
1

Reinforcement Learning based Distributed BESS
Management for Mitigating Overvoltage Issues in

Systems with High PV Penetration
Mohammed Al-Saffar∗, Member, IEEE, Petr Musilek∗†, Senior Member, IEEE

∗Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
†Department of Cybernetics, University of Hradec Kralove, Hradec Kralove, Czech Republic

Abstract—High levels of penetration of distributed photovoltaic
generators can cause serious overvoltage issues, especially during
periods of high power generation and light loads. There have
been many solutions proposed to mitigate the voltage problems,
some of them using battery energy storage systems (BESS) at
the PV generation sites. In addition to their ability to absorb
extra power during the light load periods, BESS can also supply
additional power under high load conditions. However, their
capacity may not be sufficient to allow charging every time when
power absorption is desired. Therefore, typical PV/BESS may
not fully prevent over-voltage problems in power distribution
grids. This work develops a cooperative state of charge control
scheme to alleviate the BESS capacity problem through Monte
Carlo tree search based reinforcement learning (MCTS-RL). The
proposed intelligent method coordinates the distributed batteries
from other regions to provide voltage regulation in a distribution
network. Furthermore, the energy optimization process during
the day hours and the simultaneous state of charge control are
achieved using model predictive control (MPC). The proposed
approach is demonstrated on two test cases, the IEEE 33 bus
system and the practical medium size distribution system in
Alberta Canada.

Index Terms—Cooperative control, state of charge, PV pen-
etration, over-voltage, model predictive control, energy storage,
coordination, Monte Carlo tree search, reinfrocement learning

NOMENCLATURE

a RL agent action.
Bs BESS capacity kW.
C1 Grid energy cost $/kWh.
C2 BESS energy cost $/kWh.
Cpurch Electricity prices for the purchased power,

$/kWh.
Cbr The required BESS capacity for the impacted

region kWh.
Csell Electricity prices for the sold power, $/kWh.
Di Full load demand of the impacted buses kW.
JBatt BESS time-of-use (TOU) cost objective func-

tion $/kWh.
Jg Grid purchase cost objective function $/kWh.
k Prediction horizon samples minute.
N Time horizon minute.
Nreg The total number of buses in one of the im-

pacted regions.
PBatt BESS power generation kW.
PL Load power kW

PPV PV power generation kW.
P reva Reverse power of the assisting buses kW.
Pch BESS charging power kW.
Pdis BESS discharging power kW.
Pg Grid power generation kW.
P revi Reverse power of the impacted buses kW.
Q The action-value function .
r Reward value.
s System state.
SOC BESS state of charge.
Ts Sample time minute.
ûb State space controller for the impacted and

assisting regions kW.
V (s) Value function.
V ∗(s) The optimal value function.
yBatt BESS energy cost space system output $/kWh.
yg Grid energy cost for the state space system

output $/kWh.
αb BESS deployment rate of without CSOCC sce-

nario.
αi BESS deployment rate of the impacted region

at the proposed CSOCC scenario.
αa BESS deployment rate of the participation of

assisting region at the proposed CSOCC sce-
nario.

ηch Charging efficiency of the BESS.
ηdis Discharging efficiency of the BESS.
π(s) RL agent policy.
θi Reverse power threshold of the impacted buses

kW.
θa Reverse power threshold of the assisting buses

kW.

I. INTRODUCTION

INTEGRATION of household-scale photovoltaic (PV) gen-
erators and other distributed energy resources (DER) into

the existing low voltage (LV) distribution grids around the
world has rapidly increased. Many government incentive pro-
grams encourage households and businesses to install small-
scale, roof-mounted PV panels, driving consumer-led evo-
lution of modern electricity supply systems. Studies have
shown that high PV penetration can lead to grid voltage
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level problems. The main concern is the risk of overvoltage
due to reverse power flow in distribution feeders, especially
at light loads. To avoid integration-related problems, many
utilities limit PV penetration levels. However, this passive
approach leads to loss of significant amount of potential PV
generation [1], [2]. Using a stochastic analysis framework on
the simulated PV deployment scenarios, various characteristics
can be determined such as the hosting capacity (i.e. the PV
penetration limits) or the location of the buses susceptible to
overvoltage. The hosting capacity depends not only on the
total PV penetration level, but also on the sizes and locations
of PV systems installed in residential areas. Additional PV
deployment factors that influence the hosting capacity include
circuit characteristics and loading conditions [2], [3]. It has
been shown that feeder voltage increases with increasing ratio
K = R/XL, where R is the line resistance and XL is its
impedance [1].

There have been many solutions proposed to mitigate the
voltage rise problems associated with high levels of PV
penetration. The reactive power absorption has been proposed
in [4]. Although this solution resolves overvoltage issues,
it also leads to reduction of the feeder power factor. The
use of smart inverters to control local Volt/VAR on the PV
connected buses offers a decentralized solution [5]. It is more
effective in resolving the overvoltage issue with lower line
losses, but at a higher cost. The use of medium voltage to
low voltage (MV/LV) transformers to limit the overvoltage
has been investigated in [6], [7].

The use of BESS collocated with PV generators can boost
local consumption during the periods of light load. In addition,
BESS can be used to support generation during the peak load
periods. It has been shown that BESS-based approaches can
considerably increase the hosting capacity [8], [9]. However,
their widespread implementation has been impeded by their
relatively high cost. As a result, most proposed approaches
combine BESS with PV inverters to absorb part of the active
power caused by high PV penetration. The limited size of
BESS used in PV applications may result in a full charge
or discharge of the batteries during the control process. In
addition to the limited BESS capacity, other factors such as
initial state of charge, load conditions, and weather-dependent
PV energy production may contribute to the shortage of the
available energy storage capacity. To address these issues, it
has been proposed to use available storage capacity of neigh-
boring BESS units [10]–[14]. This way, the charge/discharge
power in small radial distribution networks can be maximized
using common battery scheduling. The operation strategies
of these systems have been programmed in advance, based
on complete prior knowledge of the environment. However,
in many cases, the states of the environment are not know
and/or may change over time. This affects the applicability and
flexibility of the implemented strategies and, in some cases,
even their ability to converge. For instance, these methods
consider the SOC of the neighbouring bus BESS units, but
they do not consider the impact of other factors such as the
line losses and voltage levels. These may change over time and
lead to the growth of system uncertainty and, subsequently, to
decrease of reliability.

Therefore, it is crucial to design system that can learn the
strategies on its own and with limited prior knowledge of the
environment. A reinforcement learning (RL) system, unlike
systems with supervised learning, operates as an adaptive
agent that learns by trial-and-error without an explicit teacher.
A strategy learned by RL is evaluated by the Q-value function
that maps each state-action pair to an estimated reward of
the new action using a transition probability. The purpose
of Monte Carlo tree search (MCTS) is to build a feasible
environment for the RL agent to reduce the high computational
burden that would occur if the entire network were considered.
It also facilitates storing of the updates of the RL states at
particular nodes through the tree search configuration of the
MCTS navigation method. Eventually, it considers multiple
factors/system states including the sufficiency of the BESS
capacities, bus voltage levels and line losses. Finally, because
of the non-trivial nature of the system cost function, the battery
operation must be scheduled using a sound optimization
approach and the overall system control strategy must be
modified accordingly.

The new approach proposed in this article, termed coop-
erative state of charge control (CSOCC), is well suited for
large and complex distribution networks. It divides a network
into multiple smaller segments based on the configuration of
so called impacted regions (i.e. regions negatively affected
by voltage raise problems due to the high penetration of PV
generators). This approach relies on the intelligent technique of
Monte-Carlo tree search based reinforcement learning (MCTS-
RL) and on model predictive control (MPC) to resolve the
PV-induced overvoltage problem. MCTS-RL is used as a
centralized controller that optimizes the cooperating buses in
each of the partitioned network structures in terms of BESS
availability, and line losses that are subjected to the voltage
level. MPC is used as a decentralized controller to mitigate
the overvoltage by estimating and controlling the battery state
of charge (SOC). Battery scheduling is optimized not only
to mitigate the PV-induced overvoltage problems, but also to
minimize energy consumption. To demonstrate the operation
of CSOCC and evaluate its efficiency, the proposed approach
has been implemented on a model of the distribution system
of Lloydminster, Alberta Canada. The proposed algorithm and
other compared algorithms are implemented and tested using
Python, MATLAB, and CYME software.

This paper is organized as follows. Section II presents the
system model description of the Lloydminster distribution
circuit and the formulation of the economic dispatch problem.
The proposed cooperative state of charge control, RL-MCTS,
and the system modules are presented in Section III. Section
IV provides a summary of the proposed algorithm. Simulation
results are presented and discussed in Section V, followed by
conclusions in Section VI.

II. CASE DESCRIPTION

In order to understand the performance of the proposed
method the simulations are conducted on two distribution
feeders. The first is the 33 bus distribution feeder [15]. The
second, practical case is the distribution feeder of Lloydimin-
ster city served by a 25-kV distribution circuit supplied by four
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substations. The total generation at full load is 75 MW and 23
MVAR with the total load equal to 73 MW and 27 MVAR.
The distribution circuit with no PV generator installed, used
as a base case, is shown in Figure 1. This colored schematic
diagram shows relative voltage levels corresponding to the full
load for the circuit. Load flow analysis of the circuit under
different PV penetration levels has been simulated using power
engineering software CYME [16] and will be shown in section.
V.
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Fig. 1: A circuit diagram of the Lloydminster distribution
system showing voltage levels at the full load.

PV penetration is defined as the total peak power of all
installed PV generators expressed as a percentage of the annual
peak load of the same system [17]. PV hosting capacity is then
the maximum level of PV penetration that can be integrated
into the system without violating a predefined performance
index (e.g., the voltage level) [18]. The impact of PV systems
on a distribution circuit can be determined using a probabilistic
deployment framework that simulates various PV deployment
scenarios and examines the impact of their variation on the
variable(s) of interest. The outcome of this stochastic mod-
elling is then used to determine the PV penetration level
defined as the ratio of the PV panel rated power (kW) to the
value of the full-load (kW) at the connected bus [3].

III. COOPERATIVE STATE OF CHARGE CONTROL

The proposed approach to increase PV hosting capacity
is based on a combination of centralized and decentralized
control strategies. In decentralized control, the monitoring and
control of charging and discharging actions are performed
locally by each BESS. The main advantage of this approach
is that it does not require extra communication systems.
This makes decentralized approach robust and cost-effective.
However, when a BESS unit is either fully charged or can only
provide a limited power, it cannot communicate with other
BESS units to request support. The unit may even experience
a total failure resulting from the lack of communication
with other units [19], [20]. In centralized control, a central
controller aggregates measurements from the entire network
and determines the charging/discharging control tasks for each
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Fig. 2: Conceptual comparison of the proposed distributed
control strategy against the conventional centralized and de-
centralized strategies.

BESS. This approach is more efficient than the decentralized
control, as it is based on the current information about the
entire network. In the event of unavailability of particular
BESS unit, the central controller can search for an alternative
unit and resolve the problem. However, centralized control
demands fast communications infrastructure which results in
higher computational burden and overall costs. Furthermore,
in case of communication failure, BESS units may not respond
to the central controller [21], [22], and the entire system may
collapse.

The proposed CSOCC strategy forms multiple distributed
sections within an entire network [23], [24]. Integrating the
advantages of the centralized and decentralized strategies, this
approach is highly robust and tolerant to disconnections of
network components. The robustness is achieved through the
node feedback responses of the multiple distributed network
sections, while the connection/disconnection tolerance comes
directly from the presence of multiple smaller sections rather
than the entire network. Similar to the decentralized control
approach, the proposed strategy takes into account the local
measurements of the BESS capacity and voltage sensitivity
(VS) for each node to control each BESS unit. At the same
time, communication with the central controller offers an
opportunity to optimize BESS charging/discharging to not
mitigate the overvoltage problems, but also to minimize the
overall costs of system operation.

BESS can be used to mitigate voltage rise under high
penetration of rooftop PV systems in LV distribution networks.
However, technical limitations of BESS systems, such as their
finite capacity, may prevent them from maintaining sufficient
amounts of energy throughout the day. Thus, participation of
BESS units from different regions in the network is necessary
to correct the voltage profile, to maximize the utilization of
available BESS capacity in the network, and to prevent its
premature depletion or saturation. The proposed CSOCC ap-
proach addresses coordination of distributed BESS units for an
overall voltage regulation in distribution networks [25], [26].
The proposed approach identifies an assisting region (with
normal voltages) surrounding an impacted region (with voltage
limit violation) using MCTS-RL. It acts as a centralized
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Fig. 3: Principle of the proposed CSOCC approach: BESS in
the assisting regions effectively stretch the available storage
capacity to avoid its premature saturation or depletion.

consumption planner and controller for choosing the optimal
BESS buses in the assisting region. In the decentralized
controller, the MPC controls the SOC of each BESS bus to
accommodate the daily system operation in both assisting and
impacted regions.

Figure 3a shows the discretized SOC curve of the impacted
region without the use of the CSOCC. In this figure, k −∆t,
k, and k + ∆t are, respectively, the time instants when past,
present and predicted (future) states are sampled. The future
SOC state in the impacted region is estimated using the MPC
controller. Consequently, the amount of energy required from
BESS by the impacted region can also be estimated. This
energy can be obtained from the assisting regions using the
centralized controller. The energy transferred from other re-
gions is represented by the wavy lines in Figure 3b. Eventually,
the MPC-driven energy transfers will extend the SOC curve
of the impacted region to fit the required time period and
prevents premature saturation of the BESS. The main task of
CSOCC is to select the optimal BESS units using MCTS-
RL. The selected units work as a coherent group and are
able to effectively share their capacity. This strategy functions
properly even in situations when the impacted buses have
BESS units with insufficient capacities.

A. MCTS-RL

Methods of machine learning and artificial intelligence offer
many valuable tools to address a variety of issues in dynamic
and complex networks of contemporary power systems. Using
machine learning techniques, a control system can learn with-
out being explicitly programmed. Among machine learning
mechanisms, Monte Carlo tree search (MCTS) based rein-
forcement learning (RL) [27] [28], [29] is particularly suitable
for solving sequential decision-making problems. RL provides
an agent with the ability to learn the state variations and to
find potential solutions. By interacting with the environment,
RL agents gain powerful experience for sequential decision
making under uncertainty. The MCTS-RL algorithm aims
to find desirable resource diffusion strategies. For example,
in application described in this paper, this algorithm can
identify the best available BESS buses in the assisting region
and optimal power transfer paths. It navigates through the

network and gradually builds up its experience (i.e., it learns
from the results) to further optimize its own decisions in an
unsupervised fashion. This approach uses temporal difference
RL methods such as SARSA [30]. The accumulated experi-
ence is the result of biased random sampling in the decision
space during the policy optimization and exploration process.
Another advantage of the MCTS, compared to conventional
exhaustive search methods, is its narrow area of exploration
obtained using the subset search method. In RL, an agent is in
a state s from a set of possible states S, and takes an action a
out of a set of possible actions A. It moves between states
according to transition probabilities p. Once an action is taken,
the agent receives a reward r ∈ R from the environment. In
MCTS, each node (representing a network bus) contains state
and action edges (s, a) of a tree. In addition, each edge stores a
set of statistical parameters {N(s, a), r(s, a), Q(s, a)}, where
N(s, a) is the visit counter (initialized at zero), r(s, a) is the
instant reward, and Q(s, a) is the action-value pair obtained
from the value network. The value of Q is updated by Q-
learning. Q-learning is an algorithm to learn a policy for
selecting actions an agent can take within its environment.
It is a model-free learning approach that can handle problems
under stochastic conditions. The learned action-value function,
Q, directly approximates the optimal action-value function,
Q∗, of the policy being followed [30]. It can be described
using the following equation:

Q(st, at)← (1)

Q(st, at) + α
[
rt+1 + γQ(st+1, at+1)−Q(st, at)

]
,

where α is a learning rate hyper-parameter that controls the
extent to which the value function is updated, and γ is a
discount factor that denotes the impact of the current decision
on the long-term reward. A lower value of γ results in more
immediate rewards, while a higher value gives a higher weight
to the future rewards. Discount factor γ = 0 corresponds to a
one-time-event.
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Q

Q

Q

Q

Fig. 4: The proposed algorithm based on MCTS-RL method.

The tree search state is randomly initialized. When the
network state changes to s′, agent n selects an action a. The Q-
value of the agent is then updated according to the preliminary
Q-function, and the number of visits is incremented by 1 for
the visited nodes. The learning process ends either when the
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algorithm converges, or when the depth limit is reached. The
proposed method is illustrated in Figure 4. The MCTS-RL
model receives the state from the environment, transforms it
into the transition probability, computes Q(s, a) values, and
selects the diffusion strategy according to a greedy policy.
In this policy, each strategy corresponds to a different set of
actions A upon which RL will be executed in the search tree.
In a nutshell, MCTS constructs its search tree, generates many
DG allocation strategies, and through the back propagation
process, it returns the Q-values for each state after the RL has
executed the actions and generated the transition probabilities.

B. Battery modeling

The dynamic behavior of the BESS unit can be modeled
using the following discrete-time equation

SOC(k + 1) =

SOC(k) +
Ts
Bs

(
ηchPch(k)− ηdisPdis(k)

)
, (2)

where SOC is the state variable (state of charge), ηch, ηdis
are the charging and discharging efficiencies (respectively),
Ts is the sampling time, Bs is the battery capacity, Pch(k)
and Pdis(k) are the charging (withdrawing) and discharging
(injecting) power at each bus and time k. The variance of
SOC is proportional to the charging/discharging current [31].

The SOC of the battery bank is subject to the upper and
lower boundaries [32]

SOCmin 6 SOC(k) 6 SOCmax. (3)

The boundary constraints for the charging and discharging
power can be represented as

0 6 Pch(k) 6 Pmax, (4)

0 6 Pdis(k) 6 Pmax, (5)

where Pmax is the rated charging or discharging power of the
battery.

Finally, the limitation on the simultaneous charging and
discharging of the BESS is shown by

Pch(k) · Pdis(k) = 0. (6)

C. MPC Design

This section develops MPC controller design procedure [33]
that implements the proposed method. The dynamic behavior
of SOC (2) can be simplified in terms of the state space model

SOC(k + 1) = SOC(k) +Bb(k) · ub(k). (7)

The estimated parameters of the next state of charge
SOC(k + 1) are Bb(k) = [0, ηch,−ηdis], and ub(k) =
[0, Pch(k), Pdis(k)]T . The control variable ub can be derived
as follows

ûb(k) = [0,
(
Pch,i(k) + Pch,a(k)

)
,
(
Pdis,i(k) + Pdis,a(k)

)
]T ,
(8)

where the subscripts i and a designate battery systems in
the impacted and assisting region, respectively. The final
expression can be written as

SOC(k + 1) = SOC(k) +Bb(k) · ûb(k). (9)

The error between two samples is defined as the cost
function to be minimized

Je = SOC(k + 1)−
(
SOC(k) +Bb(k) · ûb(k)

)
. (10)

1) MIMO System Modeling: To facilitate MPC design,
the MIMO system (i.e., Multi-Input-Multi-Output) has to be
transformed into a state-space model [34]. The energy balance
within the system is maintained thorugh the following equality
constraint

Pg(k) = PL(k)−
(
PPV (k) + PBatt(k)

)
, (11)

where PBatt(k) = −Pch(k)+Pdis(k), and Pg and PL are the
grid power and the load demand power respectively.

Considering grid energy cost C1 and battery energy cost
C2 [35], the goal of the MPC assignment can be expressed as
minimization of the following two variables [36]

yg(k) = C1(k)Pg(k), (12)

yBatt(k) = C2(k)
(
−Pch(k) + Pdis(k)

)
. (13)

The augmented system state can be expressed as

x(k + 1) = [SOC(k + 1), yg(k), yBatt(k)]T , (14)

and transformed into state-space model [37]

x(k + 1) = Ax(k) +B · ûb(k) (15)

to calculate the output

y(k) = Cx(k), (16)

where the model matrices are

A =

[
1 01×2

02×1 02×2

]
, B =

 0 ηch −ηdis
C1 0 0
0 −C2 C2

 ,
C =

[
02×1 I2×2

]
.

2) MPC Objective Functions: In addition to determining
CSOC control signal, MPC is also capable of optimizing the
overall cost through minimizing the grid cost. This is achieved
by defining the MPC objective functions used for minimizing
the purchase period and battery time-of-use (TOU) cost as
shown below

Jg(k) = min

k+Np∑
k

C1(k)Pg(k), (17)

and

JBatt(k) = min

k+Np∑
k

C2(k)PBatt(k), (18)

where the battery TOU cost is

C2(k)PBatt(k) =

Cpurch(k) ∗ Pch(k) ∗ Ts − Csell(k) ∗ Pdis(k) ∗ Ts,
where Cpurch and Csell are the grid purchase and selling price,
respectively.
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3) MPC Constraints: In this system, MPC is modelled with
two major types of constraints applied to the output and control
signal, respectively. From the dynamic equation of BESS (3),
predicted values of SOC(k+ 1) can be calculated as follows
[36] 

SOC(k + 1)
SOC(k + 2)

...
SOC(k +Nc)

 =


SOC(k)

SOC(k + 1)
...

SOC(k +Nc− 1)

+

[
Bb
]
.


ûb(k)

ûb(k + 1)
...

ûb(k +Nc− 1)


(19)

where dimension of Bb is (Nc− 1)× (Nc− 1).
Maximum and minimum constraints are applied to all future

values of control signals, also called manipulated variables.
They can be expressed in matrix form as follows



1
. . .

1. . . . . . . . . . . . . .
−1

. . .
−1


ûb(k) ≤



Pmax(k)
...

Pmax(k +Nc− 1). . . . . . . . . . . . . . . . . . .
Pmin(k)

...
Pmin(k +Nc− 1)


(20)

where, Pmax and Pmin are column vectors with Nc − 1
elements of the maximum and minimum limits of the rated
charging or discharging power of the battery, respectively. In
this system, Pmin = 0.

Similarly, the output constraints applied to the controlled
variables can be represented as follows:



1
. . .

1. . . . . . . . . . . . . .
−1

. . .
−1


SOC(k + 1) ≤



SOCmax(k + 1)
...

SOCmax(k +Nc). . . . . . . . . . . . . . . . . . .
SOCmin(k + 1)

...
SOCmin(k +Nc)


(21)

where, SOCmax and SOCmin are column vectors with Nc
elements of the maximum and minimum limits of the observed
SOC(k+1). In this system, SOCmax = 90% and SOCmin =
20%.

IV. SUMMARY OF THE PROPOSED ALGORITHM

The proposed hybrid strategy is to be implemented by a
Distribution System Operator (DSO). It combines centralized
and decentralized components: MCTS-RL is used as a cen-
tralized controller that optimizes cooperating buses in each
network partition in terms of BESS availability and line losses,
and subject to a voltage level constraint; MPC is used as a
decentralized controller to mitigate overvoltage by estimating
and controlling the battery state of charge as well as to

optimize battery operation from the perspective of energy
consumption. The profiles of load and PV generation, required
as input by the MPC algorithm, are assumed to be available.
While development of the forecaster is outside the scope of this
work, there are a number of existing forecasting algorithms
that can be used for this purpose, such as [38]. The proposed
CSOCC algorithm is shown in the flowchart of Figure 5.
In this algorithm, the bus terminal voltages are compared
to the threshold voltage (1.05p.u.) to identify the impacted
buses. All voltages and their buses coordinates are sent to the
centralized controller to start specifying the assisting region
using MCTS. In the proposed approach, MPC operates as a
decentralized controller to achieve two objectives: a) to control
the SOC, b) to optimize the daily schedule of BESS, based on
the information from the centralized controller implemented
using MCTS-RL. Each decentralized controller monitors the
reverse power P rev

i of the respective bus; the reverse direction
compared to the original flow in the circuit is represented
by a negative sign. This can be accomplished through a
comparison of the reverse power for given impacted buses,
P rev
i , against a predetermined threshold, θi. The reverse power

is often the main reason for overvoltage. Accordingly, there
is a required BESS capacity Cbr , computed by the MPC,
to maintain the reverse power limit at the impacted region.
MPC provides this information to the centralized controller to
manage the energy from the assisting region(s). In other words,
there is an information packet sent from the impacted region
to the centralized controller regarding its energy reduction
requirement. θi is determined as follows [39]

Pmax
PV =

V max
PCC (V max

PCC − V1)

Rth(1 + tan (cos−1 (PF ))Xth

Rth
)

+ PL, (22)

θi = PL − Pmax
PV (23)

where Rth and Xth are, respectively, the Thevenin resistance
and reactance between the PCC and the feeder. PmaxPV and
PL are, respectively, the powers at the PCC of the maximum
PV penetration level and the bus load. Accordingly, θi usually
has very small value. Therefore, for simplicity, its value is
approximated by zero in this study.

The role of the centralized controller is to determine
the availability of neighboring BESSs to store energy using
MCTS-RL algorithm. This algorithm uses three values of each
bus: BESS capacity, voltage level and line losses determined
when MCTS navigates through the paths to the buses with DG.
The tree states of MCTS are updated through RL as follows

Q(s, a)← (24)

Q(s, a) + α
[
rt+1(1− ϕn) + γQ∗(s

′
, a)−Q(st, at)

]
.

This way, the algorithm selects the best buses in the assisting
region with the lowest path losses. In equation (24), ϕn
represents the percentage level of the voltage violation – the
stability factor under normal power system conditions that
maintains the security limit. Symbol s denotes the state of the
losses of line segment that leads to the next bus through the
selected path. Finally, reward r represents the BESS capacity
of the selected bus in the algorithm.
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Fig. 5: A flowchart of the proposed algorithm.

The state-value V (s), under the optimal policy π for given
state s and the state-action-value Q(s, a) for taking action a,
is calculated as follows [28]

V π(s) = max
a∈A

Qπ(s, a), (25)

where π is the optimal policy followed by the RL agent to
optimize the action-value function Q. To mitigate the potential
excessive voltage rise in assisting regions, engagement is
monitored for each assisting BESS to check if its participation
does not cause voltage constraint (1.05 p.u) violation within its
own region. Participation of each assisting bus is determined
using BESS deployment rate αa

αa = 1/Da ∗
(

max(Pch,a,without CSOCC) (26)

−max(Pch,a,with CSOCC)
)
,

where Da is the full load demand of the assisting bus (sub-
script a denotes variables related to the assisting region). The
value of αa may be reduced if the reverse power of an assisting
bus P reva exceeds a predetermined threshold θa. This threshold
is determined in the same manner as θi of the impacted buses
as described above, i.e., θa also equals to zero. The resulting
shortage of power injection capacity of the assisting buses is
compensated by adding more BESS units.

V. RESULTS AND DISCUSSION

A. Stochastic framework for PV deployment modelling

PV penetration is defined as the total peak power of all
installed PV generators expressed as a percentage of the annual
peak load of the same system [17]. PV hosting capacity is then
the maximum level of PV penetration that can be integrated
into the system without violating a predefined performance
index (e.g., the voltage level) [18]. The impact of PV systems
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Fig. 6: An illustration of the stochastic PV deployment sce-
nario.

on a distribution circuit can be determined using a stochastic
deployment framework implemented by a probabilistic power
flow-based Monte Carlo simulations (PPF-MCS) [3], [40].
This method is used when some systems parameters are
uncertain and can be considered random variables. PPF-MCS
uses repetitive solutions of deterministic power flow with
different realizations of random parameters to obtain expected
probability distributions of variables of interest. The outcome
of this stochastic modelling is then used to determine the
PV penetration level defined as the ratio of the PV panel
rated power (kW) to the value of the full-load (kW) at the
connected bus [3]. The probability distributions of bus voltages
are compared against a predetermined threshold to identify
the numbers and locations of buses affected for selected PV
penetration levels. The stochastic framework is implemented
in the following four steps:

1) A base case model of the selected distribution feeder
is developed, assuming that there is no PV generation
installed on the system that operates under a light load.
The load level is derived from a known load profile.
Depending on the feeder type (e.g. residential, commercial
or industrial), the light load is defined as a percentage of
the peak load.

2) Using the base case model, multiple PV deployment sce-
narios are considered for different PV penetration levels.
For each level, a number of cases (e.g., 100) are considered,
each with a random distribution of locations and sizes
of PV generators at the individual points of supply. An
illustration of PV deployment scenario is shown for a small
section of the circuit in Figure 6.

3) Step 2 is repeated for each penetration level in selected
increments (e.g. 10%) until the predefined performance
index of the feeder is violated. Due to the stochastic
nature of the modelling framework, this violation must
also be defined in probabilistic terms taking into account
prescribed reliability indices.

4) When PV deployment scenarios modelling is completed,
the overall impact of PV penetration is assessed using a
probabilistic evaluation of multi-phase load flow analysis
to determine the PV hosting capacity.

It has been assumed that the PV bus is of PQ type [41] and
the PV inverters cannot control voltage as there is no reactive
injection or absorption at a majority of locations where PV
generators are installed. In addition, the effects of capacitors
on complex power are negligible and it can be safely assumed
that very few nodes are near synchronous generators or motors.
Consequently, the reactive power injection (negative VARs)
is not considered in the analysis (i.e. only zero or positive
VAR values are considered) [13], [42]. In simulations, the load
power factor (PF) of 1.0 is used, that corresponds to the worst-
case scenario.

B. Test Case 1: IEEE 33 Bus System

1) PV hosting capacity: Since IEEE 33 bus system is a
small circuit, it can accommodate high PV penetration without
violating the commonly used voltage rise threshold of 1.05
p.u. Therefore, a lower threshold of 1.045 p.u. is considered
in this study. The voltage violation starts 90% PV penetration
at 3 critical buses 16, 17, and 18 where voltages exceed 1.045
p.u.

2) Battery implementation without CSOCC: As discussed
earlier, the overvoltage issue in distribution systems can be
addressed using BESS with optimal charge/discharge energy
scheduling. In addition to absorbing high instantaneous power
due to PV generation at light load, this approach can also
support heavy system demand during peak load periods. This
BESS charge/discharge optimization is carried out by decen-
tralized controller using MPC without a central coordinator.
To make this test case consistent with the real case (circuit
in Lloydminster, Alberta, Canada) described next, the hourly
averaged electricity pool prices [43], [44] provided by the
Alberta Electric System Operator (AESO) are considered. The
energy price is high during the peak hours and low off-
peak. Similarly, the 24-hour residential load profile for the
city of Lloydminster is considered in both cases, scaled to
the peak load of each circuit. The load demand and PV
power generation profiles on the 3 critical buses are shown
in Figure 7.

In this scenario, the BESS deployment rate (αb) of each bus
in the circuit (including the critical buses) is determined using
BESS data collected over a 24h period as follows

αb = max(Pch,i)/Di, (27)

where Di is the full load demand of given critical bus. For
instance, consider the bus causing the highest voltage violation
in this region, bus 18. The MPC optimization results, shown
in Figure 8, have max(Pch,i) = 18 kW. After dividing this
value by the full load Di = 90 kW (see Figure 7), the value of
deployment rate is obtained as αb = 20%. Figure 8 also shows
that the BESS units discharge when the energy price rate is
high. The units charge during two distinct periods: 1) when
the energy price rate is low (during the night), and 2) when
PV energy is generated (during the day).

By examining the power flows in Figure 8, it is obvious
that the capacities of individual BESS are not sufficient to
allow charging throughout the entire period of high solar
PV generation. This leads to a premature full use of battery
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Fig. 8: BESS power controlled by MPC at the critical buses
and corresponding grid terminal power flows and SOC plots
(without CSOCC).

charging capacity during the overvoltage mitigation processes.
As a result, there is still large amount of reverse power fed
to the bus terminal during the time period between 11:00 and
13:00. The highest impact occurs at bus 18 at 12:15, when
reverse power of -54 kW leads to overvoltage of 1.047 p.u.
(corresponding to the pronounced peak in Figure 17).

3) Battery implementation with CSOCC: To demonstrate
the operation of the proposed approach, consider MCTS
process applied to the IEEE 33 bus system. Each bus in the
circuit can be considered a state, and each move from one bus
to another an action of a virtual agent. The goal of the agent is
to reach the state with the highest reward. It acts according to a
policy learned through experience. At the beginning, the agent
traverses from one bus to another with no knowledge about
the environment and without knowing the correct sequence of
buses. What the agent needs to learn is represented by so called
Q matrix [45] illustrated in Table I. Each row of this matrix
represents a current state and its columns represent possible
actions that lead to the next state (i.e. the links between the
buses). In the IEEE 33-bus circuit used in this illustration,
each node has at most two branches that lead to other possible
buses (called children in the MCTS terminology). An action
is represented by a random selection of one of the children.
As shown in Table I, the algorithm starts from a group of

impacted buses and navigates in a descending order of bus
numbers. Initially, the action set has only one child to chose
from, until it reaches state 6 that has two possible next states
(buses 5 and 26). The agent chooses bus 26, and the algorithm
continues.

TABLE I: State-action matrix

Action

State Child 1 Child 2

16 15 -

15 14 -

14 13 -

13 12 -

12 11 -

11 10 -

10 9 -

9 8 -

8 7 -

7 6 -

6 - 26

5, 26 - 27

27 - 28

28 - 29
...

...
...

This matrix is initialized with zero values corresponding
to tabula rasa – an agent with no knowledge. A new value is
assigned to each element as the agent explores the environment
from state to state until the goal is reached, according to
equation (24). This way, the virtual agent is learning through
experience without a teacher. Each exploration process is
represented by an episode and it is equivalent to one training
session. More training results in further enhancement of the Q
matrix that facilitates finding the fastest route to the optimal
bus. The Q-values over the training episodes for three selected
buses are shown in Figure 9. It can be seen that different Q-
values are assigned to different buses. Bus 8 has the highest
value compared to buses 24 and 25. In addition, buses 24 and
25 have very similar line losses and identical BESS capacities
that result in very close Q-values at the end of the training
process. All three nodes converged after about 600 episodes.

Since the 33 bus circuit is a small system, all its buses
are selected in the MCTS search space to determine the bus
candidates that construct the assisting region. For simplicity,
and to provide a clear illustration of the MCTS navigation
process, it is considered that a BESS is deployed on every bus
of the assisting and the impacted region in both cases (without
and with CSOCC). The size of BESS in the first case (without
CSOCC) is uniform across the system, determined as αb=20%
of the full load using equation (27). With CSOCC, the BESS
deployment rate in the impacted region is increased to a new
value αi calculated from the required energy obtained by MPC
(462 kWh). On the other hand, the deployment rate of the
assisting region is reduced so that each assisting bus provides
10% of its original BESS capacity to the impacted region.

Column 1 of Table II shows bus labels (2-33) in the
search space. MCTS uses two objective functions: the line
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TABLE II: MCTS-RL Result

Bus No Voltage
(p.u)

Losses
(kW)

BESS
(kW)

MCTS

2 1.002 60.873 20 8

3 1.01 38.641 18 24

4 1.014 30.951 24 25

5 1.018 23.797 12 7

6 1.027 9.298 12 14

7 1.028 8.392 40 32

8 1.031 6.12 40 30

9 1.034 4.172 12 15

10 1.038 2.536 12 13

11 1.038 2.285 9 12

12 1.039 1.882 12 31

13 1.043 0.654 12 10

14 1.044 0.314 24 9

15 1.044 0.136 12 11

16 1.045 - - 29

17 1.046 - - 6

18 1.047 - - 26

19 1.002 60.968 18 27

20 1.004 61.458 18 28

21 1.005 61.517 18 33

22 1.005 61.543 18 4

23 1.012 40.343 18 5

24 1.016 43.104 84 3

25 1.018 43.791 84 23

26 1.028 10.018 12 2

27 1.029 10.898 12 19

28 1.033 13.731 12 20

29 1.036 15.57 24 21

30 1.038 16.384 40 22

31 1.04 17.1 30 -

32 1.04 17.194 42 -

33 1.04 17.199 12 -
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Fig. 9: Plots of Q-values of buses 8, 24, and 25

losses (column 3), and BESS power flow capacities (column
4) determined as 20% of the full load. Column 2 shows
the bus voltages (with PV implemented) that are subject to

the voltage constraint limit of 1.045 p.u. Reverse powers in
assisting buses, if they occur, are subject to reverse power
threshold θa = 0. Line losses [41] are calculated through the
MCTS navigation process over all line segments between the
starting bus (the impacted region) and the bus selected as the
assisting bus (a part of the assisting region). Finally, the bus
prioritization is shown in column 5 (MCTS results). In this
column, the candidate buses (encircled by a red ellipse) are
selected based on the capacity required to store the excess
energy in the impacted region.

The required BESS capacities resulting from the MPC
optimization process correspond to the energy differences
between the two scenarios shown in Figures 8 and 10, over
the time period when SOC changes from its minimum to
maximum value. These capacities are determined based on
the optimal BESS cost (13) while using the MPC controller
(8). Deployment rate of the critical buses in the impacted
region, αi, is calculated through (27) for the amount of energy
required by the impacted region. For example, in the scenario
with CSOCC, and considering the power flows shown in
Figures 7 and 10, the deployment rate is αi = 72kW/90kW
= 80%. To determine the total required capacity of BESS for
critical buses, Cbr , one has to calculate the incremental amount
of energy with respect to the base case without CSOCC. This
amount depends on the difference between the two deployment
rates and the load demand of the impacted region

Cbr ≈
Nreg∑
nbus=1

∫ tsoc,max

tsoc,min

Di(t)(αi(t)− αb(t))dt), (28)

where Nreg is the total number of critical buses within a par-
ticular region, and tsoc,min/tsoc,max are the times when SOC
reaches its minimum/maximum value, respectively (see Fig-
ure 10). The total required BESS capacity is Cbr = 462.8kWh,
and the individual required capacities for buses 16, 17, and
18 are 116.2 kWh, 118.4 kWh, and 228.2 kWh, respectively.
Figure 10 shows that the negative power flows in all three
regions have been resolved. Since the reverse power is always
checked, this method guarantees voltage rise mitigation. The
BESS deployment rate of the assisting buses (encircled by
the red ellipse in Table II column 5) is αa=10% of the
existing BESS units in the assisting region. The reduction of
the deployment rate in this scenario, compared to the original
value αb = 20% (without CSOCC) is α′b = αb − αb · αa =
20%− 20% · 10% = 18% (10% is the level of participation of
BESS installed in the assisting region towards the impacted
region).

Figure 11 shows the 33-bus voltages for three cases: i) 90%
PV penetration with no storage; ii) 90% PV penetration with
20% BESS penetration but without CSOCC; and iii) 90% PV
penetration with 20% BESS penetration and with CSOCC.
It can be clearly seen that the proposed method significantly
improves the voltage levels of the circuit, even compared to
the case with BESS but without CSOCC. In this specific
case, the use of storage alone (without CSOCC) resolves the
overvoltage issues caused by high PV penetration. This can
be attributed to the small size and low line impedances of the
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33-bus circuit where the branches between the feeder and the
PV buses are short.

The aim of using this circuit is to explain the procedure
steps and the feasibility of the proposed method. This is not
the case for a real system of substantial extent and complexity.
A practical test case of the Lloydminster circuit is described
in the next section considering the voltage threshold 1.05 p.u.
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Fig. 10: BESS power controlled by MPC at the critical buses
and corresponding grid terminal power flows and SOC plots
(with CSOCC).

C. Test Case 2: Lloydminster Circuit

1) PV hosting capacity: Similarly, to previous test case, the
load flow analysis of the distribution circuit was simulated by
PPF-MCS, this time using CYME power engineering software.
The same assumptions about the reactive power and the
power factor as the previous case were considered. Certain
penetration levels cause the occurrence of impacted regions
(regions with marginal, but still acceptable voltage increase)
shown in orange in Figure 12. The voltage violations start at
60% PV penetration at 14 buses called critical buses they are
located at three regions A, B, and C, shown in red, called the
impacted regions, where voltages exceed 1.05 p.u.

2) Battery implementation without CSOCC: The load de-
mand and PV power generation profiles of the 14 critical
buses are shown in Figure 13, grouped into the same three
regions as in Figure 12. The load profiles are obtained as
averages of the residential and industrial load curves from the
circuit data. In this case study, only one region is sufficient
to explain the simulation. For demonstration, area C has been
selected as in this area the assisting buses fittingly surround
the impacted buses where they will be needed in the next
scenario (with CSOCC). The worst bus in this area is bus 4
that causes the highest voltage violation. Based on the worst
bus, the MPC optimization results, shown in Figure 14, have
max(Pch,i) = 5.34 kW. and Di = 62 kW (see Figure 13); the
value of deployment rate is αi = 9%.

The same figure also shows that the reverse power is fed to
the bus terminal between 11:00 and 13:00. The highest impact
occurs at bus 4 (in region C) at 12:15, when reverse power of
-6.1 kW leads to overvoltage of 1.052 p.u. (the pronounced
peak in Figure 17).
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Fig. 11: 33-bus system voltages in three cases: i) 90% PV
penetration with no storage; ii) 90% PV penetration with
20% BESS penetration but without CSOCC; and iii) 90% PV
penetration with 20% BESS penetration and with CSOCC.
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3) Battery implementation with CSOCC: As mentioned in
the previous scenario, area C is considered in this test case.
Figure 15d shows the buses in the search space that are
selected as the best candidates by following the two objective
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Fig. 14: Terminal power flows at the critical buses and
corresponding BESS flows (without CSOCC).

functions of line losses and the BESS capacities. Their values
are shown through Figures 15a and b respectively. The bus
voltages that are checked against the voltage constraint are
also shown in Figure 15c. The reverse powers if they occur in
the assisting buses are subject to θa. Similarly to the previous
case, the excess energy in the impacted region may not need to
use all assisting buses available in the search space. The par-
ticipating buses in the assisting region are shown in different
colors according to the priority of their selection determined
by the optimization process using MCTS-RL algorithm. The
required BESS capacities resulting from the MPC optimization
process correspond to the energy differences between the two
scenarios shown in Figures 14 and 16, over the time period
when SOC transitions from the maximum to minimum value.

In this test case, the deployment rate for the impacted buses
is αi = 11.5kW/62kW = 18% (obtained using information from
Figures 13 and 16, as in the previous case).
Cbr values for impacted regions A, B, and C are determined

using equation (28) as 42.2 kWh, 197.75 kWh, and 124.3 kWh,
respectively. Moreover, in this practical case, the overvoltages
are resolved and PV penetration of 60% can be achieved with
a low BESS deployment rate of the assisting buses (20% of
the existing BESS units in the assisting region). This low
penetration level requirement can be considered an additional
advantage of a robust power management provided by the
centralized controller that reduces the overall fixed cost of this
BESS-based solution. Voltages at the critical buses for the two
scenarios (without and with CSOCC), obtained using CYME
software with a 15 minutes resolution, are shown in Figure 17.
The semitransparent blue plane represents the voltage limit of
1.05 p.u.

Finally, Table III shows the system costs calculated for
region C using the following three scenarios: conventional
method (without MPC), with MPC but without CSOCC and
with MPC and CSOCC. The conventional method is explained
in [10], [12], and [13], where the BESS charges at the time
period of high PV production and discharges at the peak
load at night time. Since the costs incurred by the assisting
region must also be considered (in addition to the costs in
the impacted region), the total cost of the area that includes
both impacted and assisting region costs are shown in the last
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Fig. 15: States at the assisting regions: a) line losses, b) bus
BESS capacities, c) bus voltages, d) the optimized assisting
buses obtained using MCTS-RL d) the final results of the
assisting buses corresponding to the critical region required
energy

row for each scenario. It is obvious that the total costs in
the two scenarios without and with CSOCC are significantly
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Fig. 16: Terminal power flows at the critical buses and
corresponding BESS flows (with CSOCC) .

(a)

(b)

Fig. 17: Voltages levels at the critical buses during a 24 hour
operation without CSOCC (a), and with CSOCC (b).

reduced in comparison to the conventional scenario. The use
of CSOCC reduces the impacted region costs even further, as
also shown in plots a) and b) of Figure 18. The total costs of
both MPC-based scenarios are very close to each other. This is
due to the fact that the BESS operation in both impacted and
the assisting regions are optimized by the MPC that tracks the
electricity pool prices and optimizes the BESS accordingly.
The additional savings gained using MCTS-RL are relatively
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Fig. 18: The critical buses costs: a) without CSOCC, b) with
CSOCC.

small because this algorithm only coordinates the BESS units
in the two regions without adding new energy to the system.

TABLE III: System secanrio costs

Scenario A Conventional method

Impacted region Assisting region

Grid Cost ($) 654.54 2919.00

BESS Cost ($) 16.61 47.73

Total Cost ($) 3637.90

Scenario B Without CSOCC (with MPC)

Impacted region Assisting region

Grid Cost ($) 497.31 1332.80

BESS Cost ($) 50.49 340.51

Total Cost ($) 2221.10

Scenario C With CSOCC

Impacted region Assisting region

Grid Cost ($) 269.19 1590.50

BESS Cost ($) 94.29 278.66

Total Cost ($) 2232.60

There are other published works that also use coordina-
tion strategies to share energy among neighbouring BESS
units [10]–[14]. However, they do not consider the stochastic-
ity of DER. Therefore, to facilitate coordination, these strate-
gies require a priori knowledge that may not be available in
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practical systems. On the other hand, the proposed model-free
algorithm demonstrates robust performance under stochastic
conditions of a real system. This can be attributed to the
efficiency of the multistage stochastic optimization based on
RL and the diffusion strategy (i.e. the mechanism of allocating
nodes to assist the impacted region). This strategy is based
on randomly selecting routes between the impacted region
and the assisting buses in a way similar to how Monte Carlo
methods build probabilistic models for each state. Eventually,
the diffusion strategy finds the optimal BESS capacities along
routes that are optimal in terms of line losses and also subject
to voltage constraints. Because the RL-MCTS controller has
a global view of the system, the energy management over
feasible region at each node is effectively obtained even though
the BESS units in the system are only described by explicit
stochastic models. The proposed method also facilitates BESS
optimization through economic dispatch so that the cost of the
system operation is minimized using MPC, while respecting
system operation constraints. Finally, the use of diffusion
strategy reduces the time required to find solution, because
it restricts search to a small region surrounding the impacted
region rather than that examining the entire search space.

VI. CONCLUSION

This paper introduces a novel method for distributed BESS
control to mitigate voltage rise in power distribution networks
caused by high penetration of residential PV generators. The
proposed method, dubbed coordinated state of charge control
(CSOCC), combines MCTS-RL and co-operative SOC con-
trol using MPC. In addition to preventing voltage violations
through optimal use of network-wide installed battery capacity,
it also minimizes losses due to power transfer.

The described case study considers two scenarios of the
battery implementation, without and with CSOCC, and corre-
sponding energy management strategies. To prevent a prema-
ture saturation or depletion of BESS, the first scenario (without
CSOCC) requires a significant increase of BESS penetration
level from initial 9% to 18% at each impacted bus. The second
scenario, using the proposed CSOCC approach, successfully
mitigates voltage rise issues using the the assisting buses with
only a low BESS participation of 20%. This is because the
higher number of assisting buses with lower BESS participa-
tion compensates for high BESS penetration required for a
lower number of impacted buses in the non-coordinated case.

In the proposed approach, distributed storage units are
coordinated to form an assisting region that is optimized using
MCTS-RL method considering the capacity of each available
BESS, the voltage levels at the individual buses, and the line
losses along the paths of required energy transfers. As a result,
it resolves the voltage issues with a low BESS penetration level
while inflicting minimal system losses.

The effectiveness of the proposed method is examined on
a circuit model of the distribution system of city of Lloyd-
minster in Alberta, Canada. The results obtained using power
engineering software package CYME show that the proposed
distributed control approach is effective in mitigating over-
voltages with a guaranteed performance since the values of

reverse power are always checked. The proposed method can
be implemented in real, complicated networks with multiple
laterals. In the future, the algorithm can be extended to
incorporate other practical factors such as thermal constraints
or ability to handle unbalanced three-phase systems.
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