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Abstract

Two operators A, B on a separable Hilbert space are (/ + K)-equivalent (4 =, B) if
A = R™!BR. where R invertible and R = U + K, U unitary, K compact. The (U + K)-
orbit of A is defined as (U + K)(A) = {B € B(H) : A =, B}. This orbit lies between
the unitary and the similarity orbit. In addition, two (U + K)-equivalent operators are
compalent.

In this thesis, we construct essentially normal models — specific operators with various
spectral pictures — and investigate the norm closures of the (U + K)-orbits of these models.
We start by considering a multiplication operator on a generalized Hardy space — this
operator generalizes the forward unilateral shift. We then proceed to investigate opera-
tors with different indices, operators with disconnected spectra, operators with enlarged
essential spectra, operators with isolated spectral points and operators whose spectra are

connected but not simply connected.



The author wishes to thank Laurent Marcoux for countless useful suggestions and four
years of helpful supervision.
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Introduction and Preliminaries

The concepts of (U + K)-equivalence and (U + K)-orbits were first introduced by Herrero
in [Her86] in connection with the investigation of those quasidiagonal operators which are
limits of block-diagonal nilpotents.

(U + K)-orbits were subsequently studied by Guinand and Marcoux in [GM93a], where
the closures of (U + K)-orbits are described for normal and compact operators and for the
unilateral shift. Weighted shifts are investigated in [GM93b]. A class of operators that
includes the unilateral shift is dealt with in [Mar92]. A different generalization of the
unilateral shift case due to Ji, Jiang and Wang is available in [JJW96]. Some more results
pertaining to compact and essentially normal operators are due to Al-Musallam, [AM90].

In this thesis we shall study the closures of (i/ +K)-orbits of operators (models) with various
spectral pictures. In the introduction we shall start by recalling some well known facts
about three well known equivalence relations for operators on a Hilbert space : similarity,
unitary equivalence and compalence. We shall then proceed to introduce (I + K)-orbits
and review some of their basic properties. We shall also introduce the concept of essentially
normal models.

In Chapter 1, various classes of essentially normal models will be constructed. The principal
tools for this construction will be diagonal operators, modified Jordan blocks and a class
of generalized Hardy spaces.

In Chapter 2 we shall describe the closure of the (U + K)-orbit of the multiplication op-
erator M(Q, 1), defined on a Hardy space H%(Q,u) of functions on a simply connected
Cauchy domain. This operator is a generalization of the unilateral shift. This will be an
important first step, since M(£2, 1) is not only a model for the class of operators sharing its
spectral properties, but also a basic building block of the more involved models that will
be investigated later. The technique used here will be an adaptation of the technique used
in the description of the closure of the (i + K)-orbit of the unilateral shift in [GM93a].

In Chapter 3 we shall develop some functional calculus techniques that will allow us to
use conformal maps to generalize some results about the closures of (U + K)-orbits. Most
importantly, we will be able to generalize the main result of [Mar92].

In Chapter 4 we shall investigate the ampliations of the operator M (Q, ). This will be
accomplished by developing a tridiagonal decomposition technique. This technique will
allow us to show that an operator is in the closure of the (U + K)-orbit of another operator
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EQUIVALENCE RELATIONS AND ORBITS IN B(H)

in some instances where the similarity of the two operators is easily observed. but the
investigation of the (U/ + K)-orbit requires a lengthier argument.

We shall then proceed to investigate models with disconnected spectrum in Chapter 5. It
will turn out that the off-diagonal entries in the operator matrix of the Riesz decomposition
of an essentially normal operator are compact. This will allow us to deal with this case
using a corollary of Rosenblum’s theorem.

In Chapter 6 we shall enlarge the essential spectrum of our model. The description of the
closure of the ({f + K)-orbit of this model can then be accomplished by using some of the
results developed in the previous chapters, together with the Weyl-von Neumann-Berg-
Sikonia Theorem.

Models with isolated eigenvalues pose some specific problems. Fortunately. techniques that
deal with this have already been developed in [GM93a] during the investigation of the
closures of (U + K)-orbits of a normal operator. In Chapter 7 we shall adapt their method
to investigate a model whose spectrum includes isolated points.

Finally, in Chapter 8. we shall deal with a model with multiply connected spectrum. The
crucial techniques here will be the functional calculus and block-tridiagonal decomposition
techniques developed in Chapters 3 and 4.

In Chapter 9 we will state several open questions related to the results proved in this thesis.

Equivalence relations and orbits in B(#)

In this paragraph we shall introduce some basic notation and we shall recall some of what
is known about similarity, unitary equivalence and compalence.

Throughout this thesis, # will denote a complex separable Hilbert space. Let B(#) denote
the Banach algebra of bounded linear operators on H equipped with the usual operator
norm. Note that whenever we speak of closures of subsets of B(H) we have the norm
topology in mind.

We shall use () to denote the set of all compact operators on H. Note that K(H) is
a closed ideal in #, and so we can construct the quotient Banach algebra B(#)/K(H).
We will denote this algebra by A(#) and call it the Calkin Algebra. The corresponding
quotient map from B(H) to A(H) will be denoted by .

Recall that the spectrum of an operator T € B(#) is the set o(T) = {A € C : (T —
AI) is not invertible in B(H)}. (I is the identity operator on H.) We define the essential
spectrum g¢(T) of T as the spectrum of n(T") in the Calkin algebra, i.e.

0e(T) = {A € C: (x(T) — Xe) is not invertible in A(H)}.

(e = w(I) is the unit in A(H).)
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An operator T is called Fredholm if

(i) its range T(H) is closed,
(ii) nul (T') = dim(ker T') is finite.
(iii) nul (7*) is finite.

An operator T is called semi-Fredholm if condition (i) holds and at least one of conditions
(ii) and (iii) holds as well. Given a (semi-)Fredholm operator T we define its Fredholm

indez as
ind(T) =nul T — nul T".

For any operator 7. we define its Fredholm domain as
pr(T) = {A € C: (T — AI) is Fredholm}
and its semi-Fredholm domain as

pse(T) = {A € C: (T — AI) is semi-Fredholm}.

It is well known that an operator X is Fredholm if and only if the element = (X) of the
Calkin algebra is invertible. As a result.

pr(X) = C\ oe(X).

For every n € (ZU{—~2c.oc}), the set {T € B(H)|T is semi-Fredholm. ind(T) = n} is open.
Therefore. ind(.) is a continuous function on the set of all semi-Fredholm operators.

If X is a semi-Fredholm operator and K is a compact operator, we have
ind(X + K) = ind(X).
This property turns the Fredholm index into a useful tool for investigating compalence and
(U + K)-equivalence.
For more details on the properties of (semi-)Fredholm operators, see [CPY 74].

In this thesis, we shall use cl(Q) to denote the closure of @ when @ is a subset of a
topological space. When Q is a subset of C, Q" will denote {Z : z € Q}. The symbol Q,
where @ is a set, will be avoided here.
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Two operators A. B in B(#) are said to be similar if there exists an invertible operator X
such that A = XBX~!. The similarity orbit of A is the set

S(A) = {XAX~!: X is an invertible operator on H}.

Note that whenever two operators A and B are similar. they share the same algebraic
properties, such as spectrum, index and eigenvalues. In fact. if we disregard the inner
product and consider A and B as operators on the vector space H. we can think of A and
B as being the same operator on two isomorphic copies of H. (Note that we are talking
about vector space isomorphism here.)

Two operators A, B in B(H) are said to be unitarily equivalent (A = B) if there exists a
unitary operator U (i.e. U satisfies UU™ = U"U = I. where I is the identity operator) such
that A = UBU™!. The unitary orbit of A is the set

U(A) = {UAU! : U is a unitary operator on #}.

Unitarily equivalent operators are even closer to each other in terms of sharing properties
than similar operators are. If A and B are unitarily equivalent we can think of B as A
itself acting on an isomorphic copy of H (note that here we are talking about Hilbert space

isomorphism).

Similarly, two elements a,b of the Calkin algebra A(#) are said to be unitarily equivalent

if there exists a unitary u € A(H) such that @ = ubu®. (By saying that u is unitary we
mean that uu® = u*u = e. where e = w(I) is the unit of the Calkin algebra.) The unitary

orbit of a is the set
U(a) = {uau™! : u is unitary in A(H)}.

In what follows, we shall assume that all Hilbert spaces we are working with are infinite-
dimensional, unless stated otherwise.

The fact that U(T) does not need to be closed motivates the definition of the following
concept, closely related to the closure of the unitary orbit:

Two operators A and B are said to be approzimately unitarily equivalent if for every e > 0
there exist a K € K(H) with ||K|| < ¢ and a unitary operator U such that

A=U"BU + K.

Approximate unitary equivalence is a stronger relation than the relation of compalence,
defined below. For this reason, the approximate unitary equivalence of two operators A
and B is often denoted by A ~, B.
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For normal operators. we have the following description of approximate unitary equivalence
and of closures of unitary orbits, due to Weyl, von Neumann, Berg and Sikonia. [Ber71],
[Sik71], compare [Hal70], Problem 4.

0.1. Theorem. Suppose that M aend N are normal operators. Then M and N are
approzimately unitarily equivalent if and only if

(i) ge(M) = 0e(N), and
(ii) nul (M — M) = nul (N — AI) for all A € pr(M) = pg(N).

0.2. Corollary. Let N be normal. Then

cdU(N)) = {MeB(H):M~, N}
= {M normalon H : 0.(M) = g.(N) and
nul (M — AI) = nul (N — AI) for all A € pr(M)}

There also exists a description of the closure of the unitary orbit for an arbitrary operator,

which is due to Hadwin, [Had77] . The operator-valued spectrum T(T') of T € B(H) is
defined as the set of all those operators A acting on some finite-dimensional or infinite-
dimensional (separable) Hilbert space such that T is the limit of a sequence {7}, in
B(H) with T;, unitarily equivalent to A & T,, (for suitable operators T} ).

With this definition, A ~; B if and only if £(A4) = £(B). The equivalence A ~, B 4 €
cl{({(B)) remains true for arbitrary operators in B(#) as well.

Note that there is also a description of cl(S(T")) for a dense class of operators due to Apostol.
Fialkow, Herrero and Voiculescu. This description is in terms of spectral properties of
operators. Since it is rather lengthy, we refer the reader to [AFHV84].

Two operators S and T are said to be compalent (S ~ T) if there exists a unitary operator
U and a compact operator K so that S = U*TU + K. In other words, we want S and T
to be unitarily equivalent modulo the ideal of compact operators. Notice that this is an
equivalence relation and that if S and T are compalent then their images 7(S) and #(T)
in the Calkin algebra are unitarily equivalent.

Recall that an operator A is said to be essentially normal if A*A — AA* is compact, or, in
other words, the element 7(A) of the Calkin algebra is normal. This generalizes the concept
of a normal operator. Since normal operators are more tractable that other operators (more
general functional calculus, spectral theorem), it should come as no surprise that essentially
normal operators admit a richer theory than operators in general.

Recall also that for essentially normal operators the semi-Fredholm and Fredholm domains
coincide, see [Her90], 4.1.1. The following theorem, due to Brown, Douglas and Fillmore.
provides a spectral characterization of compalence for essentially normal operators:
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0.3. Theorem. [BDF73] Suppose that S and T are essentially normal. Then S and
T are compalent if and only if

(1) 0e(S) = 0e(T)
(i) ind(S — AI) = ind(T — M) for all A € pp(T) = pr(S)

0.4. Corollary. If A is essentially normal, then {B : A ~ B} is closed and {B : A ~
B} = 7=l U(n(A)))-

(U + K)-orbit and (U + K)-equivalence

In this paragraph we shall consider another orbit, which lies between the unitary and the
similarity orbit of an operator and which is the principal object investigated in the present
thesis.

For a Hilbert space H. let

U+K=U+K)H)={ReB(H): R isinvertible in B(#) and

R is of the form unitary plus compact}

Two operators A, B € B(H) are (U + K)-equivalent (A =y.x B) if A = R™'BR, for some
R € (U+K)(H). Note that this defines an equivalence relation on B(#). Given an operator
T. we define its (U + K)-orbit as

(U+K)(A) ={BeB(H): A=y.x B}.

Clearly, we have
UT) C U+ K)T) € S(T).

Some basic properties of (necessary conditions for) (U + K)-equivalence are as follows:

0.5. Proposition. If A =yx B, we have

(i) o(A) = a(B),
(ii) A ~ B,
(ili) oe(A4) = 0ge(B),
(iv) ind(A - z) = ind(B — z) for z € pr(A) = pr(B).

Proof. Statement (i) follows from the fact that A and B are similar. To see that A and

B are compalent, write
A= U+ K)'B(U + K),
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where U is unitary and K is compact. Now

(U+K)A = B(U+K)
UA+KA = BU+BK
UA = BU+BK-KA
A = U'BU+ (U'BK ~U'KA).

This shows that A ~ B, since the expression U*BK — U*K A is compact. The statements
(iii) and (iv) follow from the similarity of A and B (or from their compalence).

O

Since the (U + K)-orbit of an operator need not be closed. it makes sense to also investigate
the closures of (/ + K)-orbits. In fact one can find out more about these closures, which
is consistent with what is known about other orbits — the results concerning the closures
of orbits are usually more complete than those about the orbits themselves. We will use
A —y.x B to mean B € cl(if + K)(A). Note that this is a transitive relation.

(U + K)-equivalence and compalence are closely related. In fact, descriptions of closures
of (U + K)-orbits usually depend on descriptions of compalence. We shall therefore study
the closures of (U + K) orbits of essentially normal operators, for which a description of
compalence is provided by the Brown-Douglas-Fillmore theorem.

Now let A be an essentially normal operator. We have

(U + K)(A) € 7~ U(x(A)))-
The set on the right is closed and therefore

i + K)(4) € n~H{U(w(A)))

and
clU + K)(A) C YU (w(4))) Ncl(S(A)).

In fact, for all operators for which a description of the closure of the (U + K) orbit is known
(including normal operators, compact operators, the unilateral shift, etc.,[GM93a]), we

have
cl(U + K)(A) = 7~ LU (m(A))) N cl(S(A)).

We do not know if this equality holds for all essentially normal operators.

Some basic properties of the relation —;,.x are as follows:
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0.6. Proposition. Let A be essentially normal. If A —y.xc B. we have

(i) o(4) C o(B),

(ii) A~ B (and hence B is essentially normal),
(iii) oe(A) = oe(B),
(iv) ind(A — z) = ind(B — z) for z € pr(A) = pp(B),
(v) nul (A — 2) < nul (A - z) for z € pr(A) = pr(B),
(vi) nul (A —2)" < nul (A —2z)* for z € pr(A) = pr(B)

Proof. We have o(A) = o(By) for all By in (U + K)(A). If B € cl(U + K)(A). we have
B = lim,_,oc By for some {Bn} C (U + K)(A). Hence o(B) D o(A), as the spectrum can
only increase by passing to the limit. We have (i). Condition (ii) is the above observation
c(U + K)(A) C = Y U(n(A))). Conditions (iii) and (iv) follow from compalence. For
conditions (v) and (vi) see Theorem 1.13 in [Her90].

a

To familiarize ourselves with some of these basic properties, let us now consider the U+K)-
orbit of a specific operator:

0.7. Example. Let S be the forward unilateral shift. Any operator T € cl(U + K)(S)
must satisfy the following conditions:

(i) T is essentially normal,

(ii) o(T) = o(S) = {z € C: |2z| < 1}.
(i) 0e(T) = 0e(S) =T ={z€ C:|z| =1},
(iv) ind(T - z) = ind(S — z) = -1 for |z| < 1.

Proof. Since S is essentially normal, 7(S) is a normal element of the Calkin algebra. If
now Tp is in (U +K)(S), m(Tp) is unitarily equivalent to #(S) and therefore it is also normal.
It follows that any Tp in (U + K)(S) is essentially normal. The set of essentially normal
operators is closed and hence all elements of cl(if + K)(S) are essentially normal. We have

shown (i).
Conditions (iii) and (iv), as well as the fact that o(T") 2 ¢(S), follow from Proposition 0.6.

In the case of the unilateral shift, ¢(S) is simply connected. Newburgh’s theorem (see
(Aup91], Theorem 3.4.4) implies that o{T") cannot have a component that would be disjoint
from o(S). This means that do(T') has no isolated points, hence 8o (T) C 0e(T) =T and
we must have o(T) = {z € C: |z| = 1}.

]

In [GM93a], Guinand and Marcoux showed that the conditions above are in fact sufficient:
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0.8. Theorem.[GM93a] Let S be the forward unilateral shift. An operator T is in
clU + K)(S) if and only if the conditions (i) to (iv) above are satisfied.

Since many existing descriptions of closures of orbits of Hilbert space operators are in terms
of spectral properties. one may now suspect that any operator T that shares the spectral
properties of S will have cl(if + K)(T)}) = cl{Ud + K)(S). This is indeed the case. as was
shown in [Mar92].

There, an operator T' € B(H) is called shift-like if

(a) T is essentially normal,

(b) o(T)=D={z€C:|z] <1},

(c) oe(T) =T.

(d) ind(T - M) =-1forallAe {z€C:|z| <1},
() nul (T-A)=0forallAe {z€C:|z| <1}

With this definition we have:

0.9. Theorem.[Mar92] Suppose that T is shift-like. Then S € cl(U + K)(T') and
therefore cl(U + K)(T') = cl(U + K)(S)-

Notice that describing the closure of the (I +K)-orbit of one particular operator S proved to
be the first step towards doing the same for the whole class of essentially normal operators
with the same spectral properties.

In this thesis. we shall first construct essentially normal operators with various spectral
pictures — models - and next we shall describe the closures of the (U + K)-orbits of these
models.

Notation. For two operators A, B, we shall write A =, B if there exists a unitary
operator U such that ||A — U*BU]|| < e. Note that we do not require that A — U*BU be

compact.
For X CC, € >0, we set X, = {z € C:dist(z, X) < €}.

For T € B(H) and A C o(T) closed and open, we will denote by E(A; T) the corresponding
Riesz idempotent. (See [DS57] for the definition of the Riesz-Dunford functional calculus
and related properties.) The range of E(A;T) will be denoted by H(A:T). If A = {A} is
a single point and the dimension of H(A;T) is finite, we shall call A a normal eigenvalue
of T. The set of all normal eigenvalues of T will be denoted by o¢(T').

For T € B(H). 0iso(T) will denote the isolated points of ¢(T") and gec.(T) will denote the
accumulation points of 6(T'). By o, (T’) we shall denote the point spectrum (i.e. eigenvalues)
of T.
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For an operator A, pTr(A) denotes the regular points of the semi-Fredholm domain.

Pir(A) = {A € psr(4) : nul (A~ p) and nul (4 — p)°

are continuous on some neighbourhood of A},

and p(A) = psp(A) \ pr(A) denotes the singular points of the semi-Fredholm domain.



CHAPTER 1

Construction of the Models

A generalization of the unilateral shift

First of all we shall introduce a generalization of the Hardy space H?2, which will be the basic
building block of our models. (See for instance [Rud87], Chapter 17, for the definition and
basic properties of H2.) Recall that a nonempty bounded open subset Q of the complex
plane C is a Cauchy domain if Q has finitely many components, the closures of any two
of which are disjoint, and the boundary 89 of Q is composed of a finite positive number
of closed rectifiable Jordan curves. no two of which intersect. A Cauchy domain with an
analytic boundary will be called an analytic Cauchy domain.

Let Q be a simply connected analytic Cauchy domain. Then there exists a p > 1 and an
invertible holomorphic function ¢ from {z : |z| < p} to C such that @[z is a conformal map
of D onto 2. Consequently, |¢/| is bounded and bounded away from zero on cl(D). (See
[Cur78], Theorem 13.7.4.) Let us fix a ¢ with these properties.

We shall first of all define the set H2(Q) of holomorphic functions on Q as follows:
HYQ) ={foo™': f € HAD)}.
If g is holomorphic on 2, we shall denote

§(z) = lim g(g(r.¢~'(2))). z € Q2.

For g € H2(Q), §(z) exists almost everywhere on 89 with respect to the arc length measure
A and § € L%(6Q, )\). This is the case since go ¢ € H*(D) and therefore

lim (go ¢)(r.z0),20 € T

r—=l-—

exists almost everywhere on T.

Next, let 4 be a measure on 99 equivalent to A (i.e. x and ) are assumed to be absolutely

11
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continuous with respect to each other). For g, h € H?(Q). define

(g.h) = /a o g(2).h(z)dp.

This is an inner product. H%(2) with this inner product becomes a Hilbert space: we shall
denote it H2(Q, u). This space inherits many of its properties from H?(D).

The proof of the following lemma is routine — the properties of a g € H?(Q) discussed
here follow from the corresponding properties of g o ¢ € H?(D).

1.1. Lemma. Let ) be a simply connected analytic Cauchy domain.

(i) g € H*(Q) if and only if g is holomorphic on Q. §(z) erists almost everywhere on
9Q and g € L?(8Q,)\);
(ii) Let g € H*(R). Forr €[0,1), let

gr(2) = g(¢(rd7(2))), z€Q

Then g, € C(cl(Q)) N H3(Q) and g — g as r — 1— in any H3(Q, ). Note that g,
can also be viewed as a function which is holomorphic on an open set that includes

cl(92).

We can define ﬁQ(Q,u) ={g§:g9 € H*(Q,u)}. Then there is a one-to-one correspondence
g — § between these two sets. As is the custom for H%(D), we shall identify these two sets
whenever it is convenient.

The next lemma shows that the construction of H2(f. 1) does not depend on the choice of

¢.

1.2. Lemma. Let Q) be a simply connected analytic Cauchy domain. Then fIQ(Q.p)
is the closure of the linear span of polynomials in L*(09, p).

Proof. If f € H*(Q, ), it can be approximated (in the L?-norm) by a function f, which
is holomorphic on an open set that includes cl(§2). Next we can use Runge’s theorem to
approximate f, by a polynomial (uniformly on cl(2)). This shows that H2(f, 1) is included
in the closure of the linear span of polynomials in L2(9%, ). The other inclusion is trivial.

]
Next, we define a multiplication operator M(Q, ) on H?(Q, 1) by

M(Q,u)(g)(2) = z.9(2). z € Q.
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Then M(Q. 1) is an essentially normal operator and the spectral properties of M (2. ) are
as follows:

(1) o(M(Q.p)) = cl(Q):

(i) oe(M(Q,p)) = 08

(iii) ind(M(Q.p) —2z)=-1,z€ Q;
(iv) minind(M(Q,u) —2z) =0, 2€ Q

(See [Her90], sections 3.2 and 4.1.3)

Thus. for any choice of u. M (2. ) can serve as an essentially normal model for the class
of operators sharing these spectral properties.

Disconnected spectrum and increasing the value of the index

Next we shall use operators of this type to construct models with different spectral prop-
erties. First of all, let us consider an analytic Cauchy domain 2 consisting of n sim-
ply connected components, @ = [J] ;. Let u; be a measure on 9€2; equivalent to the
arc length measure. The essentially normal operator M = @[ ; M(£;, pi) on the space
DL H 2(Q;. 1i) now has the following spectral properties:

(i) o(M) = cl(Q);

(ii) oe(M) = 0%
(ili) ind(M — 2z) = -1, z €
(iv) minind(M - 2) =0, z € 2.

M can now serve as a model for the class of operators sharing these spectral properties.

Note that any element f = (fi.fa..... fn) of @;—, H(Q;, i) can also be viewed as a
holomorphic function on Q = UTS, by setting f(z) = fi(z). where ¢ is such that z € Q;.
We shall adopt this point of view when it is convenient, mostly to simplify notation. With
this in mind, note that the operator M = @, M(£;,u:) can also be defined by the
formula M(f)(z) = z.f(z), z € 2.

We can also use direct sums to construct models with more general index properties. If
Q = UTQi, p; are as above and we have j; € Z,5; # 0,¢ = 1,...n, we can set M; =
@,:i‘l M(Q,p) if i < 0 and M; = @i, M*(Qu, i) if ji > 0. (An operator of the
type M; = @2 M(Q, u;) is sometimes called the j;-fold ampliation of M(Qy, p;) and is
usually denoted by M (€, 1;)U:). Since we will occasionally need the superscript position
for indices, we avoid this notation here.)

Setting M = @, M;, we obtain an operator with the following spectral properties:

(i) o(M) = cl();
(ii) oe(M) =0
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(iii) ind(M —2) = j;, z € ;:
(iv) min ind(M — z) =0, z € Q,

where min ind(X) is defined as min(nul X, nul X~).

Connected domain which is not simply connected

Next, let us consider a connected analytic Cauchy domain which is not simply connected.
Assume that Q = Q; \ cl(€22). where Q, is a simply connected analytic Cauchy domain. Q-
is an analytic Cauchy domain consisting of n simply connected components. Qy = U}, ;.
cl(f22) C Q;. Once again, we want to construct an essentially normal operator M with the

following spectral properties:

(i) o(M) =clQ):

(ii) oe(M) = 3%
(iii) ind(M —2) = -1, z € &
(iv) minind(M — z) =0, z € Q.

This operator will then serve as a model for the class of operators sharing the same spectral
properties.

One possible construction of the model would consist of constructing a Hardy space H2(Q)
and using a multiplication operator on this space. Note that this would require a different.
more general definition of the Hardy space than the one used at the beginning of this
chapter.

While a model could be constructed in this way, we would run into difficulties if we at-
tempted to describe the closure of its (U + K)-orbit using the same techniques as in Chapter
2. In particular, the Lemmas 2.1 and 2.6 would no longer hold in this setting. We will
therefore construct our model in a different manner. The operator M (Q;, z). where Q, is
as above, will be one of its building blocks. When we investigate the model we construct
here in Chapter 8, we shall be able to make use of our investigation of the properties of

M, u) in Chapter 2.

Let now u be a measure on 9(£2;) and for z = 1,2,....n, let u; be a measure on 6(95‘1-):
all of these measures are assumed to be equivalent to the respective arc length measures.
Let A = M(Qy,p) and let B = @}, M(Q3;, ;). Both of these operators have already
been considered as models and we are already familiar with their spectral properties. As
a first step in constructing our model, let us consider the (essentially normal) operator
My = A ® B”. The spectral properties of M are as follows:

(i) o(Mo) = cl(Sh1);

(i) oe(Mo) = I
(iii) nul (My—2) =0, z € ;
(iv) nul (Mg -2z) =1, z€
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(v) ind(Mg —2) =-1, z € Q;
(vi) nul (Mp —z) =1, 2z € Qo
(vii) nul (Mg —2) =1, z € Qy:
(viii) ind(My —2z) =0, z € Q.

We see that My has some of the properties we require of M : the properties (ii). (iii) ).(iv).(v)
and (viii) are as required. We shall now construct M as compact perturbation of My. This
will allow us to change the spectrum of our operator (to exclude ;) without disturbing
the already correct essential spectrum and index properties.

The following lemma shows how this can be accomplished. In fact. although the lemma is
more general than necessary for the construction of the model. it will be useful when we
investigate the closure of the (U + K) orbit of the model.

1.3. Lemma. Let 2,,,Q51.Q22,...,Q2 0.1, 81,12, ... 1n be as above. Let 1o, be
the constant function equal to 1 on ;. Let A, B be as above. For be @I H2(Q21 bi),
let Cy be an operator from H2($221 pi) into H?(Qy,u) defined by Cbg = (lg, ®
b*)(g) = (9.b).1q,. g € B, H (Q2,i.1:). Next, define an operator My on H%(Q,.p) €

(D) H* (25, 1:)) by
_ (A G
My = (0 B’) .

(a) Ifb(z) # 0 for z € Sy, we have
(i) o(Mp) = cl(Q);
(ii) oge(Mp) = 9Q;
(iii) nul (Mp —2) =0, z € Q;
(iv) nul (My —2) =1, z€Q:
(v) ind(Mp —2) =~1, 2€ Q.
(b) If b(29) = 0 for some z € Qq, then zy is an eigenvalue of Mj.

With this lemma in hand, we can finish the construction of the model by letting b(z) = 1
for z € Q5 and letting M = M,.

Proof.

(a) Since the essential spectrum and index properties of M; are already known (M
being a compact perturbation of My), it suffices to show that nul (M, — z) = 0 for

z € 0\ cl(€22) and nul (M, — z) =0 for z € Qo.
Let z € §; \ cl(f22). We want to show that M}, —z does not have any eigenvalues.

Suppose that
A—-z G f\ _ (0
0 B —-z/\g/) \O
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for some f € H*(Qy.u). g € O, H*(Q;. ). ie.

(A=-2)f+Cg = 0
(B*—z2)g = 0.

But z ¢ o(B"), so g = 0 and hence (A — z)f = 0. Since nul (4 — z) = 0. we must
have f = 0. We have shown that nul (M, — z) = 0.
Suppose next that z € ; and again

A-z Cb f _ 0
0 B —=2)\g/  \0
for some f € H*(Qy.p). g € O, HX(Q. pi). ie.

(A-2z)f+Cyg = 0
(B¥—2z)g = 0

Assume that g # 0. Then g L ran (B — Z). Since codim ran (B — Z) = 1. we see
that ran (B —z) = {g}*. But b(Z) # 0, which means that b ¢ ran (B — %) and
so (g,b) # 0. From above, we know that (4 — 2)f = —Cyg = —(g.b).1q, . hence
(A—z)f is a non-zero multiple of 1o, . i.e. a non-zero constant function on ;. This
is a contradiction, as [(A — z)f](z) = 0.

Hence we must have g = 0. This implies (A - z)f = 0 and so, as above, f = 0.
We see that nul (M — z) =0 in this case too.
Suppose that b(zg) = 0 for some 29 € Q2. We can choose go € @7, H?(, u;) such
that (B* — 29)go = 0, go # 0. We now have go L ran (B — %) and b € ran (B — 7).

hence go L b. Consequently, (M — z) (g(:)) = (8) and 29 € o(M).

Enlarging the essential spectrum

In the above models the essential spectrum was equal to the boundary of the spectrum.
We shall now proceed to enlarge the essential spectrum. Let K be a compact subset of C.
Let {dr}22, be a sequence of complex numbers which is dense in K. In addition, assume
that any isolated point zp of K appears in {d}§2, infinitely many times. Let Dg be a
diagonal operator on [2(N) with diagonal entries {dj }22,- Then we have

o(Dk) = 0e(Dk) = K.
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We can again use direct sums to combine Dy with existing models to obtain models with
more involved spectral properties. That is. given an existing model M as above. we define
a new model My = M & Dg.

Isolated eigenvalues

Finally, suppose that we have constructed an essentially normal model My using the above
techniques. We now want to attach isolated eigenvalues of finite multiplicity. We do not
want to change the essential spectrum at this point. We will therefore assume that any
accumulation point of the set of these isolated eigenvalues lies in the essential spectrum of
the existing model Mj.

For z.z € C we define

J(z,z.n) =

The matrix is an n by n square matrix. Suppose we have a sequence {zr}¢—,. here v may be
a finite number or v = occ. We are assuming {z }acc C 0e(Mp) and {z,} Na(Mp) = 0. Next
choose a sequence of complex numbers {z,}¥_, such that. if v = oc, we have lim,_, z, = 0.
Note that when v is finite, we can do without the parameters z, and work with the Jordan
blocks J(zr, 1,n,).

Let {n,}7_, be a sequence of natural numbers. Consider the operator

My =D J(zr.zr.1r).
r=1

Any {z.,} is now an eigenvalue of M; of multiplicity

S o

re{rizr=2ry}

Moreover, an easy calculation yields the fact that My is essentially normal. An application
of Theorem 5.42 in {Her90] verifies that the spectrum consists precisely of the eigenvalues
{zr,}. (Both these statements rely on the fact that lim, o z, = 0.)
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The operator Mo @ M is now a new essentially normal model whose spectral picture differs
from that of My by the presence of the isolated eigenvalues of finite multiplicity described
above.



CHAPTER 2

Generalized Shift

In this chapter we will be concerned with the closure of the (i + K)-orbit of the essentially
normal operator M ({2, ). constructed in Chapter 1, with the following spectral properties:
(Throughout this chapter Q will be a simply connected Cauchy domain):

(i) a(M(82 p)) = cl(R2);

(ii) oe(M(Q. p)) = O
(iii) ind(M(Q.u) —2z)=-1,2z€ Q;
(iv) minind(M (2, ) —z) =0. z € Q.

We should notice the following important special case. If we set 2 = D and if A is the arc
length measure, M (D, A) will be unitarily equivalent to the unilateral shift S, the closure
of the (U + K)-orbit of which has already been described in [GM93a]. In this chapter, we
shall generalize their result. In doing this, two approaches are possible:

(1) We can adapt the proof of [GM93a] by following its basic steps and making any
changes that are needed to make the proof work for our operator M (Q. u):

(2) We can take the description of cl((U/ + K)(S)) and use functional calculus to obtain
a description of cl((U + K)(M (. u))).

We shall pursue both of these directions. In fact, approach (2) will be easier and will
ultimately yield a stronger result. The usefulness of method (1) will become apparent in
the next chapters, where we will be able to use the auxiliary results which will be proven
along the way towards a description of cl((U + K)(M(Q. 1))). We shall start with approach
(1). Note that a similar result was proved in [JJW96], using a similar approach.

Suppose 2 and u are fixed. First we shall construct an auxiliary function in H?(Q, u).

2.1. Lemma. For zy € Q there is a function ¢ € H>(Q, u) such that ¥ has a simple
zero at zg, P(2) # 0 for z # 2g, |Y(z)| = 1 almost everywhere on 99.

Proof. Let ¢ be the function used in Chapter 1 to construct H2(,u). Let B be a
Blaschke product with one simple zero at ¢~!(zp). Set 9 = Bo¢~!.Then 1 has the desired
properties.

19
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The next few auxiliary results are concerned with “pulling finite dimensional matrices out

of M(Q.u).” More precisely. we want to know under what conditions are operators of the

form
F 0
(Q M(Qu)) '

where F acts on a space of finite dimension, in (the closure of) the (U + K)-orbit of M (Q. ).

2.2. Lemma. Let z5 be in Q. Then M (S, u) is uniterily equivalent to an operator of

the form
(8 sdm)
Q MQ.p))’

for some Q € B(C, H*(Q. ).

Proof. Let 1 be the function defined in the 2.1. Define an operator on H2(Q. z)) by
Nf(z) = ¢(2).f(2), f € H*(Q.p). z € Q).

Notice that NV is an isometry. codim ran N = 1. NM(Q.p) = M(Q.p)N. Denote H| =

ran N, Hy = Hi-. Let
21 P
QI R *

be the matrix of M with respect to the decomposition H2(Q,u) = Hy & H,. We want to
show z; = z5, P = 0, and R is unitarily equivalent to M (€. y). (No claim is being made
about Q'.)

First. R = Py, M(Q,u)|g, = NN M(Q. u)|g, and hence

N*RN = (N*N)N*M(Q,p)N
= N'NM(Q,p)
M(Q, p)

This is what we need since N is unitary when considered as a map from H?(Q, ) to H;.
Next, noting that H, is invariant for M, we see that P = 0.
Finally, we chose e € Hy, jle]| = 1, so z; = (M(Q,p)e.e). Consider these two linear
functionals on H?(Q, u):

f = f(z)

f o= (fie)
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Both of these have the same kernel H;. Hence (f.e) = af(zg) for some a € C. a # 0.
Hence we have

z1 = (M(Q. p)e. €)
= a(M(9, p)e)(z0)

= a.2g.e(2g)
= zp(e.€)
= zO
a
2.3. Corollary. Let {z.29.....2n} be distinct elements of Q. Then there ezists an
operator Q such that
M(Qp) = (F a 0 )
- - Hu =U+K Q A[(Q.#} .
where Fy is the n x n diagonal matriz Fq = diag{z;},.
Proof. By applying Lemma 2.2 n times. we see that
~(E 0
M) = (Q’ M(Q.m) '
where E is a lower triangular matrix with 21,23,...,2, on the diagonal. Since E has no
repeated eigenvalues, F; = RER™! for some invertible matrix R. We can now apply the
e e . R O E 0 .
similarity transformation ( 0 I) eU+K to (Q' M(Qu)) to obtain
Fy; 0
M(Q, u) = .
(. p) =u-x (Q M(Q.,u)) :
where Q = Q'R_;.
.}

2.4. Lemma. Let C be an operator of the form

¢= (1;:1 M(g,u)) ’



2. GENERALIZED SHIFT

[
%]

where Fy is a diagonal matriz. Then the following statements are equivalent:

(i) C=ysx M(Q.p):
(ii) C is similar to M(Q, pu);

(iii) the diagonal entries {z),22.....2,} of Fy are distinct, they lie in Q. and C has no
eigenvalues;
(iv) the diagonal entries {z1,22,...,2,} of Fy are distinct and lie in Q, and, for 1 <i <

n, the i-th column t; of T is not in

ran (M(Q.p) —z,I) = {f € H*(Q.u) : f(zi) = 0}.

Proof. The implication (i) = (ii) is trivial.

To obtain (ii) = (iii). consider spectral properties of C and C*. In particular. to see that
the entries of Fy have to be distinct, note that if = appeared as a diagonal entry of F; more
than once, we would have nul (C — z)* > 1. which contradicts (ii).

Consider the implication (iii) = (iv). Without loss of generality, we can assume z; = 0 (if
not. subtract z;7 from both C and M(Q, u)). We have

ai 0 ap
a) Z9 as
C =
an zn an
f ty t2 tn  M(Q.u) f
0
2902
2nGn

tiag + -+ + than + M(Q, u) f

If now t; €Eran M(Q,u), we can find fy such that M (2, u) fo = ¢, and setting

ai 1
ag 0
an 0
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we see that z; = 0 is an eigenvalue of C. Similarly, we cannot have ¢; € ran (M(Q, u)—=z;1),
1=2.3.....n. Hence (iii) = (iv).

To prove that (iv) = (i), first note that given z, 23, . ...z, satisfying the conditions in (iv).
Lemma 2.2 says that there is an operator of the form

Bz(g M&wo'

such that B =y x M(Q.p). We want to change the bottom left entry of this operator to
T via a (U + K) similarity transformation. First of all. we can notice that by acting on

B with similarities of the form R = (}(2)‘1 ?) , where Ry is an invertible diagonal matrix.

the columns of @ can be scaled by arbitrary non-zero scalars. (Since Fy is diagonal. these
similarities do not change Fy;.) In what follows, we shall assume tha: this scaling has been
performed so that t;(z;) = qi(z;), where g; is the i-th column of @, 1 <7 < n. Notice that
this is indeed possible since £;(z;) # 0 by (iv) and ¢;(2;) # 0 by the implication (i) = (iv),
which has already been proved.

Next consider the equation

(1I) ?) (Zd M(g,y)) (—ID ?) - (}:;d M(soz.#))'

which is equivalent to M(Q,u)D — DFy = @Q — T. The i-th column of the left hand side is
(M(Q,u) — 2;1)d;, where d; is the i-th column of D. Since the columns of @ have already
been scaled so that (g; —t;) € ran (M (Q2. u) — 2;I), it is now possible to choose the columns
d, so that the last equation can be solved and in this way the desired columns ¢; will be

obtained. In other words,
I 0 I 0
(0 1)8(5b 1)=¢

Finally, notice that both of the similarities that we have used, namely R = (I;d ?) and

(é ([)) are of the type ( + K), so we have shown that (iv) = (i).

2.5. Corollary. If C is an operator of the form

C=(? M&#J’
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where Fy is a diagonal matriz with distinct diagonal entries {z;.22.....2,} lying in Q then
C € cl((U + K)(M(RQ, 1))

Proof. An arbitrarily small perturbation of C will get the i-th column of T out of
ran (M(Q. ) — z:I). Then by Lemma 2.4 this perturbed operator is in (U + K)(M(Q. 1)).
Hence C € cl((U + K)(M (2, u))).

2.6. Lemma. Let zg € Q. Then there exists an orthonormal basis {eg.e;....} of
H?(Q.u) such that the matriz of the operator M(Q.pu) with respect to this basis is the
Toeplitz matriz

20 0
z; 2z O
z2 2z zg O

Proof. Let ¢ be the function constructed is Lemma 2.1. As in the proof of Lemma 2.2.
we shall define an operator N on H?(2, ) by

Nf(z) = ¢(2)-f(2). f € H(Q.p). z € cl(Q).

Next we choose ¢g € (ran N)* such that [legj] = 1, and we set e, = N"eq. Then {eg.€,...}
is an orthonormal system (recall that NV is an isometry). Moreover,

{eo}* =ran N = {f € H*(Q.p)) : f(20) = 0},
and. by induction

{eo,el, aee en_l}"“ = ran N"
= {f € H*Q,p)) : f has a zero of order at least n at z},
and hence (2o {€0-...en}t = {0}, i.e. {€;}3, is an orthonormal basis of H2(f2, u). Next,
notice that span{eg} is the same as the subspace Hy from the proof of Lemma 2.2. Hence
the top left entry of the matrix of M (£2.u) with respect to {eg,e;....} is equal to zg.
Finally, for m,n > 0,
(M(Q, n)ems1, ent1) = (M(Q, u)Nem. Ney)
= (NM(Q, n)em, Nep)
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= (N"NM(Q. p)em. en)
= (M(Q.u)em. en)

and. for n > 1.

(M(Q.p)en.e0) = (M(Q, u)Nen_1. )
= (NM(Q,p)en—1. )
=0.

2.7. Theorem. Let Q be a simply connected analytic Cauchy domain. The closure
of the (U + K) orbit of the operator M(Q. u) is

(U +K)M(Q.p) = (TeBH(Qnu):
() T is essentially normal.
(i) o(T) = cl(Q).
(i17) o.(T) = 99,
(tv) iInd(T —A) = -1 for all A € Q}.

Note that if we know that T = M(£, 1) + K, where K is compact, only the condition (ii)

is not automatic.

Proof. The necessity of these conditions is easily verified (See Example 0.7). We now
consider their sufficiency.

By the Brown-Douglas-Fillmore theorem [BDF73], if T satisfies the above conditions.
then there exists a unitary U and a compact L so that, setting K = ULU", we have
T=U"M(Q,p)U+L=U*"(M(Q,p)+ K)U. Thus it suffices to show that M(Q,u)+ K €

cl((U + K)YM(Q, p)).

Choose an arbitrary zg € Q and let {eg,e;,...} be the basis constructed in Lemma 2.6.
Let P, be the orthogonal projection onto span{e;},. n = 0,1,.... Since K is compact,
the sequence {M(Q,u) + P,KP,}32, converges to M (€, z) + K in the norm. From what
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we know about the matrix of M (. u), we see that these operators are of the form

- (Fa 0
M(Q.p) + P,KP, = (Qn M(Q.u))’

where the matrix on the right hand side is with respect to the decomposition H 2(Q.p) =
ran P, @ (ran P,)".

By passing to a subsequence (if necessary), and by using the upper semicontinuity of the
spectrum, we can make sure that (F,) C (Q2);/,. We can next perturb F, to get a new
operator G, such that

o |Gn—Fol < L.
e d(Gn) € Q. and
e G, has no multiple eigenvalues.

Clearly the sequence T}, = (g: M(g,u)) still converges to M(Q.u) + K.

Now if Gg(n) is the diagonal matrix with the same eigenvalues as G, then

Gn = R;'G4(n)R, for some invertible matrices R, (all eigenvalues here are of multiplicity
one). Thus. by Corollary 2.5,

(&d}({?l M(g,.u)) € clU + K)(M(S. u)).

implying that

Gn 0
In = (Qn M(Q.m>

- (% D) (@R waw) (5 9)
€ cl((U +K)(M(Q,u)))

Since T, € clU + K)(M(Qu)) foralln > 1, T = M(Qp) + K = LimT, € cl(id +
K)Y(M(Q, u)).



CHAPTER 3

Functional Calculus

Suppose that A and B are essentially normal operators and ¢ is a function holomorphic
on (a neighbourhood of) o(A). In this chapter. we shall see that under certain conditions
A € cl((U + K)(B)) implies that ¢(A) € cl((U + K)(#(B))). This will prove to be helpful
in describing the closures of (U + K) orbits of a certain class of operators.

It is not without interest to note that that if A is one of the models we investigated in
Chapter 2, then it can be written as ¢(M (D, 1)) for a certain p.

3.1. Proposition. Let Q be a simply connected analytic Cauchy domain. Let ¢ be an
invertible holomorphic map from a neighbourhood of @ to C such that ¢|5 is a conformal
map of D onto Q. (This is the map which was used in Chapter I to construct H2(Q)).)
Then for any measure p on 09, equivalent to the arc length measure. the model M(Q, u) is
unitarily equivalent to some ¢(M (D, v)), where v is a suitable measure on T, equivalent to
the arc length measure. Conversely, for any measure v on T, equivalent to the arc length
measure, there erists a measure u on 99, equivalent to the arc length measure. such that
M(Q, p) is unitarily equivalent to (M (D, v)).

Proof. Suppose first that v is a measure equivalent to the arc length measure on T. Notice
that since ¢ is holomorphic on a neighbourhood of D. it can be uniformly approximated by
polynomials on o(M(B.v)) = D (it is in fact the sum of a power series). It follows easily
that

[(6M(D.v))(f)I(2) = ¢(2)f(2). f € H*(D.v).z € D.
(This equation is trivial when ¢ is replaced by a polynomial, what we need follows then by
passing to the limit.)

Next, we define a map U from H?(Q, u) to H2(D,v) by Uf = fo¢. (u is for the moment an
arbitrary measure on 92, equivalent to the arc length measure). The map U is invertible
and bounded: it remains to be shown that U is an isometry. For f € H?(Q, 1), we have

Wil = [ 1F o oPaw

= L 1 0 6Pn di,

[~
-~?
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where A7 is the arc length measure on T and n is the density of v with respect to A-. and

[T{ - /anlflzdu
= / |FPm drag
an
- /_ If o ¢2m o &.la|' dA-.

where Agq is the arc length measure on 9Q and m is the density of u with respect to Agn.
Hence if we choose i so that mc ¢.|¢|' = n, U will be unitary.

Similarly, if u is given. a suitable v can be chosen, so the Lemma is proved in both directions.

O

3.2. Lemma. Suppose A € cl(U + K)(B) and let ¢ be a holomorphic function on (a
neighbourhood of) o(A). Then ¢(A) € cl(U + K)(¢(B)).

Proof. Suppose R;'BR, —+ A, R, € (U+K). Then p(R;'BR,) = R;'p(B)R, whenever
p is a rational function with poles outside o(A) and hence, by passing to the limit. we see
that ¢(R;'BR,) = R;'¢(B)R,. We are using Runge’s theorem here to approximate ¢
uniformly on o(A), see [Rud87], Theorem 13.6.

Consequently, R;'¢(B)R, = ¢(R;'BR,) — ¢(A) by the continuity of the functional
calculus. This shows that ¢(A4) € cl{U + K)(¢(B)) .

3.3. Lemma. Let A ~ B, A, B essentially normal. Let ¢ be a holomorphic function
on (a neighbourhood of) o(A) U o(B). Then ¢(A) and ¢(B) are essentially normal and

#(A) ~ ¢(B)-

Proof. Suppose that the sequence p,, of rational functions with poles outside o(4) Uc(B)
converges uniformly to ¢ on o(A) Uo(B). Since A and B are essentially normal, so are
Pn(A) and pn(B). Therefore ¢(A) and ¢(B) are essentially normal.

Now 7(A) and 7(B) are unitarily equivalent in the Calkin algebra and hence so are p,(m(A4))
and pn(r(B)),
pn(m(A)) = u'pn(n(B))u,
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for some unitary element u of the Calkin algebra. We have

(m(A)) = lim po(r(4))

im u*p,(7(B))u

n—oc

= lim u"g(m(B))u

Since the unitary orbit of a normal element of the Calkin algebra is closed (this follows from
the Brown-Douglas-Fillmore Theorem [BDF73]), this means that ¢(7(A)) = ¢(x(B)) and
hence

m(¢(A4)) = ¢(w(A)) = é(w(B)) = w(¢(B)).
i.e. ¢(A) and ¢(B) are compalent.

O

3.4. Lemma. Suppose that zg is an eigenvalue of A and ¢ is holomorphic on (a
neighbourhood of) o(A). Then ¢(zq) is an eigenvalue of $(A).

Proof. Let f(z) = ¢(z) — ¢(z). Then f(z) = 0 and hence f(z) = (z ~ 29)g(z) for some
function z, holomorphic on o(A). Hence ¢(A) —p(z0)] = f(A) = g(A)(A—AI), from which
the result clearly follows.

o

By now we understand enough about the interaction of the functional calculus with (2/-+K)-
orbits and spectral properties to supply an alternative proof of Theorem 2.7. With the
above lemmas at hand, Theorem 2.7 becomes a corollary of Theorem 4.7 in [GM93a],
which describes the closure of the (U + K)-orbit of the unilateral shift.

In fact, we can do more. The following result is deduced from the description of the closure
of the (U + K)-orbit of shift-like operators from [Mar92]. (Recall that shift-like operators
are operators with the same spectral properties as the unilateral shift.) A similar result

appears in [JTW96].

3.5. Theorem. Suppose Q is an simply connected analytic Cauchy Domain and A
is an essentially normal operator on a separable Hilbert space H with the following spectral
properties:

(a) o(A) = cl(Q);

(b) oe(A) = 99;

(c) ind(A-2z)=-1, z€ Q:
(d) nul (A—-2)=0, z€Q;
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Then the closure of the (U + K) orbit of the operator A is

cd(U+K)(A) = {TeB(H):
(1) T is essentially normal.
(ii) o(T) = cl(Q).
(iti) 0.(T) = 9.
(iv) ind(T — A) = —1 for all X € Q}.

Proof. Let ¢ be an invertible holomorphic map from a neighbourhood of D to C such
that ¢|p is a conformal map of D onto . Let A.T be as in the Theorem. First we will
use [Mar92], Theorem 2.5, to show that ¢~1(T) € cl((i +K)(¢~'(A))). Applying Lemma
3.3 to operators A,T and to the map ¢~!. we see that ¢~ 1(A). ¢ 1(T) are essentially
normal the index properties of ¢~1(A), ¢! (T) are as needed. Similarly, Lemma 3.4 shows
that nul (¢~!(A4) ~ z) = 0 for |2] < 1. Hence by [Mar92]. Theorem 2.5. ¢~ !(T) €
cl{(U + K)(¢71(A))) and so by 3.2 T € cl((U + K)(A)).



CHAPTER 4

Increasing the value of the index

In this chapter. we shall be mostly concerned with the following situation: Q is a simply
connected analytic Cauchy domain. u is a measure on 9. equivalent to the arc length
measure. The essentially normal model operator M = @}, M (. u) has these spectral
properties:

(1) o(M(Q. u)) = cl(Q):

(i) oe(M(Q,p)) = 0
(iii) ind(M(Q.u) —2)=-m. z € Q;
(iv) minind(M(Q.u) —2) =0,z € Q:

We want to find a description of the closure of the (U + K)-orbit of this operator. One
of the techniques we will need can be introduced more easily by first concentrating on a
different model. whose investigation will then be continued in Chapter 8. The lemma that

we want to prove in this chapter is:

4.1. Lemma. Assume that Q = Q; \ cl(Q2). where Q, is a simply connected analytic
Cauchy domain. Q3 is an analytic Cauchy domain consisting of n simply connected compo-

let pu; be a measure on 0(25;); all of these measures are assumed to be equivalent to the
respective arc length measures. Let A = M(S2;,u) and let B = O M (. 1) Let 1q, be
the constant function equal {o 1 on Q and let lg; be the constant function equal to I on

5. Let C be an operator from @, H2(Q§'i,,u,~) into H*(Q, ) defined by C = 1, ® 15
Define an operator M; on H?(Q,pu) ® (B, H2(Q§,i,p.-)) by

A C
M; = (0 B‘)'

Nezt, let D = 1q, ® d”, where d € C(cl(£23)) N H2(Q3) with d(z) #0 for z € cl(§23) and set

/A D
"‘=(o B')'

31
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Then we have
X € cl(U + KY(My).

Recall that the spectral properties of both M; and X were investigated in Lemma 1.3

While the similarity of X and M) will be verified very easily. showing that

X € clU + K)(My)

will require a somewhat lengthy argument. We shall first develop a block tri-diagonal

decomposition technique:

4.2. Lemma.

(a) Suppose that L. M.Rg. R,.....R, are operators on a Hilbert space H with the fol-
lourning properties:

(i) LRt — BxkM =0, k=0.1.....n.

(i) H can be decomposed as H = @, Hi. where each subspace H; is finite-
dimensionel and the operators L. M. Ry. R;..... R, have a block tri-diagonal
form with respect to this decomposition. i.e. Rff) =Li; =M;=0.ifli—jl >
1.i>0. 5 >0, where Rf;c) is the (2. 7)-entry of the operator matriz of R with
respect to the above decomposition and L,;, M;; are the (i.j)-entries of L, M.
respectively.

(iii) ||Rg — Re+1ll < € for k=0,1,...n—-1.

Construct an operator R whose matriz is {R;;}5-, . where

Ri,j = Rz(';'—i—j):n —t—-720.

= R n-i-j<o.
Then ||LR — RM|| < 15¢(||M|| + ||L]])
(b) Suppose that Rg,R,,....Rn,S0,S1..-..Sn are operators on a Hilbert space H with
the following properties:
(i) Ro=So=1I,Sc=R'. k=12,....n
(ii) H can be decomposed as H = @i-,Hi, where each subspace H; is finite-
dimensional and the operators S; and Ry, k = 1.2..... n have a block tri-
diagonal form with respect to this decomposition.
(iii) ||Re — Rk+1]| < € and ||[Sk — Sk+1ll < e fork=0.1,... n—1
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Suppose that R is constructed as above and construct an operator S whose matriz is
{Sij}55=0 . where

Si; = ST n—i-j>o0.
= SOn-i-j<o.

Let m = max(||Roll: [[Rill.....l[Rnll: [1Soll. [|S1l}---.1ISnll). Then [|[RS — I|| <
30em and ||SR — I}| < 30em.

Note that the operators R and S constructed here also have block tri-diagonal matrices
with respect to the decomposition # = @<, H;. This is what the matrix of R looks like
when n is even:

R(ES)_I'P__Q R("_g)_l B_1 R("_I)_I z
) bi:m i} RO~ RO
3.5-1 T3 F.2+1
T (0) ~ ) ° (0)
R%—l,% R%«-l F+1 R2+1 242

For an odd n. the picture is similar. The entries which are left blank equal zero.

Proof of lemma 4.2

(a) Denote P = LR — RM. We will investigate the entries F;; of the matrix of P with
respect to the decomposition H = @f’_c__o H;. As the the matrices of L, M and R are
block tri-diagonal, we see that F;; =0 for |t — 5| > 2.

To simplify notation, we shall set

Re = Rofork<0
RY = R fork<0,4,520.
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With this convention. for any n > 0. we have R,; = Rfjn—i_j).i.j > 0 and we still
have LRy — R M =0 for k < n.
For |i — j| < 2. we have

P51l = [(LR— RM)j]|
= |(ZLR—=RM);ij — (LRn—j~i — Rn—;_iM);j||

o
= I3 LuRy — LaR ™7 — RyMy; + RY™ M|
=0

min(i+1,7+1)

=l > LaRFTTV - LaR(TY

{=max(0,i-1,j—1)

—RE g, + R0,

The restriction of the summation range is possible because of the block tri-diagonal
form of L. M and R. Note that. as |[ —¢] < 1. |l — j| < 1. we have

(n-—i-j)-—(n-1-j)] £ 1
(n-1-j)-(n-1l-4)] < L

Hence
[1P5]] < 3(IILlI-€ + [|M]].€) = 3.(l| M| + [IL]]).
Now
2
P=> P,
r=-2
where

(Fr)iy = Pjifj=i+r

= 0 otherwise.
From the above estimate, we see that {|P;]| < 3.¢(||M]| + ||L||) and hence
I1P]l < 15e(|{M][ + || Z1])-

(b) the proof is similar to that of (a). Since the whole situation is symmetric. it suffices
to show that || RS — I|| < 30em. Denote Q = RS —I. We will investigate the entries
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Qi; of the matrix of Q with respect to the decomposition H = D, Hi- We can
again see that Q;; =0 for |i — j| > 2.
To simplify notation, we shall set

R, = Rofork<0

RY = RY fork<0.ij>0
Sk = SofOI‘k(O
5P = 8P fork<0.i.j>0.

With this convention. we have R,; = Rf;—'—” and S;; = $™77) 4.7 > 0 and we
have RS, — I =0 for k < n.
For |i — j| < 2. we have

Qi = (RS = I)yll
= [l(RS —I)ij = (Rn—j-iSn—~j— = D)yl

oo
1Y RuSi; — RG75m=9)
=0
min(i+1,7+1)
= (n=l~1) o(n~1-j) (n—i—j) o(n—1-j)
= |l Z Ry Slj - Ry Slj I
{=max(0.i—1.j-1)

min(i+1,j+1)

—l—i —1—j —i—g]
= ” Z Rfln l)(Sl(n i) _ l(Jn t J))

J
{=max(0.:—~1.5—1)

+(By ™Y~ RYTTN ST

< 3(me + em) = 6em
Using the fact that Q;; = 0 for |i — j| > 2, we can estimate

1Qll < 30em.
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4.3. Corollary.

(a) Suppose that L, M, Ry, ..., Ry, are operators satisfying (i), (iii) in Lemma 4.2 (a).
Suppose that K is a compact operator and let Q = R,K. Then there ezists an
operator R such that

(i) R — Ry has finite rank,
(i) [|1RK — Qll < e(|| K| + 6 max{|[Roll,||R1ll..-.,||Rnll}).
(iii) |[LR — RM|| < 15¢(||M|| + [|N}])-

(b) Suppose that we have in addition operators Sy.S,.....Sp satisfying (i). (iii) in
Lemma 4.2 (b). Then we can also construct an operator S such that, in addition to
the properties (i), (ii} and (iit) in part (a) of this lemma, we have

IRS ~ Il < 30emax(|{Roll, |Rul - [|Rull. IS0l S, - - [1Sall)

ISR -1I|| < 30emax({|Roll-{|Rull.....[|Rnll: [ISoll. S1l]- ... [1Sall)-

Proof.
(a) Since K is compact. we can fix a finite-dimensional Hy C H such that
[|Pyo K — K[| < €. Next, fix a basis e;.e,... of H. Set
/C1 = spa.n{’Ho, L’Ho, L"Ho, M'Ho, .M"'Ho. Ro'Ho, RBHQ, .ees el}.
Hi = Ki©Ho.
and continue in this manner: With K. /K,.. ... K;.Hi.Ho.....H, constructed. we
set
Kiv1 = span{K;. LK;.L'K,. MK;. M"K;. RoK;, RgK;. ... .€is1}.
Hirsi = Kis16H,,

Then the conditions (i),(ii),(iii} of Lemma 4.2 (a) are satisfied. We can therefore
construct R such that ||LR — RM|| < 15¢(||M || +||L]]), R — Ry is finite dimensional

and

IRK - Qll = I[I(R— Ra)K]|
< (R = Ba) Puo K| + [|(R — Rn)(Pro K — K)|
< ellK|| + 6max{}|Rol|. [|R1]],- . ..||Rall}.€.

To see why the last inequality holds. consider the (z,j) entry of the operator matrix
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of (R~ Ry):
(R = Ra)igll = IR ™7 = Rl < 2. max{||Roll. | Rull: - - - .|| Ball}-
and since (R — R,) is block tri-diagonal. we have

IR — Rqj| < 6. max{||Roll.||Ri]l..... | Rnll}-

(b) It suffices to alter the construction of the spaces H; so that the resulting decompo-
sition H = @f;o H; makes the matrices of Sp. S;.....Sn also tridiagonal. Then we
can finish the proof by applying Lemma 4.2 (b)

C

Proof of lemma 4.1 One can easily see that M; and X are similar. Indeed. since
d € C(cl(Q3)) with d(z) # 0 for z € cl(R2), the operator H on H?(Q5, ) defined by

(Hf)(z) =d(2)f(z).2 € Q;

is invertible. We also have HB = BH and hence H*B~ = B*H*. The operator

Gt D)6 D)6 o) )

is then similar to M;. But for all g € H?(Q3. u)
CH’g = (H"g.1q;)1a, = (9. Hlo;)1lq, = (9.d)1q, = Dg.

i.e. CH® = D and X is similar to M.

Now we will show that X € cl(i + K)(M1). Let m = max(||d||sup: ||d™}||sup). Fix e > 0
so that 30em < 1. Let v be a holomorphic logarithm of d on Q} (see [Rud87], Theorem
13.11), i.e. € = d. Fix a large n so that m.||e"/" — 1{|sup < €. Then we have

”ek.’r/n _ e(k—l)-“l/nllsup <ek=-n-—-n+1,....n

Let R be the multiplication by e5*/" on H%(Q3), k =0,1,...,n and let S; be the multi-
plication by e~%/n,
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We have R, = H. ||Rx — Rk+1ll < €. Sp = H™' |[Sk — Ska1ll <efork=0.1....n—-1
and R H = HRy. S; = R;l,k =0,1,... n. If we let both L and M equal B. we see that
the conditions (i), (iii) in Lemma 4.2 (a) as well as the conditions (i). (iii) in Lemma 4.2
(b) are satisfied. Moreover. we have R,C* = HC* = (CH*)* = D*. We can now apply
Corollary 4.3 to see that there exist operators R, S such that

(i) R— Rg = R - I is finite-dimensional, and
(ii) we have

ICR* - D|| = [|[RC™ = D*|} < €(l|C]| + 6 max{||Roll. || R1]].--..[|Rali})
< €(||C]] + 6m).

(iii) ||RB — BR|| < 30¢||H|| < 30em,
(iv) [|[RS — I|| < 30em < % and ||[SR — I|| < 30em <

K|
.

Note that (i) says that R is of the form unitary plus compact. The condition (iv) implies
that SR and RS are both invertible and ||[(SR)7!{| < 2. [(RS)7!|] < 2. Therefore R is
invertible and [|R™!|| < 2|[S|| < 6m. and we have

(R)™'B*R* - B*|| = ||[RBR™' - B||
= [(RB - BR)R™!||
< 180em?

Summing up, we get

”(61 g‘) —(é (R(‘)‘)‘) (61 g) (cI) 1(2)')”

A-—A D-CR |
” 0 Bt — (R:)—lBtR- l

IN

e({|C]] + 6m) + 180em?

Since now <é 1(2)‘) € (U + K)(H?(4,p) ® H*(Q5, 1)) and since € can be chosen to be

arbitrarily small, we see that
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(g g.)ea(uwcx(‘g g,))
O

We shall now return to the investigation of the closure of the (U + K) orbit of the operator
M =@ M(Q,u). As in Chapter 2, we want to know first under what conditions is an

operator of the form
F 0
T M)”

where F is a finite-dimensional matrix, is in the (closure of the) (U + K)-orbit of M.

4.4. Lemma. Let C be an operator of the form

Fy
T[ .‘W(Q/J,)

Tm M(Q.p)

Let t;; denote the i-th column of T; and suppose that Fy is a diagonal operator with distinct
entries {z1.z2,.... zn} tn Q. Suppose that

(i) For each i. the i-th column t,), of T\ is not in
ran (M(Q,u) — z:1) = {f € H*(Q.u) : f(z) =0}.
(ii) For j =2.3.....m and for each i. the i-th column t;; of T} is in
ran (M(Q.p) — z:0) = {f € H*(Q.p) : f(z) = 0}.
Then C =y .x @;":1 M(Q,p).
Proof. Using Lemma 2.4, we see that

Fy
Tl M(Q~ #) m
CO = 0 M(Q’ #) EU+K @M(Q'p‘)'
. . =1

0 M@,
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Suppose D; € B(Hg.H;). j = 2.3.....m, where Hy is the underlying space of Fy; and H;
is the underlying space of the j-th copy of M(S2. ). Consider the operator

I
0 I 0 I
C, = D, I Co —D, I
D, I -D,, I
Fq
T M(Q.p)
= M(Q.u)Dr — D> Fy M(Q.u)

Then C; Zy.x Co Zy+x @;"zl M(Q2,u). We shall be able to choose the operators
D;.Dg.....Dn so that C, = C. Indeed, the i-th column of of M (2, u)D; — D,F is

(M(Q, p) — z1)d,,

where d;; is the i-th column of D;, j = 2,3,...,m. Since we have ¢;; € ran (M(Q,p) —
zil).t = 1,2,....n,j = 2,3,...,m. the columns of D; can be chosen so that T, =
M(Q,u)D; — D;jFy for j =2.3,....m and so C = C| Sy.x 9;-"=1M(Q.,u).

4.5. Lemma. Let E be an operator of the form

Fy
St M(Q,pu)

Sm "‘J(Q /‘L)

where Fy is a diagonal operator with distinct entries {z1,22,...,2n} in Q. Then E €
cl(U + K)[DL, M(Q,p))-

Proof. Choose 7 > 0. Let T be such that ||S; — Ti|| < 7 and the 7 — th column of T} is’
not in ran (M(Q,u) — 2;I). Let now j be an integer between 2 and m. Choose a function
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r, € H?*(Q. i) such that

sij(z) .
(zi)=———.i=1.2.....n.
rilz) fi.l(zi)'1 ol

where s;, is the i-th column of S, and set

by =58 —rt.e=1.2..... n.

Let T} be a matrix whose ¢-th column is ¢;;. Notice that ¢,;(2;) = 0. i.e. t;; € ran (M(Q.p)—
z;I). and hence if

Fy
T, M(Q.p)

Im M (. p)

we have C =, ¢ @;"zl M(Q.u) (Lemma 4.1.). To finish the proof. it suffices to show that

Fy
T, M(Q.p)

Dl S2 A{(Q~ ,U)

Smm M. )

isinc(U+K)(C) = cl(Z,(-I-IC)(@;”:1 M(Q,1)). (Indeed, we have ||D; —E|| = ||S1-T\|| < n
and 7 can be chosen to be arbitrarily small.) Note that

I I
0 I 0 I
0 Ry I clo -mr, I

o
~
o

|
Y

B

~
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-

Ty M(Q. p)
= R,T) +13 R2A/[(Q #) - M(Q~ ”)R?. IW(Q, /")
\RnTi +Tm RmM(Q.p) = M(Q.p) R M(Q.p)
Fy
T, M(Q.pu)
=| S M(Q. p) = Dy,
\Sm M(Q. p)

where R; is the multiplication operator
R;f =rif.f € H(Q.p).

Here we see that D, is similar to C. However. the operators R;. j = 2,3,....m need not
be compact. Let 7 € {2.3,....m} be fixed. Fix also an € > 0. Let p be an integer such
that |[|R;||/p < € and let Rj;, = %Rj.k =0.1.....p. Then we have

M@Q.u)Ry — RyM(Q.u) =0.k=0.1,....p.
|1Rjx — Rjk+1ll <e.k=0.1..... p—1.

Since T} is compact, Corollary 4.3 guarantees the existence of an operator RJ such that

(i) ﬁj = RJ — Rjois finite-dimensional.
(i) |I1R;Ty — ByTall < e(lITl] + 6| R;])
(i) [|M(Q, p)R; — R;M(Q, )| < 30| M (2, ).

Hence

D1 =

(o]
ey

~
Q
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0 0
0 ) N 0 N
| ReTi— ReTn M(Q.p)Ry — RoM (. p)

oo

A )

BTy = BTy M(Qup) B — B M(Q.p) 0

< (m—1)30¢|M(Q,m)ll + Y e(lIT1l} + 6lIR;)).

7j=2
Hence D; € cl(U + K)(C) and consequently E € cl(if + IC)(GB;’;1 M(Q. u)).

c

Note that a result similar to the following one is shown in [JTW96]. using a different
technique.

4.6. Theorem. Let Q be a simply connected analytic Cauchy domain. The closure
of the (U + K) orbit of the operator @;"zl M(Q.pu) is

m

U+ YD MQ.p) = {TeBEHQ.4):

j=1

(i) T is essentially normal,

(i) o(T) =cl(Q).

(i) o.(T) = 99,

(iv) ind(T — A) = —m for all A € Q}.

Again, if T = @;’;1 M(Q. p) + K. K compact, only condition (ii) is not automatic.

Proof. The necessity of these conditions is easily verified. We now consider their suffi-
ciency.

By the Brown-Douglas-Fillmore theorem, if T satisfies the above conditions, then there ex-
ists a unitary U and a compact L so that, setting K = ULU*, we have
T=U@L, MQuU+L= U (@7, M(Q.p) + K)U. Thus it suffices to show that
D) M, p) + K € (U + K) D=, M(Q, ).
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Choose an arbitrary zg € € and use Lemma 2.6 to construct a basis of H?(2.p) with
respect to which the matrix of M (2. p) is a Toeplitz matrix. Denote the k-th element of
this basis as eg-k. where the index j = 1,2,....m means that we regard this element as an

element of the j-th copy of H?(2. ) in the direct sum @JL; H*(Q. u).

We shall now construct a basis {ex}32; of @, H*(Q. ) by setting

ers; =€jy, fork=Im.l1=0,1,....5=12.....m.

Let P, be the orthogonal projection onto span{e;},. n =0.1..... Since K is compact.
the sequence {@[-; M(Q.p) + P, K Pn}3Z, converges to @i, M(Q.p) + K in the norm.
We see that these operators are of the form

F

m Qni M(Q,p)
P MQ.p) + PEKP, = | @n2 M(Q.p)
J=t : ..
Qnm M(Q. p)

where the matrix on the right hand side is with respect to the decomposition

m

P H*(Q.») = [ran P,] © P(ran Po)* N H*(Q. p)]-
j=1

j=1
By passing to a subsequence (if necessary), and by using the upper semicontinuity of the
spectrum, we may perturb Fy to get a new operator G, such that
e |Gn— Full < &.
e o(G,) CQ, and
e G, has no multiple eigenvalues.
Clearly the sequence

in M(Qa Au)
Tn = Qn2 M(Qx ”‘)

Qnm Y
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still converges to L, M(Q.p) + K.

Now let G4(n) be the diagonal matrix with the same eigenvalues as G,,. This means that

G. = R;'G4(n)R, for some invertible matrix R, (all eigenvalues here are of multiplicity
one). Thus, by Lemma 4.5,

Ga(n)
inRr:l 1\4(9, lu) m
Qn2R7! M(Q.p) € (U + K) P M(Q. ).
-l j=1
QnmR;! M(Q. )
implying that
Gn
Qni M(Q.u)
Tn = Qn? JM(Qt #)
Qr-lm M(Q,p)
-1 Ga(n) R
I inR;1 M(Q .u) " I
- | QuoRy! M(9.p)
17\ Quny? M(Q. ) !

€ el + K)(EP M(Q.p)).

J=1

Since T, € (U + K) (D)L, M(Q.p))) for all » > 1, @1, M(Q,p) + K = limT, €
cl((U + K) D=, M(Q,4))).



CHAPTER 5

Disconnected spectrum

In this chapter we shall be concerned with the closures of the(U + K) orbits of models whose
spectra are disconnected. We want to investigate the set cl((i/+K))(@}, 4;) if the spectra
of A;.1=1.2,....n are pairwise disjoint and the sets cl((&/ + K))(4;) are already known.
The following two consequences of Rosenblum’s theorem ([Her90]. Corollary 3.20) are
proved in [GM93a].

5.1. Lemma.[GM93a] Let H, and Hs be two complez. separable Hilbert spaces and
let A€ B(H1). B € B(H2) and Z € B(H.H2), Z compact. Assume that o(4)No(B) = 0.
Then

A Z
AgB Zu+k (0 B) .
In fact, there is a compact X € B(H;,Ha) such that

ses=(5 MG D6 D)

5.2. Proposition.[GM93a] Suppose

A 22 Zi3 ... Z\n
A2 22_3 .o Zl,n
T = . E
An.-l Zn—l,n
An

is an operator acting on the direct sum of Hilbert spaces @}, Hi. Suppose also that each
Zi,, 1 <i<j<n,is a compact operator and suppose that the spectra of A;,i=1,2.....n
are pairwise disjoint. Then T =y, x @, Ai.

At this point we can also recall that a weaker conclusion, namely A & B € cl((U + K))(T)
can be shown to hold under weaker assumptions. The following results have been shown
in [GM93a] and [AM90]:

46
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5.3. Lemma.[GM93a] Let Hiy and Ha be Hilbert spaces
(finite-dimensional or infinite-dimensional) and let T = ‘g g with respect to H, @ Ho.

Suppose Z is compact. Then A& B € cl({U + K))(T).

5.4. Proposition.[GM93a] Suppose

Al 212 23 ... Zin
Ay Zps ... Zin
T= : :
An-l Zn—l.n
An

is an operator acting on the direct sum of Hilbert spaces @], Hi. Suppose also that each
Z;j, 1<i<j<mn,is a compact operator. Then @, A1 € cl((U + K))(T).

The following lemma will be crucial in our investigation. It tells us that that under certain

conditions the Z entry in the operator T = (61 g) has to be compact. which in turn will

allow us to use Lemma 5.1 to show that A & B =y _x (61 g) .

5.5. Lemma. Let H; and H, be two Hilbert spaces and let A € B(H,), B € B(Ha2)
and Z € B(H1.H2). Assume that 0(A) Noe(B) = 0. Assume moreover that

A Z
r-(a 2)
is essentially normal. Then Z is compact and both A and B are essentially normal.

Proof. We know that
A Z A 2Z\° _ A Z\" (A Z
0 B 0 B 0 B 0 B
_ A Z A" 0y _ (4" 0 A Z
- 0 B Z* B* Z* B* 0 B

_ [AA"-A"A+ZZ°  ZB - A'Z
BZ*—2*A BB —-B'B-2'Z
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iIs compact. i.e. the four operators AA* — AA + ZZ*, ZB* — A*Z. BZ* — Z*4 and
BB*® — B*B — Z"Z are compact. We can notice that once we know that Z is compact. this
will imply that 44* — A*A and BB~ — B*B are both compact, i.e. A and B are essentially
normal. To finish the proof of the lemma. it suffices to show that Z is compact.

Since H; and H; are infinite-dimensional separable complex Hilbert spaces, they must be
isomorphic and therefore we may assume that H; = H,. This means that we regard A. B
and Z as operators in B(H;) such that BZ* — Z* A is compact.

Let 7 denote the canonical quotient map from H; to the Calkin algebra
C(H1) = B(H1)/K(H,). Let a,b and = denote the images of A.B and Z under %. Since
BZ* — Z* A is compact. we have bz* — z*a =0 in C(H;).

Recall that for two elements a, b of a Banach algebra X we define the Rosenblum operator
Tha O0 X by 7 4(T) = bz — za (see [Her90]. section 3.1). When the spectra o(a), o(b) are
disjoint. 74, is invertible by [Her90]. Corollary 3.2.

Returning to our case, we see that o(a) = 0.(A) and o(b) = 0¢(B) are indeed disjoint
and 7, is therefore invertible. We have 7, ,(2*) = bz — z"a = 0. Consequently. we have
z" = 0 in the Calkin algebra. In other words. Z* is compact and so is Z. The rest of the
conclusion of the lemma follows.

5.6. Corollary. Suppose

Ay Z12 23 Zin
Ay 23 Zin
T = .. E
An—1 Zn-1n

is an essentially normal operator acting on the direct sum of Hilbert spaces @), H, such
that the essential spectra of A;, i = 1,2,....n are pairwise disjoint. Then each Zig.
1<i< 7 <n, is a compact operator and each A;, i =1.2....,n is essentially normal.

Let now §2 = UT;, where each Q; is a simply connected analytic Cauchy domain and let
pi be measures on 9€2; which are equivalent to the respective arc length measures. Choose
Ji€Z,7: #0,i=1,...n and set M; = @;iilM(Qi,/.ti) if j; < 0and M; = @‘Lile'(Qi,pi)
if j; > 0. Finally, we set M = @, M;. As we have noted in Chapter 1, M has the following

spectral properties:

(i) o(M) = cl(Q);
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(ii) oe(M) = 092
(iii) ind(M - 2) =4;. z€ Q.i=1,2,....n;
(iv) min ind(M — z) =0. z € Q.

In the preceding chapters we have investigated the closures of the (U + K) orbits of the
“building blocks™ M; of M. Recalling what we know from Theorem 4.6 and using the fact
that

cl((U + K)) (A7) = {X7|X € cl(U + K))(A)}.

we see that

U +K)(M) = {T € BH (Quwm)):
(i) T is essentially normal.
(i)  o(T) = cl(Q,).
(ili) 0o(T) = 09,.
) ind(T - A) =y for all A € Q,}.

The description of cl((U/ + K)(M)) is as follows:

5.7. Theorem. The closure of the (U + K) orbit of the operator M = D= M;
constructed above is

(U +K)M)) = {TeB(@Hz(m,mn:

i=1
(i) T is essentially normal.
(ir) o(T) = cl().
(i21) o (T) = 90
(tv) ind(T —A)=j; forall A€ Q;,i=1,2.....n}.

If T is of the form M + K, with K compact, the only condition which is not satisfied
automatically is (ii).

Proof. The necessity of the above conditions is easily verified. Let us consider their
sufficiency.
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Let T be an operator that satisfies the above conditions. After using the Riesz decompo-
sition n — 1 times we can find spaces #; such that # = @], H; and the matrix of T with
respect to this decomposition is

Ay Z12 Z13 ... Zin
Ay Zp3 ... Zin
T= . :
An.—l Zn—-l,n
A,
where we also have. for i = 1.2..... n.
(i) o(Ai) = cl():
(i) ge(Ai) = 9:
(iil) ind(A; — 2) = ji, z € Q.
In fact. we may assume that H; = H?(Q.pui). i = 1.2.....n.. Indeed. if this is not the case.

we can replace T by U*TU. where U is a unitary operator that maps H?(Q,. ;) onto H;.
i =1.2....,n,. Note also that U*TU € cl((U + K)(M)) if and only if T € cl((U + K)(M)).

Since T is essentially normal. Corollary 5.6 tells us that each Z;;. 1 < i < j < n. is
a compact operator and each A;, 1 = 1,2....,n is essentially normal. We can now use

Corollary 5.2 to see that T =y, x @, Ai.

Recall the description of cl((Zf + K)(M;)) that we have noted above. We see that A, €
cl((U + K)(M;)) and consequently

n

P A € (@ + K)(EP M)
=1

=1

Using the transitivity of the relation —y;x, we see finally that T € cl((U + K)(M)).



CHAPTER 6

Enlarging the essential spectrum

Let us now consider a compact set K C C. In Chapter 1 we have constructed a sequence
{dx}35, and a diagonal operator Dk on [2(N) whose diagonal is is this sequence such that

0(Dk) = 0e(Dk) = K.

Since Dy is a normal operator. Corollary 0.2 provides a description of the closure of its
unitary orbit:
cl(U(Dk)) = {X normal : 0e(X) = 0e(Dk) and
nul (X — zI) = nul (Dg — zI) for all z € psp(Dk)}.

The closure of the (U + K)-orbit of the operator Dy has been described in {GM93al:

(U +K)(Dk)) = {(TeBEN):

(i) T is essentially normal.

(i) o(T) 20(Dk) = K.,

(iii) every component of C\ o(T)
is a component of C\ o(Dg),

(iv)  0e(T) =0e(Dk) = K,

(v) if z is an isolated point of 0.(T) = 0.(Dg) = K.
we have (T - z)|3..1) = 0, where H(z:T)
denotes the range of the Riesz idempotent
corresponding to {z}.

(vi) ind(T ~z)=0forall z ¢ K}.
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<]
o

Next, we are interested in models which can be constructed from Dg and the models
investigated in previous chapters using direct sum. Using the same techniques as in the
proof of Theorem 5.7, we can easily show the following.

6.1. Theorem. LetQ; be pairwise disjoint simply connected analytic Cauchy domains
and let u; be measures on OS2, which are equivalent to the respective arc length measures. Let
j, € Z,ji # O,i = 1,. ..n and set l‘/[i = @;_;];IM(Q,‘,;LJ ifji <0 and A/[l = @i‘le'(Q,',y,')
if 3: > 0.

Nezt, let K be a compact subset of C. Assume that cl(;) lies in the unbounded component
of C\K, fori=1....n.

Finally. we set M = Dg & ;—, M;, where Dy is a diagonal operator with o(Dg) =

=1

ce(Dg) = K. The closure of the (U + K)-orbit of the operator M is

noJi
U +K)(Dk)) = {TeBENePEPH Q1) :

i=1 j=1

(i} T is essentially normal.

(i) o(T) 2 o(M).

(i1}  every component of C\ o(T)
ts a component of C\ o(M).

(iv) 0e(T) = oe(M).

(v) if z is an isolated point of o.(T) = g.(M).
we have (T — z1)|3y.;7) = 0. where H(z:T)
denotes the range of the Riesz idempotent
corresponding to {z},

(vi) ind(T —2z)=ind(M —=z)
for all z ¢ 0.(T) = g.(M)}.

Proof. The proof is analogous to that of Theorem 5.7.
]
We shall now consider the case where K is not necessarily disjoint from (J7_, cl(Q;). We

shall, however, restrict our investigation to a perfect K for the moment. We will return to
the investigation of models with isolated spectral points in the next chapter.
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6.2. Theorem. Let$; be pairwise disjoint simply connected analytic Cauchy domains
and let p; be measures on 9K, which are equivalent to the respective arc length measures. Let
Ji€Z.5i#0i=1....n and set M, = &2\ M(Q,.p1,) if j; <0 and M, = ef:;lkf'(ﬂi,yl)
if 3. > 0.

Nezt. let K be a perfect compact subset of C. Assume that K is disjoint from U Q-
Assume that C\ K has only finitely many components.

Finally, we set M = Dg @ @[, Mi, where Dk is a diagonal operator with o(Dg) =
0e(Dk) = K. The closure of the (U + K) orbit of the operator M is

n Ix
{U+K)M) = (T eBlN)oPEHQum)) :

i=1 j=1
(i) T is essentially normal.
(@) o(T) 2 o(M).
(iti) every component of C\ o(T)
15 a component of C\ o(M).
() 0e(T) = ge(M).
(v) ind(T —2) =ind(M - z) for all z ¢ 0.(T) = 0.(M)}.

IfT = M+L. L compact, the only condition which is not fulfilled automatically is condition
(iii).

Proof. The necessity of these conditions is easily verified. We now consider their suffi-
ciency.

Suppose that T satisfies the above conditions. Let n > 0. First we can use Proposition 4.4
of [Apo76] to find an operator Ty such that ||T — Tp|| < 0, T — Ty is compact, Ty satisfies
(i). (iv) and (v), and we have

o(Ty) = o(M).

Note that Ty is essentially normal. Clearly it suffices to show that Ty € cl(if + K)(M )-
By the Brown-Douglas-Fillmore Theorem there exists a unitary U and a compact L such

that, setting Ko = ULU™, we have Top = UMU + L = U*(M + K)U. Thus it suffices to
show that M + Kj € cl((U + K)M)).

Fix € > 0. Let {eg,€),...} be the canonical basis of {2(N). For each i = 1....n, use
Lemma 2.6 to construct a basis of H2();, u;) with respect to which the matrix of M (., u;)
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is a Toeplitz matrix. Denote the k-th element of this basis as egjk. where the index j =
1.2..... Ji means that we regard this element as an element of the j-th copy of H 2(Q;. i)
in the direct sum [*(N) @ @, (DI, H* (. i)

We shall now construct a basis {ex}, of >(N) @ @ ( ;le H2(Q,. 1)) as follows: Set
ko =1+ ", ji and let now

e = e;, fork=1ko+1.0=0,1,...,
ex+j = €y - fork=1Lk+10=0,1,....,57=12....,7,.
ek+jl+1 = e‘,z.j.l, for k= l.ko + 1.l = O, 1..... J =1.2..... j2,

ek+j1+]2.:-....r.1n_l+_] e;l'.]'[. fOr k= l.ko + 1.l = 0. 1, e .j = 1, 2, e ,jn.

Let P; be the orthogonal projection onto spanf{e;}*_;. k = 0.1..... Since Kj is compact.
the sequence {M + P KoPi}3<., converges to M + Kj in the norm.
Without loss of generality, we can assume that j; > 0 for 7 = 1.2,...,1p and j; < 0 for
i =19+ l.ipg +2.....n. Note that the operators M + P Ky P, are of the form

(Fk I’lo-.’l ... Tn

Dy
Ty M,
M+ P.KoP =
k04K 7110 A‘/[lo
A[lo-I—-l
\ Y

where the matrix on the right hand side is with respect to the decomposition

n Ji
[ran P;] @ [(ran P)t N 12(N)] & @[(ra.n Pt n (@ H2(Qi,u,-))]

i=1 =1
and Dy, like Dy, is a diagonal operator such that

o(Dy) = oe(Di) = K.
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By passing to a subsequence (if necessary). and by using the upper semicontinuity of the
spectrum, we may perturb F; to get a new operator G such that

o Gk — Fell < £,
¢ o(Gk) C (K \ (UL, ) UUL, @, and

e Gy has no multiple eigenvalues.

Clearly the sequence

( Gk Tyy=1 --- Tn \
D
T M,
T =
k Tlo Mio
A/Iiow'-l
\ M,

where we have replaced F by G still converges to M + Kj.

Fix a k. Now the finite dimensional matrix Gy is similar to

Ge
R;leRk = G- .
G-

where G, G+. G are diagonal matrices such that
o(Ge) € K

g
Gs) ¢ U
=1

o(G-) < U Q;

i=ig+1

We have
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(G Te o T%)
G. Tio . TF
G- Torr - Ty
Dy
TE Ty Iy M,
Ty Tz; T, M,,
A/Iio—-.-l
\ 1\/],1)

-1

. R R . . .
where the matrices ( k I) and ( k [) are written with respect to the decomposition

ran P, @ (ran B)=.

By rearranging the decomposition of the underlying Hilbert space. we can write the matrix
of T, as

(Ge Toer - T3
Dy '
G- Tt --- T7
T¢ = M T~
T, T, M, T,
G- Tgo o Ty
-"/Iio-é-l
\ 1\/[n)

We can now use Lemma 5.1 to see that T is (U + K) equivalent to

(Ge 0 - . 0\
Dy
G+ 0 ... 0
T? TF M, 0
T, T M, 0
G- Tg., .. Tr
Mg+
\ M)



w
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Another application of Lemma 5.1 shows that this last operator is (U + K) equivalent to

(G )
Dy
G.
0 T M
o 3 .
k 0 Tlo M;, c - -
- Ligs1 -0 1n
Mio-Z—I

\ .'\{n]

Summing up, we see that the operator T, which is one in a sequence of operators that
converge to M + Kj. is (U + K) equivalent to

gz M o »Tl;ﬂ o
Th = (GE Dk) ) e Mot
T M, M,

0
We can now see that T| € cl(if + K)(M) by noticing that

(Ge Dk) € cl{U +K)(Dg)

G.;,. 1
T:? My ) € cl(L{+/C)(é§Mi)
1"1';' Mo) a
G- Tg o Ti) "
My ) € U +K)( @ M;)
. t=ig+1

M, )

The last two statements follow from Lemma 5.7. The operator (Ge Dk) is in fact in
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cl(U(Dr))-

This finishes the proof, as T} € cl(i + K)(M) implies that T € cl(U + K)}(M). Hence
M + Kq € cl(U + K)(M) and consequently T must be in cl(i + K)Y(M).



CHAPTER 7

Isolated eigenvalues

We shall now investigate the closure of the (U + K) orbit of a model which differs from
that investigated in Theorem 6.2 by the adding of isolated eigenvalues of both finite and
infinite multiplicity.

With the results of Chapters 2. 4. 5 and 6 at our disposal, we are now able to adapt the
proof of Theorem 2.14 in [GM93a} to show the following:

7.1. Theorem. LetQ; be pairwise disjoint simply connected analytic Cauchy domains
and let p; be measures on 9); which are equivalent to the respective arc length measures.
Let j; € Z.j; # 0.i = 1....n and set MY = o M(Q.pu;) if i < 0 and MW =

S M™(Qy. i) if 5: > 0.

Nezt, let K be a compact subset of C. Assume that K is disjoint from J_, Q,.

Let {z.}¢_, be a sequence of complex numbers, here v may be a finite number or v = oc.
We are assuming {zr}ace C© KUUZ; O and {2} N(K UL, Q) = 0. Choose a sequence

of complez numbers {z.};_, such that, if v = oc. we have lim,_, 2, = 0. Let {n,}?_, be
a sequence of natural numbers.

Finally, we define an operator

n v
M =Dk P Mo J(zr.zr,n,).

=1 r=1

where the operators Dg and J(z,.z,.n.) are as defined in Chapter 1 (pages 16, 17), on
the Hilbert space

n Ji v
H=0N o PP H (U wm) e PC.

i=1 j=1 r=1
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The closure of the (U + K) orhit of the operator M is

U+K)(M) = {TeBH):
(i) T is essentially normal.
(ii)) o(T) 2 o(M),
(iii) nul (T—2)'>nul (M -2 01=1,2.....2 ¢ ge(M).
(tv) 0e(T) =oe(M),
(v) ind(T — z) = ind(M — z) for all z ¢ 6.(T) = ge(M)
(vi)  if 2 € 0iso(T) NoeT). then (T — z)|3qe1y = O
(vii)  if z € 0o(T), then rank E(z:T) = rank E(z: M)}.

Note that if T = M + L, L compact, the conditions which are not fulfilled automatically
are (ii), (iii) and (vii).

Proof. One can easily see that if T € cl((U + K)(M)), the conditions (i) through (vii)
must be satisfied.

Next. suppose that T satisfies the conditions (i) through (vii).

Step One: The isolated points of o(T). Denote the countable set 0,5,(T) of iso-
lated points of the spectrum of T by {A;}5_,. Assume that these points are numbered in
decreasing order of distance to g,cc(7), the set of all accumulation points of the spectrum.

Choose a small ¢ > 0 subject to the condition d((04cc(T))e) N 0iso(T) = @ and set o, =
(Cace(T))e- Let sg be such that {1, A2, ..., Asg} = 0(T) \ ge. (If the set 0y5,(T) is finite,
we choose € > 0 small enough so that gi5(T) No = 0.)

Then T has a block upper triangular matrix
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with respect to the decomposition

H=PHON:T)a[He Eé H(Xs:T)]
s=1

s=1

Corollary 5.6 shows that Ty is essentially normal.

We can now rewrite the model M with respect to the decomposition

H = @ HAsM)s[He 6]09 H(As; M)]

s=1 s=1

S0
M = (P M,) e My.
s=1

Here we have . ,
My =Dk, & (P MYVe @ J(z.zr.n.)).
i=1

r=rg+l

where Dy, is a diagonal operator with

U(DKQ) = Ue(DKo) =Ky = I\’\ {Al./\f_).. .. 7’\50}

and we are assuming. without loss of generality. that the blocks J(zr.z,.n,) are numbered
in such a way that

{Zr}:o=1 c {is }§°=1

{z et N{AIL, = 0.

Let us now consider the operators M, and T;;. We have two cases to distinguish.

If A; € 00(T), we know from (viii) that rank E(As;T) = rank E(As; M). In other words.
dim H(As; T) = dim H(A,; M). Without loss of generality, we may assume that H(\;:T) =
H(As: M) (if necessary, replace T by a unitarily equivalent operator). We also have

nul (T — A)' > nul (M =X)L 0=1,2,...,

and hence
nul (Tss — As) > nul (M, = A) L 0=1.2,....
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Therefore
Tss € cl(S(M;)) = cl U + K)( M)

(note that we are working on finite dimensional spaces right now).
If As € 0is50(T) N 0e(T). we have rank E(A;:T) = rank E(A;: M) = oc. We can again

assume H(As:T) = H(As: M), and then we have. using (vi) and noting that A is a direct
summand of a diagonal operator.

Tys = Al = M.

Summing up. we see that

609 Ty € clU + IC)(QOB M).

s=1 s=1
Let us now consider the operators My and Ty. Suppose, temporarily. that we can show
that there exists a Vo € (U + K)(H © @2, H(As; M)) such that ||[Vy ' MyVp — Toll < 6e.
Then

T -.. TlO"B—l
so T Tij TaVy!
M~y PTieMy=M = .. :
s=1 Tsoso TsoOI":)—L
My
by Corollary 5.2. Thus
S0 S0
M - @PIevyM(P1e V)
s=1 s=1
Ty ... Ty
T22 Tij T20
= M"_ .
Tsoso TsoO
Vo MoVa
But then ||T - M"|| = |[To ~ Vy'MoWll <  6e. implying that
T € U + K)(M). We see that it is indeed sufficient to show that

dist(Tp, (U + K)(Myp)) < 6e.

Step Two: The points go(M) \ 0is0(T). We are now working with the operators
My and Ty which satisfy the same conditions (i) through (viii). In addition, we know that
A € o(Tp) implies dist(A, 0gcc(Tp)) < €. We shall now deal with the points 8 € og(M)
which lie in a hole of o(M), but are not isolated in o(T).
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Let {3;}5-; (0 < ¢ < oc) denote the countable set gq(A) \ 6150(T) = ag(Mpy) \ 0150(T) in
decreasing order of distance to o4c.(Mp) C g.{Mjy).

The countability of go(Ms) \ 0is0(Tp) allows us to choose 0 < ¢; < ¢ such that

8((Gacc(Ma))e,) N {Bs}5—; = 0. Choose p such that {Bs}5-, are those elements of {8;}5_,
which do not lie in (gacc(Mo))e,- (As before. if { < oc. choose €; so that p = (.)

Conditions (iii) implies that nul (To — 5;)! > nul (Mo — B5)!.0 = 1,2....,s = 1.2,....p.
Therefore Ty can be written as

Ty ... By
To2 Bi; Bag
T;

where Tps acts on a space of finite dimension rank E(3,: M) and
nul (Tos — Bs)' > nul (Mo — B5) 0 =1.2.....s=1.2.....p.

where Mos = M|y g,.0)- Consequently, we have Tp, € cl(U + K)(Mps). (See [Her90].
Theorem 2.1.) An easy matrix calculation shows that T} is essentially normal. Moreover,
the above matrix of 7o may be assumed to be with respect to the decomposition

]

p
D #(8:: Mo) © (D) H(Bs: Mo))~.

s=1 s=1

We also have o(T1) = o(Tp). 0e(T1) = 0.(To) and nul (T} — ) = nul (Tp — B) if 8 ¢
ge(Th)U {ﬁs}gzl'

The corresponding decomposition of Mj is

p
My = @l\’fm & M,

s=1

where n )
My = Molgz_, E@moy =D @ D MO @ D J(erzr.ny).

s=1
1=1 r=ri+1

We are assuming that that blocks J(z,z;,n,) are numbered in such a way that
@:l:ro J(zr.Zr.nr) = @g=1 M.
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Note that 3, € o(M;), s = 1,2..... p- As a result. if 8 € o(M;). we have either
dist(B3.0gcc(M1)) = dist(B.0qcc(M)) < € or B € 0.(M}) = 0.(My) and B is in one of
the holes of o(M;) but is not isolated in o (T}).

Step Three: The “Big Holes” of o(T}). Note that ¢(T}) = o(Tp) looks like o(M})
except that some of the (countably many) holes of o(M;) are filled in. Let now {Tj};,=1
(1 £ 7 < oc) denote the holes of o(AM;) which lie in o(T}). Since o(M;) is compact, all
except finitely many of the holes 7; must be very small in the sense that given an e; > 0.
there exists an V = N(€3) > 0 such that {'r]}_;\=l C (Tacc{M1))e,-

Let us therefore choose 0 < €2 < €/2 and fix the appropriate N = N(e2). (Again. if
1 < 0. we can choose e; small enough so th_at N = n.) Denote x, = minind(T} — A) for

AeriNpee(Ti).1<j<Nandset k=3 ;.

We can now use Lemma 2.13 of (GM93a] « times to find a compact operator Ko. ||K>|| < €2
such that

(NI(TI) Wm\
- Wi Wao
Nrcx("l)

h-Ky= Ny(72)

N, Ky (TN) VVKO /

\ T,

where

(1) each NV;(7;) is a compact perturbation of a normal operator.
(ii) o(Ni(75)) = cl(75), 0e(Ni(75)) = d(cl(75)).
(iii) 0p(Ni(71)) = (Ga(Ni(75)"))" = cl(ry) \ B(el(r;)).
nul (N;(7;) — A) = nul (N;(77) — A)® =1 for all X € cl(ry) \ 8(cl(75)).
(iv) 0e(T2) = 0e(Th),
(v) ind(T2 — A) =ind(T7 — A) for A € g.(T1),
(vi) pul (T2 = A)=nul (T7 —A) —k; if A€ 7, 1 <5 <N,
nul (75 — A) = nul (T} — \) otherwise,
(vii) nul (T2 = A)* =nul (T} = A)" —k; if A€ 75,1 <7< N,
nul (75 — A)* = nul (T} — A\)* otherwise.

An easy matrix calculation verifies that 7> is essentially normal and all W;; are compact.
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We see now from conditions (iv) to (vii) that some of the singular points of o (7} ) have now
become isolated eigenvalues of T3:

N
oo(T2) = 0o(T1) U (o5 (T1) N (| 7))
=1

Moreover,
N N
ol{T) = (a(T)\ (| ) U (s p(T) n (| 7))
1=1 =1

Step Four: The Singular Points of T5. Consider the diagonal operator

v
D=Dx,& @ J(z.0.n:).

r=ry+1

Note that for every ro > r, we have

T2 v
Dk, & @ J(zr,0,n,.) & @ J(zr.Zn,nr)

r=r1+1 r=ra+l

€ dU+K)(Dk,& P J(zr.xn.nr))

r=ri=1

by Corollary 5.4, and therefore

D = lim Dg, @ P J.0n)e @ J(zr.za.nr)

r=ri+1 r=ra+l

€ dU+K)(Dk,® P J(z zn.nr))

r=ri+1

Denote

n v
M,=Dx,e@PMYVe @ J(z.0.n.)

=1 r=ri+l

We shall now consider the operator Th. We know that g.(T2) = 0e(T1) = g.(To) =
oe(Mp) = 0.(M) = 0e(M?2) and, for A ¢ 0¢(T3), ind(T2 — A) = ind(T7 - A) =i
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A). Both T, and M, are essentially normal and hence, by the Brown-Douglas-Fillmore
Theorem. there exists a compact operator L; and a unitary operator U such that

To=UMU" + Ly =U(M+ L)U",

where L = U*L,U is also compact.

Let {eg.€)....} be a basis of the underlying space of the operator D with respect to which
D is diagonal. For each i = 1,...n, use Lemma 2.6 to construct a basis of H>(Q,, u;) with
respect to which the matrix of M(€;, u;) is a Toeplitz matrix. Denote the k-th element of
this basis as ei-jk, where the index j = 1,2....,j; means that we regard this element as an

element of the j-th copy of H?*(Q;, ;) in the direct sum I*(N) & @, (D, (. 1))

We shall now construct a basis {ex};S, of the underlying space of M, as follows: Set
ko =1+ 3, ji and let now

er = e.fork=1k +1.0=0.1.....

ekr; = €, fork=1lkg+1./=0.1..... j=L12.....j.
€krp+j = €y, fork=Llkg+1.01=01....j=12..... J2-
€k+jy+jo+-Fjn1+] — e;?j_[, for k = l.ko +1.l= 0, 1,. .. ,j = 1,2, - ,jn.

Let P, be the orthogonal projection onto span{e;}%_,. £ = 0,1,.... Since L is compact,
the sequence F; = P,K P; converges to L in the norm Now

[n - \

Y2 Y

diag{7:}i>m
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Here we have rewritten @7~ M) as M~ & M ™. where

M~ = P{MY 5, <0}

M~ = @MY 5 >0}

By choosing m large enough. we make sure that
(M + Fm) — (M2 + L)j| <€

and

o(Mz + Fm) € (6(M2 + L))e = (6(T2))e.

We have of course {7}, C o(Ma + Fn) = (0(T2)). Also. any accumulation points of
{7 }S, lie in 0e(T2) = g.(M2). We can now choose an mg > m such that v; € (ge(Ma2)).
for i > mg. For each i > myq. choose an v, € o.(M>) such that |y, — v]| < e. Whenever
Vi € ge(M>). let v = ;.

As for i.= 1.2,....mg. we have either «; € UJN=1 i UUn Q; or dist(7i.0gcc(M2)) < 26. If
T € U;»\___l ;U= Q5. let v = 7;, otherwise choose v, € gacc(M3) such that |y, — ]| < 2e.

Setting

Y Vi -

T= Trm
diag{y{}:>m
T M-

\ )

we have
To =M, + L = Mo+ Fpy, =9 T
Let K; =0 & K, with respect to the decomposition
p P

[P H(Bs; Mo)] © [P H(Bs: Mo)]*.

s=1 s=1
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Then ||K3|| = [{K2l| < €2 and

To-Ky =

Conjugating by I & U, we

To=To—-K)=

Next we use the compactness of the operators CioU, 1 < i < p,and WipU, 1 <i < &
to approximate each of them individually to within ¢/(x + p) by finite rank operators

(Tm

Tor ...
Tof)

get

Too

T
(01 7

Bio
Bi; By
T — K»
Cn
Bij Ca
TOp Cpl
Ni(n)
Cn
Bi; Ca
Top Cpi
Ny(m)
Cn
8 Cx
TOp Cpl
Ny(m1)

Cix Cro \
Cax Cao
Cpn CpO
Wio
I’Vl’j
Neolta) Weo )
T>
Cix CwoU \
Cax CapU
WU
Wi :
Nrcy (Tn) WeoU
UTU/
Cix Crol
Cax Cool’
WieU
Nenv(ta) WU
T3 /

68
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Cip = CoUP; and W} = WioUP; for some large r > mg. r independent of i.

Then we have

(Ton .. Ci .. G Clp 0 0\
o By : : : : :
Ny(71) Wi O 0
Tp =5, Wy : : : | &D:.
Ny v(Tx) I'V_::0 0 (_)
P
= M-

\ M+
where D, = (I ~ Pr)diag{7i}i>m({ — P;) is a direct summand of diag{;}i>m and F acts
on a finite dimensional space.

Note that the eigenvalues of F lie in
N n
U ;U U Qj U (o’acc(l\’f2))€2'
=1 J=1

Denote

X F T-
M= |T- M- .
M~

One can verify that o(M) = o(F ) Ucl(Q) and we can decompose M as

= A’.‘[‘r Ta
)

where F,; acts on a finite-dimensional space and

N n
o(Fa) = o(F)\el|JruJ Q) C (Gace(M2))es
j=1 j=1
N
o(M:) = Q) U(a(F)ne(l )

=1
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We have
(TOI Cn Cix Ci’o C{I(I)\
" .Bij eee . . :
To Cu ... GCp Cly CH
(/4 ({4
Ty =, Ni(n) . wa ij e D,.
W’ij : :
Ney(rn) Wiy Wi
M. T,
\ Fe )

Step Five: Rebuilding Ty from M. We shall now put together the facts assembled
in steps two to four to show that Tj is close to (U + K)(Mp).

We know that for 1 < s < p, we have Tys € cl(U + K)(Mps). Using this fact and Corollary
5.2. we see that

To ..
T > p T
o By € AU + K) @D Mos) =l + KN D J(zr-2r.7,)).

s=1 r=rgo-+1

We can now find R; such that

Toy ---
Too Bij T
” . 7 _Rl_l( @ J(zr:l'rvnr))RIH <€
. r=rg+1

Let next D, be a diagonal operator with o(D;) = ge(D;) = U;V:l d(cl(7j)). Theorem 6.2
implies that there exists an Ry € (U + K) such that

Ni(m) ... wi
I e W : - R;Y (D, o D MRy <.
NrcN(TN) ‘2/},0 @

one can easily verify that the spectral conditions needed here are satisfied.
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Next. since 0(F,) C (0acc(M2))e,. we can find F, such that

(i) The eigenvalues of F, are simple.
(ii) [|F; — Foll < 2e2 <e.
(iii) o(F,) N {6, ;’___1 =0.
(iv) o(Fy) nel(U, ) =0.

We then know that F is similar to a diagonal operator D,. F, = Ry 'D.R3.

Finally. to deal with D,, let D,, be a diagonal operator such that

0(Dm) = 0¢(Dm) € 8(%)

=1

and
0e(D & Dy} = 0.(D;).
Then
(D © Dm) =0e(D & D) U {2z} 1
and

a(Dr) = 0e(D & D,y).

Since the Hausdorff distance dy(o(D & Dp).0.(D € D)) < e. it follows from [Dav86]
that
dist(D,,U(D & D)) < e.

Choose Ry unitary such that [|D, — R (D ® D) Ry|} < e.

Summing up, and using Corollary 5.2, we have

Cni ... Cix 1o il \
‘Rl_1 (@:;:ro+l J(z,., Zr, nr))Rl :
CPI .. Cp:c ;,Io CII,I(,,)
T
Ty =6 Wm
Ry{D-e@L MR,
x0
Ty
\ R;'D,R; )

® R;Y(D © Dm)Ry
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r n '
E(U?K)( @ J(zr-Ir-nr))G(D.—GEBM“‘)EDG D& D,

r=rg-+1 =1

m n ) v
=( 6 Jiz.n))0(D-0@PMY)e D, e Dk, © @ J(z.0.n.)& D

r=ro+1 i=1 r=ry+1

r: n
“wx) ( P JI(z.zr.n) & (D- 6 P MDD, © Dy, &

r=rg<+1 i=1

@ J(z2r.2r.n.) S Dy

r=ri+1
EMoeDv'eDa.@Dm
=, M.

ie. dist(Ty, (U + K)(Mp)) < 6e. As we saw in step one. this is what is need.



CHAPTER 8

Connected domain which is not simply connected

We shall now continue the investigation of the following model: we assume that Q =
1 \ cl(Q2), where Q; is a simply connected analytic Cauchy domain. Q» is an analytic
Cauchy domain consisting of n simply connected components. 2, = UTQs ;. cl(Q2) C Q.
Now let 1 be a measure on 8(Q) and for i = 1,2,....n, let u; be a measure on (23 ;):
all these measures are assumed to be equivalent to the respective arc length measures. Let
A= M(Q;.p) and let B = @7 M(Q5,, ;). Recall that 1g, and 1 are constant functions
equal to 1 on their respective domains ©, and ;. i

Let C =1g, ® lg.. Define an operator M on H*(Q,.p) & (DL, H*(Q5,. 1i)) by
A C
w=(29).

As we have noted in Chapter 1. the spectral properties of M are :
(1) o(M) =cl(Q):
(ii) oe(M) = %2

(ii1) ind M —2) = -1,z € Q;
(iv) minind(M -~ 2) =0, z € Q;

We can now resume investigating which operators of the form (‘g BD_> are in cl(U +

K)(M). The following is an easy corollary of Lemma 4.1.

8.1. Lemma. Let M = (g BC,) be as constructed above. Let D = 1q, ® d*, where

d € H%(Q3) and set
A D
x_(o B,).

Then we have (1) < (ii) = (ii1), where

(1) d(z) # 0 for z € Q3,
(ii) o(X) Ny = 0.

73
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(iil) X € cl(U + K)(M).

Proof. The equivalence () < (i) follows from Lemma 1.3.

Assume that d satisfies (i). Lemma 1.1 allows us to find a &’ € C(cl(€23)) such that d’(z) # 0
for z € cl(Q3)NH?2(Q3) and Hd-d’HHz(Q;) can be made arbitrarily small. (This construction
is to be done on each component of §2; separately.)

By Lemma 4.1. we have

,'
(‘3 1915@‘4 )ecl(u-f-lC)(M),

and hence X € cl(U + K)(M) .

8.2. Lemma. Let k € N. Denote by Fi the subspace of H*(Q;) spanned by
1.z 22 z%. Let X be an operator of the form

A F
x=(3 £).
where F is a finite rank operator with ran F C Fj. Then X is (U + K)-equivalent to an
operator of the form
A D
0 B*)°

where D = lg, ® d*, for some d € H*(Q3). This (U + K)-equivalence is of the form

X = I Z\ (A D I -Z
T\0 I 0 B*/J\0 I}’
where Z is a finite-rank operator.
Moreover, d can be calculated as d = G(F'), where G is the linear map from

{Y e B(HQ(QE),HQ(Ql)) :ran Y C Fi for some k}

into H>(Q3) such that
Gp®g°) =6(p)g:



w
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where p is a polynomial on Q. g € H%(Q3) and @ is a bounded map from H?(Q;) into
H>()3) defined by

0(f)(z) = f(z).z € Q5.
Proof. Observe that

EOER6ED-G

We will find a compact Z such that G = F + ZB* — AZ satisfies ran G C Fj_; (for £ > 1).
The lemma will then follow by induction. (Note that the expression ZB* — AZ is linear in
the variable Z.)

Let go be such that F — 2" ® g5 € Fr—; and let Z = z""! ® g§. Then

(F+ZB*—-AZ)g = Fg+(B"g.go)z""' ~(g.g0)Az""!
= (Fg—{(g.9¢)=") +(g.2.90)2" "
e Fi._;.

The fact that d = G(F) can be verified by an easy calculation. The boundedness of 8
follows from the Cauchy theorem.

8.3. Lemma. Suppose f € H*(Q)), g € H?(93). Define go € H?(Q3) by go = 6(f)g.
where 8 is the map introduced in Lemma 8.2. Then for every e > 0 there exists a finite-rank
operator X : H*(Q3) — H%(Q) for which

|f®g"—XB "+ AX — 1, @gjll <e.

In particular, we have

(5 78) e awsrn(f 2%,

(¢ =2%) « awvn(s 137)
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Proof. Let {fi}3, be a sequence of polynomials such that fi — f in H?(Q;). Then by
Lemma 8.2. there exist a finite-rank Z; : H2(Q3) — H>(;) and g € H?*(Q3) such that

fn®g" — ZyB™ + AZ = 19, ® g;-

fork=1.2.....

Recall that g = 6(fi).g. We have fy = f in H?(Q;). hence 8(f) — 6(f) in H*>(Q;) and
9k = 8(fi)-9 — go = 6(f)-g in H*(Q3).

With € > 0 given. choose & such that ||gx — gol| < €/2. [|fx — f]] < €/2l|g|| and set X = Z.
Then we have

If 29— XB" + AX - 1qg, ® g5l
= (fe@9 —ZkB " +AZ; - 10, ®9) +(f — fe) ®9" + 1o, ® (9 — g0)7|]|
= 0+(f-f)®¢g +1a, ®(g—g0)°|l <e¢

The second statement follows easily using (U + K) similarities of the form (g JI()

O
8.4. Corollary. Let W € B(H?(3). H*(Q)) be finite-rank. say
W = le fi®g;. Setgy = Zf=16(fi).g,-. Then for every € > 0 there ezists a finite-
dimensional operator X : H2(Q3) — H*(Q,) for which
HW - XB"+ AX ~ 1lg, ® g5l < e
Proof. This follows from the linearity of the expression XB* — AX in X.
a

8.5. Lemma. Let W € B(H?(Q3),H?*(Q))) be compact. Then there ezists a g €
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H?(Q3) such that

(‘g g/) € cl(u+1C)((‘3 IQIB?-"'))

((‘} 1“138:9') c c1<u+IC)((‘§ };i)>

Proof. Choose ¢ > 0. Choose zg € Q; arbitrarily. Let ¥ € H?(9;) be the function
constructed in Lemma 2.1. Let {e;}3Z,. en = ¥".ep be the basis of H?(Q,) constructed in
Lemma 2.6. Denote r = max{|y(z)| : z € cl(Q2)} and note that. by the maximum modulus

principle, we have r < 1.
Write W as
x
W=) e®h;
=0
and let
k
Wi=> e®hlk=0.1....
=0

Then by Corollary 8.4, if we define g € H?(Q5) by gx = Zf:o 8(ei).hi. one can find a finite
dimensional Xy : H2(€03) — H?(Q;) such that

(Wi — XxB™ + AXr ~a @ gi|| < e

Observe that

8(ella=(a;; < Ml¥in,llc = MT'. M= crll(lg}’){eo}

and hence

o0 o k
; T
1D 6(ea)-Aull < 3 MW = MIIW|iT—-
i=k i=k
Therefore the sequence gi has a limit in H2(Q3). We shall call it g.

We can now choose kg such that ||W — Wy,|| < € and Affrf"%rl < 1. Then we have {|h;]| <

/W — Wioll < €, > ko and hence

rko+l

o
lig — gl < D Mrie=eM <e

i=kg+1

l—-r
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We have

HW — Xk B™ + AXpo — 1o, @ 7|
HWko — XkoB™ + AXpny — 1a, @ gkl + W — Wil + llg — gk, |l

IA

< e€e4+e+e€=3e

Both statements of the lemma now follow easily using (U + K) similarities of the form

I X
o I )

Lemmas 8.5 and 8.1 together give

8.6. Corollary. Let X = (61 g{) W compact. Suppose that o(X) = o(M) =

cl(Q1) \ Q2. Then X € cl(U + K)(M).

We shall now restrict the class of models we are investigating. This will also restrict the
class of spectral pictures. We will subsequently use functional calculus (the techniques
developed in Chapter 3} to get back to the original class of spectral pictures.

8.7. Theorem. Assume that in the model M = (3 g'.) constructed above we have
Q) =D and p is the arc length measure. In other words. we have A = S. where S is the
forward unilateral shift. Let X be an essentially normal operator such that

(1) o(X) = o(M) = cl(1) \ Qo,
(il) ge(X) = ge(M) = 0 U 0,
(iii) ind(X — A) = ind(M — A) = =1 for A € Q; \ cl().

Then X € cl(U + K)(M).

Proof. As in the proof of Theorems 2.7, 4.6 and 6.2. we can again use the Brown-Douglas-
Fillmore Theorem to see that we may assume without loss of generality that X = M + K.

where K is compact.

Fix ¢ > 0. Let {1,2.22,...} be the canonical basis of H?(Q;,u) = H?*{D). For each
it =1,...n, use Lemma 2.6 to construct a basis of H 2(92',', ui) with respect to which the
matrix of M (82, ;. u;) is a Toeplitz matrix. Denote the k-th element of this basis as €l
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We shall now construct a basis {ex}32; of H?(Q;.u) 8 (@Y, H2(Q3 ;. u:)) as follows:

dofork=Iln+1)+1.1=0.1.....

er =
ex. = e fork=ln+1)+350=0.1....7=12....n
Let P be the orthogonal projection onto span{e;}% ;. £ = 0,1..... Since K is compact.

the sequence {M + P.K P}, converges to M + K in the norm. Find kg such that
|Peo K Pry — K|| < € and (M + Py(y KPy, — K) C (0(X))e. Denote Kg = P, KPy, — K
and notice that X; = M + Kj is of the form

A C O
F Ci|.
Bt

Notice that the entries of the matrix of C| are zeros except for the bottom row. i.e. ran C; C
span{lq, }. if we consider C) as an operator from C?¢ into H?(D). We want to show that
X is close to (U + K)(M).

Let F, be a perturbation of F| such that
o [|[Fo— Flf| <e.

e o(F3) C &,
e the eigenvalues of F» are simple.

A C 0
Xo = B G).
Bt

Then we have || X7 — X|| < 2¢ and o(X,) C cl(Qy).

Let

The fact that F5 has simple eigenvalues allows us now to use Lemma 2.4 to see that an
!

arbitrarily small perturbation of C; to C] will cause (A g,;) to have no eigenvalues and

to be (U +K) equivalent to A. Moreover, one can do this so that ran (C; —C]) C span{lq, }.
Choose such a perturbation small enough so that in addition to this we have ||C, — Ci}|

and the spectrum of
A C 0
X3 = F G
B-

We now have the following situation:

lies in (a(X))e Ncl(2;).
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F

)
)
-« (A C] . . .
(1ii) has no eigenvalues and is (/ + K) equivalent to A4.
)

may be infinitely many of these. If this is the case. any cluster point of the set of
eigenvalues will be in dQ2; (because o.(X3) = () U J(2)).

In the next step, we want to find X close to X3 with the same properties except that there
will be only finitely many eigenvalues in 5.

Notice that condition (iii) implies that X3 is (i + K) equivalent to an operator of the form
Y = <A é‘,) ., L compact, which of course has the same spectral properties as X3. We

want to show that there is is an Xy of the form

AC 0
.X.; = F?_ Cili
B-

such that || X3 — X4|| < ¢, and Xy has the desired spectral properties. This will easily
follow once we prove:

A F
Bt

Claim: Let Y = (
. ] . , , A F'
ties described above for X3. Let n > 0. Then there exists a a F’ such that Y’ = B

), F finite-dimensional. Suppose that Y has the spectral proper-

has only finitely many eigenvalues in Q9 and ||F — F'|| <75, ran F' Cran F.

Proof of the Claim: Suppose FF = Y70 fi®g]. g; € H*(Q3), fi € H*(Q;). Using
Runge’s theorem and the definition of H2(3), we can find polynomials g/ such that for
F'=3%"70 fi®g; we have ||[F — F'|| < € and moreover ||F — F'|} is small enough so that
Q2 \o(Y') # 0. From Lemmas 1.3 and 8.3, we know that the eigenvalues of Y’ inside 0,
correspond to the zeros of k = Y12, 8(fi).gi. This is (can be extended to) a holomorphic
function on 2. If k¥ had infinitely many zeros in 5, it would be a constant equal to zero,
causing Q2 \ o(Y’) = 0, contradiction. This proves the claim, we can now resume the proof

of Proposition 8.7.
A C O
X4 = E G
Bt

with respect to H = H%(Q;) & Ck & H?(Q5). We know that ran C} C span{lq, }, || X; -

!
Xl < 4e, o(Xy4) C cl(Q2), (A %‘) has no eigenvalues and is ({{ + K) equivalent to 4.

We now have
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X4 may have eigenvalues in ;. These are not further than € away from 895 and there are
only finitely many of them. Suppose these eigenvalues are A}, Ag,.... Apy.

Denote Hg = span{H(A1; X3). H(M2: Xy). ..., H(Am:; Xy)}. If we knew that Hy L H?(Q,)
and Hy L H 2(Q§), i.e. Hy is a subspace of the underlying space of F», we could move
the eigenvalues A; away from Qj by perturbing F». As we shall see next. it is true that
Ho L H*(;) and Ho L H?(Q3) can be achieved by altering the decomposition of .

Foreachi=1.2..... m, let n; be such that H(A;: Xy) C ker(Xy — A;)™:. Note that for any
A and k, XX is of the form
Ak cy C3
( ! cg) |
B-k

One can verify by induction that

ran (C{ C3) Cspan{l.(z —\)..... (z — A)*-1y.

f
If now (h is in ker(Xy — A;)*. we have

g
f AR oy i\ (f AFf+ Clh+ Cig 0
Xs|h|= FF Cl | |n)|= F¥h+Cjg = {0
g B*/ \g B kg 0

Now A*f is linearly independent of ran (C} C%). forcing A¥f = 0 and hence f = 0. This
implies that Hy L H2(Q;).

Notice also that the H2(Q3) component of any vector in ker(X; — Ai)* (denoted here by g)
is in ker(B* — )%,

Use Lemma 2.2 n; times to find vectors {f1, fa..... fn, } such that the matrix of B* is

A
AL

At
B
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can now continue in this manner until we can write B* as
o \
Al ...

A2

Am

\ )

with respect to the decomposition span{fi, fa..... fno} € span{f;. fo.... . fno}—. where
ng = Y .=, n; and B is another unitarily equivalent copy of B*. Note that ker(B* —A)™m C
span{fi.fo.....fagp fori=1,2..... m and consequently we have

Ho L (H*(Q3) ©span{fy. fa.. ... fao})-

We can now rewrite X, as

A Cf .
Bocy Col_(* S 5
Bl_ Bg -
B.II
with respect to the decomposition

H = H*(Q1)©C® @span{fi, fo..... fa} & H(Q3)
= H=HYQ))eCt™ g HY(Q5)

where H2(€;)’ is an isometrically isomorphic copy of H 2(Q3). We have now H; C Cro g
span{fi, fa,---: fno} = CFo+"0_ We shall denote B*" as B* from now on.

Fort=1,2,....m, let I; be the identity operator on

span;_, H(A;: X4) © span}Z} H(A;; X4)
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and let A} € Q; \ c/(Q») be chosen so that |A; — A]] < e. Set

m
Xs =X+ ) (M — M)

i=1

4.C 0
X5 = Fy By |.
B-/I

we have o(X5) = cl(;)\ Q2, | X5 — X|| < Beand A.i=1.2..... m. are the only points
with nul (X5 — A;) > 0.

Then X is of the form

Next. we decompose the finite dimensional operator F} as

where o(F5) C cl(Q2) and o(Fs) Ncl(22) = @. We have

A D> Ds
we_| B D D
e Fs Ds

B-

Since o(Fs) No(B*) = 0, Lemma 5.1 allows us to find a Z such that

(7)) D" 2)

The operator X5 is now (U + K) equivalent to

A D, D, Di

(I -z I z\_ F, D. D!
Xﬁ"( I)X5< I)— F 0
B‘

Let M; = || (I _IZ) 1Bl <I ?) ||- Recall that the only eigenvectors of X5 were of the
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h! . .y
form g'l and hence the eigenvectors of X will in fact be the same:
i

0
I 0
I il h;
I =z} {4l |d
I 0 0

Next. consider Lemma 2.4 and perturb Dj. D). Fs so that

A Dy E
F5 Ej Zy+x A,

Fr

D, E,
W{ DL ) = | B2 | 1l < ejn.
F F:

and F7 has simple eigenvalues in Q; \ cl(Q,).

Then
A D, E, D
_ F5 E, D)
X7 = F 0
Bt

is (U + K) equivalent to an operator of the form

-5

where K7 is compact.

Let us check if X7 has any eigenvalues in Q5. Suppose A € Q, and

f A-X Dy E; Dg f
_ gl _ FF-\ B Dj gl _
(Xe =X fp]= FroXx 0 h|=
k B -] \k

(=Nl o)

84



8. CONNECTED DOMAIN WHICH IS NOT SIMPLY CONNECTED 85

Then we have (F- — A)h = 0 and hence h = 0. But then

OO OO

f f
Xr=N || =x-0]5] =
k k

which is a contradiction — X does not have any such eigenvalues.

So X7 has no eigenvalues in 0; and by Corollary 8.6. we have X7 € cl(i + K)(M). Hence
dist(Xg. (U + K)(M)) < ¢/M,

which implies
dist(Xs5. (U + K)(M)) < e.
and hence
dist(X. (U + K)(M)) < 6e.
This last statement holds for any € > 0. so finally X € cl(i/ + K)(M).

C

8.8. Corollary. Let Q = Q;\cl(Q2). where Q) is a simply connected analytic Cauchy
domain. Q5 is an analytic Cauchy domain consisting of n simply connected components,
Qy = UFQa;. cl(22) € Q). Let ¢ be an invertible holomorphic map from a neighbourhood
of 2 to C such that @|z is a conformal map of D onto Q. (This is the mup which was
used in Chapter 1 to construct H*(Q;).) Then we have ¢~1(Q) = D\ cl(Q),where O is
an analytic Cauchy domain consisting of n simply connected components, Q) = U, ..

cl(©)) CD. Let now pu be a measure on (D) and for i = 1,2,...,n, let u; be a measure
on 8(2,"); all these measures are assumed to be equivalent to the respective arc length
M (D.
measures. Let now M' = (° (B-p) C, -\ | be the model constructed at the beginning
0 M(Q5,7)

of this chapter. Then M = ¢(M') has the fbllowing spectral properties.

(i) o(M) = cl(Q2);

(ii) oe(M) = 09;
(iii) nul (M —2) =0, z € 2;
(iv) nul (M -2) =1, z€ Q;
(v) ind(M — z) = -1, z€ Q.

Let X be an essentially normal operator such that

(i) o(X) = o(M) = cl(fl) \ Qa.
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(ii) 0o(X) = ge(M) = 8Q; U 8.
(ifi) ind(X — A) = ind(M — A) = —1 for A € Q; \ ().

Then X € cl(U + K)(M).

Proof. The proof is very similar to that of Theorem 3.5. Lemmas 3.3 and 3.4 allow us
to verify that M has the spectral properties described in the Corollary. Note that M’
is the type of operator for which Proposition 8.7 provides conditions that are sufficient
for an operator to lie in cl(Uf + K)(M'). Using Lemmas 3.3 and 3.4 again, we see that

¢~'(X) satisfies the conditions of Proposition 8.7 and hence ¢~!(X) € clUd + K)(M').
Now X € clU + K} (d(M')) = cl U + K)(M) by Lemma 3.2.

(]

8.9. Corollary. Let M = ¢(M’) be as in 8.8. Then X € cl(U + K)(M) if and only if

(i) U( ) = o(M) =cl(1) \ Q2 or o(X) = cl().
(1i) 0e(X) = ge(M) = 002, U Q.
(iii) lnd( X = A)=ind(M — A) = —1 for A € Q; \ cl(Q),
(iv) ind(X ~ A) =ind(M — \) =0 for A € Q.

Note that if we know that X = M + K, where K is compact. the only condition which is
not satisfied automatically is condition (i).

Proof. The necessity of these conditions is easily verified.

Suppose that X satisfies the conditions of the theorem. We can use Proposition 4.4 of

[Apo76] to find an operator Xj such that || X — Xp|| is arbitrarily small. and Xj satisfies the
conditions of Corollary 8.8. Then X € cl(id{ +K)(M) and consequently X € cl(U + K)(M).

a

We can now use Corollaries 5.2 and 5.6 to put this result together with Theorem 7.1 as
follows:

8.10. Proposition Let My be a model of the type constructed in Theorem 7.1. For
1,2,...,n, let M; be a model of the type constructed in Corollary 8.9. Assume that
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X; may have eigenvalues in 5. These are not further than e away from dQ, and there are
only finitely many of them. Suppose these eigenvalues are A, g, . ... Ap,.

Denote Ho = span{H (A;; Xy). H(A2: Xy).... . H(An: X4)}. If we knew that Hy L H2(Q,)
and Hy L H?(Q3), i.e. Hy is a subspace of the underlying space of F,, we could move
the eigenvalues A; away from Q2 by perturbing F». As we shall see next, it is true that
Hy L H?%(Qy) and Ho L H?(Q3) can be achieved by altering the decomposition of H.

For each i = 1.2.....m, let n; be such that H(A;; X3) C ker(X; — A;)™. Note that for any
A and k, X% is of the form
Ak cy 3
( F% Cg’) ;
Bk

One can verify by induction that

ran (C{ C¥) Cspan{l.(z —A)..... (x — A 1)

f
If now (h is in ker(X; ~— A;)*. we have
g

f Ak cr o\ (f AXf+Clh+CYg 0
Xs|h)|= FfF Cy||nr]= Ffh+Clg =1{0
g B*/ \g B*g 0

Now AFf is linearly independent of ran (C{ C%). forcing A*f = 0 and hence f = 0. This
implies that Hy L H2(Q;).

Notice also that the H%(23) component of any vector in ker(Xy — A;)* (denoted here by g)
is in ker(B* — X\;)~.

Use Lemma 2.2 n; times to find vectors {fi, fo..... fn, } such that the matrix of B* is

A .
AL

A .
B~

with respect to the decomposition span{fi, fa...., fr, } ®span{fi. f2..-.. fa, }*, where B*
is a unitarily equivalent copy of B*. Note that ker(B* — A} )™ = span{fi. f2,.... fn,}. We
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can now continue in this manner until we can write B* as

S \

1

Al ...
A2

Am )

with respect to the decomposition span{fi. fa..... frno} € span{fi. f2..... fno}*. where
ng = y_.=, n; and B*" is another unitarily equivalent copy of B*. Note that ker(B*—);)™ C

span{fi. fa.....fno} for t = 1.2....,m and consequently we have

We can now rewrite Xy as

A C

, , A C 0

X, = F, C3 Cy — FI !

i B, B 3 3
B-Il

with respect to the decomposition

H?(Q) @ C* @ span{fi, fo.---. fno} & H*(Q3)'
=~ H=H*Q,) e Crtro g H2(Q3)

H

where H2(£23)’ is an isometrically isomorphic copy of H2(Q3). We have now H; C CR g

span{fi, fa:-.., fno} = CFo+tm0_ We shall denote B*" as B* from now on.

For i =1,2,...,m, let I; be the identity operator on

span_, H(\;: X;) © spaniZ} H (\;; X4)
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and let X € Q; \ c/(Q2) be chosen so that [A, — A]] < e. Set

m
Xs5=X4+ Z(/\: — i) ;.

=1

4¢ 0
X5 = Fi, By }.
B:II

we have o(X35) = cl() \ Q2. || X5 — Xl <5eand Aj. i =1.2..... m. are the only points
with nul (X5 — A;) > 0.

Then X3 is of the form

Next. we decompose the finite dimensional operator Fy as

Fs D
F4=( Fsl)

where o(Fs) C cl(Q2) and o(Fs) Ncl(22) = 0. We have

A Ds Dj
‘e F5 Dl D-¥
o Fs Ds

Bl

Since o(Fg) No(B*) = 0, Lemma 5.1 allows us to find a Z such that

(R0 5)

The operator X5 is now (U + K) equivalent to

A D, D} D

(I =2z\, (I Z\_ Fs D! D,
w-(C )R D)=| TR
Bt

Let M) = || (I -IZ> [I-11 (I f) [|- Recall that the only eigenvectors of X35 were of the
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!
form g; and hence the eigenvectors of Xg will in fact be the same:
;

0
I 0
I kil _ | A
I =Z)lg| |4
I1/)\o 0

Next. consider Lemma 2.4 and perturb Dj. Di. Fs so that

A Dy, E;
Fs Ey | =y.cA

Fr

Dy E,
H{D1] — | E2] |l <e/M.
Fy E;

and F7 has simple eigenvalues in Q; \ cl(Q3).

Then
A Dy E, Dj
_ Fs E, D)
X7 = F 0
B‘

is (U 4+ K) equivalent to an operator of the form

5

where K7 is compact.

Let us check if X7 has any eigenvalues in Q5. Suppose A € Q5 and

f A—A Dy E Dy f 0
-_nil9] — F5-A E, D-Ii gl _ |0
(K= R )= F=—x 0 hl= 1o
k B* - k 0

84
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Then we have (F; — A)h = 0 and hence h = 0. But then

f f 0
9| _ g|_ |0
k k 0

which is a contradiction — Xg does not have any such eigenvalues.

So X7 has no eigenvalues in 5 and by Corollary 8.6. we have X; € cl(i + K)(M). Hence
dist(Xs. (U + K)(M)) < e/M].

which implies
dist(X5. (U + K)(M)) < e.
and hence
dist(X. (U + K)(M)) < 6e.
This last statement holds for any € > 0. so finally X € cl(U + K)(M).

]

8.8. Corollary. Let Q = Q;\cl(Q3). where Q, is a simply connected analytic Cauchy
domain. s is an analytic Cauchy domain consisting of n simply connected components,
Qy = UTQa;. cl(Q2) € Q. Let ¢ be an invertible holomorphic map from a neighbourhood
of B to C such that ¢|z is a conformal map of D onto Q. (This is the map which was
used in Chapter I to construct H%(2;).) Then we have ¢~1(Q) = D\ cl(§25), where Q% is
an analytic Cauchy domain consisting of n simply connected components, Q) = UTQ, ..
cl(Q5) € D. Let now p be a measure on 8(D) and for i = 1,2....,n, let u; be a measure
on 8(25;"); all these measures are assumed to be equivalent to the respective arc length

measures. Let now M' = M(D. ) C; «, | be the model constructed at the beginning
0 M(Q5,7)

of this chapter. Then M = ¢(M') has the following spectral properties.
(i) o(M) = cl(Q);
(ii) oe(M) = 9Q;
(iii) nul (M — 2) =0, z € Q;

(iv) nul (M*-2) =1, z € Q:
(v) ind(M —2) =-1, 2z € Q.

Let X be an essentially normal operator such that

(i) o(X) = o(M) = cl(Q1) \ Q.
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(ii) oe(X) = ge(M) = 0 U 8Qs.
(iii) ind(X — A) = ind(M — A) = =1 for A € Q; \ cl(Q).

Then X € cl(U + K)(M).

Proof. The proof is very similar to that of Theorem 3.5. Lemmas 3.3 and 3.4 allow us
to verify that M has the spectral properties described in the Corollary. Note that M’
is the type of operator for which Proposition 8.7 provides conditions that are sufficient
for an operator to lie in cl(f + K)(M’). Using Lemmas 3.3 and 3.4 again, we see that
¢~ 1(X) satisfies the conditions of Proposition 8.7 and hence ¢~ }(X) € cl(U + K)(M').
Now X € cl(U + K)(¢(M')) = cl(U + K)(M) by Lemma 3.2.

Cl

8.9. Corollary. Let M = ¢(M') be as in 8.8. Then X € cl(U + K)(M) if and only if

(i) o(X) =0c(M) =cl(21)\ Q2 or o(X) =cl(Q,),
(ii) ge(X) = ge(M) = 9Q; U 0y,

(ii1) ind(X — A) =ind(M — A) = =1 for A € Q; \ cl(25).
(iv) ind(X — A) =ind(M = A) =0 for A € Q.

Note that if we know that X = M + K, where K is compact. the only condition which is
not satisfied automatically is condition (i).

Proof. The necessity of these conditions is easily verified.

Suppose that X satisfies the conditions of the theoremn. We can use Proposition 4.4 of

[Apo76] to find an operator X such that || X — Xj|| is arbitrarily small. and Xj satisfies the
conditions of Corollary 8.8. Then X4 € cl( + K)(M) and consequently X € cl(U +K)(M).

o

We can now use Corollaries 5.2 and 5.6 to put this result together with Theorem 7.1 as
follows:

8.10. Proposition. Let My be a model of the type constructed in Theorem 7.1. For
=1,2,...,n, let M; be a model of the type constructed in Corollary 8.9. Assume that
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o(M;) CZ;.i =0.1,....n, where &; are pairwise disjoint simply connected open sets of
C. Set M = @)_, Mi. Then the closure of the (U + K)-orbit of the operator M is
(U + KY(M)) = {T € B(H) :
(i) T is essentially normal.
(ii) o(T) 2 o(M).
(iii) nul (T — 2)! > nul (M —2).I=1.2..... z ¢ ge(M).
(1v) 0(T) = ce(M).
(v) ind(T — z) = ind(M — z) for all 2 & 0.(T) = 0.(M)
(vi) if z € 0iso(T) N 0e(T). then (T — z)i3yy = 0.
(vii) if z € 0o(T). then rank E(2:T) =rank E(z: M)}.

Proof. The proof is analogous to that of Theorem 5.7.



CHAPTER 9

Further Comments

In this chapter we shall state several open questions in the present area of research.

Notice that if M is one of the models investigated in Chapters 2 and 4. we have
minind(M — z) =0, z € pp(M).

One would want to know what the closure of the (I + K)-orbit is in the following case:

9.1. Question. Let Q be a simply connected Cauchy domain. Suppose that p and p~
are measures on 0 and 0" equivalent to the arc-length measure. Let i.j > 0 be integers.

Set

3 J
M =@ M@ .p7) @@ MOQ.p).
k=1 k=1

Note that we have
nul (M —-2) = L
nul (M -2)" = j.

for z € Q.
What is cl(U + K)(M) ?

Note, however, that the models we dealt with in Chapters 2 and 4 are maximal in the
following sense: The model M = @_; M(*, u")" & @, M(Q. u) is in clU + K)(My).
where My = @;C_:Jl M(Q*.p*)") ifi > j or My = @j_, M(Q.pu) if i < j. (See Theorem
4.6.) Since the relation —y..c is transitive. this implies that c{U/ + /) (A) C cl(U+K)(My).

Next, note that in Theorem 7.1, we required that K (the set by which the essential spectrum
is being enlarged) and the sequence {z,} (the isolated eigenvalues of the model) are both
disjoint from (J.., ;. One may now ask:

88
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9.2. Question. Consider the model M investigated in Theorem 7.1. If we remove
the condition that K be disjoint from i, Q: and if we replace the condition {z,} " (K L
UL, Q) =0 by {z-} N K = 0. what is (U + K)(M) ?

As for the model investigated in Chapter 8. the most urgent concern would be the following:

9.3. Question. Suppose M 1is the model investigated in Corollary 8.9. Let i > 1.
What is cl(U + K} (P, M) ?

Finally. whenever the closure of the (U + K)-orbit is described for a model with a certain
spectral picture. one may wish to go beyond the model and investigate the whole class of

operators sharing the same spectral picture.

9.4. Question. Suppose M is one of the models investigated here. Call an operator
X M-like if it has the same spectral picture (including nullity) as M. Is it true that for
any M-like operator, we have M € cl(U + K)(X) ?

If the answer to this question is affirmative, transitivity of the relation — .x implies that
cl(U + K)(X) = cl(U + K)(M) whenever X is an M-like operator. (Compare {Mar92].)
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