
U n iv e r s i ty o f A lb e r t a

W o r d S i m i l a r i t y U s i n g P a i r H i d d e n M a r k o v M o d e l s

by

W esley C. M ackay ©

A thesis subm itted to the Faculty of G raduate Studies and Research in partial
fulfillment of the requirements for the degree of M aster o f Science.

D epartm ent of Computing Science

Edm onton, A lberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95811-6
Our file Notre reference
ISBN: 0-612-95811-6

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To m y fam ily fo r their constant and enthusiastic support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

I would like to thank the members of the N atural Language Processing Group
of the University of Alberta, for their discussions, suggestions, and advice.
This research was funded in part by the N atural Sciences and Engineering
Research Council of Canada (NSERC), and the A lberta Informatics Circle of
Research Excellence (iCORE).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 In trod u ction 1

2 R ela ted W ork 7

3 W ord S im ilarity 14
3.1 Word R ep re sen ta tio n .. 14
3.2 Word Similarity T a s k s ... 16
3.3 Constraints on the Model .. 18

4 H idd en M arkov M odels 20
4.1 Markov M o d e ls .. 20
4.2 Hidden Markov M o d e ls ... 22

4.2.1 Generating Observations with a Hidden Markov Model 25
4.3 Dynamic P rog ram m ing ... 27
4.4 Probability of an Observation S equ en ce .. 28

4.4.1 Forward A lg o r ith m .. 30
4.4.2 Backward A lg o r i th m ... 31

4.5 Finding the Best S tate Sequence.. 31
4.5.1 Viterbi A lgo rithm .. 32

4.6 Finding the Optimal Model P a ra m e te rs .. 33
4.6.1 Expectation M aximization A lg o rith m 33

5 P air H id d en M arkov M od els 37
5.1 The Biological M o d e l.. 38

5.1.1 Weaknesses in the Biological M o d e l 40
5.2 The Word Similarity M o d e l ... 42
5.3 Word Similarity Model A lg o r i th m s ... 44

5.3.1 V iterbi A lgo rithm .. 44
5.3.2 Forward and Backward A lg o r i th m s 45
5.3.3 Log Odds A lg o r i th m ... 47
5.3.4 Expectation M aximization A lg o r i th m s 51

6 E xp erim en ts 55
6.1 Cognate Recognition: Development and R e s u l t s 55

6.1.1 Cognate D a t a ... 57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.2 Experiments on Trained Param eter Effectiveness 61
6.1.3 Viterbi vs. Forward-Backward for EM Training 66
6.1.4 Experiments with Model C o m p le x ity 68
6.1.5 Correcting for L e n g th .. 71
6.1.6 Reducing the Number of P a r a m e te r s 73
6.1.7 Experiments with Discrete Emission C o s t s 77
6.1.8 Removing M ultiple Paths ... 79

6.2 Phonetic Experiments .. 81
6.2.1 Development ... 81
6.2.2 R e su lts ... 83

6.3 Drug Name Similarity .. 84

7 C onclu sion 87

A C ogn ate R ecogn ition T est R esu lts 92

B G lossary 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

1.1 Italian/English translations .. 2
1.2 Numbers in various Romance languages.. 4

3.1 Examples of English orthographic and phonetic representations 15
3.2 Examples of cognates between English and R u s s ia n 17

4.1 N otation for Hidden Markov Models ... 24
4.2 Forward Algorithm for Hidden Markov M o d els 30
4.3 Backward Algorithm for Hidden Markov M o d e ls 31
4.4 The Viterbi Algorithm for Hidden Markov M o d e ls 33

5.1 Viterbi algorithm for Pair Hidden Markov M o d e ls 45
5.2 Forward Algorithm for Pair Hidden Markov M o d e ls 46
5.3 Backward Algorithm for Pair Hidden Markov M o d e ls 47
5.4 Log Odds Algorithm for Pair Hidden Markov M o d e ls 50

6.1 Comparing two training sets using only substitution costs . . . 62
6.2 The effect of each set of trained param eters (part 1) 64
6.3 The effect of each set of trained param eters (part 2) 64
6.4 Formal tests of the effect of adding more trained model param eters 66
6.5 Viterbi based EM algorithm s... 67
6.6 Training with constant param eters (part 1) 69
6.7 Training with constant param eters (part 2) 69
6.8 Formal tests after training with constant param eters 70
6.9 Correcting for word l e n g th .. 72
6.10 The effect of removing the end state (part 1) 74
6.11 The effect of removing the end state (part 2) 74
6.12 Formal tests for removing the end s t a t e .. 74
6.13 Using only a single transition param eter (part 1) 75
6.14 Using only a single transition param eter (part 2) 76
6.15 Formal tests using only a single transition p a r a m e te r 77
6.16 Scores transform ed into discrete v a l u e s .. 78
6.17 Various transition structures between X and Y s t a t e s 80
6.18 Formal tests with various transition structures between X and

Y s t a t e s ... 80
6.19 Cognate filtering experiment development 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.20 Filtering experiment r e s u l t s .. 84

A .l Cognate percentages (part 1).... ... 92
A.2 Cognate percentages (part 2).... ... 93
A.3 Normalized edit distance (part 1) .. 93
A.4 Normalized edit distance (part 2) .. 93
A.5 Discrete emission costs (part 1) ... 93
A.6 Discrete emission costs (part 2) ... 93
A.7 Viterbi log odds training (part 1) .. 93
A.8 Viterbi log odds training (part 2) .. 93
A.9 Viterbi results (part 1) .. 94
A. 10 Viterbi results (part 2) .. 94
A. 11 Forward results (part 1) .. 94
A. 12 Forward results (part 2) .. 95
A. 13 Log odds (constant indel) results (part 1) 95
A. 14 Log odds (constant indel) results (part 2) 95
A. 15 Log odds (learned indel) results (part 1) 96
A. 16 Log odds (learned indel) results (part 2) 96
A. 17 Forward log odds results (part 1) .. 96
A. 18 Forward log odds results (part 2) .. 97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

4.1 A Markov Model to create binary s t r in g s 22
4.2 A Hidden Markov Model to create binary strings 23
4.3 The various components of an H M M ... 24
4.4 Generating observations using an H M M .. 26
4.5 Pseudo code for the minimum edit distance a lg o rith m 28
4.6 The probabilities associated with a transition 35

5.1 Generating an alignment using a P H M M 43
5.2 The word alignment Pair Hidden Markov M o d e l 43
5.3 The random Pair Hidden Markov M o d e l 48

6.1 An example interpolated precision-recall c u r v e 56
6.2 Recall a t various thresholds using the UPS test set 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

El gato del bianco muerde los pescados 1 W ithout any knowledge of Spanish it is

difficult for an English speaking person to determ ine what this sentence might

mean. However, information specifically about Spanish is not the only way

tha t the sentence’s meaning can be determined. Consider for example Table

1.1 which contains a short list of Italian words along with their equivalent in

English. The translations were generated by Babel Fish 2 since it was freely

available online. Italian and Spanish are both from the same language family

(in this case Romance languages) and are known to have similar words.

W hen examining Table 1.1 we can begin to see similarities between Italian

words and those in the Spanish sentence. For instance, bianco (white) has

a great deal of similarity to bianco in our example sentence. If we look for

the Italian words in the list th a t are most similar to the Spanish words in the

sentence we can begin to make educated guesses a t various translations. By

following this logic we can translate a few of the key words in the Spanish sen

tence, concluding th a t gato means cat, pescados might mean fish, and muerde

could be some gram m atical form of bite. From this we can say the sentence

seems to be about a white cat biting a fish, which is not far from w hat the

sentence translates to. Some of our choices may seem like more of a stretch

than others. The similarity between bianco and bianco is much stronger than

tha t between pescados and pesci. In fact, following this approach can cause

'O u r apologies if the Spanish grammar is not perfect, the translations were done by
machine and this is still an area needing more research.

2h ttp ://w o rld .altavista.com /babelfish/

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://world.altavista.com/babelfish/

Italian English
uno one
due two
piccolo small
grande big
bianco white
rosso red
orecchio ear
occhio eye
gatto cat
asino donkey
pesci fish
latte milk
burro bu tte r
morso bite
ritrovamento find

Table 1.1: Italian/English translations

problems. Consider this Spanish sentence, Un burro tiene dos oidos. A t

tem pting to use the same similarity based m ethod can cause us to make bad

choices. The number two seems to be part of the sentence (from dos and due).

However oidos could be translated into ears (using orecchio) or possibly eyes

(using occhio). A m ajor problem occurs when using similarity for examining

the word burro in the Spanish sentence. We have an exact match for this word

in our Italian list, the problem is it means butter. We are beginning to con

struct a sentence about the two ears (or eyes) of butter. This shows th a t while

the similarities between Italian and Spanish can be helpful for translating to

English, the process is difficult and can lead to unexpected errors.

This brings us to the purpose of this thesis, which is to examine word

similarity in natural language and find some way to determine the useful in

formation th a t it contains while filtering out the noise and errors. We want

to find a way to discover what constitutes true similarity between words, and

separate th a t from the similarities th a t can occur by chance. Most languages

have a relatively small alphabet, restricted even more by patterns and regular

ities imposed on the words by the language, so it is possible th a t words may

look very similar based on random occurrences. Thus, one of our main goals

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is to model a system tha t can differentiate between similarity th a t occurs due

to a relationship existing between the words from these coincidental matches.

We also have another im portant goal, and th a t is to have a system tha t

is applicable to any language pair. To achieve this goal we shall use the

techniques of machine learning to autom atically create our model from a set

of training data. Our hope is th a t if we have some examples th a t exhibit the

similarity we are looking for, then we can autom atically learn exactly what

details about these word pairs makes them similar. If we can determine what

kinds of transform ations are likely between languages then it should help us

to determine what pairs show sim ilarity based on the trained criteria.

You may have noticed th a t the words in our example Spanish sentences

and in the Italian/English list all represent very simple concepts. This has

happened because the similarity we were using to aid us in translation comes

from a very specific source: cognates. The study of cognates is the initial

m otivation for the entire system. More information on cognates can be found

in the C hapter 3. For now it is enough to know th a t cognates are similar

because of an evolutionary process. This process represents how languages

have developed through history. The idea is th a t a pair of related languages

(like Spanish and Italian) are both descendants of a single root language. This

language was the starting point for all of the related languages, bu t over time

the languages began to diverge. Fortunately such divergences often exhibit

a great deal of uniformness throughout the evolved language. It is common

for a vowel or consonant change to be consistent between the two languages.

Table 1.2 shows this correspondence between several Romance languages using

counting numbers.

From the table you can begin to see what sort of correspondences there

are. English provides a counter-example since it is from a different language

family. Obviously the languages from the same family share m any common

features, bu t you can also see how they are diverging. Different language prefer

variations on vowels and consonant structure. There seems to be a correspon

dence developing between the tokens “c” and “q” . Much is persevered between

these languages as well. Letters like “d” and “n” occur in the same location

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

French Italian Spanish Portuguese English
un uno uno um one
deux due dos dois two
trois tre tres tres three
quatre quattro cuatro quatro four
cinq cinque cinco cinco five
six sei seis seis six
sept sette siete sete seven
huit otto ocho oito eight
neuf nove nueve nove nine
dix died diez dez ten

Table 1.2: Numbers in various Romance languages

consistently.

Cognates between languages th a t exist because of a shared history are

called genetic cognates. The word “genetic” is used to help illustrate how

such similarities form. They are created through a process th a t is in many

ways a parallel of how DNA and other biological components have evolved

over the course of life’s history. Because of this we looked for inspiration in

the field of bioinformatics. This field is appealing for many reasons. F irst of all,

it is well rooted in m athem atics and com puter science theory. The algorithms

th a t become popular in this field are in frequent use, so they are stable and

well understood. One sub-field of bioinformatics th a t looks especially similar

to natural language study is biological sequence analysis [8]. This field has

become im portant lately because of the large scale DNA sequence projects

th a t are being undertaken. These projects require the autom ation of sequence

analysis in a way th a t is both efficient and accurate.

Some of the more popular m ethods are based on probabilistic theories,

most notably, Hidden Markov Models. A Hidden Markov Model represents

a stochastic process th a t is used to generate a series of observations. The

model consists of states th a t emit the various observations (using a probabil

ity distribution) along with transition probabilities for moving between the

different states of the model. It differs from a regular Markov Model in th a t

the sta te sequence cannot be exactly determined by looking a t the observa

tion sequence. Instead it must be reconstructed by various algorithm s tha t

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exam ine the likelihood of any s ta te sequence producing such an ou tpu t.

In fact there is a new form of Hidden Markov Model th a t matches well with

the needs of a word similarity measurement system. This model is called the

Pair Hidden Markov Model. The idea behind this model is to utilize a pair of

observation stream s, instead on a single observation sequence. These stream s

are used to represent alignments between word pairs. The model consists of

three states, each representing a different way of processing the two streams.

They essentially give the choice of processing the stream s together, in which

case we are matching up the tokens of the words. We can also process each

stream individually, using w hat are called insertions and deletions. The model

can then be used to determ ine the probability of our sequence of observations.

For example we could align the Spanish word bianco and the Italian word

bianco in several possible ways. The two most intuitive are the following:

b i a n c o
b i a n c o

b 1 - a n c o
b - i a n c o

The algorithms of the Pair Hidden Markov Model provide a means to measure

these alignments and compare them. We can use such alignments as a way to

rank how likely two words are to be related. There are various methods to do

this, each using a different bu t valid approach.

We also wanted a system th a t can be trained automatically, so th a t we

could handle a variety of word similarity tasks. Pair Hidden Markov Models

provide us with the m ethods we need to accomplish this. They use a modified

form of the Baum-Welch algorithm, or forward-backward algorithm. This is

a type of expectation maximization algorithm common to machine learning.

The idea is th a t you can incrementally modify the param eters of your model

to better fit your training data. Each iteration of the forward-backward al

gorithms creates a model th a t more accurately represents the training data.

It is usually possible to run this algorithm with no knowledge of what the

param eters should be, and still learn their values.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 discusses work done in related fields th a t involves either align

ments, Hidden Markov Models, Pair Hidden Markov Models or some combi

nation of them. C hapter 3 provides more details about the problem of word

similarity, the tasks we will be examining, and any information th a t will be

needed in order to construct a model to represent our domain. The next two

chapters go over the necessary background material, with Chapter 4 concen

trating on the m athem atical theory and algorithms of Hidden Markov Models,

while Chapter 5 gives the details of Pair Hidden Markov Models as well as the

implementations and algorithms we will be using for our experiments. Those

experiments and the d a ta collected are discussed in Chapter 6, with the details

of our tests listed in Appendix A.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

R elated Work

Our technique involves the use of Hidden Markov Models, but more generally

our main task is the alignment of the various parts of a word. As such, there is

much th a t can be gained by examining other alignment techniques th a t exist

in other fields. One of the most common and in many ways best documented

alignment tasks comes from another sub-field of N atural Language Processing:

Machine Translation. Just as we seek to find the best alignment of tokens

within words, a component of machine translation involves a similar goal; the

alignment of words within a sentence. This alignment is designed in such a way

as to align words th a t are translations of each other, but looks a t the problem

of choosing alignments similar to how we look a t choosing the alignments

between parts of the individual words. This view considers alignments as

representing a transform ation from one form to another using a series of (for

the most part) consistent rules and correspondences. In Machine Translation

this first form is the tex t in one language which is transformed into the correct

translation of the tex t in the second language. Word similarity takes a word in

one language and aligns segments th a t correlate to parts of a word in another

related language.

In the literature this transform ation is often described using the analogy

of the noisy channel. It works by imagining th a t we are working w ith only

a single language, the source language. However when someone a ttem pts to

transm it something in the source language, either through writing, or speaking,

or whatever m ethod of transmission is most convenient, the language gets

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

corrupted. This corrupted language is actually our target language, bu t we

consider it as a corrupted form of the source language. The task is now to

recreate the original form from the corrupted output. The probabilities tha t

arrive from such an examination are useful in alignment tasks in general.

Once computers became powerful enough, the noisy channel model could be

learned autom atically from existing corpora th a t was representative of trans

lations between various languages. Some recent and widely used techniques

for using such tex t were introduced by a team of researchers at IBM [4], The

major problem th a t needs to be solved in both word and token alignment is

determining the param eters th a t will be used for the various transformations.

Such correspondences are usually unknown beforehand, so they need to be

trained by examining the data. In addition, it is unlikely th a t the corpora

being trained on will have the alignments included. For Machine Translation

it is adequate, for a starting point, to have two texts tha t are known to have

the same content, bu t represented in different languages. Of course for many

languages using such a limited approach will not give very good translations,

but it is where the approaches for Machine Translation and word similarity

measurement are most like each other. It is then possible to apply a machine

learning technique, such as the Expectation Maximization algorithm, along

with some (arbitrary) starting param eters to begin to learn the alignments

from this parallel data.

Machine Translation works by applying an iterative deciphering m ethod

ology to the data. If you know (or a t least have a reasonable guess for) a few

alignments in your data, you can use those alignments as a starting point to

find more alignments in your data. By combining this with statistical knowl

edge of the individual languages, like bigrams for example, it is possible to

create a reasonable set of word alignments representing a possible translation.

Knight [13] provides a simple, bu t detailed example of this process a t work.

He also provides an introduction to the structure of Statistical Machine Trans

lation including the underlying m athem atics and probabilities [14]. Machine

Translation a t its core deals with the combination of two models, a language

model and a translation model. For our work we concentrate on the transla-

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tion model, since the language model is mostly concerned w ith word ordering

and correct grammar, while our approach provides constraints th a t make such

corrections unnecessary.

An im portant point about Machine Translation is tha t it can benefit from

the more detailed examination th a t word similarity evaluation can provide.

This is possible because one of the more straightforward applications of a word

similarity program is to recognize words between languages th a t evolved from

the same root form. These words, called cognates, are more often than not

translations of each other, since in evolving from the same word it is reasonable

th a t they would preserve the meaning of the original. As such, word similarity

measures can be used to bootstrap a Machine Translation program, providing a

better s ta rt for the EM algorithms by augmenting (or providing) a translation

dictionary to base initial alignments on [19]. Such a use is especially beneficial

when no machine readable bilingual dictionaries exist. In addition because this

is done as a preprocessing step, cognate information can be added to a variety

of Machine Translation programs w ithout modifying the original system.

An interesting experiment with the IBM model was done by Och and Ney

[23]. They compared other techniques, such as Hidden Markov Models, to the

standard progression of IBM models th a t were used in the original param eter

estim ation application [4], In the IBM model only the first two levels (IBM-

1 and IBM-2) can be calculated efficiently enough to allow an exam ination

of all possible alignments. Hidden Markov Model alignment algorithm s have

the same property of efficient calculations, bu t with one im portant difference.

Hidden Markov Models have a first order structure, meaning th a t an align

ment position depends on the previous alignment position. The simpler IBM

models use a zero order structure where all alignments are independent of each

other. They place the complexity of the Hidden Markov Model somewhere be

tween IBM models 2 and 3, making Hidden Markov Models the most complex

construct th a t can still be exhaustively searched, giving exact values for all of

the algorithms. The more complex IBM models (3+) need to use heuristics

to create sub-sets which are then examined in their entirety. The authors ex

perim ent with using a Hidden Markov Model instead of IBM-2 when training

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

through the IBM progression. The IBM models are normally trained in order,

with each one creating a starting point for the next. The Hidden Markov

Model helps boost the performance of the overall system, suggesting th a t it

is capable of producing good alignments despite the simplicity th a t allows for

complete and exact calculations. These properties are some of the reasons tha t

a Hidden Markov Model (and in tu rn a Pair Hidden Markov Model) seemed

like a reasonable model to use for the task of word alignment.

The Hidden Markov Model used in the previous paper is based on the

idea of using alignment probabilities dependent on relative alignment positions

rather than on the absolute position of alignments in the sentence. This idea

was previously developed by Vogel, Ney, and Tillman [28]. The au thors’ mo

tivation was to overcome the independent word positioning assum ption used

in the IBM models of similar complexity (the ones where exact probability

calculations are possible). Their point was th a t aligned words are not ran

domly distributed within sentences but instead form clusters. To capture this

behavior they use a first order Hidden Markov Model to allow for dependence

on a previous alignment. The results with the Hidden Markov Model were

comparable with those of the IBM models, with indications th a t the Hidden

Markov Model algorithms, with the smoother alignments th a t they can pro

duce, would be better able to handle more complex correspondences th a t may

exist between the two sentences.

Hidden Markov Models are a well known technique, but they have not

been explored as a way to align the parts of a word. However, there have

been many techniques proposed th a t can examine and align words for various

purposes. The most common task is the recognition of cognates, which can be

useful as a part of a larger system (such as one for Machine Translation), but

also functions as a domain of investigation all on its own. This is especially

true when determining the history of languages, an interesting and difficult

problem, since records for many languages are few or even non-existent. For

example there are languages th a t pre-date writing and thus have no lasting

records once their use has faded. These languages can often be the source of

many modern languages th a t are still in use today. As such, reconstructing

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the root languages provides a means to link modern languages together, easing

tasks such as translation.

Covington [6] created a program to align phonetic sequences and extended

it to allow for alignments between more than two languages [7]. Each lan

guage supplies one word or string. He uses a discrete set of eight substitution

scores, or match scores, representing how good (low score) or bad (high score)

a substitution is by applying a set of comparison criteria. For example a sub

stitution of identical consonants gets a score of 0, while the substitution of

unrelated sequences has a score of 100. Two operations in his substitution set

are not substitutions in the conventional sense. Since the substitutions are

against gaps, they follow the form of insertions and deletions in our model.

Covington adopted an affine gap penalty system, where the initial insertion or

deletion costs more than subsequent ones. While the algorithm itself is useful,

the metric is adm ittedly weak. The author states th a t is it ju st a stand-in for

a more sophisticated system.

Kondrak created a program th a t uses multi-valued features to compute

the similarity of phonetic sequences [16]. The program called ALINE repre

sents phonetic sequences as feature vectors, where each feature represents some

phonological idea, such as place of articulation. Each feature has some value

within the continuous range of 0 to 1, allowing for flexibility and adaptability

to different languages (many of which have various phoneme sets). This ap

proach was shown to outperform Covington’s method, based on the alignments

in several different sets of cognates.

Since word alignment functions more or less (usually more) as a special

case of edit distance, it is useful to examine another technique th a t has a very

similar probabilistic flavor when compared to Hidden Markov Models. R istad

and Yianilos [26] created a stochastic model for determining edit distances tha t

uses a Finite State Transducer. It was able to autom atically learn string edit

distances from a given corpus of examples. They use two methods of align

ment, which they call V iterbi and “stochastic” edit distances. Not surprisingly

their Viterbi is equivalent to the Viterbi algorithm for Hidden Markov Model,

where only the best sequence is considered. The stochastic edit distance cor-

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

responds to the forward or overall probability, where all possible sequences

are considered. Their model consists of a single state, and within tha t sta te

all operations share the probability mass. Thus, substitutions, insertions, and

deletions are all part of the same state. This approach is lacking in th a t it

is memoryless, and hence each edit operation is preformed independently of

all others unlike Hidden Markov Models where each operation depends on the

one th a t came before it. Their experiment does suggest th a t learning based

approaches can be quite effective. In some ways the comparison of their trans

ducer model to Hidden Markov Models is similar to the way IBM models 1

and 2 were compared against Hidden Markov Models by Och and Ney [24].

A surprising experim ent was preformed by M ann and Yarowsky [20]. They

investigated the induction of translation lexicons using bridge languages. Their

approach starts w ith a dictionary between two well studied languages, English

and Spanish is one pair provided. They then use cognate pairs to induce a

“bridge” between two strongly related languages, such as Spanish and Italian,

and from this create a smaller translation dictionary between English and Ital

ian. The related languages used in their experiments all come from the same

language family and hence cognates should exhibit a great deal of surface sim

ilarity. They compared the performances of three different cognate similarity

(or distance) measures; one based on the Levenshtein distance, one based on

the stochastic transducers of R istad and Yianilos [26], and the last comprised

of a Hidden Markov Model. However their model is of a distinctly different

design than the Pair Hidden Markov Model we are employing for the task of

word similarity measurement. For example, the probability of the atomic edit

operations sum to one for each character. This approach provides a different

structure than the transducer where all edit operations share the probability

of the model (sum to one). In our approach, described later, we separate the

edit operations into distinct states and deal with the output of pairs from

each state. The au thors’ choice of model does seem to be a poor one as it is

out-preformed by the transducer model. This is unusual considering th a t both

approaches are strongly grounded in probabilistic theory with, in my opinion,

the Hidden Markov Model winning out in complexity and expressibility. Nev-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ertheless their Hidden Markov Model fails to even out-preform the Levenshtein

distance, falling well short of th a t baseline. I believe this is in part due to the

high similarity of the languages studied. Since many cognates between these

languages are actually identical (or extremely similar) words, they would get

the zero Levenshtein score. In more complex language pairs with be tte r hid

den and less well studied correspondences, it should be easy for a probabilistic

learning m ethod to preform better than a fixed scoring scheme. In addition the

fact the similar, bu t in some ways weaker, learned model gets better results,

suggests to me th a t not enough care was taken in the initial development of

their Hidden Markov Model. The success Hidden Markov Models have had

in other fields leaves me confident th a t our approach can work, if done with

enough care.

Although our technique comes from the field of bioinformatics, we are not

the first in the natura l language community to attem pt to use Pair Hidden

Markov Models as a means to learn alignments. Clark [5] used them as the

basis for a system th a t would learn morphology, using a model of stochastic

string transductions. He adopts a rather novel ou tput structure where the

pair is either an identical pair, a single token from the “right” stream , or a

single token from the “left” stream. His models were mostly concerned with

the addition of suffixes to the ends of words. To do a true substitution of

one token for another, each token would need to be output independently

on each stream . He uses a mixture of different Pair Hidden Markov Models,

one for each morphological class. A morphological class represents a single

transform ation rule in the language in question. For English, there would be

one Pair Hidden Markov Model to represent adding an “s” to the end of a

word, and another to add “es” . This is due to the ambiguity th a t exist in

natural language stems. This technique got reasonable accuracies when tested

on tasks in English past tense, German plurals, and Arabic plurals. Since we

want our model to work independent of languages, it is promising to see a

general approach applied successfully.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Word Similarity

Word similarity is, at its core, an alignment task. So our word similarity

measurement system will essentially be an alignment system. For the system

to function properly we require th a t it have some measure for determining how

related two word segments are. Along with this we need a way to determine

scores for each pair th a t can be used to rank a pair of words in order to compare

them against each other. Finally since we want our system to be adaptable,

we would like to have a m ethod of autom atically determining the param eters

of our system so it can work on a variety of tasks in many different languages.

As we will show, a Hidden Markov Model will meet all the necessary criteria

of our system. But before we begin to discuss how Hidden Markov Models

work, it is im portant to better understand the task they have been recruited

to preform, along with the constraints and assumptions th a t go along with

th a t task.

3.1 Word Representation

The first problem we face is the various representations of words th a t are used

when doing similarity alignment. There are many different alphabets in use

in the world and our program must be able to handle any of them. Of course

they must be put into some form th a t is understandable by a com puter as

well. In addition to this, it is possible to represent the same word in the same

language in different ways. The simplest representation is orthographic. An

orthographic representation of a word is simply the word w ritten in its nat-

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ural language, or at least in a representation th a t corresponds closely with

the natural language. The second m ethod in common usage is phonetic tran

scription. W hen using phonetics, the symbols represent the way the word

would sound when spoken. Table 3.1 shows both an orthographic and a cor

responding phonetic representation, from ARPAbet, a phonetic alphabet for

American English th a t uses only ASCII characters. Phonetic transcription has

the advantage th a t given a large enough sound alphabet, all languages can be

represented in the same way. An example of such an alphabet is the Interna

tional Phonetic Alphabet which has the goal of representing all of the sounds

in human language. More specifically for the problem of cognate recognition

and other common word similarity tasks, it is often easier to see correspon

dences between words by looking a t the sounds than the w ritten word. There

are disadvantages to the phonetic approach as well. Most im portant, it is

difficult to find data th a t has been transcribed phonetically, and programs to

autom atically transform words to phonetics are not yet fully developed. This

is mostly due to the ambiguity th a t exist in the w ritten form. For exam

ple, the English letters “ough” can produce different sounds. Consider the

words “cough” , “rough” , “dough” , and “through” . Each one is pronounced

differently, so each would need a different phonetic representation.

O rthographic Phonetic
sage s ey jh

raccoon r ae k uw n
lotus 1 ow dx ax s

Table 3.1: Examples of English orthographic and phonetic representations

Once we have settled on a representation, we need to break th a t represen

ta tion up into several parts th a t can be used for alignment. These parts can be

thought of as tokens and we use th a t terminology sometimes in our discussion.

For the representations we have considered, two possible tokens sets would be

the alphabet of the language, or a phonetic alphabet such as ARPAbet. It

would also be possible to consider certain combination of elements of those

sets as a single token, for example the English letter pair “ch” .

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Word Sim ilarity Tasks

Once a representation has been chosen, we can split up each word into tokens

based on th a t representation. Our next job is to take a pair of words and by

examining their component tokens, decide if the words exhibit the similarity

for which we are looking. The choice of exactly what kind of sim ilarity we are

searching for is dependent on the application being used. As an example tha t

is used in our experiments we can consider recognition of cognates. Cognates

can be defined in a few different ways, bu t essentially words are cognates they

have the following properties:

1. They are similar in form or sound

2. They have the same meaning

There are many ways th a t cognates can be produced between languages.

For discussion of these cognates we will use the language pair English and

Russian [22]. Several examples for each type of cognate are shown in Table 3.2.

The Russian words are displayed phonetically so th a t the correspondences are

more obvious, using the tables presented with the examples [22], Russian uses

a different alphabet than English, so it exhibits little orthographic similarity.

English is part of the Germanic language family, while Russian is a member

of the Slavic family. However, both languages are part of the larger Indo-

European set. The first source of cognates, sometimes called genetic cognates,

are words th a t come from the same root word. This root word, sometimes

called a proto-form represents a word in some distant, yet common, language

for which there may be no record. Genetic cognates are usually words th a t

represent very simple concepts th a t would have been im portant to people

throughout history. A second source for cognates is direct borrowing, where a

word from one language is transplanted in the other. These are usually words

th a t are very culture specific, but also contains newer technological words

th a t have only recently come into being, in only one of the two languages.

A nother occurrence similar to borrowing is transliteration th a t occurs when

a proper noun in borrowed. These are usually transformed based on spelling

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and are much easier to recognize th a t normal cognates. Transliteration is

normally thought of as a task separate from other word alignments, although

the learning approach we are using suggests it may be adaptable to th a t task

as well. An example of a transliteration system can be found in the work of

Knight and Graehl [15]. The final source we will discuss is another form of

borrowing, borrowing from a third language. These occur when both of the

languages being studied have had contact with another culture th a t uses a

third language. Often both of the languages of interest will have borrowed the

same cultural term s from the th ird language, with the borrowed words being

transformed to fit w ith the patterns of their new home.

English Russian (phonetics)
Genetic cognates mama mama

two dva
no nyet

Direct borrowing vodka vodka
hooligan xuliygan

hacker xakyer
Transliteration Russia Rossiyya

Picasso Piykasso
Borrowing from a th ird language fiesta fiyyesta

karma karma
bandit bandiyt

Table 3.2: Examples of cognates between English and Russian

The main obstacle for a cognate recognition system is the ability to differ

entiate between words th a t are actually related in one of the ways mentioned

above, from words th a t look similar simply by chance. It is possible to put

even stronger restrictions on the system, perhaps wanting to find only the ge

netic cognates. O ther types of similarities exist as well, such as recognizing

confusable words within a single language, or determining the correct spelling

from a misspelled word. The hope is tha t our system, if given the right type

of training data, will be able to adapt to any word similarity task.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Constraints on the M odel

Before we begin developing the word similarity model and its algorithms, we

can simplify the procedure a great deal by using some domain knowledge to

restrict the task of word alignment. In doing so we can make our model simpler

and our algorithms more efficient.

The first simplification we make comes from an im portant difference be

tween the structure of words and th a t of a sentence. W hen translating sen

tences, determining word order is a crucial step. Different languages have

greatly divergent gram m atical structure and hence require different word or

derings in order to produce the same concept. This is one of the reasons why

a language model is so im portant in Machine Translation. Words, however,

tend to have the opposite behavior. Since we are looking for words th a t are

similar in some way, it is usually safe to assume th a t the basic ordering of to

kens remains the same between languages. This doesn’t mean every token has

a corresponding one in the other language, but instead th a t word transform a

tion comes from three basic operations. The first is called substitution. This

operation represents a transform ation from one token to another. It may be

as simple as the same sound being represented by different letters in different

languages, or a complex change th a t has evolved over millennia. The other

operations are reflections of each other, they are insertion and deletion. Inser

tion represents an addition of more tokens as we change from the first word in

a pair to the second. A deletion represents the loss of tokens during the same

change, bu t it could be looked a t as a gain in the other direction. In fact if

we switch the order of our word pair then the insertions and deletions would

switch with it. This is why they can in many ways be thought of as the same

operation. The ability to handle different token alphabets for each language

prevents us from considering them as a single operation, but we shall see later

tha t this symmetry will help us simplify our model, considerably reducing the

number of param eters.

More information can be derived from our view of how two words relate

to each other. The evolution of a word is normally a long process, with each

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

step representing a minor change in form or pronunciation. As such, the

evolution process is relatively consistent keeping the orderings of tokens similar

between languages. Thus we can assume th a t the segments, or tokens, of the

evolving words will not get mixed around but instead, for the most part, only

change form. This keeps the “gram m ar” of a word fairly consistent between

related languages. Thus we can allow our system to only consider alignments

in which there are no crossing links. This assumption is often used in word

similarity programs, and allow the algorithm s th a t search through the space

of alignments to work faster. However, the number of alignments is still very

high.

We will also be assuming a one to one correspondence between alignments.

Prefixes and suffixes th a t are added to a word will be aligned to gaps. If by

some chance a token in one word becomes many tokens in another word we

would model th a t change by using one of the many tokens as an anchor point,

the point w ith which the single token is aligned. The other tokens will be taken

care of through the use of insertions or deletions. Although this is not ideal,

it does simplify the problems caused by having to deal with token fertilities,

and removes the need to create some other m ethod to deal with many to one

correspondences. If there is a many to one correspondence th a t is consistent

between languages, it would be beneficial to change the word representation so

tha t the many tokens can be considered as a single token. For example a group

of tokens in an orthographic representation may form a single sound, but if

the word was w ritten phonetically then th a t single sound would correspond to

a single token.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Hidden Markov M odels

This chapter will present the basis for our word similarity alignment and rank

ing system. We use the concept of a Markov Model (or more specifically

a Hidden Markov Model) along with the dynamic programming algorithms

synonymous with it. Hidden Markov Model have been applied successfully

to other problems in N atural Language Processing, most notable the field of

Speech Recognition, where they have become one of the most effective and

widely implemented techniques. Additional background on Hidden Markov

Models and their uses in Speech Recognition can be found in [25] and [10].

The first few sections deal with some background information th a t will

be useful for the understanding of Hidden Markov Models. The first sec

tion contains a description of Markov Models which, as the name suggests,

are the m athem atical construct on which Hidden Markov Models are based.

The second section describes dynamic programming, a simple but powerful

programming technique th a t allows us to work with very large search spaces

quite efficiently. The remaining sections go into more details of the mechanics

behind Hidden Markov Models with an emphasis on the algorithms and ap

proaches th a t have proven successful in the past, and show promise for similar

success when used with our word similarity model.

4.1 Markov M odels

Markov Models were first introduced by Andrei Markov in 1913. They are

stochastic processes th a t retain only the minimum amount of prior knowledge,

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or memory. A Markov process can be defined as a stochastic process for which

the future depends only on the present, not the past. Essentially we need

only to look at the most recent event in order to predict the next event, all

other events are unim portant. In more exact term s the process m ust have the

following property.

Given a set of random variables X i , X 2, ■ ■ ., X n, where each variable is from

some finite alphabet S = {si, S2 , . . . , sm} then the Markov Property states tha t

Vt < n : P { X t \Xt. u . . . , X 1) = P { X t \Xt^) .

A stochastic process with the Markov Property is often called a Markov

Chain. The chain can be specified w ith a m atrix containing transition prob

abilities for each state in the model. It is often desirable to include a set of

initial sta te probabilities to avoid the need to begin in a unique and predeter

mined s ta rt state. Consider the following simple example of a Markov Model

shown in Figure 4.1. The model will produce a binary string of any length. It

has two states, sta te 0 which outputs a “0” and state 1 which (oddly enough)

outputs a “1” . One possible definition of such a model would be:

1 1 = (0.5 0.5)

/ 0.6 0.4 \
\ 0.3 0.7 j

In this example, and in a general Markov Model, we know w hat sta te we

are in simply by looking at the output. So we can calculate the probability

of a given observation sequence directly, by using the probabilities given in

the transition m atrix for the model. For example the observation sequence

“01101” would have probability:

P(01101) = 7r0aoiaiiOi0aoi

= (0.5)(0.4)(0.7)(0.3)(0.4)

= 0.0168

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.6 0.7

0.4

0.3

Figure 4.1: A Markov Model to create binary strings

4.2 H idden Markov M odels

Although some problems can be solved by using a visible Markov Model there

are many th a t are too complex to be described within such a restrictive frame

work. We can add an extra layer of randomness by allow each sta te to produce

various output based on some (possibly unknown) distribution. This second

stochastic process is not directly observable, hence the “hidden” , but instead

must be inferred from the produced observation sequence. Essentially the tran

sitions through the states of the model can no longer be determ ined directly

from the observations. Instead the observations only offer clues from which,

using the right set of algorithms, we can attem pt to determine the underlying

process th a t created them.

To accomplish this change we need to add more probabilistic information to

our model. There are two popular (and equivalent) ways to add this informa

tion to a model. The first is to increase the number of transitions, where each

transition now includes an emission symbol. The choice of emission symbol

and next sta te are done a t the same time, so the emission depends on both the

current sta te and the next state. The second way (the one our word similarity

model uses) is to include a new set of emission probabilities a t each state,

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

keeping the transitions between each state the same as in a visible Markov

Model. In this way the emissions depend only on the current state. As a

simple example we can modify the binary string model as shown in Figure

4.2. Now it will have a O-preferring state, and a 1-preferring state with these

emission probabilities for “0” and “1” :

E 0 = (0.8 0.2)

E i = (0.3 0.7)

0.6 0.7

0.4

0.3
0.7

0M = 0.8
1” = 0.2

1-preferring state0-preferring state
0.3

Figure 4.2: A Hidden Markov Model to create binary strings

For such a model we can not determine the sta te sequence just by look

ing at an observation. This is because a single string can be produced in a

number of different ways. For example, the string “000” could be produced by

staying only in the 0-preferring state, or by staying in the 1-preferring state

(or any other of the 23 = 8 combination of states). The only difference is the

probability of either of those sta te sequence producing th a t string. Obviously

the string is more likely to be produced by staying in the 0-preferring state,

bu t for more complex models, how do we decide which sta te sequence is most

probable, and how do we determine the probability of a given string as we did

for the previous Markov Model representation?

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Before we can begin to examine the properties of Hidden Markov Models it

will be helpful to more formally define what a Hidden Markov Model is. The

following is the definition used by Manning and Schutze [21] modified slightly

to represent sta te emission Hidden Markov Models. A Hidden Markov Model

is defined as a five-tuple (S, E, n , A, E) where each symbol is defined as in

Table 4.1. An example of a generic Hidden Markov Model sta te is shown in

Figure 4.3.

Emissions

Figure 4.3: The various components of an HMM

Set of (hidden) states S = { s i , . . . , syv}
O utput (observation) alphabet E = {a i , . .. ,c>m}
Initial sta te probabilities n = {rq}, i € S
State transition probabilities A = i , j e S
State emission probabilities E = {e/c(fe)}, k 6 5, b € E
State sequence X = (Ax, . . . , X T), X t : S i—>■ 1 , . . . , N
O utput (observation) sequence O = (cq, . . . , or), ot E E

Table 4.1: Notation for Hidden Markov Models

Since the set of states and output alphabet often remain constant in many

of the later applications and algorithms a more compact notation for a model

is often used. A model can be defined simply as a triplet, n = (A ,E ,U) .

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The various probabilities in Table 4.1 are defined as such:

7Ti = P(S 1 = *)

ciij = P(s t = j \ s t- i = i)

ek(b) = P(ot = b\st = k), b e ^ k e S

As was stated before, we can no longer determine the state sequence (and

hence the probability) of an observation simply from the observation itself. In

fact when dealing w ith a Hidden Markov Model there are three questions th a t

need to be answered if the model is to be of any use at all.

1. How do we determine the probability of a given observation sequence

O = (o1; . . . , or) given the model /x = (A , E, n)?

2. How do we determine the “most likely” sta te sequence X = { X \ , . . . , X t)

given an observation sequence O and a model /x?

3. How do we determine the “best” model /x given a set of observations O,

or how do we adjust the param eters of the model /x to maximize P (/x |0)?

4.2.1 G enerating O bservations w ith a H idden M arkov
M odel

There is a simple way to view a Hidden Markov Model tha t helps to explain

how the various probabilities in the model work. Because of its probabilistic

nature, the Hidden Markov Model can be thought of as a generator of observa

tion sequences. A lthough direct generation is rarely of practical value, except

perhaps debugging training algorithms, this is how we view the functioning of

our model and is the basis for all of the algorithms derived from it. Figure 4.4

shows the generation process using the binary string producing HMM as an

example.

Any possible observation sequence O = (eq, . . . ,or) can be generated by

the following procedure [25]:

1. Choose an initial sta te X \ based on the initial state distribution n .

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0-preferring\
state

a oo “ 0 - 6 /.0-preferring
state

a0i - 0.4

e 0(O) = 0.8

eo(') = 0.2

1 -preferring^
state

e-i(1) = 0.7

Figure 4.4: Generating observations using an HMM

2. Set t — 1.

3. Choose ot = b according to the emission probabilities e x t {b).

4. Transit to a new state X t+i based on the transition probabilities a x tx t+i ■

5. Set t = t + 1, return to step 3 if t < T, otherwise end the generation

procedure.

For the above procedure we assumed th a t we could end in any state, and

opted to use the number of observations to control when we stopped. Another

option is to add transitions to a silent end sta te from all the other states. This

lets the Hidden Markov Model decide when to stop generating an observation

sequence. The higher the probability of going to the end state, the shorter the

observation sequences will be. The procedure would then become:

1. Choose an initial state X \ based on the initial state distribution n , if

X \ = END end the generation procedure, otherwise proceed to step 2.

2. Set t = 1.

3. Choose ot = b according to the emission probabilities e x t (b).

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Transit to a new state X t+i based on the transition probabilities a x tx t+i ■

5. If X t+\ = END end the generation procedure, otherwise set t — t + 1

and return to step 3.

This generation structure shall be examined with our Pair Hidden Markov

Model to see if it can give us any useful information about similar words and

how they end.

4.3 Dynam ic Program m ing

We will find th a t it is not enough simply to answer the three fundamental

questions for Hidden Markov Models. In addition, we m ust be able to an

swer them in a way th a t can be efficiently and practically implemented. One

technique th a t will prove invaluable to this end was developed by Bellman in

1957 [2], It works by keeping track of optimal solutions to subproblems of the

main problem, usually in some table or matrix. These subproblem solutions

can then be used to incrementally calculate the optimal solution to the main

problem, w ithout having to re-examine previous results.

To illustrate its effectiveness we will briefly examine a simple dynamic

programming algorithm th a t is also used to align words, the minimum edit

distance algorithm. Minimum edit distance is defined as the minimum num

ber of edit operations th a t are required to transform a source string into a

target string. Pseudo-code for the algorithm is shown in Figure 4.5; it is a

slightly modified version of the code presented in Speech and Language Pro

cessing [11]. The operations are usually substitution: exchanging one token

for another; insertion: adding a new token to the string; and deletion: remov

ing a token from the string. This algorithm is helpful because the operations

it uses will be used to define the states in our word similarity model, and

it closely resembles the solution to the first fundamental question of Hidden

Markov Models. One of the first things we need to do is assign a cost for

each of the operations. The simplest of these is the Levenshtein distance [11],

which assigns each operation a cost of 1. This will give a measure of the min-

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INPUT: Two words
source, target

n = length(source)
m = length(target)
distance[0][0] = 0
for i from 1 to n

distance[i,0] = distance[i-1,0] + del.cost(source[i])
for j from 1 to m

distance[0,j] = distance [0,j-l] + insert_cost(target[j])
for i from 1 to n

for j from 1 to m
distance[i,j] =

min(distance[i-1,j-1] + sub_cost(source[i], target[j]),
distance[i-1,j] + del_cost(source[i]),
distance[i,j-1] + insert_cost(target[j]))

OUTPUT: The minimum edit distance,
distance[n,m]

Figure 4.5: Pseudo code for the minimum edit distance algorithm

imum number of operations needed to achieve the transform ation. W ith the

dynamic programming algorithm it is now possible to develop solutions to the

fundam ental questions in an efficient way.

4.4 Probability of an Observation Sequence

We now can turn our attention to the first fundamental question; how do we

determine the probability of an observation sequence? This will be especially

im portant because the algorithms presented here will form an integral part for

answering the th ird question, which is the most im portant for the problem we

are dealing with.

W ith a visible Markov Model we knew the path through the model th a t was

used to generate the observations. For a Hidden Markov Model we know only

the observations, there are several possible state sequence th a t could produce

then. For the remainder of this discussion it will be helpful to assume tha t

our model is ergodic, meaning th a t there are transitions from every sta te to

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

every other state. W hat we need to consider is the to tal probability for every

possible path through the model tha t would produce the observation sequence

tha t we are examining. The m athem atical development will closely follow th a t

presented by Rabiner and Juang [25].

We want to find the probability of the output sequence O = (o i , . . . ,oT)

given a model //. First consider a single fixed sta te sequence

X = (X 1, . . . , X T)

The probability for the observation sequence given this sta te sequence is

P(0\X,f jL) = f [P (o t \Xu n).
t = 1

The assumption of statistical independence of observations gives us

P (0 |X , fj.) = eX l{°i) • • ■ eX r (oT).

The probability for the fixed sta te sequence is

-P(X |(J-) = ' ‘ ' aXT_iXr-

We can now calculate the joint probability of the observation sequence and

the state sequence occurring together given the model, which is the product

of the previous two terms.

P (0 ,X |/ i) = P (0 |X)Az)P (X |M).

The probability of O given the model fi can be calculated by summing

the joint probability over all of the possible sta te sequences X . In an ergodic

model there are N T such sequences.

P (0 |/ i) = £ P (0 |X , M)P (X |/r)
all x

= ^ 2 /K x 1e x 1(° i) a X i X 2 e x 2 (0 2) • • • o x T _ i X T e x T (d T) -
all X

The problem w ith calculating this value directly is th a t it is horribly inef

ficient. For the general model being discussed this gives a calculation of order

0 (2 T N t). More precisely, the calculation requires (2T — 1)NT multiplications

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and N T — 1 additions [25]. Even for very small values of N and T this can

mean an unacceptable number of calculations. However there is a way around

this obstacle by using dynamic programming techniques. This technique is

know as the forward algorithm (or forward procedure).

4.4.1 Forward A lgorithm

The forward algorithm works like any other dynamic programming technique:

it keeps track of optim al solutions to sub-problems and then uses them to

calculate the solution to the main problem. In this case the main problem is the

probability of an observation sequence and the sub-problems are probabilities

for sub-sequences of the observation. These sub-sequences are described by

something known as the forward variable, defined as

ai(t) = P(oi ■■■ot , X t = i\n).

This represents the probability of seeing the partial observation sequence

Oi - ■ ■ ot and being in sta te i a t time t. We can calculate all of the forward

variables recursively using the steps outlined in Table 4.2.

1. Initialization
cq(1) = 7qe^Oi), 1 < i < N.

N 1 < t < T

2. Induction

a j (t) = e j (° t) ~ i < j < n

3. Termination

p to i , ,) = 5 > c n -
1

Table 4.2: Forward Algorithm for Hidden Markov Models

The forward algorithm is considerable more efficient then naively calculat

ing the probability directly. It has an order of only 0 (N 2T) calculations as

opposed to the 0 (2 T N t) required by the direct calculation. More exactly it

takes N (N + 1)(T — 1) + N multiplications and N (N — 1)(T — 1) additions

[25].

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.2 Backward A lgorithm

The forward algorithm represents only one way of examining the probability

of an observation sequence, although it is the most intuitive. There is however

another m ethod of determining the probability th a t will prove very useful when

attem pting to determine the param eters of a Hidden Markov Model (funda

mental question 3). This is the backward algorithm or backward procedure.

It works in much the same way as the forward algorithm only it s ta rts from

the end of the observation sequence and builds up the complete probability

from the end to the beginning. We shall need to define a backward variable

similarly to how we defined the forward variable as

(3i(t) = P(o t + 1 • • • oT \Xt = i, n).

We can now define the backward algorithm recursively to solve for all of the

backward variables as shown in Table 4.3. Just as with the forward algorithm,

the backward algorithm requires order 0 (N 2T) calculations.

1. Initialization
Pi(T) = 1, l < i < N .

2. Induction

P i (t) = Y . (3j (t + l) a He i (0 t + 1)> f 1 '

3. Term ination

p (° I a) = 7TiA(i)-

Table 4.3: Backward Algorithm for Hidden Markov Models

4.5 Finding the B est State Sequence

The first obstacle in finding the best s ta te sequence, is determining exactly

what is m eant by the “best” . Unlike finding the probability of the observation

sequence where there is a single correct answer, the answer to this question can

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

change depending on what we use for our optim ality criterion. There are sev

eral different possible definitions of “best” . For example, we could choose the

states individually at each step to maximize the expected number of states th a t

will be guessed correctly. However, such an approach may yield a very unlikely

state sequence [11]. We will instead adopt the most commonly used definition

of “best” : maximize the overall probability of the entire path through the

Hidden Markov Model, finding the single sta te sequence (or possibly a set of

state sequences) tha t has the highest probability given the observations and

the model. Thus we are to compute

argm axx F (X |0 , / r)

which is equivalent to determining for a fixed observation sequence

arg m axx .P(X, 0 |/r) .

4.5.1 V iterb i A lgorithm

An efficient algorithm exists to calculate the most probable sta te sequence for

a fixed set of observations. It again uses the ideas of dynamic programming

starting w ith the following definition

5i(t) = max P { X 1 ■ ■■Xt^ l) ox ■■■ot , X t = i\n).
-Xi-Xt-i

This variable represents the probability of the single best (highest probability)

path through a given Hidden Markov Model, /r, which accounts for the first

t observations and ends in sta te i. It is possible to calculate this variable

recursively to get the probability of the single best path th a t accounts for all

of the observations. If we want the sta te sequence as well, then we only need to

keep track of the path through the model by storing a backtrack variable

a t each step. The entire procedure is shown in Table 4.4. Note the similarities

between the Viterbi and forward calculations. Except for the backtracking, the

only real difference between the two algorithm s is tha t the forward algorithm

calculates a sum, while the V iterbi considers only the maximum at any step.

This distinction will become more im portant when we discuss various m ethods

of ranking word pairs using our word similarity model in later chapters.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Initialization
5 i (l) = 7Tje^Oi), 1 < i < N

i ’ii i) = o.

2. Induction

2 < t < T
<5, (i) = e, (o4) max S{(t - 1)ai j , i < j < jy

2 < t < T
ipjit) = arg max S^ t - 1)^-, \ < j < N '

3. Termination
P(X *) = max 5i(T).

= arg max 5AT)
1 \<%<N y

4. P a th backtracking

x ; = ^ X; J t + 1), t — i > t > i.

Table 4.4: The Viterbi Algorithm for Hidden Markov Models

4.6 Finding the Optim al M odel Param eters

The th ird problem will prove to be both the most difficult to solve and the

most im portant to our word sim ilarity model. We need a way to find an

optimum set of model param eters /j, = (A, E , n) for a given observation series.

As such we are trying to maximize P (0 |/x). Unfortunately, there currently

exists no m ethod tha t can find the model param eters jj, th a t will maximize

th a t probability. The best we can accomplish is to use iterative hill-climbing

techniques in order to find a local maximum. The hope is th a t this local

maximum will be sufficient to adequately represent our model.

4.6.1 E xpectation M axim ization A lgorithm

To solve the optimal param eter problem we will be using a type of Expectation

M aximization algorithm, call the Baum-Welch algorithm or forward-backward

algorithm. The forward-backward algorithm works by utilizing a recursive

procedure. If we have a set of param eters we can use those param eters to

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

calculate the probability of the observation sequence. If we have an aligned

observation sequence we can look at what transitions and emissions are used

more often and adjust the probabilities of the model to be tte r fit the data.

This gives us a circular optim ization method, which we can break by using

random starting param eters for our model. There are other ways to choose

the initial param eters of the model, some of which may be be tte r than others,

but for a general discussion of how the forward-backward algorithm works it

is enough to know th a t the initial param eters are chosen.

Before we can describe the algorithm ’s details we need to define a new

variable £ t(h j) which represents the probability of being in s ta te i a t time t

then moving to sta te j a t time t + 1, more formally

€t(i , j) = P { X t = i , X t+1 = j \ 0 , f i)

We can use the forward and backward variables to help represent the var

ious probabilities th a t we are trying to calculate as is shown in Figure 4.6

adapted from Foundations of Statistical N atural Language Processing [21].

Thus our original probability can be re-written as

= P (X t = t , X t+1= j \0 , f j ,)
P (X t = i , X t. i = j , Q] / i)

P(Ol/x)
= ^ (t) a ^ e i (ot+1)/3i (f + 1)

E m = i a m(t)/3m(t)
_ a i{t)aijej(°t+i)f3j(t + 1)______

E l = i E l i a m(t)amnen{ot+1)f3n(t + 1)

We shall now define the probability of being in sta te i a t tim e t as

7i(t) = P (X t = i \ 0)fJ.)
P (X t = i,Q\fi)

P(0|/x)
_ ai(t)Pi{t)

£ f = i (*) & (<) ’

Note also tha t

7i(t) =
j = i

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f i p + 1)
O

<4f)
t - 1 t t + 2

Figure 4.6: The probabilities associated w ith a transition

Now if we sum over tim e we get expectations, or counts, th a t a sta te is

visited. This is equivalent to the number of transitions from th a t sta te if we

exclude time index T. We can also get counts for the number of transitions

from any state to any other sta te in a similar m atter using £ instead of 7 .

W ith these values in hand we can re-calculate our model param eters

7q = expected number of time in sta te i a t time t — 1

Hence, from our initial model param eters ji = (A , E, n) we can determine

new param eters /2 = (A , E , fl). It has also been proved by Baum et al. [1] th a t

where equality will occur if the initial model /1 represents a critical point, such

eA

expected number of transitions from state i to state j
expected number of transitions from sta te i

E £ i ̂ (m)

expected num ber of times in sta te j observing symbol k
expected number of times in sta te j

P(Q\P) > P (0 \ n)

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as a local maximum, which is any point where all partial derivatives are zero

(or some partial derivatives do not exist). Thus through repeated iteration of

the forward-backward algorithm, we can get increasingly better models with

respect to our training data.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Pair Hidden Markov M odels

Hidden Markov Models have proven to be powerful tools for many tasks within

the field of Com puter Science. The question remains whether or not they could

prove useful for the task of word similarity measurement and ranking. A good

indicator of possible success comes from the field of bioinformatics.

One of the more intangible aspects of a Hidden Markov Model is the choice

of the model itself. While many algorithms exist to train the param eters of the

model so th a t the model better describes its data, there is no formulaic way to

create the model. Instead we must normally rely on our best judgement, and

a great deal of trial and error for all bu t the simplest problems. Fortunately

for us, there exists a model th a t is already in use for a task quite similar to

our own. We need only to refine and improve this model to have an excellent

starting point from which we can train the param eters for word similarity

alignment.

A new type of Hidden Markov Model was developed by Durbin et al. [8]

tha t uses two observation stream s in parallel. This model was dubbed the

“Pair Hidden Markov Model” and has been used successfully to determine

alignments of biological sequences. Since biological sequences are usually rep

resented by a series of alphanumeric characters, it seems possible th a t similar

algorithms could be employed to align the tokens of words. Of course there

are differences between word similarity and biological sequence analysis, such

as the shorter length of sequences for natu ra l language words, the differences

in surrounding context, and the im portance of having accurate physical align-

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ments between words (which is as im portant as a good ranking system). These

differences shall be part of the work of developing the bioinformatics techniques

to a new domain. The Pair Hidden Markov Model is also appealing because

all of the m ajor Hidden Markov Model algorithms were developed to go along

with the new paired structure, and they also employ the dynamic programming

methodology th a t makes the Hidden Markov Model com putationally appeal

ing. This suggests th a t those algorithms could also be created for a word

similarity model. This is an im portant point considering th a t exceptionally

large corpora are often used in N atural Language Processing, making efficient

algorithms a necessity.

W hat follows in this chapter is the model created by a careful consideration

of how to best represent word alignment in a Pair Hidden Markov Model. All

of the core Hidden Markov Model algorithm s are reinvented to fit within the

framework of the model and still retain all of the efficiencies of the originals.

We begin w ith a more detailed discussion of the original Pair Hidden Markov

Model and how it differs from the regular Hidden Markov Model. We then

discuss the assumptions and weakness of this model and develop a model

more suited to the alignment and ranking of words in natural languages. The

standard algorithms are presented again with an emphasis on how they differ

from the regular Hidden Markov Model algorithms.

5.1 The Biological M odel

Pair Hidden Markov Models were developed to align biological sequences but

w ith the same necessities th a t we have for word similarity alignment. This

creation was motivated by the need to differentiate between the similarities

between sequences th a t exist because of a scientific or historical relationship

from sequences whose similarity is based solely on chance. The basic idea

behind the model is th a t it emits a pairwise alignment instead of a single

observation sequence. This allows a pair of words to be examined as a single

entity instead of two separate stream s of data, ft also adds an extra dimension

to the search space, but all of the regular Hidden Markov Model algorithms

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be adapted to work with it.

The model has three states, each corresponding to one of the basic edit op

erations: substitution, insertion, and deletion. Each state has its own emission

probabilities representing the likelihood of producing a pairwise alignment of

the type described by the state. The word pairs are represented by x and y,

where n and m are the lengths of x and y respectively. D urbin et al. use i

and j to represent indexes into the token set for x and y in th a t order. To

represent emission probabilities the model uses the symbol pXiVj for emission

of pairs from the substitution state. The emissions from the insertion and

deletion states are designated by qVj and qXi.

Durbin et al. then decided on three transition param eters. The first, 5,

represents the probability of going from the substitution sta te to either the

insertion or deletion states. The next, e, represents staying in the insertion or

deletion state. This was done to provide facilities for affine gap penalties. Of

course this property can be removed by tying these two probabilities together,

forcing them to be equal.

The last param eter comes from a reformulation of the model. In order for

the model to provide a probability distribution over all the possible sequences,

they add a silent begin and a silent end state to the model. The authors chose

to tie the probabilities of the s ta rt sta te to those of the substitu tion state.

Thus, the probability of starting in the substitution state is the same as being

in the substitution state and staying there, while the probability of starting in

an insertion or deletion state equals th a t of going from the substitu tion state to

the given state. This choice is reasonable and keeps the number of param eters

from increasing unnecessarily. They then add a new param eter, r , th a t models

the probability of ending the sequence, going from any state to the end state.

We do some experiments to see how useful such an end sta te model actually

is. W hen doing alignments the lengths are known ahead of tim e making such

a transition unnecessary except as a way to slightly modify scores when the

alignment is done. Now each sta te has only one other transition, and the

value of this transition is determ ined from the Markov Model property tha t

all transitions sum to one.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.1 W eaknesses in the B iological M odel

The main weaknesses of the biological model come from the various simplify

ing assumptions tha t are made throughout its development. The core of these

simplifications comes from the fact th a t the sequences being aligned are long,

often in the range of dozens of tokens. This allows for many simplifications

th a t (although they can decrease the overall “correctness” of the alignment

measure) do not have a large enough impact on the overall calculation to

cause any real problems. For us, word lengths are considerable smaller than

biological sequence lengths. Usually words are less than 10 tokens long, and

depending on the way the words are represented this can be further reduced.

For example a phonetic representation will have fewer tokens since the set of

tokens is larger than the original alphabet and thus more expressive. Consider

how many English sounds are represented by multiple letters (like sh, or th).

These would each be represented by a unique token in a phonetic representa

tion, giving us a much smaller number of calculations with which to distinguish

good alignments from bad alignments. This means our m ethods will be less

robust to errors th a t were made on the side of simplification. Words can be

as short as a single token, so if we use a simplified version of the model and

it introduces errors to facilitate th a t simplification, we do not have a large

number of subsequent calculations to “sm ooth” those errors out.

Most of the assumptions seem simple on the surface, bu t can permeate

throughout entire algorithms greatly changing their structure. Some of the

more simple problems were simplifications to the underlying model. The bi

ological model assumes th a t an insertion followed by a deletion is the same

as a match. This would cause problems when working with natu ra l language

because it would say strange things about the alignments created. Covington

[7] provides an example of this using the Italian “due” and the Spanish “dos” ,

both of which mean “two” . The following alignment is correct,

d u e -
d o - s

If we allowed two successive gaps to be the same, a substitution we would get

the alignment

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d u e
d o s

which would provide evidence of a connection existing between the Italian “e”

and the Spanish “s” . Since this is incorrect we do not want such a situation oc

curring. If we followed the biological model, we would allow and possibly learn

many correspondences th a t should not exist between our languages. Since the

alignments produced by our algorithms are just as im portant as the numeri

cal rankings, we need to keep these two cases separate. These problems can

be solved by adjusting our model to more accurately represent the kinds of

alignments we would expect between two similar words. The similarity model

is discussed in more detail in the following section.

The original biological model also assumes th a t the probability for the

transition to the end sta te is the same no m atter w hat sta te we are currently

in. If we try to tra in w ith this assumption we run into problems. We would

need to ignore the actual values we are leaning for the end transition in one

state, and instead replace it with the end transition probability learned from

the other state. Doing this can cause problems during training, where we

are not increasing the overall probability of the data. To overcome this we

have split r into two separate values, tm for the m atch state, and t x y for the

insertion and deletion states. This preserves the symmetry of our model while

allowing it to be tte r express how word alignments end. It is often the case

th a t alignments between cognates are more likely to end in a gap, and with

this change our system can model this (or similar) properties.

Another problem th a t is not touched on by the biological model is the

rather common problem of word length. Since we are calculating a chain of

probabilities, longer words will have a longer chain, which will result in a

lower probability. It is difficult to fix these probabilities within the algorithms

without invalidating them , so instead we opted to correct for these lengths

after the initial calculation by use of a scaling factor. The effectiveness of this

approach can be seen in C hapter 6.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 T h e W ord S im ilarity M od el

Our model was developed keeping the basic structure of the biological sequence

model intact. As such we s ta rt with three main states. A “m atch” state

(represented by sta te “M”) th a t represents the alignment of two tokens, one

from each word. An “insertion” state (represented by “Y”) tha t allows a token

in the second word to be aligned against nothing (also called a gap). Finally

a “deletion” sta te (represented by “X”) th a t lets a token in the first word to

be aligned to a gap.

A m atch, or substitution, represents tokens th a t are being examined for

how similar they are. As an example consider the alignment of cognates.

Vowels are (usually) more likely to be replaced by other vowels, so the emission

probability of two vowels from the m atch state should be higher than for the

substitution of a vowel and a consonant. An insertion or deletion represents a

gain or loss of a token from one word to the next in a pair. Some languages

add or remove prefixes or suffixes, or there may be some tokens th a t get

transformed into multiple tokens, or a group of tokens th a t get condensed

into a single token. All of these events can be represented by insertions and

deletions. Figure 5.1 shows how the Pair Hidden Markov Model can be used

to generate pairs of words, with various alignments.

There are many similarities th a t exist between states “X” and “Y” and as

such there are some symmetries in the model with respect to states “X” and

“Y ”. However these states would only tru ly be the same if the alphabets of

both our source and target languages were identical. Nevertheless we opted to

maintain the symmetries th a t exist with respect to the transition probabilities.

This is because in general word similarity is more dependent on the values of

the substitution, insertion, and deletion costs. The transitions tend to be con

sistent regardless of language pair and as such, we can save com putation tim e

and model complexity while losing very little information about the language

pairs. However the necessity of different alphabets for each language requires

tha t the states remain distinct, with various emission probabilities from the

insertion and deletion states. The model is shown in Figure 5.2.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1: Generating an alignment using a PHMM

1 — s — X — T̂xy

1 — 25 — -c,

'XY

1 — E — A. Tx y

Figure 5.2: The word alignment Pair Hidden Markov Model

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 W ord S im ilarity M o d el A lgorith m s

Each of the standard Hidden Markov Model algorithms can be created for the

word similarity model. This was accomplished by following the basic ideas of

the algorithms presented in Chapter 4, bu t including the ideas and structure of

the Pair Hidden Markov Model. W hat follows are the details of the algorithms

as they relate to the task of word sim ilarity measurement. In our case, all of

our algorithms deal with the domain of possible alignments between a pair of

words. While the method th a t each algorithm employs to calculate a score for

the pair is different, they all must look (at least to some extent) a t all of the

possible alignments available between the words. Even with the constraints of

our model this is still a substantial number of possibilities. Thus it is im portant

to note th a t each algorithm retains the properties of dynamic programming

and as such accomplishes its search through the space of all allowed alignments

quite efficiently.

In order to employ a dynamic programming technique the task m ust have

the property th a t a t any point in the calculation, if we have found the “optimal

solution” then th a t solution will stay optim al regardless of w hat the next step

in the solution will be. The key to maintaining the tru th of this property are

the assumptions th a t our alignments will contain no crossing finks and tha t

each token will only be aligned to one other token. We are finding an optimal

path through our Pair Hidden Markov Model, and any sub-path must also be

optimal. If there were to be a better sub-path we would use th a t path instead.

Here we use probabilities to measure how good a path is, bu t the underlying

principles remain the same.

5.3.1 V iterb i A lgorithm

The purpose of the Viterbi algorithm is to find the best sequence of states,

emissions, and transitions for a given observation sequence. The “best” se

quence is defined as the sequence th a t has the highest overall probability. For

our domain the observation sequence is the pair of words to be aligned, and

the s ta te sequence represents a possible alignment of those two words. Hence

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we are trying to find the alignment between those two words th a t gives the

highest probability out of all of the possible alignments.

This can be accomplished by using a dynamic programming algorithm,

like the general Viterbi algorithm in Chapter 4. Table 5.1 is the pseudo-code

adapted to our problem. In the pseudo-code we use * to represent an action

performed for all states M, X, and Y. For the Viterbi algorithm, and all of

our word similarity algorithms, the input is a pair of words (the observation

sequence). The output would then be a “score” for th a t pair of words, deter

mined at the term ination of the algorithm.

1. Initialization

vM(0 ,0) = 1 — 28 — t m , v x (0,0) = uy (0 ,0) = 5.

All v ' { i , - l) , v ' (- l , j) = 0.

2. Induction: for 0 < i < n, 0 < j < m except (0,0)

/ (1 - 2 5 - rM)vM(i - 1, j - 1) >j
v M(i , j) = p ^ .m a x ^ (1 - e - A - rXY)vx {i - 1, j - 1) >,

1 (1 - e - A - t X y)vY (i - 1, j - 1) >

($vM(i - 1 , j) n
v X {i , j) = qXi max evx (i - 1, j) [,

I \ v Y (i - 1 , j) '

, 5vM(i , j ~ 1) 'i
vY {t , j) = qVj max evY (i , j - 1) >.

 ̂ Avx (i , j — 1) J

3. Term ination

P(X*) = ma x (T M V M (n , m) , T x Y V X (n , m) , T x Y V Y (n , m)) .

Table 5.1: Viterbi algorithm for Pair Hidden Markov Models

5.3.2 Forward and Backward A lgorithm s

The problem with the Viterbi algorithm is th a t it only looks a t the most

probable alignment between the two words. Some words may have only a

single best alignment, while others may have several good alignments, each a

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

slight variation of the others. While the former may occur simply by chance,

it is unlikely th a t a pair of words th a t have many high probability alignments

could occur ju st by chance. W hat the forward algorithm in Table 5.2 will do is

examine how similar two words are by looking at all of the possible alignments

between them. This should give us a better idea of w hether our word pair

exhibits true similarity or if an alignment exists simply by chance.

To accomplish this we keep track of every path though our Pair Hidden

Markov Model th a t can produce an alignment for a given word pair. By

summing all of these alignments together a better picture of similarity may be

obtained. A pair with only one good alignment will now receive a much lower

ranking then a pair th a t has several high probability alignments. Hopefully

this will result in a better indication of how similar a pair really is.

Just as with regular Hidden Markov Models, we can do the same calcula

tions as the forward algorithm starting from the end instead of the beginning.

The corresponding backward algorithm is given in Table 5.3.

1. Initialization

f M(0,0) = 1 — 2J — tm J x (0,0) = f Y (0,0) = 5.

All f*(i, —1), /* (—l , j) = 0.

2. Induction: for 0 < i < n, 0 < j < m except (0,0)

f M{ h j) = PxiW[(l - 2 J - r M) / M(i - l , j - l)

+ (1 - e - A - TXY) (f X {i - 1 , j ~ 1) + f Y {i ~ 1,3 ~ 1))],
f X {h j) = qXi[SfM(i - i , j) + e f x (i - i , j) + X f Y { i - i , j)] ,

) = 9%[5/M(i , j ' - l) + e / y (i , j - l) + A/x (i , j - l)] .

3. Termination

P (0 \ n) = TMf M{ n , m) + rXY(f X (n, m) + f Y(n,m)).

Table 5.2: Forward Algorithm for Pair Hidden Markov Models

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Initialization

bM(n ,m) = rM,bx (n ,m) = bY (n ,m) = t X y -

All bm{ i , r n + l) , b ' (n + l , j) = 0.

2. Induction: for n > i > 0, m > j > 0 except (n, m)

bM(i , j) = (1 - 2 5 - r M)pXt+iyj+1bM(i + l , j + 1)

+ 5((lxi+1bX {i + l , j) + qyj+ibY {i, j + 1)),

bX (i , j) = (1 - e - A - TX Y) P x i+1yj+1bM (i + 1, j + 1)
+ eqXi+1bx (i + 1 , j) + A qyj+1bY (i , j + 1),

bY (i , j) = (1 ~ e - A - TXY)Pxi+1y3+1bM(i + 1, j + 1)
+ eqVj+1bY (i , j + 1) + A qXi+lbx (i + 1 , j).

3. Termination

P (0 |/x) = (1 - 2(5 - rM)bM{0,0) + 5(bx (0,0) + 6y (0 ,0)).

Table 5.3: Backward Algorithm for Pair Hidden Markov Models

5.3.3 Log Odds A lgorithm

One of the biggest problems in recognizing similarity is always distinguishing

which words really descended from the same source and which words only seem

to be related, often due to randomness or some other factor. One method tha t

could be successful is to create another Pair Hidden Markov Model th a t can

determine how likely a pair of words is to occur randomly. We could then

compare the probability of our alignments from the similarity model, to the

probability of the words occurring by chance in the two languages. If the

probability of them being properly aligned is high and the chance of them

existing independently is low, we would give them a higher score than if they

have a high probability alignment, but also have a high probability of being

in the languages w ithout any common root existing between them.

This property is captured in the log odds algorithm [8]. The probability of

the similarity model is normalized by the probability from the random model,

to give an overall score to the pair.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T he R andom M od el

The random model represents how likely the pair is to occur together with

no underlying relationship. In the sense of an alignment this would be an

alignment w ithout any matches (i.e. only insertions and deletions). Thus the

random model would only need insertion and deletion states. To keep things

simpler one word can be completely generated before the next word. The

probabilities would be the same as long as the transitions between states had

the same value. Since this is w hat we want, there is a single new param eter y

to represent transitions through our random model.

r| r|

1 — T|
1 T|

1 — T| 1 - T 1

Figure 5.3: The random Pair Hidden Markov Model

D eriv in g th e Log O dds A lgorith m

To calculate the scores using the log odds model, we can use an algorithm th a t

takes the same form as the other dynamic programming algorithms we are

familiar with. To do this we need to know the probability of our observations

given the random model R. The nature of the random model allows only one

path for any word pair x and y , we shall use rXi and rVj to represent emissions

from the corresponding states of the random model. The probability of the

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path through the model is

P(x , y \ R) = r]{ l - r j) n] \ r Xir] { l - r i) rnY[ryJ
i = l 7=1

Vi '
i= 1 7=1

The next step is to split up the term s of the two equations, the probability

from the word similarity model and the probability from the random model,

where the similarity model is being normalized by the random model (i.e. di

vided). We can compute the terms in an additive model with log odds emission

scores and log odds transition scores. These two scores can be combined into

a single term using the following equations.

(u\ 1 Pab , 1 1 - 2 5 - Tms(a, b) = lo g b log

d(a) = - log

rarb (1 - V)2
qaS(1 - e - A - t X y)

t \ i & ee(a) = - lo g

/(a) = - lo g

i"a(l - i?)
qa A

ra(1 - V)

c = log - -— TM l-log(rxy).
1 - e - A - t x y

A few points need to be made about these equations. First of all since s is

meant to always be used to represent a substitu tion regardless of w hat sta te we

were in previously it reflects the assum ption th a t the previous state was also

a match state. To compensate for this d has a built in correction to represent

going from an insertion or deletion back to the m atch state. This then requires

a final correction c if we end up finishing in an insertion or deletion state. All

of this means th a t although the interm ediary steps may not have the correct

values the final solution is correct. The log odds algorithm is presented in

Table 5.4.

Also it is possible to simplify the above equations if you assume th a t the

states in the random model have the same emission probabilities as the in

sertion and deletion states in the word similarity model, ra = qa Va. This

simplified version is the one presented by Durbin et al. [8]. We have also mod

ified the algorithms so th a t they can be used w ithout this assumption since for

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

some applications the original version may be correct but it often represents an

over-simplification. We have conducted experiments with the different model

views to see the effects of this assumption in practice.

1. Initialization

3. Term ination

P = ma x (V M(n ,m) + log (rM) , Vx (n , m) + c}V Y (n , m) + c).

Table 5.4: Log Odds Algorithm for Pair Hidden Markov Models

Forward Log O dds

We have also created another variation on the regular log odds algorithm. Nor

mally the log odds algorithm is a combination of the Viterbi algorithm with the

random model. We have switched from the Viterbi algorithm to the forward

algorithm to determine how effective such an approach is when combined with

the random model. We use the same variations for the forward log odds algo

rithm th a t were used with the regular log odds algorithm. One version makes

the assum ption tha t insertions and deletions have the same probabilities in

the similarity model as in the random model. The other uses EM algorithms

to learn the insertion and deletion probabilities for the similarity model from

the training data.

V M(0,0) = —2 log(r/), V x (0, 0) = Vy (0,0) = -o o .

2. Induction: for 0 < * < n, 0 < j < m except (0,0).

, V M(i — 1, j — 1)
s (xh yj) + max I V x (i - l , j - 1)

I V Y (i — l , j — 1)

, V M(i - 1 , j) - d(xi) n
m ax V x (i - l , j) - e(xi) L

I V Y (i - 1 , j) - f (x i) >

, V M(i , j - 1) - d(vj) n
m ax V Y (i , j - 1) - e(%)

V x (i , j - 1) - f (y j) >

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.4 E xpectation M axim ization A lgorithm s

All of the previous algorithms require a large set of probabilities to be used.

They need the probabilities for sta te emissions (substitution, insertion, and

deletion probabilities), as well as probabilities for transitions between states.

The problem is th a t it is difficult to determine these probabilities using only

domain-specific knowledge. Most languages have not been studied in great

detail, and those th a t have are usually not examined in a way th a t lends

itself to a transform ation into probabilities. For example is it well known

th a t a vowel is likely to be transform ed into another vowel, or th a t in closely

related languages tha t share (at least part of) an alphabet m atches between

identical letters occur often. W hat is not known (at least in general) is exactly

how likely it is for one vowel to be substituted for another, or how often

identical segments are preserved between languages. Since the Hidden Markov

Model has strict m athem atical requirements, we need a way to satisfy these

requirements using the da ta th a t is given to us. Fortunately, Hidden Markov

Models already have a m ethod in place th a t can do just th a t, the Expectation

Maximization algorithms. The main difference between our algorithm s and

the regular Hidden Markov m ethods is th a t we are searching w ith an extra

dimension, to allow us to consider different positions within the two output

streams.

For these algorithms we only need to assume some starting probabilities.

Uniform and random probabilities are common starting points. Then we check

to see how well our training da ta fits in with our starting probabilities, and

adjust the model to increase the overall probability of the data. We then repeat

this process getting better and better models until we reach some stopping

criteria. Since we are dealing with continuous values, convergence is unlikely

to occur, so we need to stop after a certain number of iteration or when the

changes th a t occur are sufficiently small.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V ite r b i

The Viterbi version of the algorithm uses the initial probabilities to deter

mine which alignments would be best and then after creating these alignments

counts how often each m atch and gap occurs. It then uses this d a ta to recal

culate all of the probabilities and the process can repeat itself. In general, the

Viterbi version of the EM algorithm is less powerful, bu t it remains to be seen

how effective it would be for the problem of word similarity.

It is easy to implement a Viterbi Expectation M aximization algorithm,

since we only need to align word pairs and then count the different alignments

in the data. The advantage of this approach is th a t it only considers a single

alignment. Some tasks, like alignment of cognates, usually have only one

alignment th a t is correct. Although a single alignment says less about how

similar words are it could be better for training. If only one alignment is

correct then we only want to consider it when determining our param eters.

Of course, our training d a ta is not pre-aligned, otherwise a single iteration of

Viterbi training would yield our model param eters. This makes this method

very sensitive to the initial param eters th a t are chosen, and could potentially

be very easily trapped in an incorrect local maximum.

Forw ard-Backw ard

The forward-backward calculation takes much more information into account.

It uses partial counts for every possible match or gap weighted by the proba

bility of reaching th a t alignment starting from both the beginning and end of

the word pairs (forward and backward respectfully). While more complicated

than the Viterbi algorithm, it is more used in practice and is usually more ef

fective. It has the advantageous property of being more robust and can better

deal w ith noise and errors th a t may exist in the training data.

The forward-backward algorithm can be used almost as shown in Chapter

4, with a few minor changes and simplifications. F irst of all we need to search

through a 2-dimensional space of possible alignments, over several different

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

word pairs. The maximum likelihood estimators are:

akl = ■ and ek{b) - Ek^
Zi>Akl' £ v Ek(Vy

W here A ki represents the number of transitions from state k to I, and E k(b) is

the number of emissions of b from state k. We now sum over each pair, where

h represents the index of the pair we are using.

We can use the following simplification in the equation for E k(b).

N

7i(t) = E &(*>■?)
3 = 1

 v—')/^j T f)

= h p w i
1 N

-ai(t)Pi(t)
P{ 0|/i)

We now have the much simpler equation

E kip) = E p / Q i \ E E f k & M t t J) -
h i]xh&jlyheb

The equations for the various states have slightly different forms. For example,

insertions only need to m atch yj w ith the emission b, since yj is em itted against

a gap.

For transitions this is the general formula for transitions ending in the

substitution state. W hen the transition ends in an insertion or deletion state

we only change the index for one of the pairs, th a t is only one of i or j change.

We also use the emission probability for a letter from one word against a gap.

A ki = E p{ 0 \ j i) ^ ? f k i h j W i e i i X i + n y i + i P H i + h j + !)■

By utilizing all of the above equations, with variations for each state, it is

possible to construct a forward-backward algorithm th a t is able to learn all of

the param eters of our model. Such a program only requires th a t we provide

it with training d a ta representative of the similarity we want to model. The

data does not need to be aligned in any way, although the initial conditions

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can help it to converge faster if we have some domain knowledge we can use

as a starting point.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Experim ents

The experiments reported in this chapter are mostly concerned with the ex

am ination of our Pair Hidden Markov Model as a means to autom atically

model word similarity. To this end, we examined the effect of various tra in

ing techniques and variations on several word alignment tasks. Our model is

trained using the Expectation M aximization algorithm, in either its V iterbi

or forward-backward form. Once the model is trained we have more choices

for how to do the alignments and rankings. The Viterbi algorithm was imple

mented in logarithm form to increase com putational speed. We also examined

the forward calculation, since it takes into account all alignments, and sev

eral variants of the log odds formulation, as they take into account how likely

words are to occur at random, and have a normalization step as part of their

structure. This chapter begins with the development experiments and what

they have taught us about our model. Each section includes formal tests, our

focus being on the recognition and ranking of cognates. We also examine the

task of identifying confusable drug names.

6.1 Cognate Recognition: Developm ent and
R esults

An excellent task to measure the abilities of a word similarity system is the

recognition of cognates. Thus we have chosen to examine how well our model

can learn to rank pairs of words based on how likely they are to be cognates.

We also chose this task to be the one on which our system was developed.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We decided on this domain because cognate recognition is a common word

similarity task, and it gives us the opportunity to examine both the ranking

capabilities of our system and the corresponding alignments it creates.

The task of our system is to examine pairs of words between two languages,

some of which are cognates and some of which are not. The d a ta is labeled

accordingly, but our program ignores those labels. The labels are used by

another program to determine how accurate our rankings are. Our system

aligns the two words to optimally fit our model, giving each alignment a score

th a t represents how likely the words are to be cognates. These scores are

relative to each other, not to any universal scale. The pairs can then be

ordered and if everything worked well, true cognates will be a t the top of the

list. To measure how well we have ranked cognates we use an evaluation metric

developed for Information Retrieval, designed specifically to evaluate rankings.

The technique is called 11-point interpolated average precision [21]. It involves

calculating precision at various levels of recall. For 11-point these levels are

0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. Precision is

calculated by using the highest precision th a t occurs anywhere after a given

point of recall is reached. Figure 6.1 shows the interpolation procedure.

1

0.8

0.6
Precision

0.4

0.2

0

Figure 6.1: An example interpolated precision-recall curve

56

t
0 0.2 0.4 0.6 0.8

Recall

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This domain is challenging because word similarity is not a perfect indicator

of whether two words are cognates, since there are other ways th a t words can

be similar. Borrowing is one example, random chance is another possibility. Of

course the log odds algorithm is designed to help detect random occurrences

and lower their rank accordingly. It is also possible th a t two words are cognates

and yet exhibit no surface similarity. This can be especially true when basing

decisions on orthographic similarity, bu t sometimes such a comparison is the

only one available.

6.1.1 C ognate D ata

The da ta for training our cognate recognition model comes from a set of lexico-

statistical experiments preformed by Dyen et al. [9]. Lexicostatistics examines

the percentage of cognates th a t exist between two languages. The higher the

percentage the more closely related the languages. The words under examina

tion are from the list of 200 basic meanings developed by Morris Swadesh in

1952 [27]. They represent words th a t are essential to human communication,

and should exist within all languages. The da ta we obtained uses 95 speech

varieties all of which are Indoeuropean. The data also has all of the cognate

decisions made by Dyen.

The d a ta consists of several small sets of words for each basic meaning.

All members of the same set have been judged to be either cognate w ith each

other, or doubtfully cognate w ith each other. Doubtfully cognate represents

words th a t show similarity, bu t it is too difficult to determine w hether tha t

similarity arises from being cognates, borrowing, or chance. There are also

connections between sets, bu t these are only vaguely specified. One set would

be considered related to another if the words in the first set had a relationship

with at least one member of the other set. Unfortunately there is no indication

given in the da ta of exactly which member th a t is.

The da ta set is not perfect. In addition to the set relationship problem,

there is often more than one form given for an individual entry in a set. The

forms are considered cognates if one of the forms is a cognate to one of the

forms of another member of the set. W hen using autom atic means to extract

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the da ta it can be difficult to capture all of these relationships w ithout error.

Luckily, there is a large number of pairs, so any errors th a t slip into the data

should not effect the overall results. A few false pairs out of over two hundred

thousand should not have an effect on training. The pairs themselves were

created by exhaustively matching up every word in a set. We chose not to try

to find matches between the sets, since such a relationship means only tha t

some members of the two sets are related, with no indication which members

those are. There are more than enough examples if we only consider the sets

themselves so there is no need to deal with the difficulties of determining the

cognates th a t exist between sets. Since we did not want the ordering of the

pairs to have an effect on the training data, we also put the reverse of each pair

into the data. This creates symmetry in our final param eters, which is good

considering we have a single alphabet and are trying to model one language

family.

Despite the various languages used in the data, all of the words are rep

resented in English letters. This means the forms are described well enough

to be examined, bu t not well enough to be used for phonetic analysis. The

data th a t we are testing with has the same representation. This brings us to

one problem th a t occurs when using this da ta to train: the difficulty of sep

arating training and testing data. Normally it is a simple m atter to separate

out the test examples from the training data. For cognate da ta this is diffi

cult to do completely. Word forms between languages can be similar, if not

identical. This means th a t if you are testing on a specific language, removing

all of the words of th a t language from the da ta will not necessarily mean tha t

your test examples do not occur in the data. This occurs because there are

several languages th a t exhibit a large amount of similarity. As an example

imagine you were testing on Spanish and Polish, and removed those languages

from the training data. There exists other languages, Italian and Russian for

example, th a t would represent most of the same tokens and correspondences

as the removed pair. In this case Italian could substitu te for Spanish, and

Russian for Polish. Instead of trying to remove the testing examples, and

possibly presenting results th a t may be incorrect, we instead allow the testing

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and training d a ta to have some overlap during development. We shall still

remove languages for formal testing, but we want to bring attention to the

effect language overlap has on the training data. For now the sheer size of the

training da ta when compared to the development sets should help prevent the

param eters from being tuned to any particular language. Instead we hope to

extract general correspondences between Indoeuropean languages and test the

succuss those of correspondences in recognizing cognates between very specific

language pairs.

D evelop m en t D a ta

For development we have chosen to use two language pairs. These are Italian

and Serbo-Croatian (abbreviated IK), as well as Polish and Russian (PR). We

chose these sets because they represent opposite levels of similarity. Polish and

Russian are very similar, possessing a high number of cognates, while Italian

and Serbo-Croatian are much more distinct, w ith fewer correspondences. The

percentage of cognates w ithin the data is im portant, as it provides a simple

baseline from which to compare the success of our algorithms. If our selection

process were random , then we would expect to get roughly these percentages

for our recognition precision (on average). For the Italian and Serbo-Croatian

data, the percentage of cognates is 25.3%. The Polish and Russian d a ta set

has a much higher cognate density at 73.5%. These would be the expected

precision values for any random approach.

T est D a ta

The data used in testing represents pairing of words from 5 different languages.

Each language provides 200 of 1000 to tal words. The list for each language

contains 200 meanings (one word for each meaning), and words are paired if

they share the sam e definition. T he languages are A lbanian, English, French,

German, and Latin. This data comes from the word lists given by Kessler

[12]. Although these word lists did not come from the cognate da ta used for

training, there is still some overlap, since the same cognates occur frequently

between languages. Four of the languages: Albanian, English, French, and

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

German, were in the training data, but they were removed before the model

was trained for these tests. We did this to keep the testing and training da ta

as separate as possible. The final language, Latin was not part of the set.

We still offer the same caveat as before: there is enough similarity between

the removed languages and those th a t still exist in the set th a t we cannot

completely say th a t all words of a language are removed. There are languages

similar to English and there are languages similar to French. Obviously the

correspondences between such languages would mirror those between English

and French. However, this is a property of natural languages, one which made

a learned approach seem more appealing. Even if a language was not studied

at all, ju st as Latin is not considered in our training data, there should be

similar languages we can train on to learn the correspondences we want. For

comparison with the development set we use the average of all 10 language

pairs available for testing. The average cognate percentage for these 10 pairs is

28.4%. A ppendix A contains detailed da ta for every language pair. Also keep

in mind th a t formal tests already have some improvements in them th a t were

discovered during development. The most im portant of these is the correction

for word length added to the Viterbi and forward algorithms (see 6.1.5). Even

the formal tests whose results appear in earlier sections have this correction.

M odel In p u t/O u tp u t

The input for the training program is a set of example words th a t exhibit the

similarity to be modeled. For these experiments this is the set of cognate pairs

within the Indoeuropean languages. The ou tpu t of the training program will

be the three sets of param eters. F irst the substitution probabilities, repre

sented by a m atrix with dimensions equal to the token alphabet size of the

corresponding languages. In this case we have a symmetric representation with

a token alphabet size of 26. The second set is the insertion and /o r deletion

probabilities for each token. Finally we get the transition probabilities. The

standard model has 5 of these.

For the ranking algorithms, the input is any pair of words. The cognate

recognition task uses a mix of cognates and non-cognates. However, all of the

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pairs selected have a common meaning, they just are not necessarily cognates.

The output of any ranking program is a score for each pair in the input.

This score represents (relatively) how much of the learned similarity the pair

exhibits. For these experiments words th a t are very similar should be cognates.

B aseline: N orm alized E dit D ista n ce

Normalized edit distance is simply a minimum edit distance calculation nor

malized by the length of the longest word in the pair. The section on dynamic

programming in Chapter 4 has pseudo-code for the minimum edit distance

algorithm. If you use a standard approach, where each operation has a cost

of 1, except the substitution of identical tokens which has a cost of 0, then

we get a precision of 0.568 for the average of the 10 language pairs in our

test set. This number can be increased by adding some domain knowledge to

our cost structure. First, we set the substitu tion costs of non-identical vowels

to 0.5. This is because vowels are often transform ed between languages. We

also use a substitution cost of 2, to remove the effect non-identical segments

have on the overall calculation. By doing this we can boost the effectiveness

of the normalized edit distance score, achieving a test data average precision

of 0.624. This number represents how well a simple method could preform in

a well studied domain. The earlier precision of 0.568 is more likely for tasks

th a t have little or no domain knowledge available.

6.1.2 E xperim ents on Trained Param eter Effectiveness

The following experiments represent variations in the way the trained model

is used. The purpose is to examine how useful each part of the trained model

is to the overall performance of the system. The trained model can be broken

up into three sets of parameters: the substitu tion probabilities, the inser

tion/deletion probabilities, and the transition probabilities. Obviously, the

substitution costs constitute the core of the model, w ithout them we have no

truly useful inform ation with which to rank the word pairs. However, how

useful are the other param eters, and is it really worth training them ? This set

of experiments attem pts to answer tha t.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Because of the way our training da ta was created, it contained an excep

tionally large number of pairs. The to tal pair count for the da ta set is 235483.

This caused the training program to take a long time to run, not normally a

problem once the system is in place, since training only needs to be done once.

However in order to develop the system, training needed to be done numerous

times. Therefore, we created a smaller training set tha t included only pairs

for which both words had at least 4 tokens (length greater than or equal to 4).

This effectively cut our training set in half to 118485 pairs, greatly reducing

the tim e needed to train.

For our experiments we need to make a distinction between the two vari

ations of the log odds algorithm available to us. The first (referred to in the

tables as L.O.C.) is the model as presented by Durbin et al. [8], while the other

(L.O.L.) represents our more complex version of the log odds algorithm, where

we separate the insertion and deletion values for the word similarity and ran

dom models. Also, whenever we assume th a t the insertion and deletion costs

are constant, the two log odds models become equivalent.

A lg o r ith m
4+ D ata Full D ata

IK PR IK PR
Vit 0.582 0.923 0.584 0.920
For 0.566 0.911 0.570 0.909
L.O.C 0.764 0.990 0.777 0.990
L.O.L. 0.764 0.990 0.777 0.990
F.L.O. 0.350 0.942 0.358 0.942

Table 6.1: Comparing two training sets using only substitu tion costs

Table 6.1 shows a comparison of the effectiveness of the model trained on

the two da ta sets. This also represents the performance of our model using only

the substitution scores (for log odds and forward log odds) or the substitution

probabilities (for Viterbi and forward). In other words, only the substitution

costs are used when calculating the final score for a pair. The other model

param eters are left at constant values. The constant values for the insertion

and deletion probabilities vary depending on the algorithm. For Viterbi and

forward they are set uniformly a t ^ (since our alphabet size is 26). For our

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

log odds family of algorithms we follow the design of the original version of the

log odds algorithm and choose constant insertion and deletion values set at

the corresponding letter frequencies of the languages being examined, allowing

the two to cancel out. We do this to ensure th a t the insertions and deletions

have no effect on our results. For the Viterbi and forward algorithm s we want

uniform values so all the probabilities are equal. In the log odds algorithm s we

chose le tter frequency so th a t the insertion and deletion probabilities cancel

out w ith the probabilities from the random model. For any algorithm the

transitions are each set to 0.3 except for r which is given a smaller value of

0.1, since it is less essential to the model.

There is very little difference between the model trained with the entire

d a ta set and the model trained with the smaller sub-set of the data. The

model trained with more d a ta usually outperforms the other bu t not always,

and the differences between the two are minor enough th a t we can conclude

there are no significant differences between the two models. It seems th a t the

correspondences th a t exist between small words are also contained in larger

words, meaning there are no transform ations th a t only exist between small

words and nowhere else. Choosing length to cut down our d a ta did not have

an adverse effect on the performance of our trained model. However, since we

have the model trained on the full set of data, it is those param eters th a t we

will use for most of the experiments, unless training tim e becomes problematic.

The same table shows us the effectiveness of the log odds approach. W ith

out any corrections or tweaking it does an excellent job on the recognition

task. It is possible th a t the Viterbi and forward algorithms suffer from prob

lems caused by word length and the scores need to be adjusted to help alleviate

this deficiency (later experiments will determine if this is true or not). Those

algorithms still do a decent job, a t least when compared to random selection of

cognates. The forward version of the log odds algorithm achieves good perfor

mance on the Polish/Russian da ta set, bu t does poorly on the Italian/Serbo-

Croatian. The lower percentage of cognates makes the Italian/Serbo-C roatian

da ta more difficult and as will be seen later, the forward log odds algorithm

works best when given complete information in the form of the entire trained

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model.

Param eters
Set Constant

IK
Vit For L.O.C L.O.L. F.L.O.

indel, trans 0.584 0.570 0.777 0.350
trans 0.601 0.599 0.777 0.792 0.396
indel 0.610 0.604 0.767 0.490
none 0.612 0.615 0.767 0.734 0.508

Table 6.2: The effect of each set of trained param eters (part 1)

Param eters
Set C onstant

PR
Vit For L.O.C. L.O.L. F.L.O.

indel, trans 0.920 0.909 0.990 0.942
trans 0.926 0.920 0.990 0.993 0.953
indel 0.937 0.936 0.992 0.976
none 0.938 0.937 0.992 0.991 0.977

Table 6.3: The effect of each set of trained param eters (part 2)

Tables 6.2 and 6.3 show the consequences of using more learned param eters

during testing. The second row shows the effect th a t adding learned insertion

and deletion scores has on the algorithms. Since we are training on symmet

rical pairs of words the insertion and deletion costs are equal. This is fine

when you only have one “language” or alphabet as we do w ith this data. Not

surprisingly this addition improves each of the algorithms to some extent, but

not a significant degree. The best performance is obtained by using the mod

ified log odds algorithm with uniform transition probabilities. The next row

shows the same small increase in precision when only transition probabilities

are added to the algorithms. For this experiment the insertion and deletion

costs are returned to their constant values. Again we see a small increase in

the accuracy of the rankings, but nothing too significant.

The most unexpected results are shown the final row of the table, which

reflects the addition of both the insertion and deletion costs along with the

transition probabilities. The standard result occurs for the Viterbi and for

ward algorithms: a small gain in recognition accuracy. However for Viterbi-

based log odds we get a very unintuitive result; the accuracy of the rankings

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

drops for both da ta sets. In fact, for the IK set, it drops below the level ob

tained by just using substitution costs. It seems strange th a t two additions

tha t improve results on their own would cause a decrease when used together,

especially considering they are fairly separate in w hat they tell us about the

model. One possible reason this is occurring is the ex tra param eter introduced

in the random model, rj. This param eter, along with the various transitions

from the cognate model, is used to determine a penalty structure for insertions

and deletions. This makes the algorithm a bit more sensitive to the interplay

between the various transition param eters, which can result in larger insertion

and deletion costs. Since the algorithm normally assumes th a t insertion and

deletion probabilities are constant, combining the learned insertion and dele

tion probabilities w ith the log odds algorithm ’s existing cost structure seems

to be exaggerating the penalty for insertions and deletions. This causes the

algorithm to be a b it too aggressive when aligning tokens, reducing the overall

performance.

Overall, it is the forward log odds algorithm th a t most benefits from the

addition of more trained param eters. There is a significant increase in the

precision of this algorithm with the addition of each set of param eters. It

is unusual th a t the forward log odds algorithm behaves like the simpler algo

rithm s th a t do not contain the random model. It seems th a t weaker algorithms

require more d a ta to be effective, while the more powerful algorithms function

well with simplified d a ta th a t allows them to concentrate on the more im por

tan t facets of the data. Because of this trend we decided against a constant

insertion and deletion version of the forward log odds algorithm. Instead, our

forward log odds algorithm will always use the learned insertion and deletion

values of the trained word similarity model.

The test da ta shows a slightly different story. Table 6.4 shows a slight drop

in precision whenever insertion/deletion information is added. The exception

to this is the forward log odds model, which still benefits from every ex tra

bit of data it receives. Notice th a t the Viterbi and forward algorithms both

profit from the inclusion of transition probabilities. This gives them a more

detailed penalty structure. On the other hand, the Viterbi log odds algorithms

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Param eters
Set Constant

Test D ata Average
Vit For L.O.C. L.O.L. F.L.O.

indel, trans 0.569 0.537 0.702 0.536
trans 0.565 0.516 0.702 0.698 0.553
indel 0.630 0.628 0.685 0.634
none 0.619 0.615 0.685 0.662 0.639

Table 6.4: Formal tests of the effect of adding more trained model param eters

get lower performance as more data is added to them. These algorithms work

best when they can concentrate on the most im portant data, in this case

substitution costs. So far the best performance is the log odds algorithm with

constant insertions, deletions, and transitions.

6.1.3 V iterb i vs. Forward-Backward for EM Training

Initial training was done with two different EM algorithms. The first was based

on a V iterbi approach, only looking at the best alignments, the second used the

standard forward-backward approach. One of the biggest obstacles w ith the

Viterbi algorithm is its sensitivity to initial param eter settings. The standard

forward-backward algorithm works well when given uniform starting values,

but this leads to poor results when used as a starting point for the Viterbi

algorithm, as the experimental results show. We attem pted to overcome this

lim itation by using some domain specific knowledge. One experiment gave the

diagonal entries higher values than the other entries. The other experiments

attem pt to use phonetic similarity as a means to determine what tokens should

get higher initial scores. The first version of phonetic initialization creates

positive scores in the initial score table if the pair is phonetically similar.

These decisions were made by a separate program, developed by Kondrak as

part of his PhD thesis [17], th a t is able to measure phonetic similarity. This

program produces a score for any token pair and tha t score can be either

positive or negative. For example the phonemes “f” and “v” get a positive

score, 25. However, “f” and “e” get a score of -30. Remember th a t our da ta

was not designed to be examined phonetically, bu t we are only using phonetics

for a starting point, not for the actual scores. If the pair of tokens were given

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a positive score by this program, then they got a positive initial score in the

table. The second phonetic initialization uses the similarity of vowels as a

threshold. This was done because vowels tend to always be similar. The score

table gets a positive entry if the pair exhibited more similarity then the best

pair of vowels. The main problem with the phonetic approach is th a t our da ta

is represented as English letters, not phonemes, bu t hopefully there is enough

overlap between phonemes and letters in our data th a t such initial conditions

help avoid any of the poor local maximums th a t plague the Viterbi algorithm

is this domain. The Viterbi algorithm used is the log odds algorithm, since it

tends to preform better and has a built in length normalizing component.

fnitial Conditions tK P R Test D ata Average
Uniform 0.455 0.878 0.386
Diagonal 0.565 0.980 0.530
Phonetic (zero-threshold) 0.562 0.972 0.589
Phonetic (vowel-threshold) 0.486 0.945 0.586

Table 6.5: V iterbi based EM algorithms

Table 6.5 shows th a t the V iterbi algorithm preforms poorly as an EM

algorithm for the data sets we are working with. The average for the test

data is a b it better than the development results, but this approach still gets

precisions well below the mark set by similar forward-backward trained models.

The problem mainly lies in the way th a t the Viterbi algorithm works. Since

it can only consider the alignments it initially creates when getting counts, it

is difficult to change from the first set of alignments. When there is no good

indication of what starting param eters to use w ith the algorithm it is difficult to

get good results when doing Viterbi training. For every token we know nothing

about (except for identical tokens, this is most of them) we must either make

the choice to align them or not. if we align them , they will always get aligned

in the data, causing the algorithm to align every token when comparing two

words. Obviously this is not the behavior we are looking for. On the other hand

if we do not align the tokens we know nothing about, then we will not get any

new information from the data. We align the tokens we “guessed” were good

initially and can learn almost nothing from the rest of the data. This all or

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nothing problem with the V iterbi algorithm is a problem of our domain. If we

had more precise starting conditions th a t we just need to refine to better match

the d a ta we were training on, the V iterbi approach would probably preform

much better. U nfortunately we are looking for approaches th a t can be used

in domains th a t are not well studied and the Viterbi approach does not seem

applicable to such tasks. W hat we need to be able to do is change our insertion

and deletion values during training. It might be possible to s ta rt by aligning

our d a ta aggressively, and then by decreasing the penalty for gaps, remove

some of the weaker alignments from being preferred over insertions/deletions.

This approach doesn’t quite fit w ith the Hidden Markov Model approach, but

it is something th a t could be examined a t a later time. The remainder of our

experiments concentrate on the forward-backward training algorithm and how

well we can get it to preform.

6.1 .4 Experim ents w ith M odel C om plexity

W hile the previous set of experiments dealt with how much of an effect each

individual param eter component had on the overall model, we still trained the

model as a whole in order to get those probabilities. It would be interesting to

see if testing with only the substitution costs (or whatever else might interest

you), preforms better if only the substitution costs are trained. The first

experiments trained the insertions, deletion, and transition costs, and then

sets them to constants during the testing phase. The following experiments

keep those param eters constant throughout the training process. Since the

trained model more closely resembles the model used for testing, it may allow

for be tte r result.

The results show th a t the less complex the model the worse the overall

performance of the model. Keeping transitions constant is worse than training

the entire model (see Tables 6.2 and 6.3) and continues to degrade if the

insertions and deletions are held at a uniform value as well. There are a few

exceptions, mostly occurring when insertions and deletions are kept constant

during training. However, the differences are too small to conclude there are

any significant improvements in precision over the fully trained model.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constant Param eters
During (After) Training

IK
Vit For L.O.C L.O.L F.L.O

none 0.612 0.615 0.767 0.734 0.508
none (trans) 0.601 0.599 0.777 0.792 0.396
none (indel) 0.610 0.604 0.767 0.490
none (trans, indel) 0.584 0.570 0.777 0.350
trans 0.608 0.612 0.740 0.766 0.474
indel 0.618 0.618 0.777 0.505
trans, indel 0.599 0.582 0.706 0.376

Table 6.6: Training with constant param eters (part 1)

C onstant Param eters
During (After) Training

PR
Vit For L.O.C. L.O.L. F.L.O.

none 0.938 0.937 0.992 0.991 0.977
none (trans) 0.926 0.920 0.990 0.993 0.953
none (indel) 0.937 0.936 0.992 0.976
none (trans, indel) 0.920 0.909 0.990 0.942
trans 0.940 0.937 0.986 0.992 0.974
indel 0.939 0.938 0.993 0.978
trans, indel 0.931 0.923 0.988 0.952

Table 6.7: Training w ith constant param eters (part 2)

W hen the models trained w ith constant values are compared against the

fully trained models whose param eters are later set constant for testing the

results are less consistent. For Viterbi, forward, and forward log odds there is

an overall increase in performance when training with constant values. How

ever, the Viterbi log odds algorithms get a decrease in performance, instead

preferring the fully trained model with constants set afterwards, except in the

case of insertion/deletions where the opposite is true for the constant indel

version of the Viterbi log odds algorithm. One of the main reasons this may

be occurring is th a t the training algorithm is in fact the forward-backward

algorithm. Since we are training with the forward algorithm it makes sense

th a t training the model the same way we are testing it would work well when

testing with the forward algorithm. The Viterbi and forward algorithm s are

in many ways the same, so it is likely th a t they would share many of the same

properties. The log odds algorithm on the other hand uses the d a ta produced

by the training algorithm in a transformed way, no m atter how the model

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is trained. The addition of the random model and the param eter changes

tha t occur when adding th a t model to the algorithm ensure th a t the trained

model is adapted from w hat it originally was. Since this adaptation always

occurs, the algorithm should prefer to use the most precise versions of the var

ious costs, and would not benefit from a partially trained model as the other

algorithms do.

Constant Param eters
During (After) Training

Test D ata Average
Vit For L.O.C. L.O.L. F.L.O.

none 0.619 0.615 0.662 0.685 0.639
none (trans) 0.565 0.516 0.702 0.698 0.553
none (indel) 0.630 0.628 0.685 0.634
none (trans, indel) 0.569 0.537 0.702 0.536
trans 0.602 0.572 0.686 0.699 0.604
indel 0.622 0.614 0.682 0.627
trans, indel 0.625 0.625 0.672 0.641

Table 6.8: Formal tests after training with constant param eters

For the formal tests the fully trained model does not perform as well as

the models with some values kept constant. Keeping only the transitions con

stant tends to perform worse, except in the case of the Viterbi-based log odds

algorithms. All of the algorithms benefit from keeping both indel and tran

sitions constant during training, at least when compared to the unmodified,

fully trained model. Table 6.8 shows tha t keeping param eters constants during

training is usually a benefit to Viterbi, forward, and forward log odds algo

rithm s, but is detrim ental to the other log odds algorithms. However, when

indels are kept constant during training all of the models suffer, although not

always significantly. These experiments again show th a t the forward log odds

algorithm behaves more like the Viterbi and forward algorithms. This is an

other example of the testing algorithm matching the training algorithm, since

both the testing and training programs have the forward algorithm as part

of their structure. It appears th a t this similarity is more im portant then the

structural similarity between the log odds algorithms. As such, the forward

log odds algorithms benefits from testing with the exact same model th a t was

trained. The best variation is still the log odds algorithm with substitution

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scores derived from a fully trained word similarity model and constant inser

tion, deletion, and transition probabilities set after training.

6.1.5 C orrecting for Length

Our next set of experiments deal mostly with changes to the algorithms th a t

occur after training, in order to more effectively complete the cognate recog

nition task. The first of these is to examine the effect of word length on the

precision of the various algorithms. We have already seen th a t the log odds

algorithm is implicitly normalizing since it contains the division of two models.

However the V iterbi and forward algorithms have no such mechanism. Since

we are dealing w ith multiplicative probability chains, we know each number

in the chain will be a t most one. In fact, we do not allow any transitions or

emission to get probability one (or zero) since we can never be th a t certain

about any single alignment, and since in the case of a one, it would force all

the other probabilities to be zero in order to satisfy the restrictions on Hidden

Markov Models. We are continually multiplying numbers smaller than one

together every tim e we process a token (or a token pair). This means th a t the

result of this m ultiplication will get smaller and smaller the longer the words

are. This causes true cognates to get lower scores than non-cognates if the

true cognates are a few tokens longer. In order to correct for this we use the

following correction for length,

Correction =
C n

where n is the length of the longest word in the pair, and C is a constant

which will need to be determ ined by experimentation. This gives our forward

algorithm a final calculation of

P(Q\»)
C n ’

while the final score for the V iterbi calculation becomes

P(X*)
C n '

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constant
IK PR

Vit For Vit For
1.0 0.612 0.615 0.938 0.937
0.5 0.624 0.626 0.944 0.944
0.1 0.660 0.662 0.961 0.961
0.05 0.672 0.671 0.968 0.968

1/26 « 0.0385 0.673 0.674 0.971 0.971
0.01 0.702 0.695 0.981 0.983

0.005 0.649 0.606 0.981 0.981
0.0001 0.372 0.343 0.928 0.921

Table 6.9: Correcting for word length

The first entry in Table 6.9 represents no correction for length (division

by one). As the constant gets smaller, the correction is getting larger. The

table also includes the value ~ since this represents the same sort of value th a t

would be used by the log odds algorithm during its implicit normalization. The

random model uses a larger variety of values based on letter frequency, but

this is the average value for each token. Even the smallest correction begins

to have a positive effect of the cognate recognition task. There is a limit to

how much correction can be done however. This follow our intuition, if the

correction for length becomes too great we will have the opposite problem:

long words will be preferred over short ones no m atter how good the actual

alignments are.

A nother common method to correct for length is to take the nth root of the

final calculation, where n is the length of the longest word. On the develop

ment set the V iterbi algorithm achieved precisions of 0.605 and 0.592 for the

Italian/Serbo-C roatian and Polish/Russian d a ta sets respectively. For the for

ward algorithm the results were 0.971 for both da ta sets. Since this approach

did not preform as well as the previous calculation, it was not explored any

further during formal testing.

It is im portant to note th a t our formal testing was done after all of the

development experiments were finished. As such the formal tests already in

clude the modifications th a t were done by hand tuning the algorithms on the

development sets. This means th a t any of the results in previous sections th a t

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are done on the test set, already have this correction for length as part of the

calculation. We used the constant C = 0.01, since it got the best performance

on the development data.

6.1.6 R educing th e N um ber o f Param eters

One of the more difficult decisions to be made when creating a Pair Hidden

Markov Model, or any Hidden Markov Model, is choosing what param eters

the model should have. For our model having a separate sta te for each edit

operation seems intuitive, allowing us to divide each operation into costs or

probabilities th a t make sense when you consider token by token alignment.

One of the more problematic issues arrives when discussing the transition

param eters. The biological model is set up in such a way th a t it allows for affine

gap penalties, something common in the alignment of biological sequences.

The question still remains if such a gap policy would be beneficial to our word

similarity model. In addition there is also the question of the effect of our end

state transition param eter r . Since our algorithms always know the lengths

of the words we are processing ahead of time, we do not need to use r in

order to know when to stop our iterations. The end state and transitions to

it are included to allow for the generation of data, but if you do not need a

generative model do you need to have this sta te in the model? It may be

tha t including an end state has no effect on the ranking and alignment of

word pairs. Since Hidden Markov Models pu t a restriction on the transition

probabilities (all transitions from a sta te m ust sum to one) then including the

end state does not ju st give us a simple constant multiplier a t the end of our

probability chain. Including it takes away some probability mass from the

other transitions between each of our states, since part of th a t mass must go

into the transition to the end state.

It is simple enough to remove r from our transitions. The remaining prob

ability mass goes to the transitions th a t lead to the substitution state, since

this tends to be the highest out of all of the probabilities. The comparison

in Tables 6.10 and 6.11 are against the fully trained model after it has been

corrected for word length.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IK
Vit For L.O.C L.O.L F.L.O

W ith r 0.702 0.695 0.767 0.734 0.508
W ithout t 0.726 0.699 0.755 0.720 0.466

Table 6.10: The effect of removing the end state (part 1)

PR
Vit For L.O.C. L.O.L. F.L.O.

W ith t 0.981 0.983 0.992 0.991 0.977
W ithout r 0.985 0.985 0.992 0.991 0.969

Table 6.11: The effect of removing the end state (part 2)

There is a small increase for the Viterbi and forward algorithm s when the

end sta te is removed. The extra probability mass allows the other transitions

to more exactly represent the form needed by the cognate model. Log odds,

including all variations, on the other hand gets a decrease in precision for the

Italian/Serbo-C roatian data. Again, the log odds family of algorithm s is more

sensitive to transition changes since their entire gap penalty structure relies on

it. Keep in mind th a t the best performance obtained by the log odds algorithm

is still from constant, uniform transition param eters. Such a choice allows for

a more consistent penalty between the various states.

Test D ata Average
Vit For L.O.C. L.O.L. F.L.O.

W ith r 0.619 0.615 0.685 0.662 0.639
W ithout r 0.620 0.613 0.666 0.641 0.603

Table 6.12: Formal tests for removing the end sta te

The formal tests in Table 6.12 show th a t using the model w ithout the end

sta te decreases the performance of the algorithms. The V iterbi and forward

algorithms show no significant difference, bu t all of the log odds algorithms

have a significant lowering of their cognate ranking precision. We can con

clude th a t the end state is im portant to the word similarity model, and the

information it adds, mostly through the transition probabilities used to get to

the end state, can increase the performance of our system.

It is possible to reduce the number of param eters even further by allowing

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only one transition param eter. This is done by keeping all of the transitions to

a sta te constant, for all the previous states. By combining this with the sym

m etry we already have between insertion and deletion states and the removal

of the end state, we now only need to consider the probability of entering

the substitution state and the other transitions will be set by the properties

of Hidden Markov Models. The random model still has its param eter rj. In

the following series of experiments it was found th a t a lower value of rj = .0.1

preformed best. This was determ ined by experimenting with different 77 along

with the single word similarity param eter (x in the table). The good thing

about having so few param eters is th a t it is a simple m atter to determine

during development which value seems to be better, since the search space is

so small. Tables 6.13 and 6.14 show some of the values for x and how well

each one works. In th a t table 1 — e represents choosing a value as close to 1

as possible without completely removing the remaining transitions from the

model. For these experiments e = 0.0001.

X

IK
Vit For L.O.C L.O.L F.L.O.

0.1 0.518 0.419 0.743 0.750 0.302
0.2 0.616 0.496 0.799 0.789 0.333
0.3 0.650 0.569 0.805 0.792 0.365
1/3 0.663 0.579 0.804 0.790 0.374
0.4 0.683 0.610 0.805 0.787 0.389
0.5 0.705 0.647 0.793 0.774 0.410
0.6 0.721 0.674 0.779 0.757 0.431
0.7 0.725 0.694 0.761 0.735 0.459
0.8 0.735 0.716 0.740 0.704 0.469
0.9 0.726 0.720 0.695 0.670 0.474

1 — e 0.625 0.625 0.566 0.562 0.479

Table 6.13: Using only a single transition param eter (part 1)

W hen the param eters are tied together like this, we are trying to answer

one question; which state are we more likely to be in? For this da ta set tha t

sta te is the substitution state. Since our task is to recognize cognates this is

w hat would be expected. A good alignment will mostly contain substitutions,

since gaps only occur when there are no good alignments for tokens in the

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

PR
Vit For L.O.C. L.O.L. F.L.O.

0.1 0.919 0.902 0.982 0.988 0.898
0.2 0.951 0.940 0.992 0.992 0.927
0.3 0.964 0.956 0.993 0.993 0.941
1/3 0.968 0.961 0.994 0.993 0.945
0.4 0.972 0.968 0.994 0.993 0.949
0.5 0.978 0.976 0.994 0.993 0.955
0.6 0.982 0.981 0.993 0.992 0.960
0.7 0.985 0.985 0.992 0.992 0.965
0.8 0.986 0.986 0.992 0.990 0.968
0.9 0.986 0.987 0.990 0.987 0.971

1 — e 0.963 0.964 0.962 0.957 0.955

Table 6.14: Using only a single transition param eter (part 2)

words. So essentially when x has a high value then gaps are penalized more.

Since the forward algorithm s (both the regular and log odds forms) look at

every possible alignment they benefit the most from a very high probability of

going into the substitu tion state. There is a limit to how high x can go. Any

pair whose words are not of equal length requires gaps in order to create an

alignment, so having too much of a gap penalty can be detrim ental to overall

performance. The log odds algorithms preform better when a lower probability

is given to the m atch state. This is again due to the harsher penalties for gaps

employed by the log odds algorithms. If we reduce the probability of entering

a gap state too much then the penalty becomes too high. Since every sta te has

one transition to the m atch sta te and two transitions to gap states, the x value

of | represents uniform transition probabilities. This is the same behavior we

saw in previous experiments, log odds preforming best when the transitions

between states are equal, or close to it.

For the formal tests we used only the most promising value of x for each

algorithm. In the case of Viterbi, forward, and forward log odds, this is x = 0.9.

For the remaining log odds algorithms the best choice seems to be x — 0.3,

since it has better performance on the more difficult of the two development

sets (IK). Table 6.15 gives the precision of the best single param eter model for

each algorithm.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transitions
Test D ata Average

Vit For L.O.C. L.O.L. F.L.O.
multiple 0.619 0.615 0.685 0.662 0.639
single 0.642 0.648 0.701 0.701 0.602

Table 6.15: Formal tests using only a single transition param eter

The results of this experiment give us the best performance out of all

variations of the V iterbi and forward algorithms. This is interesting because it

follows a common trend. The best performance tends to involve first training

the entire model, then using the trained substitution scores, but simplifying

other parts of the model. In this case we are still using the learned insertion

and deletion probabilities, bu t the transitions are being simplified. For the

Viterbi-based log odds algorithms we get precision th a t is nearly equivalent to

the best of the previous variations. This is not surprising since the value of

the single param eter is such th a t all transitions are roughly equivalent. Only

the forward log odds suffers from this approach. It still works best when all

of the param eters of the trained model are used together.

6.1.7 E xperim ents w ith D iscrete Em ission C osts

This experiment follows an approach used by M ann and Yarowsky [20], where

they transformed the probabilities of their stochastic transducer into discrete

classes th a t could be used by a simple Levenshtein distance approach. We have

tried the same, turning all of our scores from the log odds substitution m atrix

of the log odds algorithm (fully trained model) into one of three weight classes:

0.5, 0.75, and 1. As was done in their experiment we gave identical tokens a

zero cost. We chose to give negative scores a cost of 1, since they represent

bad matches in the score table. M oderate matches, those with non-negative

values less than one were given the value 0.75. The remaining scores, those

th a t represented learned correspondences within our language family, got the

cost of 0.5. Table 6.16 shows the results with various indel (insertion/deletion)

costs. All of the entries used a cost based Viterbi algorithm, where lower costs

are preferred.

Because of the discrete nature of our values it is easy to describe the behav-

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indel cost IK PR
2.0 0.634 0.965
1.0 0.672 0.979

0.75 0.683 0.983
0.6 0.700 0.984
0.5 0.701 0.984
0.4 0.687 0.980
0.3 0.674 0.977
0.2 0.655 0.974

Table 6.16: Scores transform ed into discrete values

ior of the algorithm based on the indel cost. For example, if the indel cost is 1,

then it is ju st as bad to align a token to a gap then to the worst possible choice

of token (which also has a cost of one). An indel cost of 0.4 would always gap

two tokens whose alignment cost is 1, since the two gaps would only cost 0.8.

These two perspectives are useful to see why values around 0.5 or 0.6 get the

best performance. Such a value makes gapping a bad choice, either the same

or slightly worse than any alignment. This gives the algorithm more freedom

for determining alignments since it can gap or align bad sequences a t about

the same cost, allowing the similar subsections of the words to have a greater

effect on overall cost. They also keep a minimum penalty for single token

gaps which often occur in cognates, when one word has an extra token. Such

extra tokens will not be greatly penalized. However, the overall performance

of this technique is significantly lower than th a t of the fully trained model

from which the costs are calculated. Even the other simplified models th a t are

based on the fully trained model (those with some param eters set to constant,

uniform values) get better precision. Our results differ from those of M ann and

Yarowsky, bu t these results seem more intuitive. We are taking a finely tuned

set of param eters and ignoring much of the detail tha t was learned through

training. If our param eters were overtrained, then this approach might be

better, bu t the results suggest th a t the more detailed model is preferable for

cognate recognition.

For formal testing we used only the best indel cost, 0.5. W ith this value

the average of all of the test runs was 0.664. This is higher than the best

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the regular Viterbi or forward algorithms, but still falls well short of the

precision achieved by the log odds algorithms. This is as expected, since we

use the scores of the log odds algorithm to derive the discrete costs. Since we

are simplifying the main component of our model, it should have a negative

effect on the models performance, and it does.

6.1.8 R em oving M ultip le P aths

Multiple paths can be a problem when your model considers them as separate,

but in practice it may be better to consider the paths the same [3]. Consider

the following two fictional alignments

x y - x
X - Z X

x - y x
X Z - X

In our model these two alignments would be trea ted as different alignments,

each with the same probability. If we want to consider them as equivalent

alignments then we get inconsistencies between Viterbi alignments and the

corresponding forward calculations. This happens because in the forward al

gorithm the two alignments would contribute equally to the calculation, while

in the Viterbi only one of them would ever be considered. For the Viterbi

algorithm to function correctly we would need to allow only one such align

ment to be legal, and it would need to have twice the probability. It is also

possible ju st to consider the alignments as separate, in which case no changes

are needed.

To determine the effect of such inconsistencies we have trained two sepa

rate similarity models. The first allows no transitions between insertion and

deletion states. This is the original bioinformatics model, which we have al

ready discussed is not well suited for cognate alignment. The second allows

a transition from the deletion sta te to the insertion state, bu t does not have

a transition in the opposite direction. This better preserves the needs of the

alignment functionality of our model, bu t it does remove the sym m etry we

have been preserving between insertion and deletion states.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IK PR
No A One A Both A No A One A Both A

Vit 0.700 0.700 0.702 0.981 0.981 0.981
For 0.694 0.694 0.695 0.983 0.983 0.983

L.O.C. 0.768 0.768 0.767 0.992 0.992 0.992
L.O.L. 0.734 0.734 0.734 0.991 0.991 0.991
F.L.O. 0.508 0.508 0.508 0.977 0.977 0.976

Table 6.17: Various transition structures between X and Y states

There seems to be no discernable difference between the models with or

w ithout multiple paths. This comes from examining exactly w hat our model

does. It is a model to describe word similarity. This means we are training it

on words we believe to be similar, and as such, there should be few gaps when a

pair of similar words is aligned. The transition between insertion and deletion

states is the least used, because we rarely need to do a large series of insertions

and deletions a t a single time. For dissimilar words th a t are still cognates, it

is more often the case th a t one word has many ex tra tokens, usually in the

form of prefixes or suffixes. These extra tokens are handled by a single state,

insertion or deletion depending on the order the words are paired in. We have

discovered a property of our model th a t is interesting and could be useful in

the future: the transition between insertion and deletion states has little to no

effect on the rankings of the word pairs. However, it is im portant to remember

th a t the alignments produced by such models would be significantly different,

so choosing either the model w ith one or two transitions between insertion and

deletion states would be preferred for word similarity.

Test D ata Average
No A One A Both A

Vit 0.619 0.619 0.619
For 0.615 0.615 0.615

L.O.C. 0.685 0.685 0.685
L.O.L. 0.662 0.662 0.662
F.L.O. 0.638 0.639 0.639

Table 6.18: Formal tests w ith various transition structures between X and Y
states

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our formal tests confirm th a t there is no difference between these models.

All of the results are almost identical as can be seen in Table 6.18. In fact it

is not just the averages th a t are identical. Each language pair gets essentially

the same precision no m atter which structure we use for transition between

the insertion and deletion states. Multiple combined insertions and deletions

just don’t occur much in this domain, and as such we do not need to worry

about multiple paths in order to achieve good performance.

6.2 Phonetic Experim ents

Since phonetic representations are often a much better indication of cognate

pairs then the more abstract orthographic representations it would be useful

to examine how well our system works when given phonetic training data.

Unfortunately, such da ta is not often available, certainly not to the extent

th a t was used for training the previous word similarity models. Instead we

have tried to develop experiments th a t could be done with our system using

only a limited amount of phonetic data.

6.2.1 D evelopm ent

Our solution was to use an experiment tha t involved filtering out cognates

from a list th a t contained both cognates and non-cognates. The idea is tha t

for a single pair of languages, the correspondences th a t exist between cog

nates should remain relatively consistent for each example pair. On the other

hand, the pairs th a t are not cognates should create a random set of correspon

dences. Thus, if the model is trained on this mixed data, then the cognate

correspondences should occur more regularly than any other correspondences

th a t exist solely by chance. If this is true then our model can get the best

performance on the training da ta by emphasizing the correspondences in the

cognates, giving them higher scores in the rankings. Essentially we are filter

ing out correspondences th a t occur by chance, since they should not occur in

any great number relative to the true cognate correspondences. The frequency

th a t the letter occurs in the data should not have an effect, since the counts for

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all correspondences with th a t letter will be larger. The training data consisted

of 200 pairs of words between languages, each with a varying percentage of

cognates. The da ta used in these experiments are the Italian/Serbo-Croatian

and Polish/Russian sets used in previous experiments.

We used both the V iterbi and forward-backward training algorithms for

this task. We had to restrict the models since we did not have enough infor

mation to accurately estim ate all of the param eters. For the forward-backward

algorithm we assume uniform, constant insertion and deletion values based on

the observed alphabet size for each language in the pair. The observed al

phabet is the alphabet created by examining the tokens th a t occurred in the

training data. Since we are testing and training on the same data this as

sumption is adequate. Our Viterbi log odds algorithm requires th a t we have

frequency probabilities for each token. We had to use uniform token frequen

cies for the random model, since when we tried getting frequency information

from the da ta as an experiment the results were terrible (often below the cog

nate percentages of the d a ta sets, our lower bound). The Viterbi-based log

odds training algorithm required us to use a number of different initial condi

tions in an a ttem pt to increase the model’s performance. These are the same

initializations th a t are described in 6.1.3.

Training Testing IK PR
F.B. Vit 0.534 0.990
F.B. For 0.531 0.990
F.B. L.O.C. 0.441 0.987
Vit L.O.(uniform init) L.O.C. 0.278 0.723
Vit L.O.(diagonal init) L.O.C. 0.410 0.987
Vit L.O.(phon init, normal thresh) L.O.C. 0.380 0.979
Vit L.O.(phon init, vowel thresh) L.O.C. 0.386 0.980

Table 6.19: Cognate filtering experiment development

Table 6.19 shows the precision achieved by the various training and test

ing algorithms. The results show two general trends. First, since the Pol

ish/Russian da ta has a denser percentage of cognates it is possible to achieve

high precision in the filtering task. This happens because the data contains

very little noise to confuse the model during training. The second result of

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these experiments is the failure of the log odds algorithm to outperform the

Viterbi and forward algorithms. The reason this occurs is the greater need for

data th a t the log odds algorithm has. To function properly it needs more infor

mation then just the probabilities for token substitutions. It also relies heavily

on the random model, which requires some understanding of the languages be

ing studied. Specifically, the random model needs the frequencies tha t each

token occurs in the language. Normally, it is enough to get these frequencies

and use them as constants during the training of the model. Unfortunately,

w ithout any additional da ta for each language, we can only assume a uniform

token distribution. This is almost never the case in a natural language, bu t it

is the best we can do under the circumstances. To make m atters worse, we not

only need da ta for each language, but th a t da ta has to be in a phonetic form.

If nothing else this experiment has exposed a small weakness in the log odds

model th a t does not exist in the other algorithms, the need for more domain

information then just token substitution costs.

6.2.2 R esu lts

We also tried the filtering experiment with phonetic versions of the da ta we

used for our formal cognate identification tests. Each language pair was tested

separately, and we also calculated the average of all of the possible pairs be

tween all 5 languages. The results of these experiments are shown in Table

6.20. The first entry of each row shows the pair under examination, using the

first letter from the names of the languages.

There is not much difference between the various algorithms. The only ex

ception is th a t the log odds algorithm performs poorly when using the forward-

backward trained probabilities. We do however, get good performance with

the log odds algorithm if we also train w ith the log odds algorithm. This is

occurring despite having to use uniform values for all of the token frequen

cies. Again, the languages with a higher percentage of cognates are easier to

filter than those with a low cognate density. The results for English/G erm an

are very encouraging, since the Viterbi and forward algorithms are achieving

near perfect cognate recognition, even though the percentage of cognates in

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Training / Testing
D ata F.B. / Vit F.B. / For. F.B. / L.O.C. Vit L.O. / L.O.C.
EG 0.970 0.970 0.944 0.901
FL 0.860 0.866 0.798 0.805
EL 0.732 0.734 0.694 0.583
GL 0.645 0.649 0.648 0.562
EF 0.451 0.451 0.524 0.581
FG 0.471 0.464 0.459 0.527
AL 0.488 0.500 0.493 0.571
AF 0.410 0.403 0.358 0.406
AG 0.232 0.229 0.190 0.281
AE 0.192 0.195 0.157 0.235

Average 0.545 0.546 0.527 0.545

Table 6.20: Filtering experiment results

the da ta is less then 60%. These successes show th a t the algorithms are well

suited to working with phonetic data. If enough phonetic data becomes avail

able our word similarity system should be able to increase the precision of its

rankings.

6.3 Drug Nam e Sim ilarity

This experiment follows the ideas presented by Kondrak and Dorr [18], as

they examined ways to determine confusable drug names. We have trained

our system using a list of drug name pairs th a t are considered confusable,

and then applied four of our ranking algorithms to a larger set containing

pairs of names where some are considered confusable and the rest are not.

We have used the same evaluation m etric th a t was used in the original set of

experiments, and have graphed the results along with one of the approaches

used in the paper, normalized edit distance (NED). This gives us a point of

comparison w ith the results obtained in the original experiments as well as a

baseline to compare our algorithms to each other. Figure 6.2 shows each of

our approaches.

The graph shows the same results th a t occurred on most of our cognate

test data. The log odds algorithm with constant insertion and deletion costs

gets the best recall, followed closely by the log odds algorithm th a t was mod-

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
"NED

"Viterbi
Forward
"L.O.C.
"L.O.L.

0.1

0
10 15 20 250 5

Figure 6.2: Recall at various thresholds using the UPS test set

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ified to use the learned insertion and deletion costs. The V iterbi and forward

algorithm s get the lowest recall, falling short of the mark set by the normalized

edit distance. It is good to see th a t our algorithms perform as well as some of

the be tte r techniques used in the original experiments. Our system was not

changed in any way before using it with this task. We did no development,

instead using the system as it was developed for cognate ranking. This exper

iment shows the adaptability of our machine learning based approach. Even

w ithout any domain knowledge or any changes to the model we were able to

get good recall on this task. In addition, this experiment speaks well for our

underlying Pair Hidden Markov Model. Having each state represent one of

the three core edit operations keeps the model general enough to handle any

alignment task. It has proven itself as a useful model for biological sequence

alignment, and we have also shown th a t it can be used (with a few changes)

successfully in natural language based tasks. This system would make an ex

cellent starting point for any problem th a t can be dealt with from the view of

word alignments, or rankings based on the corresponding alignment scores.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusion

Our goal was to create a system th a t could autom atically learn to recognize

words th a t were similar based on some criteria provided during training, and

separate such words from those th a t did not exhibit such similarity or whose

similarity exists solely by chance. To this end, we have successfully adapted

techniques from the field of bioinformatics by using a Pair Hidden Markov

Model.

Our system consists of a variety of algorithms and variations for testing and

training th a t have proved themselves, as a whole, to be useful for recognizing

similarity between cognates. The best overall algorithm for cognate recognition

was the Viterbi-based log odds algorithm. Both the original version, and our

modification th a t uses learned insertion and deletion costs, got about the same

precision, working best when the transition probabilities are set to uniform,

constant values. Our model w ith only a single transition param eter, along with

all of the learned emission probabilities also performed well. By using more

domain knowledge in the form of the random model, the log odds algorithm

was able to better separate true similarity from chance similarity. This kind

of information is easy to obtain and can usually be learned directly from the

training data. In addition the log odds algorithms autom atically normalize

the results based on the lengths of the words under examination.

The algorithms also seem to work well given the much more available or

thographic data. Yet, the system shows promise for working well with phonetic

data. We had such da ta in mind when we designed the system, as it tends

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to be more powerful when aligning words in natura l languages. It remains

to be seen if phonetic training data in the same am ount as the orthographic

data we used would further boost the performance of the system. Creating

phonetic da ta is a difficult procedure however, and a useful task to study on its

own. Of course, such d a ta becomes a necessity if we wish to study languages

tha t have complex alphabets, such as Asian languages. We have also shown

how our system can be useful for other tasks, not ju st cognate identification,

since the system was used as is to determine sim ilarity between drug names.

Switching to a new domain provided no difficulties for the algorithms, and the

results were good considering th a t no domain knowledge was added, and no

development was done for th a t task.

Our approach also represents a push further into the field of machine learn

ing, w ithout the need for the domain specific knowledge often associated with

natural language tasks of this type. This allows our system to be adapted to

any number of tasks, even those th a t are not well studied, as long as we have

examples of w hat would be considered similar words for the job in question.

Of course this is still ju s t a first step, machine learning is a very deep and

well studied field of research. There are always more approaches to try, more

variations th a t give a different way of using the d a ta available to us. We be

lieve our system gives an excellent starting point from which further research

can continue. Our system could be used as a comparison to measure other

machine learning techniques, or as the basis for an even larger system tha t

incorporates more approaches.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A
maximization technique occurring in the statistical analysis of probabilis
tic function of Markov chains. The Annals o f Mathematical Statistics,
41(1): 164—171, 1970.

[2] Richard E. Bellman. Dynamic Programming. Prinston University Press,
1957.

[3] Brona Brejova, Daniel G. Brown, and Tomas Vinar. The most probable
labeling problem in HMMs and its applications to bioinformatics. In
Algorithms in Bioinformatics (W A B I 2004), 2004. To appear.

[4] Peter F. Brown, Stephen A. Della P ietra, Vincent J. Della Pietra, and
R obert L. Mercer. The m athem atics of statistical machine translation:
Param eter estim ation. Computational Linguistics, 19:263-311, 1993.

[5] Alexander Clark. Learning morphology with Pair Hidden Markov Models.
In Proceedings o f the Student Workshop at ACL 2001, Toulouse, France,
July 2001. ACL.

[6] Michael A. Covington. An algorithm to align words for historical com-
parision. Computational Linguistics, 22(4):481-496, 1996.

[7] Michael A. Covington. Alignment of multiple languages for historical
comparison. In The 17th International Conference on Computation L in
guistics, 1998.

[8] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison.
Biological Sequence Analysis: Probabilistic Models of Protein and Nucleic
Acids. Cambridge University Press, 2000.

[9] Isidore Dyen, Joseph B. Kruskal, and Paul Black. An Indoeuropean clas
sification: A lexicostatistical experiment. Transactions o f the American
Philosophical Society, 82(5), 1992.

[10] Frederick Jelinek. Statistical Methods fo r Speech Recognition. The Mas
sachusetts Institu te of Technology Press, 1999.

[11] Daniel Jurafsky and James H. M artin. Speech and Language Processing:
A n Introduction to Natural Language Processing, Computational Linguis
tics, and Speech Recognition. Prentice Hall, 2000.

[12] B rett Kessler. The Significance of Word Lists. Center for the Study of
Language and Information Publications, 2001.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[13] Kevin Knight. Autom ating knowledge acquisition for machine translation.
A I Magazine, 18(4), 1997.

[14] Kevin Knight. A statistical M T tu torial workbook. Prepared in connec
tion with the JHU summer workshop, April 1999.

[15] Kevin Knight and Jonathan Graehl. Machine transliteration. Computa
tional Linguistics, 24(4):599-612, 1998.

[16] Grzegorz Kondrak. A new algorithm for the alignment of phonetic se
quences. In Proceedings o f the F irst Meeting of the North American
Chapter o f the Association fo r Computational Linguistics, pages 288-295,
Seattle, April 2000. NAACL.

[17] Grzegorz Kondrak. Algorithms fo r Language Reconstruction. PhD thesis,
University of Toronto, 2002.

[18] Grzegorz Kondrak and Bonnie Dorr. Identification of confusable drug
names: A new approach and evaluation metric. To be presented a t the
Tw entieth International Conference on Com putational Linguistics (COL-
ING 2004), August 2004.

[19] Grzegorz Kondrak, Daniel Marcu, and Kevin Knight. Cognates can im
prove statistical translation models. In H uman Language Technology Con
ference o f the North American Chapter o f the Association fo r Computa
tional Linguistics: companion volume, pages 46-48, Edmonton, May 2003.
HLT-NAACL.

[20] Gideon S. M ann and David Yarowsky. M ultipath translation lexicon in
duction via bridge languages. In Proceedings o f the Second Conference
o f the North American Association fo r Computational Linguistics, P itts
burg, 2001. NAACL.

[21] Christopher D. Manning and Hinrich Schutze. Foundations o f Statistical
Natural Language Processing. The M assachusetts Institute of Technology
Press, 2001.

[22] Rose Nash. N T C ’s Dictionary of Russian Cognates Thematically Orga
nized. NTC Publishing Group, 2000.

[23] Franz Josef Och and Hermann Ney. Improved statistical alignment mod
els. In Proceedings o f the 38th Annual Meeting of the Association fo r
Computational Linguistics, pages 440-447, Hongkong, China, October
2000. ACL.

[24] Franz Josef Och and Hermann Ney. A systematic comparison of vari
ous statistical alignment models. Computational Linguistics, 29(1): 19—51,
March 203.

[25] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals o f Speech
Recognition. Prentice Hall PTR , 1993.

[26] Eric Sven R istad and Peter N. Yianilos. Learning string edit distance. In
IE E E Transactions on Pattern Analysis and Machine Intelligence, vol
ume 20 of 5, pages 522-532. IEEE PAMI, May 1998.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[27] Morris Swadesh. Lexicostatistic dating of prehistoric ethnic contacts.
Proceedings of the American Philosophical Society, 1952.

[28] Stephen Vogel, Hermann Ney, and Christoph Tillman. HMM-based word
alignment in statistical translation. In Proceedings o f 16th International
Conference on Computational Linguistics, pages 836-841, 1996.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

Cognate R ecognition Test
R esults

These tables list the results for each language pair used as part of our formal

tests. The da ta is broken up into different tables, such th a t each table repre

sents one of the 5 main algorithm s we experimented with. These are: Viterbi,

forward, log odds (constant indel), log odds (learned indel), and forward log

odds. There are a few exceptions. Tables A .l and A.2 give the percentage

of cognates in each data set. This is useful as a lower bound on ranking pre

cision. Tables A.5 and A.6 give the results for the experiment with discrete

substitu tion costs. This is separate because it required a different algorithm,

essentially a minimum edit distance algorithm th a t functions as a Viterbi al

gorithm. Tables A.7 and A.8 give the results on the test d a ta when the log

odds version of Viterbi EM training is used. A few abbreviations are used in

the experiment column. “cT” and “cQ” represent the use of constant transi

tions and constant insertions/deletions respectively. “DEC” is used to label

the experiments th a t use discrete emission costs, determined from the trained

model param eters. Each row corresponds to one of the experiments discussed

in C hapter 6.

Experiment EG FL EL GL EF
% Cognates 0.590 0.560 0.290 0.290 0.275

Table A .l: Cognate percentages (part 1)

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment FG AL AF AG AE Average
% Cognates 0.245 0.195 0.165 0.125 0.100 0.284

Table A .2: Cognate percentages (part 2)

Experiment EG FL EL GL EF
Basic Costs 0.911 0.930 0.698 0.574 0.652
Domain Knowledge Costs 0.907 0.946 0.737 0.630 0.709

Table A.3: Normalized edit distance (part 1)

Experiment FG AL AF AG AE Average
Basic Costs 0.487 0.523 0.471 0.187 0.242 0.568
Domain Knowledge Costs 0.561 0.592 0.512 0.341 0.305 0.624

Table A.4: Normalized edit distance (part 2)

Experiment EG FL EL GL EF
DEC 0.928 0.913 0.753 0.687 0.762

Table A.5: Discrete emission costs (part 1)

Experiment FG AL AF AG AE Average
DEC 0.650 0.582 0.523 0.438 0.403 0.664

Table A.6: Discrete emission costs (part 2)

Initial Conditions EG FL EL GL EF
Uniform 0.720 0.596 0.379 0.386 0.388
Diagonal 0.888 0.871 0.590 0.465 0.661
Phonetic (zero-threshold) 0.900 0.888 0.706 0.543 0.707
Phonetic (vowel-threshold) 0.904 0.867 0.624 0.520 0.732

Table A .7: Viterbi log odds training (part 1)

Initial Conditions FG AL AF AG AE Avg
Uniform 0.344 0.341 0.229 0.264 0.209 0.386
Diagonal 0.507 0.483 0.440 0.179 0.213 0.530
Phonetic (zero-threshold) 0.564 0.500 0.433 0.267 0.377 0.589
Phonetic (vowel-threshold) 0.574 0.556 0.533 0.243 0.307 0.586

Table A.8: Viterbi log odds training (part 2)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment EG FL EL GL EF
Single Trans. Param eter 0.928 0.915 0.788 0.669 0.748
Testing with cQcT 0.893 0.875 0.747 0.625 0.656
Testing with cQ 0.922 0.910 0.803 0.705 0.747
Testing with cT 0.897 0.861 0.721 0.622 0.614
Training w ith cQcT 0.907 0.907 0.789 0.676 0.762
Training w ith cQ 0.925 0.906 0.789 0.711 0.735
Training w ith cT 0.912 0.889 0.747 0.662 0.682
Full Model 0.920 0.901 0.793 0.715 0.718
No r 0.922 0.898 0.790 0.679 0.710
No A 0.920 0.901 0.793 0.716 0.718
One A 0.920 0.901 0.793 0.715 0.718

Table A.9: Viterbi results (part 1)

Experiment FG AL AF AG AE Average
Single Trans. Param eter 0.547 0.560 0.513 0.359 0.392 0 .6 4 2
Testing with cQcT 0.472 0.478 0.348 0.347 0.248 0.569
Testing with cQ 0.552 0.538 0.439 0.356 0.328 0.630
Testing with cT 0.442 0.509 0.366 0.364 0.255 0.565
Training with cQcT 0.575 0.537 0.408 0.342 0.342 0.625
Training w ith cQ 0.513 0.539 0.445 0.346 0.316 0.622
Training with cT 0.482 0.548 0.399 0.396 0.305 0.602
Full Model 0.476 0.551 0.446 0.362 0.308 0.619
No T 0.479 0.566 0.440 0.382 0.335 0.620
No A 0.477 0.551 0.446 0.362 0.308 0.619
One A 0.476 0.551 0.446 0.362 0.308 0.619

Table A. 10: Viterbi results (part 2)

Experiment EG FL EL GL EF
Single Trans. Param eter 0.929 0.914 0.793 0.670 0.755
Testing w ith cQcT 0.871 0.851 0.733 0.584 0.610
Testing w ith cQ 0.922 0.907 0.808 0.711 0.728
Testing w ith cT 0.867 0.830 0.661 0.534 0.546
Training w ith cQcT 0.907 0.906 0.787 0.669 0.756
Training with cQ 0.921 0.899 0.788 0.695 0.721
Training with cT 0.903 0.860 0.732 0.622 0.616
Full Model 0.919 0.895 0.795 0.704 0.705
No T 0.919 0.889 0.790 0.664 0.689
No A 0.919 0.895 0.795 0.704 0.705
One A 0.919 0.895 0.795 0.704 0.705

Table A .l l: Forward results (part 1)

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment FG AL AF AG AE Average
Single Trans. Param eter 0.555 0.563 0.530 0.382 0.390 0 .6 4 8
Testing with cQcT 0.432 0.440 0.310 0.319 0.225 0.537
Testing with cQ 0.550 0.537 0.437 0.359 0.325 0.628
Testing with cT 0.395 0.459 0.313 0.308 0.245 0.516
Training with cQcT 0.577 0.536 0.413 0.344 0.357 0.625
Training with cQ 0.499 0.536 0.419 0.341 0.317 0.614
Training with cT 0.455 0.529 0.358 0.370 0.277 0.572
Full Model 0.477 0.561 0.419 0.367 0.309 0.615
No r 0.487 0.562 0.428 0.383 0.316 0.613
No A 0.477 0.561 0.419 0.367 0.309 0.615
One A 0.477 0.561 0.419 0.367 0.309 0.615

Table A .12: Forward results (part 2)

Experiment EG FL EL GL EF
Single Trans. Param eter 0.925 0.937 0.798 0.718 0.811
Testing w ith cQcT 0.927 0.936 0.800 0.724 0.812
Testing w ith cQ 0.911 0.941 0.807 0.762 0.807
Testing w ith cT 0.927 0.936 0.800 0.724 0.812
Training w ith cQcT 0.898 0.924 0.777 0.698 0.813
Training w ith cQ 0.914 0.942 0.803 0.742 0.804
Training with cT 0.933 0.938 0.794 0.679 0.795
Full Model 0.911 0.941 0.807 0.762 0.807
No T 0.914 0.940 0.800 0.677 0.790
No A 0.911 0.941 0.807 0.760 0.807
One A 0.911 0.941 0.807 0.760 0.807

Table A. 13: Log odds (constant indel) results (part 1)

Experiment FG AL AF AG AE Average
Single Trans. Param eter 0.754 0.683 0.667 0.355 0.358 0.701
Testing with cQcT 0.744 0.677 0.667 0.364 0.371 0 .7 0 2
Testing with cQ 0.691 0.598 0.609 0.316 0.408 0.685
Testing with cT 0.744 0.677 0.667 0.364 0.371 0 .7 0 2
Training w ith cQcT 0.689 0.566 0.556 0.348 0.448 0.672
Training w ith cQ 0.685 0.586 0.622 0.315 0.406 0.682
Training w ith cT 0.733 0.664 0.651 0.303 0.375 0.686
Full Model 0.691 0.598 0.609 0.316 0.408 0.685
No T 0.679 0.579 0.588 0.305 0.393 0.666
No A 0.691 0.598 0.611 0.316 0.408 0.685
One A 0.690 0.598 0.609 0.316 0.408 0.685

Table A. 14: Log odds (constant indel) results (part 2)

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experim ent EG FL EL GL EF
Single Trans. Param eter 0.925 0.925 0.792 0.744 0.801
Testing with cQcT 0.927 0.936 0.800 0.724 0.812
Testing with cQ 0.911 0.941 0.807 0.762 0.807
Testing with cT 0.924 0.924 0.791 0.741 0.797
Training with cQcT 0.898 0.924 0.777 0.698 0.813
Training w ith cQ 0.914 0.942 0.803 0.742 0.804
Training w ith cT 0.937 0.924 0.808 0.728 0.799
Full Model 0.905 0.923 0.779 0.728 0.777
No r 0.909 0.924 0.763 0.662 0.767
No A 0.905 0.923 0.779 0.728 0.777
One A 0.905 0.923 0.779 0.728 0.777

Table A. 15: Log odds (learned indel) results (part 1)

Experiment FG AL AF AG AE Average
Single Trans. Param eter 0.684 0.663 0.698 0.351 0.423 0.701
Testing w ith cQcT 0.744 0.677 0.667 0.364 0.371 0 .7 0 2
Testing w ith cQ 0.691 0.598 0.609 0.316 0.408 0.685
Testing w ith cT 0.683 0.649 0.694 0.355 0.424 0.698
Training with cQcT 0.689 0.566 0.556 0.348 0.448 0.672
Training with cQ 0.685 0.586 0.622 0.315 0.406 0.682
Training with cT 0.669 0.671 0.669 0.367 0.417 0.699
Full Model 0.641 0.559 0.588 0.324 0.396 0.662
No T 0.633 0.547 0.578 0.281 0.351 0.641
No A 0.641 0.559 0.591 0.324 0.396 0.662
One A 0.641 0.558 0.588 0.324 0.396 0.662

Table A. 16: Log odds (learned indel) results (part 2)

Experim ent EG FL EL GL EF
Single Trans. Param eter 0.921 0.891 0.719 0.562 0.708
Testing with cQcT 0.887 0.842 0.628 0.507 0.608
Testing with cQ 0.924 0.910 0.760 0.648 0.725
Testing with cT 0.899 0.842 0.653 0.534 0.622
Training with cQcT 0.909 0.906 0.756 0.643 0.783
Training w ith cQ 0.925 0.905 0.748 0.638 0.720
Training w ith cT 0.922 0.877 0.702 0.596 0.689
Full Model 0.926 0.905 0.763 0.652 0.726
No r 0.916 0.893 0.738 0.582 0.698
No A 0.926 0.905 0.762 0.652 0.726
One A 0.926 0.905 0.763 0.652 0.726

Table A. 17: Forward log odds results (part 1)

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment FG AL AF AG AE Average
Single Trans. Param eter 0.556 0.502 0.514 0.232 0.416 0.602
Testing with cQcT 0.456 0.482 0.427 0.244 0.276 0.536
Testing with cQ 0.594 0.544 0.537 0.276 0.427 0.634
Testing with cT 0.472 0.524 0.427 0.265 0.294 0.553
Training with cQcT 0.639 0.537 0.527 0.309 0.403 0 .641
Training with cQ 0.575 0.537 0.540 0.269 0.415 0.627
Training with cT 0.552 0.572 0.491 0.297 0.341 0.604
Full Model 0.595 0.567 0.542 0.283 0.427 0.639
No T 0.554 0.523 0.507 0.254 0.364 0.603
No A 0.595 0.567 0.542 0.283 0.427 0.638
One A 0.595 0.567 0.542 0.283 0.427 0.639

Table A. 18: Forward log odds results (part 2)

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Glossary

A E

The language pair Albanian and English.

A F

The language pair Albanian and French.

A G

The language pair Albanian and German.

AL

The language pair Albanian and Latin.

A R P A b et

A phonetic alphabet for American English th a t uses only ASCII charac

ters.

borrow ing

One possible source of cognates, where a word is taken from one language

and added to another. These words are often cultural specific terms.

cogn ates

Words between languages th a t have a similar form or sound, and a similar

meaning. See also genetic cognates.

d ele tio n

One of the three basic edit operations. It involves removing one of the

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tokens of the first word. This is equivalent to the alignment of th a t token

to a gap.

dynam ic program m ing

A class of algorithms th a t use table-based calculations to solve problems

by combining solutions to sub-problems.

EF

The language pair English and French.

EG

The language pair English and German.

EL

The language pair English and Latin.

FG

The language pair French and German.

FL

The language pair French and Latin.

F.L.O .

An abbreviation for the forward-based log odds algorithm.

For

An abbreviation for the forward algorithm.

gap

A series of either continuous insertions or deletions. Each gap contains

only one of insertions or deletions, not both. It is shown in alignments

with and represents alignment to nothing.

gen etic cogn ates

A more specific type of cognate, especially useful in historical linguistics.

The words in the pair must have both evolved from the same root word,

called a proto-form.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GL

The language pair German and Latin.

H idden M arkov M od el

A Markov Model th a t uses a second distribution to produce its output.

This ex tra layer of randomness makes the state sequence hidden, since

it cannot be determ ined directly from the observed output of the model.

H M M

See Hidden Markov Model.

IK

The language pair Italian and Serbo-Croatian.

indel

This term represents both insertions and deletions. It is normally used

when both operations are being considered in the same way, due to the

symmetry th a t often exists between them.

in sertion

One of the three basic edit operations. It involves adding a token to the

second word. This is equivalent to the alignment of th a t token to a gap.

In ternational P h o n etic A lp h ab et

A phonetic alphabet produced by the International Phonetic Association

(IPA). The goal of the IPA is to be able to represent all spoken languages.

L.O .C .

An abbreviation for the Viterbi-based log odds algorithm th a t assumes

the insertion and deletion probabilities of the word similarity model are

equal to the emission probabilities of the random model.

L.O.L.

An abbreviation for the Viterbi-based log odds algorithm th a t uses the

learned insertion and deletion probabilities for the word similarity model

and letter frequencies for the emission probabilities of the random model.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N E D

See Normalized Edit Distance.

N orm alized E d it D ista n ce

A simple process th a t determines how many edit operations are required

to transform one word into another. The final solution is normalized by

the length of the longest of the two words.

M arkov M od el

A model for a stochastic process th a t only retains the minimum am ount

of prior knowledge. Only the current event is needed in order to predict

(or generate) the next event.

m atch

See substitution.

orthographic

One possible way to represent words. The word is shown as it would be

w ritten in its natural language (or some approximation of it).

Pair H idd en M arkov M od el

A variation of a Hidden Markov Model th a t produces two output stream s

in parallel. Each output stream is accessed independently.

P H M M

See Pair Hidden Markov Model.

ph onetic

One possible way to represent words. The word is shown using symbols

to represent the sounds produced when the word is spoken.

P R

The language pair Polish and Russian,

proto-form

A word in an older (possibly pre-historic) language, tha t is the source of

a word (or words) in one or more modern languages.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

random m od el

A formal description of the coincidental patterns tha t exist within lan

guages. The model can generate pairs of words tha t are likely to exist

w ithin languages but are not related to each other.

su b stitu tio n

One of the three basic edit operations. It involves transforming a token

in the first word into another token in the second word. For alignment

it is sometimes referred to as a match.

tokens

The p arts of a word after it is broken up according to its representation.

The tokens are the components th a t are used in alignment.

tran slitera tion

The transform ation of a word from one language into another language

based on the spelling of th a t word. It is similar to borrowing, bu t more

often used for proper nouns.

V it

An abbreviation for the V iterbi algorithm,

word sim ilarity

An abstract concept th a t represents the strength of the relationship be

tween words. The relationship can be anything, including surface or

sound similarity. It is also possible for words to exhibit such a similar

ity by chance, making the problem of recognizing related words more

difficult.

word sim ilarity m odel

A formal description for a specific choice of word similarity. The model

can generate similar pairs of words, or calculate how similar a given pair

of words is.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

