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Summary

1. Predicting space use patterns of animals from their interactions with the environment is fundamental for

understanding the effect of habitat changes on ecosystem functioning. Recent attempts to address this problem

have sought to unify resource selection analysis, where animal space use is derived from available habitat quality,

andmechanisticmovementmodels, where detailedmovement processes of an animal are used to predict its emer-

gent utilization distribution. Such models bias the animal’s movement towards patches that are easily available

and resource-rich, and the result is a predicted probability density at a given position being a function of the habi-

tat quality at that position.However, in reality, the probability that an animal will use a patch of the terrain tends

to be a function of the resource quality in both that patch and the surrounding habitat.

2. We propose a mechanistic model where this non-local effect of resources naturally emerges from the local

movement processes, by taking into account the relative utility of both the habitat where the animal currently

resides and that of where it is moving.We give statistical techniques to parametrize the model from location data

and demonstrate application of these techniques to GPS location data of caribou (Rangifer tarandus) in New-

foundland.

3. Steady-state animal probability distributions arising from the model have complex patterns that cannot be

expressed simply as a function of the local quality of the habitat. In particular, large areas of good habitat are

used more intensively than smaller patches of equal quality habitat, whereas isolated patches are used less fre-

quently. Both of these are real aspects of animal space use missing from previous mechanistic resource selection

models.

4. Whilst we focus on habitats in this study, ourmodelling framework can be readily used with any environmen-

tal covariates and therefore represents a unification of mechanistic modelling and step selection approaches to

understanding animal space use.

Key-words: animal movement, caribou (Rangifer tarandus), master equation, mechanistic models,

resource selection analysis, step selection functions

Introduction

Uncovering how space use patterns emerge from animalmove-

ment is key to understanding a wide range of ecological phe-

nomena, from disease spread (Kenkre et al. 2007; Giuggioli,

P�erez-Becker & Sanders 2013) to predator–prey dynamics

(Lewis & Murray 1993), conservation biology (Beier 1993) to

population density (Grant &Kramer 1990). The desire for ani-

mals to find the resources they need to survive and reproduce is

a fundamental driver ofmovement in a variety of animal popu-

lations (McIntyre & Wiens 1999; Fortin et al. 2003; Breed

et al. 2009; Houston, Higginson & McNamara 2011). Conse-

quently, many theoretical efforts to understand space use have

focused on how animals find and select resources from those

available to them (B€orger, Dalziel &Fryxell 2008).

Resource selection function (RSF) analysis (Manly et al.

2002) is one class of techniques that has been used to address

this problem, ever since the seminal paper of Manly (1974).

This approach posits that the probability of an animal relocat-

ing to a particular patch is a function of both the availability

and quality of the resources in the patch. More recently, the

studies of Fortin et al. (2005) and Rhodes et al. (2005) intro-

duced the idea of integrating the RSF with the movement pro-

cesses of animals, building on the work of Arthur et al. (1996).

Fortin et al. (2005) coined the notion of a step selection func-

tion (SSF), where the selection of resources, or other environ-

mental features, directly affects the distance and turning angle

of each step. Meanwhile, Rhodes et al. (2005) constructed a

function for the movement of an animal from one location to*Correspondence author. E-mail: jrpotts@ualberta.ca
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the next based on an RSF. These approaches were unified and

extended by Forester, Im & Rathouz (2009), who constructed

a function for the movement of animals between successive

turns based on the previous two positions of the animal,

together with the various environmental covariates that affect

its movement.

Parallel to these developments, mechanistic models have

been constructed that describe the detailed underlying move-

ment processes of animals and derive from them the resulting

utilization distribution of animal locations (Moorcroft &

Lewis 2006). For many years, this approach developed more

or less independently from the RSF methods. However, the

study of Moorcroft & Barnett (2008) made inroads into unify-

ing the two theories, by constructing a mechanistic movement

kernel based on an RSF and deriving from that the probability

distribution of the animal. This showed, for the first time, how

RSF analysis could be used to link analytically the movement

processes of animals with the emergent features of its space

use.

In the model ofMoorcroft & Barnett (2008), the probability

of an animal being in a particular location turns out to be a

function of the quality of resources at that location.Whilst this

is a sensible first approximation, one of the consequences of

this model is that animals are just as likely to be found in small

isolated patches of good habitat than within large contiguous

areas of habitat of equal quality. In reality, both isolation and

size of patches are key drivers of space use inmany animal pop-

ulations (Andr�en 1994; Hill, Thomas & Lewis 1996; Bender,

Contreras & Fahrig 1998). Ideally, mechanistic models that

predict space use accurately should give rise to utilization dis-

tributions where occupation probability is positively correlated

with patch size and negatively correlated with isolation.

In this study, we describe a novel mechanistic model of ani-

mal movement where the resulting utilization distributions

include both of these features. We also demonstrate how to

parametrize the model from location data, using herds of cari-

bou (Rangifer tarandus) in Newfoundland as an example.

There are about 14 major caribou herds on Newfoundland

Island. Most herds exhibit semimigratory behaviour involving

philopatric movements, with females moving every year to tra-

ditional calving grounds during spring and summer (Mahoney

& Schaefer 2002). The data we use are of movement within

these calving grounds.

Our model is based on an SSF, from which we derive a

mechanistic master equation, allowing us to compute numer-

ically the steady-state probability distribution of the animal

positions, thus relating quantitatively the movement pro-

cesses to the emergent space use patterns. Relative intensity

of space use in a given place is a function of different move-

ment responses that involve both variation in mean displace-

ments within habitats and preferential movement directions

towards preferred areas (Bastille-Rousseau, Fortin & Dus-

sault 2010). Whilst resource selection analysis does not disen-

tangle explicitly the mechanisms involved (Bastille-Rousseau,

Fortin & Dussault 2010), most mechanistic models do not

consider how animals move selectively from one specific

resource to another.

Our approach addresses this by modelling the movement

decision based not on the absolute quality of the habitat to

where the animal might move, but the relative quality of

this habitat compared with the habitat where the animal is

currently positioned. Studies of optimal foraging strategies

in mice (Morris & Davidson 2003) demonstrate that short-

term movement decisions of individuals are grounded in the

relative fitness associated with the habitats between which

they are moving. Constructing mechanistic movement mod-

els that are based on behavioural decisions arising from

underlying evolutionary forces is important if we wish to

understand not just how space patterns form but why.

Though the results of Morris & Davidson (2003) are based

on mouse populations, their underpinning in the general

theory of natural selection suggests that these ideas may well

extend to other taxa. By grounding the SSF in ideas from

optimal foraging theory, one would expect the model out-

comes to be closer to those observed in real ecological

systems.

Indeed, our simple change in the formulation of the step

selection mechanism causes dramatic changes in the utilization

distribution, as the effect of resources on the resulting position

distribution of the animals propagates through the landscape

via their movement processes. In particular, the effects of patch

size and isolation on animal utilization become apparent,

which are not present in previous mechanistic models. We

believe that this modelling framework will prove useful in

building simple yet accurate predictive models of the underly-

ing determinants of complex space use patterns, that account

for both the non-local as well as the local effects of environ-

mental features.

Materials andmethods

THE MASTER EQUATION

The master equation (ME) is the key building block in linking individ-

ual processes to population patterns. It is defined to be an equation

built from individual movement decisions that gives the probability

density at some time t + Dt as a function of the probability density at

time t, where Dt is some fixed time interval, for example the time

between animal location fixes. As such, it is an example of a one-step

Markov process.

TheME for our model is based on a step selection framework intro-

duced by Fortin et al. (2005) and extended by Forester, Im &Rathouz

(2009), which gives the probability of moving from one location to the

next in a given time interval (i.e. a step). Whilst we use a correlated ran-

dom walk framework similar to Forester, Im & Rathouz (2009), we

find it convenient to reformulate the step selection function (SSF) as

follows

fðxjy; h0Þ ¼ Uðxjy; h0ÞWðx; y;EÞR
X dx0Uðx0jy; h0ÞWðx0; y;EÞ ; eqn 1

where f(x|y, h0) is the probability of finding an animal at position x,

having travelled from y in the previous step, given that it arrived at y on

a bearing of h0 (bearings are measured in an anti-clockwise direction

from the right-hand half of the horizontal axis),Φ(x|y, h0) is the proba-
bility of being at x in the absence of habitat selection, given that the ani-

mal was previously at y and had arrived there on a bearing of h0 and E
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contains details about the environment that we wish tomodel. In terms

of classical resource selection,Φ(x|y, h0) can be thought of as a function
detailing how available x is to the animal. Typically, it will decay the

further x is away from y so that distant places are less available than

nearby areas.

For example, in Fortin et al. (2005), E contains the distribution of

forest types in the study area, information about predator positions,

snow abundance, topography and road locations. There,Wðx; y;EÞ is
a function of x, y and e that measures features such as the proportion

of the line segment from y to x containing conifer forest, the minimum

distance of this line segment to a road, and various other important

environmental aspects that affect the animals’ movement (Fortin et al.

2005).

The area to which the animal is confined is denoted by Ω. This may

be a geographical limitation of the movement, such a small island, or

confinement to a home range or territory. For certain populations, the

latter may not be stationary over time (Potts, Harris &Giuggioli 2013),

requiring Ω to be replaced by a time-dependent function Ω(t). The size
and shape of Ω(t) may in turn depend upon the past positions of ani-

mals in neighbouring territories. However, for the purposes of this

study, wewill assumeΩ is constant.

The denominator in eqn (1) simply ensures that the function

f(x|y, h0) is a probability density function; that is, it integrates to 1 with
respect to x. The variable x′ is a dummy variable of integration, used to

distinguish positions in the domain of integration from x, the position

to which the animal ismoving.

For this study, we divide Ω into habitat types Hi, 1 ≤ i ≤ M. The

set of all habitat types is denoted by H, so that Hi 2 H. We con-

struct an SSF that is based on the habitat at both the beginning of

the step and the end of the step, with the ultimate aim to under-

stand numerically how this affects the resulting animal space use dis-

tribution. This is an aspect missing from current work on SSFs or

RSFs, with the exception of the simpler model in Moorcroft & Bar-

nett (2008). We use the non-negative number W(Hi, Hj) to denote

the tendency for the animal to move from habitat Hj to Hi, depend-

ing on how preferable the habitat Hi is compared with Hj. If W

(Hi, Hj) > 1 then Hi is more preferable than Hj, whereas W

(Hi, Hj) < 1 means Hj is more preferable than Hi. We denote by H

(x) the habitat at position x. The functional form of our SSF is

then

fðxjy; h0Þ ¼ Uðxjy; h0ÞW½HðxÞ;HðyÞ�R
X dx0Uðx0jy; h0ÞW½Hðx0Þ;HðyÞ� : eqn 2

Notice that W[H(x), H(y)] can be written as Wðx; y;HÞ to put it in

the form given in eqn (1). However, we choose the former notation as

we believe it to bemore instructive for our particular function.

Equation (2) gives rise to the following ME for the probability den-

sity function u(x, h, t + Dt) of the animal being at x at time t + Dt hav-
ing travelled there on a bearing of h

uðx;h;tþDtÞ¼Z p

�p
dh0

Z smax

0

ds
UðxjyhðsÞ;h0ÞW½HðxÞ;HðyhðsÞÞ�R

Xdx
0Uðx0jyhðsÞ;h0ÞW½Hðx0Þ;HðyhðsÞÞ�uðyhðsÞ;h0;tÞ;

eqn 3

where yh(s) describes the locus of points y upon which the animal could

approach x = (x1, x2) at bearing h, that is, yh(s) = (x1 + cos (h + p)s,
x2 + sin (h + p)s), with s denoting the distance between yh(s) and x.

Here, smax is the distance along this line from x to the boundary of Ω
and so gives the upper endpoint of integration. Though eqn (3) may

look formidable, in practice, it is simple to implement by discretizing

space (see Appendix S1).

DATA COLLECTION METHODS

Since 2006, more than 200 caribou were captured during winter and

fitted with GPS collars that acquired locations every two hours. We

focus our study on 140 caribou followed between 2006 and 2012 and

limit analysis to six distinct herds, which had sufficient amounts of

individuals and monitoring. The other caribou were ignored since

there were only a small number per herd. We limit our movement

analysis to the critical, non-migratory period of calving and post-

calving (May 1 to September 1), which gives us more than 300 000

position fixes at two-hourly intervals. Every location is given a char-

acterization based on the habitat it falls into, using a reclassified

Landsat TM imagery (Wulder et al. 2008). Collar equipment use and

capture methods are consistent with American Society of Mammalo-

gists guidelines (Gannon & Sikes 2007). On rare occasions, a position

fix failed to be recorded (0�997% of fixes). In each of these cases, we

split the data at that point, so that we only considered steps that were

two hours long. Data required for repeating this study are available

from the Dryad Digital Repository: http://doi.org/10.5061/dryad.

1d60p.

MODELLING CARIBOU MOVEMENT

Variations in habitat type can affect animal behaviour, in particular

their step length and turning angle distributions Φ(x|y, h0) (Moorcroft

& Lewis 2006). Therefore, to capture correctly the effect of movement

processes on the space use distribution, it is necessary to splitΦ(x|y, h0)
into a sumof functions, one for each habitat type, as follows

Uðxjy; h0Þ ¼
X
h2H

Iðy; hÞUhðxjy; h0Þ; eqn 4

where I(y, h) is an indicator function taking the value 1 if H(y) = h

and 0 otherwise, and H is the set of all habitat types available to the

animal. Notice that this only depends on the habitat where the

animal currently resides (position y) so that Φ(x|y, h0) is independent
of the selection of the next habitat the animal is to move to (at

position x).

Φ(x|y, h0) contains information about both the step length, that is,

the distance travelled in successive relocations and the turning angle

between successive steps. Whilst in general, the distribution of these

two aspects ofmovementmay depend on one another, a linear–circular

correlation test between the step length and turning angle distributions

for the caribou data has R2 = 0�027, suggesting the two distributions

are not tightly correlated. Therefore, we assume that they are indepen-

dent, so that

Uhðxjy; h0Þ ¼ Vh½wðx; y; h0Þ�qhðjx� yjÞ; eqn 5

where Vh(φ) is the turning angle distribution for habitat h, w(x, y, h0)
calculates the turning angle for an animal that has just travelled to y on

a bearing of h0 and turns to move in a straight line towards x, and qh(r)
is the step length distribution for habitat h. For the step lengths, we

tried fitting exponential and Weibull distributions and found the Wei-

bull distribution to give the best fit, using a likelihood ratio test. This

has the following form

qhðxja; bÞ ¼
a

b

x

b

� �a�1

exp � x

b

� �ah i
: eqn 6

For the turning angles, we tried fitting both univariate and bivariate

vonMises distributions (McKenzie et al. 2012) using a likelihood ratio

test. The latter was tested because caribou may make use of linear fea-

tures, such as paths, and it turned out to be the better of the two. It has

the following form
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Vhð/jk1; k2Þ ¼ exp½k1 cosð/Þ�
4pI0ðk1Þ þ exp½k2 cosð/� pÞ�

4pI0ðk2Þ ; eqn 7

where I0(x) is the zeroth ordermodifiedBessel function of the first kind.

The first summand in eqn (7) represents the tendency for the caribou to

continue in a similar direction. The second summand is due to a bias in

the data towards the caribou performing 180° turns between successive

steps. Part of themeasured bias towards 180° turns can be due to errors

in GPS measurements (Hurford 2009), so to rule this cause out, we

removed locationswhere cariboumoved<25 m, following themethods

detailed in Hurford (2009). This amounted to 19�8% of the fixes.

Notice that we only removed such data for the analysis of turning

angles, not for the step lengths or the resource weighting function W

(Hi,Hj). We found that the bivariate vonMises distribution provides a

better fit than the univariate von Mises distribution for the turning

angles.

PARAMETRIZ ING THE MASTER EQUATION FROM

LOCATION DATA

We estimated the parameters a, b, k1 and k2 for the function Φ(x|y, h0)
using themaximum-likelihoodmethod, with theNelder–Mead simplex

algorithm (Lagarias et al. 1998). To calculate the resource weighting

function W(Hi, Hj), we wish to capture the probability P(Hi|y, h0, wij)

of an animal moving into habitat type Hi, given its present position y,

trajectory h0 and weights wij = W(Hi, Hj) (see Fig. 1). In other words,

we aim tomaximize the likelihood function

YN
n¼2

PðHðxnÞjxn�1; hn�1;wijÞ; eqn 8

where x1, x2,…, xN and h1, h2,…, hN are the data on the animal’s posi-

tion and bearings, respectively, and

PðHðxnÞjxn�1; hn�1;wijÞ ¼
R
Xi
dxUðxjxn�1; hn�1ÞW½HðxÞ;Hðxn�1Þ�R

X dxUðxjxn�1; hn�1ÞW½HðxÞ;Hðxn�1Þ� ;

eqn 9

whereXi ¼ fx 2 XjHðxÞ ¼ Hig.
Whilst it is, in principle, possible to calculate the maximum of the

likelihood function (eqn 8) by numerically evaluating the integrals in

eqn (9) for each data point, this is highly computationally intensive

if the data set is large, which is often the case with GPS telemetry

data. We instead choose a more efficient method that makes use of

a Monte Carlo sampling procedure. For each n ∊ {2, 3, …, N},

where {x1, …, xN} is the set of animal locations, we sample

M = 100 times from Φ(x|xn�1, hn�1) to give a set Sn of possible next

animal positions, disregarding the biasing effect that resources have

on the movement. The reason for using M = 100 is to reduce com-

putational time for analysing our large data set (>300 000 steps),

and by examining a small subset of the data using M = 1000, we

obtain similar results to M = 100. We then use the approximationR
Xi
dxUðxjxn�1; hn�1Þ � jfs 2 SnjHðsÞ ¼ Higj=jSnj to give

PðHðxnÞjxn�1;hn�1;wijÞ¼
R
Xi
dxUðxjxn�1;hn�1ÞW½HðxÞ;Hðxn�1Þ�P

j

R
Xj
dxUðxjxn�1;hn�1ÞW½HðxÞ;Hðxn�1Þ�

� W½Hi;Hðxn�1Þ�jfs2SnjHðsÞ¼HigjP
s2Sn

W½HðsÞ;Hðxn�1Þ� ;

eqn 10

where |S| denotes the number of elements in a set S, so that the

likelihood function is

LðwijÞ ¼
YN
n¼2

W½Hi;Hðxn�1Þ�jfs 2 SnjHðsÞ ¼ HigjP
s2Sn

W½HðsÞ;Hðxn�1Þ� : eqn 11

To maximize eqn (11) efficiently, we split it into several likelihood

functionsLj, one for each habitat typeHj

LjðwijÞ ¼
Y

n�12Qj

wijjfs 2 SnjHðsÞ ¼ HigjP
s2Sn

W½HðsÞ;Hj� ; eqn 12

where Qj is the set of indices m such that H(xm) = Hj. For each j, we

maximize the corresponding likelihood function (eqn 12) indepen-

dently of the others, whilst ensuring that wjj = 1, using the Nelder–

Mead simplex algorithm (Lagarias et al. 1998), as implemented in the

Python maximize() function from the SciPy library (Jones, Oli-

phant & Peterson 2001). The likelihood function for the entire data set

is simply the product LðwijÞ ¼
QjHj

j¼1 LjðwijÞ, where jHj is the number

of habitat types. To obtain error bars for the weights, we bootstrapped

the set of steps 100 times and calculated the maximum likelihood

parameter values for each. Error bars are standard deviations of the

results.

NUMERICAL INVESTIGATION OF THE MODEL

To investigate the model, we constructed artificial resource landscapes

on a 50 by 50 square lattice, where the lattice spacing is 200 m.We used

the weighting functionW(Hi, Hj), step length and turning angle distri-

butions found by fitting to the caribou data, as described in the previ-

ous subsection. We computed the steady-state position distribution

numerically on this lattice by iterating the master equation (eqn 3)

through time until |u(x, h, t + dh) � u(x, h, t)| < 10�8 for every value

of x and h.

To understand how patch size and isolation affect the steady-state

probability distribution, we used artificial landscapes where the left-

hand half is wetland habitat and all of the right-hand half is coniferous

Fig. 1. Schematic representation of the movement model. The animal

represented here has moved to point y on the trajectory given by the

black lines in an environment with three resource types: A, B and C.

Suppose that C is the most preferable habitat for the animal, followed

byA, with B being resource poor. Three of themany possible next steps

for the animal are to x1, x2 or x3. In the absence of a resource response,

and assuming that the animal is a correlated walker with a step length

distribution that decays with increasing distance, the most likely move

would be to x2 in patch B.However, due to the poor quality of patch B,

the animal may instead decide to take a sharp left turn to stay in patch

A (represented by a move to x2) or even to take a sharp right turn and

move the longer distance in order to end in the highest-quality patch C

(represented by amove to x3).
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dense forest, except for a small square of wetland, which we call the

patch. The reason for having the left-hand half of the terrain as good-

quality wetland habitat is that animals need to be given a choice

between a small patch and a large contiguous area of good habitat. If

the terrain contains just a single good patch on its own in the middle of

poor habitat, then the animals will choose the good patch with high

probability even if it is small and isolated, as it is the best option avail-

able. We also used the same step length and turning angle distribution

in both habitats, so as to isolate the effect of the weighting function on

space use patterns.

To investigate the patch size effect, we placed the patch 1�2 km to the

right of the centre of the landscape and halfway up. We varied the

patch size from 0�16 to 7�84 km2. Tomake sure that the overall amount

of wetland and forest was the same in each artificial landscape, we

replaced a strip of wetland on the left-hand side of the landscape with

coniferous dense forest, ensuring that the area of the strip was the same

as that of the patch. To examine the isolation effect, the patch was

placed at differing distances to the right of the landscape centre,

between 0�4 and 3�2 km, and the patch size was kept constant at

1�6 km2.

Results

We identified five different habitat types within the landscape:

wetland (WL), barren (B), dense coniferous forest (CD), open

coniferous forest (CO) and other (O). The O category consists

of water and other non-abundant resources, such as byroids,

herbs and broadleaf. For all of these habitats, the bivariate von

Mises distribution for the turning angles and theWeibull distri-

bution for the step lengths were good fits to the data (Fig. 2,

Table 1).

The best-fit parameters for the weighting function

W(Hi, Hj) are shown in Table 2. This table suggests that WL

should be the most favourable habitat type, since the weight

given to moving there from other habitats is always >1. B is

close behind, being preferable to all other habitats except wet-

land. CO is amiddling habitat, with half the weights of moving

there being >1 and the other half less. CD appears to be nota-

bly less preferable to these first three, with O being the least

favourable of all categories.

When a small WL patch is placed in the midst of an area of

CD, in the simulated environment described in the methods

section, the average space use per unit area increases with the

size of the patch but decreases with isolation (Fig. 3), showing

the effect of the weighting function on the emergent space use

patterns. However, variations in step length and turning angle

distributions also play an important role. The further an ani-

mal moves between fixes, the faster it is moving on average,

which affects the animal’s space use distribution. Previous

mechanistic models (Moorcroft, Lewis & Crabtree 2006;

Moorcroft & Lewis 2006) have shown that some animals, for

example coyote (Canis latrans) (Laundr�e & Keller 1981), will

decrease their speed of movement in more favourable habitats

and that this causes them to be observed with higher probabil-

ity in better habitats than worse ones. However, in certain cir-

cumstances, some species, for example elk (Cervus elaphus)

(Anderson, Forester & Turner 2008) and black bears (Ursus

americanus) (Bastille-Rousseau et al. 2011), do not appear to

slow down in preferred habitats.

Similar to these latter examples, the caribou in our study

move fastest in habitats B and WL (Table 1), most likely

because these habitats are open and offer relatively few

obstructions to movement for a large and long-legged animal

such as caribou.However, B andWLappear from the resource

weightings (Table 2) to be preferable to the other three habi-

tats. Since the faster movement in B and WL would cause the

caribou to spend relatively less time in these habitats than

would be expected if all the step length distributions were

equal, we have competing effects between fidelity to these habi-

tats due to the tendency to move into these habitats from oth-

ers and lower space use caused by faster moving within B and

WL.

To examine these competing effects, we computed numeri-

cally the steady state of the ME (eqn 3) in an artificial land-

scape consisting of just WL and CD habitat types (Fig. 4a).

These are chosen because animals move fast in WL (Table 1)

but it is the most preferential habitat according to the weight-

ing function (Table 2), whereas animals move slowly in CD

but do not choose this habitat preferentially over WL, B or

CO. When the step length distributions for both habitats are

the same (Fig. 4b), there is a clear preference for WL. In addi-

tion to this, the probability density is highest in the largest con-

tiguous WL area, towards the bottom-left than in the other,

smaller patches. The smallest patches of WL, in the top-left

and top-right, show the lowest probability density of all the

WL patches. This is a feature of space use that does not emerge

in the mechanistic resource selection model of Moorcroft &

Barnett (2008). In that model, the space use at any point is a

function of the resource quality at that point, so that the prob-

ability density would be of the same magnitude in all the WL

patches. Here, the preference of animals for large, contiguous

patches of high-quality habitat emerges naturally from the

underlyingmovement processes.

When we solve the steady state of the ME (eqn 3) in the

same landscape, but this time with different step length distri-

butions in different habitat types, as given in Table 1, very dif-

ferent space use patterns emerge (Fig. 4c). CD is much more

Table 1. Step lengths and turning angles for the caribou data

Resource type a b (m) k1 k2

Barren (B) 0�754 346 1�498 0�490
Wetland (WL) 0�688 289 1�292 0�573
Coniferous dense (CD) 0�677 189 0�762 0�733
Coniferous open (CO) 0�677 214 0�933 0�673
Others (O) 0�604 212 1�028 1�057

Parameter values for the caribou step length and turning angle distribu-

tions, given in eqns (6) and (7), respectively. There is one step length

distributions for each habitat type, depending on the habitat at the start

of the step. Each turning angle distribution depends upon the habitat at

the point where the animal makes the turn. The parameter b is mea-

sured in metres and the other parameters are dimensionless. To mea-

sure the turning angle distributions, we removed any steps of <25 m, as

recommended by Hurford (2009). This required removing 8�4%,

22�6%, 55�3%, 8�9% and 4�7% of the angles in the B, WL, CO, CD

andOhabitats, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Step length and turning angle distribu-

tions for the various habitat types. Blue bars

show the probability densities from the cari-

bou data and red lines the best fit curves for

eqn (6) (left-hand panels) or eqn (7) (right-

hand panels). Parameter values for these

curves are given in Table 1. The left-hand

charts are step length distributions and the

right-hand are turning angle distributions.

The habitat types from top to bottom are

Barren, Wetland, Coniferous dense,

Coniferous open, andOther habitats.
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Table 2. Resource weights for the caribou data

From toB toWL toCD toCO toO

Barren (B) 1�00 1�05 � 0�01 0�63 � 0�02 0�89 � 0�01 0�41 � 0�01
Wetland (WL) 0�95 � 0�01 1�00 0�64 � 0�01 0�93 � 0�01 0�38 � 0�01
Coniferous dense (CD) 1�17 � 0�04 1�08 � 0�02 1�00 1�06 � 0�01 0�35 � 0�01
Coniferous open (CO) 1�07 � 0�01 1�07 � 0�01 0�82 � 0�01 1�00 0�29 � 0�01
Others (O) 1�65 � 0�05 1�64 � 0�05 0�92 � 0�05 1�38 � 0�04 1�00

The weighting W(Hi, Hj) given to travelling from one habitat Hj to another Hi, calculated from the caribou data.W(Hi, Hj) > 1 means that Hi is

preferable toHj, whereasmovement fromamore preferable habitat to lessmeansW(Hi, Hj) < 1. Consequently,W(Hj, Hj) = 1 for anyHj. Columns

denote the habitat type to which the animal is moving and rows denote the habitat from where the animal came. Each of the non-diagonal entries

were significantly different from 1, with P < 0�0001, using likelihood ratio test. Error bars are single standard deviations obtained by bootstrapping

the data (see ‘Materials andMethods’).

(a) (b)

Fig. 3. The size and isolation of a patch affect the probability ofmodel animals being found in the patch. Panel (a) shows the average probability den-

sity of an animal to be found in a (goodquality)wetlandpatch surroundedby (poorquality) dense coniferous forest, as a functionof the size of a patch

in km2. Panel (b) shows the same average probability density, this time as a function of the distance of the patch in km from a large contiguous area of

wetland (see ‘Materials andMethods’ for details). In both panels, the solid lines show the results of the steady-state solution of themodel described in

this study. The dashed lines show the results of the steady-state solution of the model described in Moorcroft & Barnett (2008), when the weight of

moving towetland is1�17 times thatofmoving todense coniferous forest. Inourmodel,meanprobabilitydensity increaseswithpatchsizeanddecreases

withpatch isolation,whereasneitherof theseproperties of thepatchhaveaneffecton theanimalprobabilitydensity inMoorcroft&Barnett’smodel.

(a) (b) (c)

Fig. 4. Steady-state solutions of the master equation in an artificial environment. Panel (a) shows the resource distribution, where blue areas are

coniferous dense forest (CD) and red sections are wetland (WL). Panel (b) is the steady-state solution of eqn (3) where the resource weights are as in

Table 2 but the step length and turning angle distributions are the same for both habitat types. Panel (c) is the steady-state solution of eqn (3) where

the resource weights are as in Table 2 and the step length distributions are as in Table 1, that is, different for each habitat type. The turning angle dis-

tributions are uniform in both panels (b) and (c). Distances along theX andY axes are in kilometres.
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preferable in this scenario than that in Fig. 4b. Particularly,

the centre of the large contiguous area of CD in the top-right

has the highest probability density of the whole landscape.

Here, the animals are far away fromanyWLhabitat, andmov-

ing slowly, so are less likely to choose preferentially to travel to

the WL habitat than stay in the same patch. The only other

place where the probability density is as high as in the centre of

the large CD area is the smallWL patch at the top-right, which

is the only patch ofWLnear the centre of the CDhabitat. Con-

versely, the isolated patch of CD in the bottom-left, sur-

rounded by a large area of WL, is relatively under used, since

animals there are always close to the preferableWL habitat, so

will tend to move from the CD patch to the surrounding WL

area.

Another interesting feature of Fig. 4c occurs along the edge

of the large patch of wetland. The probability density at the

edge is higher than anywhere else in this wetland patch, owing

to the model animals tending to move there if they end up at

the neighbouring edge of the forest. A variety of species have

been observed to choose preferentially the edge of a good habi-

tat over the interior, for example insects such as large white

butterflies (Pieris brassicae) (Bergerot et al. 2013), mammals

such as pygmy tarsiers (Tarsius pumilus) (Grow, Gursky &

Duma 2013) and reptiles such as black rat snakes (elaphe

obsoleta obsoleta) (Blouin-Demers &Weatherhead 2001). Our

model may go some way to explaining the mechanisms behind

this phenomenon.

Discussion

We have constructed a mechanistic movement model, based

on a step selection function (SSF), where the movement is gov-

erned by the relative habitat quality between the start and the

end of the step. Though simple in concept, this model has com-

plex outcomes that mimic features of space use observed in

many animal populations and that are not present in simpler

mechanistic resource selection models (Moorcroft & Barnett

2008). As well as patch usage being correlated with local habi-

tat quality, the size and isolation of the patch also affect the

space use patterns that emerge from ourmodel. Larger patches

of good habitat are more likely to be used than smaller ones of

equal quality. Additionally, isolated patches of good habitat

inside large areas of bad habitat are less used than patches of

similar size and quality that occur near bigger, good-quality

patches. Both of these features of space use have been observed

in a wide variety of animal populations (Andr�en 1994) so it is

important for mechanistic models to replicate them in order to

make accurate predictions.

We generalized the SSF for a correlated random walk from

the version in Forester, Im & Rathouz (2009). The latter is a

two-step Markov process, depending upon the position of the

animal at the previous two time steps. However, in order to

construct a master equation from the SSF (Moorcroft & Bar-

nett 2008), it is convenient to use our one-stepMarkov process

formulation, which depends upon the position and bearing at

the previous time-step (eqn 1). We also extended the SSF from

Forester, Im & Rathouz (2009) to enable inclusion of

information about the whole step, as done in Fortin et al.

(2005), rather than just the end of the step. A strength of the

master equation approach is that it gives the full probability

distribution as it evolves over time by solving the equation just

once. Since it is not subject to random variation, as is the case

when performing stochastic simulations, this obviates the need

for simulating multiple realizations or having to determine

how many simulations are required to give a full and accurate

picture of themodel behaviour.

We have explained how to parametrize our model from

location data, using herds of caribou in Newfoundland as our

test population. This advances the study of Moorcroft & Bar-

nett (2008), which describes purely theoretical results in a

mathematically simplified one-dimensional world, and will

enable biologists to construct mechanistic step selection mod-

els appropriate for their study species. Whilst we have focused

on resources in the present paper, our model can be readily

extended to include other environmental covariates. Such

models could be used to test hypotheses about the mechanisms

that cause observed space use patterns to emerge in the popula-

tion (Moorcroft, Lewis &Crabtree 2006).

Resource selection techniques have been successfully used to

uncover the driving factors behind movement decisions for a

large variety of populations (Manly et al. 2002). However,

they cannot, by themselves, relate movement decisions to

spatially explicit, population-level patterns of usage in a non-

speculative, analytic fashion.Mechanistic models, on the other

hand, were developed precisely for this reason: to derive the

space use distribution of animals from details of the underlying

causal processes (Moorcroft & Lewis 2006). They therefore

provide a quantitative link between individual-level and popu-

lation-level descriptions. This is vital for accurately building

and parametrizing models that are often constructed on the

population-level, such as those of disease spread and predator–

prey dynamics, but whose underlying processes are driven by

individual-level movement and interaction events.

Whilst the recent development of SSFs (Fortin et al. 2005;

Rhodes et al. 2005; Forester, Im & Rathouz 2009) has gone a

considerable way towards framing resource selection in the

context of the animal’s movement mechanisms, previous stud-

ies have not used the SSF to determine the utilization distribu-

tion that the SSF would predict. Here, we demonstrate how to

frame an SSF, which can take into account features of the

whole step, in such a way as to derive this utilization distribu-

tion, via construction of a master equation. This gives a frame-

work for studying how different environmental covariates

affect space use patterns. It would therefore be possible to use

our techniques to shed light on how the various covariates

described in previous step selection studies each affect the way

animals use space, thus giving insights into why certain parts

of the landscape are used more than others and ultimately

helping predict the effect of possible future landscape changes

on animal space use.

Behavioural processes such as habitat selection and move-

ment strategies are key components of animal space use, which

are considered explicitly by mechanistic models. Notwith-

standing the variety in determinants that have been tested in
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the past, animal behaviour can be far more complex than cur-

rent mechanistic models consider. Different foraging strategies

can lead to an increased use of a given resource; animals can

increase time spent in a patch by reducing their rate of move-

ment within a patch or by selectively moving between patch of

a specific type (Bastille-Rousseau, Fortin & Dussault 2010) as

predicted by optimal foraging theory (Morris & Davidson

2003). The resourceweighting function added to ourmechanis-

tic model allows explicit representation of such behaviour and

may be used to enable researchers to have a better understand-

ing of the foraging strategies animals use. Our resource weight-

ing function also naturally gives rise to real aspects of animal

space use such as large areas of good resource being used more

intensively than smaller patches, which are important features

of animal space use. This occurs by ensuring that the relative

quality of the habitat between the start and end of each step is

considered, so that the effect of resource quality at a point is

propagated through the landscape by the non-local movement

decisions of the animal.

However, the weighting function andmovement parameters

assume that the preference for a given resource or habitat is

constant and will not change based on the spatial context that

animals are currently in. This assumption may not hold when

habitat selection is subject to a functional response; that is, that

the selection for a specific attribute is changing with the spatial

context (Mysterud & Ims 1998; Hebblewhite & Merrill 2008).

Animals living in an areawith different availability of resources

could display different responses based on feature availability

at multiple scales, such as within home range or inter home

range (Moreau et al. 2012). It may therefore be necessary,

when applying our mechanistic step selection model to multi-

ple individuals ranging large areas, to assess first the presence

of variation between andwithin individual behaviour based on

habitat availability. Indeed, such an assessment could be made

using our modelling framework. To apply the framework to a

single animal requires no methodological changes, but simply

applying the same techniques to the movement data for a sin-

gle animal, rather than pooled data as demonstrated here.

Based on the scale of the functional response, different parame-

ter estimates could then be obtained for individuals experienc-

ing heterogeneous conditions or for specific areas of the

landscape.

The purpose of this paper is not specifically to study cari-

bou behaviour. However, the fact that we have chosen data

on this particular species to parametrize our model has

opened up various questions about caribou space use that we

hope to answer in future work. For example, why do caribou

move faster in preferred habitats? It may also be interesting to

compare habitat choice over longer temporal scales than two

hours. If it can be shown that the choices tend to be made

over longer time periods, this would suggest that the animals

are using some sort of cognitive map of the environment to

determine their movement, rather than simply making choices

on a step-by-step basis. Furthermore, temporal differences,

such as variations in night-and day-time behaviour, may have

an impact on space use, which would be worth investigating

in future.

On themore theoretical side, the results of this paper suggest

that other choices of parameter may cause the formation of

further, qualitatively different spatial patterns. Due to the

inherent computational intensiveness of numerical simula-

tions, rigorous and exhaustive analysis of such patterns

requires development of an analytic theory of the type of SSFs

studied here. Such analysis would also help illuminate the rea-

sons behind the phenomena unveiled by the numerical studies

of this paper.We hope to examine these ideas in future work.

The present study deals with the effect of movement pro-

cesses on space use. However, interactions between animals

also have an important effect in many populations, either due

to collective grouping phenomena (Couzin et al. 2002;

Camazine et al. 2003) or territorial exclusion (Lewis &Murray

1993; Giuggioli, Potts & Harris 2011). In principle, the latter

can be factored in our mechanistic modelling framework by

including a term into our SSF (eqn 2) that excludes movement

by animals into places recently occupied by individuals from a

neighbouring group, flock or pack. Simulation analysis of sim-

ilar systems, which account for territorial behaviour but not

resource selection (Giuggioli, Potts & Harris 2011; Potts, Har-

ris & Giuggioli 2012, 2013), shows that the resulting territories

are not fixed in space. Therefore, including territorial interac-

tions would require that the boundary, Ω, in the ME (eqn 3)

were replaced by one that varies in time. Whilst this is not nec-

essary for the caribou population modelled here, as they do

not form territories, for many animals, this is an important

consideration in linking individual mechanisms to the popula-

tion patterns.We hope to include this in future studies.
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Appendix S1. Implementing eqn (3) from the main text in discrete

space.

Figure S1. Schematic representation of eqn (1).
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