . . , 10}

⎫⎬⎭ to obtain more

accurate and reliable results.

3.5.2 Analysis

In this section, we conduct an analysis of the “What to ask about problem”

using different types of approximations as discussed in the previous section

43

Figure 3.5: Average time taken by Gittins’ argmax and VOCSI algorithm to
determine which arm to ask for advice, based on the problem-setting horizon
(T). These results were run on an “11th gen intel(R) core(TM) i7-11700F @
2.5GHz” CPU.

(Section 3.4). All results discussed are averaged over the belief space, consist-

ing of 106 different initial beliefs, as outlined in Section 3.5.1. It is important

to note that due to the large number of initial beliefs (N = 106), error bars

are omitted since the errors are negligible.

Figure 3.3 illustrates the relative error of the h-myopic approximation and

Gittins’ argmax approximation. Notably, the 1-myopic approximation serves

as a baseline, and it is equivalent to the myopic approximation (Section 3.4.1).

This result shows that increasing the approximation horizon leads to

a lower relative error. Importantly, if we overestimate the approxi-

mation horizon (selecting a horizon where h > T), the performance

is significantly better compared to underestimating it. Additionally,

the performance of “Gittins’ argmax approximation of VOCSI” initially out-

44

performs the 1-myopic algorithm. However, as the number of steps increases,

the relative error of “Gittins’ argmax approximation of VOCSI” approaches,

and at times exceeds, that of the 1-myopic algorithms. This can be attributed

to the sub-optimality of the Gittins’ index policy when used in a finite-horizon

setting, as it is optimally designed for the discounted setting. Consequently,

this inherent limitation of the Gittins’ algorithm leads to the sub-optimality

of the “Gittins’ argmax approximation of VOCSI.”

Figure 3.4 presents the absolute error of the h-myopic approximation and

“Gittins’ argmax approximation of VOCSI.” In terms of absolute error, the

performance of the “Gittins’ argmax approximation of VOCSI” is inferior to

that of the h-myopic approximation. Therefore, based on the results de-

picted in Figures 3.3 and 3.4, we conclude that the h-myopic ap-

proximation outperforms the Gittins’ argmax approximation.

Lastly, Figure 3.5 provides a temporal comparison between the Gittins’

argmax algorithm and the VOCSI algorithm for different horizons. The y-axis

of the figure uses a logarithmic scale in seconds, revealing that both algorithms

exhibit exponential growth with respect to the horizon. However, the VOCSI

algorithm demonstrates a significantly faster growth rate compared to the

Gittins’ argmax algorithm. Note that the Gittins’ argmax algorithm lacks a

data point at horizon T = 1. This is attributed to numerical errors, which led

to a recorded time of zero. As the logarithm of zero is negative infinity, this

point is absent.

3.6 Conclusion

In this chapter, we examined the optimal solution to the “What arm to ask

about problem” and introduced two types of approximations for addressing

this problem: the h-myopic algorithm and the Gittins’ argmax algorithm.

The h-myopic algorithm approximates the problem horizon, while the Gittins’

VOCSI algorithm uses the finite-horizon Gittins’ technique to estimate the

maximum value of the VOCSI term across the action space. We then con-

ducted an analysis of the optimal solution and its approximations, leading to

45

several key findings.

Firstly, the study reveals that increasing the approximation horizon leads

to notable reductions in both relative and absolute errors. This implies that a

more precise estimation of the problem horizon plays a vital role in enhancing

decision-making accuracy and improving the quality of approximations.

Additionally, the research emphasizes the critical importance of appropri-

ately selecting the approximation horizon. Surprisingly, overestimating the

horizon, even beyond the true problem horizon, exhibits remarkably superior

performance compared to underestimating it. This highlights the necessity

of considering an extended horizon that accounts for future uncertainties and

optimizes decision-making effectively.

The comparison between the Gittins’ argmax algorithm and 1-myopic al-

gorithms yields intriguing observations. Initially, Gittins’ argmax algorithm

outperforms the 1-myopic algorithm in terms of relative error. However, as

the number of steps increases, the relative error of Gittins’ argmax algorithm

gradually converges to and even surpasses that of the 1-myopic algorithms.

This phenomenon can be attributed to the finite-horizon setting’s limitations

in leveraging the full potential of the Gittins’ index policy, which is primarily

optimized for the discounted setting. Consequently, the sub-optimality of the

Gittins’ algorithm influences the overall performance of the Gittins’ argmax

approximation.

Furthermore, the evaluation of absolute error indicates that the Gittins’

argmax algorithm performs less favorably than the h-myopic approximation.

Based on the assessment of both relative and absolute errors depicted in Fig-

ures 3.3 and 3.4, a clear conclusion can be drawn: in expectation the h-myopic

approximation consistently outperforms the Gittins’ argmax approximation in

our problem-setting.

46

Chapter 4

When To Ask For Advice

In this chapter, we examine the circumstances under which an agent should

seek advice, focusing on the problem setting introduced in the previous chapter

(Chapter 3). Firstly, we present the optimal solution to the “When to ask for

advice problem”(Section 4.1). Next, we explore various approximations for the

optimal solution (Section 4.2). Finally, we conduct experiments and analyze

the results (Section 4.3).

4.1 Optimal Solution to the Problem of When

to Ask for Advice

When considering the scenario of an agent seeking advice, a fundamental ques-

tion arises: “When should the agent ask for advice?” More specifically, should

I ask for advice right now or postpone? To the best of our knowledge, this

question has not been thoroughly examined. Some studies have used approxi-

mations based on the agent’s uncertainty to determine whether advice should

be sought [5] or they decide to provide advice if there is a substantial differ-

ence between the action values of the best and worst actions [1], [22]. However,

these approaches do not account for the optimal time step for seeking advice;

they merely offer approximations. To address this question, we leverage the

“What arm to ask about algorithm” introduced in Chapter 3.

Suppose the agent has n = T ∈ N remaining time steps (T is problem

setting’s horizon), and it must determine whether to ask for advice immedi-

ately or delay the request until a later step. To identify the optimal time

47

step for seeking advice, the agent calculates the expected maximum gain by

postponing advice for t < T steps into the future. To compute this gain, the

agent evaluates the expected maximum of the current sample information’s

value (VOCSI) across all potential future belief states achievable after t steps.

Then, the agent repeats this process for all possible time steps t ∈ {1, . . . , T}

at which it can postpone the request, then selects the time step that yields

the maximum expected gain. If this time step is not the current time step,

the agent should defer asking for advice. Otherwise, it should seek advice

immediately. The corresponding pseudo-code for the Optimal “When to Ask

Algorithm” is provided below (see Algorithm 3). The optimal solution for

the “When to ask for advice problem”is not limited to any specific type of

advice. As long as the advice structure can be modeled using the format:

b′ = b|ψ = Pr(· | Ψ = ψ) with ψ be the advice, we can use VOCI instead of

VOCSI and generalize the advice type.

48

Algorithm 3 Optimal When to Ask Algorithm

Require: Prior distributions for the arms (b0), problem setting horizon T ,
number of arms |A|, Bayes-optimal policy (π∗), and R(n, b, a) is the
stochastic reward function

1: Initialize: EVOIlist ← empty list, Blist ← [b0]
2: for t = 1 to T do
3: n = T − (t− 1)

// Initialize VOInlist as an empty list for storing VOI values
at time step n

4: VOInlist ← empty list
5: for each belief state b in Blist do

// Compute the maximum VOCSI for each action a and belief state b
6: VOImax = max

a
VOCSI(n, b, a)

7: VOInlist.append(VOImax)
8: end for

// Calculate the expected VOI for time step n
9: evoin ← E [VOInlist]

// Initialize Bnext
list as an empty list for next belief states

10: Initialize: Bnext
list ← empty list

11: for each belief state b in Blist do
// Choose the best action a using Bayes-optimal policy π∗(n, b)

12: Select Arm a = π∗(n, b)
13: for each possible reward xa for action a do

// Update the belief state b′ = b|xa
14: b′ = b|xa
15: Bnext

list .append(b
′)

16: end for
17: end for

// Set Blist to B
next
list for the next iteration

18: Blist ← Bnext
list

19: end for
// Determine the time step to wait, waitindex, using the maximum value

in evoin
20: waitindex = argmax evoin

// Return decision to Ask for advice if the waitindex is more than one step
21: if waitindex ̸= 1 then
22: return Ask
23: else
24: return Wait
25: end if

Claim 5. In the context of a Bayesian decision-making process, where an agent

seeks to maximize its expected cumulative reward over a decision horizon T,

49

optimizing the Expected Value of Current Sample Information (E[VOCSI]) at

each decision step maximizes the expected cumulative return. Specifically, if

the agent, at each time step t, chooses to seek advice based on the maximization

of E[VOCSI], then this strategy will lead to an optimal sequence of decisions

that maximizes the overall expected return from the current time step to the

end of the decision horizon.

Proof. Proof of the above Claim 5 is provided in the appendix (Section A.2).

One intriguing aspect of our findings is the optimality of deferring advice-

seeking in certain scenarios, even in scenarios where obtaining advice incurs

no cost but there is only a budget. This observation, at first glance, appears

counterintuitive, as one might naturally assume that free advice should be

sought immediately to maximize information gain without any trade-offs.

In certain situations, the optimal strategy involves waiting for a more op-

portune moment to seek advice, despite its cost-free nature. This can be

attributed to several factors. Firstly, the value of advice may not be uni-

formly distributed across all time steps; it might be more beneficial at specific

junctures due to the evolving state of the system or the agent’s knowledge.

Secondly, seeking advice, even when free, can still alter the decision-making

landscape. It might lead to different paths or choices that could be less ad-

vantageous than those taken without immediate advice. Finally, in a dynamic

environment, the information’s relevance and utility can change over time,

making the timing of advice a crucial factor.

Thus, the decision to delay seeking free advice is not merely a function of

its cost but a strategic consideration of its timing and potential impact on the

overall decision-making process. In the following, you can find an example of

such a phenomenon, in which it is beneficial to postpone the advice.

Example 4.1.1. In Figure 4.1, we present an illustrative example of an op-

timal “When to ask for advice algorithm” applied to a Beta-Bernoulli Multi-

armed bandit problem. The problem consists of three arms, with the prior

50

Figure 4.1: Example of the “When to ask for advice algorithm”: The blue
rectangles represent belief-augmented states, with the red arms indicating the
actions chosen by the Bayes-optimal policy in each corresponding belief state.
The light yellow rectangles denote the probabilities of reaching those states
following the Bayes-optimal policy. The light blue rectangles represent the
maximum VOCSI value associated with the adjacent belief state. The yellow
rectangles indicate the expected VOCSI values for the respective horizon.

belief b0 =

⎡⎣(1, 1)(3, 1)
(3, 2)

⎤⎦ assigned to each arm. The horizon of the problem-setting

is set to T = 3. The expected VOCSI values can be observed in Figure 4.1

(Yellow rectangles in the bottom), indicating that waiting until the next step

to ask for advice leads to a higher expected VOCSI value. The corresponding

MDP solution for this example is depicted in Figure 4.2. We observe that if we

immediately ask for advice regarding arm 1, the expected value (q∗) obtained

would be 2.2758. However, if we first pull the arm and then seek advice in the

subsequent step, the expected value obtained would be 2.2772. Thus, waiting to

51

Figure 4.2: Example MDP of the “When to ask for advice problem”: The
green rectangles correspond to belief states in which the agent requests advice.
The dark blue rectangles represent belief states in which exploration actions
are taken, with the light blue rectangle indicating the horizon of the belief
state. The green arrows depict actions involving advice-seeking, while the
black arrows represent exploration actions. The gray rectangles represent the
action values for the corresponding actions in this example MDP.

ask for advice results in a higher expected value, consistent with the findings

presented in Figure 4.1.

52

4.2 Approximation of the Optimal Solution to

“When and What to Ask about”

The optimal solution presented in Section 4.1 poses computational challenges.

As the number of arms or the horizon in the problem-setting parameters in-

creases, the algorithm becomes computationally intractable. Hence, it is nec-

essary to develop an approximation for the optimal method.

One straightforward approach is to approximate the problem-setting hori-

zon. We employ the same approximation technique introduced in Chapter

3, known as the “h-myopic” approach, where h represents the approximation

horizon. When addressing the question of “When to ask for advice,” if the true

horizon of the problem-setting is denoted as T , we consider an approximation

horizon of h < T . This approximation implies that instead of considering the

expected gain values T time steps into the future, as in the case of the optimal

solution, we only look ahead h < T time steps.

4.3 Experiments

In this section, we present the experimental design (Section 4.3.1) and the

subsequent analysis of the experiments (Section 4.3.2).

4.3.1 Design

We use an experiment design that investigates the “When to ask for advice

problem” using either the optimal or approximation approaches. The “When

to ask for advice problem” consists of three components: (1) “When should

the agent ask for advice?”, (2) “What arm should the agent ask about?”,

and (3) “Exploration policy,” which is the Bayes-optimal policy in our case.

These components are distinct because the agent needs to determine whether

to postpone asking for advice or to inquire immediately (“When to ask for

advice?”). Furthermore, if the agent decides to seek advice, it must determine

which action to request advice for (“What arm to ask about?”). Finally, when

advice is sought, the agent must follow an exploration policy to effectively

53

explore or exploit the environment (“Exploration policy”). Each of these three

components can be approached using either the optimal or approximation

solution. For this chapter, we focus on the advice part and use the Bayes-

optimal policy as the exploration policy.

Figure 4.3: This figure presents four types of algorithm based on using the
optimal solution or approximated solution for “When to ask for advice prob-
lem”and “What arm to ask about problem.” The algorithm, in which we use
approximate solution for “What arm to ask about problem” and the optimal
solution for “When to ask for advice problem,” is not available due to time-
wise intractability.

Based on the considerations mentioned above, four distinct combinations

arise between the approximation and optimal solutions for the “When to ask

for advice problem”and the “What arm to ask about problem” that are il-

lustrated in Figure 4.3. The details of these approximations can be found in

Section 4.2. Out of these four combinations, we exclude the analysis of the

combination involving the optimal solution for the “When to ask for advice

problem”and the approximate solution for the “What arm to ask about prob-

lem.” This omission is due to the intractability of this combination. Indeed,

the combination involving the optimal solution for both the “When to ask

for advice problem”and the “What arm to ask about problem” has the most

computation among these four combinations, so some might ask “why it is not

54

intractable?” The reason behind this is that when using the optimal solution

for the “When to ask for advice problem”and the approximate solution for the

“What arm to ask about problem,” we cannot share computations between

the two problems since they have different horizons. However, when both

problems are addressed using the optimal solution, most computations can be

shared due to the identical horizon for both problems. Thus, we focus on the

following three combinations:

• Optimal solution for the “When to ask for advice problem”with the op-

timal solution to the “What arm to ask about problem.” The algorithm

name used in this chapter for this solution is “optimal h:14”, which indi-

cates that we pick a horizon h=T=14 and calculate the optimal solution

to “What arm to ask about problem.”

• Approximate solution for the “When to ask for advice problem”with

the optimal solution to the “What arm to ask about problem.” The

approximated horizon for the “When to ask for advice problem”is ĥ ∈

{1, . . . , 14}. The algorithm name used in this chapter for this solution is

“optimal h:ĥ” with ĥ representing the value of the approximated horizon.

• Approximate solution for “When to ask for advice problem”with the

approximate solution for “What arm to ask about problem.” In this case,

we use the same approximation horizon for both the “When to ask for

advice problem”and the “What arm to ask about problem.” The list of

approximation horizons is defined as ĥ ∈ {1, . . . , 6}. We limit the horizon

range compared to the previous approximation to reduce computational

time, as explained earlier in this section. The algorithm name used in

this chapter for this solution is “approx h:ĥ” with ĥ representing the

value of the approximated horizon.

For our experiments, we use a Beta-Bernoulli Multi-armed bandit problem

with three arms and a uniform prior belief to facilitate analysis. To ensure ac-

curacy in the subsequent analysis (Section 4.3.2), we conduct the experiments

55

across a range of different initial beliefs (106 different beliefs). Specifically, we

consider the following belief space:

B =

⎧⎨⎩
⎡⎣(α1, β1)
(α2, β2)
(α3, β3)

⎤⎦ ⃓⃓⃓⃓
⃓⃓ ∀αi, βi ∈ {1, . . . , 10}

⎫⎬⎭
In the following sections, we analyze the “When to ask for advice algo-

rithm” using various types of approximations outlined in Section 4.2. All

results are averaged over the belief space before, consisting of 106 different

initial beliefs. Due to the substantial number of initial beliefs (N = 106), error

bars are omitted as they are negligible.

4.3.2 Analysis

In this section, we analyze the “When to ask for advice problem”using the op-

timal and approximation solutions discussed in Section 4.3.1. We employ two

types of “When to ask for advice algorithm.” The first approximation algo-

rithm is referred to as “optimal h,” which uses the optimal solution to calculate

the VOCSI values and approximates the horizon of the “When to ask for advice

problem”by using a specified value of h. For instance, “optimal h=5” consid-

ers a look-ahead horizon of h = 5 for the “When to ask for advice algorithm.”

Similarly, “optimal h=14” corresponds to the optimal solution of the “When to

ask for advice problem” with a look-ahead horizon of h = T = 14. The second

algorithm type is denoted as “approx h,” which approximates both the look-

ahead horizon of the “When to ask for advice problem”and the “What arm to

ask about problem” (VOSCI) using the same value of h. For the “optimal h”

algorithm, we conduct experiments for all possible values of h ∈ 1, . . . , 14,

but we only present a select few in the subsequent plots. Similarly, for the

“approx h” algorithm, we conduct experiments for h ∈ 1, . . . , 6 and only dis-

play a few chosen options in the analysis. The reason behind displaying only

a few options is due to the readability of the figures.

In the subsequent sections, we analyze the “When to ask for advice prob-

lem”using both the optimal and approximation solutions just described. We

explore various aspects to gain a comprehensive understanding of the problem.

56

Firstly, we investigate the optimal look-ahead horizon for the “When to ask for

advice problem,” providing valuable insights into the ideal look-ahead horizon

size. Next, we examine the instances where we should delay the request for

advice, allowing us to determine the number of states in which postponing the

advice is beneficial. Furthermore, we assess the gains and losses incurred using

the approximate “When to ask for advice problem”. Lastly, we evaluate the

performance measures of the proposed algorithms.

Optimal Look-Ahead Horizon for “When to ask for advice problem”

In this section, we analyze the minimum number of steps required to look

ahead into the future to achieve the optimal solution for the “When to ask for

advice problem.” We use the optimal solution for the “What arm to ask about

problem” derived in Chapter 3. Figure 4.4 illustrates that as we increase the

true horizon from T = 1 to T = 15, the 98% confidence optimal look-ahead

horizon gradually increases and converges around six steps. 98% confidence

optimal look-ahead is the horizon that captures the optimal solution 98% of

the times. Based on this finding, we can infer that, in our specific problem

setting, the efficacy of advice in the later steps reaches its peak approximately

six steps into the future. Consequently, if we need to postpone seeking advice,

it is typically sufficient to delay it by a maximum of six steps on average to

have optimal performance. Thus, in expectation, there is no need to extend

the look-ahead horizon until the end to achieve a near-optimal outcome. We

should mention that these results may vary for different belief spaces and

extended horizons.

Wait Percentage

Figure 4.5 shows the percentage of belief states where it is beneficial to delay

asking for advice. This means we could achieve a higher reward by seeking

advice later rather than immediately. From the figure, it’s evident that as

the problem-setting horizon extends, more beliefs favor waiting to ask for

advice. This suggests that advice becomes more valuable in longer horizons

if we choose to delay the request. For horizons of T = 1 or T = 2, the wait

57

Figure 4.4: This figure presents a normalized histogram and the 98% confi-
dence optimal window predictions when utilizing the optimal solution for the
“what arm to ask about problem.” The optimal window prediction represents
the minimum number of steps we need to look ahead into the future to cap-
ture the optimal solution with 98% confidence for the “When to ask for advice
problem.” The black line represents the 98% confidence window size, while the
remaining portion displays the normalized histogram of the optimal window
sizes.

percentage is zero, meaning it is best to ask for advice immediately in these

scenarios.

Gain and Loss of Delyaing Advice Using Approximate Solutions

In this section, we examine various measures related to gain, including max-

imum gain, maximum relative gain, average gain, and average relative gain.

These measures provide insights into the effectiveness of different “When to ask

for advice algorithms.” You can find the detailed definition of these measures

in the following.

58

Figure 4.5: This figure illustrates the percentage of belief states in which
postponing advice is more beneficial across different problem-setting horizons
T .

• Gain: Represents the amount of gain achieved by following a specific

“When to ask for advice algorithm” by asking for advice.

• Relative gain: Indicates the relative gain compared to the gain obtained

by asking for advice immediately (approx algorithm gain−current step gain
current step gain

).

• Max gain: Denotes the maximum possible gain attainable within the

belief space.

• Max relative gain: Represents the maximum relative gain achievable

within the belief space.

• Average loss: Quantifies the loss in gain incurred by following a particu-

lar “When to ask for advice algorithm” instead of the optimal solution.

59

• Average relative loss: Measures the relative loss in comparison to the gain

achieved by the optimal solution (optimal solution gain−approx solution gain
optimal solution gain

).

Based on the results from the previous Section (4.3.2), we observed an

increasing number of beliefs that required the postponement of advice as the

horizon increased. For the highest case with T = 15, the advice postponement

was only necessary for sixteen percent of the belief space, indicating a relatively

low percentage. Consequently, we decided to calculate the expectation of gain

and relative gain results solely for positive prediction cases (instances where

advice postponement is needed). Additionally, we computed the average loss

results solely for false negative cases for the same reason.

Figure 4.6 demonstrates that as the approximation horizon h increases for

the “optimal h” algorithm, the results for both gain and relative gain approach

the optimal solution. Notably, even the optimal solution does not yield signif-

icant gains. This limited gain can be attributed to the nature of the advice,

which consists of only one sample from the environment. Furthermore, the

small gain indicates the characteristics of the three-armed Beta-Bernoulli ban-

dit environment. These characteristics are such as a limited reward range and

a few number of arms that could potentially prevent the effect of advice from

taking place. Consequently, we introduced the measure of relative gain. The

lower plot of Figure 4.6 reveals that the optimal solution yields an average

relative gain of approximately four percent, indicating a four percent improve-

ment if the “optimal h” algorithm with proper h is used. Unfortunately, due

to computational constraints (time constraints), we were unable to compute

the same results for the “approx h” algorithms.

Figures 4.7 and 4.8 depict the performance in terms of average loss and

average relative loss, respectively, as the approximation horizon h increases

for the “optimal h” algorithm. The plots reveal that our performance progres-

sively approaches the optimal solution if we increase the approximation horizon

h. Notably, the average losses for all algorithms are minimal, which can be

attributed to the simplicity and limited impact of the advice in the decision-

making process within the chosen small and simple environment. Moreover,

60

Figure 4.6: This figure displays the average gain and average relative gain for
different algorithms across various problem-setting horizons T .

Figure 4.8 illustrates that the relative losses are also small, indicating near-

optimal performance when the horizon is chosen such that h ≥ 3.

61

Figure 4.7: This figure presents the average loss for different algorithms across
various problem-setting horizons T .

Performance

In this Section, we compare the performance of the optimal and approximate

solutions (discussed in Section 4.3.1). We use fundamental performance mea-

sures such as true positive (TP), true negative (TN), false positive (FP), and

false negative (FN) rates. The following are the definitions of these perfor-

mance measures (see Figure 4.9):

• TP: True positive refers to the number of instances where the optimal

prediction is positive (wait), and the approximate predictor also indicates

a positive decision.

• TN: True negative represents the number of instances where the opti-

mal prediction is negative (ask), and the approximate predictor suggests

asking immediately.

• FN: False negative denotes the number of instances where the optimal

62

Figure 4.8: This figure illustrates the average relative loss for different algo-
rithms across various problem-setting horizons T .

prediction is positive (wait), but the approximate predictor advises ask-

ing immediately.

• FP: False positive indicates the number of instances where the opti-

mal prediction is negative (ask), but the approximate predictor suggests

waiting.

Now, let us examine the results for the metrics mentioned above. Figure

4.10 illustrates that as we increase the approximation horizon for the “optimal

h” algorithm, the TP results gradually converge to the optimal solution after

h = 4. This pattern also applies to the “approx h” algorithm. However,

the TN results are all the same as the optimal solution, regardless of the

approximation horizon for the “optimal h” algorithm. This effect stems from

the fact that if the optimal algorithm predicts a negative outcome (ask right

away), it implies that no future step is expected to yield a higher gain than the

current step. Therefore, the “optimal h” algorithm also predicts a negative

63

Figure 4.9: Performance measures including true positive (TP), true negative
(TN), false positive (FP), false negative (FN), precision, recall, and accuracy.
The optimal solution is denoted by Y , and Ŷ represents the algorithm pre-
diction. The symbol A represents the decision to ask right away (negative
prediction), while W represents the decision to wait (positive prediction).

outcome.

However, for the “approx h” algorithm, since we approximate the VOCSI,

this argument does not hold. As shown in Figure 4.11, increasing the approx-

imation horizon leads to a decrease in TN performance, which is unexpected.

One possible reason for the poor performance of all “approx h” algorithms is

that the average error (Figure 3.4) caused by the VOCSI approximation ex-

ceeds the average gain (Figure 4.6). Thus, a significant drop in performance

is possible.

Further, in the analysis of FN and FP cases, Figure 4.12 demonstrates that

as we increase the approximation horizon for the “optimal h” algorithm, the

FN results gradually approach the optimal solution after h = 4. This trend

also applies to the “approx h” algorithm. Additionally, Figure 4.13 indicates

that there are no cases of FP for the optimal solution or the “optimal h”

algorithm, regardless of the approximation horizon. This is because if the

“optimal h” algorithm predicts a positive outcome, the optimal solution will

also predict a positive outcome. However, the “approx h” algorithm exhibits

64

Figure 4.10: True Positive (TP) rate for different algorithms at varying
problem-setting horizons (T).

poor performance, as depicted in Figure 4.13. This poor performance by the

“approx h” algorithm is likely attributed to the average error (Figure 3.4)

caused by the VOCSI approximation, which exceeds the average gain (Figure

4.6).

In addition to the basic performance measures mentioned above, there are

more advanced performance measures, such as recall, accuracy, precision, and

F1-score, which build upon the previous measures. The definitions of these

measures are as follows (see Figure 4.9):

• Recall: Calculated as Recall = TP
TP+FN

, this measure reflects the pre-

dictor’s ability to identify cases where the optimal answer is positive

(wait). In other words, it indicates the percentage of times we correctly

identified the need to wait.

• Precision: Computed as Precision = TP
TP+FP

, this measure assesses the

predictor’s accuracy in suggesting waiting (positive). It represents the

65

Figure 4.11: True Negative (TN) rate for different algorithms at varying
problem-setting horizons (T).

percentage of times the predictor’s wait recommendation was correct.

• Accuracy: Defined as Accuracy = TP+TN
TP+FP,TN+FN

, this measure indicates

the proportion of correct predictions out of all predictions made.

• F1-score: Calculated as F1, score = 2 × precision∗recall
precision+recall

, the F1-score is

the harmonic mean of precision and recall. It provides a balanced metric

that takes into account both precision and recall. As with other metrics,

a higher value indicates better performance. The use of the harmonic

mean is justified by the fact that both precision and recall are rates,

making a normal mean inappropriate.

Now, let us examine the results for these metrics. Figure 4.14 demonstrates

that as we increase the approximation horizon for the “optimal h” algorithm,

the recall results gradually approach the optimal solution after h = 4. This

trend is also observed for the “approx h” algorithm. Regarding precision, the

“optimal h” algorithm consistently achieves 100% precision. Since we employ

66

Figure 4.12: False Negative (FN) rate for different algorithms at varying
problem-setting horizons (T).

the optimal solution for VOCSI, the positive predictions of this algorithm form

a subset of the optimal predictions. Consequently, if the “optimal h:ĥ” ∀ĥ ∈

{1, . . . , 14} algorithm predicts a positive outcome, the ground truth “optimal

h:14” will also be positive, eliminating the need for plotting. However, the

same reasoning does not hold for the “approx h” algorithm as we do not use

the optimal solution for VOCSI (“What arm to ask about problem”). As

shown in Figure 4.15, the precision for each “approx h” algorithm starts from

zero percent and increases as the horizon increases but only reaches around

twenty percent. The poor precision is primarily attributed to the high false

positive (FP) rate exhibited by the “approx h” algorithm (Figure 4.13).

Turning to accuracy, Figure 4.16 illustrates that the accuracy of the “op-

timal h” algorithm approaches an approximately optimal level as the approxi-

mation horizon increases. Moreover, it consistently performs near-optimal for

all horizons. In contrast, as seen in Figure 4.16, the accuracy of each “ap-

prox h” algorithm is consistently far from optimal. Furthermore, the accuracy

67

Figure 4.13: False Positive (FP) rate for different algorithms at varying
problem-setting horizons (T).

drops as the approximation horizon increases, which is unexpected. One pos-

sible explanation for this behavior is that higher horizons increase the chances

of making errors.

Examining the F1-score, Figure 4.17 reveals that the F1-score of the “op-

timal h” algorithm approaches the optimal level as the approximation horizon

increases, becoming near-optimal for h ≥ 4. However, for the “approx h” algo-

rithm, as depicted in Figure 4.17, the F1-score for each “approx h” algorithm

is consistently far from optimal.

Based on the results and plots from this section, we can conclude that

in our setting, we can use the “optimal h” algorithm with h ≥ 4 since it

closely approximates the optimal solution. Unfortunately, the other double

approximation technique (“approx h” algorithms) does not yield satisfactory

results. We suspect that the poor performance of the “approx h” algorithms

stems from errors introduced by the approximation of the VOCSI (“What arm

to ask about problem”).

68

Figure 4.14: Recall percentage for different algorithms at varying problem-
setting horizons (T).

4.4 Conclusion

This chapter addressed the “when to ask for advice problem” by proposing the

optimal solution and introducing two approximation algorithms: the “optimal

h” algorithm and the “approx h” algorithm. Through our analysis, we made

several observations.

We discovered that for the “when to ask for advice problem,” an average

look-ahead window size of h = 6 is sufficient while using the optimal solution

for the ‘what to ask for advice problem” to achieve optimal solution with

98% confidence. This means delaying advice-seeking by up to six steps on

average is almost as effective as extending the look-ahead horizon to the end.

Additionally, we discovered that as the problem-setting horizon extends, the

significance of advice grows, making it more beneficial to delay advice-seeking

than to seek advice immediately.

Our analysis of the “optimal h” algorithm reveals that this algorithm pro-

69

Figure 4.15: Precision percentage for different algorithms at varying problem-
setting horizons (T).

gressively approximates the optimal solution as the approximation horizon

h increases. Both the gain and relative gain show convergence to this opti-

mal solution. Similarly, increasing the approximation horizon improves the

average loss and average relative loss, bringing the performance closer to opti-

mality. Even though the nature of advice in our context might cap the gains

from delaying advice, the relative gain remains notably high in our presented

problem-setting.

Moreover, we found that the “optimal h” algorithm exhibits superior per-

formance compared to the “approx h” algorithm in terms of TP, TN, FP, and

FN. The recall, precision, accuracy, and F1-score analysis further confirm the

superiority of the “optimal h” algorithm over the “approx h” algorithm. On

the other hand, the “approx h” algorithm struggles due to VOCSI approxi-

mation errors and fails to achieve satisfactory results. This analysis strongly

suggests that the “optimal h” algorithm offers a much closer approximation

to the optimal solution, deeming it a more suitable choice.

70

Figure 4.16: Accuracy percentage for different algorithms at varying problem-
setting horizons (T).

In conclusion, the findings from this chapter highlight the effectiveness of

the “optimal h” algorithm and emphasize the limitations of the alternative

approximation method. The poor performance of the “approx h” algorithm

can be attributed to its approximation of the “what to ask for advice problem.”

Therefore, we recommend utilizing the “optimal h” algorithm for solving the

“what to ask for advice problem,” considering its favorable performance and

closer approximation to the optimal solution.

71

w

Figure 4.17: F1-score percentage for different algorithms at varying problem-
setting horizons (T).

72

Chapter 5

Optimal Exploration

In this chapter, we discuss the relationship between the Bayesian Q-learning

algorithm, as outlined in Section 2.6.5, and the Bayes-optimal policy discussed

in Section 5.1. Then, we provide an analysis and development of a specific type

of approximation for the Bayes-optimal and finite-horizon Gittins’ policy. This

approximation, which we explore in Sections 5.2 and 5.3, is centered around

approximating the problem setting horizon.

Our contribution lies in analyzing an approach to managing the complexity

inherent in Bayesian methods for optimal exploration, particularly in environ-

ments with a finite horizon. By approximating the problem setting horizon,

we offer a practical solution to apply Bayes-optimal policies in a more compu-

tationally tractable way.

The significance of this work extends to a wide range of applications in

reinforcement learning and decision-making processes, where understanding

and balancing exploration and exploitation are crucial. Our approach pro-

vides insights into achieving near-optimal exploration strategies, potentially

enhancing the efficiency and effectiveness of decision-making algorithms in

uncertain environments.

5.1 Bayesian Q-learning vs. Bayes-optimal Pol-

icy

In this section, we explore the connection between Bayesian Q-learning (Sec-

tion 2.6.5) and the Bayes-optimal policy. The Bayesian Q-learning policy is

73

defined as π = argmax
a

{︃
E
ba
[Xa] + VPI(b, a)

}︃
.

Claim 6. For a given belief b, the Bayesian Q-learning policy mentioned above

is equivalent to the Bayes-optimal policy with a horizon of two:

π = argmax
a

q∗(w = (n = 2, b), a))

Proof. Based on Claim 4, we have VPI(b, a) = 1-myopic VOCSI(b, a). Addi-

tionally, according to Claim 2, we know that argmax
a

q∗(w = (n = 2, b), a)) =

argmax
a

(E
b
[Xa] + VOCSI(1, b, a)). By combining these equations with the

Bayesian Q-learning policy, we observe that the Bayesian Q-learning pol-

icy is equivalent to the Bayes-optimal policy with a horizon equal to two

(π = argmax
a

q∗(w = (n = 2, b), a))).

Based on Claim 6, it is evident that the Bayesian Q-learning policy is not

optimal when the problem setting’s horizon is not two (n ̸= 2). Furthermore,

we can understand the rationale behind the naming of the 1-myopic VOCSI,

as it represents a VOCSI with a fixed horizon of one, regardless of the actual

horizon, thus justifying the term “myopic.”

5.2 Approximate Optimal Exploration

The optimal policy that achieves the global minimum of Bayesian regret is

the Bayes-optimal policy (Section 2.6.3). However, this method becomes in-

tractable due to the exponentially large state space of the BAMDP when

dealing with a large number of actions and large horizons, even in the MAB

setting. Gittins proposed an algorithm that aims to expedite the computation

of the Bayes-optimal policy by reducing the problem to an index policy (Sec-

tion 2.6.4). Nonetheless, this approach remains computationally infeasible for

very large horizon values. Consequently, there is a need for approximations to

reduce these computational challenges.

In the remainder of this chapter, we investigate and analyze a specific type

of approximation that involves using a myopic horizon instead of the actual

one by truncating the horizon. We apply this technique to both the Bayes-

optimal policy and the Gittins’ policy using two types of horizon truncation:

74

constant and dynamic. These techniques will be explained in detail in the

subsequent sections.

5.2.1 H-myopic Optimal

As mentioned earlier, the optimal policy is not tractable. Therefore, in this

section, we choose a truncated horizon approach, employing two horizon trun-

cation techniques:

• Constant horizon: In this technique, we select a fixed horizon n′ and

maintain that horizon for our policy, irrespective of the number of steps

remaining.

• Dynamic horizon: In this technique, we choose an initial horizon n′, and

as we progress at each time step, we decrease the horizon value. If the

horizon value reaches one, we keep it at that value for subsequent steps.

This technique is more aligned with the horizon selection procedure of

the Bayes-optimal policy, which tends to select the actual horizon as the

time step increases. For instance, if the horizon is n′ at time t, it will be

n′ − 1 at the next time step t+ 1.

5.2.2 H-myopic FH-Gittins

As previously mentioned, while Gittins’ index policy offers improved compu-

tational efficiency compared to the Bayes-optimal policy, it still encounters

challenges when dealing with large horizons. Therefore, in this section, we

adopt the same constant and dynamic horizon truncation techniques just de-

scribed (Section 5.2.1) and apply them to the FH-Gittins policy.

5.3 Experiments

In the next two sections, we will evaluate the performance of our approximate

algorithms. First, we present the experiment designs of this evaluation (Section

5.3.1) based on different horizon types for the methods discussed in Section 5.2.

We also discuss the baselines (Section 5.3.2) used in the experiments, which

75

include several methods derived for the Bayesian learning setting. Finally, we

present the results in Section 5.3.3.

5.3.1 Design

In this section, we describe the experiment design involving various horizon val-

ues to overestimate or underestimate the horizon for the approximate methods

introduced in Sections 5.2.1 and 5.2.2. The following conditions are considered

for the estimated horizon values:

• Underestimated Horizon for h-myopic optimal method

• Overestimated Horizon for h-myopic optimal method

• Underestimated Horizon for h-myopic FH-Gittins method

• Overestimated Horizon for h-Myopic FH-Gittins method

Now, let us discuss the experiment design. Our problem setting involves a

finite-horizon Bayesian three-armed Beta-Bernoulli multi-armed bandit. For

each method (h-myopic optimal or h-myopic FH-Gittins) designed for a specific

horizon, we use a uniform prior belief b0. The actual horizon is set to T = 50,

and we run each experiment for N = 105 iterations. In each independent

iteration, the true parameter of the multi-armed bandit is drawn from the

prior belief b0.

Additionally, for the h-myopic optimal methods, we consider a set of hori-

zons h ∈ {1, 2, 4, 8}.

5.3.2 Baselines

The baseline algorithms against which we compare our results are as follows:

• Bayes-optimal policy (optimal): This method aims to minimize the

Bayes regret and serves as the optimal baseline. Since our work is based

on the Bayesian learning setting with the Bayes regret as the objective,

this method provides an optimal benchmark.

76

• Thompson sampling (TS): Thompson sampling is one of the earliest algo-

rithms designed for the Bayesian learning setting. It is computationally

straightforward and serves as an important baseline in our experiments

since it is asymptotically optimal.

• Upper confidence bound (UCB): UCB is a fundamental policy for mini-

mizing frequentist regret. Comparing our proposed methods with UCB

provides valuable insights and serves as another baseline for evaluation.

• Bayesian Q-learning method (2-myopic optimal): This method is derived

from the Bayesian Q-learning paper [6]. As mentioned in Section 5.1,

this method is equivalent to the h-myopic optimal approximation method

with h = 2. Therefore, it is automatically included in the results and

referred to as h-myopic = 2 in the legends of some figures.

Figure 5.1: Bayes regret of the dynamic horizon h-FH-Gittins policy compared
to the UCB, TS, and Bayes-optimal policies, with a true horizon of T = 50.
For example, the parameter “h-fhgittin=32” represents the dynamic horizon
h-FH-Gittins policy with a horizon of 32.

77

Figure 5.2: Bayes regret of the constant horizon h-FH-Gittins policy compared
to the UCB, TS, and Bayes-optimal policies, with a true horizon of T = 50.
For example, the parameter “h-fhgittin-const-h=32” represents the constant
horizon h-FH-Gittins policy with a horizon of 32.

5.3.3 Results

In this section, we present the results and analyze the figures. All the graphs

in this section display the Bayes regret for different methods when the exper-

iment’s horizon is T = 50. The results are averaged over 105 samples from

the prior belief b0 for the environments. For instance, BRb0(t,A) represents

the cumulative Bayes regret for method A up to time t with a true horizon of

T = 50. Due to the large number of samples (N = 105), the error bars are

negligible and thus not included in the figures.

Figures 5.1, 5.2, 5.3, and 5.4 illustrate the Bayes regret for different approx-

imations of the Bayes-optimal policy with varying horizons (dynamic horizon

h-FH-Gittins, constant horizon h-FH-Gittins, dynamic horizon h-myopic op-

timal, and constant horizon h-myopic optimal, respectively). The results are

compared to the Bayes-optimal policy, UCB, and Thompson sampling (TS).

78

Figure 5.3: Bayes regret of the dynamic horizon h-myopic optimal policy com-
pared to the UCB, TS, and Bayes-optimal policies, with a true horizon of
T = 50. For example, the parameter “h-myopic=4” represents the dynamic
horizon h-myopic optimal policy with a horizon of 4.

As observed from these graphs, increasing the horizon leads to a closer perfor-

mance (lower Bayes regret) to that of the Bayes-optimal policy. Importantly,

even when overestimating the horizon (h > T), the performance is

significantly better than underestimating it.

These results raise questions such as “Why do we need both constant hori-

zon and dynamic horizon?” and “Which one is better?” To address these

questions, we compare the dynamic and constant horizon variations for the

h-FH-Gittins policy in a pairwise manner (Figure 5.5). Remarkably, the

constant horizon h-FH-Gittins algorithm consistently outperforms

the dynamic horizon h-FH-Gittins algorithm for all horizons. How-

ever, as the approximation horizon h increases, the performance gap

diminishes. A contributing factor to this trend is illustrated by considering

an approximation horizon h = 8 alongside a true horizon T = 50. After pro-

gressing through 8 steps in the dynamic approach, the approximation horizon

79

Figure 5.4: Bayes regret of the constant horizon h-myopic optimal policy com-
pared to the UCB, TS, and Bayes-optimal policies, with a true horizon of
T = 50. For example, the parameter “h-myopic-const-h=4” represents the
constant horizon h-myopic optimal policy with a horizon of 4.

80

Figure 5.5: Comparison of Bayes regret between the constant horizon h-FH-
Gittins and dynamic horizon h-FH-Gittins strategies for different pairs of my-
opic horizons, with a true horizon of T = 50. For example, the parameter
“h-fhgittin=32” represents the dynamic horizon h-FH-Gittins policy with a
horizon of 32.

81

Figure 5.6: Comparison of Bayes regret between the constant horizon h-Myopic
Optimal and dynamic horizon h-Myopic Optimal strategies for different pairs
of myopic horizons, with a true horizon of T = 50. For example, the parameter
“h-myopic=4” represents the dynamic horizon h-myopic optimal policy with
a horizon of 4.

effectively reduces to h = 1 for the remainder of the experiment. On the other

hand, the constant horizon approach provides predictions consistently for eight

future steps, which is superior to the one-step prediction in the dynamic hori-

zon approach (5.2). Similar results and behavior are observed for the

h-myopic optimal policy, as depicted in Figure 5.6.

Having established that the constant horizon is a better choice for hori-

zon approximation in the experimental setting, we compare the h-FH-Gittins

and h-myopic optimal policies with the constant horizon (Figure 5.7). It is

evident that a higher horizon must be chosen for h-FH-Gittins to

achieve the same level of performance as h-myopic optimal. How-

ever, this trade-off is justified by the fact that h-FH-Gittins is much

faster than h-myopic optimal (Figure 5.8). For instance, h-FH-Gittins

with a constant horizon of h = 50, which provides nearly optimal perfor-

82

Figure 5.7: Comparison of Bayes regret between the constant horizon h-Myopic
Optimal and constant horizon h-FH-Gittins strategies, with a true horizon of
T = 50. For example, the parameter “h-myopic-const-h=4” represents the
constant horizon h-myopic optimal policy with a horizon of 4.

mance, is faster than h-myopic optimal with a constant horizon of h = 8.

It is important to note that h-FH-Gittins is applicable only in the

multi-armed bandit setting, whereas h-myopic optimal can be used

in other learning settings, such as Reinforcement Learning.

Note: Bayesian Q-learning method is included as one of our baselines but

is not directly mentioned in any of the figures. As mentioned earlier, this

method is equivalent to 2-myopic optimal with a constant horizon. Therefore,

wherever you encounter “h-myopic-constant-h=2” in any figure, it refers to

the Bayesian Q-learning baseline.

5.4 Conclusion

In conclusion, this chapter investigated two types of algorithms, namely h-

FH-Gittins and h-myopic optimal, with two types of horizon approximation

83

methods: the constant horizon and the dynamic horizon. The results of the

experiments provided valuable insights.

Firstly, it was observed that increasing the horizon leads to a closer per-

formance to the Bayes-optimal policy, indicating that a longer planning hori-

zon improves decision-making and reduces the Bayes’ regret. Notably, even

when overestimating the horizon (choosing h > T), the performance remained

significantly better than underestimating it, highlighting the importance of

considering a sufficiently large horizon.

Furthermore, the experiments revealed that the constant horizon h-FH-

Gittins algorithm consistently outperforms the dynamic horizon h-FH-Gittins

algorithm for all horizons. Similarly, the same trend was observed for the h-

myopic optimal policy. This suggests that the constant horizon technique is a

superior choice for horizon approximation in terms of achieving lower Bayes’

regret.

Moreover, it was found that selecting a higher horizon is necessary for

h-FH-Gittins to achieve the same level of performance as h-myopic optimal.

However, this trade-off is justified by the fact that h-FH-Gittins is significantly

faster than h-myopic optimal. It should be noted that h-FH-Gittins is specif-

ically applicable to the multi-armed bandit setting, while h-myopic optimal

can be employed in other learning settings, such as reinforcement learning.

Overall, the findings emphasize the significance of horizon selection in

decision-making algorithms. By choosing an appropriate horizon and leverag-

ing the advantages of the constant horizon technique, it is possible to achieve

improved performance and faster computational efficiency in different learning

settings. These results contribute to the understanding of horizon approxima-

tion methods and their impact on decision-making strategies.

84

Figure 5.8: Time-wise comparison of “h-myopic-const-h” and “h-FHGittin-
const-h” algorithms for different horizon approximation values.

85

Chapter 6

Conclusion

In our research to enhance the sample efficiency of Reinforcement Learning,

we ventured through a broad landscape of domains and strategies. These

strategies ranged from leveraging external advice to fine-tuning exploration

strategies. The melding of Bayesian frameworks, multi-armed bandits, and

advice-seeking provided a deeper understanding of decision-making processes.

Here’s a detailed recap of our main contributions and findings:

Exploration and Advice-Seeking: Central to our inquiry was how best to

decide on the optimal arm for seeking advice and the right moment for such

a query. The use of a Bayesian perspective led to a methodical approach to

these questions, with the Value of Information (VOI) emerging as a crucial

metric for evaluation.

Optimal Solution to “What arm to ask about.” Our exploration in the

“What Arm to Ask About” chapter ,Chapter 3, was instrumental in answering

this question. Notably, the horizon approximation played a significant role in

enhancing decision accuracy. However, it was the h-myopic approach that con-

sistently demonstrated better performance over the Gittins’ argmax method,

mainly due to its superior horizon estimate, highlighting the importance of

anticipating potential future rewards.

When to ask for advice. The study in the “When To Ask For Advice”

chapter (Chapter 4) unveiled the optimal solution to this question. The re-

search found that sometimes delaying advice-seeking can be more beneficial.

86

The distinction between the “optimal h” algorithm and the “approx h” method

became apparent when considering their individual strategies, with the former

showing clear advantages in our experiments.

Bayes-Optimal Exploration Strategy. The “Optimal Exploration” chap-

ter (Chapter 5) investigated the h-FH-Gittins and h-Myopic Optimal algo-

rithms in the context of horizon approximation. The results highlighted the

role of horizon selection in decision-making algorithms, with a consistent pref-

erence for the constant horizon method over its dynamic counterpart.

Reflecting on the implications of our findings, they do extend beyond the

theoretical realm. However, it’s prudent to acknowledge that while they pro-

vide insights into RL’s practical application, it’s crucial to be judicious in

interpreting their real-world applicability.

6.1 Future Work

The insights and results presented in this thesis naturally usher in several

fascinating avenues for further research:

Adapting the Gittins’ Index Policy. The “Optimal Exploration” chap-

ter’s results (Chapter 5) indicated a potential avenue for refining the Gittins’

algorithm, especially for a finite horizon setting. Finding ways to minimize

errors for the Gittins’ argmax algorithm might further its practical use.

Enhanced Approximations. Given the computational challenges associ-

ated with certain problems, there’s a pressing need for more sophisticated

approximation strategies. This is especially relevant for the “What arm to

ask about” and “When to ask for advice” dilemmas. Crafting approximations

suitable for complex problem settings remains a worthwhile pursuit.

Complex Problem Settings and Advice Types. A promising direction

would be evaluating the optimal “when to ask for advice” solution in more

87

elaborate problem scenarios. Investigating diverse and more intricate advice

types can shed light on the tangible benefits of soliciting advice judiciously.

Broadening the Horizon. An extension of horizon approximation tech-

niques to other learning scenarios, aside from multi-armed bandits, could be

a valuable avenue in Reinforcement Learning.

While our research has covered substantial ground in RL sample efficiency,

many more horizons await exploration, and we look forward to the continued

journey in this research area.

88

References

[1] O. Amir, E. Kamar, A. Kolobov, and B. Grosz, “Interactive teaching
strategies for agent training,” in In Proceedings of IJCAI 2016, 2016.

[2] D. Barber, Bayesian reasoning and machine learning. Cambridge Uni-
versity Press, 2012.

[3] D. A. Berry and B. Fristedt, “Bandit problems: Sequential allocation of
experiments (monographs on statistics and applied probability),” Lon-
don: Chapman and Hall, vol. 5, no. 71-87, pp. 7–7, 1985.

[4] R. N. Bradt, S. Johnson, and S. Karlin, “On sequential designs for max-
imizing the sum of n observations,” The Annals of Mathematical Statis-
tics, vol. 27, no. 4, pp. 1060–1074, 1956.

[5] F. L. Da Silva, P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “Uncertainty-
aware action advising for deep reinforcement learning agents,” in Pro-
ceedings of the AAAI conference on artificial intelligence, vol. 34, 2020,
pp. 5792–5799.

[6] R. Dearden, N. Friedman, and S. Russell, “Bayesian q-learning,”Aaai/iaai,
vol. 1998, pp. 761–768, 1998.

[7] M. O. Duff, Optimal Learning: Computational procedures for Bayes-
adaptive Markov decision processes. University of Massachusetts Amherst,
2002.

[8] J. A. Edwards, Exploration and exploitation in Bayes sequential decision
problems. Lancaster University (United Kingdom), 2016.

[9] J. Gittins, K. Glazebrook, and R. Weber, Multi-armed bandit allocation
indices. John Wiley & Sons, 2011.

[10] J. C. Gittins, “Bandit processes and dynamic allocation indices,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 41, no. 2,
pp. 148–164, 1979.

[11] R. A. Howard, “Information value theory,” IEEE Transactions on sys-
tems science and cybernetics, vol. 2, no. 1, pp. 22–26, 1966.

[12] E. T. Jaynes, Probability theory: The logic of science. Cambridge univer-
sity press, 2003.

89

[13] E. Kaufmann, “Analyse de stratégies bayésiennes et fréquentistes pour
l’allocation séquentielle de ressources,” Ph.D. dissertation, Paris, ENST,
2014.

[14] D. E. Knuth, The Art of Computer Programming, Volume I: Fundamen-
tal Algorithms. Addison-Wesley, 1968.

[15] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Univer-
sity Press, 2020.

[16] D. B. Lawrence, The economic value of information. Springer Science &
Business Media, 2012.

[17] M. Memarzadeh and M. Pozzi, “Value of information in sequential deci-
sion making: Component inspection, permanent monitoring and system-
level scheduling,” Reliability Engineering & System Safety, vol. 154, pp. 137–
151, 2016.

[18] H. Raiffa, R. Schlaifer, et al., “Applied statistical decision theory,” 1961.

[19] R. Srinivasan and A. K. Parlikad, “Value of condition monitoring in in-
frastructure maintenance,” Computers & Industrial Engineering, vol. 66,
no. 2, pp. 233–241, 2013.

[20] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[21] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3-4, pp. 285–294, 1933.

[22] L. Torrey and M. Taylor, “Teaching on a budget: Agents advising agents
in reinforcement learning,” in Proceedings of the 2013 international con-
ference on Autonomous agents and multi-agent systems, 2013, pp. 1053–
1060.

90

Appendix A

Appendix

A.1 Proof of claim 1

Claim (1 Restated).

E
xa∼Pr(.|θa)

θa∼ba

[qb(n, b|xa , a
∗(n, b))] = q∗(n, b, a∗(n, b)) = v∗(n, b)

Proof. Let jt be the index for the supports of the probability distribution for

the reward at time-step t, ht = {xa∗1 = rj1 , xa∗2 = rj2 , ..., xa∗t = rjt} be the

history till time-step t subject to h0 = {}, a∗t = a∗(n− (t−1), b|ht−1), in which

a∗(n = T − (t− 1), b) is the optimal action based on Bayes-optimal policy at

time t.

Let’s call the left hand-side of claim A.1 as (1) and the right hand-side of

claim A.1 as (2). Now, let’s expand the expression (1):

E
r∼Pr(.|θa)
θa∼ba

[qb(n, b|xa=r, a
∗
1)] =

|R|∑︂
i=1

ba(ri)q
b(n, b|xa=ri , a

∗
1) (A.1)

In the above equation, ba(r) = P (r | ba) is the probability of observing reward

r for arm a based on the belief for arm a. Also, the expression
∑︁|R|

i=1 iterate

over all the possible rewards.

91

qb(n, b|Xa=ri , a
∗
1) = E

r∼
ba∗1|xa=ri

[xa∗1 + q
b|xa∗1

=r
(n− 1, b|xa=ri,xa∗1=r

, a∗2)]

expand 1 step−−−−−−−→=
∑︂
j1

ba∗1|xa=ri(rj1)(rj1 + q
b|xa∗1

=rj1 (n− 1, b|xa=ri,xa∗1=rj1
, a∗2))

expand 2 steps−−−−−−−−→=
∑︂
j1

ba∗1|xa=ri(rj1)(rj1+∑︂
j2

ba∗2|xa=ri,h1(rj2)(rj2 + qb|h2 (n− 2, b|xa=ri,h2 , a
∗
3)))

...

expand n′ steps−−−−−−−−−→=
∑︂
j1

ba∗1|xa=ri(rj1)(rj1 + . . . (rjn′−1
+∑︂

jn′

ba∗
n′ |xa=ri,hn′−1

(rn′)(rn′ + q
b|hn′ (n′, b|xa=ri,hn′ , a

∗
n′+1))))

(A.2)

Now Let’s equation A.2 into equation A.1:

E
ri∼ba

[qb(n, b|Xa , a
∗
1)] =∑︂

i

ba(ri)
∑︂
j1

ba∗1|xa=ri(rj1)(rj1 + . . . (rjn′−1
+∑︂

jn′

ba∗
n′ |xa=ri,hn′−1

(rn′)(rn′ + q
b|hn′ (n′, b|xa=ri,hn′ , a

∗
n′+1))))

(A.3)

Now, let’s expand the expression (2), with almost the same procedure as

equation A.2:

q∗(n, b, a∗1) = qb(n, b, a∗1)

expand utill t=n′
−−−−−−−−−−→ =

∑︂
j1

ba∗1(rj1)(rj1 + . . . (rjn′−1
+∑︂

jn′

ba∗
n′ |hn′−1

(rn′)(rn′ + q
b|hn′ (n′, b|hn′ , a

∗
n′+1))))

=
∑︂
j1

ba∗1(rj1)(rj1 + . . . (rjn′−1
+∑︂

jn′

ba∗
n′ |hn′−1

(rn′)(rn′ + q∗(n′, b|hn′ , a
∗
n′+1))))

(A.4)

Let’s define Ht as the random variable for the probability space over all

possible histories with horizon t, and ht is a sample from Ht. for any t < n,

92

ht ⊂ hn if and only if ht contains the first t observations of the hn.

claim: All the roll-outs of expressions A.3 and A.4 are the same till a

specific levels for each roll-out, and that level for each roll-out is just before

action a is chosen.

proof: Due to the fact that the actions probability distributions are inde-

pendent, we can see that if the action a is not chosen till, for example step n′,

all the ba∗i for i = 1, ..., n′− 1 are independent of the information provided for

action a. So, the roll-outs for both expressions A.3 and A.4 are the same till

step n′. Note: it is worth mentioning that n′ would be different for different

roll-outs, depending on the actions taken previous steps (a∗i, i < n′)

Now, Let’s define a set, named H, in which exists all the history samples

(roll-outs), ht ⊂ hn ∈ Hn, such that in each of those samples, action a has not

been taken up to observation step t-1 and the last observation is for action a.

In other words, H contains all the possible roll-outs that are created in the

same way described in the claim above.

∀h ∈ H, each with a unique size, measured with n′ = size(h), we can prove

that the value for expression (1) and (2), in which the first n′ steps are that

of the observations of h, are equal.

Let consider one roll-out from H and call it h′ = rj1 , rj2 , . . . , rjn′ . For this

h′ we can rewrite expression A.3 and A.4 as follows:

expressionA.3 =∑︂
i

ba(ri)(rj1 + . . . (rjn′−1
+
∑︂
jn′

ba∗
n′ |xa=ri,hn′−1

(rn′)(rn′+

q
b|hn′ (n′, b|xa=ri,hn′ , a

∗
n′+1))))

= (rj1 + . . . (rjn′−1
+
∑︂
i

ba(ri)
∑︂
jn′

ba|xa=ri,hn′−1
(rn′)(rn′+

q
b|hn′ (n′, b|xa=ri,hn′ , a

∗
n′+1))))

= (rj1 + . . . (rjn′−1
+
∑︂
jn′

ba|hn′−1
(rn′)(rn′ + q

b|hn′ (n′, b|xa=ri,hn′ , a
∗
n′+1))))

93

expressionA.4 =

= (rj1 + . . . (rjn′−1
+
∑︂
jn′

ba|hn′−1
(rn′)(rn′ + q

b|hn′ (n′, b|hn′ , a
∗
n′+1))))

As you can see, these two rolled out expressions based on h′ are equals.

Now, given the fact that ∀h ∈ H the corresponding rolled out version of the

expression (1) and (2), based on h′, are the same, we can say that claim A.1

holds.

A.2 Proof of claim 5

Claim (5 Restated). In the context of a Bayesian decision-making process,

where an agent seeks to maximize its expected cumulative reward over a deci-

sion horizon T, optimizing the Expected Value of Current Sample Information

(E[VOCSI]) at each decision step maximizes the expected cumulative return.

Specifically, if the agent, at each time step t, chooses to seek advice based on

the maximization of E[VOCSI], then this strategy will lead to an optimal se-

quence of decisions that maximizes the overall expected return from the current

time step to the end of the decision horizon.e

Proof. To provide proof that maximizing the Expected Value of Current Sam-

ple Information (E[VOCSI]) at each time step maximizes the expected cumu-

lative reward over the horizon, we need to represent the problem setting.

Problem Setting

• Cumulative Reward: Let xt be the reward obtained at time t, and

the cumulative reward over the horizon T is
∑︁T

t=1 xt.

• Expected Cumulative Reward: The expected cumulative reward

when following policy π starting at time t is E
π

[︂∑︁T
τ=t xτ | bt

]︂
, where

bt is the belief state at time t.

• E[VOCSI]: Let E[VOCSIt] represent the expected value of current sam-

ple information if the agent seeks advice at time t.

94

Proof of Optimal Timing

1. Decision at Each Time Step: At each time t, the agent decides

whether to seek advice. This decision is based on the comparison between

E[VOCSIt] and the expected gain from postponing advice.

2. Impact of Advice: Seeking advice at time t potentially alters the policy

π from t onwards. Let’s denote the policy after seeking advice at t as π′
t.

3. Expected Gain from Advice: The expected gain from seeking advice

at time t can be written as:

∆t = Eπ′
t

[︄
T∑︂
τ=t

Rτ | bt

]︄
− Eπ

[︄
T∑︂
τ=t

Rτ | bt

]︄
(A.5)

4. Maximizing E[VOCSI]: We assert that ∆t is maximized when E[VOCSIt]

is maximized, i.e., when the information obtained from seeking advice

at time t leads to the greatest improvement in the expected cumulative

reward from t to T .

5. Mathematical Formulation: To prove this, we need to show that:

t∗ = argmax
t

E[VOCSIt] =⇒ t∗ = argmax
t

∆t (A.6)

6. Dynamic Consistency: Given the fact that the formulation of ∆T

another variation of the z The decision to maximize E[VOCSIt] at each

time step is consistent with the principle of dynamic programming, as-

serting that an optimal policy consists of making the best decision at

the current time step, given the optimal policies for future time steps.

Conclusion

If the relationship between E[VOCSIt] and the expected gain in cumulative

reward ∆t is as stated, then by maximizing E[VOCSIt] at each time step, the

agent is effectively maximizing its expected cumulative reward over the horizon

T .

95

