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Abstract

HERMES is a Deep Inelastic Scattering experiment located at the DESY facility in Ham­

burg, Germany, and uses longitudinally polarized 27.5 GeV electrons or positrons from 

the HERA storage ring to scatter off fixed, polarized nucleon targets. From the rate of 

detected scattered beam leptons it is possible to measure the structure function gx which 

enters the cross section as an unknown, given the lack of knowledge of the internal struc­

ture of the nucleons. This function is in turn dependent on the distribution of spin inside 

the nucleons. This field of research was triggered by the discovery, in the late 1980's by 

the EMC experiment, that the total spin 1/2 of nucleons did not come entirely from the 

contribution of quarks, as expected.

The deuteron structure function g f has been measured with unprecedented precision 

in this thesis from 10 million DIS events collected by the HERMES experiment during 

the years 1998 and 2000. The data cover the kinematic range 0.0041 < x  <0.81 and 0.21 < 

Q2 <7.3 GeV2, and have been divided into 49 x  and Q2 bins, where x  is the fraction of 

nucleon's momentum carried by the struck quark and Q2 is the negative four-momentum 

transfer to the nucleon. The extraction of gf from data requires a deep knowledge of the 

detector performance for the dis-entanglement of effects possibly due to malfunctions. 

Statistical tests were performed on the data to study possible unwanted dependencies.

QCD fits at next-to-leading order have been performed to world data on the structure 

functions gf1,n,d(x, Q2). They have in turn been used to extract the polarized distributions 

AqpIf 1s (x, Q2), AE(s, Q2) and AG(x, Q2). A method has been developed to propagate the 

statistical and systematic uncertainties on gf’n,d to the extracted distributions. The inte­

grals of these distributions over the measured range of the variable x  have been obtained
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for four Q2 reference values and also from the HERMES data alone.

The results in this thesis clearly demonstrate that in the measured x  range gluons are 

positively polarized, which may explain the spin deficit in the nucleon known as the spin 

puzzle.
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Chapter 1

Introduction

The structure of nucleons can be studied with experiments analogous to Rutherford's, 

where in this case particles scatter off target nucleons rather than the nucleus. From 

the distribution of scattered particles it is possible to gain information on the nucleon's 

constituents.

At very low beam energies, the constituent model describes the static properties of 

nucleons like their masses, spins and magnetic moments in terms of quarks constituents. 

The nucleons are seen as irreducible representations of the SU(3) symmetry group.

In Deep Inelastic Scattering (DIS) ([1]) a lepton beam scatters off target nucleons with 

the exchange of a virtual probe, such as a photon. If the virtual photon four-momentum 

Q2 is large enough, the photon interacts directly with a quark carrying a fraction x  of 

the nucleon's momentum. The nucleon breaks up, and the fragments recombine into 

hadrons, which are then detected. Since the lepton is a point-like particle, the distribution 

of scattered particles directly depends only on the nucleon's internal structure.

At very high Q2 nucleons appear to be made of free or quasi-free quarks, because the 

strong coupling constant decreases asymptotically: quarks interact with the exchange of 

gluons, the carriers of the strong interaction. The nucleon is thus seen as an extremely 

active environment, where quark-antiquark pairs (the sea) are continuously created and 

destroyed.

When target an d /o r beam are not polarized, then the distribution of momentum car­

ried by quarks and gluons can be studied by DIS, and very precise data is available, with 

high statistics, of which Ref. [2] and Ref. [3] are only a few examples. For photon ex­
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change, the differential cross section depends on two unpolarized structure functions Fi(a;) 

and F2(x ), which in zero-th order QCD can be written as ([4])

p2(*) = J 2 ei x q i Fl(®) = = ei qi(x  ̂ (L1)
i i

where qi denotes the distribution of quark i with charge et, and the sum runs over quarks 

and antiquarks.

When both target and beam are polarized, the distribution of spin inside the nucleon 

can be studied. The differential cross section acquires a dependence on polarized structure 

functions. The analogue of Fi(x) in the polarized case is

Site) = ]Ce<A«(a;) >
i

where Aqi{x) =  q f  (x) — q~(x) is the difference between parton distributions with po­

larization parallel to the nucleon's spin and the corresponding distributions with anti­

parallel polarization.

Ideally quark and antiquark distributions inside the proton are not expected to de­

pend on Q2, but in practice they do. This can be explained when one considers that the 

processes that the virtual photon accesses change with the four-momentum transferred. 

At low Q2 the photon is not sensitive to gluon-initiated processes, and can not distin­

guish the sea quarks. When Q2 increases the photon can probe the most inner structure 

of nucleons, and becomes sensitive to the sea. As a result, when one considers QCD 

effects like photon-gluon fusion (7*g - t  qq) and gluon radiation (7*q -7 gq), the structure 

functions acquire a dependence on Q2.

The total spin of a nucleon is 1/2, which must come from contributions from the total 

angular momentum L  of quarks and gluons, and from the spin carried by gluons (AG) 

and quarks (AH):

^ =  L +  ^A E +  A G . (1.3)

Naively one would expect that the static model results apply at higher energies too, and 

that the spin is carried by quarks for the most part.

Experiments to study the nucleon's spin are more difficult to realize than unpolar­

ized ones, because of the necessity of both polarized target and beam. The pioneer EMC

2
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experiment ([5]) in the 1980's used polarized high energy muons incident on polarized 

targets to determine the polarized structure function g£. From the integral of g^ over the 

whole range of the variable x  (between 0 and 1), using some assumptions on SU(3), it 

is possible to extract AE. The astonishing result was that the quarks inside the nucleon 

contributed very little (AE ~  4%) to the spin of the nucleon. Even though the interpreta­

tion of the EMC results is now different, the result remains that the angular momentum 

and gluon contribution to the spin may be relevant.

The EMC results generated the so called spin puzzle and gave way to many polar­

ized DIS experiments, mainly concentrated at the CERN and SLAC laboratories. The 

most important CERN experiment was SMC, an upgrade of the EMC detector. In this 

experiment, 100-190 GeV muons scattered off butanol, deuterated butanol, and ammo­

nia targets. One remarkable feature of the experiment was the simultaneous use of two 

polarized targets with opposite polarization. This greatly reduced systematic uncertain­

ties related to luminosity and detector performance. Also, the high beam energy led to 

high Q2 ~  10 GeV2, and very low x  ~  0.003, important to determine the behavior of gx 

at low x  for the calculation of the integral of gr  On the other hand, the SMC detector 

had the disadvantage of having small dilution factors: the dilution factor is the ratio of 

polarizable nucleons divided by the total number of nucleons in the target. In the SMC 

experiment this factor varied from 0.13 to 0.23. The target polarization was ~  86% for 

protons and ~25-50% for deuterons.

The SLAC experiments (E142, E143, E154, E155) all used the same polarized electron 

beam, but they differed in the targets (E142 and E154 used 3He, E143 and E155 used 

NH3, ND3 and LiD), and small changes in the spectrometers. Also these experiments 

had to face the problem of the small dilution factors. In the spectrometers used for E142 

and E143 the electrons were detected at scattering angles of 4.5° and 7.0°. Electrons were 

identified by Cerenkov detectors and lead-glass calorimeters, and scintillator hodoscopes 

provided tracking. E154 and E155 used different scattering angles: 2.75°, 5.5° and a new 

spectrometer at 10°. One obvious problem of these experiments was the low geometrical 

acceptance.

The HERMES experiment ([6]) studies the spin structure of the nucleon through DIS 

of longitudinally polarized electrons (or positrons) on longitudinally polarized nucleons.

3
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One of the strengths of HERMES is the purity of the target: the dilution factor is 1 for 

hydrogen and deuterium. The polarized gas (H, D, 3He) enters into a windowless stor­

age cell located directly inside the beam pipe. Gas escapes out of the ends of the cell 

and is pum ped away by the high speed differential pumping system. The target po­

larization can be as high as 92% while beam polarization can reach 55%. HERMES is a 

forward spectrometer divided in two symmetric top-bottom halves. Drift chambers just 

downstream of the target window and before and after the magnet measure the scatter­

ing angle and momentum of charged particles. The acceptance of the detector covers a 

large kinematic range for the scattered positron. The HERMES particle identification sys­

tem (RICH, TRD, Preshower, Calorimeter) is able to identify the scattered electron and 

hadrons produced in coincidence.

There are many ways to access the distribution of spin among the nucleon's con­

stituents. In inclusive scattering only the scattered lepton is detected, and in this way 

there is sensitivity on the structure function g: (x, Q2). Even though gx depends on a spe­

cific combination of polarized distributions, it is possible to separate quark and gluon 

distributions using their different Q2 dependence. This is theoretically a very clean way 

to obtain the polarized distributions. Unfortunately the relatively small amount of data 

available requires the use of assumptions, such as SU(3) symmetry and hypotheses on 

the shape of the distributions at an input scale Qq.

In semi-inclusive scattering ([7], [8], [9]), one or more hadrons are detected in coinci­

dence with the lepton, and the charge of the hadron, together with its valence quark 

composition, provide sensitivity to the flavor of the struck quark. Many assumptions 

are needed in order to extract the polarized quark distributions, including models on the 

fragmentation of nucleons. Also, experiments need to identify efficiently as many types 

of hadrons as possible, to be able to separate the flavors. Since this was not possible with 

all flavors, assumptions often had to be introduced on the sea polarizations Aqs. For 

example Aqs(x)/qs(x) or Aqs(x) were assumed to be a constant for all flavors. Recently, 

though, given the excellent hadron separation capabilities of the HERMES experiment, 

these additional assumptions could be dropped, thus allowing the extraction of the po­

larization distributions of u, d, u, d and s quarks ([10]) in the range 0.023 < x  < 0.6 and 

1 < Q2 < 15 GeV2.

4
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This thesis deals with the measurement of the deuteron polarized structure function 

g f  from data collected by the HERMES experiment in the spring of 1998 and in 2000, for 

a total of almost 10 millions inclusive DIS events.

The first chapter is an overview of the HERMES experiment. The detector is treated 

in detail, with special emphasis to the particle identification system, which is able to dis­

criminate between hadrons and leptons, and among hadrons. For the g l analysis only a 

good separation is needed between hadrons and leptons. Studies performed on the trig­

ger efficiency conclude the chapter. These studies were necessary to the g1 measurements 

in the low momentum region. The efficiencies were found to have reached the plateau 

after the rise in the region of interest from lower momenta, but a new effect was found: 

one detector showed efficiencies as low as 90% and had to be corrected. The inefficien­

cies do not affect the extraction of gv  which is obtained from ratios of cross sections, but 

can affect measurements of total cross-sections. For this reason correction functions were 

obtained.

The second chapter presents an introduction to deep inelastic scattering, and the mea­

surement of g1 in the kinematic region accessible by the HERMES detector 0.0041 < x < 

0.81 and 0.21 < Q2 < 7.3 GeV2. Data were divided into 27 x  bins, and up to 3 Q2 bins, 

where allowed by enough statistics. Many statistical tests were performed to study the 

stability of the results, and possible dependences, like on the trigger efficiencies or on 

the beam helicity. The data have been corrected for charge symmetric backgrounds and 

hadron contaminations. For the final extraction information was needed from unpolar­

ized data, like a parameterization on the structure function Fi. The final results on g f  

represent the most precise measurement so far.

The third chapter introduces QCD effects: the Operator Product Expansion (OPE), 

which was developed explicitly to study DIS and describe structure functions in terms of 

matrix elements of quark and gluon operators, which become more and more important 

at small Q2, where non-perturbative effects play a role. The evolution in Q2 of parton 

distributions described by the Altarelli-Parisi equations is also introduced, in leading 

and next-to-leading-order. The effect on the structure functions is discussed.

Chapter 4 shows how the new measurements of g f can be used together with world 

data on g^’n,d to extract fits to the polarized quark and gluon distributions as a function

5
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of x, exploiting the Q2 range of measurements. A method is developed to propagate the 

statistical and systematic uncertainties from g*>,n,d data into the polarized distributions. 

Integrals of gP,n'd over the measured range of x  are obtained for four Q2 values.

6
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Chapter 2

The HERMES experiment

2.1 HERMES

HERMES is a fixed-target experiment located at the east straight section of the HERA 

electron (positron)-proton storage ring at the DESY laboratory in Hamburg. HERMES 

was designed to optimize the measurement of quantities related to the nucleon's spin. 

For this it needs high beam current, high values of target and beam polarization, high 

target density, and a large detector acceptance.

One of the strengths of HERMES is the purity of its target: the dilution factor (i.e. the 

ratio of polarizable nucleons divided by the total number of nucleons in the target) is 1 

for hydrogen and deuterium.

FRONT
MUON
MODO

27.5 Q«V

MUON H O O O SCO PE

0 1  2 3 4 5 6 7 8 9  10 11 m

Figure 2.1: Schematic side view of the HERMES spectrometer
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2.1. HERMES

TOP DETECTOR

(p=0.23

BOTTOM DETECTOR

Figure 2.2: HERMES angular acceptance. The dotted lines indicate the acceptance in the 
polar angle 0, while the dashed circles refer to the acceptance in the azimuthal angle <p. 
The plot represents a scaled version of the actual acceptance.

HERMES [6] is a conventional forward spectrometer with a dipole magnet providing 

an integrated field of 1.3 Tm. The spectrometer is divided into two symmetric top-bottom 

halves by the HERA beam lines, which are shielded by a horizontal iron plate.

Fig. 2.1 shows a schematic of the detector setup. The particle acceptance in the scat­

tering angle 6 is limited at small angles to 0.04 rad by the iron plate, while the maximum 

angles in the horizontal and vertical directions are 0.17 and 0.14 rad, respectively (see 

Fig. 2.2). As is shown in Fig. 2.1, each half of the detector has a series of drift-chamber 

planes for tracking. An angular resolution of 56 < 0.6 mrad and a momentum resolu­

tion of 5p/p  ~  1% are achieved. The trigger is formed by a combination of signals from 

three hodoscopes and a lead-glass electromagnetic calorimeter. Particle identification 

is achieved by a probability analysis of the signals from the transition radiation detector, 

the preshower hodoscope and the calorimeter. In the results presented here the efficiency 

for electron identification was on average 98%, while the hadron contamination was es­

timated to be less than 0.5%. The luminosity was measured by two small NaBi(W04)2 

electromagnetic calorimeters [12] detecting the Moller (Bhabha) scattering of the beam 

electrons (positrons) off the target electrons.

Each component of the HERMES experiment will be discussed in this chapter, includ-
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2.2. THE HERA BEAM
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Figure 2.3: The HERA ring.

ing particle identification and trigger efficiencies.

2.2 The HERA beam

HERMES makes use only of the polarized positron or electron beam from the HERA 

storage ring. Since HERA is unable to provide polarized protons, HERMES uses a polar­

ized fixed target. The electron beam is naturally highly transversely polarized due to a 

small asymmetry in the emission of synchrotron radiation: since the probability of spin 

flip to the direction parallel to the magnetic field is slightly higher than the spin-flip into 

the anti-parallel direction, in time there is a net polarization build up of the beam in the 

direction parallel to the magnetic field. This is the Solokov-Temov effect[13]. The time 

dependence of the beam polarization is described by the equation:

where Pmax is the asymptotic polarization, and r  the rise time constant. In a real machine 

de-polarizing effects such as orbital effects in the synchrotron radiation as well as mag­

netic and alignment imperfections prevent the polarization from reaching its maximum 

and have the net effect of lowering both the maximum polarization and the rise time

P B ( t )  =  P m a x (  1  -  e ~ t / T )  , (2 .1)

9
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2.2. THE HERA BEAM

from the theoretical values. These theoretical values

p T H E O R Y
m/TT*m a x 5-\/3

=  92.38% THEORY __ pI i  rm a x
>THEORYrnl c2P3 
max e2fry5

=  37 min (2.2)

may be compared to the experimentally determined values of ~  55% and ~  22 minutes. 

Here m e and e are the electron mass and charge, c is the speed of light, h is the Planck 

constant, p is the bending radius, and 7 =  E /rne, E  being the electron energy.

Two polarimeters measure the polarization of the beam: the transverse polarimeter 

located in the western section of HERA, and the longitudinal polarimeter located in the 

HERMES region (see Fig. 2.3). The average beam polarization for 2000 was < Pr  >=0.53.

2.2.1 Longitudinal polarimeter

Spin rotators are positioned upstream and downstream of the HERMES area and serve 

to rotate the beam polarization from transverse to longitudinal (as needed for HERMES 

physics) and then back again. A measurement of longitudinal polarization was neces­

sary for HERMES, so in 1997 the longitudinal polarimeter ([14]) became operational. A 

schematic view of the HERA east section with the longitudinal polarimeter is shown in 

Fig. 2.4. A laser beam of circularly polarized light with an energy of 2.33 eV is guided by 

remotely controlled mirrors in a vacuum pipe for 72 m until it reaches the electron beam. 

It then scatters off the electron beam 52 m downstream of the HERMES interaction point. 

Because of the high boost of the electron beam, the resulting back-scattered Compton 

photons are very focused and are contained within a small region centered around the 

direction of the electron beam. The bending magnet BH90 bends the electron beam away 

from the Compton scattering, so that the Compton back-scattered light and the beam

39 m 13 m 38 m 16 m

H ER M ES experim ent
r laser beam

a C om pton photons calorim eter

B H 39
h BH 90

H ER A  electron  beam

H ER M ES target
lase r - electron 
interaction point

Figure 2.4: Overview of the longitudinal polarimeter.
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2.2. THE HERA BEAM

slightly separate. A small calorimeter located 16 m downstream of BH90 measures the 

energy deposited by the Compton photons. The differential cross section for Compton 

scattering of circularly polarized light off of polarized electrons is related to the known 

unpolarized differential cross section da/dEo and to the photon and beam polarizations 

P-y and Pb by the relation

<2-3)
where Ay  is an asymmetry, known exactly. The total energy deposited into the calorime­

ter per electron bunch is measured, thus providing the beam polarization measurement. 

If the measured cross sections are the same for photon helicity A =  ±1 then the beam 

is not polarized. The photon polarization is on the order of 0.999 and it is checked by 

means of a polarization analyzer before and after the collision with the beam.

The polarization measurement is made once every minute, and it has an absolute 

statistical accuracy of 0.01. Systematic uncertainties on the measurement are estimated 

to be of the order of 2%, and come from sources of false asymmetry that can contribute to 

give a wrong asymmetry measurement, the measurement of the laser light polarization, 

and electron beam instability.

2.2.2 Transverse polarimeter

The transverse polarimeter operates on similar principles to the longitudinal one. It uses 

an Argon-ion laser which produces photons with an energy of 2.41 eV. As with the longi­

tudinal polarimeter, the beam of light is brought to interact with the electron beam by use 

of a series of mirrors. The backscattered Compton light is collimated both horizontally 

and vertically and is measured by a calorimeter about 65 m away. The TPOL calorimeter 

is separated into two pieces, one above and the other below the beam pipe.

The process used to recover the value of the beam polarization involves the fact that 

the cross section for circularly polarized light on transversely polarized leptons has a 

spin dependent azimuthal distribution: the asymmetry constructed from the shift in ver­

tical direction of the two light polarization states is proportional to the electron beam 

polarization.
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2.3. THE LUMINOSITY MONITOR

beam pipe
/■

beam
•

v. J

60 mm

OO
00

<------ 66 m m ------ >

Figure 2.5: Schematic picture of the luminosity monitor, with the hit distribution (the 
black boxes have a size proportional to the number of hits). The shaded area corresponds 
to the beam acceptance.

2.3 The luminosity monitor

Since the luminosity cannot be measured by placing a detector inside the beam-pipe, an 

indirect measurement is obtained from the scattering rate of beam electrons (positrons) 

off the atomic target electrons, in the elastic Moller (Bhabha) reaction

a - (+) - ( + ) + e“ (2.4)

and on the annihilation

e+ +  e ->27 (2.5)

in the case of a positron beam. The kinematics of the scattering are precisely defined: 

the scattered particles each carrying half the beam energy exit the beam-pipe at 7.2 m 

from the scattering point, where two identical calorimeters are placed in order to detect 

the two particles in coincidence. Each calorimeter, 2.2x2.2x20 cm3 in size, consists of 12 

crystals of NaBi(WC>4)2, as shown in Fig. 2.5, each coupled to a photo-multiplier. The 

luminosity is then obtained from the ratio of the measured rate over the cross section 

for the process, which is precisely known. As radiation at beam injection and dump 

can damage the calorimeters, they are usually moved 20 cm away horizontally from the 

beam-pipe at those times.
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2.4. THE TARGET

2.4 The target

One of the strengths of the HERMES experiment is its target ([6]), because of its purity 

and its position internal to the beam-pipe, so that the electron beam does not encounter 

any unpolarized material before colliding with the target atoms. A schematic of the target 

is shown in Fig. 2.6.

An atomic beam source (ABS) is used to create the target atoms, at a rate of approx­

imately 6.4xlO16 atoms/sec. The atoms are then injected from the top into the target 

cell. The whole system is surrounded by a solenoidal magnet providing a homogeneous 

field of up to 1.5 Tm parallel or anti-parallel to the HERA beam direction. The target 

cell is 40 cm long and 75 pm thick, with an elliptical cross section, and is made of pure 

aluminum. The gas is then pumped away by a differential pumping system at each end 

of the storage cell, giving the target density a characteristic triangular density profile. A 

cooling system, which brings the temperature down to 30 K decreases the velocity of the 

atoms, allowing them to spend more time in the cell, and increasing the target density to 

approximately 1014 atom s/cm 2.

The polarization is quickly measured by a Breit-Rabi polarimeter (BRP) and the polar­

ization is reversed about every minute to reduce systematic effects. A small fraction of 

deuterium atoms is extracted from the target cell through a tube mounted on the target 

cell, where through radio frequency transitions and sextuple magnets it is possible to 

isolate the nuclear spin. Mass spectroscopy allows the measurement of the occupancy 

number of the selected state, and the atomic polarization. The target gas analyzer (TGA) 

measures the fraction of dissociated target atoms in the cell. Since the target atoms re­

combine into molecules in the cell, corrections have to be made to the polarization value 

measured by the BRR The polarization of the gas inside the cell, Pp, can be extracted 

from the values measured by the TGA and BRP:

Pt  =  aoPBRp[(l -  <Xr)P +  «r] > (2-6)

where ao is the initial fraction of atoms leaving the ABS, ar is the fraction of atoms that 

do not recombine to molecules in the target cell, and /? (assumed to be 0.5) is the nuclear 

polarization of the recombined molecules relative to the nuclear polarization of the atoms

Pb r p -
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2.5. THE TRACKING SYSTEM
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Figure 2.6: Scheme of the HERMES target.

The values of a 0 =0.934, a r =0.957, Pb r p  =0.81 characterize the 1998 data set. In 

2000 the target conditions were extremely stable, and P + = 0.851 and P ~  =  0.840 are the 

averaged constant values of target polarization in the two polarization states. They have 

been used in the gx analysis presented in this thesis, with a relative error of 8% and 4% 

for 1998 and 2000.

2.5 The tracking system

The Tracking System consists of a set of drift chambers DVC, two front chambers FC1/2, 

three magnet chambers MCI /3  and two back chambers BC1 /2  per detector half. It serves 

many purposes. First, it has to provide a measurement of the position of the scattering 

vertex in the target. Second, through the bending of the track in the magnetic field, it 

gives the track's momentum. Third, it has to associate tracks to hits in the particle iden­

tification detectors. The overall tracking efficiency is larger than 95%, with a momentum 

resolution of 0.7 to 1.25% in the total kinematical range, and an angular resolution 69 

lower than 0.6 mrad. Many tracking chambers have wires oriented along three planes, of 

which one is the vertical direction (X plane) to provide the x  coordinate, while the other 

two are tilted +30° and -30° (U and V planes). There are no chambers with wires in the 

horizontal direction since they would sag, given the length of the chambers.

14

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited w ithout perm iss ion .



2.5. THE TRACKING SYSTEM

2.5.1 The front chambers

The DVC's were proposed in 1995 to improve the tracking in front of the magnet. They 

became operative in 1997. Both the FC and DVC are a set of 6 planes of alternating anode 

and cathode wires, separated by cathode planes. The DVC and FC are 1.1 m and 1.6 m 

away from the target, and their resolutions are of the order of 220 jum.

2.5.2 The back chambers

The BC's form the tracking system behind the magnet. They are arranged in four sets, 

two above and two below the beam-pipe, two directly behind the magnet and two down­

stream, after the RICH. Each chamber consists of six wire planes alternated with cathode 

foils. The wires in the first and last pair of planes are tilted by 30°. They measure the 

track direction after the magnetic field, thus providing a measurement of momentum. 

Their resolutions are approximately 210 jum for BC1/2 and 250 /jm for BC3/4.

2.5.3 The magnet

The HERMES magnet provides an integrated magnetic field of 1.5 Tm, with the magnetic 

field in the vertical direction, so that the particles are deflected in the horizontal direction. 

The magnet size sets the limits on the geometrical acceptance to the spectrometer: ±  

170 mrad in the horizontal direction and ±  140 mrad in the vertical direction, while the 

shielding plate gives the lower limit to the vertical acceptance, setting it to ±  40 mrad. 

The tracks are reconstructed independently in the front and back tracking system and 

then they are matched to the center of the magnet by a fitting procedure. Three sets 

of Magnet Chambers are located in the gap of the magnet, as shown in Fig. 2.1. Each 

chamber is made of 3 planes in the XUV orientations. They were designed to help match 

the front and back tracks, but they turned out to be very useful also in the detection of 

low energy particles that are then deflected away by the magnetic field, and are then not 

detected by the back chambers. Their resolution is on the order of 1 mm.
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2.6. THE PARTICLE IDENTIFICATION SYSTEM
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Figure 2.7: Left: the RICH detector. Right: angle of Cerenkov emission as a function of 
momentum for pions, kaons and protons, in aerogel and gas. At low momentum the 
plot shows that the aerogel gives a good discrimination among particles, while the gas is 
good at high momentum, where the aerogel curves tend to overlap.

2.6 The particle identification system

The HERMES spectrometer includes four particle identification detectors: a Cerenkov 

detector, replaced by a Ring Imaging Cerenkov detector (RICH) in 1998, a Transition 

Radiation Detector (TRD), a preshower (H2) and an electromagnetic calorimeter (CALO).

2.6.1 The RICH

The threshold gas Cerenkov detector present at HERMES from 1995 to 1997 was replaced 

in 1998 with a dual radiator Ring Imaging Cerenkov Detector (RICH), see Fig. 2.7.

The RICH is the first particle identification detector a particle meets. It is located be­

tween the drift chambers BC1/2 and BC3/4. It allows the identification of pions, kaons 

and protons over a large momentum range, with a low contamination and a high effi­

ciency.

Most of the hadrons present at HERMES have a momentum between 2 and 15 GeV. 

The scattered particles encounter a first radiator consisting of an array of 17x5 silica aero­

gel tiles, followed by a 4000 1 volume of C4F10 radiator gas. Depending on the [3 of the 

particle, it will emit Cerenkov radiation in the aerogel, in the gas, or in both*. The light is 

then reflected by a mirror, and the Cerenkov ring is detected by an array of 1934 photo­
* A particle emits Cerenkov radiation in a medium if the ratio of its velocity over the speed of light in the 

medium is greater than 1.
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2.6. THE PARTICLE IDENTIFICATION SYSTEM

multipliers per detector half. As shown in Fig. 2.7 the two radiators have a different 

momentum window in which they give a good separation between pions, kaons and 

protons: momenta lower than approximately 10 GeV are below threshold for Cerenkov 

radiation with a gas radiator, while in this range the aerogel has its greatest discrimi­

nating power. At higher momenta the curves for aerogel saturate and it is not possible 

anymore to distinguish among hadrons based on aerogel information, and the gas is used 

instead. In the analysis for the determination of the structure function gx no information 

is used from the RICH, as only a good discrimination is needed between hadrons and 

leptons. It is not important to identify the kind of hadron.

2.6.2 The transition radiation detector

The Transition Radiation Detector (TRD) (see Fig. 2.8) is a particle identification detector 

used for the separation of electrons from hadrons. When a relativistic particle passes 

through the interface between two dielectric media with dielectric constants e\ and e-z, 

it emits radiation in the forward direction at an angle <p proportional to 1/ 7, where 7 

is the Lorentz factor E /m ,  and E  and m  being the energy and mass of the particle. The 

transition radiation (TR) for ultra-relativistic particles is in the X-ray region (several keV), 

useful for particle physics applications. In the passage from vacuum to a medium with 

electron density ne, the probability of emission of a transition radiation photon in the

[-6.35 cnrH (- H
2.54 cm

10.16 cm—1

60.96

WINDOW FRAME 

CATHODE FRAME 

WIRE FRAME 

RADIATOR FRAME 

RADIATOR 

ANODE WIRES 

WINDOW FOIL 

CATHODE FOIL 

FLUSH GAP

ACTIVE MWPC VOLUME

Figure 2.8: Schematic picture of the six TRD modules. Electrons and pions induce dif­
ferent signals in the detector since electrons emit TR photons, detected on top of the 
ionization dE/dx.
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ultra-relativistic regime is given by

W t r  =  t o V ,  (2 7)
OTfle

where a  is the fine structure constant and m e the electron mass. The linear dependence of 

W t r  on 7 enables a separation of highly relativistic particles (/3 ~  1) in a way that would 

require a much longer Cerenkov detector for the same separation power. For example 

a 5 GeV electron has a 7 =  10000 while for a pion 7 =  35, so that the probability that 

the electron emits a TR photon will be 300 times larger than for the pion. Fig. 2.9 shows 

how the measurement of the TR improves the separation of electrons from pions. The 

dependence of W t r  on the square of a  = 1/137 implies that in order to achieve a con­

siderable probability for the emission of a TR photon, many radiator layers are needed, 

and the dependence on n e implies the use of a material with high electron density. The 

radiator also needs to be highly transparent to X rays, in order to avoid self-absorption. 

A polypropylene fiber radiator satisfies all requirements, while the last problem is also 

solved by building a sandwich structure of radiators and X-ray detectors, as shown in 

Fig. 2.8. The radiator is a loosely packed array of polypropylene fibers with a diameter 

of 17-20 /im, arranged in roughly 300 2-dimensional layers, with a total thickness of 6.35 

cm.

The detector consists of 12 modules, 6 above and 6 below the beam pipe. The outer

§ 4 500
Pion dE/dx

4000

3500

3000

2500 ; Electron dE/dx

2000

1500
Electron dE/dx + TR

1000

500

5̂-rJ I0
Energy Deposition (fceV)

Figure 2.9: Response of a single TRD module. The energy d E /d x  deposited in the TRD 
due to ionization is not able to provide a clear separation between pions and electrons. 
When the transition radiation is included, the electron peak moves to higher energies 
and the separation improves.
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dimensions of the two halves are 401 x 112 x 61 cm3. Each module is made of a radiator 

and a wire chamber, separated by a flush-gap where CO2 circulates in order to avoid 

the diffusion of oxygen and nitrogen into the chambers, thus protecting them from the 

ambient atmosphere. The gas in the wire chambers needs to have high atomic number, 

in order to achieve best X-ray absorption, thus the use of a mix of 90% Xenon and 10% 

methane, the latter acting as a quencher to avoid the creation of electron avalanches in 

the chamber.

The TRD detector reaches a hadron rejection factor (defined as the ratio of the total num ­

ber of hadrons to the number of hadrons misidentified as leptons, for a given energy cut) 

of 100 for 90% lepton efficiency (the number of leptons above the cut over the total num ­

ber of leptons). The discrimination can be improved by a factor three with a probability 

analysis ([15]), whose concepts will be outlined in section 2.6.5.

2.6.3 The preshower detector

The preshower detector H2 sits in the back region (see Fig. 2.1) and it has the two func­

tions of being both in the trigger and part of the particle identification system. The scintil­

lators are identical to the hodoscope HI; both consist of 42 vertical 9.3 cm wide scintillator 

paddles overlapping each other by 1.5 mm to avoid acceptance gaps. H2 incorporates 1.1 

cm of lead directly in front of the scintillators. Hadrons are minimum ionizing so they 

produce a very low signal in the detector, while leptons produce electromagnetic show­

ers, triggered by the high Z  of the lead, thus giving rise to a much higher signal. Hadrons 

deposit about 2 MeV in the detector, while the electron energy distribution varies roughly 

like In E.  Fig. 2.11 includes a histogram with the response of the preshower.

2.6.4 The electromagnetic calorimeter

The calorimeter is part of both the trigger and the particle identification system. It con­

sists of two identical 42x10 arrays of 9x9x50 cm3 blocks of radiation resistant F101 lead- 

glass located above and below the beam-pipe (see Fig. 2.10), each connected to a photo­

multiplier. As with the luminosity monitor, each half is moved away from the beam-pipe 

50 cm vertically at beam injection and dump to avoid radiation damage. Leptons tend to 

lose all their energy by creating electromagnetic showers which start in the preshower,
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Lead
(1.1 c m thic Calorimeter

Preshow er

50cm
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25 cm

20 cm

378 cm

Figure 2.10: Preshower H2 and calorimeter. Particles first encounter 1.1 cm of lead, which 
favors the creation of electromagnetic showers, giving rise to a high signal in H2 and the 
calorimeter if the particle was a lepton, thus providing a discrimination with hadrons.

and are almost fully contained within the preshower and the calorimeter, since the to­

tal length of the calorimeter blocks is 18 radiation lengths. Hadrons instead tend to lose 

their energy by hadron interactions, processes that have a much higher characteristic 

length, so that a hadronic shower will not be entirely contained in the calorimeter. This 

proves to be a means of hadron-lepton separation. For hadrons the sum of the energies 

deposited in the preshower and in the calorimeter divided by the momentum measured 

by the tracking system will be much less than 1, while for leptons this ratio will be very 

close to 1. Fig. 2.11 includes a histogram with the E /p  calorimeter response and the cuts 

used to separate leptons from hadrons. It also shows a tail with events having E /p  > 1. 

Such events could come from high energy leptons that lose energy by radiating a pho­

ton before entering the magnet and the measurement of their momentum; if the emitted 

photon is detected in the same calorimeter cluster, this would give a measured energy 

greater than the momentum.

2.6.5 PID

From the response of the particle identification detectors it is possible to generate a quan­

tity PID (Particle IDentification), that is related to the probability of a particle to be a 

hadron or a lepton. From the deflection of the particle in the magnet it is possible to cal­

culate its momentum p. In each PID detector the particle will leave some energy E. The 

issue is then to find the probability P{l{h)\Ep), given E  and p, that the particle is a lepton
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1996-1997 1998-2000
Leptons Hadrons Leptons Hadrons

CALO
PRE
TRD

0.92< E/p  < 1.10 
E > 0.025 GeV 

E  >26 keV

0.01 < E/p  < 0.80 
E < 0.004 GeV 

0.1< £(keV)<14

0.92< E/p  < 1.05 
E > 0.03 GeV 
E >  26 keV

0.01 < E/p  < 0.50 
E  < 0.003 GeV 

0.1 < £(keV)<13

Table 2.1: Hard cuts used to identify leptons and hadrons.

I or a hadron h.

Bayes theorem relates such a probability to the observable probabilities P(l(h)\p) that 

a particle with momentum p  is a lepton (hadron), and P(E\l(h)p) that a lepton (hadron) 

with momentum p  deposits an energy E  in the detector:

, > ' •  p -8)P(l\p)P(E\lp) + P(h\p)P(E\hp)

The probability distributions P(E\lp) and P(E\hp), called parent distributions, can be mea­

sured in a test beam facility by measuring the response of the detectors to a beam of pure 

leptons or hadrons. Another way, commonly used in HERMES , is to place "hard" cuts 

on the response of the other detectors, to be sure that the response of the detector un­

der consideration is generated by a certain type of particle. This way has the advantage 

of taking into account possible aging effects of the detectors. The cuts have to be hard 

enough to define a clean sample but also they need to have enough statistics, so the cut 

values vary for each data production, being tighter only for the productions with more 

data like 1998,1999 and 2000, and less tight for 1996 and 1997, as is shown in Table 2.1.

Fig. 2.11 shows the response of these detectors and the cuts identifying leptons and 

hadrons in 1996-1997. The plots are obtained using data from 1996. A track is included if 

it has a good data quality, it is Trigger 21 (the DIS trigger in HERMES, see next section), 

and its vertex originates from the target region. From the parent distributions one can 

create the quantity PID. The flux ratio (ratio of hadrons over leptons) and the PID for 

each detector D  are defined as:

,  _  <f>h _  P(h\p) Pp{E\lp)
0 <h p(i\P) PIDd l o g l °  pD{E\hPy  ( Z 9 )

where Pd are the conditional probabilities for a detector D.

When one considers the response of more detectors then one gets a better discrimina­

tion between hadrons and leptons, so we can define as P ID  the combined PID for more
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Figure 2.11: The responses of the Particle Identification Detectors. Superposed are the 
cuts identifying hadrons (dashed lines) and leptons (solid lines). The plots refer to the 
1996 data. Since the Cerenkov detector was upgraded to a RICH, it is not included in the 
PID anymore. The plots are from Ref. [16].

than one detector:

D  i .  /  D

The most common PID combinations used in HERMES are

(2 .10)

P ID 2  =  P I D c a lo  + P I  Dp r e

P ID 3  — P I D calo  +  P I  Dp r e  + P ID c e r
6

P ID 5  = P ID tr d  = Y , p i d t r d 1 ,
i =  1

(2 .11)

where the last sum runs over the 6 TRD modules per detector half.

After the 1997 production, the Cerenkov was upgraded to a RICH detector, and the 

information coming from it no longer enters into the PID, as now it is mainly used for 

hadron identification. So for the data used in this thesis PID2=PID3.

The quantity

P ID  =  log10 P(l\Ep)
P(h\Ep)

(2.12)
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Figure 2.12: The distribution of PID values when fluxes are taken into account (dotted 
line) compared to the one without fluxes (solid line) (from Ref. [17]). Depending on the 
cut value, the inclusion of fluxes is more or less important.

is clearly positive if the probability of being a lepton is higher than that of being a hadron, 

and vice-versa for a hadron. In terms of flux ratio </> and PID, and using Eq. (2.8) it can 

be re-written as:

P(E\lp) P{l\p)
P ID  = log10 = P I D 1 -  logi0 (f>. (2.13)

P{E\hp) P(h\p)

In many HERMES analyses the flux ratios are often neglected, and this is clearly wrong, 

especially if one places a cut very close to zero, as is shown in Fig. 2.12.

The fluxes of hadrons and leptons depend both on the momentum p and on the polar 

angle 9, since the cross section depends on these quantities. They are not as straightfor­

ward to calculate as the PID since they require the particle identification as an input, so 

they are calculated using an iterative procedure giving an initial guess for the fluxes, and 

continuing until convergence, as is explained in section 3.2.2.

2.7 Trigger

In HERMES a number of triggers are used to extract information useful not only to 

physics but also for diagnostics on the functioning of the detector.

As a first level screening, many types of triggers are used to record data likely pro­

duced by different physical processes. Trigger 21 is the trigger defining a potential deep
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inelastic scattering event.

The trigger requirements that a track has to satisfy involve signals in the top or bottom 

HO, H I, H2 scintillators and the calorimeter.

The trigger requirements are briefly summarized.

• The requirement of a signal in the HO and H I detectors prevents showers origi­

nating from photons and resulting in high signals in H2 and the calorimeter from 

being accepted as DIS events.

• The signal in the preshower is required to be above the minimum ionizing level, in 

order to avoid background from hadronic showers.

• The calorimeter must have an energy deposition above 1.4 GeV. Since hadrons are 

less likely to shower in the calorimeter, the combination of a signal in the preshower 

H2 and the calorimeter has a high probability of coming from an electromagnetic 

shower rather than a hadronic one. The threshold of the calorimeter was set to 3.5 

GeV until 1996, equivalent to an event selection with cut on y = (E  — E ') /E  < 0.87, 

where E  is the beam energy and E' is the energy of the scattered track.

From 1996 the threshold was lowered to 1.4 GeV, so that the cut on y  was extended 

to y < 0.91.

• The signal has to satisfy time ordering conditions: it is compared to the HERA 

clock, which is synchronized to the beam bunch signal, and it is accepted only if it 

is within some time window corresponding to the passage of the electron beam.

2.7.1 Trigger Efficiencies

Trigger efficiencies (TE's) had never been taken into account in any HERMES analysis 

before the studies shown in this thesis. It was always believed that the main source of 

inefficiency was from the tracking system, and that the trigger was highly efficient. It 

will be shown that this is not true, as the efficiency of Trigger 21 was as low as 90% from 

1998 to 2000. Here only studies regarding 1998 and 2000 will be shown. Results on 1999 

and high density unpolarised data are in Ref.[18].
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TRIGGER HODOSCOPE H1

PRESHOWER (H2)
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Figure 2.13: The detectors involved in the trigger study.

The detector that contributed the most to the inefficiency was HO (see Fig. 2.13). 

Unfortunately this was due to many possible causes, not all well understood. One pos­

sible reason was a small misalignment found in the bottom HO. During the summer 

1999 shutdown this problem was discovered and fixed, but the low efficiencies and the 

top-bottom difference in trigger efficiencies remained, disappearing only after various 

voltage increases, showing that the most probable cause for the inefficiencies was a volt­

age problem. In the 2000 production the HO efficiency was again low, but this time the 

top efficiency was worse than the bottom one. The source of low efficiency is probably 

radiation damage, as it will be explained below.

2.7.2 Definitions

The efficiencies of HO, H I, H2, CALO must be determined in order to get the Trigger 21 

efficiency. The main reason for this study was to find the upper y-cut to be used for the 

low-.x and low-Q2 g 1 analysis. After these studies it was found that the HO efficiency 

was very low compared to previous years, so it was important to find the cause of this 

behavior. Trigger 18,19,20,28 and 21 are defined as:

Trl8 =  (H I * H2  * (C A LO  > 1.4 GeV))top +  ()bot 

Trl9 =  (HO * H2  * (C A LO  > 1.4 GeV))top +  ()bot 

Tr20 =  (HO * H I * (C A LO  > 1.4 GeV))top +  ()bot
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Tr28 =  (HO * H I  * H2  * £ C )top * ()bot

Tr21 =  (HO * H I  * H2  * (CALO  > 1.4 GeV))top +  ()b o t . (2.14)

The efficiency of each trigger detector and Trigger 21 are

e(H0) =  (2.15)
Nl8

e(H l)  =  JVf rfc21 (2.16)
■” 19

e ( f f2) -  ^o& 2i ^ 17j
^20

e(C ALO ) = N f h '21. (2.18)
iV28

e(Tr21) =  e(£T0) * e(H l)  * e(H2) * e(C ALO ) , (2.19)

where N ^ i  is the number of events common to Trigger i and 21, while Ni is the number 

of events that fired Trigger i. Clearly l < N{, so that their ratio is always less than 

or equal to one. A track satisfying all geometric and PID cuts and firing Trigger i should 

also fire Trigger 21, which contains a signal from the same detectors except one, so the 

efficiency of this one detector is determined by the number of times that the detector did 

not give a signal when it should have done so.

In this study an event was selected if the track with highest momentum in the event 

is of the same charge as the beam, if it satisfies the geometric cuts that ensure that all 

the track was contained within the acceptance of the HERMES detector and originated 

in the target and a PID5>4 cut. Such a high PID cut, together with information from 

the RICH, were necessary to make sure that the particle selected was an electron, since 

no information could be used from the preshower and calorimeter, as they enter in the 

study, and using information from them could bias the result. The cut applied to the 

RICH was

to take into account that the electron could be a misidentified pion. The quantity in Eq. 

(2.20) is the logarithm of the ratio of probabilities for the RICH signal to come from an 

electron over the probability for the particle to be a pion. Only if Prob(e)>Prob(7r) the 

logarithm is greater than zero.
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2.7.3 Calorimeter efficiency

No specific trigger can be used to directly derive the calorimeter efficiency. Instead, Trig­

ger 28 can be used, since it is the closest to a Trigger 21 without CALO:

The BC's are known to be very efficient, so that they can be neglected in Eq. (2.21). The 

presence of a logical AND instead of a logical OR in Eq. (2.21) requires that events with at

half of the detector. This fact is the cause for the (statistical) error bars being large for the 

calorimeter efficiencies.

2.7.4 Error calculation

The error on the trigger efficiencies is the error on quantities of the form:

The error formula used in this report is ([19])

The origin of this formula is not straightforward. It takes into account the fact that there 

are bins in which N& and N b  are very small numbers, so that the usual error formulas 

may not be valid, since they usually apply in the limit of large numbers. In the limit of 

large numbers it takes the usual form of the binomial error:

The errors will be plotted as asymmetric since the efficiency cannot be larger than 1.

2.7.5 Trigger efficiencies for 1998 data set

Plots of the efficiencies of the HO, H I, H2 and calorimeter detectors are shown in Fig. 

2.14, as a function of 0X and 0y. These are the angles that the projection of the track on the

Tr28 =  ( HO * H I  * H 2 * B C  )top * ( )bot ■ (2.21)

least 2 tracks have to be selected, of which one has to be in the top and one in the bottom

(2.23)

(2.24)

2 7
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x, y  plane makes with the x  and y axis:

tan 9X = tan 9 cos <p

tan 9y =  tan 9 sin ip . (2.25)

The last two variables were chosen instead of the cartesian position variables x  and y 

because they reflect the acceptance of the HERMES detector, simplifying the comparison 

among plots of different detectors. They also do not require the knowledge of the exact 

position of the detectors on the z  axis. The figures show the upper and lower detectors, 

and the beam line is to be imagined to be in the center, in the zero position of the (9X, 9y) 

axis. The plots are done taking into account only events with one track, as the efficiency 

for the detection of more than 1 track is higher and depends on the efficiencies for 1 track 

in a non trivial way. For diagnosis purposes 1-track events were singled out and the 

efficiencies studied. The efficiencies of the HI, H2, Calo and the top HO detector were all 

very close to 1, while the HO bottom detector has a lower efficiency of the order or 90%, 

almost independent of the position. At high angles there are not enough statistics, so that 

the low values of the efficiencies in green actually have large errors.

The trigger efficiencies have to be taken into account in any measurement of absolute 

cross sections. The cross section a  depends on the ratio between the measured number 

of events N  and the efficiency:
N

” - 7 l ' <226)
where L  is the luminosity. Given the efficiency e, this is equivalent to considering the 

corrected number of events common to Trigger 18 and 21:
ivmeas

j\7-COrr _  1 8 & 2 1  tn, o - 7 \

^ i8&21 -  (2-27)

in the cross section expression, together with e =  1. By correcting iVi8̂ 2i in each bin of 

momentum, track multiplicity, time, etc., the efficiency in each of these bins should be 1, 

since:
?vcorr

£corr(i?0) =  =  1 . (2.28)

This correction has been done in two different ways for the years 1998 and 2000.

In the 1998 production e(H 0) was very low only in the bottom detector, probably 

because of an incorrect voltage setting. The bad voltage gave a strong dependence of
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HO HI

i-0 .0 4

CALORIMETER

,M ).04 >-0.04

Figure 2.14: Color-coded plots of the efficiency of Trigger 18 (HO,top left), Trigger 19 (HI, 
top right), Trigger 20 (H2, bottom left) for 1-track events and Trigger 28 (Calorimeter, 
bottom right) for 2-track events, as a function of 6X and 6y. The efficiency for the HO 
detector is low for the bottom detector, while all the other detectors show very high 
efficiencies.

the efficiencies on the particle's momentum, as is shown in the top plots of Fig. 2.15. 

The bottom plots in Fig. 2.15 show instead plots of the efficiency versus time (beam 

fill number) for one track events (left) and any number of tracks (right). Even though 

the efficiencies are not constant in time, it is not possible to separate them into different
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Figure 2.15: Trigger 18 efficiency (HO detector) for 1 track events (left) and total (any 
number of tracks) efficiency (right), for the 1998 data set, as a function of momentum in 
the top plots, and of beam fill number in the bottom plots. The total efficiency is higher 
than the efficiency for 1 track events since events with multiple tracks have a higher 
probability of being detected, thus increasing the efficiency.

periods, mostly because there is not enough statistics. Since the only strong dependencies 

are the ones on momentum and on the number of tracks, the efficiencies for 1,2 and 3 or 

more tracks were considered, and then fitted to a polynomial function of the momentum. 

The functions are shown in Table 2.2.

The effect of the correction on the efficiencies is shown in Fig. 2.16, where the cor­

rected total efficiencies are plotted as a function of momentum and time. The figure
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#  of tracks Correction function
1
2

3 or more

0.97 -  0.035^ + 0.0059^ -  0.40 x 10“V  + 0.11 x 10" V  -  0.115 x 10“V  
0.966 + 0.00324p -  0.266 x 10“ V  

1.0003 -  0.0042p + 0.64 x 10~ V  -  0.28 x 10“V

Table 2.2: Correction functions for Trigger 18 efficiency as a function of the particle's 
momentum, where p  is in GeV. The correction is valid for the bottom HO detector, in the 
1998 data set.

shows that the corrections are valid within ~  2%.

2.7.6 Trigger efficiencies for 2000 data set

Fig. 2.17 shows the efficiencies for the HO, H I, H2 and Calorimeter detectors, as a func­

tion of 0X and 6y for the year 2000.

The efficiencies of the four detectors show a similar circular shape that can be easily 

explained as radiation damage, since the beam-pipe is in the origin of the 0x,Oy axis. The 

plots are made considering only 1-track events. The above mentioned figures also show 

that only the HO detector has a very low efficiency, ranging from 94% in the top-center 

to less than 99% everywhere else. The other detectors show some damage and have

e

00 0.98

•=0.96
H

0.94

00 0.98

•gO.96
H

0.94

0.92

ALL TRACKS ALL TRACKS

0.92

0.9 0.9

0.88 0.88

0.86 0.86

top • bottom top • bottom0.84 0.84

0.82 0.82200 220 240 260 280 300 mi

Figure 2.16: Final corrected Trigger 18 efficiencies as a function of time (left) and momen­
tum (right), for 1998 data. The plots are done for the total efficiencies, i.e. for any number 
of tracks. Only the bottom efficiencies have been corrected.
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Figure 2.17: Color-coded plots of the efficiency of Trigger 18 (H0,top left), Trigger 19 
(HI, top right) Trigger 20 (H2, bottom left) for 1-track event and Trigger 28 (Calorimeter, 
bottom right) for 2-track events, as a function of 0X and By, for 2000 data. They show 
radiation damage, clear from the circular shape of the efficiencies.

efficiencies above 99% everyw here such  that further stud ies are n ot considered  necessary. 

Some small values are shown at the borders of the detectors, but they are due to small 

statistics: in those regions the efficiencies have very large error bars (not shown on the 

plots). In the following we will then concentrate only on the HO detector, since it was the
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major source of bad efficiency in Trigger 21.

The time dependence of the HO efficiency is shown in Fig. 2.18 for 1-track events in 

the left plot and for any number of tracks in the right plot. As explained before the total 

efficiency is larger than the efficiency for 1 track only, since the probability of detection 

increases with the number of tracks. Fig. 2.18 shows that throughout the 2000 data set 

the efficiency in the bottom detector was higher than the one in the top detector, and two 

periods can be isolated, separated by fill 97. At that time there was a high voltage change 

in the HO detector, that was able to bring the efficiencies up from about 94% to 97% in 

the top and from 97.5% to 98.5% in the bottom. Also a momentum dependence is visible 

in the bottom plots of Fig. 2.18, where the efficiencies in the first and last period, and 

for each period in top and bottom are plotted. The voltage change was not enough to re­

move the momentum dependence of the efficiency, especially since Fig. 2.17 shows some 

serious radiation damage. A new HO detector was built and installed as a consequence 

of these studies. To get a proper efficiency estimation one then needs to separate the effi­

ciency into bins of all these quantities. Even for the year 2000 and its large statistics this 

is not feasible. An alternate method was used: for each of the two periods (before and 

after fill 97), the efficiencies were calculated in bins of 1, 2, and 3-or-more track events 

and in 6x ,6y bins. In a second step, each event was re-weighted by the efficiencies as 

shown in Eq. (2.27), so that the only dependence left was on momentum, shown in Fig. 

2.19. The efficiency in terms of track's momentum seems to be independent of the ge­

ometry, since the major effect of the correction was to push the data points up, so that 

they average 1, but the functional shape is almost unchanged. In a third step, the events 

were re-weighted by the momentum efficiency, for 1,2 and 3-or-more tracks, for each of 

the two periods. Fig. 2.20 shows the time dependence of the fully corrected efficiencies. 

The correction is good to within ±1%. Due to the complexity of the correction, it is not 

reported here, but it is available for use on a DESY account in the form of a subroutine.

2.7.7 Conclusion

The trigger efficiencies have been studied for the two data productions 1998 and 2000, 

that will be used in the analysis of g^.

In both years the main source of inefficiency was the HO detector. In 1998 the reason
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ALL TRACKS1 TRACK

• bottoir

Figure 2.18: Trigger 18 efficiency (HO detector) versus beam fill number for 1 track events 
(top-left) and total efficiency (top-right). The bottom plots show the momentum depen­
dency for the two periods separated by fill 97.

for the inefficiency was likely an incorrect voltage setting, while in 2000 it was radiation 

damage. The HO detector was replaced by a new one after 2000.

Corrections were obtained that should be applied to any cross section measurement 

to take into account the trigger efficiencies.

The effect on the gf  extraction will be considered in chapter 3.
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Figure 2.19: After being corrected for the geometric 6X, 9y dependence, the efficiency still 
shows a momentum dependence that has to be corrected in a second step, for the first 
period (left plot) and the second (right plot).
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Figure 2.20: Time dependence of trigger 18 after the application of full correction. The 
correction brings the efficiencies to 1 within 1% for both top and bottom.
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Chapter 3

The structure function

3.1 Definition of structure functions

The cross section for the deep inelastic scattering (DIS) process can be written as the tensor 

product of a leptonic tensor L^u (describing the leptonic vertex in the Feynman diagram) 

with a hadronic tensor (describing the hadronic vertex), as shown in Fig. 3.1. In 

the following, the initial and final leptonic four-momentum will be indicated by k  and k', 

the initial nucleon's four-momentum by P , the virtual photon's four-momentum squared 

will be indicated by q2, with Q2 =  —q2. Since the leptons are point-like particles, L^u can 

be expressed precisely in QED ([1]):

Lfiu = Tr [(1 +  75^)(# +  m i ) + m t)7„] . (3.1)

e

Figure 3.1: Schematic picture of Deep Inelastic Scattering for one photon exchange.
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

In the last expression mi indicates the leptonic mass, and s the leptonic polarization. 

The notation f  stands for 7^ ,  7^ (ju=l,...,4) being the Dirac matrices. The matrix 75 is 

given by 75 =  *71727374. L IIU consists of a part independent of the lepton polarization s'9 

(symmetric, labeled with S) and a part that depends on it, (anti-symmetric, labeled with

A):
L ^  = L $  + L $ ,  (3.2)

where

LpD — ^{k^kj, +  kvkp — gni/(k • k  — m i ))

= ~ 2i m i (k ~ k')as? , (3.3)

where e ^ ap is the completely anti-symmetric four dimensional tensor. From the last 

equation it appears that all polarization effects are suppressed at high energy by a factor 

mi  (which is small). This is true in the case of transverse polarization, while in the case 

of longitudinal polarization one has mis@ —» kfi, and thus there is no suppression. This

shows why it is important to have a longitudinal polarization in order to measure effects

coming from the polarization.

Because of the lack of knowledge of the nucleon's internal structure, the hadronic ten­

sor, instead, has to be parameterized through the introduction of (at least) four* structure 

functions, two of which appear when the nucleon is unpolarized, and two more when it 

is polarized ([20]):

WIU, = W W  + W<£\  (3.4)

where:

=  2 F: (x, Q2) +  2 (p „  -  (p„ -  ^ g ^  (3.5) 

(3.6)

and
2 M

S*g l ( s ,Q 2) +  ( s *  -  g2& Q 2)

where M  is the nucleon's mass, and S  its polarization.

The structure functions depend on two independent variables, taken as x  and Q2. The 

dependence on Q2 can be understood by considering that the structure that the photon
‘This is true under the assumption that Q2 «  M%, so that weak interactions may be neglected. For 

higher energies three more polarized structure functions g3, g4, g5 appear in the expression for W^v
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

probes inside the nucleon depends on its energy. The other variable, the Bjorken variable 

x  is defined as x  =  Q2/2P-q,  and is a measure of the inelasticity of the process. For elastic 

scattering the invariant mass W  of the 7*p system must be equal to M ,  so

W 2 = (P + q)2 =  M 2 -  Q2 + 2P ■ q — M 2 ->■ x = 1 elastic scattering . (3.7)

For inelastic scattering instead it must be W  > M ,  which implies 0 < x  < 1. The quan­

tity x  is identified with the fraction of nucleon's momentum carried by the parton that 

interacts with the virtual photon.

3.1.1 QPM interpretation of the structure functions

It is very convenient to have a technique that allows one to extract the structure functions 

from the hadronic tensor. This can be easily done by defining four projectors P?v that, 

when applied to WjJiU, give the four structure functions.

The projectors for the unpolarized case are ([21]):

p r =

p(w =

3P ■ q 
4 a

Ip t ip V  _  gV-V 
a

Ip /ip i/ _  -gVu
a 3

Fx =  P ^ W „ U 

-> F2 =  P f W ^  , (3.8)

where a =  M 2 + (P ■ q)/2x.

In the same way, we can define, for the polarized case ([21]):

(P ■ q ?  1
-H ( q - S ) -

M 2{q • S) _

P T  = -. f f ; g)l c [(g • S )S X + qX\Pve ^

qx + 2 (P -q )x S x ]j P vefMvXr> -> gl =  P ^ W t

g 2 = p r w » „ ,

(3.9)

(3.10)

^ + 2  ( P . q ) x - ( q - S ) 2].

bM2{ q - S y

with b = —AM

In the simplest version of the Quark Parton Model (QPM) the nucleon is considered 

to be made of collinear, free constituents, each carrying a fraction x'  of the nucleon four- 

momentum. Lepton-nucleon DIS is then described as the incoherent sum of all lepton- 

constituent quark interactions and the hadronic tensor W ^  is given in terms of the ele­

mentary quark tensor wMJ/:

W,
    1 /*!

—  /  — S { x ' - x ) n q{x' ,s;S)wIJ,l, (x l,q ; s ) ,  (3.11)
q s  * r - q j  0 *
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

where the sum runs over quarks and antiquarks, n q(x' ,s \S )  is the number density of 

quarks q with charge eq, momentum fraction x' and spin s, inside the nucleon with spin 

S  and momentum P.  The hadronic tensor is the same as the leptonic tensor 

in Eq. (3.3) (since quarks are also charged, spin 1/2 particles), with the replacements 

kJ1, ->■ x P ^ , k lfl x P 11 +  q*1, and a sum over the final spin s is performed. With these 

substitutions one gets the symmetric and anti-symmetric quark tensors:

= 2[2x 2Pfj,Pv + xP^qv +  xq^Pv -  x (P  • q)gtw] 

w^u =  2im q£fluapsaq,} , (3.12)

and the quark mass, for consistency, must be taken as m q = x M ,  before and after the in­

teraction with the virtual photon. We can now introduce the unpolarized quark number 

density q(x) and the polarized one Aq(x, S)  as

«(*) =  ^ 2 n q(x,s-,S)
S

Aq(x) = ^ 2 n q( x , s - , S ) - ^ 2 n q{ x , - s ; S )  . (3.13)
s s

By applying the projection operators P ^v to one obtains the well known Naive Par­

ton Model predictions for the structure functions

Fi(®) =
g

F2(x ) =  x ^ 2 e 2qq{x)
g

8 i(*) = \  Y h  S )
g

g2(ar) =  0 . (3.14)

3.1.2 Asymmetries

In the cross section a ~  L ^ W ^ 1'  the cross terms and give no

contribution. The cross section will then be of the form:

. (3.15)
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

Figure 3.2: Kinematic plane.

The last equation shows why it is natural to create differences in cross sections with 

nucleons of opposite polarizations in order to extract the polarized structure functions gx 

and g2: in this way, the contribution of the unpolarized structure functions cancels out.

The most general cross section difference relevant for polarized deep inelastic fixed 

target I N  scattering is ([20]):

This formula contains only information from the anti-symmetric part of the tensor 

Wnv. The angle a, as shown in Fig. 3.2, is the angle between the lepton beam momentum

lepton-nucleon reaction. Effects associated with g2 are suppressed by a factor 2 M /  

with respect to the leading terms.

More convenient than the difference of cross sections are asymmetries (with an asym­

metric integration over <f>) like:

d3[a(a) — a(a  +  7r)] 
dxdydcj)

vector k  and the nucleon-target polarization vector 5; <j> is the angle between the k-S 

plane and the k-k' lepton scattering plane, 7 =  2M x / y / Q ^  and y = (P ■ q) /(P  ■ k) is 

the fraction of energy transferred in the reaction. The quantities x, y  and Q2 are related 

to each other by the expression Q2 =  sxy,  where s is the centre of mass energy in the

.. . o(a) -  a (a  +  7r)
M a ) = - H — 7------- \cr(a) +  a(a  +  7r) (3.17)

as for example the longitudinal asymmetry

A\ (3.18)
a + <r~*
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

obtained for a  =  0 from the cross sections when the polarization of target (<=, =>) and 

beam (->) are parallel ( ^ )  or anti-parallel (^>), or the transverse asymmetry A±  obtained 

for a  =  7r /2. Asymmetries are convenient since/ as already discussed in the last chapter 

on the trigger efficiencies, many detector effects simply cancel in the cross section ratio.

The physically interesting quantities are the virtual photon nucleon asymmetries:

crl / 2  ~  g 3 /2
Ai =

° l / 2  +  ° 3 / 2

A 2 = 2° tl  } (319)
<71/2 +  ° 3 /2

where 07/2 and <t3/2 are the virtual photo-absorption cross sections when the projection 

of the total angular momentum of the photon-nucleon system along the incident lepton 

direction is 1/2 and 3/2. The term otl arises from the interference between transverse 

and longitudinal scattering amplitudes. A\  and A2 can be related via the optical theorem 

to Ay and A±,  or, equivalently, to the structure functions, by means of the following 

relations:

Ay =  D {A i +T]A2)

A ± -  d(A2 - C A 1) ,  (3.20)

with

A\  = gi -  T2g2
Fi

A2 =  (3.21)
Fi

The kinematic factors D, d, r], (  are defined as:

y(y  -  2)D  =

7] =

y 2 +  2(1 — y)(l +  R) 
27(1 -  y)

2 - y

d = D ' 2e
1 +  £ 
f  

2eC =  (3.22)
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

with R  being the ratio of longitudinal to transverse virtual photon-quark cross sections, 

and e being the degree of transverse polarization of the virtual photon:

£ =  <3‘23) 
i - y  + \

From the measured asymmetry A\\ one can get the structure function gx by means of 

the relation:

( 3 ' 2 4 )

3.1.3 Evaluation of gx on nuclear targets

Let us consider DIS on nuclear targets. The assumption of incoherent scattering from 

the constituent nucleons will be used, which consists in neglecting nuclear effects such 

as shadowing and Fermi motion ([22]), an approximation only valid at high Q2. In this 

hypothesis the unpolarized scattering cross section on the nuclear target is equivalent to 

the sum of cross sections on the neutron and on the proton.

In the following the assumption of 100% beam polarization will be used for simplicity. 

The differential cross section asymmetry on a nuclear target A  is defined as:

a a  =  -  dtJ2  _ ( 3  2 5 )

da~A +  d o lt

Under the hypothesis of incoherent scattering on a nucleus with Z  protons and N  neu-

$
/  \

trons, the differential cross sections da^  are related to the unpolarized ones on the

proton and the neutron by the relation:

d a f ^ } =  Zdap{ 1 ±  PpAjj) +  N d o n{ 1 ±  PnAjf) (3.26)

where Ajj’" are the nucleon longitudinal asymmetries, and PP)n are the longitudinal po­

larizations of the nucleons. The last expression recovers the formula for unpolarized 

scattering for Pp =  Pn =  0. It follows that the longitudinal asymmetry originating from 

the nucleus A  is:

ZdopPpA?, +  N d a nPnAu
AA — /111 —

Zdtjv +  N d a nJp - r  iy  u ,un

= f pPpA\I +  f nPnAV , (3.27)
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

with
Zdap N d a n

Jp Zdop +  N d o n ’ Jn Zdop +  N d a n V ’

being the fractions of events originating from protons and neutrons respectively.

In the case of a deuterium target, i.e. with N  =  Z  =  1, f p and f n can be written as:

fv =  , fn = ~ ki  (3-29)
p 2Ff 2Ff

where we have introduced Ff as the deuterium structure function Fi per nucleon. The 

appearance of Fi in Eq. (3.29) is due to the fact that (3.28) contains unpolarized cross 

sections.

Because of the D-state admixture, one has:

P* =  Pnd =  ( l  -  , (3.30)

where a;£>=0.058 ([23]) is the D-state wave probability.

By inserting Eq. (3.30) and (3.29) into Eq. (3.27) one gets:

A p t  =  i  ( l  -  (A 'Ff +  ^ F ; )  (3.31)

and consequently:

gf =  ^ ( i  -  ! “ d)  (g? +  g?) • (3.32)

3.1.4 Extraction of g f  from the measured asymmetry

The HERMES experiment is able to make measurements of the asymmetry Ajj. For the 

final extraction of the structure function gf  information is needed on Ff and A \  (see Eq. 

(3.24)). Fits to available data are necessary to evaluate these functions at the values of x  

and Q2 of the measured asymmetry.

Fi parameterization. The unpolarized structure function Fi can be written in terms of 

the unpolarized structure function F2 and R,  the ratio of longitudinal to transverse polar­

ized virtual photon cross sections on an unpolarized target, by means of the Callan-Gross 

relation ([1]):

p .(* .Q 2) =  • (3-33)
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

Commonly used parameterizations for Ff are the 8 ([24]) and 15 ([25]) parameter fits from

R  parameterization. The R  parameterization from Whitlow ([26] and [27]) is the aver­

age of R a, Rb and R c:

Q2hr =  5(1 -  x )5, and A = 0.2 GeV. This fit holds for all Q2 ranges of DIS experiments, but

R  is kept fixed at its value for Q2 = 0.3 GeV2.

The structure function g2. The structure function g2 is null at zero-th order QCD, so 

it does not have a direct QPM interpretation, since it cannot be written as a sum over 

quark or gluon polarizations. It can be measured through the scattering of a transversely 

polarized beam off longitudinally polarized targets, and it is in fact linked to the trans­

versely polarized quark distributions inside the nucleon. From Eq. (3.16) it follows that 

A±  (obtained for a  = 7r /2) depends on the combination of structure functions g2 +  | g x, 

where gx is not negligible, so that g2 cannot be easily isolated. Since y — (E1 — E ) / E ,  

where E  is the beam energy and E 1 the final lepton energy, this also shows that at fixed 

x  and Q2, g2 can be isolated by varying the beam energy. 

g2 can be written as:

NMC.

R a = 0.06723 0(a:,Q2) +
0.46714

R b =  0.0635 Q(x, Q2) +  - 

R c = 0.05992 &{x,Q2) +

(Q8 +  12.9757)1/4 
0.5747 0.3534

Q2 Q4 +  0.32 
0.50885 (3.34)

((Q2 — Qthr)2 +  4.44396)1/2 ’

with

0 (3.35)

should not be used for Q2 < 0.3 GeV2. So for Q2 values lower than 0.3 GeV2 the value of

g 2(x ,Q 2) = g Y w (x ,Q2) + g2(x ,Q2)

.ww

(3.36)
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Figure 3.3: New results on xg2 (left) and the asymmetry (right) from E155 ([28]) in 
solid circles, for the proton and the deuteron, compared to pure Wandzura-Wilczek con­
tribution (solid line) and data from SMC ([29] in open circles, E143 ([30]) in open dia­
monds and older data from E155 ([31]) in open squares. Data on xg2 is compared to fits 
from Stratmann ([32]) (dash-dot), Song ([33]) (dotted), Weigel and Gamberg ([34]) (short 
dashes), and Wakamatsu ([35]) (long dashes).

The Wandzura-Wilczek term g ^ w  is pure twist-2 (see section 4.1) and only depends on 

gx, so it can be obtained from a measurement of gx alone, while g2 depends on the twist-2 

term coming from the transverse quark polarization hr ,  and on the twist-3 term coming 

from quark-gluon interactions, £. The h r  term is small for up and down quarks, being 

dependent on the ratio m / M ,  thus the term (, even though being twist-3, is not negligible 

compared to it.

Fig. 3.3 shows the results of a recent measurement of g2 by the E155 ([28]) experiment 

in the range 0.02 < x  < 0.8 and Q2 < 30 GeV2, for proton and deuteron.

A common assumption used in the extraction of gx from the measured asymmetry 

is to consider that both quantities r) and A? are small in the large energy limit: A? is 

bounded by the relation IA2I < V R  (shown in the blue dashed lines in the plots), and R  

is a small quantity. So it is quite accurate to write:

A\\ ~  DA± . (3.37)

By neglecting the g2 term in A\  (justified by measurements until recently), one obtains
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3.2. THE MEASURED ASYMMETRY

from Eq. (3.21):

(3.38)

which expresses gx in terms of the measured asymmetry Ay, the measured unpolarized 

structure function Fi(aj), and the known coefficient D. This is the approach taken by 

many experiments in the past.

Because of the improved precision, it is now possible to include an A 2 contribution in 

the extraction of g1 from Eq. (3.24). After substituting the expression in Eq. (3.21) for A 2 

into Eq. (3.24), one gets an expression in terms of g J F \ ,  A2 and g2. Fig. 3.3 shows that 

the data seem to be consistent with the inclusion of only the Wandzura-Wilczek term into

g2:

fits for F2 and R  discussed earlier.

3.2 The measured asymmetry

The measurement of the deuterium structure function gf  will be presented in the rest of 

this chapter. As explained in the previous sections, the extraction of gf  is the result of 

the measurement of an asymmetry. It will be shown how the asymmetry is obtained in 

terms of measured quantities for data taken in 1998 and 2000. Tests of the stability of the 

results will follow, to conclude with the final results.

The unpolarized cross section oq is related to the scattered lepton count rate N ,  to the 

detector acceptance a(t , x , Q2), the total detection efficiency (tracking + trigger) e(t, x, Q2) 

and the luminosity L(t) by the relation:

7(gi +  g f W) _  7 f 1 gi (y)

(3.39)

such that

where the obvious x  and Q2 dependencies have been omitted. The Wandzura-Wilczek 

term can be calculated by using a parameterization for g f /F f  from world data, and the

(3.41)

4 6
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3.2. THE MEASURED ASYMMETRY

where t  is time. When one considers instead a polarized cross section, the unpolarized 

cross section may be expressed as <t0 =  (a~* +  The polarization will introduce an

additional term in the cross section which depends on the polarization of the beam PB 

and the target Pp:

N~*(x, Q2) -  a0 J  dt a ( t , x ,Q 2) e(t,x,  Q2) L~*(t) [1 + PB(t)Pp{t)A\\(x,Q2)]

N ^ ( x , Q 2) =  oo J  dt a ( t , x ,Q 2) e{ t ,x ,Q2) L ^ ( t )  [1 -  PB (t)PT (t)A\\(x,Q2)} .

(3.42)

In section 3.1 it was shown that to obtain the asymmetry A|| both target and beam need 

to be polarized. Trivially the asymmetry is zero in the case that the cross section does not 

depend on the polarization.

The asymmetry can be isolated to get:

A, =  ,   , p.43)
11 Jd t a e L ^  Pb Pt  + N ^  J d t a e L ^  PBPT

where the dependencies on x,Q2 and t  have been dropped for simplicity. Under the

assumption that the efficiencies and the acceptance do not depend on time, they can be 

taken outside the integral, so that they cancel out. Finally one gets:

An = —g— *-------, (3.44)
11 N -»■ C J  + N~* C J

where C~* and Cr* are the integrated luminosities, while and are the integrated 

luminosities weighted by the product of target and beam polarization:

= J  d t L ^ ( t )  = /  d t L n (t)

C f  = j d t  L %(t) PB(t)PT (t) C f  = j d t  L n (t) PB(t)PT (t) • (3.45)

The asymmetry is obtained from the measured number of DIS events when the deuterium- 

lepton relative spin is parallel ( ^ )  or anti-parallel (^>):

JVJ (x, Q2) -  N J  (a, Q2) £ n
A t ( x , Q 2) =  W  I  y  ,V  ' .  . (3.46)

WJls(x ,e 2 )£ f ) + i v - is(I ,Q2) £ 4
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3.2. THE MEASURED ASYMMETRY

In the last equation the superscript d was introduced on the asymmetry to indicate that 

we are referring to deuterium.

The measured number of DIS events is likely to contain some contamination either 

from non-DIS leptons or from hadrons with the same charge as the beam (negative in 

1998 and positive in 2000). The non-DIS leptons mostly come from charge symmetric 

processes (cs), such as the decay of photo-produced 7r°'s into 27's of which one or both 

convert into e+e" pairs, or from high energy bremsstrahlung photons that create e+e-  

pairs. Since they come from secondary processes, they are likely to have a lower momen­

tum, and thus be concentrated at high y. This kind of background is treated by supposing 

that in each kinematic bin the amount of positive and negative leptons coming from such 

processes is the same, so that the total number of DIS is obtained by subtracting the num ­

ber of leptons with opposite charge from the number of DIS candidates:

( 3 . 4 7 )

(" c tn d  -  " c l )  V  + ( " 2 nd “  " c l )  £ ?

The contamination coming from hadrons will be discussed in another section, as the 

method to handle this contamination is not so straightforward. A systematic error for 

the hadronic background is estimated.

The statistical error on the measured asymmetry comes from the error propagation 

on the measured numbers of events:

SAf,=
~\ d N S m d  /  c a n d + W s / 08 +  Vajv5 n d / c a n d + c s

c ^ c f  +  c ^ c f

[ ( "2 nd -  " 3 )  £ ?  +  ( " 2 nd  -  " S )

XV (JVctnd -  " c s )2( " 2 n d  +  " S ) + ( " 2 n d  +  " 3 ) ( " 2 n d  "
(3.48)

3.2.1 Event selection

The data are organized in slow control and fast control. Slow control quantities do not need 

to be evaluated on an event-by event basis, since by their nature they vary slowly. These
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3.2. THE MEASURED ASYMMETRY

quantities are then measured every ten seconds (every burst). Examples of slow-control 

quantities are target and beam polarization and luminosities. Fast control are instead 

quantities that need to be measured for every track, such as the momentum, the energy 

released in the calorimeter, the angles, and so on. The data is then stored in a run file 

containing approximately 7 minutes worth of data.

An analysis code was built to generate the event selection. It first accesses the data 

file and reads the slow control tables, reading in the luminosities and the polarizations. 

Later it accesses the tables related to the events in that burst. For each burst it looks 

for the track with highest momentum in each event, which is the one with the highest 

probability of being the scattered lepton. Such a track has to have a higher probability of 

being a lepton (PID cut, see next section) than a hadron. Geometrical cuts are applied,

ensuring that the entire track is contained in the angular acceptance of the detector and

that the reconstructed scattering vertex zv along the 2 axis of Fig. 2.1 and the transverse 

vertex t v in the direction transverse to the z  axis are contained within the target cell:

0y > 0.04rad (3.49)

tv < 0.75cm (3.50)

-18cm  < zv < 18cm . (3.51)

A last geometric requirement is that the track be completely inside the fiducial volume 

of the calorimeter. Finally, kinematic cuts ensure that the track is consistent with being a 

DIS event. These requirements are summarized in Table 3.1.

Quantity Description Cut
x . ?  Q’

2p • q 2M (E -  E')
Momentum fraction carried 

by the struck parton

0.0021 < x <  0.85

p- q E — E' 
V ~ p - k ~  E Energy fraction transferred 

to the 7 *

0.1 <  y <  0.91

Q2 = - ( k  -  k')2 =  AEE' sin2 ^ Four-momentum transfer Q2 >  0.1 GeV2

W 2 = M 2 + 2M (E -  E') -  Q2 Invariant mass of 
the 7  *p system

W 2 > 3.24 GeV2

Table 3.1: Definition of kinematic variables and the cuts used to define the DIS region.
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Figure 3.4: Kinematic x  — y  plane. The 49 bins are identified by numbers on the plot. 
Each DIS event has its unique position on this plane, which is limited by kinematic cuts 
(TV2 > 3.24 GeV2, Q2 > 0.1 GeV2 and 0.1 < y  < 0.81) and by geometrical constraints 
(0.04 < 6  < 0.22 rad).

As shown in a previous section, deep inelastic scattering has two independent quanti­

ties, that may be taken as x  and Q2. A common choice is also x  and y, and a 2-dimensional 

plot of y  versus x  is shown in Fig. 3.4. Fig. 3.5 shows instead the kinematic x, Q2 plane, 

and the average Q2 values in each bin, ranging from 0.2 to 7.5 GeV2.

All events satisfying the selected cuts will lie in an area within 0.0021 < x  < 0.85 and 

0.1 < y < 0 .91. The angular acceptance in 6 =  0.22 rad cuts the plane at the top, while
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Ov

■2 1
10 10

Figure 3.5: The x -  Q2 plane. The thick black dots represent the average Q2 values in 
each bin.

9 =  0.04 rad cuts it at the bottom left. The cut W 2 > 3.24 GeV2 closes the kinematic 

region on the bottom right. Fig. 3.4 also shows that some kinematic cuts are redundant. 

The only necessary ones are the cut on the y variable, and the one on W 2.

The cut of y — 0.91 excludes the low momentum region (p < 2.5 GeV). The trigger 

efficiencies have a dependence on momentum, and they reach a plateau only at momenta 

of the order of 2.5 GeV ([18]). The low y  cut is used to exclude a region where the mo­

mentum resolution is poor ([6]). The cut on W 2 is used to exclude the region of nucleon 

resonances.

Due to a dependence of the measured asymmetry on y, where possible, more bins in 

y  were introduced. A total of 49 bins were used in this analysis. In the plots presented in 

this chapter lower, medium and higher y  bins will be indicated respectively with y-bin=l, 

y-bin-2 and y-bin=3. Because many tests have been made on the behavior of Ajj in each 

bin, each bin number is clearly indicated in Fig. 3.4. The angles 0 =  0.04 rad, 6 =  0.07 

rad, 6 =  0.1 rad and 6 =  0.22 rad roughly delimit the different y bins.
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3.2. THE MEASURED ASYMMETRY

3.2.2 P ID  schem e

The track must be efficiently identified as a lepton. Information from the preshower and 

the calorimeter enter into PID3, while the TRD identification is contained in PID5. These 

quantities have already been introduced in section 2.6.5 and provide the means for the 

hadron-lepton separation. As was already pointed out, flux terms must be used. They 

are often neglected in analyses, which implies an incorrect assumption of equal fluxes 

of hadrons and leptons in the detector over the entire kinematic range. The requirement 

used to identify a lepton is then:

PID = PID3 +  PID5 -  log10 4> > PIDc u t . (3.52)

Fig. 3.6 schematically shows the PID distributions for hadrons and leptons. A PID cut 

cannot be placed at too high a PID value since in this way too many leptons would be 

excluded thus lowering the lepton efficiency, defined as the number of identified leptons 

over the total number of leptons (horizontal shaded area in the figure). On the other 

hand a low cut would increase the hadron contamination (vertically shaded area), which 

is the number of hadrons above the cut over the total number of hadrons. Fig. 3.7 shows 

the hadron contaminations and lepton efficiencies for the PID cut of 1, chosen as a good 

compromise between the two.

The flux factors. The flux factors are calculated with an iterative procedure ([40]). It has 

been shown in Eq. (2.13) that

P I D  = P ID '  -  log10 cf> =  0 (3.53)

PID cut

hadrons leptons

Figure 3.6: Scheme of the PID distributions for leptons and hadrons. The PID cut must 
be a compromise between high PID lepton efficiency and low hadron contamination.
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Figure 3.7: Left: efficiency of the PID cut equal to 1. Right: hadron contamination for the 
same PID cut. For each x  value, the lepton efficiencies are higher for the higher momenta 
(lower y) bins and the hadron contamination is lower ([40]).

is the point where the probability of being a lepton is equal to the one of being a hadron. 

The fluxes of hadrons and leptons are proportional to the number of particles of each 

type, which in turn can be obtained from the PID distributions n(PID):

roo
4>e ozne — / n(PID')d(PID/)

•/p ro cut 
/•FID t

<j)h ( x n h = n(PID')d(PID') . (3.54)
J  —  OO

Since the flux itself is written in terms of the PID, one obtains an equation that can be 

solved iteratively. Eqs. (3.54) show that the flux terms depend also on the PID cut, so 

that they can only be used in conjunction with the PID cut used to obtain them. Also, 

they are specific to the trigger requirement used since the relative flux of hadrons and 

leptons depend on the physical process involved. As with the DIS cross section, the 

fluxes depend on two kinematic quantities, usually taken to be the momentum p and the 

polar angle 0 of the track, so they have been calculated in 27 bins of momentum and 7 bins 

of 6. After the calculation they have been smoothed out to avoid fluctuations, which may 

be significant in the region of high momentum and angle, because of the low quantity of 

data. The log10 (f> term can assume values in general between -2 and +2, showing that the
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assumption of log10 <t> = 0 is absolutely wrong, since it neglects a range of four orders of 

magnitude in the flux ratio.

3.3 Data

From the 1998 and 2000 data production 4413 and 22944 runs were selected with a good 

data quality. Good data quality requirements include the absence of high voltage trips, a 

well defined polarization, a measurement of beam polarization updated at most 5 min­

utes prior to the burst and no dead blocks in the calorimeter.

A study quantified the loss of luminosity due to performance deficiencies of the de­

tector in 1998 and 2000, a necessity to identify the major reasons why data was rejected, 

and thus indicate needed improvements for future productions (see Table 3.2).

By requiring that the target gas be polarized deuterium, 26094 runs were selected for 

2000. Only a small fraction of the total data available from 1998 (runs between 5398 to 

10548) was analyzed, a total of 4611 deuterium runs. Runs prior to 5398 had bad data 

quality, which prevented them from being used for any analysis.

The luminosity for each burst is calculated as the product of the luminosity rate times 

the burst's time length. As will be explained in the next section, there is more than one 

quantity representing the luminosity, available in HERMES . The raw Lum iR ate is the 

measurement of luminosity made by the luminosity detector, and its value smoothed in 

time is the L u m iF it. In any analysis the L u m iF it has to be used. Some problems arise 

from bursts that have been rejected because of an ill-defined luminosity measurement. 

This problem is present for both luminosity quantities, being extreme in the L um iR ate, 

where spikes are present. The L u m iF it shows instead very often negative unphysical 

values when the measurement was meaningless. For such bursts the luminosity value 

from the previous burst was used.

The final results on the total luminosity loss are listed in Table 3.2. The results are 

separated for top and bottom detectors. The total and incremental values are shown for 

both years.

The first four entries are related to target data quality. When the target was flip­

ping between polarization states and so had an ill-defined state, only 0.63% of the total
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2 0 0 0 1998
TOTAL % INCR. % TOTAL % INCR. %

EXPLANATION TOP BOT. TOP BOT. TOP BOT. TOP BOT.
flipping 0.63 0.63 0.63 0.63 0.69 0.69 0.69 0.69
P t  unreasonable 2.25 2.25 2.25 2.25 1.08 1.08 1.08 1.08
atR bad or unavailable 2 .1 2 2 .1 2 2.33 2.33 1.07 1.07 1.08 1.08
bad target data quality 3.83 3.83 4.40 4.40 1.69 1.69 1.73 1.73
P b  <30% or P r  >80% 1.77 1.77 6.05 6.05 0.33 0.33 1.98 1.98
P r  meas>5 min ago 1.62 1.62 7.16 7.16 3.01 3.01 4.78 4.78
I r  <5 mA or I r  >  50 mA 0 .0 2 0 .0 2 7.16 7.16 0 .0 1 0 .0 1 4.78 4.78
C <5 Hz or C >60 Hz 1.90 1.90 8.74 8.74 0 .0 1 0 .0 1 4.78 4.78
bad CALO 2 .2 2 4.24 10.40 12.33 0.35 0.46 5.09 5.20
bad PRE or LUMI 1.52 1.52 11.65 13.56 0.35 0.36 5.09 5.20
bad TRD 0.32 0 .1 0 11.87 13.62 0.56 0.64 5.62 5.83
HV trip 0.17 0 .1 1 11.95 13.68 0.60 0.79 6 .1 2 6.52
bad RICH 0.93 0.84 12.77 14.41 0.62 0.61 6.67 7.06
logbook info 
deadtime 
burstlength 
first burst of run 
udst bad

0.48
0.19
0 .1 0

3.62
0.58

0.48
0.19
0 .1 0

3.62
0.58

1 2 .8 8

12.98
12.98 
16.01 
16.30

14.53
14.63
14.63
17.63 
17.92

0 .0 0

0.60
0 .0 1

1 .8 6

0.63

0 .0 0

0.60
0 .0 1

1 .8 6

0.63

6.67
7.05
7.05 
8.42 
8.85

7.06
7.44
7.45 
8.81 
9.23

Table 3.2: Luminosity loss in the years 1998 and 2000. A direct comparison between the 
two years is not possible from the data in this table, since only part of the data is used 
from the 1998 data production.

luminosity was lost. This means that with the high flipping rate, which is roughly 1 

minute, only a small amount of data was lost. Unrealistic values of measured Pt  or a r 

(see Eq. (2.6)) are in the second and third row. The target group also studies the target 

performance and provides its own data quality information. The bad target data quality 

amounts to a total of ~4% in 2000 and ~2% in 1998.

The second set of four entries in the table is related to beam information. Beam po­

larization values below 30% are discarded because they are too low, while values above 

80% are unrealistically high. If the beam polarimeters did not update the polarization 

measurement, the values are not reliable and discarded. Unrealistic values of current 

and lum inosity are also discarded, thus bringing the total of lum inosity lost because of 

bad beam quality to 3%.

Bad detector performance is in the third set of entries, which include bad calorime­

ter blocks (mostly in the first period of 2000), a non-functioning luminosity monitor,
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preshower and RICH, high voltage trips in tracking detectors or the TRD, for a total 

of about 6% in 2000 and 2% in 1998. The functionality of these detectors is necessary for 

the DIS analysis. The RICH is not essential in the g l analysis, but since the luminosity 

lost for bad RICH performance is less than 1%, it was deemed preferable to take data 

with overall detector conditions as good as possible.

Other information coming from the shift crew during data taking is included under 

logbook info, and allows 0.5% to be discarded in 2000. Unphysical values of the trigger 

dead-time and burst length are also discarded.

Bursts for which the burst number is not continuous, which is usually at the begin­

ning of each run and fill, are also rejected, for data acquisition problems that have to 

do with the synchronization. They are taken into account in the last two entries of the 

table. Finally, 16% (top detector) and 18% (bottom detector) of the total delivered lumi­

nosity were rejected in the 2000 data production because of bad data quality, while for 

the second half of 1998 data production this is true for about 9% of the total luminosity.

The total number of events selected for 1998 and 2000 are plotted in Fig. 3.8, while 

the actual numbers are in Table F.l for 1998 and F.2 for 2000.
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Figure 3.8: Number of DIS events compared to number of charge symmetric events for 
1998 (left) and 2000 (right).
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3.4 M oller and Bhabha asym m etries

A residual electron polarization in the target gas can contribute to a polarization depen­

dence in the luminosity measurement. For this reason the raw luminosity rate is usually 

fitted on a fill-by-fill basis, so that the effect for the two spin states cancels out in the fit­

ting procedure. The fitted values are provided by the luminosity experts. Until the 1999 

production the fit was done to the luminosity rate itself, providing the L u m iF it values.

Afterwards, since the current I  is related to the luminosity L, the electron charge e 

and the target density p by the relation

I  = —  , (3.55)
P

a fit was made to the ratio of luminosity to current, since the target density is a stable 

quantity throughout a fill. A new fitted value for the luminosity was introduced, denoted 

as L u m iF itB stG a i. This quantity has the advantage of being also gain-corrected.

The luminosity asymmetry, called Moller or Bhabha depending on the beam charge, 

can be calculated as a function of time using the current as a normalization factor

<= => =*>•

M i l l e r  < =  =*■ = *  * =  *ivioiier +

Such an asymmetry was calculated for LuraiRate and L u m iF itB stG a i as a function 

of time. The results are shown in Fig. 3.9 for top (left) and bottom (right) detectors, 

for 1998 and 2000 data. It appears clear from the plots that the asymmetry calculated 

with L um iR ate is not compatible with zero, and has values of order 0.00125±0.0002 for 

2000 and -0.0012±0.0003 for 1998. The signs are opposite because the beam charge was 

opposite in the two years (positrons in 2000 and electrons in 1998).

It is worth noting that the asymmetries for top and bottom detectors are different not 

because they have different measured luminosities but because some data may have been 

rejected in top or bottom, because of bad data quality, giving different total luminosity 

values. In conclusion the fitted luminosity has been used in 1998 and 2000 for the extrac­

tion of the DIS asymmetry, and it was verified to have a negligible contamination from 

Moller and Bhabha rates.
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Figure 3.9: M0ller Asymmetry for top (left) and bottom (right) detectors, calculated with 
the different luminosity quantities available at HERMES. The top four plots are obtained 
from 1998 data, while the bottom four plots are from 2000 data. A straight line fit is made 
to each set of data points, with the results given by PI.

3.5 Alignment correction

The top and bottom detectors are slightly misaligned with respect to the target cell, a 

problem studied for the 1997 data production in Ref.[36], where also an alignment cor­

rection was obtained. This is most visible in histograms of zV/ which should be symmetric
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Figure 3.10: Top plots: comparison of zv distributions without (left) and with (right) the 
application of the alignment correction. Bottom plots: zv distributions of total, DIS and 
charge symmetric events, for top (left) and bottom (right) events. The vertical lines show 
the usual cuts at zv = ±18 cm.

around zv — 0, for both  top  and bottom  detectors. The top-left p lot o f Fig. 3.10 sh o w s a 

top-bottom comparison of z„ distributions of DIS events, for 1998 data. The two distri­

butions are not symmetric around zv =  0 as they should be, and their peak positions are 

shifted by about 2 cm. This problem results in wrong measurements of the scattering an-
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3.5. ALIGNMENT CORRECTION
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Figure 3.11: Ratio of charge symmetric events over DIS candidates for 1998 data (left) and 
2000 (right) data. In 1998 data the number of cs in the top detector has a steep rise that 
has been explained with a spring finger left hanging inside the detector acceptance.

gles and zv, so must be corrected. The 1997 correction factor has been applied to the data 

and the effect is shown on the top-right plot of the same figure. The correction highly 

improves the data/M onte Carlo comparison ([37]), and all plots shown in this thesis for 

the 1998 data have the correction applied.

The zv distribution for top DIS events even after being corrected, still shows an excess 

of events in the positive zv region, coming from a peak located at about 32 cm.

In 1998 a spring finger, 3-4 mm long and 0.5 mm thick, used to connect the beam pipe 

to the target cell, was forgotten inside the target region, hanging from the top of the cell. 

Beam scattering off of this object thus created this peak. The target spring finger (TSF) 

was removed only in May 1999, and it was thus present throughout the 1998 production, 

but did not affect later productions. As a comparison, Fig. 3.11 shows the ratio of charge 

symmetric (cs) to DIS events for 1998 (left) and 2000 (right), where it shows that the 2000 

distribution is back to the levels of 1997. The TSF contribution is highest in the low x  

region.

The bottom plots of Fig. 3.10 show the distribution of total (DIS+cs), DIS and cs events 

for top and bottom detectors. Common to both detector halves is a peak located at -25

60

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



3.6. ASYMMETRIES FOR 1998 AND 2000

cm, coming from scattering off the HERA collimator C2, while the top detector alone is 

affected by the large background coming from the TSF. The usual cs subtraction reduces 

the size of the background but does not eliminate it completely, meaning that there is an 

actual excess of events with the same charge as the beam originating from C2 and from 

the TSF, which, being unpolarized material, has no spin dependence. The collimator peak 

has hardly any tail in the accepted region of zv between -18 and +18 cm, while the tail 

from the TSF is instead considerable in size, and the major source of background. This 

will be discussed further in section 3.11.3.

3.6 A sym m etries for 1998 and 2000

The asymmetry Ajj has been measured in the 49 kinematic bins, and the results are shown 

in Fig. 3.12, where for clarity the data have been separated into the 3 y  bins.

As explained before, the detector is divided into two symmetric halves, which can 

effectively be treated as two different detectors. This fact proves helpful to check the 

agreement of the two results and thus keep systematic effects under control.

The statistics of 2000 is overwhelming, and will have the highest weight on the final 

results. The asymmetries agree very well in the whole kinematic range, but nevertheless

V 0-2
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0
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0.1

0
0.2

0.1

0

Figure 3.12: The measured asymmetries for 1998 data (left) and 2000 (right).
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3.7. 2000 BEAM HELICITY FLIPS

many studies have been performed on its stability, that will be shown in the next sections.

The final result for gf  will involve the weighted average of top and bottom asymme­

tries, which, in each kinematic bin, reads:

Af,{TOP)w(TOP) + Af,(BO T)w(BO T)
Am = w (T O P )+ w {B O T )

a w(TOP)  +  w(BO T)  ’ (3'57)

where w stands for the weight 1/cr2.

3.7 2000 Beam helicity  flips

In the 2000 running period the beam helicity was switched between +1 and -1 for a total 

of 7 periods. The resulting asymmetries for these periods have to be checked for con­

sistency throughout the seven periods. Table 3.3 gives a summary of the beam helicity 

information through 2000. Statistical tests (which will be described later) were made, and 

they didn 't show any unexpected behavior. Here it will only be shown that the asymme­

try for the positive helicity, spanning four periods, agrees with the one resulting from 

the three periods with negative helicity. Fig. 3.13 (left) shows the agreement for top and 

bottom detectors.

First run Last run Helicity # of runs # of fills
1 6109 +1 5075 57

6110 9404 -1 2430 31
9405 13204 +1 3112 39
13205 18168 -1 3669 33
18169 22579 +1 3467 33
22580 26713 -1 3123 37
26714 30354 +1 2068 33

Table 3.3: Summary of 2000 beam helicity conditions.

3.8 Effect of trigger efficiencies on the asym m etry

As discussed in section 2.7 the trigger efficiencies in 1998 and 2000 reached values as low 

as 90%. Fortunately they have no effect on the measured asymmetry since every effect
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3.8. EFFECT OF TRIGGER EFFICIENCIES ON THE ASYMMETRY

coming from detector efficiencies cancels in the asymmetry ratio, provided that the effi­

ciencies are spin independent, which has been tested. As a confirmation, the correction 

has been applied to 2000 data. Each event in each kinematic bin has been weighted by 

the trigger efficiency as a function of momentum, the time period, the geometry and the 

number of tracks. In this way the total number N  of events in each bin has been substi­

tuted by:
N 1 

^  ^  e(time, # of tracks, momentum, 0X, Qy) ' (3.58)

The results are shown in Fig. 3.13, where the difference of uncorrected to corrected, over 

uncorrected asymmetries is plotted. The error bars take into account the fact that the two 

data sets are completely correlated (see App.E). Large values of error bars are due to 

very small values of the asymmetries, which enlarge the errors. In conclusion, the trigger 

inefficiencies have been verified to have no effect on the results.
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Figure 3.13: Left: comparison between the asymmetries calculated for the two possi­
ble beam helicities (2000 data). A ||(ff+) indicates the asymmetry calculated for positive 
beam helicity, while A ^ ( H - )  is the asymmetry for negative beam helicity. Right: effect of 
the trigger efficiencies on the asymmetry obtained from the 2000 data set. The two asym­
metries are in very good agreement, which shows the independence of the asymmetry 
on the efficiencies.
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3.9. DEPENDENCE ON tp

3.9 D ependence on ip

The asymmetry should not have any dependence on the azimuthal angle tp (see Fig. 2.2). 

To test it the detector has been ideally sliced into 50 top (0 < tp < n) and bottom (n < 

<p < 27r) bins. In each kinematic bin the asymmetry in each tp bin, denoted with i, and its 

deviation with the final asymmetry (that includes all tp bins) have been calculated, where 

the deviation is defined as (see App. E)

Am(<Pi < tp < (Pi+i) -  Aj|(0 < tp < 2tt)
deviation = (3.59)

a*

and Oi is the error of the asymmetry in the ith  <p bin and a  is the total error. The deviations 

for each kinematic and tp bin are shown in the top plots of Fig. 3.14 for 1998 and 2000, 

while the bottom plots represent the average deviations over all kinematic bins, for each 

tp bin. The data from 1998 has larger fluctuations but they are mostly due to the smaller 

statistics. No effect has been detected.
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Figure 3.14: Top plots: deviations of the asymmetry over all kinematic bins, for each tp 
bin. Bottom plots: average deviations in each tp bin. The errors are the standard devia­
tions of the distributions in the top panels. Left plots are for 1998 data while right plots 
are for 2000.
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3.10. STATISTICAL TESTS

3.10 Statistical tests

As a general consistency check one can apply various statistical tests to the data, to verify 

that the results do not depend on variables for which there should be no dependence. 

This section deals with these tests.

3.10.1 z 2 test

The asymmetry is tested against non-statistical dependencies on physical quantities.

A simple test is the z 2 test ([38]), effectively a x 2 test, treated in detail in App.D. The 

asymmetry is divided into N  bins of one variable (which can be referred to as t ) it should 

not depend on, for example time. The physical quantity of interest (in this case Ajj) is 

divided into bins of such a variable. The z 2 value gives an estimate of the spread of this 

quantity in the bins. Given Ajĵ  (the value of Ajj in a definite bin of x  and y  and bin i in 

t), Gi (the statistical uncertainty in that bin), and < Ajj > (the final value with statistical 

uncertainty a), then z2 is defined as:

The ideal case should give z = 1. The allowed spread (68% confidence interval) is ([38]):

some unknown systematic error, then the value of z  will significantly differ from 1. On 

one hand, the z 2 test is a way to alert of the presence of systematic effects that should

common practice to normalize the error bars by multiplying them by the quantity z  so 

that the new z  will be equal to 1. This procedure has to be used with care, since it's a way 

to hide systematic effects with enlarged error bars.

time, zv position, ip and current. The results are shown in Fig. 3.15 and Fig. 3.16. No 

dependence has been detected. Each test has been done for top and bottom detectors 

separately.

(3.60)

1
(3.61)

^ 2  (N  -  1) '

The z 2 test can be used to test the validity of the assumptions on the errors. If there is

be corrected for. On the other hand when it is not possible to cure the bias, it's quite

The z 2 test has been used to check that the asymmetry had no large fluctuations in
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3.10. STATISTICAL TESTS
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Figure 3.15: The z 2 test applied to the time (top four plots) and current (bottom four 
plots) dependence of Ajj. The dotted lines represent the lcr level. The left plots refer to 
1998 and the right ones to 2000. The 1 a  levels for time in 2000 are smaller since there are 
more bins in time, given the much increased statistics with respect to 1998.

3.10.2 Mann-Whitney test

This test ([39]) is used to check whether or not there are any trends in the data. It is 

applied to two sets of samples. As an hypothesis for the test the two samples have to be 

independent, the dependent variable has to be intrinsically continuous, and it has to be 

possible to order the elements of the set according to an ordering criterion. The purpose 

is to understand if there is a trend in the data, i.e. if one set tends more than the other 

towards lower or higher values. The null hypothesis of no trend is the hypothesis for 

which the data are uniformly distributed.
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Figure 3.16: The z2 test applied to the zv (top four plots) and ip (bottom four plots) de­
pendence of Ajj. The dotted lines represent the lcr level. The left plots refer to 1998 and 
the right ones to 2000.

Let us suppose we have two sets of data, the first set A containing N a  elements and 

the second set B  containing N b  elements, so that the total number of elements is N  =

N a  + N b -

The elements of the two sets together are sorted in increasing order, and to each of 

them a rank number is assigned. In the case of ties, i.e. if more than one data point has 

the same rank, the assigned rank is the average rank they would get in case they were 

not ties. The goal is to assess if the distribution of A's and B's  is random or not, i.e. if 

A/s tend to have lower rank or higher rank. Let us now introduce the numbers T^bs as 

the sum of the ranks of the elements belonging to group A, Tg6s as the sum of rank of
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3.10. STATISTICAL TESTS

elements in B, Tab as the total sum of ranks, and Mab as the mean rank. These are:

N(N +1) {Na + Nb)(Na + Nb + 1) Tab (Na + Nb + 1)
Ta b  = ----- 2 = ----------------- 2----------------  B ~  ~ ---------- j '

(3.62)

If the null hypothesis were true the ranks in the two groups would be distributed uni­

formly around the average, so that

r j xp =  MabNa , TgXp = MabNb ■ (3.63)

It can be shown ([39]) that the sampling distributions for T ^ s and Tgbs tend to approx­

imate the normal distribution for Na, Nb > 5, with the same variance and standard 

deviation, equal to:

n a n b (n a +  n b  +  i ) ( ,  E « i ( i ? - 1 ) \  .
° T = ' i -----------12---------- V  ~ N (N *  -  1) )  ' <M4)

where t-i is the number of ties for each rank value. The correction for ties is small and can 

be safely neglected if there are few ties and N  is large.

Given the mean M  and standard deviation gt of a distribution, one can create a 21- 

ratio, i.e. a quantity that refers to the unit normal distribution:

z = g b s _ M ) ± 0 . ^  (3 65)
gt

where the term ±0.5 is a correction for continuity equal to -0.5 when T  > M, and equal to 

+0.5 for T  <  M  . It is easy to prove that z a  —  — z b  so that only one of the two is needed 

for the Mann-Whitney test.

The Mann-Whitney test can be easily applied to the study of the time dependence of 

the asymmetry Aj|. There are a number of ways to obtain two sets of data, each sensitive 

to a different kind of trend.

In a given kinematic bin, the values in time of the top (bottom) detector asymmetry 

can be assigned to set A  (B ): this is a way to check whether the top asymmetry was 

consistently above or below the bottom one and vice-versa. Results of this test are shown 

in Fig. 3.17 for 1998 and 2000.

Another test can be performed by associating a data point to group A  (B) if its dif­

ference with the total Ajj is positive (negative). The values for Ajĵ  — Ay were ordered in

68

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



3.10. STATISTICAL TESTS
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Figure 3.17: The Wilcoxon and Mann-Whitney tests applied to the comparison of top and 
bottom detectors time dependence of Ajj for 1998 data (left) and 2000 data (right plots). 
The dotted lines represent the la  level.

increasing (or decreasing) order of their absolute value, so that a succession of A's and 

B 's  was obtained. At this point the procedure outlined in this section was employed. The 

results are shown in Fig. 3.18 for 1998 and 2000. This test assesses if the final top or bot­

tom detector asymmetry is the result of averaging values that were consistently above or 

below the average in one period. This effect would not be detected by the z 2 test, which, 

being a x 2 test, is only sensitive to the deviations of each point from the average.

The Mann-Whitney test can be a powerful tool to see whether data is clustered around 

low or high values, but it has also some shortcomings, in the case that the elements of one 

group tend to assume both low and high values, while the elements of the other group 

tend to the middle values. The Mann-Whitney test would fail to recognize the trend of 

the data and would give the false answer of no trend.

3.10.3 W ilcoxon test

The Wilcoxon test ([39]) is another test intended to verify if there are trends in 2 sets of 

data. The hypothesis that the two sets have to satisfy are that the scales for the measure­

ments of the data in the two sets A and B  have to be the same. The data are supposed to 

have an underlying normal distribution. The two paired values from the two sets have 

been randomly taken from the source populations. Since each element of each set will
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Figure 3.18: The Mann-Whitney test applied to the time dependence of Ajj for top and 
bottom detectors for 1998 data (left) and 2000 (right). The dotted lines represent the la  
level.

be paired to an element of the other set, the two sets need to have the same number of 

elements.

The difference between each couple of elements is computed and ordered in increas­

ing absolute values and then ranked as in the case of the Mann Whitney test. Positive 

differences will be assigned to the set A and negative differences to set B.  Differences 

equal to zero have to be treated in a slightly different way: if they are an even number 

then half of it will be assigned to each set, while if they are in an odd number then one 

will be discarded.

It can be shown that for large N  the distribution of ranks tend to approximate a gaus- 

sian distribution with standard deviation

^  =  V/J f ( J y + M 2JV +  1 ) - ^ E ^ - l ) , (3.66)

so that one can create a unit normal distribution in the same way as Eq. (3.65). This test 

has been performed for the difference of asymmetries in top and bottom detectors, and 

the results are shown in Fig. 3.17 for 1998 data in the left and 2000 data in the right, and 

again no trend has been detected. The test can be applied also to top or bottom detectors 

separately by assigning the asymmetry in a time bin to the set A  or B  if its difference 

with respect to its average is positive or negative, and then ordering the differences in 

increasing absolute values. This has been done and the results are shown in Fig. 3.19.
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3.11. SYSTEMATIC UNCERTAINTIES
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Figure 3.19: The Wilcoxon test applied to the time dependence of Ajj for top and bottom 
detectors for 1998 data (left) and 2000 (right).

3.11 System atic uncertainties

3.11.1 Study of zv cut dependence of the asymmetry

The zv is the position of the interaction point along the z axis. The target cell is only 40 

cm long, and the zero of the z axis is at the center of the target cell. This means that a 

reconstructed target vertex cannot be accepted if it has \zv \ >20 cm.

A standard cut of 18 cm is generally used, as a compromise to exclude the more 

external regions of zv with their high background and keep the scattering vertex well 

contained in the target. On the other hand the cut cannot be so tight as to significantly 

lower the statistics.

Many studies have been made to test the stability of the asymmetry with respect to the 

zv. The zv cut has been varied around its standard value and the asymmetry calculated. 

The deviations of the asymmetry from the nominal value as the zv cut is varied from 14 

cm to 22 cm, defined as

Am(z„ < |z* |) -  A!j(-18cm < zv < 18cm)
deviation = (3.67)

have been calculated for each kinematic bin, for top and bottom separately. In the last 

expression z* indicates the zv cut and ai the statistical error on the asymmetry for that cut. 

The top Fig. 3.20 shows the deviations for 1998 and 2000, while the average deviations

71

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .
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Figure 3.20: Top plots: deviations of the asymmetry with respect to the standard cut 
zv = 18 cm, over all kinematic bins, for top and bottom separately. The left plots are 
for 1998 data while the right ones are for 2000. Bottom: deviations averaged over all 
kinematic bins.

per cut and their standard deviations are shown in the bottom plots, and they are nicely 

consistent with zero everywhere.

Fig. 3.21 shows the results of a z 2-like test performed. The deviations of the asymme-
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Figure 3.21: A test similar to the z 2 doesn't show any dependence of the asymmetry on 
zv. The left plots are for 1998 data while the right ones are for 2000.
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3.11. SYSTEMATIC UNCERTAINTIES

try with respect to the asymmetry calculated for a zv cut of 18 cm have been computed

in different zv bins:

49
I

49~7l £  ~ 2  ( A t\(zl  < zv <  zl+1) -  Ajj(-18cm < z v < 18cm)) , (3.68)
i 1

where z lv are the values of zv used to define the binnings. No large deviation is detected.

3.11.2 Dependence of the asymmetry on the 9y cut

As for the zv cut, the 0y cut has also been studied to verify the stability of the asymmetry. 

The angle 9y defines the angular acceptance in the vertical direction, and it is sensitive 

to misalignments. The 6y cut of 0.04 rad has been varied from 0.038 to 0.044 around the 

standard cut of 0.040 rad, and the deviations of the asymmetry in each kinematic bin are 

studied. The top Fig. 3.22 shows the deviations of the asymmetry with respect to the 

standard asymmetry for each cut, while the bottom plots are the average deviations with 

their standard deviations, for each cut. No effect is detected.
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Figure 3.22: Top: deviations o f the asym m etry calculated b y  varying the Gy cut, w ith  
respect to the standard cut. Bottom: average deviations for each cut. The errors are the 
standard deviations of the plots in the top panels. The left plots are for 1998 data while 
the right ones are for 2000.
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Figure 3.23: Data-Monte Carlo comparison for top detector events ([37]). There is a clear 
excess in the data at low-x, explained as coming from the TSF. This is not seen for a 
bottom detector-Monte Carlo comparison.

3.11.3 1998 data: Target Spring Finger Problem

A serious problem exists in the 1998 data in the study of low x  bins. The zv distribution 

of DIS top events shows a peak at around 32 cm coming from the TSF, as was shown in 

Fig. 3.10. The bottom distribution seems much more consistent with the values from the 

1997 production.

As Fig. 3.10 shows, a common charge-symmetric subtraction doesn't help to solve 

the problem: the peak is still visible. This means that the events building up in that peak 

could come from a different process that is not removed by the usual subtraction. These 

events could come from DIS scattering off the aluminum of the TSF.

The way the asymmetry is corrected due to this additional rate is by trying to disen­

tangle the true rate from the TSF rate.

From data-MC comparison shown in Fig. 3.23 it is justified to assume that the TSF 

only affects the top events. In this case we can write the top and bottom total number of
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Figure 3.24: Left: correction factor C  to be applied to the asymmetry to correct it due to 
TSF events, as a function of zv and x. The correction is relevant only in low x  bins. Right: 
the systematic uncertainty on the asymmetry, estimated as the difference between the 
corrected asymmetry at 18 cm and 30 cm (where the TSF contribution is a maximum).

events as:

j y - ( T O P )  _  j y ( T O P )  . ^ y - ( T O P )  , y y ( T O P )
■/vmeas — -'v(jis +  iycs +  TSF
jV-(BOT) — jV^OT) i jy-(BOT) ^iVmeas — dis cs ’ tp.o?;

where we dropped the negative sign on iV^jg since in 1998 there was an electron beam, 

and -ZVjgj;^ is the cs-corrected TSF rate. From a high x  fit ([37]) not including the 7 low-x 

points, it was determined that the ratio of top to bottom DIS events, normalized to the 

luminosities, is a stable quantity:

ArlT°P) /£ T0P

jv<b o t V £ b o t
0.96 (3.70)

dis

so that by inserting Eq. (3.70) into Eq. (3.69) we get:

4 s F P) =  N me 2 P) -  ^ TOP) +  0.96( N ^ ° T) -  iV-(BOT)) (3.71) 

where the luminosities cancel in the ratio. The TSF rate was checked to be independent
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of the spin state so that it acts as a dilution factor on the asymmetry:
.TOP .

4 TOP _  llmeas _  }_ .TOP n  79\
All , ..(TOP) M.(TOP) ~  C  llm e a s ' V-/Z)1 iVTgF /7Vdig

The systematic error due to the TSF was assessed from the zv cut variation, as shown 

in Fig. 3.24, which shows in the left plot the TSF contribution for different zv cuts. As 

expected, for cuts that include higher values of zv the correction gets stronger, since the 

TSF contributes more. The systematic uncertainty was then defined as the difference

between the asymmetry with a zv cut at 30 cm and at 18 cm, as shown in the right panel

in Fig. 3.24:

AAj[SF =  |Aj]0 -A f|8| . (3.73)

The TSF affects also the luminosity, since it affects the count rate, and this contribution 

affects all 49 bins.

3.11.4 Hadronic background

In the extraction of the asymmetry one has to take into account that there is a fraction 

of hadrons misidentified as DIS leptons. The number of hadrons turns out to be spin- 

dependent and to have a non-trivial spin asymmetry:
4= => => 4=

A h± = — £ —=>-------5—sr . (3.74)
N-+CJ  +  N~+C?

The hadron asymmetry has been extracted by requiring PID<-2, which is a tight require­

ment for the hadron identification. The extracted asymmetries are small compared to the 

DIS asymmetry everywhere except in the small x  region, where the two are comparable.

A correction for the hadronic background must be obtained. Let us introduce ^cancj 

and hcs as the fraction of DIS candidates and charge-symmetric background which comes 

from hadrons, and £can(j and ecs as the PID efficiencies in the identification of a particle 

as a lepton or a hadron in the case of DIS candidates and cs background.

The true number of DIS events is obtained by subtracting the contribution of misiden­

tified hadrons and charge symmetric particles:

" dis =  ^ (1 “ *c a n d , - : § i<1“ '‘cs)
= ■ivS id ( 1 -'*cand)-"'Sue(l-'* c s), (3.75)
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where ^ a n d  =  iVcanci / ecarid and iV*|ue =  ^ c s /e cancj are the true candidates and cs, 

corrected for efficiencies.

The real asymmetry has then to be disentangled from these contributions. The cs 

contribution is taken into account just by subtracting the number of cs events from the 

number of DIS candidates. The true asymmetry is:

The effect of the hadronic contamination has been estimated ([40]) from the ratio of 

background-corrected to uncorrected values of A ^/D .  The correction is very small, reach­

ing a maximum value of 0.04% around £=0.01, and it is negligible for x  >0.12.

3.11.5 R ad iative  corrections

In the extraction of g^ from the measured asymmetry, g f  has to be corrected for radiative 

processes. To extract the Born asymmetry from the measured results different sources of 

radiative effects must be taken into account.

Elastic and quasi-elastic background. The electron can exchange a photon with the nu­

cleus or the nucleon, without breaking them, and these processes are referred to as elastic 

and quasi-elastic. These processes constitute a pure background to the DIS events and 

their cross sections simply have to be subtracted from the measured values. By definition

Nd is£ p + Ndis£p 

K a n f  ~ 4 n d )

K a n f d - ^ a n d ) - ^

-  i v l  c n

* %and +  ^cs
(3.76)

where

(3.77)

(3.78)
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3.11. SYSTEMATIC UNCERTAINTIES

Figure 3.25: Initial state radiation (left), and final state radiation (right).Even if these 
events are DIS, their measured Q2 and x  are not the true ones, so an unfolding method is 
needed to bring back each event into the kinematic bin it belongs to.

the elastic peak is at x  =  1, but also low Q2 means elastic, since for low momentum trans­

fer the nucleon does not break. Since in our experiment low Q2 is also low x,  then we 

have a high elastic and quasi-elastic contribution at low x, mostly in the first 10 kinematic 

bins. A way to get rid of the elastic tails in an almost clean way is to do hadron tagging, 

that is to require a hadron in the final state, associated to the event, to make sure that the 

event was pure DIS, thus not elastic. Problems arise in this procedure, since very often 

hadrons are not detected, due to the small acceptance of the detector: there is a loss up to 

15-20% due to hadron tagging.

Radiation A DIS electron can radiate a photon before or after the DIS interaction (see 

Fig. 3.25), thus changing the measured kinematic quantities, such as Q2 and x. Because 

Q2 =  4E E '  sin2(0/2), regardless whether the initial E  or the final E'  energies are lower 

than measured, Qmeas w iU always be lower than Q\rne- For x  the situation is different: 

x = 2 E E 1 sin2 (9/2)/ ( M ( E  — E')), so that the true value of x  will be higher (lower) than 

the measured one if the photon is radiated after (before) the DIS interaction. The event is 

then placed into the wrong kinematic bin.

The Born asymmetry is usually extracted with a Monte Carlo simulation. A model 

asymmetry obtained from a fit to world data is used as an input to the POL-

RAD ([41]) program, which computes the asymmetry corrected for radiative processes 

^co r^el- Given and the measured asymmetry which in this context

we can denote with A co^x, the Born asymmetry is extracted with an ansatz, requiring 

that the difference between Born and corrected asymmetry is the same for model and
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experiment:
model modelcorr corr • (3.79)

As a consequence of this method the central values of the measured asymmetry are 

shifted, while the statistical errors are unchanged. It has been used before in HERMES 

publications such as Ref. [42].

A second commonly used ansatz ([43]) is that the ratio is constant:

which changes both central values and statistical errors. Usually an error is assessed to 

the extraction of the Born asymmetry by comparing the results of two methods. In the 

case of deuterium data the asymmetry is very small and consistent with zero in the small 

x  region, where the corrections are higher, so that the multiplicative ansatz of Eq. (3.80) 

cannot be reliably used.

The Born asymmetry was actually obtained with a method already applied by SMC 

([44]), by using the relation ([45]):

where 0.9 < A < 1.2 is a spin dependent term which contains the virtual photon correc-

~  0.3) in the low x  region, decreasing rapidly, with a ratio of 0.9 around the 15th bin, and 

1.0 around the 30th.

As a consistency check, the asymmetry using the hadron tagging method has also 

been calculated from data. The radiative corrections to the latter do not require the 

subtraction of elastic contributions so that they only need to be corrected for the DIS 

part. The agreement between the Born asymmetries obtained from full data and hadron- 

tagged was quite good and gave good confidence in the method. The final systematic 

error is obtained from the difference of the additive method of Eq. (3.79) and the SMC-like 

method. The error in gf/F f coming from the extraction method is as high as 0.013 in the

model
Born exp 

-corr >modelcorr
(3.80)

exp
corr (3.81)
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3.11. SYSTEMATIC UNCERTAINTIES

lowest x  bin, decreasing rapidly to 0.002 in the 8th bin, from which point it is negligible 

compared to the error coming from the target and beam polarizations.

3.11.6 Other sources of systematic uncertainties

In this section the other sources of systematic uncertainties will be discussed. The main 

detector uncertainties come from the target and beam polarizations, and from the nor­

malization. The total systematic errors have been obtained from a sum in quadrature of 

the individual errors. They are dominated by radiative corrections at low x  and by beam 

and target polarization in the high x  region.

Polarizations. The target group estimated a target polarization error of 4% on 2000 data, 

and 8% on 1998 data, as a preliminary upper limit. The beam polarization uncertainty 

was estimated to be 3.4% in 1998 and 2% in 2000. The systematic uncertainties coming 

from beam and target polarization in 1998 were smoothed out with a simple polynomial 

fit to gx/Fi (atargetig i/F i) =  -0.03 +  1.01a; — 0.49a;2, with a %2 =  1.015), since the data 

points had large fluctuations. This was not necessary for 2000 data.

Normalization. A wrong estimation of the luminosity brings a normalization problem 

in the asymmetry, and a way to estimate the error is by calculating the asymmetry with 

two different normalization methods. Beam current and fitted luminosity are two in­

dependently measured quantities, and the results using the two quantities in the asym­

metry should agree since the two differ only by a multiplicative factor coming from the 

target density, a stable quantity.

Fig. 3.26 shows the difference between the asymmetry calculated with current and fit­

ted luminosity, for top and bottom detectors: a very constant value, 0.0009, was found for 

2000, but not for 1998. The difference can be explained with the different fitting procedure 

for the two years, and the different beam charge. It is interesting to see that the difference 

between the asymmetry calculated for the raw luminosity rate and the one obtained with 

the fitted luminosity is of the same order of magnitude as the Moller asymmetry.

The systematic error on g f/F f  due to the normalization uncertainty was estimated as 

v - n o r m  =  (A|| (L u m iF itB stG a i)  — A ||( c u r r e n t ) ) /D ( l  +  72) which, for the case of 2000,
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Figure 3.26: Comparison of different normalization methods for 1998 (left) and 2000 
(right), for top and bottom detectors.

is a n o rm  = 0.0009/11(1 +  72) (see Eq. (3.24)).

This error is believed to also take into account the TSF contribution to the luminosity 

in 1998 data. Since the current is not affected by the TSF, there is no need to consider an­

other systematic contribution coming from the wrong evaluation of luminosity because 

of the TSF.

A proper evaluation of normalization and polarization uncertainties is very impor­

tant because these quantities cause g1 to be measured only up to a normalization factor. 

This issue will be addressed in next chapter, where how to correct for this problem when 

making fits to world data will be discussed.

Background. The contribution coming from the hadronic background was obtained 

through a fit of the ratio of gf/F f as a function of x  with and without the hadronic con­

taminations. The fit slightly overestimated the error in order to include all the points. 

Details are in Ref. [40].

Parameterization of A 2 • The common assumption that g2 =  0 has been ruled out by 

the E155 experiment ([31]), as was shown in Fig. 3.3. The uncertainty coming from the 

knowledge of A 2 was estimated through the difference of a fit to A 2 data from E155 and
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^2(g2 =  §2VW) 'versus x - The E155 results were fitted to A2 =  0 . 2 2 a ; / j n  Ref.[40]. 

The gf/F f parameterization used for the calculation of A™w  in Eq. (3.39) was ([46]):

Parameterization of F^. Available parameterizations for F!j are the eight ([24]) and the 

fifteen ([25]) parameter fits from NMC, which do not include more recent data from NMC 

([47]) and E665 ([48]). Fff can also be obtained from the relation

by using the available parameterizations of F2/F 2 from NMC ([24]) and the ALLM F2 

described in Refs. [49] and [50].

The agreement of these three possible parameterizations with the newer data from 

NMC and E665 was tested. Special care was taken for the agreement within the HERMES 

kinematic range. The P8 fit from NMC had large deviations from the data, so it was 

discarded ([51]). The other two fits agreed well with data. The fifteen parameter fit was 

used in this thesis for the extraction of gf. The systematic error was estimated as 2.5% 

over the whole kinematic range, except the lowest x  point, with 3%. This value comes 

from the quadratic combination of the normalization uncertainties of NMC and E665.

Fig. 3.27 shows the various contributions to the total systematic uncertainty coming 

from the different sources, separately for 1998 and 2000. Fig. 3.28 shows the final results 

for g f/F f  and xgf.  Data from 2000 are clearly dominating the result over the 1998 dataset. 

The final combined result of the two years was obtained from the weighted average of 

the two. The systematic errors were also weighted with the statistical error to get the 

final systematic errors.

| i  =  ( e - s . 2 9 x  _  i ) ( o . 0 3 2 4 ° ' 143 -  x 0-143) . (3.82)

(3.83)
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Figure 3.27: Systematic errors on g f / F f  for 1998 and 2000, and their source.
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Figure 3.28: The extracted gf/F f (left) and (right) as a function of a; for 1998 (top), 2000 
(middle) and the combined results of 1998 and 2000 (bottom). The results are shown in 
bins of the y  variable. The statistics of 2000 data dominate the final results. The errors on 
the data points are statistical, while the bands represent the systematic errors.
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Chapter 4

Deep inelastic scattering

4.1 Operator Product Expansion

The Operator Product Expansion (OPE) ([52], [53]) was designed exclusively for the un­

derstanding of deep inelastic lepton-nucleon scattering and to describe the Q2 behavior 

of the structure functions. It is a powerful tool for deriving sum rules (relations among 

the first moments of structure functions) in terms of very general quantum field theoret­

ical considerations without the need for a specific hadronic model. Sum rules obtained 

from the OPE thus provide a direct test of QCD.

is the Fourier transform of the nucleon matrix element of the commutator of 

electromagnetic currents J{x):

W ^ q ,  P ,S )  = ^ f  dAxeiqx {.PS\ [J^x) ,  Jv (x)] \PS) , (4.1)

where IPS') is the nucleon state with momentum P  and spin S. The forward Compton 

amplitude is:

TfiV{q\ P ,S )  = i j  dAx eiq'x (PS\ T( J ^ s ) ,  J„(0)) |PS)

=  (PS| V  |PS) , (4.2)

with

t ^  = i j  dAx  eig'x T ( M x ) ,  J„(0)) , (4.3)

where T stands for the time ordered product. and !},„ can be split into two parts of 

definite symmetry (S ,A ), and it can be shown (from the optical theorem) that can be
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related to T (see Fig. 4.1):

w f f l  is independent of spin, so we can neglect it for our purposes, since we are interested 

in polarization effects.

£ > '  = l l m

2

71

Figure 4.1: The optical theorem relates the Deep Inelastic Scattering process (left) to the 
Virtual Photon Compton Scattering (right).

Since the forward Compton amplitude is a matrix element of a product of currents 

(see Eq. (4.2)), an alternative method for calculating is to expand this product as a 

series of local (dependent on the position) operators, and this can be achieved by using 

the optical theorem which relates W^u to T ^ .  This method makes use of asymptotic 

freedom: the computation of the operator product coefficients will take place explicitly 

at a small distance of order 1/Q, which allows the calculation of these coefficients in a 

perturbation theory whose coupling constant is a s(Q2).

Let us consider the antisymmetric part of the Fourier transform of the operator product 

appearing in Eq. (4.2). It is the Fourier transform of the product of two local operators 

in two close-by points x  and 0. The main goal of the Operator Product Expansion is to 

expand t ^  in terms of local operators Oi-

Let us then consider the product of two local operators ([54])

In the limit x  -* 0 they are evaluated practically in the same point. In this limit the 

operator product can be written as an expansion of local operators:

Oa(x)Ob(0) . (4.5)

lim O o(x)O6(0) =  T c k {x)Ok {t))cr.—̂-0 • ^ (4.6)
k
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where the dependence on x  is now in the coefficient functions Ck(x). The two sides in 

Eq. (4.6) are equivalent as long as one does not probe this relation at distance scales 

smaller than x. Because of asymptotic freedom, the coupling constant a s is small at short 

distances; thus the coefficient functions can be computed as a perturbative expansion, 

since all non-perturbative effects occur at scales much larger than x, and do not affect 

the computation of the coefficient functions. The same reasoning is valid when one takes 

the Fourier transform to go to momentum space: by taking the limit q oo, one forces 

x  —»■ 0, so that the product can be expanded in local operators:

lim [ d4x  e * xOa(x)Ob{p) = V c fc(9)Ot (0) . (4.7)q-^ooj

This expansion is valid for all matrix elements, provided that q is much larger than the 

characteristic momentum of any external state. In Eq. (4.3) the operators are currents, 

containing quark operators; at small distances the contribution of gluons will have to 

be considered, so that a general expansion will contain both quark and gluon operators, 

with arbitrary dimension d and spin n. Only the coefficient functions will be dependent 

on q and the operators will not depend on it. The fact that the operators Ok(0) are of spin 

n  means that they will have n  free indices / x i . s o  that the expansion (4.7) will look 

like:

(4-8)
k

The indices in the operators will come from the components of P  alone, in the case of a 

vector operator, while there will be a helicity vector component, in the case of an axial op­

erator. In the case under study, of T ^ ,  there are 2 free indices /x and v, so the indices in the 

coefficient functions (components of q) and those in the operator O have to be contracted 

in such a way to leave 2 free indices /x and v. This leaves the following possibilities for 

the dependencies on P^, q^, and in the case of vector (left column) and axial (right 

column) operators:

(q»qu q„1...qtln) ( P ^ . . . P ^ )  , {q^qv q ^ . q ^ S ^ P ^ . . . P ^ )  ,

(<fo q ^ ~ q » n-i){Pv  P #41. . .P ^ “ 1) , ( ^  q ^ . - q ^ m  S ^ P ^ - . P ^ - 1) ,

( ^ 1...^ „_ 2)(P/iP , P ^ . . . P ^ - 2) , (qtll...qfin_2)(PtiPl/ ..P**-2) .
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4.1. OPERATOR PRODUCT EXPANSION

ip GV D ,
d 3 /2 2 1 2
n 1 /2 1 1 0
t 1 1 0 2

Table 4.1: Twist t  of some operators, given their dimension d and spin n.

For each case, in the left brackets there is the dependence of the coefficient functions on 

r/‘, while in the right brackets there is the dependence on and (the dependency on 

S 11 is present only in the axial operators).

One has then to evaluate Eq. (4.3) between two hadron states (see Eq. (4.2)). The 

expression in Eq. (4.3) has dimension 2, each hadron state has dimension -1, so that T^v 

has dimension 0. T i s  the product of the coefficient functions times the matrix elements 

of the operators O:

Tfiu ~  Cfc < O > -» dim [!),„] =  dim[cfc] +  dim[< O >] =  0 . (4.9)

The dimension of < O > must bed  —2 (=dim[0]-2dim[|P5)]). Since in the DIS limit both 

P  • q and S  ■ q are of order Q2, on dimensional grounds the Q2 behavior of < O > must be

< O > ~  M d~2~nQn , (4.10)

so that the dimension of the coefficient functions must be Q2~d. The overall behavior of 

Ttlly has to be, then:
\  n - f - 2 —d

m )

~  Q , (4.11)

where we introduced the twist t  as the difference between the dimension and the spin of 

an operator:

t — d — n — dimension - sp in . (4.12)

Table 4.1 shows the twist of four common operators (quark field ip, gluon field G^v, co­

variant derivative D and D ^D 11), given their spin and dimension.

The most important operators in the operator product expansion are those with lower 

twist, since those with higher twist will have a negligible contribution at high Q2. Twist- 

2 operators contribute a finite amount in the DIS limit, twist-3 operators are suppressed
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4.1. OPERATOR PRODUCT EXPANSION

by MIQ ,  etc. Any gauge invariant operator must contain at least two quark fields, or 

two gluon field tensors, together with any number of covariant derivatives, so the lowest 

possible twist is 2.

4.1.1 The expansion

It is important to note that the Operator Product Expansion approach can be used only 

because of the fully inclusive nature of DIS under consideration: Wpu reduces to Eq. (4.1) 

as it is a sum over all possible final states X

Wpu oc (P S \ J» \X ) <X I J» \P S ) • <4-13)

The most general form of the expansion of the antisymmetic part of the Fourier transform 

of the operator product appearing in Eq. (4.2) is, in terms of twist 2 and 3 operators ([55]):

M  = d t x e ^ i M x ) ,  MO))  = (4.14)

00 /  9 \  » (

=  -*  £  ( q i ) ^ • • ^ - 2E ^ 4 £^ ^ - i^ (g 2’as)0 M1' ^ “1+
n = l,3 ,5  '  i

+ [s^x*quqp ~ evpXaqM -  q2e ^ a) ^ E ^ Q 2, as)0% ^ n-2}
where i identifies the possible operators: i — 1,.., 8, ip, G, and E i j ,  E^,i are the coefficient 

functions, also called Wilson coefficients.

The operators with % =  1,.., 8 transform as SU(3) flavor octet (see App.A), while those 

with i = 14> (quark operators) and i =  G (gluon operators) are flavor singlets. The oper­

ators of twist 2 and 3 are shown in Table 4.2. We will come back to the fact that gluon 

operators enter in the lower twist expansion.

4.1.2 Determination of the coefficient functions

The generic term in Eq. (4.3) can be written as the sum of quark Oq and gluon Oq 

operators:

J J  ~  cqOq +  cqOg , (4.15)

so that the matrix element on a quark state \Q) is:

(Q\ J J  |Q) ~  cQ (Q\Oq |Q) + cG (Q\ 0 G |Q) • (4.16)
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twist operator

2

2

2

1...8

G

0 W..Vn-i = (-)n- 1

= ( i)» -iT r |e ff0!̂ G /97D /11..D/ln- 2G ^ -1}

rfnk<Jfll ../in—1

n > 1 

n  > 1 

n  > 2

3

3

1...8

v>

G

a 2,i 1=  (i)n_i <! ^ 7xD aD ^  ..D*'

a 2.^

rP
2,G

n > 2

n > 2

i"^ -2 =  ( i ^ T r  {effa^ G i87D'*1..D'1»-2G^} f n > 2

Table 4.2: Lower twist operators. Aj are the SU(3) matrices defined in App.A. S stands 
for symmetry over all indices, while S' means symmetry over A a, and over p\. .pn- 2 -

The electromagnetic current is a quark operator, so that the left hand side is of order 

ttg. The matrix element (Q\ Oq \Q) is also of order a°, while the term {Q\ Oq \Q) must 

be of order cc* since there are at least two gluons in Oq- Thus one can determine c q  to 

leading order by taking the matrix element of both sides of the OPE, and by neglecting 

the contribution of gluon operators because it is suppressed by one power of a s.

Scattering off a free quark ([54]). In the following we will suppose that there is only 

one quark flavor. The quark matrix element of the left hand side of the OPE in Eq. (4.15) 

is:

M'1" — % ej U p ^ i  ^ Uy,p,s +  crossed diagram (p <-» v,q ->• —q) , (4.17)

where ef  is the quark charge, p  is the quark initial momentum, q is the photon four- 

momentum, iip!S is the Dirac spinor for the quark field, and uPtS = Up^j0, UpyS being the 

hermitian conjugate of uP)S. The first term in Eq. (4.17) refers to the first diagram in Fig. 

4.2, while the crossed diagram is the one on the right. Since the second diagram can be
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4.1. OPERATOR PRODUCT EXPANSION

p - q
p+q

Figure 4.2: The lowest order diagrams contributing to the matrix element .

derived from the first one by replacing p  o  v  and q —► —q, we will just concentrate on 

the first diagram. The expansion of the denominator gives (for on-shell massless quarks):

(p +  q f  = 2p ■ q + q2 =  q2 ( l  +  =  q2(l -  u) , (4.18)

and ca =  -2 {p -q ) /q 2. The numerator contains the product of 3 gamma-matrices, that can 

be simplified by using the identity:

' f ' f ' f  =  -  g ^ j a +  . (4.19)

Also:

i>Up,s =  0 , Up^xUp^s = 2Px , UptSj x l 5UpjS = 2hpx , (4.20)

where h is the quark helicity. So, by combining the various terms, and using the identity 

(valid for w < 1!) (1 — w)-1 =  £) wn, we get for the first diagram in Fig. 4.2:
~ oo

M ^  = - -  e)  “ n l(P +  +  (P +  9)V  -  S T P  • Q +  i h e ^ aXqaPx] . (4.21)
^  n = 0

Let us now just concentrate on the spin dependent part of Eq. (4.21), and let us add to it 

the cross diagram term of Eq. (4.17):

2 ° °
M ^ u — —  ̂ e/  E  U}nih£lIuaXqaP\ + crossed diagram (p u,q —> -q ,  co —>• —oj)

^ n —0
O O

—  e) Y ^ i h e ^ q a P x u 71 (1 +  ( - l ) n)
n = 0 

oo

=  ~ ^ ef  E  ( ^ r )  i h e ^ aXqapx
H n = 0,2,4 \  ^ /

°° /  2 \ n
=  E  2 ( ■ -qIJni h £ ^ aXqa pxp,n  • • Ppn e) .

n = 1,3,5 ^ ^ 7
(4.22)
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As previously stated, the coefficient functions depend only on q, while the matrix el­

ements depend only on p. By equating the first term of Eq. (4.14) and Eq. (4.22) we 

determine the expression for the coefficient functions E ^ :

E ^ m  =  6/ -  (4 -23)
i

Scattering off a nucleon ([54]). To compute T ^ v we need the hadronic matrix element of 

the OPE. These matrix elements are unfortunately unknown, so we need to parameterize 

them in terms of a known tensor structure times an unknown normalization coefficient 

an. Let us take the example of a spin 1/2 target. The matrix element of an axial vector on 

the target will be of the form:

(PS\ 0 ^ - lln I P S)  = an[S^  =  d n S ^ P ^ . - . P ^  + higher twist terms* (4.24)

where S indicates permutation over all indices. One then finds, following the same rea­

soning as in the free quark matrix case (see Eq. (4.22)):

F ” = £  / i ' l  < S K PK ...P„
n = l,3 ,5  i '  q  j

n —1^  2 £  E l ,  i qa S/tl <  w
n = l,3 ,5  i

i e ^ q a S x - ^ -  (4.25)
P - q

with

& =  £  (4.26)
n = l,3 ,5  i

where we used the definition uj = —2(P ■ q)/q2. The quantity gx is the Compton scatter­

ing analog of gx for DIS^, and the OPE has allowed us to compute it as a power series in
*In reality the relation would be [S'11 The tensor TZ has no

symmetric part and has spin n — 1, rather n. Thus its contribution is of higher twist, even though it came 
from the matrix element of a twist 2 operator, 

has an expansion similar to

+  qaS0 +  qa ( p - q s 0 - S - q P 0) . (4.27)
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oj about oj — 0 in QCD. The nth term in the expansion is due to an operator of twist 2 and 

spin n. It is important to note that this expression was derived using the assumption that 

\uj\ < 1; however, the physical region is just the opposite:

P - q  1
oj =  2 - =  -  >  1 .

Q2 x

From the optical theorem it follows that the relation between gx and gx is:

(4.28)

gt (w +  ie) - g ^ c o -  ie) =  Am g l (w) . (4.29)

The coefficient functions can be extracted with an integration on the oj plane, as shown

Figure 4.3: The oj plane.

in Fig. 4.3, w ith a contour of integration A  with |w| < 1:

from which it follows that:

h i  E < 4 -3 0 )

2  Y l 6i E h i  an 2m L  & w»+!dUJ ■ (4.31)

The contour A  can be modified to a contour B  that includes the physical region, by ex­

panding that radius to infinity. Under the hypothesis that there is no contribution from 

the region at infinity we get the momentum sum rule for the odd momenta of gx:

2 V  StEfta*. =  f  g, -^rrdoj 
4 ^  ’ 2 m J B B lojn+1
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= 2̂  [L 8'<W + “ L  gi(“ -
/ OO ^  f ° °  ^

gi (w +  ie) - ^ d w  -  ^  gj (w -  *e) 

l  r /*—1 i  r™ i
=  2^ [ l 0O4, , ig ‘<" W <i"  +  / 1 4, r i8. H ^ + T ^

/ OO 1

4™ S i M ^ + r ^

=  4 f  x n~1g 1(x)dx n  odd (4.32)
Jo

where we used the fact that oj =  1/x  and:

g i(-w ) =  -gi(w ) (4-33)

coming from its definition. The integral appearing in the last line of Eq. (4.32) is called the 

n-th moment of g r  The momentum sum rules relate a quantity defined at high energy 

(such as gx) to a low energy quantity, the zero momentum transfer matrix element of a 

local operator. In the same way, one can derive sum rules for the even moments of the 

unpolarized structure function Fi. For the other moments there are no sum rules, even 

if there have been many attempts to define some. The only questionable assumption 

in the derivation of the sum rules is that the contour at infinity (which means x  =  0) 

gives no contribution. This contribution can be experimentally checked to be zero, and a 

confirmation of this hypothesis would come from the measurement of gx at small x. The 

sum rules become more convergent at higher moments, so any problem of convergence 

is in the lower moments.

4.2 Sum Rules

4.2.1 F irst m om ents

As previously discussed, the Operator Product Expansion gives results for the moments 

of the structure functions in terms of hadronic matrix elements of certain operators mul­

tiplied by perturbatively calculable coefficient functions. We are mainly focusing on gr  

The general expression for the moments of g L is given by Eq. (4.32):

^  d x x n~l gx{x,Q2) = ^ ^ r , 6ianE i,i(Q2’a s) n = 1,3,5,... (4.34)
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The presence of implies that only operators of spin n  contribute to the n-th moment, 

which implies that in the case n — 1 only operators of spin 1 contribute. These operators, 

from Table 4.2 are the octet of quark SU(3)^ axial-vector currents (j=1,...,8) and the

flavor singlet axial current :

Hu  =  $7i*75 i  =  1> - ’8 (4-35)

> (4-36)

where the Aj matrices are defined in App.A. The terms a\ (which in the following we 

will refer to as a*) are the matrix elements of the currents taken between nucleon states 

of definite momentum and spin direction*.

The forward matrix elements can only be proportional to the covariant spin vector 

Sfj,(h) (corresponding to the definite helicity h), so that the conventional definition of a* 

(see Eq. (4.24)) is:

( P S \ j I \ P S )  = MajSfj,

(P S |J ° J P S )  =  2Ma0Sf l , (4.37)

M  being the nucleon's mass. The relative factor 2 in Eq. (4.37) reflects the fact that the

SU(3) currents are defined using the generators of the group, i.e. A j /2 in Eq. (4.35).

It is also possible to show([21]) that the matrix elements of the flavor axial currents on 

the nucleon are related to the polarized quark distributions:

{PS\ |PS)  =  2 M S ll [ 1 dx [Aqf  +  Aqf ] , (4.38)
Jo

so that the coefficients appearing in the first moment of gx are actually sums of polarized 

distributions, and, in particular:

as = f  dx[(Au(x)  +  Au(x)) — (Ad(x) + Ad(a;))]
Jo

I f 1 -

as =  —7= I d x [ ( A u ( x )  +  A  u( x) )  +  (A  d(x)  +  A d ( x ) )  — 2 (A  s ( x )  +  A s(s ))]
v3  Jo

ao — AS =  f  dx[(Au(x)  +  A«(s)) +  (Ad(x) +  Ad(x)) + (As(x) +  As(x))] .
Jo

(4.39)
^.7^ is sometimes defined as in (4.35) with Ao/2 =  (l/v^6)J, where I is the unit matrix.
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The natural interpretation of ao is that it represents the total spin of the nucleon carried 

by the quarks, but it will be shown why this assumption cannot hold.

The first moment of gx (also known as Ti) can be expressed in terms of as, as and 00

as:

and the others can be considered as equal to zero.

4.2.2 In fo rm atio n  from  /5-decay

In hyperon /3-decays the hadronic transitions can be described by matrix elements of the

in the electroweak lagrangian, and Bi  are the standard SU(3) labelling for the hyperons 

([56]). Generally they are of the form of a Kobayashi-Maskawa matrix element multiplied 

by a combination of the vector J* and axial currents J ^ .

Under the general assumptions that the vector and axial currents transform as an 

octet under SU(3)j? and are conserved and that the momentum transfer and the mass 

differences in the hadronic transitions are negligible, then all the hyperon /3 decays are 

described in terms of two constants F  and D  defined by the matrix elements:

where f i jk and d{jk are the usual SU(3)/? group constants, and they are in App.A.

These matrix elements are the same entering the first moment of gx, so that they can 

be used as constraints in the extraction of ao-

By using the standard SU(3) assignments for the baryon octet, one finds, from Eq.

(4.42):

l
(4.40)

Last relation implies that the coefficients <5j are:

(4.41)

form |B k) where is the charged hadronic current that couples to the W  boson

(.By, P S | |B k-PS)  = 2MBSfi( - i f ijkF  +  dijkD) i , j ,  k  =  1,..., 8 (4.42)

a 3  = F  +  D  

a8 = - ^ ( 3  F - D ) . (4.43)
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Decay Information
n -+ p 
A —±p 

S —̂ n
S± A 
3 -  ->■ A 
3 -  -4 S°

F  + D  
F  + \ D  
F - D

F - \ D  
F  + D

Table 4.3: Combinations of constants F  and D  that enter into some hyperon j3 decays. 
They can be used as constraints on the integrals of quark distributions.

As previously discussed, Ti is a linear combination of ao, a,3 and ag. The knowledge of 

ag and ag can then be used to get information on r y  Table 4.3 shows the combinations of 

F  and D  that are obtained in some hyperon (i decays.

4.2.3 T he S p in  C risis

As we have shown, one can get information about the quantities ag and ag from the study 

of hyperon /3-decays. By adding this information to the measurement of gx and of its first 

moment, it is then possible to measure ao:

a0 =  |  j l 2 I * - a 3 -

There are inherent problems in this determination. Measuring the first moment of g1 

requires the measurement of g1 over the entire x  range, from 0 to 1. The region x  —> 1 is 

quite harmless, as gx —> 0 in this limit, but the region x  —> 0 brings a great uncertainty in 

the result, since the error bars are very large and it is very difficult to make measurements 

in that region. This means that one can only rely on an extrapolation to the unmeasured 

region, and any result will then depend on the form of extrapolation used. The first 

experiment to measure Tf was EMC ([5],[57]), which got the quite astonishing result (see 

Fig. 4.4):

T? =  -.126 ±  0.010 ±  0.015 (EMC). (4.45)

By using the values in Ref. [58] from hyperon /3 decay:

3 F - D  = 0.579 ±  0.025 , F  + D = 1.2573 ±  0.0028 , (4.46)
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it was obtained:

a0 ~  0.046 , (4.47)

which was interpreted as the quark spin content of the nucleon AS, being very small and 

consistent with zero.

Of course to get this result they also had to use some information from unpolarized 

data experiments, as R  from SLAC, and F2 from NMC, for which there are now more 

precise measurements. But in any case, it was a striking result, since one would naively 

expect ao ~  1, i.e. that the spin of the nucleon is carried mostly by the quarks, and the 

result they obtained was surprisingly small. Apart from the experimental accuracy, there 

are a few issues that should be taken into consideration when trying to understand the 

EMC results: the extrapolation to x  —>■ 0 and higher twist effects.

4.2.4 E xtrapo lation  to  x  -»  0

As already stated, any result on Tf will be very dependent on the assumptions of the 

behavior at small x  of gx, since it appears to rise to infinity as x  approaches zero (it is 

to be noted that Fig. 4.4 shows x $ (x ) ) .  An extrapolation is necessary to obtain the be­

havior in the unmeasured regions. The problem is that the literature is full of theoretical

0.08

0.12

Y  9- 0.069~

0.08
0.04 - -

0.04 0.02

0
X

Figure 4.4: The extrapolation to low x  done by EMC ([5]). Black points indicate the 
measured values of xg1, while the open points are the values of the integral of gx from 
x - 1  to the point.
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predictions, that can be very different from each other and yield very different results.

Many experimental analyses ([59],[60]) assumed a nearly constant behavior and ex­

trapolated to the unmeasured region from x  ~  10"2 to x=0.

A usual assumption is that of Regge behavior ([61],[62]):

gi(®, Qo) x ~aai ~  °-5 ~  a ai < 0 (4.48)

where a ai is the intercept of the degenerate cti(1260), /i(1285), /i(1420) trajectory. The 

scale Qq where the Regge behavior is supposed to start is left completely unrestricted by 

Regge arguments.

It has been shown ([63]) that a logarithmic rise at small x  could be induced by a 

pomeron coupling via vector 7^:

Si(x ) - 1 In — . (4.49)
CO

In Ref. [64] a two-gluon pomeron model is analyzed, leading to a slightly more neg­

ative behavior:

g: (x) -> 1 +  2 In x  . (4.50)

By applying negative parity pomeron cuts([65],[66],[67]), another divergent behavior 

is obtained:

gi(*,Qo) - I n 2a:. (4.51)
CO

Different assumptions in the low x  region can lead to very different results, and that 

is why more data are needed at lower x.

Also, for many fixed target experiments (including HERMES ) the low x  region also 

coincides with the low Q2, which makes the interpretation of the results more difficult, 

because the contributions of higher twist effects are not negligible anymore, and have

to be included in the analysis. The problem of higher twist was not present in the EMC

data, because of the average Q2 of 17.2 GeV2, but it is certainly not negligible for Q2 < 1 

GeV2 region, which includes the low x  HERMES region.

4.2.5 The axial anomaly

Even if the extrapolation method may have brought some difference in the results ob­

tained by EMC, thereby changing the total amount of spin carried by the quarks, another
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more profound effect was discovered later, casting a new light on the interpretation of 

the moments of gr

It was shown that it is natural to assume that ao is the quark content of the nucleon. 

As it turns out, the axial current Jg (of which ao is the matrix element on the nucleon 

state) is not conserved, and as such it has an intrinsic dependence on Q2.

Returning to the first moment of gx, it does not receive any direct gluonic contribu­

tion, since there is no gluonic operator of twist 2 and spin n  =  1 (see Table 4.2). The gluon 

nevertheless gives a contribution to the integral, through the axial anomaly ([68],[69]).

Let us consider the axial current

for quarks of definite flavor / .  From the Dirac equation of motion, its covariant derivative

where m q is the quark mass. In the chiral limit m q - 4  0 this current seems conserved. 

This cannot be the case, since this fact would lead to a symmetry between left and right- 

handed quarks, and so to a degeneracy in terms of the parity of the hadron spectrum: 

there would be for example, two protons, two neutrons... with two different parities. 

There is in fact an anomalous contribution to the covariant derivative, coming from the 

triangle diagram in Fig. 4.5:

where the function T ( m q/ k 2) comes from the calculation of the triangle diagram, k being 

the gluon virtuality. The anomaly T  is a quite complicated function, with the properties:

The anomaly introduces an interaction between quarks and gluons in the nucleon through 

the triangle diagram. As a consequence the matrix element of the axial current will

(4.52)

is:

(4.53)

(4.54)

(4.55)
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4.2. SUM RULES

Figure 4.5: The anomalous contribution.

get contributions not only from the quarks but also from the gluons. Because the func­

tion T  only contributes for massless quarks, the contribution that ao receives from the 

additional term is:

a gluonS =  _ n f a *  f 1 d x A G ^ Q 2 )

^7r Jo
= - n f ^ A G ( Q 2) , (4.56)

and the gluons contribute to the first moment of gx with the additional term:

r gluons =  2 )  ̂ ( 4 5 7 )

where rif is the number of active massless flavors.

Although the result in Eq. (4.57) was derived perturbatively, it is believed to be exact 

in QCD. The Naive Parton Model result for ao =  AS is then incorrect, and it is, instead:

a0 =  AS — n f ^ - A G  . (4.58)
2tt

The last result is of fundamental importance, since it implies that the measurement of a 

small value for ao does not necessarily mean that AS, the nucleon's spin contribution 

from the quark helicities, is small. Even if the gluon distribution is multiplied by a s, it 

is not negligible in the high Q2 limit, since it will be shown in Eq. (4.73) that it is a finite 

quantity over the whole Q2 range.

Also, the result implies that the difference between ./^  and the gluonic current 

that brings the axial anomaly is a conserved current. Its matrix element on a nucleon 

state is then a conserved quantity, which is:

(PS\ JJ , -  K*  |PS)  = 2M  (A S -  n f 7̂ A G  +  n f ~ A G ) =  2M AS , (4.59)
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4.2. SUM RULES

which is the quark contribution to the spin of the nucleon.

4.2.6 B jo rken  Sum  R ule

The Bjorken sum rule gives predictions on the difference of the first moments of the 

structure functions gx on the proton and the neutron.

Let us recall Eq. (4.40) for the first moments. The perturbative expansion for E\^  is

where the non-singlet and singlet Wilson coefficients E ^ s  and E s  (that are equal to 1 to 

lowest order in a s) were introduced. In the next section the reason for this nomenclature 

will become clear.

The first moment of the neutron structure function g" can be obtained by isospin 

symmetry by exchanging u «-»• d in T :̂

The terms ao and as come from matrix elements of the operators and Jf^, and are 

invariant under isotopic spin rotations (see App.A). The current Jf^, instead, changes 

sign when going from a proton to a neutron matrix element (that is interchanging u with 

d quarks). The Bjorken sum rule ([71]) follows:

This sum rule, derived using only current algebra and isospin symmetry (Aup =  Adn), 

has very little model dependence, and is fundamental to QCD.

Another sum rule is the Ellis-Jaffe ([72]) sum rule, which involves the integral of gf 

and g" separately, and is derived under SU(3) assumptions and the hypothesis that the 

strange quark and sea polarizations are vanishing: A s  = A s  = Aq = 0. In Fig. 4.6 the 

current situation is shown. It is a plot of the neutron first moment T” versus the first

([70]):

(4.60)

r? = j \ x & ( x )  = ±  (as + ^as^EMsiQ^ + laoEsiQ2)

T? =  J \ x  Si(x )  = ^  (K- a 3 + ^ a 8^ E NS(Q2) + ^ a 0E s (Q 2) . (4.61)

J  d x ( ^ ( x , Q 2) - g { { x , Q 2)) = y e n s (Q2) (4.62)
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4.3. Q2 EVOLUTION OF PARTON DISTRIBUTIONS

moment of the proton Tj\ The predictions of the Bjorken and Ellis-Jaffe sum rules are 

shown in the diagonal band from lower left to upper right in the figure. The data and the 

Bjorken sum rule overlap within one sigma, while the Ellis-Jaffe sum rule predictions are 

roughly two sigma away from data, showing that the hypothesis of SU(3) and a vanishing 

sea polarization can be significantly violated.

Figure 4.6: World data on the first moment of the neutron versus the first moment of the 
proton.

4.3 Q 2 evolution  o f parton distributions

Because gx depends on Aqj, the idea of inverting it to obtain insight into the polarized 

distributions is very tempting. This can be done by considering the fact that QCD correc­

tions bring a Q2 dependence into the structure functions, not existing in the Naive Parton 

Model. Such a dependence is the result of the interaction among quarks and gluons, and 

by studying it, it is possible to extract not only the quark's contribution to the spin of the 

nucleon, but also the g luon 's . In the remaining part of this chapter the framework for the 

derivation of the polarized distributions will be presented. This will prove useful when

HERMES

Deuteron

Bjorken Sum Rule

Neutron

E143
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4.3. Q2 EVOLUTION OF PARTON DISTRIBUTIONS

in the next chapter the distributions will be obtained using world data on gx, including 

the precise new HERMES deuterium data.

4.3.1 Leading order corrections

The parton distributions and the structure functions are independent of Q2 in the Naive 

Parton Model where only the qqj* vertex of Fig. 4.7 enters into the theory.

Beyond the Oth order in a s the dynamical contribution given by the gluons has to be

4.8, the processes that bring this dependence are photon-gluon fusion (7*g —t qq) and gluon 

radiation (7*q —>■ gq).

q

Figure 4.7: Zero order diagram in a s:^*q —> q.

considered, and the parton distributions acquire a dependence on Q2 §. As shown in Fig.

Figure 4.8: LO diagrams in otgrfg —t qq and 7*q —> gq.

The Q2 dependence of the parton distributions is described by the LO Q2-evolution 

(or renormalization group ) equations ([73]):

where n /  is the number of active flavors, and

(4.64)

5 In the following all processes that involve one gluon vertex will be referred to as leading order (LO) 
processes, while next-to-leading order (NLO) will refer to those involving two gluon vertices.
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4.3. Q2 EVOLUTION OF PARTON DISTRIBUTIONS

g(x, Q 2 ) j f g(x,QV
q^y.Q2) , ^ g(y, Q 2) J ?

u q y \

q;(X,QJ), qi(x,Q V

q^y.Q2) / g(y,Q2) /

qqx y ' ^ pjf\
Figure 4.9: Splitting functions.

with do =  11 -  2n//3 , and A ~  0.2 GeV is the energy scale above which the perturbative 

approach can be used to describe QCD effects (see App.B).

The splitting functions Pab( x / y ) can be interpreted as the probability for a parton 

(quark or gluon) a of momentum y to radiate a parton b of momentum x, so that the 

initial parton's momentum is reduced by a fraction x / y  (see Fig. 4.9). These functions 

can be expanded in a s, so that only their LO expansion enters into the LO evolu­

tion equations. Splitting functions at LO can be found in Ref. [20]. The convolution ® is 

defined as:

(.P  ® q)(x,  Q2) = f  — P  f - ' )  q(y, Q2) . (4.65)
Jx y \ y J

The non-singlet (NS) quark distributions are those particular combinations of quark 

distributions where the gluons and the quark sea cancel, and for this reason the evolution 

equations will not depend on the gluons:

&qNS =  A u  — Au, A d  —Ad, (Au + Au) — (Ad + Ad),

(Au + Au) + (Ad  +  Ad) — 2(As +  As), etc. (4.66)

The singlet quark distribution £  is instead just

AS =  (Au +  Au) +  (Ad  +  Ad) + (As + As),  (4.67)

which can be interpreted as the spin content of the nucleon coming from the quarks. It 

has to be noted that AE refers to the sum of all quark and antiquark flavors, and therefore
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4.3. Q2 EVOLUTION OF PARTON DISTRIBUTIONS

there is a factor 2n / in front of Pf^j in Eq. (4.63). By comparing Eqs.(4.66) and (4.67) with

(4.39) we see that a3 and ag are non singlet and ao is a singlet quark distribution.

where Aqo and AGo denote the unphysical (and unrenormalized) bare parton distribu­

tions, while Qo is a reference scale at which the distributions are known (from experiment 

or from theory).

0 ( a s) corrections to gr  The leading order discussed so far originated from calculating 

the logarithmic 0 ( a s) contributions of the processes 7*5 —> gq and 7*g —> qq (Fig. 4.8) to 

the zero-th order bare term j*q  —>■ q of Fig. 4.7 of g1:

As before, t  = ln(Q2/Qg). The LO approximation just results in the redefinition of the 

quark distributions, without changing the form of g^ in leading order the gluon distri­

bution does not contribute directly to the structure function gx (x, Q2), but only indirectly 

via the evolution equations.

LO Q2 behavior of distributions. App.C shows that the formalism of the evolution 

equations applies also to the moments of the parton distributions, in what is called the

Mellin space ([74]).

Quantities of great importance are the first moments (n = 1) of the polarized quark 

distributions, since they are used to derive sum rules that can be experimentally tested. 

The first moments of the splitting functions ([20]) are:

The inclusion of these diagrams changes also the form of the quark (Ag0) and gluon 

(AGq) distributions:

(4.68)

gi (z, Q2) = e? {A«o(®) +  ^  * [Mo  ® +  AGq ® Pgc }

(4.69)
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4.3. Q2 EVOLUTION OF PARTON DISTRIBUTIONS

p(0)l   9
r Gq ~  Z

= f ~ T  = Y -  <4'70)

By using Eq. (C.3) in App.C we see that the non-singlet sector has no Q2 dependence, 

since P ^ p  =  0. In the singlet sector, instead, we have:

d (  AE(Q2) A a s(Q2) (  0 0 \  /  AE(Q2) \
dt V A G(Q2) J  2n V 2 f  A G(Q2) ) ’ ( '

These equations imply trivially that also AS is Q2 independent:

| a S(Q2) =  0 +  O («2), (4.72)

while they bring the interesting result (obtained by relating a s to /30 through Eq. (4.64)):

|  [as(Q2)AG(Q2)} = 0 +  0 ( a 2) . (4.73)

Therefore the product a s (Q2)A G  behaves more like an object of order a s, although strictly 

speaking it refers to a combination that enters only in NLO, and any combination could 

be in principle potentially large, irrespective of the value of Q2. From a theoretical point 

of view it's important to stress that the combination a s(Q2)AG  becomes Q2 dependent 

at NLO, however for practical purposes the Q2 dependence is too small to be able to 

distinguish AS and a s(Q2)AG  just by examining their Q2 dependence.

4.3.2 Next to Leading Order corrections

In NLO, i.e. beyond the leading logarithmic order, more terms have to be included in 

the expression for gx, in part coming from the contribution of the splitting functions 

P^p,  and in part from the In Q2-independent terms and from the Wilson coefficients (the 

coefficient functions) that are usually introduced in the framework of the OPE. These 

quantities have the unpleasant feature that they depend on the regularization scheme 

adopted.

The NLO evolution equations are a generalization of the LO ones. The reason is that 

the splitting functions P^p  have to allow transitions between quarks and antiquarks and 

among the different quark flavors, as illustrated in Fig. 4.11^.
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4.3. Q2 EVOLUTION OF PARTON DISTRIBUTIONS

LO

NLO

Figure 4.10: 1-loop and 2-loop splitting functions.

Figure 4.11: Diagrams relevant for the calculation of

The NLO evolution equations are ([75], [76]):

d
q N S ± { x , Q 2 )

/  AE(®, Q2) 
dt V AG{x,Q2)

Pn s ±^Qn s  

PQQ

P Gq

where

a . i (Q2)
47T

fto In 2̂

and

i j , N S ±  =

Pi In In
PI \ n %  .

a s(Q2)

2rifPqG
Pgg

di =  102 -

A E(x ,Q 20) 
A G (x ,Q l )

(4.74)

38rif _
9 for rif = 3 , (4.75)

p(°)
P j , N S +

a s(Q2) p(i)
j r i j , N S ±  ' (4.76)

2tt V
In NLO, in contrast to LO, there are two independent NS evolution equations because 

of the additional transitions between different, non diagonal flavors (u —> d, u -> s,...) 

and qq mixings (u —>■ u). Thus we have in N S +  the combinations Aq — Aq and in N S —

The splitting functions P (0> and are often referred to as 1-loop and 2-loop splitting functions. This 
comes from borrowing Wilson's and the OPE language, as can be seen in Fig. 4.10, where it appears clear 
how the Compton formalism helps in the calculation of these functions.
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4.3. Q2 EVOLUTION OF PARTON DISTRIBUTIONS

the combinations Aq +  Aq:

AqNS+ — A u  — Au, A d  — Ad  

A qns-  — (Au +  Au) — (Ad + Ad),  (Au +  Au) +  (Ad +  Ad) -  2(As +  As) .

NLO corrections to gr  At NLO the splitting functions P 1'1) have to be included in the 

equations for the evolution of the regularized quark distributions. The same applies for 

the coefficient functions coming from the OPE, in the expression for gr  These quantities 

depend on the regularization scheme adopted. Common choices are the dimensional reg­

ularization and th e 't  Hooft-Veltman prescription ([77]) for 7 5 .  In D  =  4 — 2s dimensions 

(e being a small parameter) one obtains ([78]):

gi (x ,Q2) =

i  E  4  [A®M + ^1“  ( ln ( ) ? )  -  \  + ™  -  ta4*) x

(a®, 0  (i$> + Cq) +  AG„ 0  (P<2 +  Co))] , (4.77)

where 7 e  is the Euler-Mascheroni constant ( 7 e  —  0.57721566...) and the coefficient func­

tions Cq and Cq  are defined at the end of App.C. In order to get rid of the singularities 

one redefines the quark distributions:

A q(x,Q2) = Aq0(x)

+  « ,(Q 2) (in  ( ^ p j  ~ \ + I E -  In 4tt^ (Ago ® P $  +  A G0 ® P {g°G) ,2n
(4.78)

and a similar expression holds for the redefined gluon distribution. The NLO contribu­

tion to g 1 is then:

g i ( x , Q 2) = \  ^ e 2q2
9 ,9

Aq + ^ ^ - C g ® Aq(x, Q2) +  CG ® AG(x, Q2)
2,7r 27T

. (4.79)

As we see, the splitting functions P^> do not enter directly in the expression of gl at 

NLO, but they are implicit in the expression for A G  and Aq since they evolve according 

to the NLO evolution equations.
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4.3. Q2 EVOLUTION OF PARTON DISTRIBUTIONS

In Fig. 4.12 is shown world data on the polarized structure function gfv  In this plot 

the Q2 dependence appears quite clear, espccraLy at low x. This can be understood by 

considering that the Q2 dependence is an effect of gluons, and gluon emission from a 

quark reduces their initial momentum resulting in a lower x.

a
W?

10

10

10

10

 x=0.008 ( x  2048)

 x =0.015 ( x 1024)

. - • f '  1 j  i  x=0.025 ( x

. 4- -" y ' I X=0,1

: i-.-o- * - 1 n

x 512)

.035 ( x  256)

.a - —  -
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. c . . « e - — *=0-175(X 16} 
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• - - a - - - . , x=0.5 (  x 2)

4T -

x=0.7S ( X 1)

* E155 
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* EMC

10

Q2 [(GeV/c)2]

Figure 4.12: World data on g^ from the experiments E155 ([79]), E143 ([80]), SMC ([44]), 
HERMES ([43]) and EMC ([57]).

Scheme Convention. In any realistic analysis beyond LO, the Wilson coefficients Cq,G 

and splitting functions are not uniquely determined so that it is a matter of convention 

how much of the NLO corrections to attribute to Cj and how much to This is usu­

ally referred to as renormalization/factorization scheme convention ([20]). The important con­

cept is that, to a given perturbative order in a s, any physically directly measurable quantity 

(such as g 1) must be independent of the convention chosen (scheme independence), and that 

the convention dependent terms appear only beyond this order, and are perturbatively 

small. App.C shows how Wilson coefficients and splitting functions can be simultane­

ously redefined and thus leave the measurable quantity g ( unchanged.

So, although the parton distributions have no scheme dependence in LO, they do
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4.3. Q2 EVOLUTION OF PARTON DISTRIBUTIONS

depend on the renormalization scheme in NLO and beyond. In the unpolarized case 

the most commonly used is the modified minimal subtraction M S .  Schemes and parton 

densities differ from each other by terms of order a s(Q2), going to zero as Q2 increases. 

In the polarized case there are two significant differences.

First, the singlet densities AS(x, Q2) in two different schemes will differ by terms of 

the order

a s(Q2)A G (x ,Q 2) , (4.80)

which appears to be of order a s. But we saw that the first moment AG{Q2) grows as 

1 / a 3 (Q2), so that the difference of AS in two different schemes could be potentially large.

Second, there are ambiguities in handling the renormalization of operators involving 

75 in n  dimensions, so that the specification M S  does not define a unique scheme. There 

is actually a whole family of M S  schemes, and strictly speaking each should carry a label 

indicating how 75 is treated. The scheme conventionally known as M S  ([75], [81]) has 

the feature that the nonsinglet densities are conserved, i.e. they are independent of Q2, 

corresponding to the conservation of the axial current. The first moment of A l l  instead, is 

not conserved, so that it is difficult to know how to compare the DIS experimental results 

on AS, with results from constituent quark models, at low Q2. To avoid these problems 

the AB scheme ([82], [83]) was introduced. It involves a modification of the M S  scheme:

A X { x ,Q 2)a b  = A S(s, Q2)j f s  +  f 1 ~7rAG(y, Q2) j f s
«/ X is

A G ( x ,Q 2)a b  = A  G ^ Q 2) ^ ,  (4.81)

or, in the Mellin momentum space:

m Q 2)AB =  A E (Q 2W  +  AG(<32) „ s  ■ <4-82>

In the AB scheme AS is independent of Q2 at all orders. The singlet part of the first 

moment of g: then depends on AS and A G  only in the combination

a0(Q2) = AS (Q2) ^  =  AS (Q2)AB -  n f ^ ^ - A G ( Q 2) , (4.83)

and the unexpected small value found by the EMC experiment can be nicely explained 

by a cancellation between AS and the contribution of gluons. For this explanation to be
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correct it is important to have both a positive sign and a large value for the first moment 

of the polarized gluon distribution at small Q2 1 -  lOGeV2.
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Chapter 5

Extraction of polarized parton 
distributions

5.1 Introduction

In 1998 the SMC collaboration performed a next-to-leading order analysis ([84]) of the 

spin structure function g17 including data from CERN, SLAC, DESY and the SMC final 

set of data of at low x. The SMC collaboration used two analysis codes, one of which 

was calculating the distribution functions in Mellin space and the other was instead using 

finite differences to solve the Q2 evolution differential equations.

This chapter shows results for a similar analysis carried out with the finite differences 

program used by the SMC collaboration. Some improvements have been made to the 

original SMC analysis code, from minor changes such as updates of constants and the 

correction of a missing term in the a s routine, to major changes that allow to calculate in 

an automatic way the statistical error bands to the obtained fits to distribution functions 

and structure functions.

The structure of the code has been described at length in Refs. [85] and [86].

5.2 Experim ental Data

Table 5.1 shows the experiments that performed measurements on polarized structure 

functions. Also shown are the x  and Q2 region they access. The fourth column is the nor­

malization uncertainty quoted by each experiment, which gives the uncertainty related 

to luminosity as well as target and beam polarization measurements. For each target type
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5.2. EXPERIMENTAL DATA

Experiment x range Q2 (GeV2) Norm.(%) type #p # d # n
E142[59] 0.035 - 0.466 1.10 - 5.50 3.0 Si - - 8

gi/Fi - - -
M - - 28

E143 [93] 0.031 - 0.749 1.27-9.52 3.7 8i 28 28 -
gi/Fi 82 82 -

Ai - - -
E154 0.017-0.564 1.20 -15.0 3.0 gi - - 17[94]

gi/Fi - - -
Ai - - 11 [95]

E155 0.015 - 0.750 1.22 - 34.73 7.6 g i - 24[96] -
g i / F i 24[79] 24[96] -

A, - - -
HERMES 0.028 - 0.660 1.13 - 7.46 3.0 g i 39[43] 39 9[42]

g i / F i 39[43] 39 -
Ai - - 9

SMC [44] 0.005 - 0.480 1.30 - 58.0 4.0 8 i 12 12 -
g i / F i - - -

Ai 10 65 -
EMC [57] 0.015 - 0.466 3.5 - 29.5 9.6 g i 10 - -

g i / F i - - -
Ai 10 - -
8 i 89 103 34

Total g i / F i 145 145 -
Ax 20 65 48

Table 5.1: World data on gp  g i /F i ,  A\ .  For each experiment the x  and Q2 ranges are 
reported, together with the normalization uncertainty, the type of quantity measured, 
and the number of data points for each given target. The HERMES deuterium data points 
are only 39 because the 1 GeV2 Q2 cut removed the first 10 low x  points. Square brackets 
indicate the published article. The table only includes data obtained directly on the given 
target (if for example, g" was obtained from g^ and gf  then it is not included in this table). 
Also, data published exclusively at a lower x  and Q2, like in Ref. [97], are not included 
in the table, since none of those points is included in the fits.

the quantity reported in the paper is shown (gx, g ^ F i or A\), together with a reference 

to the publication and the number of data points.

The quantity most closely related to the measured asymmetry was considered in the 

evolution. This means that if an experiment quoted values for g1/F i and g lf g1 /F i was 

preferred to the values on gr  The reason is that each experiment could have different 

assumptions on R  or Fi or A 2, so where possible an attempt was made to use the same 

assumptions on the unpolarized quantities R  and Fi, and on A 2. In this way a total of 

473 data points was obtained.

114

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



5.3. DESCRIPTION OF THE CODE

It is generally believed that higher twist effects are certainly non negligible anymore 

below Q2 = 1 GeV2, so a cut is placed and data are not accepted below 1 GeV2. In 

unpolarized analyses, where the amount of data is much larger, cuts are usually placed 

at around 4 GeV2, but polarized experiments have much lower Q2 values, so such a cut 

would decrease the number of data points significantly.

5.3 D escription  of the code

The main theory ideas treated in ch.4 will be briefly summarized, and the main features 

of the code explained.

The structure function g1 has a dependence on x  and Q2, the latter acquired by dia­

grams involving gluons. It can be expressed as a convolution of the distributions with 

coefficient functions C(x,  Q2) ([78]):

The difference between gj and g” is in the non-singlet distributions, which differ only for 

the exchange of u -H- d.

g T (z , Q2) = I  < e2 > T  — k  ( - ,  a s (Q 2) )  A S (y, Q2)
1 Jx y l w  /

+  2n f CG AG(y,Q2) + C%ns  ( ^ , « S(Q2))  A < ® y ,Q 2)

g i ( x , Q 2) '(5.1)

where ujd = 0.058 is the D-state wave probability for the deuteron. 

The distributions AS and Aqp̂ ns  are defined as:

AS — (Au +  Au) -t- (Ad  +  Ad) -I- (As -I- As)

A(fNS =  i  (2(Au +  Au) — (Ad  +  Ad) -  (As +  As))
Zt

AQn s  = ^ (2(Ad -I- Ad) — (Au +  An) — (As +  As)) .
Z

(5.2)

Given measurements of g*>,n,d at different Q2 values, the distributions AG,  AS and

Aqp̂ as can be singled out by making use of their different Q2 evolution:

- A S ( a : , t ) =  ^  A S ( y , i ) + 2 n /P SG (~,as(t)\AG(y,t)
j x y  . \.y j  /

— A G(x,t)--^f P G z ( ~ , a s ( t ) )  A S ( y , f )  + Pgg (~,as(t)\ AG(y,t)
^  V X tJ m \1J / \  y J

x y
i
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d
dt A?jvsOM)— 2n J  y ■ (5-3)

The non-singlet distributions evolve independently from AG since the gluon contribu­

tions cancel in the differences of Eq. (5.2).

The polarized splitting functions at NLO have been calculated in Refs. [75] and [76]

in the M S  scheme that is going to be used.

5.3.1 Initial parameterization

The distributions are parameterized at an initial Q 2 =  Qq. They have to be general 

enough to describe the data, and they have to contain a low number of parameters, so 

that the available data may well constrain the parameters. A common choice ([84], [87]) 

consists in a parameterization borrowed from the unpolarized fits ([88]) of the kind:

A /(s, Ql) = N f (af , Pf , 7f , rif, p f ) x af (1 -  x ) pf (1 + j f x  + pf x?)  rjf  , (5.4)

where A/  denotes AS, AqpNS, Aq ^ s  or AG. The parameter a f  describes the low x  be­

havior of the distribution, while Pf  describes the high x  behavior. The coefficients 7 / and 

Pf  instead describe the intermediate x  region.

The coefficients N f  are chosen to satisfy the relation:

rl  x
N f f a f i P f r f f r f f i P f )  d x x af ( l - x f f ( l  + ' j fx + pf x 2 ) = l ,  (5.5)

Jo

so that r)f is the first moment of the distribution at the starting scale:

r/f = J  dx A f ( x ,Q l)  . (5.6)

This implies that N f  is the expression:

{1 1 a f  +  1 \  r ( a f  + 1 ) 1 %  +  1) r  i a f  +  I)  r (ff/ +  1)
V -t ^ a f  +  Pf  +  2 j  r ( a f + P f  +  2) +  Pf r  ( a ,  +  0 / +  §)N s =  ( / + y m

5.3.2 Minimization

These parameterizations are then numerically evolved to the measured Q2 of the data 

using the evolution equations. The free parameters are evaluated by minimizing the y2,
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5.4. EVALUATION OF BEST PARAMETERS

defined as a sum over the N  data points:

K ia ta ^ ’*)]2
(5.8)

and the errors are only statistical. The minimization is performed by the MINUIT 

program, described in Ref. [89].

5.4 Evaluation of b est parameters

The distributions described in Eq. (5.4) have as many as 16 parameters, but some of them 

can be fixed by symmetry considerations.

The normalizations of the non-singlet distributions can be fixed imposing SU(3) sym­

metry. The proton and neutron NS distributions are related to the combinations of parton 

distributions <23 and as by the relation (independent of Q2):

It was shown in Ref. [92] that SU(3) also constrains the high-x coefficient in the gluon 

parameterization to be equal to 4, so it was set to this value.

The analysis code has been run first by varying the mid-x coefficients 7 and p, but no 

sensitivity was found for them for all the distributions except the singlet. So 72, I n s  w e r e  

set to zero, and the same for the p coefficients, in agreement with the SMC publication. 

In this way the total number of free parameters is reduced to 10.

Table 5.2 shows the resulting best parameters from the QCD fit. With respect to the 

values published in the paper by the SMC collaboration in Ref. [84], the errors are in many

(5.9)

where ([90],[91]):

a3 = —  = F  + D = 1.2601 ±  0.0025 
9v

(5.10)

which gives

rfNS =  1.090 ±  0.007 , rj%s  = -0.8003 ±  0.007 . (5.11)
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cases one order of magnitude smaller. The gluon appears also much better constrained: 

the gluon coefficients of table 5.2 can be compared to the ones in Ref. [84] which are a a  — 

0-33±f;g| and ^  =  0 .2 5 1 ^ .

a -0.5173 ±  0.0030
AS P 2.643 ±  0.040

V 0.248 ±  0.020
7 -10.664 ±  0.072
a -0.517 ±  0.022

^ N S P 2.95 ±  0.27
n 1.090
7 0.
a 0.935 ±  0.138
P 3.48 ±  0.36
V -0.8003
7 0.
a 1.337 ±  0.957

AG P 4.0
f] 0.140 ±  0.136
7 0.

X2/NDF=539.95/463=1.17

Table 5.2: Best fit parameter values and their statistical uncertainty at the input scale 
Q2 — 1 GeV2. The parameters with no error have been set to the values shown. The p 
coefficients, being all zero, are not shown in this table. The singlet distribution is very 
well constrained by data, while the gluon one has large uncertainties.

5.5 Statistical Error Bands

After the best fit has been found, each distribution is known in terms of parameters enter­

ing into the parameterization at the initial Q2, and their errors, giving the 68% probability 

that a parameter is within the range given by the error. It is a common procedure ([87],

[99]) to perform fits to structure functions and quote only the best values and the errors of 

the parameters, without showing how these affect the error on the distributions. This sec­

tion will be devoted to the calculation of the statistical error bands, and it will be shown 

how they can be obtained in a straightforward way for both distributions and structure 

functions, at any Q2 value.
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The expression for the error of a distribution /  is given by:

{of )2(x ,Q 2) = Y ^ ^ \ x ’Q2) j - ( x ’Q2)coy(Pi’Pj) ’ (5-12)
hi 1 3

where pi and pj are the parameters on which /  depends. The analytic form of the distri­

butions is only known at the initial Q2 = Q q, in the form of Eq. (5.4), so that only at Q q it 

is possible to calculate analytically the errors on the distributions. To calculate ^ -(x , Q2), 

an expression for the Q2 evolution of the derivatives of each distribution with respect to 

each one of the parameters entering in the initial parameterizations has to be found. In 

the following it will be assumed that the covariance matrix has no dependence on Q2.

In a simplified notation, where all the A symbols indicating the polarizations have 

been dropped, and the splitting functions have been denoted with Pi, i — 1,.., 5, the 

evolution equations take the form:

d
-TLqNS =  Pl ® <1NS at

4 -E  = P2 ® £  +  Pz ® G  
at

^-G  = P4 ® E  +  P5 ® G ,  (5.13)
at

At any Q2 value the non-singlet distributions only depend on their own initial parame­

ters and do not depend on the ones entering the initial parameterization of E, G, or the 

other NS distribution, since they are completely decoupled from them in the evolution 

equations (5.13). Singlet and gluon distributions instead depend on each other because 

of their evolution, so that to find the evolution of their derivatives will be a more compli­

cated matter. For this reason the NS case will be considered first.

Non-singlet case. If p i  is one of the parameters a ^ s ,  P n s ,  V n s ,  I n s ,  P n s ,  then by ap­

plying the first derivative with respect to p i  to the first equation in (5.13), one gets:

d d d ,
n ~ - t : Q n s  — - j - P i  ®  Q n s  , (5-14)dpi d't dp j,

and, by exchanging the order of derivative:

i  = Pl ® (£iws) ’ (5,15)
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so that the derivatives of the NS distributions evolve according to the same equations as 

the distributions. When performing the Q2 evolution, the initial values will be given by 

^ ( 1 n s {z ,Q o), whose analytical form will be shown later.

Gluon and singlet case. Let us now consider the evolution of the derivatives of G and 

E with respect to one of the parameters entering the initial distribution of E, say E*. By 

interchanging the order of the derivatives, one gets:

d dE
dt dEj 
d dG 
dt dT,i

=  P2 

= Pa

dE _ 
d E i +  3 
dE „  
dE,-+  5

dG
dSj
dG
dE,:

(5.16)

which shows that d E / d E j  evolves together with d G / d E j ,  and they cannot be separated 

in the evolution.

To numerically evaluate these distributions one has to provide the initial values. The 

initial parameterization of d E / d E j  is known, since the parameters have been calculated. 

The distribution d G / d E j  is zero at the initial Q2, since E ,  only enters in the parameteri­

zation of E. To properly evaluate the evolution of a derivative of E (or G) one then has 

to evolve it with the other distribution set to zero at the starting Q2.

Once the derivatives of each distribution with respect to the parameters it depends on 

are evaluated at the Q2 value of interest, the errors a  on the distributions are calculated 

as:

/  ^ /V- 1 -1  \ dS \ try ry \

W  = E  5 5 d s “ cov< <’ J' ) +  d s '5 o “ cov* "  J + dGiJcTjcov( ^
1,3 J J

( ° G f  = 2
hi

K S ) 2 = E

dG dG . , dG dG r _ . dG dG . .
cov(Ei,Ej) +  —  —  cov(Ei,Gj ) +  d(j .  dG :cov(G^ Gi)dSj dSj v ” J/ dEj dGj

hj

d (f/s  d q ^
dpi dpj

co v(pi ,Pj ) (5.17)

The expressions for the derivatives of the distributions are quite lengthy but simplify 

considerably in the case of p =  0. The complete forms will nevertheless be reported. 

Given an initial parameterization with the form of Eq. (5.4), the derivatives with respect
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to each parameter are: 

d A f
da

d A f

r- (  d N j 1\
N f pxa (1 -  x)^  (1 +  j x  +  pyfx) I lnx — N f -  I

(  d N j 1\
dp  = N f r]xa ( l ~ x f  ( l + j x  + p y / x ) { l n ( l - x ) - N f —̂ - J

=  N f  x a (1 — x)^  (1 +  j x  +  py/x) =  —— 
dp 1 f]

d- § L  =

=  N f p x a (1 -  x )P ^ y /x  -  N f  , (5.18)

where the subscripts /  in the parameters a, ft, 7 and p have been dropped for simplicity, 

and:

d N J 1 r ( g  +  1)T (a  +  /3 +  | )  
f  da D (a  + f3 + 2)
x  [t(/5  +  1 ) +  ( «  +  /3 +  2 ) ( a  +  d  +  2  +  7 ( 0  +  1 ) ) ( ^ ( a  +  1 ) -  +  /3 +  2 ))] +

+ ^ p ( a  +  fi +  2)2T +  0  T(a +  fi +  2) ^  ^  +  P +  ^  )

N d NJ l _ r ( a  +  i ) r  ( a +  /? +  §)
f  d/3 D (a  + j3 + 2)
x [ - 7(0  +  1) +  (a +  /? +  2) (a +  /d +  2 +  7(0  +  !))('if (ft +  1) -  ip (a  +  ft +  2))] +

+  p P (a  + P +  2)2r  ( a  +  -  ) T(a +  ,0 +  2) ['ip(/3 + l ) - ' i p [ a  + f3 + -

d N f 1 1 /  5 \
N f * r = D { a + 1 ) r ( a + 1 ) r  [ a + P + 2 j

d N J 1 1 /  3 \
Ar/~ ^ r  =  D ( a + ^ + 2 ) r  \  ^  2 J  r (a + ^ + 2)

D =  (a +  i0 +  2 +  7 (0  +  1 ) )r ( a  +  1) F  ( a  +  p + ^ j  +

+  p{a +  pi +  2)T ^ T(a +  /3 +  2) , (5.19)

with >̂(2;) =  jjj lnT(a;). These quantities constitute the initial parameterizations in the 

calculation of the statistical error bands.

Results for the four combinations of polarized parton distributions are shown in Fig. 

5.1, for different Q2 values of 1, 4, 25 and 60 GeV2. Each polarized distributions /  must
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o.i

- 0.2

-0.4

0.6

0.4

0.2

- 0.2
0.3

0.2

1■3 l ■3 ■l ■3 l ■31010 10 10 10 10 10 10
X

Figure 5.1: Central values and statistical error bands for x A c ^ ( x ,  Q2), xAE(x, Q2) and 
xA G (x, Q2), for the Q2 values 1, 4, 25 and 60 GeV2. The plots are superposed with the 
MRST2001 ([100], straight lines) and CTEQ6 ([101], dotted line), fits to unpolarized world 
data, which constitutes an upper limit to be satisfied by the polarized distributions. The 
two unpolarized parameterizations cannot be distinguished for the quark plots.

obey the positivity limit

|A /| < /  , (5.20)

where /  is the unpolarized distribution. In Fig. 5.1 the obtained polarized distributions 

are com pared to  the latest unpolarized  MRST ([100]) and CTEQ ([101]) parameteriza­

tions, and it appears clear that these limits are well respected. These two unpolarized 

parameterizations are in agreement in the small x  region shown in the plots, for all dis­

tributions except for the gluon, where they differ slightly.

The quark distributions appear to be very well determined by data, but the gluon
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distribution has still large uncertainties. Even within the large uncertainties, it is possible 

to see that the gluon distribution has a clear positive sign, becoming more definite at 

increasing Q2 values.

The Q2 behaviour of the distributions can be understood with the following reason­

ing. At small Q2 the resolving power of the virtual photon is low, so it is not able to 

discriminate between a parton with momentum x  and the system of a parton with lower 

momentum y plus an emitted gluon: the virtual photon will assign a momentum x  to 

the system. At higher Q2 the resolving power increases, and the virtual photon is able to 

discriminate among different kinds of partons. The distribution of partons at small x  in­

creases, since more partons carry smaller momentum fraction, and decrease at high x  for 

the same reason. This is also the reason why unpolarized structure functions decrease 

at high x  for increasing Q2, and increase at small x. In the case of polarized structure 

functions, which describe spin, this reasoning still holds, and it is confirmed by data: the 

extracted quark polarized distributions have indeed a decreasing behaviour at high x  

with increasing Q2. The gluon contribution instead increases with Q2 since at higher Q2 

the photon is able to discriminate gluon-initiated processes.

Once the distributions are known, it is possible to evaluate gf, gf, g", using Eq. (5.1). 

The statistical error can be obtained in a similar way as for the distributions:

where now the sum is over all possible parameters pi and pj, including cross terms of 

gluon with NS, and singlet with NS. The results are shown in Figs.5.2,5.3 and 5.4 for the 

four reference Q2 values.

5.6 System atic errors

Fig. 5.1 shows the statistical error bars alone, obtained by propagating the statistical 

errors on the measured g*’,n,cf values to the distributions. The measured values on the 

structure functions also have systematic errors, which should be propagated too. The 

procedure used to obtain the systematic bands consists in shifting the data points for 

each experimental data set by ±crSyst' while leaving the data from the other experiments

(5.21)
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Figure 5.2: Central values and statistical error bands for for Q2 values of 1,4, 25 and 
60 GeV2. The bands are superposed with the data in each energy range.

at their central values, and looking at how the polarized distributions change. Since 12 

data sets have been used, this means that 24 x 2 minima have to be obtained. In this way 

the extreme values for the change in the distributions are obtained: the real central value 

will be within the systematic band thus obtained.

Some less precise experiments, like EMC, have very large systematic errors. Special 

attention has to be paid when shifting their central values, since this could be interpreted 

by the fitting routine as a high Q2 dependence. For this reason the shifted data were 

weighted by the sum in quadrature of statistical and systematic errors, in the fitting pro-
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Figure 5.3: Central values and statistical error bands for x g f  for Q2 values of 1,4,25 and 
60 GeV2. The bands are superposed with the data in each energy range.

cedure, to give them a lower weight.

Fig. 5.5 shows the bands within which the polarized distributions are contained when 

shifting the gx central values. Whenever the fits exceeded the unpolarized limit (shown 

in the figure) the bands were cut to respect such a limit. This could not be done for the 

points at 1 GeV2, where no MRST2001 or CTEQ6 fits to unpolarized distributions are 

available.

Fig. 5.6 shows the final results for the fits to the polarized distributions A q ^ ns (x, Q2), 

AE(x, Q2) and AG(x, Q2) for the reference values of 1, 4, 25 and 60 GeV2, in the range
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Figure 5.4: Central values and statistical error bands for xg" for Q2 values of 1,4, 25 and 
60 GeV2. The bands are superposed with the data in each energy range.

0.0007 < x  < 0.93, including statistical and systematic errors. The smaller error bands are 

the statistical errors, while the larger bands are the total errors Q2), calculated as

the sum in quadrature of the statistical and systematic errors:

^ to t fo  Q2) = y/altat(x’ ^  +  asyst(®’ ^  • (5-22)

Singlet and non-singlet distributions are very well constrained by data, but large uncer­

tainties still remain in the gluon sector. The gluon distribution is consistent with zero at 

the starting scale of 1 GeV2, gaining a definite positive sign at increasing Q2.
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a  Z 0-3 
<  °-2

^  0.1

: 25 GeV2

- 0.2

-0.4

- 0.6

0.6
0.4

0.2

- 0.2

0.3

0.2

0.1

•3•1 ■3 1 ■3 1 1-3 10 1010 10 10 10 10 10
X

Figure 5.5: Central values and systematic error bands for Q2 values of 1, 4, 25 and 60 
GeV2. The bands are superposed with MRST20011 (full lines) and CTEQ6 (dotted lines) 
fits to unpolarized world data, which constitutes a limit to be satisfied by the polarized 
distributions. A cut was applied to distributions that are exceeding the unpolarized limit.

5.7 Integrals

As discussed in ch.4, interesting quantities are the integrals of polarized parton distribu­

tions over the variable x. The polarized structure functions and distributions have thus 

been integrated over the range 0.0007 < x < 0.93. The results are in Table 5.3, where 

statistical and systematic errors are shown. The error for each integral was obtained as 

the area between the best fit and the best fit plus or minus the errors. The error obtained 

from the statistical band is symmetric, while this is not the case for the areas of Fig. 5.5, 

so asymmetric systematic errors are obtained.
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a  Z 0-3
: 60 GeV2- 1 GeV - 4 GeV - 25 GeV

10 10 10 10 10 10

Figure 5.6: Final results for the fits of xA q pNS, xA q T̂ s , x A E  and xA G  for Q2 reference 
values of 1,4,25 and 60 GeV2. The fits are superposed with the statistical errors given by 
the internal band and the sum in quadrature of statistical and systematic errors given by 
the external band.

Integrals of gp,d’n(x. Q2) have been calculated in different x  ranges to compare them 

with published values, and such a comparison is reported in table 5.4, where only statis­

tical errors are shown, in both published values and from this analysis. The fact that the 

errors obtained from the fit are in many cases larger than previously published ones does 

not lead to the conclusion that the fit does not represent an improvement with respect to 

the past. Results reported from other papers were obtained directly from integrating gx 

data on the measured x  range from each experiment. The data points within each exper­

iment are at different Q2, and an ansatz has to be used in order to evolve the points to a 

common Q2 value in order to be able to perform the integration. It is usually assumed
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Q2 (GeV2)
7-9.93
1 dx A q^g fa , Q ) 

J  n.nnn7

/■U.93
/ dx Aq%s (x ,Q 2)

J0.0007

1 1.021 ±  0.048 -0.802 ±  0.044 ±g;g|g

4 1.003 ±  0.043 ±g;g|| -0.800 ±  0.036 t ° o 00 l l

25 0.987 ±  0.040 ± £o75 -0.799 ±  0.0311^23

60 0.982 ±  0.039 ±g gfl -0.798 ±  0.030 t8:o23

1 dx AE(s, Q2) 
J n.nnn7

/ dx A G (x, Q2)
.10 0007

1 0.309 ±  0.088 ±g;g|g 0.140 ±  0.157 ±g;2g|

4 0.310 ±  0.073 ±g;ggg 0.327 ±  0.199 ±g;?g|

25 0.318 ±  0.069 0.533 ±  0.248 ±g;i£|

60 0.324 ±  0.070 t H o s 0.613 ±  0.265 1^238
/•0.93

/  d x g {{x ,Q 2)
J0.0007

/•U.9.3
/  d x g f ( x , Q 2)

J 0.0007

.... /-U.93
/ dx g i(x , Q2)

J0.0007

1 0.125 ±  0.009 0.040 ±  0.008 -0.046 ±  0.009

4 0.131 ±  0.009 0.042 ±  0.008 -0.048 ±  0.008

25 0.135 ±  0.009 0.043 ±  0.008 -0.049 ±  0.008

60 0.136 ±  0.009 0.043 ±  0.008 -0.049 ±  0.008

Table 5.3: Top: integrals of polarized parton distributions A(fNS, A q ^ s , AE and AG over 
the measured range 0.0007 < x < 0.93. First quoted errors are statistical while second are 
systematic. Bottom: integrals of g*>,d,n over the same x  range. Errors are statistical only.

that the ratio gt (x, Q2)/¥ i(x , Q2) does not depend on Q2, as world data suggest. By using 

a parameterization for Fi obtained from world data, the values for gx at a different Q2 can 

be obtained, making it possible to perform the integration. Results obtained in this way 

are more precise than those obtained from a QCD fit, since the purpose of the fit is also to 

accomodate data from different targets and experiments in a model valid over a wide Q2 

and x  range, and to extract additional information such as the parton distributions. It is 

then understandable that precision may be lost in the process. It is then impressive that 

in many cases the precision of the integrals from the fit is comparable if not better than 

the results obtained from gx data alone.
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x  Range Exp. Q2 Integral Ref.
Proton

0.003 < x < 0.8 SMC 5 0.130 ±  0.003 [84]
T.A. 4 0.129 ± 0.008
E143 3 0.121 ± 0.003 [93]

0.03 < x < 0.8 E143 5 0.117 ± 0.003 [93]
T.A. 4 0.115 ± 0.007

0.021 < x < 0.85 HERMES 2.5 0.122 ± 0.003 [43]
T.A. 4 0.119 ±  0.007

Deuteron
0.003 < x < 0.8 SMC 5 0.036 ±  0.004 [84]

T.A. 4 0.044 ±  0.007
E143 3 0.046 ±  0.003 [93]

0.03 < x < 0.8 E143 5 0.043 ± 0.003 [93]
T.A. 4 0.048 ± 0.006

Neutron
0.003 < x < 0.8 SMC 5 -0.054 ± 0.007 [84]

T.A. 4 -0.041 ±  0.008
E143 3 -0.023 ±  0.008 [93]

0.03 < x  < 0.8 E143 5 -0.025 ±  0.007 [93]
T.A. 4 -0.019 ±  0.006

0.023< x  < 0.6 HERMES 2.5 -0.034 ±  0.013 [42]
T.A. 4 -0.024 ± 0.006

0.03< x  < 0.6 E142 2 -0.028 ± 0.006 [59]
T.A. 1 -0.021 ±  0.006
T.A. 4 -0.024 ± 0.006

Table 5.4: Comparison of integrals f  dx g^’d,n(x, Q2) from other experiments and from 
this analysis (T.A.). The first column indicates the x  range of integration, the second the 
experimental collaboration author of the analysis, the third is the Q2 at which the integral 
is calculated. The fourth column gives the integral with its statistical error alone, and the 
fifth gives the reference to the article where the result is published. The results from this 
analysis are in good agreement with older results, having, in some cases, also smaller 
statistical errors.

Integrals from new HERMES gf  data. The results obtained in ch.3 can be used to ob­

tain experimental values for the integral of gf  over the measured x  range, in a more pre­

cise way than from the fits. Under the hypothesis that gf(x,  Q2)/Ff(x,  Q2) is independent 

of Q2, the value of gf{x,  Q2ef) at a reference Q2 value is given by:

SiO^Qmeas)]
Ff(x,  Qrneas) 
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5.7. INTEGRALS

where the fifteen parameter fit for Ff was used, introduced in ch.3. For a given x  bin, up 

to three Q2 bins exist. The gf values have first been obtained in the 49 bins at the same 

Q2q£ and then a weighted average has been performed over the different Q2 bins that 

belong to the same x  bin. The integral 1  has been calculated as

r0.85 49
1 =  dx gf (®, Q2 f) = V  (x i+i -  Xi) gf(< x > i ,  Q2 r) , (5.24)

J0.0021 e

and the statistical error as:

49

<4 =  E  (*<+i -  ° 2^ <  x  ><> <& f)), <5-25)
i~ l

where < x  >j is the average x  in the *-th bin, with x  values contained between x\ and

%i+1'
Given the systematic error of gf/F f in an x  bin, the systematic error at Q2̂  has been 

obtained in the same way as the value of gf, i.e. according to Eq. (5.23). The values 

belonging to the same x  bin have been averaged using a weighted average with weights 

given by the inverse squared of the statistical errors in each Q2 bin. To obtain the sys­

tematic error on the integral, the values of gf have been shifted by the systematic error in 

each x  bin and I  recalculated.

The values obtained for the integral of gf over the measured x  range are in table 5.5 

and they are in very good agreement w ith the values of table 5.4 (the SMC results have 

a similar x  range). The statistical errors, as previously discussed, are smaller than the 

ones obtained from the fits. The systematic errors are of the same order of magnitude as 

previous publications.

Q?p f (GeV2) fo .0021 dx S f ( ^ Q r(,f)
1 0.0400 ±  0.0018 ±  0.0052
4 0.0400 ±  0.0023 ±  0.0040
5 0.0398 ±  0.0024 ±  0.0036

Table 5.5: Integrals of gf over the measured x  range for different Qfe£ values, calculated 
from the new FIERMES data alone. The first error is statistical and the second is system­
atic.
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5.8. CONCLUSIONS

5.8 C onclusions

Fits to world data on the structure function g: for the extraction of polarized parton dis­

tributions describe the data well, and are able to provide good insight into the polarized 

distributions. The gluon polarization shows a definite positive sign explaining, at least 

in part, the spin puzzle.

The problem still remains that the fitting procedure is only valid in the kinematic x, 

Q2 range of data, so that the fits cannot be trusted at lower x  or higher Q2 than exist­

ing data. This makes it difficult to give predictions on the behavior of the integrals of 

structure functions or polarized distributions over the whole x  range between 0 and 1. 

However, even if one decides to trust the fits, and calculates the integrals from the fitted 

distributions over the whole range of x, the fact has to be taken into account that the 

errors on the distributions, and especially on the gluons, blow up at low x  (note that the 

plots shown in this chapter are x  times the distributions). This brings a large uncertainty 

in the estimation of the integral. More data is needed at lower x  to be able to constrain the 

gluons before an integral of AG can provide an indication as to whether or not the spin 

puzzle has been solved. One could also try to get an estimate of the possible behavior 

of the structure functions at lower x  by using theoretical predictions as those discussed 

in section 4.2.4; however as this thesis is mainly focused on the impact of data on the 

precision of the extraction of the polarised parton distributions, this would go beyond its 

scope.

There are nevertheless still some ways the fits could be improved with existing data, 

and are discussed here briefly.

Quality of data. The deuterium HERMES data used from the 1998 and 2000 production 

is missing the smearing corrections, coming from the finite resolution of the spectrome­

ter. They have to be determined by a Monte Carlo simulation, and they are expected to 

contribute a 2-3% of gf, but mostly at low x.

Normalizations. Each data set from each experiment has an intrinsic normalization un­

certainty, coming from the uncertainties on target and beam polarizations, and on the 

luminosity measurement. This means that each data set should be properly normalized.
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This can only be done in a comparison with other data sets, and usually by the inclusion 

of an additional term into the x2 definition [102]:

X2 =  xLu. + E  ^  <5'26)
expts

where A N  is the normalization uncertainty quoted by the experiment, and N  is a set of 

additional parameters to be inserted in the x 2 definition at the beginning of the study. 

The minimization will provide a best value for the normalizations, that are then fixed for 

the fit.

H igher twist effects. Data at Q2 < 4 GeV2 are usually rejected in unpolarized analyses, 

because higher twist (non-perturbative) effects start having an important role. This is 

not yet possible to do in the polarized case because it would mean the loss of a large 

amount of data that is necessary to constrain the distributions at small x, since the small 

Q2 region corresponds for fixed target experiments also to the small x  region. In the 

absence of a clear theoretical calculation, alternatively these effects can be parameterized 

by the introduction of a Q2 dependence in addition to the lower twist (LT) structure 

function of the form

g f T(z,Q 2) = S i T (x , Q2) X i +  / ( I ) (5.27)
Q2 \

where g f T (x, Q2) describes the higher twist form of the structure function and f ( x )  is 

parameterized as a polynomial in x  whose coefficients have to be determined from data. 

Recent studies ([102]) have shown that the application of these corrections affects the fits 

only at small x  but still it is consistent with a simple NLO calculation, within the precision 

of the error bars.
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Chapter 6

Conclusions

The most precise measurement yet made of the deuteron structure function gf  has been 

performed with almost 10 million DIS events collected by the HERMES experiment. Data 

covered the scattered lepton kinematic range 0.0041 < x < 0.81 and 0.21 < Q2 < 7.3 

GeV2.

The results were used in combination with world data on gf,  gf  and gf ,  some of which 

collected by HERMES in previous years, to extract the polarized parton distributions 

Aqf f f (x,  Q2), AE(s, Q2) and A G(x, Q2). The method used the fact that each distribution 

has a different Q2 dependence. Data collected at different Q2 values can be used to extract 

these distributions. Both statistical and systematic errors on the measured g l values were 

propagated into the polarized distributions. A full treatment of statistical errors was 

developed, allowing the calculation of statistical error bands at any Q2 value, and not only 

at the initial Qq, where the analytical parameterization is known. The quark distributions 

are very well determined, and the resulting gluon distribution has a definite positive sign 

and increases with Q2.

Integrals for the distributions and the structure functions were obtained from the fits 

in the range 0.0007 < x  < 0.93 and are in agreement with previous calculations ([84]). 

The integral of g f has also been calculated over the measured x  range, using HERMES 

data alone, obtaining a great improvement with respect to previously published results.

Although the measurement shown in this thesis is extremely precise, it does not cover 

the whole x  range of gv  and data are still needed especially at lower values of x  and 

higher Q2, where non-perturbative contributions can be safely neglected.
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The model in which the total spin of the nucleon is carried only by quarks is no longer 

valid, as the pioneering EMC experiment showed. Nowadays the small EMC result is in­

terpreted as the difference of quark and gluon spin, meaning that the quarks could still 

carry a significant portion of the nucleon's polarization, but at the same time also the glu­

ons do. The results in this thesis are a clear indication that gluon polarization is positive, 

at least in the x, Q2 range of measured data, supporting such an interpretation. As the 

total contribution of each distribution to the nucleon's spin involves an integral over x, 

which cannot be performed given the limited x  range, these results are only indicative 

that the spin crisis no longer exists and that the real problem is now to get more data to 

cover a larger kinematic range and measure the gluon distribution more precisely.

Future measurements of longitudinally polarized parton distributions will be done 

mostly at RHIC, HERA, and CERN.

RHIC (at the Brookhaven National Laboratory) has a spin program that consists in 

producing polarized beams of protons, with the main goal of measuring AG through 

p — p scattering. The main channel will be direct photon production. At tree level the 

direct photon can be produced by Compton scattering qg —> <77 and by quark-antiquark 

annihilation qq - t  7g, and, since the antiquark distribution inside the proton is small, the 

process is dominated by Compton scattering. In this way the gluon distribution inside 

the proton can be directly probed, by identifying photons with high transverse momen­

tum. RHIC measurements are expected to provide one of the cleanest, and at lower x, 

measurements of AG of any existing experiments (see Fig. 6.1).

Proton-proton collisions at RHIC will also be used to produce W ± bosons ([11]), orig­

inating from the interaction of ud or ud quarks in the proton which subsequently decay 

into charged leptons and can provide information on the ratios Au /u  and A d /d  from W + 

and on A u /u  and A d /d  from W ~  ([104]).

The gluon distribution can be easily measured in processes where the gluon enters 

directly, like photon-gluon fusion (7*g —>■ qq). In this process the qq pair creates two 

hadron jets, or at lower energies, single hadron pairs, with opposite large transverse 

momentum. Up to now, a single data point was obtained by the HERMES experiment 

([105]) with a similar analysis, using high transverse momentum hadron pairs, indicating 

a positive gluon polarization A G /G  = 0.41 ±  0.18 ±  0.03 at an average < x  >— 0.17 (see
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Fig-6-1)-
The COMPASS experiment was built at CERN with the goal of measuring the gluon 

polarization. Polarized muon beams are produced by pion decays, and their high energy 

(~ 200 GeV) makes it possible to reach low x  regions (x < 0.01). COMPASS is explor­

ing the possibility to measure the gluon polarization through open charm events. The 

contribution coming from the charm quark to the structure function gx ([106]) can be ex­

pressed as a convolution of a known function and the gluon distribution. Given the x  

dependence of gx, this can be de-convoluted to extract AG. The large acceptance of the 

detector and its full particle identification will allow a large sample of charmed particles 

to be collected.

Fig. 6.1 shows projections for the statistical accuracy of the COMPASS and RHIC 

results, compared to the projected accuracy of the HERMES result, and the x  range for 

each experiment. According to expectations, the results from COMPASS and RHIC will 

be able to discriminate among different models for the gluon polarizations.

New and exciting results will come from these experiments, that will probably shed 

more light on the mystery of the nucleon spin. The future of spin physics is starting 

now.....so fasten your seat belts and enjoy the ride!

\ ■ HERMES pairs of high pT hadrons 1996-2000 projected 
-  A  COMPASS pairs o f high pT hadrons 2.0 fb '1 at 200 GeV 
' O STAR at RHIC direct photon + je t 320 pb'1 at Vs = 200 GeV

0.8

0.6

0.4

0.2

  GS-A(LO)

 GS-B (LO)

 GS-C (LO)
- 0.2

-0.4

1 0 '2 10 '1 X.‘gluon

Figure 6.1: Projection for statistical accuracies of HERMES, COMPASS and RHIC spin 
physics experiments, superposed to three different QCD leading-order models for AG at 
Q2 =10 GeV2. The plot is based on projections shown in Ref. [107].
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Appendix A

SU(3)

SU(3) is the set of unitary 3x3 U matrices with detU=l. The fundamental representation 

of the SU(3) group is given by the matrices

U = e^XiUli (A.l)

where ca* are eight real parameters, and A * are called Gell-Mann matrices. They are the 

generators of this group, and there are 32-l=8 linearly dependent traceless hermitian 3x3 

matrices ([!]):

, (A-2)

(A-3)

(A.4)

where fa k  are fully antisymmetric under the interchange of any pair of indices, and dtjk 

are fully symmetric. Also:

142

0 0 1 \  /  0 0
0 0 0 ; A5 =  0 0
1 0  0 /  \ i  0

/O  0 0 \  /  0 0 0 \  - /  1 0 0 \
A6 =  0 0 1 ; A7 =  0 0 -* ; A8 =  - =  0 1 0

\  0 1 0 /  \ 0  t 0 /  ^ 3 \  0 0 -2  /

with the Pauli spin matrices

^  =  (  °1 o )  '• ^ = ( ° i  ~ o )  ; =  (  0 -1  )  ■

The Gell-Mann matrices satisfy the relations:

[ A  j , X j  ] =  2 * / j j / cA / c 

4
{Aj,Aj} =  +  2djjfeAfc

A,; — (Ti 0

0 0 with * =  1, 2,3 ; A4
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i j /c dijk i A; fijk
1 1 8 1/V3 1 2 3 1
1 4 6 1/2 1 4 7 1/2
1 5 7 1/2 1 5 6 -1/2
2 2 8 1/V3 2 4 6 1/2
2 4 7 -1/2 2 5 7 1/2
2 5 6 1/2 3 4 5 1/2
3 3 8 1/V3 3 6 7 -1/2
3 4 4 1/2 4 5 8 a/3/2
3 5 5 1/2 6 7 8 V3/2
3 6 6 -1/2
3 7 7 -1/2
4 4 8 - l /2 y /Z
5 5 8 -1/2^3
6 6 8 — 1/2V3
7 7 8 — l/2v/3
8 8 8 -1A/3

The fundamental representation of SU(3) is a triplet. The three color charges of a quark 

and the u, d, s quarks (neglecting the different masses of these quarks) form the funda­

mental representation of a SU(3) symmetry group.
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Appendix B

Renormalization Group and the 
Running of the Coupling Constant

One of the observable manifestations of vacuum fluctuations in QED is the potential 

screening of the electron charge. In order to measure its charge, the electron must be 

placed in an electromagnetic field, and then the reaction with the field must be stud­

ied. But on the way to the charge, a quantum probe can undergo virtual dissociation 

into an e+e~ pair, which forms an effective dipole, leading to a screening effect.This pro­

cess gives a contribution to the cross section proportional to oem , depending on the 

4-momentum of the photon. Therefore the inclusion of vacuum effects transforms a con­

stant (the charge) into a function, referred to as the effective charge.

In general, in any renormalizable theory, the quantum corrections cause the constant 

numerical value of the coupling constant to become a function of Q2, i.e. the theory 

predicts only the Q2 behaviour of the coupling constant, but not the actual value at any 

given Q2. Experimentally the curve on which a(Q2) lies is selected with the condition 

a{ji2) =  a^, as shown in Fig.B.l. In QED we have ccem(0) =  1/137. The physical curve 

can be represented as a function of two dimensionless arguments Q2/fj,2 and a M, i.e. it 

can be written as a(Q 2/fj,2, a). However the pair /i, a fJj can correspond to any physical 

point. Renormalization invariance means that any two parameterizations must lead to the 
same result:

(B.l)
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a 2

a i

H i H i Q 2

Figure B.l: The running coupling constant.

and obviously

OL J  =  OLi . (B.2)

By combining these two expressions we get the functional equation:

a(x, a) = a  ( ^ ,  a(t, aj'j . (B.3)

The renormalization group is the group of all transformations from one possible parame­

terization to the other. They form a continuous, one parameter group:

The renormalization group method is a systematic method of improving the results of 

ordinary perturbation theory. The point is that exact solutions of the quantum field 

equations must satisfy the condition of renormalization invariance. In practice we deal 

with pieces of Taylor series expansions in the coupling constant. The properties of these 

approximate solutions can differ significantly from those of the exact solutions because 

renormalization invariance is violated in perturbation theory. These differences can be­

come important when the solution has a singularity, as occurs, for example, in the ultravi­

olet limit. The renormalization group method allows one to obtain from the approximate 

result a renormalization invariant expression which coincides with the original expres­

sion at lowest order in a. The group differential equations serve as a technical tool for 

realizing this program. By differentiating Eq. (B.3) one gets

I X -(M \x  —> x  = — a  —> a{t, a) . (B.4)

(B.5)
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It is easy to show that any function 0(a) exactly satisfies Eq. (B.3). The 0  function can be 

expressed as

0(a) =
da(x, a)

dx
(B.6)

X=l

The renormalization group method amounts to obtaining the 0  function from a given 

approximate solution using Eq. (B.6). Then the solution to Eq. (B.5) gives an improved 

approximate solution, which, on the one hand, corresponds to the original solution to 

lowest order, and, on the other hand, is renormalization invariant. In QCD, the one-loop 

approximation for a s is:

a s(Q2)

and the 2-loop approximation is:

a , (Q 2) 4*

47r
A) In %r

0o = H -  - n f  , (B.7)

1 -

A jln fr

The renormalized coupling constant is:

O is ( Q 2 ) =

01 I n ln f T  
$  I n g

/5i =  102 -  y  n f  . (B.8)

l +  ^ # 1( 3 3 - 2 n / ) l n g ‘
(B.9)

As Q2 increases, it becomes infinitely small for short-distance interactions, and the theory 

is asymptotically free. From Eq. (B.9) we see that at sufficiently low Q2 the effective 

coupling will become large. The scale at which this happens is usually denoted with A2, 

where:

A2 /i2e

so that:

a s(Q2) =

( 3 3 - 2  n^)a8(^)

12tr

(B.10)

(B.ll)
(33 -  2nf) In ^  '

For Q2 »  A2 the effective coupling is small and a perturbative approach in terms of 

quarks and gluons interacting weakly makes sense. For Q2 ~  A2 we cannot use such a 

picture any longer since quarks and gluons will arrange themselves into strongly bound 

clusters, namely hadrons. The value of A is not predicted by theory and it has to be 

experimentally determined: we can expect it to be of the order of a typical hadronic mass. 

It is experimentally measured to be A ~  0.2 GeV. Thus for example, for experiments with
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Q2 ~  (30 GeV)2 it follows that a s ~  0.2 and perturbative theory can be used. In the 

large Q2 limit the quark masses can be neglected and they contribute no mass scale to 

QCD. Nevertheless there is a mass scale A inherent to the theory, which enters through 

renormalization.
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Appendix C

The Mellin Transform

C .l LO case

The n-th moment of a function is defined as the Mellin transform ([74]) of / :

fn{Q2) =  [  f ( x , Q 2) Xn~ l d x  . (C.1)
Jo

The moment of a convolution of two functions /  and g has the interesting property of 

being the product of the moments of the two functions:

f d x  x n~ l f®g = [ d x  x n~ x [ —f g(y) = fngn . (C.2)
Jo Jo Jx y \ y )

This makes it very convenient to work in the Mellin n-moment space, where the evolu­

tion equations can be solved analytically at a given order in a s. In fact one has:

±  (  A 2"(Q 2) \  c ,(Q 2) (  P,(s0)“ 2n/ P<“>” \  (  ATT  \
dt V AGn(Q2) J 2n \  p ^ n pg" J V AGn J

where P ip n are the nth-moments of the splitting functions and depend only on the 

number of flavours n f  and on n. They can be found in Ref.[20].

These momentum space evolution equations are usually called LO renormalization 

group equations, since they were originally derived from the operator product expansion
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for the unpolarized structure functions. The moments P ^ n are called anomalous dimen­

sions (there is actually a factor between the two) and they determine the logarithmic de­

pendence on Q2 for the parton distributions and so for gr  The solution to Eq. (C.3) is 

very straightforward:

_2_ d(° )»
AqnNS(Q2) =  L AqnNS

A £n(Q2) \  _  - i - p ( 0 ) a  (  A E " ( Q o )

A Gn(Q2) J  V ^ G niQl)
(C.4)

where L  =  ois{Q2)/ o/siQl). One then just has to diagonalize the matrix p(°) and find the 

two eigenvalues A±. This can be achieved with the help of the two projection matrices 

P± that project the two eigenvalues A±:

p ( 0 ) n  _  X n f
P± =  ±- A" -  A”

A+ = P i?"  +  pia a  ± V (P«a ~ Poo)2 + 8 «fP^onp<
(0)n p (0)ra 

Gq

(C.5)

(C.6)

where I  is the identity matrix. The projection matrices have the usual properties P± =  
P±, P + P - = P -P +  = 0, and P+ +  P_ = I.  The matrix p(°)n can then be decomposed 

into:
p ( 0 ) n  =  X n p +  +  X n p _  ^

and the matrix expression in Eq. (C.4) becomes:

 ____ 2 _ p > ( 0 ) n 2 \n ^
L +P+ + L -xnP_ . (C.8)

The solutions to the evolution equations for the n-moments are:

A S"(Q2) =  [anAYP{Q l)+(3nA G n{Ql)]

+ L ~ loXl  [(i _  a n)AY,n{Q2) -  pnA G n{Ql)\
CXn ( 1 — O ip)- 2 _ \ n

A Gn{Q2) = L  0o-

-s~Xn,+  L 0o

(1 -  a n)A G n(Ql) + U" ; A Sn(Q2)

a nA G n(Ql) -  — -- A . P n /A Sn(Qo)

A
Q!n(l Oin)

Pn
(C.9)

where

Oin ---

p (0  )n y n 
*99

A” -  Â .
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Pn =
l n i P $ U 
A” -

(C.10)

Once the distributions are fixed at a particular scale Qq (by experiment or theoretical 

assumptions) their evolution is determined by the QCD dynamics of the anomalous di­

mensions at leading order in a s. After obtaining the n-moments one has to invert them 

to obtain the parton distributions. This can be achieved by a numerical integration, by 

using the formula:

f(x,Q2) i  r
7T Jo

dz Im - (c + z e j n = c + z e 11̂

C.2 NLO case

(C.ll)

In momentum space the evolution equations are simply given by:

/ .

d_ f  AEn(Q2) 
dt I AGn (Q2)

+

a s ( Q  ) D (0)n ,
~ ^ T Fn s  +

OtsiQ2)
2 7T

<xs ( Q 2) /
2tt ^

M Q 2)
2n

p(0)n
JTqq
p(0)n

Gq

^ f P q L 
p (0  )n 

GG

(0 )n

0(1)™
N S ±

+

^■Qn s ±(Qo)

P £ )n 2 n fp[})nQQ
p(l)n

Gq

y^gGpiX)n
GG

a s(Q2) p ( 0 ) n  +  (  a s { Q 2 ) ^ 2 p ( i ) r ,
27T \  27T

The solutions to these equations are a generalization of Eq. (C.4):

(  AS»(Q§) 
V AG"(Qg)

AS»(Q§)
A Gn(Ql)

A Q1n s ±{Q2)
2 a ,(Q 2) - a s(Q2)

Po 2n
pP)n 
r N S ±

_ 2 p(O)71 
a .  ■* \ r  c  A  -,72x L AqnNS±(Q20)

AE n(Q2) 
AGn(Q2) ) - {

L-^p(°)n +  Ô Q 2) p L -£P(°>
2n

Pi p(fi)n 
2Po NS

2tt

(C.12)

[ A  x

A s - ( g 02)
AGn(Q§)

(C.13)
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where, as before, L  =  a s(Q2) /a s (Ql). Also,

17 = * {P+AP+ + P-l tP-)  +  A ^ V + P~kP- x
A> + + * A" -  A" — ^/?o A” — A” — \(3q

R  =  p ( l ) n  _  J ^ _ p ( 0 ) n  ( C 1 4 )
2po

and P± are the matrices that project the two eigenvalues A±, already defined in Eq. (C.5). 

The explicit form of the solution in Eq. (C.13) can be found ([20]) by using the property 

given in Eq. (C.8).

The solutions for the nth moment of the quark distributions can be inverted to get 

Aq, or they can be used to get the n-th moments of gx:

g"(Q2) =  I  [ ( l  +  g c ? )  + g2CSAG "(Q 2)] . (C.15)
q,q

By comparing Eq. (4.32) and Eq. (C.15) it appears clear that the Wilson coefficient func­

tions C" are the first order approximation in a s of the coefficients E \  introduced in sec­

tion 4.1:

^  =  i  +  g c ?

* 8  =  ° +  £ c 5 .  (C.i6)

In any NLO (and beyond) treatment Wilson coefficients and splitting functions are not 

uniquely defined, but the measurable quantity gx has to be independent of the scheme 

convention. The requirements of convention independence can be easily derived, using 

eqs(C.13) and (C.15). Let us suppose that we choose a different factorization scheme in 

the NS sector:

Cn s  C'n s  — Cn s  +  Ajvs • (C.17)

Up to order O(a^) also the splitting functions need to be redefined:

jW7 1  p 7(l)n _  p (l)n _|_
2N S  -  P M "  =  P N S  +  ^ N S  • ( C .1 8 )

Similarly, in  the singlet sector, a change in  the factorization schem e brings a change in  the  

matrix P W;

C n  ->■ C ' n =  C n +  A n

p ( l ) n  p t ( l ) n  =  p ( l ) n  +  P o ^ n  _  [ A n , p ( ° ) ] ,  ( C .1 9 )
2

1 5 1
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where the upper row in the C  matrix corresponds to the quark Cq — Cqq and gluon 

Cg = CqG Wilson coefficients, while the second row is introduced to keep the treatment 

as symmetric as possible, and it does not bring any contribution. It is worth noting that 

the transformations of the splitting functions in Eq. (C.19) are not fixed by the change in 

the first row of the coefficient functions alone, since the lower row in A remains undeter­

mined. From all these results, it is clear that a consistent (factorization scheme indepen­

dent) analysis of g1 requires the knowledge of all splitting functions and coefficient 

functions Cq/j.  Such an analysis has been performed in very few schemes.
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Appendix D

X distribution and z2 test

D .l  x 2 distribution

Let us consider a quantity x  taken from a gaussian distribution with true mean equal to 

zero and variance a2 =  1. The probability of measuring a value of x  between a and b is 

([38]):

P(a < x  < b) = - j =  e~x2!2dx . (D.l)

Given N  measurements of x, let us define the x 2 as the sum of the squares of the mea­

sured values:

X2 =  x \  + x \  +  ... + x% . (D.2)

The probability distribution of x 2 is:

P (X2) = P{%\ + x \  + ... +  x% < x 2) —

=  ( ^ = \  1 [  e~(x2+x%+'"+xv')/2dxi...dxN
\  v  27T J J x?+x2+...+xlr<x2x(+xZ+...+xff<x2

N / 2
I _ - r * l  2 j t .

N
<X2UeT L ^2

/  e~u/2uN/2~ldu > P-3)2N/ 2T  ( f )

where dVn is the element of volume of a iV-dimensional sphere:

NttN/2rN 1

dVN = W Z W ) i r ' < D ' 4 )
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with r 2 =  x 2 +  x  2 +  ... +  x%,  and u  =  r 2. The probability density f i x 1) is the derivative 

of the probability distribution P {x2)-

f ( x 2) =  . (D.5)

The expectation value of x 2 is*:

1 poo
^ (x 2) =  2n / 2 V (N j JQ **e_X /2(x2)N/2~l dx2 = N  , (D.6)

where we used the fact that F(x) =  J0°° e~ttx~1dt.

The variance of the distribution is

a 22 =  E ((X2)2) -  (E (X2))2 =  N ( N  + 2 ) - N 2 = 2 N .  (D.7)

In the general case of a distribution with measured mean x  and variance a 2 the x 2 is 

defined as:

x2 =  E  ■ (D.8)
i - 1

In this case it's important to notice that the expectation value of x 2 will not be N  but 

N  — 1, since the meaning of N  in eqs.(D.6) and (D.7) is that of total degrees of freedom, 

and in Eq. (D.8) the total degrees of freedom are N  — 1, because of the condition on the 

average: J ]  x- i /N  =  x.

Fig. D .l shows the probability density f ( x 2) for different values of N ,  compared to 

the gaussian distribution with same variance and mean value. The two distributions tend 

to overlap for large N .

D.2 z 2 test

Let us consider the general case of measuring xt  with different accuracies Let us also 

suppose that the errors are randomly distributed around zero, i.e.:

Xi = x  +  £i with E{£() = 0, E{e2) — a2 . (D.9)
*The expectation value E{x) of a quantity x can be obtained from its probability density /  as E(x) =

f  xf(x)dx
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Figure D.l: x2 distributions (dashed) and gaussian distributions (solid) having same vari­
ance 2N  and mean value N .  As N  increases the two distributions tend to overlap.

The weighted average x  is given by x  = which gives a best estimate for
^ i ^ i

the errors e* given by:

Ei =  X{ — x  . (D.10)

We expect, in absence of any bias on the measurement, that these quantities are normally 

distributed around zero with variance erf, so that Ei/oi are expected to follow a gaussian 

distribution with mean equal to zero, and unit variance. In this case, the sum

i N  ,  _ x 2
1 v - W  £*

CTi
(D.ll)

follows a x2 distribution with expectation value equal to 1 and variance equal to 2(JV -  1). 

Using normal propagation of errors, we get, for the expectation value of z  and its 68% 

confidence limit, the values:

z  = l ±
V 2( J V - 1) '

(D.12)
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Appendix E

Statistical errors

E .l Independent variables

Given M  independent measurements Ei of the same quantity E  with different standard 

deviations oi, the best estimate for E  is given by the weighted mean:

where a  is the standard deviation in the weighted mean. For example, if two quantities 

Ea  ±  oa  and E b  ±  &b are calculated from different data sets, namely A  and B ,  with 

A  n B  =  0 , then they are independent, and the best estimate of E,  over the whole data 

set A+B is given by the weighted mean.

The error of any function f ( E A, E b ) has the form:

E.2 Correlated variables

When the statistics involved in calculating Ea  and Eb  are not independent, the error for 

a function / ( E a , E b )  has the expression:

E  = (E.l)

(E.2)

(E.3)
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where the last term takes care of the correlations between E a  and E B.

Given a large number N  of measurements E a u the standard deviation a a  is empiri­

cally defined as:

“d  =  J T A  E ^ *  “  ’ (E4>
=1

while the covariance between Ea and Eb is given by:

1 N
cov (E A, Eb) = £ ( £ A. -  E A)(EBi -  E B) , (E.5)

i= 1

where Ea and E B are the averages of Ea, and E B *. When Ea and E B are independent, 

over a large number N  of measurements they will fluctuate around their average in an 

uncorrelated way, so that the covariance is zero and one recovers the usual formula for 

the propagation of errors in a function of independent variables. From Eq. (E.4) it follows 

that

cov(Ea,Ea) = o\  , (E-6)

while the linearity properties of the covariance follow from Eq. (E.5):

cov(aE A + bEB, E c) = a cov (E A, E c) + b cov(EB, E c) (E.7)

that will prove to be useful later (here a and b are constants).

It is worth noting that the covariance is a property only of Ea and E B/ and not of the 

specific form of the function / .

E.2.1 Totally correlated variables

In this case in which the set A  is divided into M  disjunct samples, the relation

Ea  ~ v '  (e si
°a  it ai

holds (see Eq. (E.l)), where the indices i indicate the independent subsets of A. If B  is 

a subset of A, then for a particular bin corresponding to set B,  the relation between Ea 
and Eb is given by the weighted mean:

Ea =  °-iEB +  EA- B , (E.9)
_________  a B ° A - B

*The averaged value of E is supposed to be a good approximation of the true value, so they are assumed 
to be equal, and no distinction is going to be made between the two.
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where the remaining terms containing the values of Ei in the other bins i have gone into

A — B. The relation between E a  and E b  is then linear and one can apply eqs.(E.6) and

(E.7) to get the covariance cov(Ea , E b ):

2 2 2 

cov (Ea , E b ) = ^-COv{EB, E B) +  - ^ —cov (EA- b , E b ) = =  a \  , (E.10)
a B  a A - B  ° B

where the independence of E a - b  and E b  was used, giving cov {Ea - b , E b ) =  0.

The standard deviation in /  is then:

m s « - ■  « »

E.2.2 Partially correlated variables

A more difficult case is when the two quantities E a  and E b  under consideration are 

calculated using two data sets that have a non zero intersection. In this case the two 

quantities are said to be only partially correlated.

To calculate the covariance two sets A 1 and B ' are introduced, such that A  = A !+APiB 

and B  =  B 1 +  A  fl B. It must be:

E a _  E a> E acb
ci2 ~  a 2 a 2a  A  ° A ’ a A n B
E b  E Bi t E a c b

“I O 12
a B< a A n B

(E.12)

so that
2 2 2 

E a  =  % E a ’ +  °-4e b  -  ^ 4 - E b> • (E.13)2 A i o J-'1> 2
a A> ° B  °B>

The covariance cov (Ea , E b ) is:

2 2 2
c o v (E a ,  Eb)  =  ^y~cov(EA' ,E b)  +  ^4-cov(EB, EB) -  ^j-cov{EB',EB)

<JA ' a B  ° B '
2

=  4  ~ - ^ - cov(EB' , E b )
° B '

= < -  4 - 4  > (E-14)aB,
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where the fact that cov(Ea>,Eb) — 0 was used (A' and B  are independent) together 

with cov(Eb , E b >) — aB as follows from Eq. (E.10), since B'  C B. Using the relation 

\  — Ajr- +  -A —/ one gets the covariance in the case of partially correlated variables:
aB aB' aACB

cov(Ea ,E b ) = ^ .  (E.15)
a AnB

This expression recovers both the errors for the case of independent variables and the 

one for totally correlated, in the two limits of aAnB — 0 0  and a s  = aAnB• In this case 

however the knowledge of Ea  ̂ a a  and E s ± a s  alone is not enough to calculate the error 

in any expression including A  and B ,  since one also needs the error in the intersection 

A n B .

Table E.l contains a compilation of errors for some functions, for the three cases of 

independent, completely and partially correlated quantities.
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I n d e p e n d e n t C o m p l e t e l y  C o r r e l a t e d P a r t i a l l y  C o r r e l a t e d

f aS / ° V /

Ea — Eg Ea -  Eg Ea  — Eg\ / K  - < 4 1 J ^ a + V b  2J  BV AnB

Ea -  Eg
1

Ea — Eg
i Ea  -  Eg 1

\ j aA + aB \]\aA - ° B \
I 2  2 
/ _ 2  , _ 2  r,aAaB 

\  A B 2  _ 2V aAnB

Ea
Eg

Ea
Eg

Ea
Eg

Ea J o- i  o%
Eb  V  EA2 E g 2

EA 1 <r a  , <*B 2

Eg  V  Ea 2 E g 2 EAEg A
Ea  1 o*A o% 2  o \o *
E g ] j  Ea 2 E g 2 EAE g < j \nB

OnO
Table E.l: This table shows the errors for some simple functions, useful to check the agreement between two quantities E a  
and E b - The cases of complete independence, complete and partial correlation (that is one of the two, either E a  or E b , is 
calculated over a data set that is included in the other) are considered.
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TOP BOTTOM

bin y  bin x  bin * * Jvcs N g Wd1s
1 1 1 20619 21845 20219 21362 4244 13449 4281 13045
2 1 2 4317 9593 4214 9626 1928 7878 1890 7724
3 1 3 3540 10895 3481 10480 2077 9517 2132 9111
4 1 4 3299 11984 3187 11715 2393 11046 2251 10875
5 1 5 3091 13832 3005 13493 2615 12570 2486 12500
6 1 6 2922 14920 2760 14457 2585 13681 2539 13565
7 1 7 2630 15563 2513 15335 2435 14717 2374 14690
8 1 8 2283 15473 2227 15311 2280 14867 2224 14829
9 1 9 74 9792 76 9407 72 9550 88 9287
10 2 9 2023 7118 1968 6866 2022 6726 1968 6497
11 1 10 40 10149 36 9923 62 9986 37 9749
12 2 10 1724 7751 1701 7536 1851 7296 1779 7098
13 1 11 22 9946 17 9935 23 9706 19 9758
14 2 11 1278 8147 1216 8204 1380 7770 1364 7837
15 1 12 19 10971 16 10812 15 10727 9 10442
16 2 12 971 8159 934 8082 997 7747 991 7610
17 1 13 13 11610 14 11741 8 11355 13 11052
18 2 13 612 8060 598 7735 697 7513 664 7443
19 1 14 7 12606 7 12258 12 11975 12 11922
20 2 14 343 7187 355 7320 399 7112 371 7124
21 1 15 2 13305 2 12963 3 12491 6 12512
22 2 15 193 6793 182 6990 212 6775 219 6704
23 1 16 1 9925 2 9606 0 9101 1 9036
24 2 16 4 6348 5 6332 1 6046 5 6201
25 3 16 86 4034 83 4066 83 3891 92 3884
26 1 17 0 10024 1 10003 2 9527 2 9396
27 2 17 1 5675 3 5879 1 5707 5 5724
28 3 17 42 3762 32 3993 48 3796 36 3871
29 1 18 1 10741 1 10928 4 9820 1 9881
30 2 18 1 5219 1 5205 2 4961 2 4996
31 3 18 15 3581 11 3534 19 3498 17 3674
32 1 19 2 10731 2 10909 1 9829 1 9650
33 2 19 1 4939 2 5229 1 4834 3 4883
34 3 19 6 3155 8 3295 8 3022 8 3285
35 1 20 0 10483 1 10801 1 9792 0 9619
36 2 20 2 4332 2 4351 0 3936 2 4137
37 3 20 2 2655 6 2764 7 2609 2 2710
38 1 21 0 10153 0 10166 0 9187 2 9103
39 2 21 0 3311 1 3431 0 3037 0 3140
40 3 21 2 2173 3 2374 1 2200 1 2342
41 1 22 0 8563 1 8548 0 7744 1 7540
42 2 22 0 2670 0 2788 1 2457 2564
43 3 22 2 1816 0 2048 1 1755 1 1880
44 1 23 0 8045 0 8299 1 7473 1 7703
45 2 23 0 1391 1 1562 0 1332 1 1440
46 1 24 0 6551 0 6828 0 5997 1 6295
47 1 25 0 4106 0 4223 1 3766 3841
48 1 26 0 2030 0 2114 1 1825 1 1998
49 1 27 0 680 1 778 0 657 1 649

Table Rl: Events selected from the 98b4 production
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TOP BOTTOM

x  bin y  bin bin N ‘̂  Jvcs N # m ^ 3 N ^  -,vcs
1 1 1 23230 78801 23594 79541 23296 84283 23314 84198
2 1 2 10088 47367 10070 47859 10243 50478 9941 51030
3 1 3 11310 56497 11382 56755 11387 60243 11291 60690
4 1 4 12335 66716 12327 67361 12548 70069 12439 70714
5 1 5 13361 76912 13511 77147 13648 80974 13615 81944
6 1 6 13770 84854 13506 86535 13793 88766 13658 88879
7 1 7 13237 91006 13322 92107 13396 93955 12953 95161
8 1 8 12149 91307 12146 93457 12065 95820 12219 96179
9 1 9 474 58056 461 58735 425 61259 413 61829
10 2 9 10859 41958 11148 42439 10884 42567 10899 43493
11 1 10 255 61416 266 62015 239 64525 285 65351
12 2 10 9804 45792 9970 46399 9656 47015 9790 47360
13 1 11 136 60941 155 61644 157 64228 135 65104
14 2 11 7706 49595 7767 50413 7630 51057 7458 52798
15 1 12 91 66918 102 68192 94 70155 108 71665
16 2 12 5682 49596 5651 50826 5624 51323 5661 52401
17 1 13 57 72984 71 74343 75 76957 72 77825
18 2 13 3751 48826 3784 49942 3549 50750 3647 51277
19 1 14 49 76179 38 77755 57 80643 59 82647
20 2 14 2206 46350 2205 47325 2161 47380 2141 49241
21 1 15 22 80783 35 82053 26 85372 42 87324
22 2 15 1112 43736 1131 45482 1048 45562 1101 47347
23 1 16 12 59504 10 61061 13 64340 19 64836
24 2 16 29 39688 31 41181 33 42041 32 43092
25 3 16 545 25801 563 27029 578 26056 532 27702
26 1 17 11 61833 16 63308 10 66481 11 67771
27 2 17 21 36717 11 38255 16 39129 17 40218
28 3 17 227 24760 240 26205 224 25830 256 27081
29 1 18 8 66058 7 67282 7 71099 7 72723
30 2 18 5 33132 4 34551 14 35086 19 36681
31 3 18 94 22388 95 23667 108 23409 115 24825
32 1 19 9 65959 3 67854 5 71846 4 73127
33 2 19 5 31790 6 33768 9 34218 7 35434
34 3 19 51 20094 38 21572 49 20915 44 22393
35 1 20 4 64185 6 66216 6 70704 3 72427
36 2 20 4 27335 5 28721 6 28899 1 30547
37 3 20 19 17116 21 18721 17 17749 30 19397
38 1 21 4 61484 7 63267 2 68317 2 70583
39 2 21 3 20453 3 22078 1 22153 1 23169
40 3 21 9 14389 11 15986 9 15001 6 16594
41 1 22 4 51270 5 53097 4 57686 1 59718
42 2 22 3 16940 1 18144 4 18524 4 19267
43 3 22 6 12117 8 13390 8 12707 3 14042
44 1 23 1 49063 3 52015 2 56091 3 58639
45 2 23 1 9276 3 10260 0 9563 3 10956
46 1 24 3 39718 3 42746 3 44475 4 47472
47 1 25 3 24015 2 26041 2 27116 1 29102
48 1 26 2 12033 3 13197 1 13622 1 14547
49 1 27 0 4146 1 4527 1 4131 2 4627

Table F.2: Events selected from the OObl production
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bin RC Align. M R
1 0.013079 0.000500 0.000019 0.001538
2 0.010240 0.000756 0.000032 0.001270
3 0.008581 0.000572 0.000033 0.001056
4 0.007066 0.000474 0.000035 0.000952
5 0.005711 0.000587 0.000035 0.001007
6 0.004447 0.001043 0.000032 0.000978
7 0.003407 0.000333 0.000026 0.000862
8 0.002133 0.000411 0.000016 0.000480
9 0.001566 0.001318 0.000001 0.000519
10 0.002086 0.000406 0.000006 0.000285
11 0.001672 0.001199 0.000020 0.000395
12 0.001426 0.000248 0.000014 0.000212
13 0.001973 0.000843 0.000049 0.000289
14 0.001289 0.000262 0.000043 0.000154
15 0.002238 0.000836 0.000085 0.000651
16 0.001469 0.000544 0.000080 0.000335
17 0.002337 0.002050 0.000132 0.001055
18 0.001731 0.000355 0.000130 0.000547
19 0.002246 0.001283 0.000191 0.001465
20 0.001789 0.000509 0.000192 0.000877
21 0.002069 0.000387 0.000265 0.001885
22 0.001834 0.000466 0.000269 0.001471
23 0.002243 0.002160 0.000354 0.002432
24 0.002013 0.001308 0.000344 0.002172
25 0.002182 0.000269 0.000363 0.002153
26 0.002195 0.002832 0.000452 0.002338
27 0.001712 0.002322 0.000435 0.002800
28 0.001806 0.000531 0.000450 0.002656
29 0.002944 0.003890 0.000555 0.002719
30 0.002201 0.001396 0.000526 0.003917
31 0.001900 0.000548 0.000532 0.003093
32 0.004459 0.002526 0.000659 0.003534
33 0.003390 0.001667 0.000604 0.004833
34 0.002855 0.000365 0.000598 0.003625
35 0.006417 0.003484 0.000735 0.004572
36 0.004979 0.002239 0.000648 0.005423
37 0.004103 0.001192 0.000631 0.004348
38 0.008282 0.001679 0.000793 0.005484
39 0.006105 0.001067 0.000659 0.005970
40 0.005031 0.000627 0.000624 0.005304
41 0.010004 0.002272 0.000790 0.006168
42 0.007093 0.003450 0.000613 0.006760
43 0.005852 0.000520 0.000552 0.006452
44 0.010298 0.003567 0.000634 0.007212
45 0.006398 0.000786 0.000399 0.007773
46 0.010566 0.004979 0.000369 0.008608
47 0.009563 0.003461 0.000052 0.010243
48 0.006677 0.006457 0.000421 0.012096
49 0.003846 0.005059 0.001255 0.015004

Table F.4: Systematic errors on gx/F i, for each kinematic bin, common to 1998 and 2000 
data.
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bin Background Target Beam Normalization TSF Total
1 0.000048 0.002063 0.000877 0.004892 0.002037 0.014380
2 0.000068 0.001830 0.000778 0.000724 0.000810 0.010592
3 0.000222 0.001710 0.000727 0.001506 0.000992 0.009046
4 0.000023 0.001550 0.000659 0.000036 0.000051 0.007342
5 0.000005 0.001350 0.000574 0.000289 0.000057 0.006018
6 0.000029 0.001111 0.000472 0.000072 0.000011 0.004825
7 0.000073 0.000873 0.000371 0.000043 0.000020 0.003656
8 0.000084 0.000524 0.000223 0.000155 0.000006 0.002303
9 0.000142 0.000178 0.000076 0.000144 0.000000 0.002130
10 0.000164 0.000178 0.000076 0.000090 0.000000 0.002161
11 0.000058 0.000230 0.000098 0.000290 0.000000 0.002130
12 0.000083 0.000230 0.000098 0.000186 0.000000 0.001498
13 0.000176 0.000737 0.000313 0.000794 0.000000 0.002448
14 0.000111 0.000737 0.000313 0.000531 0.000000 0.001640
15 0.000031 0.001317 0.000560 0.000393 0.000000 0.002888
16 0.000002 0.001317 0.000560 0.000325 0.000000 0.002174
17 0.000067 0.002024 0.000860 0.000707 0.000000 0.004016
18 0.000050 0.002024 0.000860 0.000198 0.000000 0.002884
19 0.000021 0.002844 0.001209 0.000635 0.000000 0.004339
20 0.000076 0.002844 0.001209 0.000607 0.000000 0.003767
21 0.000023 0.003820 0.001623 0.000712 0.000000 0.005078
22 0.000072 0.003820 0.001623 0.000655 0.000000 0.004845
23 0.000009 0.004958 0.002107 0.000830 0.000000 0.006742
24 0.000070 0.004958 0.002107 0.000925 0.000000 0.006363
25 0.000030 0.004958 0.002107 0.000540 0.000000 0.006239
26 0.000031 0.006287 0.002672 0.001266 0.000000 0.008172
27 0.000053 0.006287 0.002672 0.001204 0.000000 0.008030
28 0.000047 0.006287 0.002672 0.000969 0.000000 0.007643
29 0.000000 0.007844 0.003334 0.001868 0.000000 0.010374
30 0.000000 0.007844 0.003334 0.000909 0.000000 0.009791
31 0.000000 0.007844 0.003334 0.000730 0.000000 0.009323
32 0.000000 0.009670 0.004110 0.001853 0.000000 0.012370
33 0.000000 0.009670 0.004110 0.001704 0.000000 0.012300
34 0.000000 0.009670 0.004110 0.001353 0.000000 0.011576
35 0.000000 0.011744 0.004991 0.002517 0.000000 0.015618
36 0.000000 0.011744 0.004991 0.001493 0.000000 0.014990
37 0.000000 0.011744 0.004991 0.001077 0.000000 0.014197
38 0.000000 0.014122 0.006002 0.001915 0.000000 0.018473
39 0.000000 0.014122 0.006002 0.001810 0.000000 0.017698
40 0.000000 0.014122 0.006002 0.001581 0.000000 0.017093
41 0.000000 0.016811 0.007145 0.001446 0.000000 0.021901
42 0.000000 0.016811 0.007145 0.002177 0.000000 0.021135
43 0.000000 0.016811 0.007145 0.002032 0.000000 0.020353
44 0.000000 0.019832 0.008429 0.003119 0.000000 0.025402
45 0.000000 0.019832 0.008429 0.002123 0.000000 0.023895
46 0.000000 0.023124 0.009828 0.002912 0.000000 0.029162
47 0.000000 0.026684 0.011341 0.002261 0.000000 0.032467
48 0.000000 0.030226 0.012846 0.003803 0.000000 0.036412
49 0.000000 0.033914 0.014413 0.002954 0.000000 0.040419

Table F.5: Systematic errors on g1/F 1, for each kinematic bin, for 1998 data.
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bin Background Target Beam Normalization Total
1 0.000008 0.000215 0.000108 0.000927 0.013213
2 0.000014 0.000167 0.000083 0.000947 0.010391
3 0.000026 0.000257 0.000128 0.000963 0.008723
4 0.000001 0.000012 0.000006 0.000991 0.007214
5 0.000024 0.000217 0.000108 0.001027 0.005924
6 0.000014 0.000126 0.000063 0.001069 0.004794
7 0.000014 0.000138 0.000069 0.001117 0.003706
8 0.000014 0.000148 0.000074 0.001170 0.002519
9 0.000013 0.000157 0.000078 0.001449 0.002567
10 0.000024 0.000285 0.000142 0.001027 0.002399
11 0.000021 0.000279 0.000139 0.001589 0.002648
12 0.000024 0.000315 0.000157 0.001058 0.001840
13 0.000026 0.000397 0.000199 0.001770 0.002832
14 0.000057 0.000859 0.000429 0.001104 0.001975
15 0.000080 0.001388 0.000694 0.001935 0.003507
16 0.000040 0.000690 0.000345 0.001141 0.002114
17 0.000035 0.000730 0.000365 0.002123 0.003996
18 0.000010 0.000209 0.000105 0.001181 0.002211
19 0.000080 0.001958 0.000979 0.002336 0.004374
20 0.000048 0.001186 0.000593 0.001231 0.002746
21 0.000058 0.001684 0.000842 0.002578 0.004271
22 0.000071 0.002054 0.001027 0.001285 0.003570
23 0.000037 0.001590 0.000795 0.003285 0.005449
24 0.000051 0.002195 0.001097 0.001898 0.004497
25 0.000066 0.002869 0.001434 0.001201 0.004619
26 0.000036 0.003137 0.001569 0.003667 0.006653
27 0.000034 0.002969 0.001485 0.002054 0.005621
28 0.000033 0.002826 0.001413 0.001262 0.004730
29 0.000000 0.003057 0.001529 0.004024 0.007706
30 0.000000 0.004090 0.002045 0.002153 0.006925
31 0.000000 0.003293 0.001646 0.001300 0.005385
32 0.000000 0.003636 0.001818 0.004495 0.008713
33 0.000000 0.004929 0.002465 0.002302 0.008583
34 0.000000 0.004339 0.002169 0.001348 0.006865
35 0.000000 0.005722 0.002861 0.004915 0.011826
36 0.000000 0.005711 0.002856 0.002412 0.010307
37 0.000000 0.006110 0.003055 0.001405 0.009285
38 0.000000 0.006654 0.003327 0.005197 0.013582
39 0.000000 0.006716 0.003358 0.002482 0.011706
40 0.000000 0.007363 0.003681 0.001480 0.011143
41 0.000000 0.007977 0.003989 0.005363 0.015881
42 0.000000 0.006960 0.003480 0.002619 0.013255
43 0.000000 0.007317 0.003659 0.001563 0.012076
44 0.000000 0.010420 0.005210 0.004433 0.018071
45 0.000000 0.009887 0.004944 0.001663 0.015070
46 0.000000 0.011856 0.005928 0.003670 0.019996
47 0.000000 0.013966 0.006983 0.003714 0.021586
48 0.000000 0.013899 0.006949 0.003683 0.022086
49 0.000000 0.015595 0.007797 0.003173 0.024107

Table F.6: Systematic errors on g j/F i, for each kinematic bin, for 2000 data.
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Appendix G

I joined the HERMES collaboration in January 1999.1 spent the summer of 1999 in Ham­

burg, where I became acquainted with the detector, the data analysis and the life in a big 

collaboration. TRD maintainance and data quality were among my duties in that period, 

and whenever I was in Hamburg. In that period I started building a code that could per­

form the gx analysis. I first worked on data from 1997, to obtain results in agreement with 

the published gf  paper. I then started analyzing data from 1998. The analysis was done in 

conjunction with another PhD student, Christoph Weiskopf. Independent analysis codes 

were developed to extract the measured asymmetry. The agreement of the two analy­

ses on the measured asymmetry was the starting point for further studies we both made 

separately: I worked on tests on the stability of the asymmetry and he worked mainly on 

the PID and systematic errors. Uta Stosslein was the coordinator of the g1 group, and she 

focused on yet other aspects of the analysis, such as the radiative corrections. In order 

to be able to extend the kinematic region to low x  I determined the trigger efficiencies 

which I have studied for all productions from 1998 to 2000. Results on gf  from 1998 data 

were released in Zeuthen in July 2001 by the HERMES collaboration.

In 20011 started to work on the next-to-leading order QCD fits, on a code used by the 

SMC Collaboration in a published paper. HERMES gf  results based on 2000 data were 

released in February 2002. Once the results on gf  with the high precision of 2000 data 

were obtained, new QCD fits could be performed. I developed a method to obtain the 

statistical error bands, and in June 2002 obtained the results shown in this thesis.
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