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Chapter 1 

Introduction

El gato del bianco muerde los pescados 1 W ithout any knowledge of Spanish it is 

difficult for an English speaking person to determ ine what this sentence might 

mean. However, information specifically about Spanish is not the only way 

tha t the sentence’s meaning can be determined. Consider for example Table

1.1 which contains a short list of Italian words along with their equivalent in 

English. The translations were generated by Babel Fish 2 since it was freely 

available online. Italian and Spanish are both  from the same language family 

(in this case Romance languages) and are known to  have similar words.

W hen examining Table 1.1 we can begin to  see similarities between Italian 

words and those in the Spanish sentence. For instance, bianco (white) has 

a great deal of similarity to  bianco in our example sentence. If we look for 

the Italian words in the list th a t are most similar to the Spanish words in the 

sentence we can begin to  make educated guesses a t various translations. By 

following this logic we can translate a few of the key words in the Spanish sen­

tence, concluding th a t gato means cat, pescados might mean fish, and muerde 

could be some gram m atical form of bite. From this we can say the sentence 

seems to  be about a white cat biting a fish, which is not far from w hat the 

sentence translates to. Some of our choices may seem like more of a stretch 

than others. The similarity between bianco and bianco is much stronger than 

tha t between pescados and pesci. In fact, following this approach can cause

'O u r apologies if the Spanish grammar is not perfect, the translations were done by 
machine and this is still an area needing more research.

2h ttp ://w o rld .altavista.com /babelfish/

1
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Italian English
uno one
due two
piccolo small
grande big
bianco white
rosso red
orecchio ear
occhio eye
gatto cat
asino donkey
pesci fish
latte milk
burro bu tte r
morso bite
ritrovamento find

Table 1.1: Italian/English translations

problems. Consider this Spanish sentence, Un burro tiene dos oidos. A t­

tem pting to  use the same similarity based m ethod can cause us to  make bad 

choices. The number two seems to  be part of the  sentence (from dos and due). 

However oidos could be translated into ears (using orecchio) or possibly eyes 

(using occhio). A m ajor problem occurs when using similarity for examining 

the word burro in the Spanish sentence. We have an exact match for this word 

in our Italian list, the problem is it means butter. We are beginning to  con­

struct a sentence about the two ears (or eyes) of butter. This shows th a t while 

the similarities between Italian and Spanish can be helpful for translating to  

English, the process is difficult and can lead to  unexpected errors.

This brings us to  the purpose of this thesis, which is to examine word 

similarity in natural language and find some way to  determine the useful in­

formation th a t it contains while filtering out the noise and errors. We want 

to find a way to discover what constitutes true  similarity between words, and 

separate th a t from the similarities th a t can occur by chance. Most languages 

have a relatively small alphabet, restricted even more by patterns and regular­

ities imposed on the words by the language, so it is possible th a t words may 

look very similar based on random occurrences. Thus, one of our main goals

2
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is to model a system tha t can differentiate between similarity th a t occurs due 

to  a relationship existing between the words from these coincidental matches.

We also have another im portant goal, and th a t is to have a system tha t 

is applicable to  any language pair. To achieve this goal we shall use the 

techniques of machine learning to  autom atically create our model from a set 

of training data. Our hope is th a t if we have some examples th a t exhibit the 

similarity we are looking for, then we can autom atically learn exactly what 

details about these word pairs makes them  similar. If we can determine what 

kinds of transform ations are likely between languages then it should help us 

to  determine what pairs show sim ilarity based on the trained criteria.

You may have noticed th a t the words in our example Spanish sentences 

and in the Italian/English list all represent very simple concepts. This has 

happened because the similarity we were using to  aid us in translation comes 

from a very specific source: cognates. The study of cognates is the initial 

m otivation for the entire system. More information on cognates can be found 

in the C hapter 3. For now it is enough to  know th a t cognates are similar 

because of an evolutionary process. This process represents how languages 

have developed through history. The idea is th a t a pair of related languages 

(like Spanish and Italian) are both  descendants of a single root language. This 

language was the starting point for all of the related languages, bu t over time 

the languages began to  diverge. Fortunately such divergences often exhibit 

a great deal of uniformness throughout the evolved language. It is common 

for a vowel or consonant change to  be consistent between the two languages. 

Table 1.2 shows this correspondence between several Romance languages using 

counting numbers.

From the table you can begin to  see what sort of correspondences there 

are. English provides a counter-example since it is from a different language 

family. Obviously the languages from the same family share m any common 

features, bu t you can also see how they are diverging. Different language prefer 

variations on vowels and consonant structure. There seems to  be a correspon­

dence developing between the tokens “c” and “q” . Much is persevered between 

these languages as well. Letters like “d” and “n” occur in the same location

3
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French Italian Spanish Portuguese English
un uno uno um one
deux due dos dois two
trois tre tres tres three
quatre quattro cuatro quatro four
cinq cinque cinco cinco five
six sei seis seis six
sept sette siete sete seven
huit otto ocho oito eight
neuf nove nueve nove nine
dix died diez dez ten

Table 1.2: Numbers in various Romance languages

consistently.

Cognates between languages th a t exist because of a shared history are 

called genetic cognates. The word “genetic” is used to help illustrate how 

such similarities form. They are created through a process th a t is in many 

ways a parallel of how DNA and other biological components have evolved 

over the course of life’s history. Because of this we looked for inspiration in 

the field of bioinformatics. This field is appealing for many reasons. F irst of all, 

it is well rooted in m athem atics and com puter science theory. The algorithms 

th a t become popular in this field are in frequent use, so they are stable and 

well understood. One sub-field of bioinformatics th a t looks especially similar 

to  natural language study is biological sequence analysis [8]. This field has 

become im portant lately because of the large scale DNA sequence projects 

th a t are being undertaken. These projects require the autom ation of sequence 

analysis in a way th a t is both  efficient and accurate.

Some of the more popular m ethods are based on probabilistic theories, 

most notably, Hidden Markov Models. A Hidden Markov Model represents 

a stochastic process th a t is used to  generate a series of observations. The 

model consists of states th a t emit the various observations (using a probabil­

ity distribution) along with transition probabilities for moving between the 

different states of the model. It differs from a regular Markov Model in th a t 

the sta te  sequence cannot be exactly determined by looking a t the observa­

tion sequence. Instead it must be reconstructed by various algorithm s tha t

4
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exam ine the  likelihood of any s ta te  sequence producing such an ou tpu t.

In fact there is a new form of Hidden Markov Model th a t matches well with 

the needs of a word similarity measurement system. This model is called the 

Pair Hidden Markov Model. The idea behind this model is to utilize a pair of 

observation stream s, instead on a single observation sequence. These stream s 

are used to represent alignments between word pairs. The model consists of 

three states, each representing a different way of processing the two streams. 

They essentially give the choice of processing the stream s together, in which 

case we are matching up the tokens of the words. We can also process each 

stream  individually, using w hat are called insertions and deletions. The model 

can then be used to determ ine the probability of our sequence of observations. 

For example we could align the Spanish word bianco and the Italian word 

bianco in several possible ways. The two most intuitive are the following:

b i a n c o
b i a n c o

b 1 - a n c o
b - i a n c o

The algorithms of the Pair Hidden Markov Model provide a means to measure 

these alignments and compare them. We can use such alignments as a way to 

rank how likely two words are to be related. There are various methods to do 

this, each using a different bu t valid approach.

We also wanted a system th a t can be trained automatically, so th a t we 

could handle a variety of word similarity tasks. Pair Hidden Markov Models 

provide us with the m ethods we need to accomplish this. They use a modified 

form of the Baum-Welch algorithm, or forward-backward algorithm. This is 

a type of expectation maximization algorithm common to machine learning. 

The idea is th a t you can incrementally modify the param eters of your model 

to better fit your training data. Each iteration of the  forward-backward al­

gorithms creates a model th a t more accurately represents the training data. 

It is usually possible to  run this algorithm with no knowledge of what the 

param eters should be, and still learn their values.

5
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Chapter 2 discusses work done in related fields th a t involves either align­

ments, Hidden Markov Models, Pair Hidden Markov Models or some combi­

nation of them. C hapter 3 provides more details about the problem of word 

similarity, the tasks we will be examining, and any information th a t will be 

needed in order to  construct a model to represent our domain. The next two 

chapters go over the necessary background material, with Chapter 4 concen­

trating on the m athem atical theory and algorithms of Hidden Markov Models, 

while Chapter 5 gives the details of Pair Hidden Markov Models as well as the 

implementations and algorithms we will be using for our experiments. Those 

experiments and the d a ta  collected are discussed in Chapter 6, with the details 

of our tests listed in Appendix A.

6
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Chapter 2 

R elated Work

Our technique involves the use of Hidden Markov Models, but more generally 

our main task is the alignment of the various parts of a word. As such, there is 

much th a t can be gained by examining other alignment techniques th a t exist 

in other fields. One of the most common and in many ways best documented 

alignment tasks comes from another sub-field of N atural Language Processing: 

Machine Translation. Just as we seek to  find the best alignment of tokens 

within words, a component of machine translation involves a similar goal; the 

alignment of words within a sentence. This alignment is designed in such a way 

as to align words th a t are translations of each other, but looks a t the problem 

of choosing alignments similar to  how we look a t choosing the alignments 

between parts of the individual words. This view considers alignments as 

representing a transform ation from one form to  another using a series of (for 

the most part) consistent rules and correspondences. In Machine Translation 

this first form is the tex t in one language which is transformed into the correct 

translation of the tex t in the second language. Word similarity takes a word in 

one language and aligns segments th a t correlate to  parts of a word in another 

related language.

In the literature this transform ation is often described using the analogy 

of the noisy channel. It works by imagining th a t we are working w ith only 

a single language, the source language. However when someone a ttem pts to  

transm it something in the source language, either through writing, or speaking, 

or whatever m ethod of transmission is most convenient, the language gets

7
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corrupted. This corrupted language is actually our target language, bu t we 

consider it as a corrupted form of the source language. The task is now to 

recreate the original form from the corrupted output. The probabilities tha t 

arrive from such an examination are useful in alignment tasks in general.

Once computers became powerful enough, the noisy channel model could be 

learned autom atically from existing corpora th a t was representative of trans­

lations between various languages. Some recent and widely used techniques 

for using such tex t were introduced by a team  of researchers at IBM [4], The 

major problem th a t needs to be solved in both  word and token alignment is 

determining the param eters th a t will be used for the various transformations. 

Such correspondences are usually unknown beforehand, so they need to  be 

trained by examining the data. In addition, it is unlikely th a t the corpora 

being trained on will have the alignments included. For Machine Translation 

it is adequate, for a starting  point, to  have two texts tha t are known to  have 

the same content, bu t represented in different languages. Of course for many 

languages using such a limited approach will not give very good translations, 

but it is where the approaches for Machine Translation and word similarity 

measurement are most like each other. It is then possible to apply a machine 

learning technique, such as the Expectation Maximization algorithm, along 

with some (arbitrary) starting param eters to  begin to learn the alignments 

from this parallel data.

Machine Translation works by applying an iterative deciphering m ethod­

ology to the data. If you know (or a t least have a reasonable guess for) a few 

alignments in your data, you can use those alignments as a starting point to 

find more alignments in your data. By combining this with statistical knowl­

edge of the individual languages, like bigrams for example, it is possible to 

create a reasonable set of word alignments representing a possible translation. 

Knight [13] provides a simple, bu t detailed example of this process a t work. 

He also provides an introduction to  the structure of Statistical Machine Trans­

lation including the underlying m athem atics and probabilities [14]. Machine 

Translation a t its core deals with the combination of two models, a language 

model and a translation model. For our work we concentrate on the transla-

8
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tion model, since the language model is mostly concerned w ith word ordering 

and correct grammar, while our approach provides constraints th a t make such 

corrections unnecessary.

An im portant point about Machine Translation is tha t it can benefit from 

the more detailed examination th a t word similarity evaluation can provide. 

This is possible because one of the more straightforward applications of a word 

similarity program is to recognize words between languages th a t evolved from 

the same root form. These words, called cognates, are more often than  not 

translations of each other, since in evolving from the same word it is reasonable 

th a t they would preserve the meaning of the original. As such, word similarity 

measures can be used to  bootstrap  a Machine Translation program, providing a 

better s ta rt for the EM algorithms by augmenting (or providing) a translation 

dictionary to  base initial alignments on [19]. Such a use is especially beneficial 

when no machine readable bilingual dictionaries exist. In addition because this 

is done as a preprocessing step, cognate information can be added to  a variety 

of Machine Translation programs w ithout modifying the original system.

An interesting experiment with the IBM model was done by Och and Ney 

[23]. They compared other techniques, such as Hidden Markov Models, to the 

standard  progression of IBM models th a t were used in the original param eter 

estim ation application [4], In the IBM model only the first two levels (IBM- 

1 and IBM-2) can be calculated efficiently enough to allow an exam ination 

of all possible alignments. Hidden Markov Model alignment algorithm s have 

the same property of efficient calculations, bu t with one im portant difference. 

Hidden Markov Models have a first order structure, meaning th a t an align­

ment position depends on the previous alignment position. The simpler IBM 

models use a zero order structure where all alignments are independent of each 

other. They place the complexity of the Hidden Markov Model somewhere be­

tween IBM models 2 and 3, making Hidden Markov Models the  most complex 

construct th a t can still be exhaustively searched, giving exact values for all of 

the algorithms. The more complex IBM models (3+) need to  use heuristics 

to  create sub-sets which are then examined in their entirety. The authors ex­

perim ent with using a Hidden Markov Model instead of IBM-2 when training

9
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through the IBM progression. The IBM models are normally trained in order, 

with each one creating a starting  point for the next. The Hidden Markov 

Model helps boost the performance of the overall system, suggesting th a t it 

is capable of producing good alignments despite the simplicity th a t allows for 

complete and exact calculations. These properties are some of the reasons tha t 

a Hidden Markov Model (and in tu rn  a Pair Hidden Markov Model) seemed 

like a reasonable model to  use for the task of word alignment.

The Hidden Markov Model used in the previous paper is based on the 

idea of using alignment probabilities dependent on relative alignment positions 

rather than  on the absolute position of alignments in the sentence. This idea 

was previously developed by Vogel, Ney, and Tillman [28]. The au thors’ mo­

tivation was to  overcome the independent word positioning assum ption used 

in the IBM models of similar complexity (the ones where exact probability 

calculations are possible). Their point was th a t aligned words are not ran­

domly distributed within sentences but instead form clusters. To capture this 

behavior they use a first order Hidden Markov Model to allow for dependence 

on a previous alignment. The results with the Hidden Markov Model were 

comparable with those of the IBM models, with indications th a t the Hidden 

Markov Model algorithms, with the smoother alignments th a t they can pro­

duce, would be better able to handle more complex correspondences th a t may 

exist between the two sentences.

Hidden Markov Models are a well known technique, but they have not 

been explored as a way to  align the parts of a word. However, there have 

been many techniques proposed th a t can examine and align words for various 

purposes. The most common task is the recognition of cognates, which can be 

useful as a part of a larger system (such as one for Machine Translation), but 

also functions as a domain of investigation all on its own. This is especially 

true when determining the history of languages, an interesting and difficult 

problem, since records for many languages are few or even non-existent. For 

example there are languages th a t pre-date writing and thus have no lasting 

records once their use has faded. These languages can often be the source of 

many modern languages th a t are still in use today. As such, reconstructing

10
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the root languages provides a means to link modern languages together, easing 

tasks such as translation.

Covington [6] created a program to align phonetic sequences and extended 

it to allow for alignments between more than two languages [7]. Each lan­

guage supplies one word or string. He uses a discrete set of eight substitution 

scores, or match scores, representing how good (low score) or bad (high score) 

a substitution is by applying a set of comparison criteria. For example a sub­

stitution of identical consonants gets a score of 0, while the substitution of 

unrelated sequences has a score of 100. Two operations in his substitution set 

are not substitutions in the conventional sense. Since the substitutions are 

against gaps, they follow the form of insertions and deletions in our model. 

Covington adopted an affine gap penalty system, where the initial insertion or 

deletion costs more than  subsequent ones. While the algorithm itself is useful, 

the metric is adm ittedly weak. The author states th a t is it ju st a stand-in for 

a more sophisticated system.

Kondrak created a program  th a t uses multi-valued features to  compute 

the similarity of phonetic sequences [16]. The program called ALINE repre­

sents phonetic sequences as feature vectors, where each feature represents some 

phonological idea, such as place of articulation. Each feature has some value 

within the continuous range of 0 to  1, allowing for flexibility and adaptability 

to  different languages (many of which have various phoneme sets). This ap­

proach was shown to  outperform  Covington’s method, based on the alignments 

in several different sets of cognates.

Since word alignment functions more or less (usually more) as a special 

case of edit distance, it is useful to  examine another technique th a t has a very 

similar probabilistic flavor when compared to  Hidden Markov Models. R istad 

and Yianilos [26] created a stochastic model for determining edit distances tha t 

uses a Finite State Transducer. It was able to  autom atically learn string edit 

distances from a given corpus of examples. They use two methods of align­

ment, which they call V iterbi and “stochastic” edit distances. Not surprisingly 

their Viterbi is equivalent to  the Viterbi algorithm for Hidden Markov Model, 

where only the best sequence is considered. The stochastic edit distance cor-
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responds to the forward or overall probability, where all possible sequences 

are considered. Their model consists of a single state, and within tha t sta te  

all operations share the probability mass. Thus, substitutions, insertions, and 

deletions are all part of the same state. This approach is lacking in th a t it 

is memoryless, and hence each edit operation is preformed independently of 

all others unlike Hidden Markov Models where each operation depends on the 

one th a t came before it. Their experiment does suggest th a t learning based 

approaches can be quite effective. In some ways the comparison of their trans­

ducer model to  Hidden Markov Models is similar to  the way IBM models 1 

and 2 were compared against Hidden Markov Models by Och and Ney [24].

A surprising experim ent was preformed by M ann and Yarowsky [20]. They 

investigated the induction of translation lexicons using bridge languages. Their 

approach starts  w ith a dictionary between two well studied languages, English 

and Spanish is one pair provided. They then use cognate pairs to induce a 

“bridge” between two strongly related languages, such as Spanish and Italian, 

and from this create a smaller translation dictionary between English and Ital­

ian. The related languages used in their experiments all come from the same 

language family and hence cognates should exhibit a great deal of surface sim­

ilarity. They compared the performances of three different cognate similarity 

(or distance) measures; one based on the Levenshtein distance, one based on 

the stochastic transducers of R istad and Yianilos [26], and the last comprised 

of a Hidden Markov Model. However their model is of a distinctly different 

design than  the Pair Hidden Markov Model we are employing for the task of 

word similarity measurement. For example, the probability of the atomic edit 

operations sum to  one for each character. This approach provides a different 

structure than  the transducer where all edit operations share the probability 

of the model (sum to  one). In our approach, described later, we separate the 

edit operations into distinct states and deal with the output of pairs from 

each state. The au thors’ choice of model does seem to  be a poor one as it is 

out-preformed by the transducer model. This is unusual considering th a t both 

approaches are strongly grounded in probabilistic theory with, in my opinion, 

the Hidden Markov Model winning out in complexity and expressibility. Nev-
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ertheless their Hidden Markov Model fails to even out-preform the Levenshtein 

distance, falling well short of th a t baseline. I believe this is in part due to  the 

high similarity of the languages studied. Since many cognates between these 

languages are actually identical (or extremely similar) words, they would get 

the zero Levenshtein score. In more complex language pairs with be tte r hid­

den and less well studied correspondences, it should be easy for a probabilistic 

learning m ethod to  preform better than  a fixed scoring scheme. In addition the 

fact the similar, bu t in some ways weaker, learned model gets better results, 

suggests to  me th a t not enough care was taken in the initial development of 

their Hidden Markov Model. The success Hidden Markov Models have had 

in other fields leaves me confident th a t our approach can work, if done with 

enough care.

Although our technique comes from the field of bioinformatics, we are not 

the first in the natura l language community to  attem pt to  use Pair Hidden 

Markov Models as a means to  learn alignments. Clark [5] used them  as the 

basis for a system th a t would learn morphology, using a model of stochastic 

string transductions. He adopts a rather novel ou tput structure where the 

pair is either an identical pair, a single token from the “right” stream , or a 

single token from the “left” stream. His models were mostly concerned with 

the addition of suffixes to  the ends of words. To do a true substitution of 

one token for another, each token would need to  be output independently 

on each stream . He uses a mixture of different Pair Hidden Markov Models, 

one for each morphological class. A morphological class represents a  single 

transform ation rule in the language in question. For English, there would be 

one Pair Hidden Markov Model to  represent adding an “s” to the end of a 

word, and another to  add “es” . This is due to  the ambiguity th a t exist in 

natural language stems. This technique got reasonable accuracies when tested 

on tasks in English past tense, German plurals, and Arabic plurals. Since we 

want our model to  work independent of languages, it is promising to  see a 

general approach applied successfully.

13
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Chapter 3 

Word Similarity

Word similarity is, at its core, an alignment task. So our word similarity 

measurement system will essentially be an alignment system. For the system 

to  function properly we require th a t it have some measure for determining how 

related two word segments are. Along with this we need a way to  determine 

scores for each pair th a t can be used to  rank a pair of words in order to  compare 

them  against each other. Finally since we want our system to be adaptable, 

we would like to have a m ethod of autom atically determining the param eters 

of our system so it can work on a variety of tasks in many different languages.

As we will show, a Hidden Markov Model will meet all the necessary criteria 

of our system. But before we begin to  discuss how Hidden Markov Models 

work, it is im portant to  better understand the task  they have been recruited 

to  preform, along with the constraints and assumptions th a t go along with 

th a t task.

3.1 Word Representation

The first problem we face is the various representations of words th a t are used 

when doing similarity alignment. There are many different alphabets in use 

in the world and our program must be able to  handle any of them. Of course 

they must be put into some form th a t is understandable by a com puter as 

well. In addition to this, it is possible to  represent the same word in the same 

language in different ways. The simplest representation is orthographic. An 

orthographic representation of a word is simply the word w ritten in its nat-
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ural language, or at least in a representation th a t corresponds closely with 

the natural language. The second m ethod in common usage is phonetic tran­

scription. W hen using phonetics, the symbols represent the way the word 

would sound when spoken. Table 3.1 shows both an orthographic and a cor­

responding phonetic representation, from ARPAbet, a phonetic alphabet for 

American English th a t uses only ASCII characters. Phonetic transcription has 

the advantage th a t given a large enough sound alphabet, all languages can be 

represented in the same way. An example of such an alphabet is the Interna­

tional Phonetic Alphabet which has the goal of representing all of the sounds 

in human language. More specifically for the problem of cognate recognition 

and other common word similarity tasks, it is often easier to  see correspon­

dences between words by looking a t the sounds than  the w ritten word. There 

are disadvantages to the phonetic approach as well. Most im portant, it is 

difficult to  find data  th a t has been transcribed phonetically, and programs to 

autom atically transform words to  phonetics are not yet fully developed. This 

is mostly due to  the ambiguity th a t exist in the w ritten form. For exam­

ple, the  English letters “ough” can produce different sounds. Consider the 

words “cough” , “rough” , “dough” , and “through” . Each one is pronounced 

differently, so each would need a different phonetic representation.

O rthographic Phonetic
sage s ey jh

raccoon r ae k uw n
lotus 1 ow dx ax s

Table 3.1: Examples of English orthographic and phonetic representations

Once we have settled on a representation, we need to break th a t represen­

ta tion  up into several parts th a t can be used for alignment. These parts can be 

thought of as tokens and we use th a t terminology sometimes in our discussion. 

For the  representations we have considered, two possible tokens sets would be 

the  alphabet of the language, or a phonetic alphabet such as ARPAbet. It 

would also be possible to consider certain combination of elements of those 

sets as a single token, for example the English letter pair “ch” .

15
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3.2 Word Sim ilarity Tasks

Once a representation has been chosen, we can split up each word into tokens 

based on th a t representation. Our next job is to take a pair of words and by 

examining their component tokens, decide if the words exhibit the similarity 

for which we are looking. The choice of exactly what kind of sim ilarity we are 

searching for is dependent on the application being used. As an example tha t 

is used in our experiments we can consider recognition of cognates. Cognates 

can be defined in a few different ways, bu t essentially words are cognates they 

have the following properties:

1. They are similar in form or sound

2. They have the same meaning

There are many ways th a t cognates can be produced between languages. 

For discussion of these cognates we will use the language pair English and 

Russian [22]. Several examples for each type of cognate are shown in Table 3.2. 

The Russian words are displayed phonetically so th a t the correspondences are 

more obvious, using the tables presented with the examples [22], Russian uses 

a different alphabet than  English, so it exhibits little orthographic similarity. 

English is part of the Germanic language family, while Russian is a member 

of the Slavic family. However, both languages are part of the larger Indo- 

European set. The first source of cognates, sometimes called genetic cognates, 

are words th a t come from the same root word. This root word, sometimes 

called a proto-form  represents a word in some distant, yet common, language 

for which there may be no record. Genetic cognates are usually words th a t 

represent very simple concepts th a t would have been im portant to people 

throughout history. A second source for cognates is direct borrowing, where a 

word from one language is transplanted in the other. These are usually words 

th a t are very culture specific, but also contains newer technological words 

th a t have only recently come into being, in only one of the two languages. 

A nother occurrence similar to borrowing is transliteration th a t occurs when 

a proper noun in borrowed. These are usually transformed based on spelling
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and are much easier to  recognize th a t normal cognates. Transliteration is 

normally thought of as a task  separate from other word alignments, although 

the learning approach we are using suggests it may be adaptable to th a t task 

as well. An example of a transliteration system can be found in the work of 

Knight and Graehl [15]. The final source we will discuss is another form of 

borrowing, borrowing from  a third language. These occur when both of the 

languages being studied have had contact with another culture th a t uses a 

third language. Often both  of the languages of interest will have borrowed the 

same cultural term s from the th ird  language, with the borrowed words being 

transformed to fit w ith the patterns of their new home.

English Russian (phonetics)
Genetic cognates mama mama

two dva
no nyet

Direct borrowing vodka vodka
hooligan xuliygan

hacker xakyer
Transliteration Russia Rossiyya

Picasso Piykasso
Borrowing from a th ird  language fiesta fiyyesta

karma karma
bandit bandiyt

Table 3.2: Examples of cognates between English and Russian

The main obstacle for a cognate recognition system is the ability to differ­

entiate between words th a t are actually related in one of the ways mentioned 

above, from words th a t look similar simply by chance. It is possible to put 

even stronger restrictions on the system, perhaps wanting to  find only the ge­

netic cognates. O ther types of similarities exist as well, such as recognizing 

confusable words within a single language, or determining the correct spelling 

from a misspelled word. The hope is tha t our system, if given the right type 

of training data, will be able to  adapt to any word similarity task.
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3.3 Constraints on the M odel

Before we begin developing the word similarity model and its algorithms, we 

can simplify the procedure a great deal by using some domain knowledge to 

restrict the task of word alignment. In doing so we can make our model simpler 

and our algorithms more efficient.

The first simplification we make comes from an im portant difference be­

tween the structure of words and th a t of a sentence. W hen translating sen­

tences, determining word order is a crucial step. Different languages have 

greatly divergent gram m atical structure and hence require different word or­

derings in order to  produce the same concept. This is one of the reasons why 

a language model is so im portant in Machine Translation. Words, however, 

tend to  have the opposite behavior. Since we are looking for words th a t are 

similar in some way, it is usually safe to assume th a t the basic ordering of to­

kens remains the same between languages. This doesn’t mean every token has 

a corresponding one in the other language, but instead th a t word transform a­

tion comes from three basic operations. The first is called substitution. This 

operation represents a transform ation from one token to another. It may be 

as simple as the same sound being represented by different letters in different 

languages, or a complex change th a t has evolved over millennia. The other 

operations are reflections of each other, they are insertion  and deletion. Inser­

tion represents an addition of more tokens as we change from the first word in 

a pair to the second. A deletion represents the loss of tokens during the same 

change, bu t it could be looked a t as a gain in the other direction. In fact if 

we switch the order of our word pair then the insertions and deletions would 

switch with it. This is why they can in many ways be thought of as the same 

operation. The ability to  handle different token alphabets for each language 

prevents us from considering them  as a single operation, but we shall see later 

tha t this symmetry will help us simplify our model, considerably reducing the 

number of param eters.

More information can be derived from our view of how two words relate 

to each other. The evolution of a word is normally a long process, with each
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step representing a minor change in form or pronunciation. As such, the 

evolution process is relatively consistent keeping the orderings of tokens similar 

between languages. Thus we can assume th a t the segments, or tokens, of the 

evolving words will not get mixed around but instead, for the most part, only 

change form. This keeps the “gram m ar” of a word fairly consistent between 

related languages. Thus we can allow our system to only consider alignments 

in which there are no crossing links. This assumption is often used in word 

similarity programs, and allow the algorithm s th a t search through the space 

of alignments to  work faster. However, the number of alignments is still very 

high.

We will also be assuming a one to  one correspondence between alignments. 

Prefixes and suffixes th a t are added to  a word will be aligned to  gaps. If by 

some chance a token in one word becomes many tokens in another word we 

would model th a t change by using one of the many tokens as an anchor point, 

the point w ith which the single token is aligned. The other tokens will be taken 

care of through the use of insertions or deletions. Although this is not ideal, 

it does simplify the problems caused by having to  deal with token fertilities, 

and removes the need to create some other m ethod to deal with many to  one 

correspondences. If there is a many to  one correspondence th a t is consistent 

between languages, it would be beneficial to  change the word representation so 

tha t the many tokens can be considered as a single token. For example a group 

of tokens in an orthographic representation may form a single sound, but if 

the word was w ritten phonetically then th a t single sound would correspond to 

a single token.
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Chapter 4 

Hidden Markov M odels

This chapter will present the basis for our word similarity alignment and rank­

ing system. We use the concept of a Markov Model (or more specifically 

a Hidden Markov Model) along with the dynamic programming algorithms 

synonymous with it. Hidden Markov Model have been applied successfully 

to  other problems in N atural Language Processing, most notable the field of 

Speech Recognition, where they have become one of the most effective and 

widely implemented techniques. Additional background on Hidden Markov 

Models and their uses in Speech Recognition can be found in [25] and [10].

The first few sections deal with some background information th a t will 

be useful for the understanding of Hidden Markov Models. The first sec­

tion contains a description of Markov Models which, as the name suggests, 

are the m athem atical construct on which Hidden Markov Models are based. 

The second section describes dynamic programming, a simple but powerful 

programming technique th a t allows us to  work with very large search spaces 

quite efficiently. The remaining sections go into more details of the mechanics 

behind Hidden Markov Models with an emphasis on the algorithms and ap­

proaches th a t have proven successful in the past, and show promise for similar 

success when used with our word similarity model.

4.1 Markov M odels

Markov Models were first introduced by Andrei Markov in 1913. They are 

stochastic processes th a t retain only the minimum amount of prior knowledge,
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or memory. A Markov process can be defined as a stochastic process for which 

the future depends only on the present, not the past. Essentially we need 

only to look at the most recent event in order to predict the next event, all 

other events are unim portant. In more exact term s the process m ust have the 

following property.

Given a set of random variables X i ,  X 2, ■ ■ ., X n, where each variable is from 

some finite alphabet S  =  {si, S2 , . . . ,  sm} then the Markov Property states tha t

Vt < n  : P { X t \Xt. u  . . . , X 1) = P { X t \Xt^ ) .

A stochastic process with the Markov Property is often called a Markov 

Chain. The chain can be specified w ith a m atrix containing transition prob­

abilities for each state  in the model. It is often desirable to  include a set of 

initial sta te  probabilities to avoid the need to begin in a unique and predeter­

mined s ta rt state. Consider the following simple example of a Markov Model 

shown in Figure 4.1. The model will produce a binary string of any length. It 

has two states, sta te  0 which outputs a “0” and state  1 which (oddly enough) 

outputs a “1” . One possible definition of such a model would be:

1 1 =  ( 0.5 0.5 )

/  0.6 0.4 \
\  0.3 0.7 j

In this example, and in a general Markov Model, we know w hat sta te  we 

are in simply by looking at the output. So we can calculate the probability 

of a given observation sequence directly, by using the probabilities given in 

the transition  m atrix for the model. For example the observation sequence 

“01101” would have probability:

P(01101) =  7r0aoiaiiOi0aoi

=  (0.5)(0.4)(0.7)(0.3)(0.4)

=  0.0168
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0.6 0.7

0.4

0.3

Figure 4.1: A Markov Model to  create binary strings

4.2 H idden Markov M odels

Although some problems can be solved by using a visible Markov Model there 

are many th a t are too complex to be described within such a restrictive frame­

work. We can add an extra layer of randomness by allow each sta te  to  produce 

various output based on some (possibly unknown) distribution. This second 

stochastic process is not directly observable, hence the “hidden” , but instead 

must be inferred from the produced observation sequence. Essentially the tran ­

sitions through the states of the model can no longer be determ ined directly 

from the observations. Instead the observations only offer clues from which, 

using the right set of algorithms, we can attem pt to determine the underlying 

process th a t created them.

To accomplish this change we need to  add more probabilistic information to 

our model. There are two popular (and equivalent) ways to  add this informa­

tion to a model. The first is to  increase the number of transitions, where each 

transition now includes an emission symbol. The choice of emission symbol 

and next sta te  are done a t the same time, so the emission depends on both the 

current sta te  and the next state. The second way (the one our word similarity 

model uses) is to  include a new set of emission probabilities a t each state,
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keeping the transitions between each state the same as in a visible Markov 

Model. In this way the emissions depend only on the current state. As a 

simple example we can modify the binary string model as shown in Figure 

4.2. Now it will have a O-preferring state, and a 1-preferring state  with these 

emission probabilities for “0” and “1” :

E 0 =  ( 0.8 0.2 )

E i =  ( 0.3 0.7 )

0.6 0.7

0.4

0.3
0.7

0M = 0.8 
1” =  0.2

1-preferring state0-preferring state
0.3

Figure 4.2: A Hidden Markov Model to create binary strings

For such a model we can not determine the sta te  sequence just by look­

ing at an observation. This is because a single string can be produced in a 

number of different ways. For example, the string “000” could be produced by 

staying only in the 0-preferring state, or by staying in the 1-preferring state 

(or any other of the 23 =  8 combination of states). The only difference is the 

probability of either of those sta te  sequence producing th a t string. Obviously 

the string is more likely to be produced by staying in the 0-preferring state, 

bu t for more complex models, how do we decide which sta te  sequence is most 

probable, and how do we determine the probability of a given string as we did 

for the previous Markov Model representation?
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Before we can begin to examine the properties of Hidden Markov Models it 

will be helpful to more formally define what a Hidden Markov Model is. The 

following is the definition used by Manning and Schutze [21] modified slightly 

to represent sta te  emission Hidden Markov Models. A Hidden Markov Model 

is defined as a five-tuple (S, E, n ,  A, E)  where each symbol is defined as in 

Table 4.1. An example of a generic Hidden Markov Model sta te  is shown in 

Figure 4.3.

Emissions

Figure 4.3: The various components of an HMM

Set of (hidden) states S  =  { s i , . . . ,  syv}
O utput (observation) alphabet E =  {a i , . .. ,c>m}
Initial sta te  probabilities n  =  {rq}, i € S
State transition probabilities A  =  i , j e S
State emission probabilities E  =  {e/c(fe)}, k 6 5, b €  E
State sequence X  =  (Ax, . . . ,  X T), X t : S  i—>■ 1 , . . . ,  N
O utput (observation) sequence O =  (cq, . . . ,  or), ot E E

Table 4.1: Notation for Hidden Markov Models

Since the set of states and output alphabet often remain constant in many 

of the later applications and algorithms a more compact notation for a model 

is often used. A model can be defined simply as a triplet, n  =  (A ,E ,U ) .

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The various probabilities in Table 4.1 are defined as such:

7Ti =  P(S  1 =  *) 

ciij = P(s t = j \ s t- i  = i) 

ek(b) = P(ot = b\st = k), b e ^ k e S

As was stated  before, we can no longer determine the state sequence (and 

hence the probability) of an observation simply from the observation itself. In 

fact when dealing w ith a Hidden Markov Model there are three questions th a t 

need to  be answered if the model is to be of any use at all.

1. How do we determine the probability of a given observation sequence 

O =  (o1; . . . ,  or ) given the model /x =  (A , E,  n )?

2. How do we determine the “most likely” sta te  sequence X  =  { X \ , . . . ,  X t ) 

given an observation sequence O and a model /x?

3. How do we determine the “best” model /x given a set of observations O, 

or how do we adjust the param eters of the model /x to maximize P (/x |0 )?

4.2.1 G enerating O bservations w ith  a H idden M arkov  
M odel

There is a simple way to  view a Hidden Markov Model tha t helps to  explain 

how the various probabilities in the model work. Because of its probabilistic 

nature, the Hidden Markov Model can be thought of as a generator of observa­

tion sequences. A lthough direct generation is rarely of practical value, except 

perhaps debugging training algorithms, this is how we view the functioning of 

our model and is the basis for all of the algorithms derived from it. Figure 4.4 

shows the generation process using the binary string producing HMM as an 

example.

Any possible observation sequence O  =  (eq, . . .  ,or)  can be generated by 

the following procedure [25]:

1. Choose an initial sta te  X \  based on the initial state distribution n .
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0-preferring\ 
state

a oo “  0 - 6  /.0-preferring 
state

a0i -  0.4

e 0(O) = 0.8

eo(') = 0.2

1 -preferring^
state

e-i(1) = 0.7

Figure 4.4: Generating observations using an HMM

2. Set t  — 1.

3. Choose ot =  b according to the emission probabilities e x t {b).

4. Transit to  a new state  X t+i based on the transition probabilities a x tx t+i ■

5. Set t =  t +  1, return to  step 3 if t < T,  otherwise end the generation 

procedure.

For the above procedure we assumed th a t we could end in any state, and 

opted to  use the number of observations to  control when we stopped. Another 

option is to add transitions to  a silent end sta te  from all the other states. This 

lets the Hidden Markov Model decide when to  stop generating an observation 

sequence. The higher the probability of going to  the end state, the shorter the 

observation sequences will be. The procedure would then become:

1. Choose an initial state X \  based on the initial state distribution n , if 

X \  = END end the generation procedure, otherwise proceed to step 2.

2. Set t = 1.

3. Choose ot =  b according to  the emission probabilities e x t (b).
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4. Transit to a new state X t+i based on the transition probabilities a x tx t+i ■

5. If X t+\ =  END end the generation procedure, otherwise set t — t +  1 

and return  to step 3.

This generation structure shall be examined with our Pair Hidden Markov 

Model to  see if it can give us any useful information about similar words and 

how they end.

4.3 Dynam ic Program m ing

We will find th a t it is not enough simply to answer the three fundamental 

questions for Hidden Markov Models. In addition, we m ust be able to  an­

swer them  in a way th a t can be efficiently and practically implemented. One 

technique th a t will prove invaluable to  this end was developed by Bellman in 

1957 [2], It works by keeping track of optimal solutions to subproblems of the 

main problem, usually in some table or matrix. These subproblem solutions 

can then be used to  incrementally calculate the optimal solution to  the main 

problem, w ithout having to re-examine previous results.

To illustrate its effectiveness we will briefly examine a simple dynamic 

programming algorithm th a t is also used to align words, the minimum edit 

distance algorithm. Minimum edit distance is defined as the minimum num­

ber of edit operations th a t are required to transform a source string into a 

target string. Pseudo-code for the algorithm is shown in Figure 4.5; it is a 

slightly modified version of the code presented in Speech and Language Pro­

cessing [11]. The operations are usually substitution: exchanging one token 

for another; insertion: adding a new token to the string; and deletion: remov­

ing a token from the string. This algorithm is helpful because the  operations 

it uses will be used to define the states in our word similarity model, and 

it closely resembles the solution to the first fundamental question of Hidden 

Markov Models. One of the first things we need to do is assign a cost for 

each of the operations. The simplest of these is the Levenshtein distance [11], 

which assigns each operation a cost of 1. This will give a measure of the min-
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INPUT: Two words 
source, target

n = length(source) 
m = length(target) 
distance[0][0] = 0 
for i from 1 to n

distance[i,0] = distance[i-1,0] + del.cost(source[i]) 
for j from 1 to m

distance[0,j] = distance [0,j-l] + insert_cost(target[j]) 
for i from 1 to n 

for j from 1 to m 
distance[i,j] =

min(distance[i-1,j-1] + sub_cost(source[i], target[j]), 
distance[i-1,j] + del_cost(source[i]), 
distance[i,j-1] + insert_cost(target[j]))

OUTPUT: The minimum edit distance, 
distance[n,m]

Figure 4.5: Pseudo code for the minimum edit distance algorithm

imum number of operations needed to achieve the transform ation. W ith the 

dynamic programming algorithm it is now possible to develop solutions to  the 

fundam ental questions in an efficient way.

4.4 Probability of an Observation Sequence

We now can turn  our attention to the first fundamental question; how do we 

determine the probability of an observation sequence? This will be especially 

im portant because the algorithms presented here will form an integral part for 

answering the th ird  question, which is the most im portant for the problem we 

are dealing with.

W ith  a visible Markov Model we knew the path through the model th a t was 

used to  generate the observations. For a Hidden Markov Model we know only 

the observations, there are several possible state sequence th a t could produce 

then. For the remainder of this discussion it will be helpful to  assume tha t 

our model is ergodic, meaning th a t there are transitions from every sta te  to
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every other state. W hat we need to consider is the to tal probability for every 

possible path  through the model tha t would produce the observation sequence 

tha t we are examining. The m athem atical development will closely follow th a t 

presented by Rabiner and Juang [25].

We want to find the probability of the output sequence O =  (o i , . . .  ,oT) 

given a model //. First consider a single fixed sta te  sequence

X  = ( X 1, . . . , X T)

The probability for the observation sequence given this sta te  sequence is

P(0\X,f jL)  = f [ P ( o t \Xu n). 
t = 1

The assumption of statistical independence of observations gives us

P ( 0 |X ,  fj.) =  eX l{°i) • • ■ eX r (oT).

The probability for the fixed sta te  sequence is

-P(X |(J-) =  ' ‘ ' aXT_iXr-

We can now calculate the  joint probability of the observation sequence and 

the state  sequence occurring together given the model, which is the product 

of the previous two terms.

P ( 0 ,X |/ i )  =  P ( 0 |X )Az)P (X |M).

The probability of O  given the model fi can be calculated by summing 

the joint probability over all of the possible sta te  sequences X . In an ergodic 

model there are N T such sequences.

P (0 |/ i )  =  £  P ( 0 |X , M)P (X |/r)
all x

=  ^ 2  /K x 1e x 1( ° i ) a X i X 2 e x 2 ( 0 2)  • • • o x T _ i X T e x T ( d T ) -
all X

The problem w ith calculating this value directly is th a t it is horribly inef­

ficient. For the general model being discussed this gives a calculation of order 

0 ( 2 T N t ). More precisely, the calculation requires (2T — 1)NT multiplications
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and N T — 1 additions [25]. Even for very small values of N  and T  this can 

mean an unacceptable number of calculations. However there is a way around 

this obstacle by using dynamic programming techniques. This technique is 

know as the forward algorithm (or forward procedure).

4.4.1 Forward A lgorithm

The forward algorithm works like any other dynamic programming technique: 

it keeps track of optim al solutions to  sub-problems and then uses them  to 

calculate the solution to  the main problem. In this case the main problem is the 

probability of an observation sequence and the sub-problems are probabilities 

for sub-sequences of the observation. These sub-sequences are described by 

something known as the forward variable, defined as

ai(t) = P(oi ■■■ot , X t = i\n).

This represents the probability of seeing the partial observation sequence 

Oi - ■ ■ ot and being in sta te  i a t time t. We can calculate all of the forward 

variables recursively using the steps outlined in Table 4.2.

1. Initialization
cq( 1) =  7qe^Oi), 1 <  i <  N.

N 1 < t < T

2. Induction

a j ( t )  =  e j ( ° t ) ~  i  <  j  <  n

3. Termination

p to i , , )  =  5 > c n -
1

Table 4.2: Forward Algorithm for Hidden Markov Models

The forward algorithm is considerable more efficient then naively calculat­

ing the probability directly. It has an order of only 0 ( N 2T ) calculations as 

opposed to  the 0 ( 2 T N t ) required by the direct calculation. More exactly it 

takes N ( N  +  1)(T — 1) +  N  multiplications and N ( N  — 1)(T — 1) additions 

[25].
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4.4.2 Backward A lgorithm

The forward algorithm represents only one way of examining the probability 

of an observation sequence, although it is the most intuitive. There is however 

another m ethod of determining the probability th a t will prove very useful when 

attem pting to  determine the param eters of a Hidden Markov Model (funda­

mental question 3). This is the backward algorithm or backward procedure. 

It works in much the same way as the forward algorithm only it s ta rts  from 

the end of the observation sequence and builds up the complete probability 

from the end to  the beginning. We shall need to  define a backward variable 

similarly to how we defined the forward variable as

(3i(t) =  P(o t + 1 • • • oT \Xt = i, n).

We can now define the backward algorithm recursively to solve for all of the 

backward variables as shown in Table 4.3. Just as with the forward algorithm, 

the backward algorithm requires order 0 ( N 2T ) calculations.

1. Initialization
Pi(T) =  1, l < i < N .

2. Induction

P i ( t )  =  Y . ( 3j ( t + l ) a He i ( 0 t + 1)> f  1 '

3. Term ination

p ( ° I a ) =  7TiA(i)- 

Table 4.3: Backward Algorithm for Hidden Markov Models

4.5 Finding the B est State Sequence

The first obstacle in finding the best s ta te  sequence, is determining exactly 

what is m eant by the “best” . Unlike finding the probability of the observation 

sequence where there is a single correct answer, the answer to this question can
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change depending on what we use for our optim ality criterion. There are sev­

eral different possible definitions of “best” . For example, we could choose the 

states individually at each step to  maximize the expected number of states th a t 

will be guessed correctly. However, such an approach may yield a very unlikely 

state  sequence [11]. We will instead adopt the most commonly used definition 

of “best” : maximize the overall probability of the entire path  through the 

Hidden Markov Model, finding the single sta te  sequence (or possibly a set of 

state  sequences) tha t has the highest probability given the observations and 

the model. Thus we are to compute

argm axx F ( X |0 , / r )

which is equivalent to determining for a fixed observation sequence

arg m axx .P(X, 0 |/r) .

4.5.1 V iterb i A lgorithm

An efficient algorithm exists to  calculate the most probable sta te  sequence for 

a fixed set of observations. It again uses the ideas of dynamic programming 

starting  w ith the following definition

5i(t) =  max P { X 1 ■ ■■Xt^ l ) ox ■■■ot , X t = i\n).
-Xi-Xt-i

This variable represents the probability of the single best (highest probability) 

path  through a given Hidden Markov Model, /r, which accounts for the first 

t  observations and ends in sta te  i. It is possible to calculate this variable 

recursively to get the probability of the single best path th a t accounts for all 

of the observations. If we want the sta te  sequence as well, then we only need to 

keep track of the path  through the model by storing a backtrack variable 

a t each step. The entire procedure is shown in Table 4.4. Note the similarities 

between the  Viterbi and forward calculations. Except for the backtracking, the 

only real difference between the two algorithm s is tha t the forward algorithm 

calculates a sum, while the V iterbi considers only the maximum at any step. 

This distinction will become more im portant when we discuss various m ethods 

of ranking word pairs using our word similarity model in later chapters.
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1. Initialization
5 i ( l )  =  7Tje^Oi), 1 < i <  N

i ’ii i)  =  o.

2. Induction

2 < t < T
<5, (i) =  e, (o4) max S{(t -  1 )ai j , i  < j  <  jy

2 <  t < T
ipjit) =  arg max S^ t  -  1 )^-, \ < j < N '

3. Termination
P(X *) =  max 5i(T). 

=  arg max 5AT)
1 \<%<N y

4. P a th  backtracking

x ;  = ^ X; J t  + 1), t  — i  >  t >  i.

Table 4.4: The Viterbi Algorithm for Hidden Markov Models

4.6 Finding the Optim al M odel Param eters

The th ird  problem will prove to  be both  the most difficult to  solve and the 

most im portant to our word sim ilarity model. We need a way to  find an 

optimum set of model param eters /j, =  (A, E , n )  for a given observation series. 

As such we are trying to maximize P (0 |/x ). Unfortunately, there currently 

exists no m ethod tha t can find the model param eters jj, th a t will maximize 

th a t probability. The best we can accomplish is to use iterative hill-climbing 

techniques in order to find a local maximum. The hope is th a t this local 

maximum will be sufficient to  adequately represent our model.

4.6.1 E xpectation  M axim ization  A lgorithm

To solve the optimal param eter problem we will be using a type of Expectation 

M aximization algorithm, call the Baum-Welch  algorithm or forward-backward 

algorithm. The forward-backward algorithm works by utilizing a recursive 

procedure. If we have a set of param eters we can use those param eters to
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calculate the probability of the observation sequence. If we have an aligned 

observation sequence we can look at what transitions and emissions are used 

more often and adjust the probabilities of the model to be tte r fit the data. 

This gives us a circular optim ization method, which we can break by using 

random starting param eters for our model. There are other ways to  choose 

the initial param eters of the model, some of which may be be tte r than others, 

but for a general discussion of how the forward-backward algorithm  works it 

is enough to know th a t the initial param eters are chosen.

Before we can describe the algorithm ’s details we need to  define a new 

variable £ t(h j )  which represents the probability of being in s ta te  i a t time t 

then moving to  sta te  j  a t time t +  1, more formally

€t(i , j )  = P { X t = i , X t+1 =  j \ 0 , f i )

We can use the forward and backward variables to  help represent the var­

ious probabilities th a t we are trying to  calculate as is shown in Figure 4.6 

adapted from Foundations of Statistical N atural Language Processing [21]. 

Thus our original probability can be re-written as

=  P ( X t = t , X t+1= j \0 , f j , )
P ( X t = i , X t.  i = j , Q ] / i )

P(  Ol/x)
=  ^ ( t ) a ^ e i (ot+1)/3i (f +  1)

E m = i  a m(t)/3m(t)
_   a i{t)aijej(°t+i)f3j(t +  1)______

E l = i  E l i  a m(t)amnen{ot+1)f3n(t +  1)

We shall now define the probability of being in sta te  i a t tim e t as

7i(t) = P ( X t = i \ 0 )fJ.)
P ( X t = i,Q\fi)

P(  0|/x)
_ ai(t)Pi{t)

£ f = i  ( * ) & ( < ) ’

Note also tha t

7i(t) =
j = i  
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f i p + 1)
O

<4f)
t - 1 t t +  2

Figure 4.6: The probabilities associated w ith a transition

Now if we sum over tim e we get expectations, or counts, th a t a sta te  is 

visited. This is equivalent to  the number of transitions from th a t sta te  if we 

exclude time index T.  We can also get counts for the number of transitions 

from any state  to  any other sta te  in a similar m atter using £ instead of 7 . 

W ith these values in hand we can re-calculate our model param eters

7q =  expected number of time in sta te  i a t time t — 1

Hence, from our initial model param eters ji = (A , E,  n )  we can determine 

new param eters /2 =  ( A ,  E , fl). It has also been proved by Baum et al. [1] th a t

where equality will occur if the  initial model /1 represents a critical point, such

eA

expected number of transitions from state  i to  state  j
expected number of transitions from sta te  i

E £ i  ̂ ( m )

expected num ber of times in sta te  j  observing symbol k
expected number of times in sta te  j

P(Q\P) > P ( 0 \ n )
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as a local maximum, which is any point where all partial derivatives are zero 

(or some partial derivatives do not exist). Thus through repeated iteration of 

the forward-backward algorithm, we can get increasingly better models with 

respect to our training data.
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Chapter 5 

Pair Hidden Markov M odels

Hidden Markov Models have proven to be powerful tools for many tasks within 

the field of Com puter Science. The question remains whether or not they could 

prove useful for the task of word similarity measurement and ranking. A good 

indicator of possible success comes from the field of bioinformatics.

One of the  more intangible aspects of a Hidden Markov Model is the choice 

of the model itself. While many algorithms exist to  train  the param eters of the 

model so th a t the model better describes its data, there is no formulaic way to 

create the model. Instead we must normally rely on our best judgement, and 

a great deal of trial and error for all bu t the simplest problems. Fortunately 

for us, there exists a model th a t is already in use for a task quite similar to  

our own. We need only to  refine and improve this model to have an excellent 

starting point from which we can train  the param eters for word similarity 

alignment.

A new type of Hidden Markov Model was developed by Durbin et al. [8] 

tha t uses two observation stream s in parallel. This model was dubbed the 

“Pair Hidden Markov Model” and has been used successfully to determine 

alignments of biological sequences. Since biological sequences are usually rep­

resented by a series of alphanumeric characters, it seems possible th a t similar 

algorithms could be employed to align the tokens of words. Of course there 

are differences between word similarity and biological sequence analysis, such 

as the shorter length of sequences for natu ra l language words, the differences 

in surrounding context, and the im portance of having accurate physical align-
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ments between words (which is as im portant as a good ranking system). These 

differences shall be part of the work of developing the bioinformatics techniques 

to a new domain. The Pair Hidden Markov Model is also appealing because 

all of the m ajor Hidden Markov Model algorithms were developed to go along 

with the new paired structure, and they also employ the dynamic programming 

methodology th a t makes the Hidden Markov Model com putationally appeal­

ing. This suggests th a t those algorithms could also be created for a word 

similarity model. This is an im portant point considering th a t exceptionally 

large corpora are often used in N atural Language Processing, making efficient 

algorithms a necessity.

W hat follows in this chapter is the model created by a careful consideration 

of how to  best represent word alignment in a Pair Hidden Markov Model. All 

of the core Hidden Markov Model algorithm s are reinvented to  fit within the 

framework of the model and still retain all of the efficiencies of the originals. 

We begin w ith a more detailed discussion of the original Pair Hidden Markov 

Model and how it differs from the regular Hidden Markov Model. We then 

discuss the assumptions and weakness of this model and develop a model 

more suited to  the alignment and ranking of words in natural languages. The 

standard  algorithms are presented again with an emphasis on how they differ 

from the regular Hidden Markov Model algorithms.

5.1 The Biological M odel

Pair Hidden Markov Models were developed to  align biological sequences but 

w ith the  same necessities th a t we have for word similarity alignment. This 

creation was motivated by the need to  differentiate between the similarities 

between sequences th a t exist because of a scientific or historical relationship 

from sequences whose similarity is based solely on chance. The basic idea 

behind the model is th a t it emits a pairwise alignment instead of a single 

observation sequence. This allows a pair of words to  be examined as a single 

entity instead of two separate stream s of data, ft also adds an extra dimension 

to the search space, but all of the regular Hidden Markov Model algorithms
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can be adapted to work with it.

The model has three states, each corresponding to one of the basic edit op­

erations: substitution, insertion, and deletion. Each state has its own emission 

probabilities representing the likelihood of producing a pairwise alignment of 

the type described by the state. The word pairs are represented by x  and y, 

where n  and m  are the lengths of x  and y respectively. D urbin et al. use i 

and j  to  represent indexes into the token set for x  and y in th a t order. To 

represent emission probabilities the model uses the symbol pXiVj for emission 

of pairs from the substitution state. The emissions from the insertion and 

deletion states are designated by qVj and qXi.

Durbin et al. then decided on three transition param eters. The first, 5, 

represents the probability of going from the substitution sta te  to  either the 

insertion or deletion states. The next, e, represents staying in the insertion or 

deletion state. This was done to  provide facilities for affine gap penalties. Of 

course this property can be removed by tying these two probabilities together, 

forcing them  to be equal.

The last param eter comes from a reformulation of the model. In order for 

the  model to  provide a probability distribution over all the possible sequences, 

they add a silent begin and a silent end state  to the model. The authors chose 

to  tie the probabilities of the s ta rt sta te  to  those of the substitu tion state. 

Thus, the probability of starting  in the substitution state  is the same as being 

in the substitution state  and staying there, while the probability of starting  in 

an insertion or deletion state  equals th a t of going from the substitu tion state to 

the  given state. This choice is reasonable and keeps the number of param eters 

from increasing unnecessarily. They then add a new param eter, r ,  th a t models 

the probability of ending the sequence, going from any state  to  the  end state. 

We do some experiments to  see how useful such an end sta te  model actually 

is. W hen doing alignments the lengths are known ahead of tim e making such 

a transition unnecessary except as a way to slightly modify scores when the 

alignment is done. Now each sta te  has only one other transition, and the 

value of this transition is determ ined from the Markov Model property tha t 

all transitions sum to  one.
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5.1.1 W eaknesses in the B iological M odel

The main weaknesses of the biological model come from the various simplify­

ing assumptions tha t are made throughout its development. The core of these 

simplifications comes from the fact th a t the sequences being aligned are long, 

often in the range of dozens of tokens. This allows for many simplifications 

th a t (although they can decrease the overall “correctness” of the alignment 

measure) do not have a large enough impact on the overall calculation to 

cause any real problems. For us, word lengths are considerable smaller than 

biological sequence lengths. Usually words are less than 10 tokens long, and 

depending on the way the words are represented this can be further reduced. 

For example a phonetic representation will have fewer tokens since the set of 

tokens is larger than  the original alphabet and thus more expressive. Consider 

how many English sounds are represented by multiple letters (like sh, or th). 

These would each be represented by a unique token in a phonetic representa­

tion, giving us a much smaller number of calculations with which to  distinguish 

good alignments from bad alignments. This means our m ethods will be less 

robust to errors th a t were made on the side of simplification. Words can be 

as short as a single token, so if we use a simplified version of the model and 

it introduces errors to  facilitate th a t simplification, we do not have a large 

number of subsequent calculations to “sm ooth” those errors out.

Most of the assumptions seem simple on the surface, bu t can permeate 

throughout entire algorithms greatly changing their structure. Some of the 

more simple problems were simplifications to  the underlying model. The bi­

ological model assumes th a t an insertion followed by a deletion is the same 

as a match. This would cause problems when working with natu ra l language 

because it would say strange things about the alignments created. Covington 

[7] provides an example of this using the Italian “due” and the Spanish “dos” , 

both  of which mean “two” . The following alignment is correct,

d u e -
d o - s

If we allowed two successive gaps to  be the same, a substitution we would get 

the alignment
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d u e
d o s

which would provide evidence of a connection existing between the Italian “e” 

and the Spanish “s” . Since this is incorrect we do not want such a situation oc­

curring. If we followed the biological model, we would allow and possibly learn 

many correspondences th a t should not exist between our languages. Since the 

alignments produced by our algorithms are just as im portant as the numeri­

cal rankings, we need to  keep these two cases separate. These problems can 

be solved by adjusting our model to more accurately represent the kinds of 

alignments we would expect between two similar words. The similarity model 

is discussed in more detail in the following section.

The original biological model also assumes th a t the probability for the 

transition to the end sta te  is the same no m atter w hat sta te  we are currently 

in. If we try  to  tra in  w ith this assumption we run into problems. We would 

need to  ignore the actual values we are leaning for the end transition in one 

state, and instead replace it with the end transition probability learned from 

the other state. Doing this can cause problems during training, where we 

are not increasing the overall probability of the data. To overcome this we 

have split r  into two separate values, tm for the m atch state, and t x y  for the 

insertion and deletion states. This preserves the symmetry of our model while 

allowing it to be tte r express how word alignments end. It is often the case 

th a t alignments between cognates are more likely to  end in a gap, and with 

this change our system can model this (or similar) properties.

Another problem th a t is not touched on by the biological model is the 

rather common problem of word length. Since we are calculating a chain of 

probabilities, longer words will have a longer chain, which will result in a 

lower probability. It is difficult to  fix these probabilities within the algorithms 

without invalidating them , so instead we opted to  correct for these lengths 

after the initial calculation by use of a scaling factor. The effectiveness of this 

approach can be seen in C hapter 6.
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5.2 T h e W ord S im ilarity  M od el

Our model was developed keeping the basic structure of the biological sequence 

model intact. As such we s ta rt with three main states. A “m atch” state  

(represented by sta te  “M” ) th a t represents the alignment of two tokens, one 

from each word. An “insertion” state  (represented by “Y”) tha t allows a token 

in the second word to be aligned against nothing (also called a gap). Finally 

a “deletion” sta te  (represented by “X”) th a t lets a token in the first word to 

be aligned to  a gap.

A m atch, or substitution, represents tokens th a t are being examined for 

how similar they are. As an example consider the alignment of cognates. 

Vowels are (usually) more likely to be replaced by other vowels, so the emission 

probability of two vowels from the m atch state  should be higher than  for the 

substitution of a vowel and a consonant. An insertion or deletion represents a 

gain or loss of a token from one word to the next in a pair. Some languages 

add or remove prefixes or suffixes, or there may be some tokens th a t get 

transformed into multiple tokens, or a group of tokens th a t get condensed 

into a single token. All of these events can be represented by insertions and 

deletions. Figure 5.1 shows how the Pair Hidden Markov Model can be used 

to generate pairs of words, with various alignments.

There are many similarities th a t exist between states “X” and “Y” and as 

such there are some symmetries in the model with respect to  states “X” and 

“Y ”. However these states would only tru ly  be the same if the alphabets of 

both our source and target languages were identical. Nevertheless we opted to 

maintain the symmetries th a t exist with respect to  the transition probabilities. 

This is because in general word similarity is more dependent on the values of 

the substitution, insertion, and deletion costs. The transitions tend to  be con­

sistent regardless of language pair and as such, we can save com putation tim e 

and model complexity while losing very little information about the language 

pairs. However the necessity of different alphabets for each language requires 

tha t the states remain distinct, with various emission probabilities from the 

insertion and deletion states. The model is shown in Figure 5.2.
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Figure 5.1: Generating an alignment using a PHMM

1 — s  — X — T̂xy

1 — 25 — -c,

'XY

1 — E — A. Tx y

Figure 5.2: The word alignment Pair Hidden Markov Model
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5.3 W ord S im ilarity  M o d el A lgorith m s

Each of the standard Hidden Markov Model algorithms can be created for the 

word similarity model. This was accomplished by following the basic ideas of 

the algorithms presented in Chapter 4, bu t including the ideas and structure of 

the Pair Hidden Markov Model. W hat follows are the details of the algorithms 

as they relate to  the task of word sim ilarity measurement. In our case, all of 

our algorithms deal with the domain of possible alignments between a pair of 

words. While the method th a t each algorithm employs to calculate a score for 

the pair is different, they all must look (at least to some extent) a t all of the 

possible alignments available between the  words. Even with the constraints of 

our model this is still a substantial number of possibilities. Thus it is im portant 

to  note th a t each algorithm retains the properties of dynamic programming 

and as such accomplishes its search through the space of all allowed alignments 

quite efficiently.

In order to  employ a dynamic programming technique the task  m ust have 

the property th a t a t any point in the calculation, if we have found the “optimal 

solution” then th a t solution will stay optim al regardless of w hat the next step 

in the solution will be. The key to  maintaining the tru th  of this property are 

the assumptions th a t our alignments will contain no crossing finks and tha t 

each token will only be aligned to one other token. We are finding an optimal 

path  through our Pair Hidden Markov Model, and any sub-path must also be 

optimal. If there were to be a better sub-path we would use th a t path  instead. 

Here we use probabilities to measure how good a path  is, bu t the underlying 

principles remain the same.

5.3.1 V iterb i A lgorithm

The purpose of the Viterbi algorithm is to  find the best sequence of states, 

emissions, and transitions for a given observation sequence. The “best” se­

quence is defined as the sequence th a t has the highest overall probability. For 

our domain the observation sequence is the pair of words to  be aligned, and 

the s ta te  sequence represents a possible alignment of those two words. Hence
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we are trying to find the alignment between those two words th a t gives the 

highest probability out of all of the possible alignments.

This can be accomplished by using a dynamic programming algorithm, 

like the general Viterbi algorithm in Chapter 4. Table 5.1 is the pseudo-code 

adapted to  our problem. In the pseudo-code we use * to represent an action 

performed for all states M, X, and Y. For the Viterbi algorithm, and all of 

our word similarity algorithms, the input is a pair of words (the observation 

sequence). The output would then be a “score” for th a t pair of words, deter­

mined at the term ination of the algorithm.

1. Initialization

vM(0 ,0) =  1 —  28 —  t m , v x (  0,0) =  uy (0 ,0) =  5.

All v ' { i , - l ) , v ' ( - l , j )  = 0.

2. Induction: for 0 <  i < n, 0 <  j  < m  except (0,0)

/ ( 1 - 2 5 -  rM)vM(i -  1, j  -  1) >j 
v M( i , j ) =  p ^ .m a x ^  (1 -  e -  A -  rXY)vx {i -  1, j  -  1) >,

1 (1 -  e -  A -  t X y  )vY (i -  1, j  -  1) >

( $vM(i -  1 , j )  n 
v X {i , j )  = qXi max evx (i -  1, j )  [,

I \ v Y (i -  1 , j )  '

, 5vM( i , j  ~  1) 'i 
vY {t , j )  = qVj max evY ( i , j  -  1) >.

 ̂ Avx ( i , j  — 1) J

3. Term ination

P(X*)  =  ma x ( T M V M ( n , m ) , T x Y V X ( n , m ) , T x Y V Y ( n , m ) ) .

Table 5.1: Viterbi algorithm for Pair Hidden Markov Models

5.3.2 Forward and Backward A lgorithm s

The problem with the Viterbi algorithm is th a t it only looks a t the most 

probable alignment between the two words. Some words may have only a 

single best alignment, while others may have several good alignments, each a
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slight variation of the others. While the former may occur simply by chance, 

it is unlikely th a t a pair of words th a t have many high probability alignments 

could occur ju st by chance. W hat the forward algorithm in Table 5.2 will do is 

examine how similar two words are by looking at all of the possible alignments 

between them. This should give us a better idea of w hether our word pair 

exhibits true similarity or if an alignment exists simply by chance.

To accomplish this we keep track of every path  though our Pair Hidden 

Markov Model th a t can produce an alignment for a given word pair. By 

summing all of these alignments together a better picture of similarity may be 

obtained. A pair with only one good alignment will now receive a much lower 

ranking then a pair th a t has several high probability alignments. Hopefully 

this will result in a better indication of how similar a pair really is.

Just as with regular Hidden Markov Models, we can do the same calcula­

tions as the forward algorithm starting  from the end instead of the beginning. 

The corresponding backward algorithm is given in Table 5.3.

1. Initialization

f M( 0,0) =  1 — 2J — tm J x ( 0,0) =  f Y ( 0,0) =  5.

All f*(i,  —1), /* ( —l , j )  =  0.

2. Induction: for 0 <  i <  n, 0 <  j  < m  except (0,0)

f M{ h j ) =  PxiW[ ( l - 2 J - r M) / M( i - l , j - l )

+  (1 -  e -  A -  TXY ) ( f X {i -  1 , j  ~  1) +  f Y {i ~  1,3 ~  1))], 
f X {h j )  =  qXi[SfM( i - i , j )  + e f x ( i - i , j )  + X f Y { i - i , j ) ] ,

) =  9%[5/M( i , j ' - l )  +  e / y ( i , j - l )  +  A/x ( i , j - l ) ] .

3. Termination

P ( 0 \ n )  = TMf M{ n , m ) +  rXY( f X (n, m)  + f Y(n,m)).

Table 5.2: Forward Algorithm for Pair Hidden Markov Models
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1. Initialization

bM(n ,m )  =  rM,bx  (n ,m )  =  bY (n ,m )  =  t X y -  

All bm{ i , r n + l ) , b ' ( n + l , j )  = 0.

2. Induction: for n > i > 0, m  >  j  > 0 except (n, m)

bM(i , j )  =  (1 - 2 5 - r M)pXt+iyj+1bM(i + l , j  +  1)

+  5((lxi+1bX {i + l , j )  + qyj+ibY {i, j  +  1)),

bX ( i , j ) =  (1 -  e -  A -  TX Y ) P x i+1yj+1bM (i  +  1, j  +  1)
+  eqXi+1bx (i + 1 , j )  + A qyj+1bY ( i , j  +  1), 

bY ( i , j )  =  (1 ~  e -  A -  TXY)Pxi+1y3+1bM(i +  1, j  +  1)
+  eqVj+1bY ( i , j  + 1) +  A qXi+lbx  (i + 1 , j ).

3. Termination

P (0 |/x )  =  (1 -  2(5 -  rM)bM{0,0) +  5(bx (0,0) +  6y (0 ,0)).

Table 5.3: Backward Algorithm for Pair Hidden Markov Models

5.3.3 Log Odds A lgorithm

One of the biggest problems in recognizing similarity is always distinguishing 

which words really descended from the same source and which words only seem 

to be related, often due to  randomness or some other factor. One method tha t 

could be successful is to create another Pair Hidden Markov Model th a t can

determine how likely a pair of words is to  occur randomly. We could then

compare the probability of our alignments from the similarity model, to the 

probability of the words occurring by chance in the  two languages. If the 

probability of them  being properly aligned is high and the chance of them  

existing independently is low, we would give them  a higher score than  if they 

have a high probability alignment, but also have a high probability of being 

in the languages w ithout any common root existing between them.

This property is captured in the log odds algorithm [8]. The probability of 

the similarity model is normalized by the probability from the random model, 

to give an overall score to  the pair.
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T he R andom  M od el

The random model represents how likely the pair is to occur together with 

no underlying relationship. In the sense of an alignment this would be an 

alignment w ithout any matches (i.e. only insertions and deletions). Thus the 

random model would only need insertion and deletion states. To keep things 

simpler one word can be completely generated before the next word. The 

probabilities would be the same as long as the transitions between states had 

the same value. Since this is w hat we want, there is a single new param eter y 

to represent transitions through our random model.

r| r|

1 — T|
1 T|

1 — T| 1 - T 1

Figure 5.3: The random Pair Hidden Markov Model 

D eriv in g  th e  Log O dds A lgorith m

To calculate the scores using the log odds model, we can use an algorithm th a t 

takes the same form as the other dynamic programming algorithms we are 

familiar with. To do this we need to know the probability of our observations 

given the random model R.  The nature of the random model allows only one 

path for any word pair x  and y , we shall use rXi and rVj to represent emissions 

from the corresponding states of the random  model. The probability of the
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path through the model is

P( x , y \ R )  = r ]{ l - r j ) n ] \ r Xir ] { l - r i ) rnY[ryJ
i = l  7=1

Vi '
i= 1 7=1

The next step is to split up the term s of the two equations, the probability 

from the word similarity model and the probability from the random model, 

where the similarity model is being normalized by the random model (i.e. di­

vided). We can compute the terms in an additive model with log odds emission

scores and log odds transition scores. These two scores can be combined into

a single term  using the following equations.

( u\ 1 Pab , 1 1 - 2 5 -  Tms(a, b) = lo g  b log

d(a) = -  log

rarb (1 -  V)2
qaS( 1 -  e -  A -  t X y )

t \ i & ee(a) =  - lo g

/( a )  =  - lo g

i"a(l -  i?)
qa A 

ra( 1 -  V)

c =  log - -— TM l-log(rxy).
1 -  e -  A -  t x y

A few points need to be made about these equations. First of all since s is 

meant to always be used to  represent a substitu tion regardless of w hat sta te  we 

were in previously it reflects the assum ption th a t the previous state  was also 

a match state. To compensate for this d has a built in correction to  represent 

going from an insertion or deletion back to  the m atch state. This then requires 

a final correction c if we end up finishing in an insertion or deletion state. All 

of this means th a t although the interm ediary steps may not have the correct 

values the final solution is correct. The log odds algorithm is presented in 

Table 5.4.

Also it is possible to simplify the above equations if you assume th a t the 

states in the random model have the same emission probabilities as the in­

sertion and deletion states in the word similarity model, ra = qa Va. This 

simplified version is the one presented by Durbin et al. [8]. We have also mod­

ified the algorithms so th a t they can be used w ithout this assumption since for
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some applications the original version may be correct but it often represents an 

over-simplification. We have conducted experiments with the different model 

views to  see the effects of this assumption in practice.

1. Initialization

3. Term ination

P  =  ma x ( V M(n ,m)  +  log ( rM) , Vx (n , m)  + c}V Y (n , m)  +  c).

Table 5.4: Log Odds Algorithm for Pair Hidden Markov Models 

Forward Log O dds

We have also created another variation on the regular log odds algorithm. Nor­

mally the log odds algorithm is a combination of the Viterbi algorithm with the 

random model. We have switched from the Viterbi algorithm to the forward 

algorithm to  determine how effective such an approach is when combined with 

the random  model. We use the same variations for the forward log odds algo­

rithm  th a t were used with the regular log odds algorithm. One version makes 

the assum ption tha t insertions and deletions have the same probabilities in 

the similarity model as in the random  model. The other uses EM algorithms 

to  learn the insertion and deletion probabilities for the similarity model from 

the training data.

V M(0,0) =  —2 log(r/), V x (0, 0) =  Vy (0,0) =  -o o .

2. Induction: for 0 < * <  n,  0 <  j  < m  except (0,0).

, V M(i — 1, j  — 1) 
s (xh yj) +  max I V x (i -  l , j  -  1) 

I V Y (i — l , j  — 1)

, V M(i -  1 , j )  -  d(xi) n 
m ax V x (i -  l , j )  -  e(xi) L

I V Y (i -  1 , j )  -  f (x i )  >

, V M(i , j  -  1) -  d(vj) n 
m ax V Y ( i , j  -  1) -  e(%)

V x ( i , j  -  1) -  f ( y j )  >
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5.3.4 E xpectation  M axim ization  A lgorithm s

All of the previous algorithms require a large set of probabilities to  be used. 

They need the probabilities for sta te  emissions (substitution, insertion, and 

deletion probabilities), as well as probabilities for transitions between states. 

The problem is th a t it is difficult to  determine these probabilities using only 

domain-specific knowledge. Most languages have not been studied in great 

detail, and those th a t have are usually not examined in a way th a t lends 

itself to  a transform ation into probabilities. For example is it well known 

th a t a vowel is likely to be transform ed into another vowel, or th a t in closely 

related languages tha t share (at least part of) an alphabet m atches between 

identical letters occur often. W hat is not known (at least in general) is exactly 

how likely it is for one vowel to  be substituted for another, or how often 

identical segments are preserved between languages. Since the  Hidden Markov 

Model has strict m athem atical requirements, we need a way to  satisfy these 

requirements using the da ta  th a t is given to  us. Fortunately, Hidden Markov 

Models already have a m ethod in place th a t can do just th a t, the Expectation 

Maximization algorithms. The main difference between our algorithm s and 

the regular Hidden Markov m ethods is th a t we are searching w ith an extra 

dimension, to allow us to consider different positions within the two output 

streams.

For these algorithms we only need to assume some starting  probabilities. 

Uniform and random probabilities are common starting  points. Then we check 

to  see how well our training da ta  fits in with our starting  probabilities, and 

adjust the model to  increase the overall probability of the data. We then repeat 

this process getting better and better models until we reach some stopping 

criteria. Since we are dealing with continuous values, convergence is unlikely 

to  occur, so we need to  stop after a certain number of iteration or when the 

changes th a t occur are sufficiently small.
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V ite r b i

The Viterbi version of the algorithm uses the initial probabilities to deter­

mine which alignments would be best and then after creating these alignments 

counts how often each m atch and gap occurs. It then uses this d a ta  to  recal­

culate all of the probabilities and the process can repeat itself. In general, the 

Viterbi version of the EM algorithm is less powerful, bu t it remains to  be seen 

how effective it would be for the problem of word similarity.

It is easy to  implement a Viterbi Expectation M aximization algorithm, 

since we only need to  align word pairs and then count the different alignments 

in the data. The advantage of this approach is th a t it only considers a single 

alignment. Some tasks, like alignment of cognates, usually have only one 

alignment th a t is correct. Although a single alignment says less about how 

similar words are it could be better for training. If only one alignment is 

correct then we only want to  consider it when determining our param eters. 

Of course, our training d a ta  is not pre-aligned, otherwise a single iteration of 

Viterbi training would yield our model param eters. This makes this method 

very sensitive to the initial param eters th a t are chosen, and could potentially 

be very easily trapped in an incorrect local maximum.

Forw ard-Backw ard

The forward-backward calculation takes much more information into account. 

It uses partial counts for every possible match or gap weighted by the proba­

bility of reaching th a t alignment starting from both the beginning and end of 

the word pairs (forward and backward respectfully). While more complicated 

than the Viterbi algorithm, it is more used in practice and is usually more ef­

fective. It has the advantageous property of being more robust and can better 

deal w ith noise and errors th a t may exist in the training data.

The forward-backward algorithm can be used almost as shown in Chapter 

4, with a few minor changes and simplifications. F irst of all we need to search 

through a 2-dimensional space of possible alignments, over several different
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word pairs. The maximum likelihood estimators are: 

akl = ■ and ek{b) -  Ek^
Zi>Akl' £  v Ek(Vy

W here A ki represents the number of transitions from state  k to I, and E k(b) is 

the number of emissions of b from state  k. We now sum over each pair, where 

h represents the index of the pair we are using.

We can use the following simplification in the equation for E k(b).

N

7i(t) = E &(*>■?)
3 =  1

  v—' )/^j T  f)

=  h  p w i  
1 N

-ai(t)Pi(t)
P{  0|/i)

We now have the much simpler equation

E kip) =  E p / Q i  \ E E f k & M t t J ) -
h i]xh&jlyheb

The equations for the various states have slightly different forms. For example, 

insertions only need to  m atch yj w ith the emission b, since yj is em itted against 

a gap.

For transitions this is the general formula for transitions ending in the 

substitution state. W hen the transition ends in an insertion or deletion state  

we only change the  index for one of the pairs, th a t is only one of i or j  change. 

We also use the emission probability for a letter from one word against a gap.

A ki =  E  p{ 0 \ j i )  ^ ?  f k i h j W i e i i X i + n y i + i P H i  + h j  +  !)■

By utilizing all of the above equations, with variations for each state, it is 

possible to  construct a forward-backward algorithm th a t is able to learn all of 

the param eters of our model. Such a program only requires th a t we provide 

it with training d a ta  representative of the similarity we want to model. The 

data does not need to  be aligned in any way, although the initial conditions
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can help it to  converge faster if we have some domain knowledge we can use 

as a starting  point.
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Chapter 6 

Experim ents

The experiments reported in this chapter are mostly concerned with the ex­

am ination of our Pair Hidden Markov Model as a means to autom atically 

model word similarity. To this end, we examined the effect of various tra in ­

ing techniques and variations on several word alignment tasks. Our model is 

trained using the Expectation M aximization algorithm, in either its V iterbi 

or forward-backward form. Once the model is trained we have more choices 

for how to  do the alignments and rankings. The Viterbi algorithm was imple­

mented in logarithm  form to increase com putational speed. We also examined 

the forward calculation, since it takes into account all alignments, and sev­

eral variants of the log odds formulation, as they take into account how likely 

words are to occur at random, and have a normalization step as part of their 

structure. This chapter begins with the development experiments and what 

they have taught us about our model. Each section includes formal tests, our 

focus being on the recognition and ranking of cognates. We also examine the 

task of identifying confusable drug names.

6.1 Cognate Recognition: Developm ent and 
R esults

An excellent task  to  measure the abilities of a word similarity system is the 

recognition of cognates. Thus we have chosen to  examine how well our model 

can learn to  rank pairs of words based on how likely they are to be cognates. 

We also chose this task to  be the one on which our system was developed.
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We decided on this domain because cognate recognition is a common word 

similarity task, and it gives us the opportunity to  examine both  the ranking 

capabilities of our system and the corresponding alignments it creates.

The task  of our system is to examine pairs of words between two languages, 

some of which are cognates and some of which are not. The d a ta  is labeled 

accordingly, but our program ignores those labels. The labels are used by 

another program to determine how accurate our rankings are. Our system 

aligns the two words to optimally fit our model, giving each alignment a score 

th a t represents how likely the words are to  be cognates. These scores are 

relative to  each other, not to any universal scale. The pairs can then be 

ordered and if everything worked well, true cognates will be a t the top of the 

list. To measure how well we have ranked cognates we use an evaluation metric 

developed for Information Retrieval, designed specifically to  evaluate rankings. 

The technique is called 11-point interpolated average precision [21]. It involves 

calculating precision at various levels of recall. For 11-point these levels are 

0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. Precision is 

calculated by using the highest precision th a t occurs anywhere after a given 

point of recall is reached. Figure 6.1 shows the interpolation procedure.

1 

0.8 

0.6
Precision

0.4 

0.2 

0

Figure 6.1: An example interpolated precision-recall curve
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This domain is challenging because word similarity is not a perfect indicator 

of whether two words are cognates, since there are other ways th a t words can 

be similar. Borrowing is one example, random chance is another possibility. Of 

course the log odds algorithm is designed to  help detect random  occurrences 

and lower their rank accordingly. It is also possible th a t two words are cognates 

and yet exhibit no surface similarity. This can be especially true when basing 

decisions on orthographic similarity, bu t sometimes such a comparison is the 

only one available.

6.1.1 C ognate D ata

The da ta  for training our cognate recognition model comes from a set of lexico- 

statistical experiments preformed by Dyen et al. [9]. Lexicostatistics examines 

the percentage of cognates th a t exist between two languages. The higher the 

percentage the more closely related the languages. The words under examina­

tion are from the list of 200 basic meanings developed by Morris Swadesh in 

1952 [27]. They represent words th a t are essential to  human communication, 

and should exist within all languages. The da ta  we obtained uses 95 speech 

varieties all of which are Indoeuropean. The data  also has all of the cognate 

decisions made by Dyen.

The d a ta  consists of several small sets of words for each basic meaning. 

All members of the same set have been judged to be either cognate w ith each 

other, or doubtfully cognate w ith each other. Doubtfully cognate represents 

words th a t show similarity, bu t it is too difficult to  determine w hether tha t 

similarity arises from being cognates, borrowing, or chance. There are also 

connections between sets, bu t these are only vaguely specified. One set would 

be considered related to  another if the words in the first set had a relationship 

with at least one member of the other set. Unfortunately there is no indication 

given in the da ta  of exactly which member th a t is.

The da ta  set is not perfect. In addition to  the set relationship problem, 

there is often more than one form given for an individual entry in a set. The 

forms are considered cognates if one of the forms is a cognate to  one of the 

forms of another member of the set. W hen using autom atic means to  extract
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the da ta  it can be difficult to capture all of these relationships w ithout error. 

Luckily, there is a large number of pairs, so any errors th a t slip into the data  

should not effect the overall results. A few false pairs out of over two hundred 

thousand should not have an effect on training. The pairs themselves were 

created by exhaustively matching up every word in a set. We chose not to try  

to find matches between the sets, since such a relationship means only tha t 

some members of the two sets are related, with no indication which members 

those are. There are more than  enough examples if we only consider the sets 

themselves so there is no need to  deal with the difficulties of determining the 

cognates th a t exist between sets. Since we did not want the ordering of the 

pairs to have an effect on the training data, we also put the reverse of each pair 

into the data. This creates symmetry in our final param eters, which is good 

considering we have a single alphabet and are trying to model one language 

family.

Despite the various languages used in the data, all of the words are rep­

resented in English letters. This means the forms are described well enough 

to be examined, bu t not well enough to  be used for phonetic analysis. The 

data  th a t we are testing with has the same representation. This brings us to  

one problem th a t occurs when using this da ta  to train: the difficulty of sep­

arating training and testing data. Normally it is a simple m atter to  separate 

out the test examples from the training data. For cognate da ta  this is diffi­

cult to  do completely. Word forms between languages can be similar, if not 

identical. This means th a t if you are testing on a  specific language, removing 

all of the words of th a t language from the da ta  will not necessarily mean tha t 

your test examples do not occur in the data. This occurs because there are 

several languages th a t exhibit a large amount of similarity. As an example 

imagine you were testing on Spanish and Polish, and removed those languages 

from the training data. There exists other languages, Italian and Russian for 

example, th a t would represent most of the same tokens and correspondences 

as the removed pair. In this case Italian could substitu te for Spanish, and 

Russian for Polish. Instead of trying to remove the testing examples, and 

possibly presenting results th a t may be incorrect, we instead allow the testing
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and training d a ta  to  have some overlap during development. We shall still 

remove languages for formal testing, but we want to bring attention to  the 

effect language overlap has on the training data. For now the sheer size of the 

training da ta  when compared to  the development sets should help prevent the 

param eters from being tuned to  any particular language. Instead we hope to  

extract general correspondences between Indoeuropean languages and test the 

succuss those of correspondences in recognizing cognates between very specific 

language pairs.

D evelop m en t D a ta

For development we have chosen to use two language pairs. These are Italian 

and Serbo-Croatian (abbreviated IK), as well as Polish and Russian (PR). We 

chose these sets because they represent opposite levels of similarity. Polish and 

Russian are very similar, possessing a high number of cognates, while Italian 

and Serbo-Croatian are much more distinct, w ith fewer correspondences. The 

percentage of cognates w ithin the data  is im portant, as it provides a simple 

baseline from which to  compare the success of our algorithms. If our selection 

process were random , then we would expect to get roughly these percentages 

for our recognition precision (on average). For the Italian and Serbo-Croatian 

data, the percentage of cognates is 25.3%. The Polish and Russian d a ta  set 

has a much higher cognate density at 73.5%. These would be the expected 

precision values for any random approach.

T est D a ta

The data  used in testing represents pairing of words from 5 different languages. 

Each language provides 200 of 1000 to tal words. The list for each language 

contains 200 meanings (one word for each meaning), and words are paired if 

they  share the  sam e definition. T he languages are A lbanian, English, French, 

German, and Latin. This data  comes from the word lists given by Kessler 

[12]. Although these word lists did not come from the cognate da ta  used for 

training, there is still some overlap, since the same cognates occur frequently 

between languages. Four of the languages: Albanian, English, French, and
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German, were in the training data, but they were removed before the model 

was trained for these tests. We did this to  keep the testing and training da ta  

as separate as possible. The final language, Latin was not part of the set. 

We still offer the same caveat as before: there is enough similarity between 

the removed languages and those th a t still exist in the set th a t we cannot 

completely say th a t all words of a language are removed. There are languages 

similar to English and there are languages similar to French. Obviously the 

correspondences between such languages would mirror those between English 

and French. However, this is a property of natural languages, one which made 

a learned approach seem more appealing. Even if a language was not studied 

at all, ju st as Latin is not considered in our training data, there should be 

similar languages we can train  on to  learn the correspondences we want. For 

comparison with the development set we use the average of all 10 language 

pairs available for testing. The average cognate percentage for these 10 pairs is 

28.4%. A ppendix A contains detailed da ta  for every language pair. Also keep 

in mind th a t formal tests already have some improvements in them  th a t were 

discovered during development. The most im portant of these is the correction 

for word length added to  the Viterbi and forward algorithms (see 6.1.5). Even 

the formal tests whose results appear in earlier sections have this correction.

M odel In p u t/O u tp u t

The input for the training program is a set of example words th a t exhibit the 

similarity to  be modeled. For these experiments this is the set of cognate pairs 

within the Indoeuropean languages. The ou tpu t of the training program will 

be the three sets of param eters. F irst the substitution probabilities, repre­

sented by a m atrix  with dimensions equal to  the token alphabet size of the 

corresponding languages. In this case we have a symmetric representation with 

a token alphabet size of 26. The second set is the insertion and /o r deletion 

probabilities for each token. Finally we get the transition probabilities. The 

standard model has 5 of these.

For the ranking algorithms, the input is any pair of words. The cognate 

recognition task  uses a mix of cognates and non-cognates. However, all of the
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pairs selected have a common meaning, they just are not necessarily cognates. 

The output of any ranking program is a score for each pair in the input. 

This score represents (relatively) how much of the learned similarity the pair 

exhibits. For these experiments words th a t are very similar should be cognates.

B aseline: N orm alized  E dit D ista n ce

Normalized edit distance is simply a minimum edit distance calculation nor­

malized by the length of the longest word in the pair. The section on dynamic 

programming in Chapter 4 has pseudo-code for the minimum edit distance 

algorithm. If you use a standard approach, where each operation has a cost 

of 1, except the substitution of identical tokens which has a cost of 0, then 

we get a precision of 0.568 for the average of the 10 language pairs in our 

test set. This number can be increased by adding some domain knowledge to 

our cost structure. First, we set the substitu tion costs of non-identical vowels 

to  0.5. This is because vowels are often transform ed between languages. We 

also use a substitution cost of 2, to  remove the effect non-identical segments 

have on the overall calculation. By doing this we can boost the effectiveness 

of the normalized edit distance score, achieving a test data  average precision 

of 0.624. This number represents how well a simple method could preform in 

a well studied domain. The earlier precision of 0.568 is more likely for tasks 

th a t have little or no domain knowledge available.

6.1.2 E xperim ents on Trained Param eter Effectiveness

The following experiments represent variations in the way the trained model 

is used. The purpose is to  examine how useful each part of the trained model 

is to the overall performance of the system. The trained model can be broken 

up into three sets of parameters: the substitu tion probabilities, the inser­

tion/deletion probabilities, and the  transition  probabilities. Obviously, the 

substitution costs constitute the core of the model, w ithout them  we have no 

truly useful inform ation with which to  rank the word pairs. However, how 

useful are the other param eters, and is it really worth training them ? This set 

of experiments attem pts to answer tha t.
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Because of the way our training da ta  was created, it contained an excep­

tionally large number of pairs. The to tal pair count for the da ta  set is 235483. 

This caused the training program to take a long time to run, not normally a 

problem once the system is in place, since training only needs to  be done once. 

However in order to  develop the system, training needed to be done numerous 

times. Therefore, we created a smaller training set tha t included only pairs 

for which both words had at least 4 tokens (length greater than  or equal to 4). 

This effectively cut our training set in half to 118485 pairs, greatly reducing 

the tim e needed to train.

For our experiments we need to  make a distinction between the two vari­

ations of the log odds algorithm available to us. The first (referred to in the 

tables as L.O.C.) is the model as presented by Durbin et al. [8], while the other 

(L.O.L.) represents our more complex version of the log odds algorithm, where 

we separate the insertion and deletion values for the word similarity and ran­

dom models. Also, whenever we assume th a t the insertion and deletion costs 

are constant, the two log odds models become equivalent.

A lg o r ith m
4+  D ata Full D ata

IK PR IK PR
Vit 0.582 0.923 0.584 0.920
For 0.566 0.911 0.570 0.909
L.O.C 0.764 0.990 0.777 0.990
L.O.L. 0.764 0.990 0.777 0.990
F.L.O. 0.350 0.942 0.358 0.942

Table 6.1: Comparing two training sets using only substitu tion costs

Table 6.1 shows a comparison of the effectiveness of the model trained on 

the two da ta  sets. This also represents the performance of our model using only 

the substitution scores (for log odds and forward log odds) or the substitution 

probabilities (for Viterbi and forward). In other words, only the substitution 

costs are used when calculating the final score for a pair. The other model 

param eters are left at constant values. The constant values for the insertion 

and deletion probabilities vary depending on the algorithm. For Viterbi and 

forward they are set uniformly a t ^  (since our alphabet size is 26). For our
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log odds family of algorithms we follow the design of the original version of the 

log odds algorithm and choose constant insertion and deletion values set at 

the corresponding letter frequencies of the languages being examined, allowing 

the two to cancel out. We do this to ensure th a t the insertions and deletions 

have no effect on our results. For the Viterbi and forward algorithm s we want 

uniform values so all the probabilities are equal. In the log odds algorithm s we 

chose le tter frequency so th a t the insertion and deletion probabilities cancel 

out w ith the probabilities from the random model. For any algorithm the 

transitions are each set to  0.3 except for r  which is given a smaller value of 

0.1, since it is less essential to  the model.

There is very little difference between the model trained with the entire 

d a ta  set and the model trained with the smaller sub-set of the  data. The 

model trained with more d a ta  usually outperforms the other bu t not always, 

and the differences between the two are minor enough th a t we can conclude 

there are no significant differences between the two models. It seems th a t the 

correspondences th a t exist between small words are also contained in larger 

words, meaning there are no transform ations th a t only exist between small 

words and nowhere else. Choosing length to  cut down our d a ta  did not have 

an adverse effect on the performance of our trained model. However, since we 

have the model trained on the full set of data, it is those param eters th a t we 

will use for most of the experiments, unless training tim e becomes problematic.

The same table shows us the effectiveness of the log odds approach. W ith­

out any corrections or tweaking it does an excellent job on the recognition 

task. It is possible th a t the Viterbi and forward algorithms suffer from prob­

lems caused by word length and the scores need to  be adjusted to  help alleviate 

this deficiency (later experiments will determine if this is true  or not). Those 

algorithms still do a decent job, a t least when compared to random  selection of 

cognates. The forward version of the log odds algorithm achieves good perfor­

mance on the Polish/Russian da ta  set, bu t does poorly on the Italian/Serbo- 

Croatian. The lower percentage of cognates makes the Italian/Serbo-C roatian 

da ta  more difficult and as will be seen later, the forward log odds algorithm 

works best when given complete information in the form of the  entire trained
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model.

Param eters 
Set Constant

IK
Vit For L.O.C L.O.L. F.L.O.

indel, trans 0.584 0.570 0.777 0.350
trans 0.601 0.599 0.777 0.792 0.396
indel 0.610 0.604 0.767 0.490
none 0.612 0.615 0.767 0.734 0.508

Table 6.2: The effect of each set of trained param eters (part 1)

Param eters 
Set C onstant

PR
Vit For L.O.C. L.O.L. F.L.O.

indel, trans 0.920 0.909 0.990 0.942
trans 0.926 0.920 0.990 0.993 0.953
indel 0.937 0.936 0.992 0.976
none 0.938 0.937 0.992 0.991 0.977

Table 6.3: The effect of each set of trained param eters (part 2)

Tables 6.2 and 6.3 show the consequences of using more learned param eters 

during testing. The second row shows the effect th a t adding learned insertion 

and deletion scores has on the algorithms. Since we are training on symmet­

rical pairs of words the insertion and deletion costs are equal. This is fine 

when you only have one “language” or alphabet as we do w ith this data. Not 

surprisingly this addition improves each of the algorithms to some extent, but 

not a significant degree. The best performance is obtained by using the mod­

ified log odds algorithm with uniform transition probabilities. The next row 

shows the same small increase in precision when only transition probabilities 

are added to  the algorithms. For this experiment the insertion and deletion 

costs are returned to  their constant values. Again we see a small increase in 

the accuracy of the rankings, but nothing too significant.

The most unexpected results are shown the final row of the table, which 

reflects the addition of both  the insertion and deletion costs along with the 

transition probabilities. The standard result occurs for the Viterbi and for­

ward algorithms: a small gain in recognition accuracy. However for Viterbi- 

based log odds we get a very unintuitive result; the accuracy of the rankings
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drops for both da ta  sets. In fact, for the IK set, it drops below the level ob­

tained by just using substitution costs. It seems strange th a t two additions 

tha t improve results on their own would cause a decrease when used together, 

especially considering they are fairly separate in w hat they tell us about the 

model. One possible reason this is occurring is the ex tra  param eter introduced 

in the random model, rj. This param eter, along with the various transitions 

from the cognate model, is used to determine a penalty structure for insertions 

and deletions. This makes the algorithm a bit more sensitive to  the interplay 

between the various transition  param eters, which can result in larger insertion 

and deletion costs. Since the algorithm normally assumes th a t insertion and 

deletion probabilities are constant, combining the learned insertion and dele­

tion probabilities w ith the log odds algorithm ’s existing cost structure seems 

to  be exaggerating the penalty for insertions and deletions. This causes the 

algorithm to be a b it too aggressive when aligning tokens, reducing the overall 

performance.

Overall, it is the forward log odds algorithm th a t most benefits from the 

addition of more trained param eters. There is a significant increase in the 

precision of this algorithm  with the addition of each set of param eters. It 

is unusual th a t the forward log odds algorithm behaves like the simpler algo­

rithm s th a t do not contain the random model. It seems th a t weaker algorithms 

require more d a ta  to  be effective, while the more powerful algorithms function 

well with simplified d a ta  th a t allows them  to  concentrate on the more im por­

tan t facets of the data. Because of this trend we decided against a constant 

insertion and deletion version of the forward log odds algorithm. Instead, our 

forward log odds algorithm  will always use the learned insertion and deletion 

values of the trained word similarity model.

The test da ta  shows a slightly different story. Table 6.4 shows a slight drop 

in precision whenever insertion/deletion information is added. The exception 

to  this is the forward log odds model, which still benefits from every ex tra 

bit of data  it receives. Notice th a t the Viterbi and forward algorithms both 

profit from the inclusion of transition probabilities. This gives them  a more 

detailed penalty structure. On the other hand, the Viterbi log odds algorithms
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Param eters 
Set Constant

Test D ata Average
Vit For L.O.C. L.O.L. F.L.O.

indel, trans 0.569 0.537 0.702 0.536
trans 0.565 0.516 0.702 0.698 0.553
indel 0.630 0.628 0.685 0.634
none 0.619 0.615 0.685 0.662 0.639

Table 6.4: Formal tests of the effect of adding more trained model param eters

get lower performance as more data  is added to them. These algorithms work 

best when they can concentrate on the most im portant data, in this case 

substitution costs. So far the best performance is the log odds algorithm with 

constant insertions, deletions, and transitions.

6.1.3 V iterb i vs. Forward-Backward for EM  Training

Initial training was done with two different EM algorithms. The first was based 

on a V iterbi approach, only looking at the best alignments, the second used the 

standard forward-backward approach. One of the biggest obstacles w ith the 

Viterbi algorithm  is its sensitivity to  initial param eter settings. The standard  

forward-backward algorithm works well when given uniform starting  values, 

but this leads to  poor results when used as a starting point for the Viterbi 

algorithm, as the experimental results show. We attem pted to overcome this 

lim itation by using some domain specific knowledge. One experiment gave the 

diagonal entries higher values than  the other entries. The other experiments 

attem pt to use phonetic similarity as a means to  determine what tokens should 

get higher initial scores. The first version of phonetic initialization creates 

positive scores in the initial score table if the pair is phonetically similar. 

These decisions were made by a separate program, developed by Kondrak as 

part of his PhD  thesis [17], th a t is able to  measure phonetic similarity. This 

program produces a score for any token pair and tha t score can be either 

positive or negative. For example the phonemes “f” and “v” get a positive 

score, 25. However, “f” and “e” get a score of -30. Remember th a t our da ta  

was not designed to  be examined phonetically, bu t we are only using phonetics 

for a starting  point, not for the actual scores. If the pair of tokens were given
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a positive score by this program, then they got a positive initial score in the 

table. The second phonetic initialization uses the similarity of vowels as a 

threshold. This was done because vowels tend to  always be similar. The score 

table gets a positive entry if the pair exhibited more similarity then the best 

pair of vowels. The main problem with the phonetic approach is th a t our da ta  

is represented as English letters, not phonemes, bu t hopefully there is enough 

overlap between phonemes and letters in our data  th a t such initial conditions 

help avoid any of the poor local maximums th a t plague the Viterbi algorithm 

is this domain. The Viterbi algorithm used is the log odds algorithm, since it 

tends to  preform better and has a built in length normalizing component.

fnitial Conditions tK P R Test D ata Average
Uniform 0.455 0.878 0.386
Diagonal 0.565 0.980 0.530
Phonetic (zero-threshold) 0.562 0.972 0.589
Phonetic (vowel-threshold) 0.486 0.945 0.586

Table 6.5: V iterbi based EM algorithms

Table 6.5 shows th a t the V iterbi algorithm  preforms poorly as an EM 

algorithm for the data  sets we are working with. The average for the test 

data  is a b it better than  the development results, but this approach still gets 

precisions well below the mark set by similar forward-backward trained models. 

The problem mainly lies in the way th a t the Viterbi algorithm works. Since 

it can only consider the alignments it initially creates when getting counts, it 

is difficult to change from the first set of alignments. When there is no good 

indication of what starting param eters to  use w ith the algorithm it is difficult to 

get good results when doing Viterbi training. For every token we know nothing 

about (except for identical tokens, this is most of them) we must either make 

the choice to  align them  or not. if we align them , they will always get aligned 

in the data, causing the algorithm to  align every token when comparing two 

words. Obviously this is not the behavior we are looking for. On the other hand 

if we do not align the tokens we know nothing about, then we will not get any 

new information from the data. We align the tokens we “guessed” were good 

initially and can learn almost nothing from the rest of the data. This all or
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nothing problem with the V iterbi algorithm is a problem of our domain. If we 

had more precise starting conditions th a t we just need to refine to  better match 

the  d a ta  we were training on, the V iterbi approach would probably preform 

much better. U nfortunately we are looking for approaches th a t can be used 

in domains th a t are not well studied and the Viterbi approach does not seem 

applicable to such tasks. W hat we need to be able to do is change our insertion 

and deletion values during training. It might be possible to s ta rt by aligning 

our d a ta  aggressively, and then by decreasing the penalty for gaps, remove 

some of the weaker alignments from being preferred over insertions/deletions. 

This approach doesn’t quite fit w ith the Hidden Markov Model approach, but 

it is something th a t could be examined a t a later time. The remainder of our 

experiments concentrate on the forward-backward training algorithm and how 

well we can get it to  preform.

6.1 .4  Experim ents w ith  M odel C om plexity

W hile the previous set of experiments dealt with how much of an effect each 

individual param eter component had on the overall model, we still trained the 

model as a whole in order to  get those probabilities. It would be interesting to 

see if testing with only the substitution costs (or whatever else might interest 

you), preforms better if only the substitution costs are trained. The first 

experiments trained the insertions, deletion, and transition costs, and then 

sets them  to  constants during the testing phase. The following experiments 

keep those param eters constant throughout the training process. Since the 

trained model more closely resembles the model used for testing, it may allow 

for be tte r result.

The results show th a t the less complex the model the worse the overall 

performance of the model. Keeping transitions constant is worse than  training 

the entire model (see Tables 6.2 and 6.3) and continues to  degrade if the 

insertions and deletions are held at a uniform value as well. There are a few 

exceptions, mostly occurring when insertions and deletions are kept constant 

during training. However, the differences are too small to  conclude there are 

any significant improvements in precision over the fully trained model.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Constant Param eters 
During (After) Training

IK
Vit For L.O.C L.O.L F.L.O

none 0.612 0.615 0.767 0.734 0.508
none (trans) 0.601 0.599 0.777 0.792 0.396
none (indel) 0.610 0.604 0.767 0.490
none (trans, indel) 0.584 0.570 0.777 0.350
trans 0.608 0.612 0.740 0.766 0.474
indel 0.618 0.618 0.777 0.505
trans, indel 0.599 0.582 0.706 0.376

Table 6.6: Training with constant param eters (part 1)

C onstant Param eters 
During (After) Training

PR
Vit For L.O.C. L.O.L. F.L.O.

none 0.938 0.937 0.992 0.991 0.977
none (trans) 0.926 0.920 0.990 0.993 0.953
none (indel) 0.937 0.936 0.992 0.976
none (trans, indel) 0.920 0.909 0.990 0.942
trans 0.940 0.937 0.986 0.992 0.974
indel 0.939 0.938 0.993 0.978
trans, indel 0.931 0.923 0.988 0.952

Table 6.7: Training w ith constant param eters (part 2)

W hen the models trained w ith constant values are compared against the 

fully trained models whose param eters are later set constant for testing the 

results are less consistent. For Viterbi, forward, and forward log odds there is 

an overall increase in performance when training with constant values. How­

ever, the Viterbi log odds algorithms get a decrease in performance, instead 

preferring the fully trained model with constants set afterwards, except in the 

case of insertion/deletions where the opposite is true for the constant indel 

version of the Viterbi log odds algorithm. One of the main reasons this may 

be occurring is th a t the training algorithm is in fact the forward-backward 

algorithm. Since we are training with the forward algorithm it makes sense 

th a t training the model the same way we are testing it would work well when 

testing with the forward algorithm. The Viterbi and forward algorithm s are 

in many ways the same, so it is likely th a t they would share many of the same 

properties. The log odds algorithm on the other hand uses the d a ta  produced 

by the training algorithm in a transformed way, no m atter how the model
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is trained. The addition of the random model and the param eter changes 

tha t occur when adding th a t model to the algorithm ensure th a t the trained 

model is adapted from w hat it originally was. Since this adaptation always 

occurs, the algorithm should prefer to use the most precise versions of the var­

ious costs, and would not benefit from a partially trained model as the other 

algorithms do.

Constant Param eters 
During (After) Training

Test D ata Average
Vit For L.O.C. L.O.L. F.L.O.

none 0.619 0.615 0.662 0.685 0.639
none (trans) 0.565 0.516 0.702 0.698 0.553
none (indel) 0.630 0.628 0.685 0.634
none (trans, indel) 0.569 0.537 0.702 0.536
trans 0.602 0.572 0.686 0.699 0.604
indel 0.622 0.614 0.682 0.627
trans, indel 0.625 0.625 0.672 0.641

Table 6.8: Formal tests after training with constant param eters

For the formal tests the fully trained model does not perform as well as 

the models with some values kept constant. Keeping only the transitions con­

stant tends to  perform worse, except in the case of the Viterbi-based log odds 

algorithms. All of the algorithms benefit from keeping both  indel and tran ­

sitions constant during training, at least when compared to  the unmodified, 

fully trained model. Table 6.8 shows tha t keeping param eters constants during 

training is usually a benefit to  Viterbi, forward, and forward log odds algo­

rithm s, but is detrim ental to the other log odds algorithms. However, when 

indels are kept constant during training all of the models suffer, although not 

always significantly. These experiments again show th a t the forward log odds 

algorithm behaves more like the Viterbi and forward algorithms. This is an­

other example of the testing algorithm matching the training algorithm, since 

both the testing and training programs have the forward algorithm as part 

of their structure. It appears th a t this similarity is more im portant then the 

structural similarity between the log odds algorithms. As such, the forward 

log odds algorithms benefits from testing with the exact same model th a t was 

trained. The best variation is still the log odds algorithm with substitution
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scores derived from a fully trained word similarity model and constant inser­

tion, deletion, and transition probabilities set after training.

6.1.5 C orrecting for Length

Our next set of experiments deal mostly with changes to the algorithms th a t 

occur after training, in order to more effectively complete the cognate recog­

nition task. The first of these is to examine the effect of word length on the 

precision of the various algorithms. We have already seen th a t the log odds 

algorithm is implicitly normalizing since it contains the division of two models. 

However the V iterbi and forward algorithms have no such mechanism. Since 

we are dealing w ith multiplicative probability chains, we know each number 

in the chain will be a t most one. In fact, we do not allow any transitions or 

emission to get probability one (or zero) since we can never be th a t certain 

about any single alignment, and since in the case of a one, it would force all 

the other probabilities to  be zero in order to  satisfy the restrictions on Hidden 

Markov Models. We are continually multiplying numbers smaller than  one 

together every tim e we process a token (or a token pair). This means th a t the 

result of this m ultiplication will get smaller and smaller the longer the words 

are. This causes true  cognates to  get lower scores than non-cognates if the 

true cognates are a few tokens longer. In order to  correct for this we use the 

following correction for length,

Correction =
C n

where n  is the length of the longest word in the pair, and C  is a constant 

which will need to  be determ ined by experimentation. This gives our forward 

algorithm a final calculation of

P(Q\»)
C n ’

while the final score for the V iterbi calculation becomes

P(X*)
C n '
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Constant
IK PR

Vit For Vit For
1.0 0.612 0.615 0.938 0.937
0.5 0.624 0.626 0.944 0.944
0.1 0.660 0.662 0.961 0.961
0.05 0.672 0.671 0.968 0.968

1/26 «  0.0385 0.673 0.674 0.971 0.971
0.01 0.702 0.695 0.981 0.983

0.005 0.649 0.606 0.981 0.981
0.0001 0.372 0.343 0.928 0.921

Table 6.9: Correcting for word length

The first entry in Table 6.9 represents no correction for length (division 

by one). As the constant gets smaller, the correction is getting larger. The 

table also includes the value ~  since this represents the same sort of value th a t 

would be used by the log odds algorithm during its implicit normalization. The 

random model uses a larger variety of values based on letter frequency, but 

this is the average value for each token. Even the smallest correction begins 

to have a positive effect of the cognate recognition task. There is a limit to 

how much correction can be done however. This follow our intuition, if the 

correction for length becomes too great we will have the opposite problem: 

long words will be preferred over short ones no m atter how good the actual 

alignments are.

A nother common method to correct for length is to take the nth root of the 

final calculation, where n  is the length of the longest word. On the develop­

ment set the V iterbi algorithm achieved precisions of 0.605 and 0.592 for the 

Italian/Serbo-C roatian and Polish/Russian d a ta  sets respectively. For the for­

ward algorithm the results were 0.971 for both  da ta  sets. Since this approach 

did not preform as well as the previous calculation, it was not explored any 

further during formal testing.

It is im portant to note th a t our formal testing was done after all of the 

development experiments were finished. As such the formal tests already in­

clude the modifications th a t were done by hand tuning the algorithms on the 

development sets. This means th a t any of the results in previous sections th a t
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are done on the test set, already have this correction for length as part of the 

calculation. We used the constant C  =  0.01, since it got the best performance 

on the development data.

6.1.6 R educing th e N um ber o f Param eters

One of the more difficult decisions to  be made when creating a Pair Hidden 

Markov Model, or any Hidden Markov Model, is choosing what param eters 

the model should have. For our model having a separate sta te  for each edit 

operation seems intuitive, allowing us to  divide each operation into costs or 

probabilities th a t make sense when you consider token by token alignment. 

One of the more problematic issues arrives when discussing the transition 

param eters. The biological model is set up in such a way th a t it allows for affine 

gap penalties, something common in the  alignment of biological sequences. 

The question still remains if such a gap policy would be beneficial to  our word 

similarity model. In addition there is also the question of the effect of our end 

state  transition param eter r .  Since our algorithms always know the lengths 

of the words we are processing ahead of time, we do not need to  use r  in 

order to  know when to stop our iterations. The end state and transitions to 

it are included to  allow for the generation of data, but if you do not need a 

generative model do you need to  have this sta te  in the model? It may be 

tha t including an end state  has no effect on the ranking and alignment of 

word pairs. Since Hidden Markov Models pu t a restriction on the transition 

probabilities (all transitions from a sta te  m ust sum to  one) then including the 

end state  does not ju st give us a simple constant multiplier a t the end of our 

probability chain. Including it takes away some probability mass from the 

other transitions between each of our states, since part of th a t mass must go 

into the transition to  the end state.

It is simple enough to remove r  from our transitions. The remaining prob­

ability mass goes to  the transitions th a t lead to  the substitution state, since 

this tends to  be the highest out of all of the probabilities. The comparison 

in Tables 6.10 and 6.11 are against the fully trained model after it has been 

corrected for word length.
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IK
Vit For L.O.C L.O.L F.L.O

W ith r 0.702 0.695 0.767 0.734 0.508
W ithout t 0.726 0.699 0.755 0.720 0.466

Table 6.10: The effect of removing the end state (part 1)

PR
Vit For L.O.C. L.O.L. F.L.O.

W ith t 0.981 0.983 0.992 0.991 0.977
W ithout r 0.985 0.985 0.992 0.991 0.969

Table 6.11: The effect of removing the end state  (part 2)

There is a small increase for the Viterbi and forward algorithm s when the 

end sta te  is removed. The extra probability mass allows the other transitions 

to  more exactly represent the form needed by the cognate model. Log odds, 

including all variations, on the other hand gets a decrease in precision for the 

Italian/Serbo-C roatian data. Again, the log odds family of algorithm s is more 

sensitive to  transition changes since their entire gap penalty structure relies on 

it. Keep in mind th a t the best performance obtained by the log odds algorithm 

is still from constant, uniform transition param eters. Such a choice allows for 

a more consistent penalty between the various states.

Test D ata Average
Vit For L.O.C. L.O.L. F.L.O.

W ith r 0.619 0.615 0.685 0.662 0.639
W ithout r 0.620 0.613 0.666 0.641 0.603

Table 6.12: Formal tests for removing the end sta te

The formal tests in Table 6.12 show th a t using the model w ithout the end 

sta te  decreases the performance of the algorithms. The V iterbi and forward 

algorithms show no significant difference, bu t all of the log odds algorithms 

have a significant lowering of their cognate ranking precision. We can con­

clude th a t the end state  is im portant to  the word similarity model, and the 

information it adds, mostly through the transition probabilities used to get to 

the end state, can increase the performance of our system.

It is possible to reduce the number of param eters even further by allowing
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only one transition param eter. This is done by keeping all of the transitions to 

a sta te  constant, for all the previous states. By combining this with the sym­

m etry we already have between insertion and deletion states and the removal 

of the end state, we now only need to consider the probability of entering 

the substitution state  and the other transitions will be set by the properties 

of Hidden Markov Models. The random model still has its param eter rj. In 

the following series of experiments it was found th a t a lower value of rj =  .0.1 

preformed best. This was determ ined by experimenting with different 77 along 

with the single word similarity param eter (x  in the table). The good thing 

about having so few param eters is th a t it is a simple m atter to  determine 

during development which value seems to  be better, since the search space is 

so small. Tables 6.13 and 6.14 show some of the values for x  and how well 

each one works. In th a t table 1 — e represents choosing a value as close to 1 

as possible without completely removing the remaining transitions from the 

model. For these experiments e =  0.0001.

X

IK
Vit For L.O.C L.O.L F.L.O.

0.1 0.518 0.419 0.743 0.750 0.302
0.2 0.616 0.496 0.799 0.789 0.333
0.3 0.650 0.569 0.805 0.792 0.365
1/3 0.663 0.579 0.804 0.790 0.374
0.4 0.683 0.610 0.805 0.787 0.389
0.5 0.705 0.647 0.793 0.774 0.410
0.6 0.721 0.674 0.779 0.757 0.431
0.7 0.725 0.694 0.761 0.735 0.459
0.8 0.735 0.716 0.740 0.704 0.469
0.9 0.726 0.720 0.695 0.670 0.474

1 — e 0.625 0.625 0.566 0.562 0.479

Table 6.13: Using only a single transition param eter (part 1)

W hen the param eters are tied together like this, we are trying to answer 

one question; which state  are we more likely to be in? For this da ta  set tha t 

sta te  is the substitution state. Since our task is to  recognize cognates this is 

w hat would be expected. A good alignment will mostly contain substitutions, 

since gaps only occur when there are no good alignments for tokens in the
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X

PR
Vit For L.O.C. L.O.L. F.L.O.

0.1 0.919 0.902 0.982 0.988 0.898
0.2 0.951 0.940 0.992 0.992 0.927
0.3 0.964 0.956 0.993 0.993 0.941
1/3 0.968 0.961 0.994 0.993 0.945
0.4 0.972 0.968 0.994 0.993 0.949
0.5 0.978 0.976 0.994 0.993 0.955
0.6 0.982 0.981 0.993 0.992 0.960
0.7 0.985 0.985 0.992 0.992 0.965
0.8 0.986 0.986 0.992 0.990 0.968
0.9 0.986 0.987 0.990 0.987 0.971

1 — e 0.963 0.964 0.962 0.957 0.955

Table 6.14: Using only a single transition param eter (part 2)

words. So essentially when x  has a high value then gaps are penalized more. 

Since the forward algorithm s (both the regular and log odds forms) look at 

every possible alignment they benefit the most from a very high probability of 

going into the substitu tion state. There is a limit to  how high x  can go. Any 

pair whose words are not of equal length requires gaps in order to create an 

alignment, so having too much of a gap penalty can be detrim ental to  overall 

performance. The log odds algorithms preform better when a lower probability 

is given to the m atch state. This is again due to  the harsher penalties for gaps 

employed by the log odds algorithms. If we reduce the probability of entering 

a gap state  too much then the penalty becomes too high. Since every sta te  has 

one transition to  the m atch sta te  and two transitions to  gap states, the x  value 

of |  represents uniform transition probabilities. This is the same behavior we 

saw in previous experiments, log odds preforming best when the transitions 

between states are equal, or close to it.

For the formal tests we used only the most promising value of x  for each 

algorithm. In the case of Viterbi, forward, and forward log odds, this is x  =  0.9. 

For the remaining log odds algorithms the best choice seems to  be x — 0.3, 

since it has better performance on the more difficult of the two development 

sets (IK). Table 6.15 gives the precision of the best single param eter model for 

each algorithm.
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Transitions
Test D ata Average

Vit For L.O.C. L.O.L. F.L.O.
multiple 0.619 0.615 0.685 0.662 0.639
single 0.642 0.648 0.701 0.701 0.602

Table 6.15: Formal tests using only a single transition param eter

The results of this experiment give us the best performance out of all 

variations of the V iterbi and forward algorithms. This is interesting because it 

follows a common trend. The best performance tends to involve first training 

the entire model, then using the trained substitution scores, but simplifying 

other parts of the model. In this case we are still using the learned insertion 

and deletion probabilities, bu t the transitions are being simplified. For the 

Viterbi-based log odds algorithms we get precision th a t is nearly equivalent to  

the best of the previous variations. This is not surprising since the value of 

the single param eter is such th a t all transitions are roughly equivalent. Only 

the forward log odds suffers from this approach. It still works best when all 

of the param eters of the trained model are used together.

6.1.7 E xperim ents w ith  D iscrete Em ission C osts

This experiment follows an approach used by M ann and Yarowsky [20], where 

they transformed the probabilities of their stochastic transducer into discrete 

classes th a t could be used by a simple Levenshtein distance approach. We have 

tried the same, turning all of our scores from the log odds substitution m atrix 

of the log odds algorithm  (fully trained model) into one of three weight classes: 

0.5, 0.75, and 1. As was done in their experiment we gave identical tokens a 

zero cost. We chose to  give negative scores a cost of 1, since they represent 

bad matches in the score table. M oderate matches, those with non-negative 

values less than  one were given the value 0.75. The remaining scores, those 

th a t represented learned correspondences within our language family, got the 

cost of 0.5. Table 6.16 shows the results with various indel (insertion/deletion) 

costs. All of the entries used a cost based Viterbi algorithm, where lower costs 

are preferred.

Because of the discrete nature of our values it is easy to describe the behav-
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indel cost IK PR
2.0 0.634 0.965
1.0 0.672 0.979

0.75 0.683 0.983
0.6 0.700 0.984
0.5 0.701 0.984
0.4 0.687 0.980
0.3 0.674 0.977
0.2 0.655 0.974

Table 6.16: Scores transform ed into discrete values

ior of the algorithm based on the indel cost. For example, if the indel cost is 1, 

then it is ju st as bad to  align a token to  a gap then to the worst possible choice 

of token (which also has a cost of one). An indel cost of 0.4 would always gap 

two tokens whose alignment cost is 1, since the two gaps would only cost 0.8. 

These two perspectives are useful to  see why values around 0.5 or 0.6 get the 

best performance. Such a value makes gapping a bad choice, either the  same 

or slightly worse than  any alignment. This gives the algorithm more freedom 

for determining alignments since it can gap or align bad sequences a t about 

the same cost, allowing the similar subsections of the words to  have a  greater 

effect on overall cost. They also keep a minimum penalty for single token 

gaps which often occur in cognates, when one word has an extra token. Such 

extra tokens will not be greatly penalized. However, the overall performance 

of this technique is significantly lower than  th a t of the fully trained model 

from which the costs are calculated. Even the other simplified models th a t are 

based on the fully trained model (those with some param eters set to  constant, 

uniform values) get better precision. Our results differ from those of M ann and 

Yarowsky, bu t these results seem more intuitive. We are taking a finely tuned 

set of param eters and ignoring much of the  detail tha t was learned through 

training. If our param eters were overtrained, then this approach might be 

better, bu t the results suggest th a t the more detailed model is preferable for 

cognate recognition.

For formal testing we used only the best indel cost, 0.5. W ith this value 

the average of all of the test runs was 0.664. This is higher than  the best
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of the regular Viterbi or forward algorithms, but still falls well short of the 

precision achieved by the log odds algorithms. This is as expected, since we 

use the scores of the log odds algorithm to  derive the discrete costs. Since we 

are simplifying the main component of our model, it should have a negative 

effect on the models performance, and it does.

6.1.8 R em oving M ultip le P aths

Multiple paths can be a problem when your model considers them  as separate, 

but in practice it may be better to  consider the paths the same [3]. Consider 

the following two fictional alignments

x y - x
X - Z X

x - y x
X Z - X

In our model these two alignments would be trea ted  as different alignments, 

each with the same probability. If we want to consider them  as equivalent 

alignments then we get inconsistencies between Viterbi alignments and the 

corresponding forward calculations. This happens because in the forward al­

gorithm the two alignments would contribute equally to the calculation, while 

in the Viterbi only one of them  would ever be considered. For the Viterbi 

algorithm to  function correctly we would need to  allow only one such align­

ment to be legal, and it would need to  have twice the probability. It is also 

possible ju st to  consider the alignments as separate, in which case no changes 

are needed.

To determine the effect of such inconsistencies we have trained two sepa­

rate similarity models. The first allows no transitions between insertion and 

deletion states. This is the original bioinformatics model, which we have al­

ready discussed is not well suited for cognate alignment. The second allows 

a transition from the deletion sta te  to  the insertion state, bu t does not have 

a transition in the opposite direction. This better preserves the needs of the 

alignment functionality of our model, bu t it does remove the sym m etry we 

have been preserving between insertion and deletion states.
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IK PR
No A One A Both A No A One A Both A

Vit 0.700 0.700 0.702 0.981 0.981 0.981
For 0.694 0.694 0.695 0.983 0.983 0.983

L.O.C. 0.768 0.768 0.767 0.992 0.992 0.992
L.O.L. 0.734 0.734 0.734 0.991 0.991 0.991
F.L.O. 0.508 0.508 0.508 0.977 0.977 0.976

Table 6.17: Various transition structures between X and Y states

There seems to be no discernable difference between the models with or 

w ithout multiple paths. This comes from examining exactly w hat our model 

does. It is a model to  describe word similarity. This means we are training it 

on words we believe to be similar, and as such, there should be few gaps when a 

pair of similar words is aligned. The transition between insertion and deletion 

states is the least used, because we rarely need to do a large series of insertions 

and deletions a t a single time. For dissimilar words th a t are still cognates, it 

is more often the case th a t one word has many ex tra tokens, usually in the 

form of prefixes or suffixes. These extra tokens are handled by a single state, 

insertion or deletion depending on the order the words are paired in. We have 

discovered a property of our model th a t is interesting and could be useful in 

the future: the transition between insertion and deletion states has little to  no 

effect on the rankings of the word pairs. However, it is im portant to  remember 

th a t the alignments produced by such models would be significantly different, 

so choosing either the model w ith one or two transitions between insertion and 

deletion states would be preferred for word similarity.

Test D ata Average
No A One A Both A

Vit 0.619 0.619 0.619
For 0.615 0.615 0.615

L.O.C. 0.685 0.685 0.685
L.O.L. 0.662 0.662 0.662
F.L.O. 0.638 0.639 0.639

Table 6.18: Formal tests w ith various transition structures between X and Y 
states
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Our formal tests confirm th a t there is no difference between these models. 

All of the results are almost identical as can be seen in Table 6.18. In fact it 

is not just the averages th a t are identical. Each language pair gets essentially 

the same precision no m atter which structure we use for transition between 

the insertion and deletion states. Multiple combined insertions and deletions 

just don’t occur much in this domain, and as such we do not need to worry 

about multiple paths in order to  achieve good performance.

6.2 Phonetic Experim ents

Since phonetic representations are often a much better indication of cognate 

pairs then the more abstract orthographic representations it would be useful 

to  examine how well our system works when given phonetic training data. 

Unfortunately, such da ta  is not often available, certainly not to  the extent 

th a t was used for training the previous word similarity models. Instead we 

have tried to develop experiments th a t could be done with our system using 

only a limited amount of phonetic data.

6.2.1 D evelopm ent

Our solution was to use an experiment tha t involved filtering out cognates 

from a list th a t contained both  cognates and non-cognates. The idea is tha t 

for a single pair of languages, the correspondences th a t exist between cog­

nates should remain relatively consistent for each example pair. On the other 

hand, the  pairs th a t are not cognates should create a random  set of correspon­

dences. Thus, if the model is trained on this mixed data, then the cognate 

correspondences should occur more regularly than any other correspondences 

th a t exist solely by chance. If this is true then our model can get the best 

performance on the training da ta  by emphasizing the correspondences in the 

cognates, giving them  higher scores in the rankings. Essentially we are filter­

ing out correspondences th a t occur by chance, since they should not occur in 

any great number relative to  the true cognate correspondences. The frequency 

th a t the letter occurs in the data  should not have an effect, since the counts for
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all correspondences with th a t letter will be larger. The training data  consisted 

of 200 pairs of words between languages, each with a varying percentage of 

cognates. The da ta  used in these experiments are the Italian/Serbo-Croatian 

and Polish/Russian sets used in previous experiments.

We used both the V iterbi and forward-backward training algorithms for 

this task. We had to restrict the models since we did not have enough infor­

mation to accurately estim ate all of the param eters. For the forward-backward 

algorithm we assume uniform, constant insertion and deletion values based on 

the observed alphabet size for each language in the pair. The observed al­

phabet is the alphabet created by examining the tokens th a t occurred in the 

training data. Since we are testing and training on the same data  this as­

sumption is adequate. Our Viterbi log odds algorithm requires th a t we have 

frequency probabilities for each token. We had to  use uniform token frequen­

cies for the random  model, since when we tried getting frequency information 

from the da ta  as an experiment the results were terrible (often below the cog­

nate percentages of the d a ta  sets, our lower bound). The Viterbi-based log 

odds training algorithm  required us to use a number of different initial condi­

tions in an a ttem pt to  increase the model’s performance. These are the same 

initializations th a t are described in 6.1.3.

Training Testing IK PR
F.B. Vit 0.534 0.990
F.B. For 0.531 0.990
F.B. L.O.C. 0.441 0.987
Vit L.O.(uniform init) L.O.C. 0.278 0.723
Vit L.O.(diagonal init) L.O.C. 0.410 0.987
Vit L.O.(phon init, normal thresh) L.O.C. 0.380 0.979
Vit L.O.(phon init, vowel thresh) L.O.C. 0.386 0.980

Table 6.19: Cognate filtering experiment development

Table 6.19 shows the precision achieved by the various training and test­

ing algorithms. The results show two general trends. First, since the Pol­

ish/Russian da ta  has a denser percentage of cognates it is possible to achieve 

high precision in the  filtering task. This happens because the data  contains 

very little noise to  confuse the model during training. The second result of
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these experiments is the failure of the log odds algorithm to outperform the 

Viterbi and forward algorithms. The reason this occurs is the greater need for 

data  th a t the log odds algorithm has. To function properly it needs more infor­

mation then just the probabilities for token substitutions. It also relies heavily 

on the random model, which requires some understanding of the languages be­

ing studied. Specifically, the random model needs the frequencies tha t each 

token occurs in the language. Normally, it is enough to  get these frequencies 

and use them  as constants during the training of the model. Unfortunately, 

w ithout any additional da ta  for each language, we can only assume a uniform  

token distribution. This is almost never the case in a natural language, bu t it 

is the best we can do under the circumstances. To make m atters worse, we not 

only need da ta  for each language, but th a t da ta  has to  be in a phonetic form. 

If nothing else this experiment has exposed a small weakness in the log odds 

model th a t does not exist in the other algorithms, the need for more domain 

information then just token substitution costs.

6.2.2 R esu lts

We also tried the filtering experiment with phonetic versions of the da ta  we 

used for our formal cognate identification tests. Each language pair was tested 

separately, and we also calculated the average of all of the possible pairs be­

tween all 5 languages. The results of these experiments are shown in Table 

6.20. The first entry of each row shows the pair under examination, using the 

first letter from the names of the languages.

There is not much difference between the various algorithms. The only ex­

ception is th a t the log odds algorithm performs poorly when using the forward- 

backward trained probabilities. We do however, get good performance with 

the log odds algorithm  if we also train w ith the log odds algorithm. This is 

occurring despite having to  use uniform values for all of the token frequen­

cies. Again, the languages with a higher percentage of cognates are easier to 

filter than  those with a low cognate density. The results for English/G erm an 

are very encouraging, since the Viterbi and forward algorithms are achieving 

near perfect cognate recognition, even though the percentage of cognates in
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Training /  Testing
D ata F.B. /  Vit F.B. /  For. F.B. /  L.O.C. Vit L.O. /  L.O.C.
EG 0.970 0.970 0.944 0.901
FL 0.860 0.866 0.798 0.805
EL 0.732 0.734 0.694 0.583
GL 0.645 0.649 0.648 0.562
EF 0.451 0.451 0.524 0.581
FG 0.471 0.464 0.459 0.527
AL 0.488 0.500 0.493 0.571
AF 0.410 0.403 0.358 0.406
AG 0.232 0.229 0.190 0.281
AE 0.192 0.195 0.157 0.235

Average 0.545 0.546 0.527 0.545

Table 6.20: Filtering experiment results

the da ta  is less then 60%. These successes show th a t the algorithms are well 

suited to  working with phonetic data. If enough phonetic data  becomes avail­

able our word similarity system should be able to  increase the precision of its 

rankings.

6.3 Drug Nam e Sim ilarity

This experiment follows the ideas presented by Kondrak and Dorr [18], as 

they examined ways to determine confusable drug names. We have trained 

our system using a list of drug name pairs th a t are considered confusable, 

and then applied four of our ranking algorithms to a larger set containing 

pairs of names where some are considered confusable and the rest are not. 

We have used the same evaluation m etric th a t was used in the original set of 

experiments, and have graphed the results along with one of the approaches 

used in the paper, normalized edit distance (NED). This gives us a point of 

comparison w ith the results obtained in the original experiments as well as a 

baseline to  compare our algorithms to  each other. Figure 6.2 shows each of 

our approaches.

The graph shows the same results th a t occurred on most of our cognate 

test data. The log odds algorithm with constant insertion and deletion costs 

gets the best recall, followed closely by the log odds algorithm th a t was mod-
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Figure 6.2: Recall at various thresholds using the UPS test set
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ified to use the learned insertion and deletion costs. The V iterbi and forward 

algorithm s get the lowest recall, falling short of the mark set by the normalized 

edit distance. It is good to see th a t our algorithms perform as well as some of 

the be tte r techniques used in the original experiments. Our system was not 

changed in any way before using it with this task. We did no development, 

instead using the system as it was developed for cognate ranking. This exper­

iment shows the adaptability of our machine learning based approach. Even 

w ithout any domain knowledge or any changes to  the model we were able to 

get good recall on this task. In addition, this experiment speaks well for our 

underlying Pair Hidden Markov Model. Having each state  represent one of 

the three core edit operations keeps the model general enough to  handle any 

alignment task. It has proven itself as a useful model for biological sequence 

alignment, and we have also shown th a t it can be used (with a few changes) 

successfully in natural language based tasks. This system would make an ex­

cellent starting  point for any problem th a t can be dealt with from the view of 

word alignments, or rankings based on the corresponding alignment scores.
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Chapter 7 

Conclusion

Our goal was to  create a system th a t could autom atically learn to recognize 

words th a t were similar based on some criteria provided during training, and 

separate such words from those th a t did not exhibit such similarity or whose 

similarity exists solely by chance. To this end, we have successfully adapted 

techniques from the field of bioinformatics by using a Pair Hidden Markov 

Model.

Our system consists of a variety of algorithms and variations for testing and 

training th a t have proved themselves, as a whole, to  be useful for recognizing 

similarity between cognates. The best overall algorithm for cognate recognition 

was the Viterbi-based log odds algorithm. Both the original version, and our 

modification th a t uses learned insertion and deletion costs, got about the same 

precision, working best when the transition probabilities are set to  uniform, 

constant values. Our model w ith only a single transition param eter, along with 

all of the learned emission probabilities also performed well. By using more 

domain knowledge in the form of the random model, the log odds algorithm 

was able to better separate true similarity from chance similarity. This kind 

of information is easy to  obtain and can usually be learned directly from the 

training data. In addition the log odds algorithms autom atically normalize 

the results based on the lengths of the words under examination.

The algorithms also seem to  work well given the much more available or­

thographic data. Yet, the system shows promise for working well with phonetic 

data. We had such da ta  in mind when we designed the system, as it tends

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to be more powerful when aligning words in natura l languages. It remains 

to be seen if phonetic training data  in the same am ount as the orthographic 

data we used would further boost the performance of the system. Creating 

phonetic da ta  is a difficult procedure however, and a useful task to  study on its 

own. Of course, such d a ta  becomes a necessity if we wish to  study languages 

tha t have complex alphabets, such as Asian languages. We have also shown 

how our system can be useful for other tasks, not ju st cognate identification, 

since the system was used as is to determine sim ilarity between drug names. 

Switching to  a new domain provided no difficulties for the algorithms, and the 

results were good considering th a t no domain knowledge was added, and no 

development was done for th a t task.

Our approach also represents a push further into the  field of machine learn­

ing, w ithout the need for the domain specific knowledge often associated with 

natural language tasks of this type. This allows our system to  be adapted to 

any number of tasks, even those th a t are not well studied, as long as we have 

examples of w hat would be considered similar words for the job in question. 

Of course this is still ju s t a first step, machine learning is a very deep and 

well studied field of research. There are always more approaches to  try, more 

variations th a t give a different way of using the d a ta  available to us. We be­

lieve our system gives an excellent starting point from which further research 

can continue. Our system could be used as a comparison to measure other 

machine learning techniques, or as the basis for an even larger system tha t 

incorporates more approaches.
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A ppendix A  

Cognate R ecognition Test 
R esults

These tables list the results for each language pair used as part of our formal 

tests. The da ta  is broken up into different tables, such th a t each table repre­

sents one of the 5 main algorithm s we experimented with. These are: Viterbi, 

forward, log odds (constant indel), log odds (learned indel), and forward log 

odds. There are a few exceptions. Tables A .l and A.2 give the percentage 

of cognates in each data  set. This is useful as a lower bound on ranking pre­

cision. Tables A.5 and A.6 give the results for the experiment with discrete 

substitu tion costs. This is separate because it required a different algorithm, 

essentially a minimum edit distance algorithm th a t functions as a Viterbi al­

gorithm. Tables A.7 and A.8 give the results on the test d a ta  when the log 

odds version of Viterbi EM training is used. A few abbreviations are used in 

the experiment column. “cT” and “cQ” represent the use of constant transi­

tions and constant insertions/deletions respectively. “DEC” is used to label 

the experiments th a t use discrete emission costs, determined from the trained 

model param eters. Each row corresponds to one of the experiments discussed 

in C hapter 6.

Experiment EG FL EL GL EF
% Cognates 0.590 0.560 0.290 0.290 0.275

Table A .l: Cognate percentages (part 1)
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Experiment FG AL AF AG AE Average
% Cognates 0.245 0.195 0.165 0.125 0.100 0.284

Table A .2: Cognate percentages (part 2)

Experiment EG FL EL GL EF
Basic Costs 0.911 0.930 0.698 0.574 0.652
Domain Knowledge Costs 0.907 0.946 0.737 0.630 0.709

Table A.3: Normalized edit distance (part 1)

Experiment FG AL AF AG AE Average
Basic Costs 0.487 0.523 0.471 0.187 0.242 0.568
Domain Knowledge Costs 0.561 0.592 0.512 0.341 0.305 0.624

Table A.4: Normalized edit distance (part 2)

Experiment EG FL EL GL EF
DEC 0.928 0.913 0.753 0.687 0.762

Table A.5: Discrete emission costs (part 1)

Experiment FG AL AF AG AE Average
DEC 0.650 0.582 0.523 0.438 0.403 0.664

Table A.6: Discrete emission costs (part 2)

Initial Conditions EG FL EL GL EF
Uniform 0.720 0.596 0.379 0.386 0.388
Diagonal 0.888 0.871 0.590 0.465 0.661
Phonetic (zero-threshold) 0.900 0.888 0.706 0.543 0.707
Phonetic (vowel-threshold) 0.904 0.867 0.624 0.520 0.732

Table A .7: Viterbi log odds training (part 1)

Initial Conditions FG AL AF AG AE Avg
Uniform 0.344 0.341 0.229 0.264 0.209 0.386
Diagonal 0.507 0.483 0.440 0.179 0.213 0.530
Phonetic (zero-threshold) 0.564 0.500 0.433 0.267 0.377 0.589
Phonetic (vowel-threshold) 0.574 0.556 0.533 0.243 0.307 0.586

Table A.8: Viterbi log odds training (part 2)
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Experiment EG FL EL GL EF
Single Trans. Param eter 0.928 0.915 0.788 0.669 0.748
Testing with cQcT 0.893 0.875 0.747 0.625 0.656
Testing with cQ 0.922 0.910 0.803 0.705 0.747
Testing with cT 0.897 0.861 0.721 0.622 0.614
Training w ith cQcT 0.907 0.907 0.789 0.676 0.762
Training w ith cQ 0.925 0.906 0.789 0.711 0.735
Training w ith cT 0.912 0.889 0.747 0.662 0.682
Full Model 0.920 0.901 0.793 0.715 0.718
No r 0.922 0.898 0.790 0.679 0.710
No A 0.920 0.901 0.793 0.716 0.718
One A 0.920 0.901 0.793 0.715 0.718

Table A.9: Viterbi results (part 1)

Experiment FG AL AF AG AE Average
Single Trans. Param eter 0.547 0.560 0.513 0.359 0.392 0 .6 4 2
Testing with cQcT 0.472 0.478 0.348 0.347 0.248 0.569
Testing with cQ 0.552 0.538 0.439 0.356 0.328 0.630
Testing with cT 0.442 0.509 0.366 0.364 0.255 0.565
Training with cQcT 0.575 0.537 0.408 0.342 0.342 0.625
Training w ith cQ 0.513 0.539 0.445 0.346 0.316 0.622
Training with cT 0.482 0.548 0.399 0.396 0.305 0.602
Full Model 0.476 0.551 0.446 0.362 0.308 0.619
No T 0.479 0.566 0.440 0.382 0.335 0.620
No A 0.477 0.551 0.446 0.362 0.308 0.619
One A 0.476 0.551 0.446 0.362 0.308 0.619

Table A. 10: Viterbi results (part 2)

Experiment EG FL EL GL EF
Single Trans. Param eter 0.929 0.914 0.793 0.670 0.755
Testing w ith cQcT 0.871 0.851 0.733 0.584 0.610
Testing w ith cQ 0.922 0.907 0.808 0.711 0.728
Testing w ith cT 0.867 0.830 0.661 0.534 0.546
Training w ith cQcT 0.907 0.906 0.787 0.669 0.756
Training with cQ 0.921 0.899 0.788 0.695 0.721
Training with cT 0.903 0.860 0.732 0.622 0.616
Full Model 0.919 0.895 0.795 0.704 0.705
No T 0.919 0.889 0.790 0.664 0.689
No A 0.919 0.895 0.795 0.704 0.705
One A 0.919 0.895 0.795 0.704 0.705

Table A .l l:  Forward results (part 1)

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Experiment FG AL AF AG AE Average
Single Trans. Param eter 0.555 0.563 0.530 0.382 0.390 0 .6 4 8
Testing with cQcT 0.432 0.440 0.310 0.319 0.225 0.537
Testing with cQ 0.550 0.537 0.437 0.359 0.325 0.628
Testing with cT 0.395 0.459 0.313 0.308 0.245 0.516
Training with cQcT 0.577 0.536 0.413 0.344 0.357 0.625
Training with cQ 0.499 0.536 0.419 0.341 0.317 0.614
Training with cT 0.455 0.529 0.358 0.370 0.277 0.572
Full Model 0.477 0.561 0.419 0.367 0.309 0.615
No r 0.487 0.562 0.428 0.383 0.316 0.613
No A 0.477 0.561 0.419 0.367 0.309 0.615
One A 0.477 0.561 0.419 0.367 0.309 0.615

Table A .12: Forward results (part 2)

Experiment EG FL EL GL EF
Single Trans. Param eter 0.925 0.937 0.798 0.718 0.811
Testing w ith cQcT 0.927 0.936 0.800 0.724 0.812
Testing w ith cQ 0.911 0.941 0.807 0.762 0.807
Testing w ith cT 0.927 0.936 0.800 0.724 0.812
Training w ith cQcT 0.898 0.924 0.777 0.698 0.813
Training w ith cQ 0.914 0.942 0.803 0.742 0.804
Training with cT 0.933 0.938 0.794 0.679 0.795
Full Model 0.911 0.941 0.807 0.762 0.807
No T 0.914 0.940 0.800 0.677 0.790
No A 0.911 0.941 0.807 0.760 0.807
One A 0.911 0.941 0.807 0.760 0.807

Table A. 13: Log odds (constant indel) results (part 1)

Experiment FG AL AF AG AE Average
Single Trans. Param eter 0.754 0.683 0.667 0.355 0.358 0.701
Testing with cQcT 0.744 0.677 0.667 0.364 0.371 0 .7 0 2
Testing with cQ 0.691 0.598 0.609 0.316 0.408 0.685
Testing with cT 0.744 0.677 0.667 0.364 0.371 0 .7 0 2
Training w ith cQcT 0.689 0.566 0.556 0.348 0.448 0.672
Training w ith cQ 0.685 0.586 0.622 0.315 0.406 0.682
Training w ith cT 0.733 0.664 0.651 0.303 0.375 0.686
Full Model 0.691 0.598 0.609 0.316 0.408 0.685
No T 0.679 0.579 0.588 0.305 0.393 0.666
No A 0.691 0.598 0.611 0.316 0.408 0.685
One A 0.690 0.598 0.609 0.316 0.408 0.685

Table A. 14: Log odds (constant indel) results (part 2)
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Experim ent EG FL EL GL EF
Single Trans. Param eter 0.925 0.925 0.792 0.744 0.801
Testing with cQcT 0.927 0.936 0.800 0.724 0.812
Testing with cQ 0.911 0.941 0.807 0.762 0.807
Testing with cT 0.924 0.924 0.791 0.741 0.797
Training with cQcT 0.898 0.924 0.777 0.698 0.813
Training w ith cQ 0.914 0.942 0.803 0.742 0.804
Training w ith cT 0.937 0.924 0.808 0.728 0.799
Full Model 0.905 0.923 0.779 0.728 0.777
No r 0.909 0.924 0.763 0.662 0.767
No A 0.905 0.923 0.779 0.728 0.777
One A 0.905 0.923 0.779 0.728 0.777

Table A. 15: Log odds (learned indel) results (part 1)

Experiment FG AL AF AG AE Average
Single Trans. Param eter 0.684 0.663 0.698 0.351 0.423 0.701
Testing w ith cQcT 0.744 0.677 0.667 0.364 0.371 0 .7 0 2
Testing w ith cQ 0.691 0.598 0.609 0.316 0.408 0.685
Testing w ith cT 0.683 0.649 0.694 0.355 0.424 0.698
Training with cQcT 0.689 0.566 0.556 0.348 0.448 0.672
Training with cQ 0.685 0.586 0.622 0.315 0.406 0.682
Training with cT 0.669 0.671 0.669 0.367 0.417 0.699
Full Model 0.641 0.559 0.588 0.324 0.396 0.662
No T 0.633 0.547 0.578 0.281 0.351 0.641
No A 0.641 0.559 0.591 0.324 0.396 0.662
One A 0.641 0.558 0.588 0.324 0.396 0.662

Table A. 16: Log odds (learned indel) results (part 2)

Experim ent EG FL EL GL EF
Single Trans. Param eter 0.921 0.891 0.719 0.562 0.708
Testing with cQcT 0.887 0.842 0.628 0.507 0.608
Testing with cQ 0.924 0.910 0.760 0.648 0.725
Testing with cT 0.899 0.842 0.653 0.534 0.622
Training with cQcT 0.909 0.906 0.756 0.643 0.783
Training w ith cQ 0.925 0.905 0.748 0.638 0.720
Training w ith cT 0.922 0.877 0.702 0.596 0.689
Full Model 0.926 0.905 0.763 0.652 0.726
No r 0.916 0.893 0.738 0.582 0.698
No A 0.926 0.905 0.762 0.652 0.726
One A 0.926 0.905 0.763 0.652 0.726

Table A. 17: Forward log odds results (part 1)
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Experiment FG AL AF AG AE Average
Single Trans. Param eter 0.556 0.502 0.514 0.232 0.416 0.602
Testing with cQcT 0.456 0.482 0.427 0.244 0.276 0.536
Testing with cQ 0.594 0.544 0.537 0.276 0.427 0.634
Testing with cT 0.472 0.524 0.427 0.265 0.294 0.553
Training with cQcT 0.639 0.537 0.527 0.309 0.403 0 .641
Training with cQ 0.575 0.537 0.540 0.269 0.415 0.627
Training with cT 0.552 0.572 0.491 0.297 0.341 0.604
Full Model 0.595 0.567 0.542 0.283 0.427 0.639
No T 0.554 0.523 0.507 0.254 0.364 0.603
No A 0.595 0.567 0.542 0.283 0.427 0.638
One A 0.595 0.567 0.542 0.283 0.427 0.639

Table A. 18: Forward log odds results (part 2)
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A ppendix B 

Glossary

A E

The language pair Albanian and English.

A F

The language pair Albanian and French.

A G

The language pair Albanian and German.

AL

The language pair Albanian and Latin.

A R P A b et

A phonetic alphabet for American English th a t uses only ASCII charac­

ters.

borrow ing

One possible source of cognates, where a word is taken from one language 

and added to another. These words are often cultural specific terms.

cogn ates

Words between languages th a t have a similar form or sound, and a similar 

meaning. See also genetic cognates.

d ele tio n

One of the three basic edit operations. It involves removing one of the
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tokens of the first word. This is equivalent to the alignment of th a t token 

to a gap.

dynam ic program m ing

A class of algorithms th a t use table-based calculations to  solve problems 

by combining solutions to  sub-problems.

EF

The language pair English and French.

EG

The language pair English and German.

EL

The language pair English and Latin.

FG

The language pair French and German.

FL

The language pair French and Latin.

F.L.O .

An abbreviation for the forward-based log odds algorithm.

For

An abbreviation for the forward algorithm.

gap

A series of either continuous insertions or deletions. Each gap contains 

only one of insertions or deletions, not both. It is shown in alignments 

with and represents alignment to nothing.

gen etic  cogn ates

A more specific type of cognate, especially useful in historical linguistics. 

The words in the pair must have both evolved from the same root word, 

called a proto-form.
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GL

The language pair German and Latin.

H idden  M arkov M od el

A Markov Model th a t uses a second distribution to produce its output. 

This ex tra layer of randomness makes the state  sequence hidden, since 

it cannot be determ ined directly from the observed output of the model.

H M M

See Hidden Markov Model.

IK

The language pair Italian and Serbo-Croatian.

indel

This term  represents both insertions and deletions. It is normally used 

when both  operations are being considered in the same way, due to  the 

symmetry th a t often exists between them.

in sertion

One of the three basic edit operations. It involves adding a token to  the 

second word. This is equivalent to the alignment of th a t token to a gap.

In ternational P h o n etic  A lp h ab et

A phonetic alphabet produced by the International Phonetic Association 

(IPA). The goal of the IPA is to be able to  represent all spoken languages.

L.O .C .

An abbreviation for the Viterbi-based log odds algorithm th a t assumes 

the insertion and deletion probabilities of the word similarity model are 

equal to  the emission probabilities of the random  model.

L.O.L.

An abbreviation for the Viterbi-based log odds algorithm th a t uses the 

learned insertion and deletion probabilities for the word similarity model 

and letter frequencies for the emission probabilities of the random model.
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N E D

See Normalized Edit Distance.

N orm alized  E d it D ista n ce

A simple process th a t determines how many edit operations are required 

to transform  one word into another. The final solution is normalized by 

the length of the longest of the two words.

M arkov M od el

A model for a stochastic process th a t only retains the minimum am ount 

of prior knowledge. Only the current event is needed in order to predict 

(or generate) the next event.

m atch

See substitution.

orthographic

One possible way to represent words. The word is shown as it would be 

w ritten in its natural language (or some approximation of it).

Pair H idd en  M arkov M od el

A variation of a Hidden Markov Model th a t produces two output stream s 

in parallel. Each output stream  is accessed independently.

P H M M

See Pair Hidden Markov Model.

ph onetic

One possible way to  represent words. The word is shown using symbols 

to  represent the sounds produced when the word is spoken.

P R

The language pair Polish and Russian, 

proto-form

A word in an older (possibly pre-historic) language, tha t is the source of 

a word (or words) in one or more modern languages.
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random  m od el

A formal description of the coincidental patterns tha t exist within lan­

guages. The model can generate pairs of words tha t are likely to  exist 

w ithin languages but are not related to each other.

su b stitu tio n

One of the three basic edit operations. It involves transforming a token 

in the first word into another token in the second word. For alignment 

it is sometimes referred to as a match.

tokens

The p arts  of a word after it is broken up according to its representation. 

The tokens are the components th a t are used in alignment.

tran slitera tion

The transform ation of a word from one language into another language 

based on the spelling of th a t word. It is similar to borrowing, bu t more 

often used for proper nouns.

V it

An abbreviation for the V iterbi algorithm, 

word sim ilarity

An abstract concept th a t represents the strength of the relationship be­

tween words. The relationship can be anything, including surface or 

sound similarity. It is also possible for words to  exhibit such a similar­

ity by chance, making the problem of recognizing related words more 

difficult.

word sim ilarity  m odel

A formal description for a specific choice of word similarity. The model 

can generate similar pairs of words, or calculate how similar a given pair 

of words is.
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