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Abstract Diagnostic delay for TB infected individuals and the lack of TB vaccines
for adults are the main challenges to achieve the goals of WHO by 2050. In order to
evaluate the impacts of diagnostic delay and vaccination for adults on prevalence of
TB, we propose an age-structured model with latent age and infection age, and we
incorporate Mycobacterium TB in the environment and vaccination into the model.
Diagnostic delay is indicated by the age of infection before receiving treatment. The
threshold dynamics are established in terms of the basic reproduction number R0.
When R0 < 1, the disease-free equilibrium is globally asymptotically stable, which
means that TB epidemic will die out; When R0 = 1, the disease-free equilibrium is
globally attractive; there exists a unique endemic equilibrium and the endemic equi-
librium is globally attractive when R0 > 1. We estimate that the basic reproduction
number R0 = 0.5320 (95%CI : (0.3060, 0.7556)) in Jiangsu Province, which mean-
s that TB epidemic will die out. However, we find that the annual number of new
TB cases by 2050 is 1,151 (95%CI: (138, 8,014)), which means that it is challeng-
ing to achieve the goal of WHO by 2050. To this end, we evaluate the possibility of
achieving the goals of WHO if we start vaccinating adults and reduce diagnostic de-
lay in 2025. Our results demonstrate that when the diagnostic delay is reduced from
longer than four months to four months, or 20% adults are vaccinated, the goal of
WHO in 2050 can be achieved, and 73,137 (95%CI: (23906, 234,086)) and 54,828
(95%CI: (15,811, 206,468)) individuals will be prevented from being infected from
2025 to 2050, respectively. The modeling approaches and simulation results used in
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this work can help policymakers design control measures to reduce the prevalence of
TB.

Keywords Age-structured model · Latent age · Infection age · Parameter estimation ·
Sensitivity analysis

1 Introduction

Tuberculosis (TB) is a chronic infectious disease caused by infection with Mycobac-
terium TB (Wikipedia, 2022). In 2020, approximately ten million people worldwide
developed TB, including 5.6 million men, 3.3 million women and 1.1 million chil-
dren, and 1.5 million people died from TB. Globally, TB ranks the 13th among all
leading causes of deaths, and becomes the second leading infectious killer among all
infectious diseases since COVID-19 (World Health Organization, 2022b). In recent
two decades, China has made great progress in the prevention and mitigation of TB
(Wang et al., 2014). During this period, the incidence rate of TB is reduced by 42%,
and the mortality rate of TB is reduced by more than 90%. However, China still had
833,000 TB infections and 38,800 TB deaths in 2019 (World Health Organization,
2022a). Globally, the incidence rate of TB reduced about 2% per year and the cumu-
lative reduction between 2015 and 2020 was 11%, which is more than half of 20%
reduction milestone of the End TB Strategy (World Health Organization, 2022b).
However, the speed is not fast enough to achieve the goals of World Health Organi-
zation (WHO), which is to reduce the incidence rate of TB by 50%, 80%, and 90% in
2025, 2030, and 2035, respectively, compared with that in 2015, and there will be less
than one case per million individuals per year in 2050 in China (Dye and Williams,
2008; Harris et al., 2019, 2020; Houben et al., 2016; Huynh et al., 2015; Lin et al.,
2015; Xu et al., 2017).

According to the current findings and predictions through mathematical models
(Abu-Raddad et al., 2009; Feng et al., 2001, 2002; Guo et al., 2021; Harris et al.,
2019, 2020; Sreeramareddy et al., 2009), the effectiveness of TB control strategies
depends on several factors. First, many symptoms of TB are similar to those of other
diseases. Hence, it is easy to diagnose TB as other diseases by mistakes so that di-
agnostic delay occurs. Diagnostic delay may increase the risk of deaths and facilitate
the transmission of TB in the community (Sreeramareddy et al., 2009). The inci-
dence data in Jiangsu Province show that the average diagnosis delay is 44 days (see
Fig. 2(A)). Consequently, the age of infection (the time from being infected to be-
ing treated) is an important factor in disease progression (Feng et al., 2002). Second,
there are no effective vaccines against TB for adults except the bacille Calmette-
Guérin (BCG) vaccine. In the past few years, the development of new TB vaccines is
rapid, with 14 candidates entering clinical trials, including four in phase 2B/3 (Harris
et al., 2019, 2020). Therefore, vaccination strategy is essential in disease progression
when adult vaccines are introduced. Third, Mycobacterium TB is resistant to dry,
cold, acidic and alkaline environments. In particular, Mycobacterium TB adheres to
dust and remains infectious for 8-10 days, can survive for 6-8 months in dry sputum,
and can survive for 4-5 years when the temperature is minus 6◦C or above, indicat-
ing that Mycobacterium TB can widely spread through the air, and everyone who is
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exposed to the air with Mycobacterium TB may be infected (Chinese Center for Dis-
ease Control and Prevention, 2022). Thus, Mycobacterium TB in the environment is
non-neglectable in TB transmission.

During the spread of TB, approximately 5% to 10% of people infected with My-
cobacterium TB will develop active TB during their lifetime (World Health Organi-
zation, 2022a). Some of these people develop TB very soon (within a few weeks)
after being infected, while others may get sick several years later (Guo et al., 2021).
In addition, the timings of diagnosis delays vary among countries, regions, and T-
B patients. The average diagnostic delays in high-income countries and low-income
countries are 47 days and 60 days (Sreeramareddy et al., 2009), respectively. The du-
rations of diagnostic delay reach hundreds of days (see Fig. 2(A)). Age structure is
essential when modeling long-term disease (Magal et al., 2010; Qiu and Feng, 2010;
Shen et al., 2017; Wu and Zhao, 2021; Yang and Wang, 2019; Zhang and Liu, 2020;
Zou et al., 2010), because the time it takes for latent individuals to become infec-
tious differs and the chances of receiving treatment for infectious individuals varies
considerably (Iannelli and Milner, 2017).

Many mathematical models have been used to study the dynamics of TB, includ-
ing ordinary differential equation (ODE) models (Cai et al., 2021; Choi and Jung,
2014; Huo and Zou, 2016; Liu et al., 2010; Song et al., 2002), delay differential e-
quation (DDE) models (Feng et al., 2001, 2007; Okuonghae, 2015), age-structured
models (Ainseba et al., 2017; Castillo-Chavez and Feng, 1998; Feng et al., 2002;
Guo et al., 2021; Harris et al., 2019, 2020; Li et al., 2020; Liu et al., 2022; Mu et al.,
2022; Wang et al., 2017; Xu et al., 2019; Xue et al., 2022; Yang et al., 2011), and
reaction-diffusion models (Català et al., 2020; Wang et al., 2022; Zhang et al., 2021).
Motivated by the above work, we propose an age-structured model with latent age
and infection age. Mycobacterium TB can survive in dry, cold, acidic, and alkaline
environments (Chinese Center for Disease Control and Prevention, 2022), especial-
ly in some special environments, Mycobacterium TB can survive for several years,
which means that Mycobacterium TB can spread widely through air. Therefore, we
incorporate Mycobacterium TB in the environment into our model. Since the vac-
cines for adults are under development and will be applied once they are available,
we include vaccination for adults in the model, besides BCG-vaccination for chil-
dren. In addition, we also consider the age of infection before receiving treatment
to represent diagnostic delay, and the treated class is also introduced into the model.
Our goals are to study the dynamic properties of the model, calibrate the transmission
model according to the demographic and epidemiological data classified by the age
of infection, as well as to evaluate the possibility of achieving the goals of WHO in
Jiangsu Province, China.

The remaining sections of our work are structured as follows. In Sect. 2, we pro-
pose a TB model that takes into account various factors such as latent age, infection
age, vaccination, treatment, and both indirect and direct transmission. We analyze the
model to derive the basic reproduction number, R0, and study the boundedness and
uniform persistence of the model, as well as the existence and stability of equilibrium
solutions. In Sect. 3, we employ Markov Chain Monte Carlo (MCMC) to estimate the
unknown parameters and initial values of the model. Through this estimation, we can
also determine the value of the basic reproduction number, R0. In Sect. 4, we uti-
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lize Latin Hypercube Sampling (LHS) and the Partial Rank Correlation Coefficient
(PRCC) to explore the uncertainty and sensitivity of the parameters. Additionally, we
evaluate the possibility of achieving the goals of WHO in Jiangsu Province, China.
In Sect. 5, we summarize and discuss the findings from our research.

2 The TB model with latent age and infection age

The total population is divided into six classes, namely, susceptible, vaccinated, la-

Fig. 1 Schematic diagram of the mathematical model.

tent, infected, treated, and recovered individuals. S (t), V(t), T (t), and R(t) represent
the number of susceptible, vaccinated, treated, and recovered individuals, respective-
ly. e(t, b) represents the density of latent individuals with latent age b. i(t, a) represents
the density of infected individuals with infection age a. W(t) represents the density
of Mycobacterium TB in environment, such as door handles, towels, handkerchiefs,
toys, utensils, and beds, etc. The total population at time t is denoted by

N(t) = S (t) + V(t) + T (t) + R(t) +

∫ +∞

0
e(t, b)db +

∫ +∞

0
i(t, a)da.

The total population, N(t), is born and dies at the rates Λ and dN(t), respectively,
where d represents the natural mortality rate. The baseline infection probability of



Global analysis of an age-structured tuberculosis model with... 5

susceptible and vaccinated individuals is defined as

λ(t) =

∫ +∞

0
β1(a)i(t, a)da + β2T (t) + g(W(t)), (1)

where β1(a) denotes the direct transmission rate of infected individuals at stage a; β2
denotes the direct transmission rate of treated individuals. The function g(W(t)) rep-
resents the probability that a susceptible individual becomes infected through indirect
contact with Mycobacterium TB in the environment. Obviously, higher Mycobacteri-
um TB density increases the chance that a susceptible individual becomes infected.
Thus, the transmittability of the disease, g(W(t)), is an increasing function of W(t)
(Kong et al., 2014a,b; Posny and Wang, 2014). In general, we assume that the func-
tion g(W(t)) satisfies the following conditions for all t ≥ 0:

g(0) = 0, g′(W) > 0, and g′′(W) ≤ 0, for W ≥ 0.

Susceptible individuals become exposed and active TB at the rates (1 − q)λ(t)S (t)
and qλ(t)S (t), respectively, where q denotes the proportion of new infections that
directly develop into active TB. Similarly, Vaccinated individuals become exposed
and active TB at the rates (1 − q)ηλ(t)V(t) and qηλ(t)V(t), respectively, where 1 − η
denotes the reduction in susceptibility to infection due to vaccination. Susceptible
individuals, including children and adults who transfer to the vaccinated class at the
rate αS (t), where α is the vaccination rate. Once the vaccine protection is lost, the
vaccinated individuals transfer to the susceptible class at the rate τV(t), where 1/τ
denotes the duration of vaccine protection. Exposed individuals can become infected
at the rate ρ

∫ +∞

0 σ(b)e(t, b)db, where σ(b) denotes the progression rate of the latent
individuals at stage b, and ρ denotes the proportion of new infections that develop
into active TB from latent individuals. Infected individuals can be treated at the rate∫ +∞

0 θ(a)i(t, a)da, where θ(a) denotes the the diagnosis rate of the infected individu-
als at stage a. All cases in T (t) will either recover or die at the rates γT (t) and dT (t),
where γ represents the recovery rate. Recovered individuals can also transfer to the
susceptible class at the rate δR(t), where δ is the rate at which a recovered individual
loses immunity (becoming susceptible again). Note that we don’t consider relapse
of the recovered individuals in this work. Eventually, ξ1(a) and ξ2 are the virions
of Mycobacterium TB released into the environment per unit time by infected indi-
viduals with infection age a and treated individuals, respectively; and c is the rate
at which Mycobacterium TB is eliminated from the environment by any means (Li
et al., 2009). The population flow among those compartments is shown in Fig. 1. We
formulate the following system mixed with ordinary differential equations and partial
differential equations:

dS (t)
dt

= Λ + τV(t) + δR(t) − λ(t)S (t) − (α + d)S (t),

dV(t)
dt

= αS (t) − ηλ(t)V(t) − (τ + d)V(t),

dT (t)
dt

=

∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),
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dR(t)
dt

= γT (t) − (δ + d)R(t), (2)

dW(t)
dt

=

∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW(t),

∂e(t, b)
∂t

+
∂e(t, b)
∂b

= −(ρσ(b) + d)e(t, b),

∂i(t, a)
∂t

+
∂i(t, a)
∂a

= −(θ(a) + d)i(t, a).

The boundary and initial conditions for System (2) is as follows

e(t, 0) = (1 − q)λ(t)
(
S (t) + ηV(t)

)
,

i(t, 0) = qλ(t)
(
S (t) + ηV(t)

)
+ ρ

∫ +∞

0
σ(b)e(t, b)db,

S (0) = S 0,V(0) = V0,T (0) = T0,R(0) = R0,W(0) = W0,

e(0, b) = e0(b), i(0, a) = i0(a),

(3)

where e0(b), i0(a) ∈ L1
+(0,+∞), and S 0,V0,T0,R0,W0 ∈ R+. The definitions of all

parameters are shown in Table 1.

Table 1 The parameter description of System (2).

Parameters Description Units
Λ The recruitment rate of susceptible individuals number/month
d The natural mortality rate 1/month

β1(a) The direct transmission rate of infected individuals at 1/number·monthstage a
β2 The direct transmission rate of treated individuals 1/number·month
β3 The indirect transmission rate of Mycobacterium TB 1/virions·month
θ(a) The diagnosis rate of infected individuals at stage a 1/month
σ(b) The progression rate of latent individuals at stage b 1/month
γ The recovery rate of treated individuals 1/month

ρ
The proportion of new infections that develop into dimensionlessactive TB from latent individuals

q The proportion of new infections that directly develop dimensionlessinto active TB
α The vaccination rate of susceptible individuals 1/month

1 − η The level of protection for vaccinated individuals dimensionlessdue to immunity
1/τ The duration of vaccine protection month

δ
The rate at which a recovered individual loses 1/monthimmunity (becoming susceptible again)

ξ1(a) The Mycobacterium TB shedding rate from infected virions/number·monthindividuals at stage a

ξ2
The Mycobacterium TB shedding rate from treated virions/number·monthindividuals

c The clearance rate of the Mycobacterium TB in the 1/monthenvironments

Throughout this work, we make the following assumptions on the coefficients of
System (2).
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(A1): Λ, τ, δ, β2, β3, α, d, η, γ, ξ2, c, ρ, β1(a), θ(a), ξ1(a), σ(b) > 0;
(A2): β1(a), θ(a), ξ1(a), σ(b) ∈ L∞+ (0,+∞) with essential upper bounds β̄1, θ̄, ξ̄1,

σ̄ > 0, respectively;
(A3): β1(a), θ(a), ξ1(a), and σ(b) are Lipschitz continuous on R+, with Lipschitz

coefficients Mβ1 , Mθ, Mξ1 , and Mσ, respectively;
(A4): The stability analysis for general expressions of g(W(t)) is tedious. For

simplicity, we assume that g(W(t)) = β3W(t), where β3 is the indirect transmission
rate of Mycobacterium TB.

We define the phase space for System (2) by Y = R5
+ × (L1

+(0,+∞))2, with the
norm

‖(x1, x2, x3, x4, x5, x6, x7)‖Y =

5∑
i=1

|xi| +

∫ +∞

0
|x6(b)|db +

∫ +∞

0
|x7(a)|da. (4)

In the following analysis, we assume that both (A1)-(A4) are valid.

2.1 Well-posedness

The continuous solution semiflow Φ : R+ × Y → Y is defined as

Φ(t, x0) := (S (t),V(t),T (t),R(t),W(t), e(t, ·), i(t, ·)), t ∈ R+, x0 ∈ Y,

where Φ(t, x0) is the solution to System (2) with Φ(0, x0) = x0.
For a, b ≥ 0, let

k1(b) = e−
∫ b

0 (ρσ(s)+d)ds, k2(a) = e−
∫ a

0 (θ(s)+d)ds,

K1 =

∫ +∞

0
σ(b)k1(b)db, K2 =

∫ +∞

0
β1(a)k2(a)da,

K3 =

∫ +∞

0
θ(a)k2(a)da, K4 =

∫ +∞

0
ξ1(a)k2(a)da.

Integrating the equations for e(t, b) and i(t, a) in System (2) along the characteristic
lines, t − b = const and t − a = const, respectively, we obtain

e(t, b) =


e(t − b, 0)k1(b), 0 ≤ b ≤ t,

e0(b − t)
k1(b)

k1(b − t)
, 0 ≤ t ≤ b,

i(t, a) =


i(t − a, 0)k2(a), 0 ≤ a ≤ t,

i0(a − t)
k2(a)

k2(a − t)
, 0 ≤ t ≤ a.

(5)
In what follows, we prove that the solution of System (2) is bounded.

Theorem 1. The solution of System (2) is bounded, that is,

N(t) ≤ max
{
N0,

Λ

d

}
, W(t) ≤ max

{
W0,

Λ(ξ̄1 + ξ2)
dc

}
, for t ∈ R+.

Moreover, the upper bounds are eventually uniform,

lim sup
t→∞

N(t) ≤
Λ

d
, lim sup

t→∞
W(t) ≤

Λ(ξ̄1 + ξ2)
dc

.
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Proof. See Appendix A.
Hence, the trajectories of System (2) are ultimately bounded. Then we have the

following proposition.

Proposition 1. Define

D =

{
(S (t),V(t),T (t),R(t),W(t), e(t, b), i(t, a)) ∈ Y : 0 ≤ N(t) ≤

Λ

d
,

0 ≤ W(t) ≤
Λ(ξ̄1 + ξ2)

dc

} (6)

is positively invariant for System (2).

2.2 Equilibria and the basic reproduction number

We assume that (S 0,V0,T 0,R0,W0, e0(·), i0(·)) is disease-free equilibrium. We take
T 0 = R0 = W0 = e0(0) = i0(0) = 0, then e0(b) = 0 and i0(a) = 0 can be
obtained by e0(b) = e0(0)k1(b) and i0(a) = i0(0)k2(a), respectively, where 0 ∈
L1

+(0,+∞) is the zero function. Let the disease-free equilibrium be given by P0 =

(S 0,V0, 0, 0, 0, 0L1(0,+∞), 0L1(0,+∞)). Using dS (t)
dt

=
dV(t)
dt

= 0, we obtain

P0 =

(
Λ(τ + d)

d(α + τ + d)
,

Λα

d(α + τ + d)
, 0, 0, 0, 0L1(0,+∞), 0L1(0,+∞)

)
.

In order to derive endemic equilibria, we first determine the basic reproduction num-
ber R0 using the next generation operator approach (Diekmann et al., 1990; Van den
Driessche and Watmough, 2002). We obtain

R0 =
(
S 0 + ηV0)(K2 +

β2K3

γ + d
+
β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)
[q + ρ(1 − q)K1]

=
Λ(ηα + τ + d)
d(α + τ + d)

(
K2 +

β2K3

γ + d
+
β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)
[q + ρ(1 − q)K1].

(7)

An endemic equilibrium P∗ =
(
S ∗,V∗,T ∗,R∗,W∗, e∗(b), i∗(a)

)
satisfies the following

equations:

Λ + τV∗ + δR∗ − λ∗S ∗ − (α + d)S ∗ = 0,
αS ∗ − ηλ∗V∗ − (τ + d)V∗ = 0,∫ +∞

0
θ(a)i∗(a)da − (γ + d)T ∗ = 0,

γT ∗ − (δ + d)R∗ = 0,∫ +∞

0
ξ1(a)i∗(a)da + ξ2T ∗ − cW∗ = 0, (8)

e∗(b) = e∗(0)k1(b),
i∗(a) = i∗(0)k2(a),
e∗(0) = (1 − q)λ∗

(
S ∗ + ηV∗

)
,
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i∗(0) = qλ∗
(
S ∗ + ηV∗

)
+ ρ

∫ +∞

0
σ(b)e∗(b)db,

where

λ∗ =

∫ +∞

0
β1(a)i∗(a)da + β2T ∗ + β3W∗. (9)

From Eq. (8), we have

T ∗ =
i∗(0)K3

γ + d
, (10)

R∗ =
i∗(0)γK3

(δ + d)(γ + d)
, (11)

W∗ =
i∗(0)[(γ + d)K4 + ξ2K3]

c(γ + d)
, (12)

λ∗ = i∗(0)K2 +
β2i∗(0)K3

γ + d
+
β3i∗(0)[(γ + d)K4 + ξ2K3]

c(γ + d)
, (13)

V∗ =
α[Λ(δ + d)(γ + d) + i∗(0)δγK3]

(δ + d)(γ + d)[(λ∗ + d)(ηλ∗ + τ + d) + α(ηλ∗ + d)]
, (14)

S ∗ =
(ηλ∗ + τ + d)[Λ(δ + d)(γ + d) + i∗(0)δγK3]

(δ + d)(γ + d)[(λ∗ + d)(ηλ∗ + τ + d) + α(ηλ∗ + d)]
. (15)

Substituting Eqs. (10)-(15) into the last two equations of Eq. (8) gives

i∗(0) =
(
S ∗ + ηV∗

){
i∗(0)K2 +

β2i∗(0)K3

γ + d
+
β3i∗(0)[(γ + d)K4 + ξ2K3]

c(γ + d)

}
×

[
q + ρ(1 − q)K1

]
.

By calculation, we obtain the following equation satisfied by the endemic equilibrium

(
S ∗ + ηV∗

){
K2 +

β2K3

γ + d
+
β3[(γ + d)K4 + ξ2K3]

c(γ + d)

}
[q + ρ(1 − q)K1] − 1 = 0. (16)

The above equation can be expressed as

a2(i∗(0))2 + a1i∗(0) + a0 = 0, (17)

where

a2 = η
(
K2 +

β2K3

γ + d
+
β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)2{
[q + ρ(1 − q)K1]K3δγ

−(δ + d)(γ + d)
}
,

a1 =

(
K2 +

β2K3

γ + d
+
β3[(γ + d)K4 + ξ2K3]

c(γ + d)

){
Λη(δ + d)(γ + d)

×

(
K2 +

β2K3

γ + d
+
β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)
[q + ρ(1 − q)K1]

+[q + ρ(1 − q)K1]K3δγ(d + τ + αη) − (δ + d)(γ + d)(ηd + d + τ + αη)
}
,
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a0 = (δ + d)(γ + d)(R0 − 1).

Note that K1 ≤
σ̄

ρσ̄+d and K3 ≤
θ̄
θ̄+d < 1. Thus, we have

a2 = η
(
K2 +

β2K3

γ + d
+
β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)2{
[q + ρ(1 − q)K1]K3δγ

−(δ + d)(γ + d)
}

< η
(
K2 +

β2K3

γ + d
+
β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)2[
δγ − (δ + d)(γ + d)

]
< 0.

According to the basic properties of the quadratic equation, Eq. (17) has a unique
positive root if R0 > 1. Then, System (2) has a unique positive endemic equilibrium
P∗. When R0 < 1, according to Eqs. (7) and (16), we notice that

S ∗ + ηV∗

S 0 + ηV0 =
1
R0

> 1,

which contradicts with S ∗ + ηV∗ ≤ S 0 + ηV0. Hence, when R0 < 1, the endemic
equilibrium of System (2) does not exist.

2.3 Local stability of the disease-free equilibrium

In this section, we prove the local stability of the equilibria of System (2). We consider
the linearized system of System (2) at an equilibrium P̃ =

(
S̃ , Ṽ , T̃ , R̃, W̃, ẽ(b), ĩ(a)

)
.

Let

S̄ (t) = S (t) − S̃ , V̄(t) = V(t) − Ṽ , T̄ (t) = T (t) − T̃ , R̄(t) = R(t) − R̃,

W̄(t) = W(t) − W̃, ē(t, b) = e(t, b) − ẽ(b), ī(t, a) = i(t, a) − ĩ(a),

we then drop “−” of S̄ (t), V̄(t), T̄ (t), R̄(t), W̄(t), ē(t, b), and ī(t, a) for simplicity, the
linearized system becomes

dS (t)
dt

= τV(t) + δR(t) − λ̃S (t) − λ(t)S̃ − (α + d)S (t),

dV(t)
dt

= αS (t) − ηλ̃V(t) − ηλ(t)Ṽ − (τ + d)V(t),

dT (t)
dt

=

∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),

dR(t)
dt

= γT (t) − (δ + d)R(t), (18)

dW(t)
dt

=

∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW(t),

∂e(t, b)
∂t

+
∂e(t, b)
∂b

= −(ρσ(b) + d)e(t, b),
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∂i(t, a)
∂t

+
∂i(t, a)
∂a

= −(θ(a) + d)i(t, a),

where

λ̃ =

∫ +∞

0
β1(a)̃i(a)da + β2T̃ + β3W̃, (19)

and λ(t) is given by Eq. (1). System (18) with boundary and initial conditions is as
follows

e(t, 0) = (1 − q)̃λ
(
S (t) + ηV(t)

)
+ (1 − q)λ(t)

(
S̃ + ηṼ

)
,

i(t, 0) = qλ̃
(
S (t) + ηV(t)

)
+ qλ(t)

(
S̃ + ηṼ

)
+ ρ

∫ +∞

0
σ(b)e(t, b)db,

S (0) = S 0,V(0) = V0,T (0) = T0,R(0) = R0,W(0) = W0,

e(0, b) = e0(b), i(0, a) = i0(a).

(20)

To study System (18), we seek the solutions in the form

S (t) = Ŝ eιt, V(t) = V̂eιt, T (t) = T̂eιt, R(t) = R̂eιt,
W(t) = Ŵeιt, e(t, b) = ê(b)eιt, i(t, a) = î(a)eιt,

where Ŝ , V̂ , T̂ , R̂, Ŵ, ê(b), î(a), and ι have to be determined in such a way that Ŝ , V̂ ,
T̂ , R̂, Ŵ, ê(b), î(a) are not all zeros. Substituting the constitutive form of the solutions
into System (18), we obtain

ιŜ = τV̂ + δR̂ − λ̃Ŝ − λ̂S̃ − (α + d)Ŝ ,
ιV̂ = αŜ − ηλ̃V̂ − η̂λṼ − (τ + d)V̂ ,

ιT̂ =

∫ +∞

0
θ(a)̂i(a)da − (γ + d)T̂ ,

ιR̂ = γT̂ − (δ + d)R̂, (21)

ιŴ =

∫ +∞

0
ξ1(a)̂i(a)da + ξ2T̂ − cŴ,

d̂e(b)
db

= −(ρσ(b) + d + ι)̂e(b),

d̂i(a)
da

= −(θ(a) + d + ι)̂i(a),

where λ̂ =
∫ +∞

0 β1(a)̂i(a)da + β2T̂ + β3Ŵ and λ̃ is given by Eq. (19). The initial
conditions of System (21) are as follows

ê(0) = (1 − q)̃λ
(
Ŝ + ηV̂

)
+ (1 − q)̂λ

(
S̃ + ηṼ

)
,

î(0) = qλ̃
(
Ŝ + ηV̂

)
+ q̂λ

(
S̃ + ηṼ

)
+ ρ

∫ +∞

0
σ(b)̂e(b)db.

(22)

Let

H1(ι) =

∫ +∞

0
σ(b)k1(b)e−ιbdb, H2(ι) =

∫ +∞

0
β1(a)k2(a)e−ιada,

H3(ι) =

∫ +∞

0
θ(a)k2(a)e−ιada, H4(ι) =

∫ +∞

0
ξ1(a)k2(a)e−ιada.

(23)
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According to Systems (21) and (22), we have

λ̂(ι) = î(0)
{
H2(ι) +

β2H3(ι)
ι + γ + d

+
β3[(ι + γ + d)H4(ι) + ξ2H3(ι)]

(ι + c)(ι + γ + d)

}
:= î(0)̂λ1(ι), (24)

Ŝ =

î(0)

 δγH3(ι)(ι + ηλ̃ + τ + d) − λ̂1(ι)(ι + δ + d)(ι + γ + d)

×
[
τηṼ + (ι + ηλ̃ + τ + d)S̃

]


(ι + δ + d)(ι + γ + d)[(ι + λ̃ + d)(ι + ηλ̃ + τ + d) + α(ι + ηλ̃ + d)]
,

V̂ =
î(0)

{
αδγH3(ι) − λ̂1(ι)(ι + δ + d)(ι + γ + d)

[
αS̃ + η(ι + λ̃ + α + d)Ṽ

]}
(ι + δ + d)(ι + γ + d)[(ι + λ̃ + d)(ι + ηλ̃ + τ + d) + α(ι + ηλ̃ + d)]

,

and
î(0) =

[̃
λ
(
Ŝ + ηV̂

)
+ λ̂

(
S̃ + ηṼ

)][
q + ρ(1 − q)H1(ι)

]
.

By calculation, we obtain the characteristic equation at an equilibrium P̃, which is

G(ι) =
G1(ι)

[
q + ρ(1 − q)H1(ι)

]
G2(ι)

+ λ̂1(ι)
(
S̃ + ηṼ

)[
q + ρ(1 − q)H1(ι)

]
− 1, (25)

where

G1(ι) =λ̃δγH3(ι)(ι + ηλ̃ + τ + d + ηα) − λ̃̂λ1(ι)(ι + δ + d)(ι + γ + d)

×
[
τηṼ + η2Ṽ(ι + λ̃ + α + d) + S̃ (ι + ηλ̃ + τ + d + ηα)

]
,

G2(ι) =(ι + δ + d)(ι + γ + d)[(ι + λ̃ + d)(ι + ηλ̃ + τ + d) + α(ι + ηλ̃ + d)].

Thus, we establish the following result.

Theorem 2. If R0 < 1, then the disease-free equilibrium P0 of System (2) is locally
asymptotically stable. If R0 > 1, it is unstable.

Proof. The local asymptotic stability of P0 is determined by the sign of the eigenval-
ues. More details can be found in Appendix B.

2.4 Asymptotic smoothness

Lemma 1. (see Theorem 2.46 in Smith and Thieme (2011)) The semiflowΦ is asymp-
totically smooth if there are maps Ψ,Θ : R+ × Y → Y such that

Φ(t, x) = Θ(t, x) + Ψ (t, x)

and the following hold for any bounded closed set B that is forward invariant under
Φ :
(i) lim

t→∞
diam Θ(t,B) = 0;

(ii) there exists tB ∈ R+ such that Ψ (t,B) has a compact closure for all t ∈ R+, t ≥ tB.
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Lemma 2. (see Theorem B.2 in Smith and Thieme (2011)) Let A be a subset of
L1

+(0,∞). Then A has a compact closure if and only if the following four conditions
hold:
(i) sup

f∈A

∫ ∞
0 | f (s)|ds < ∞;

(ii) lim
h→∞

∫ ∞
h | f (s)|ds→ 0 uniformly in f ∈ A;

(iii) lim
h→0+

∫ ∞
0 | f (s + h) − f (s)|ds→ 0 uniformly in f ∈ A;

(iv) lim
h→0+

∫ h
0 | f (s)|ds→ 0 uniformly in f ∈ A.

We now prove that the semiflow {Φ(t, ·)}t≥0 generated by System (2) is asymptot-
ically smooth.

Theorem 3. The semiflow {Φ(t, ·)}t≥0 generated by System (2) is asymptotically s-
mooth.

Proof. According to Lemmas 1 and 2, we prove that each forward invariant bounded
closed set under {Φ(t, ·)}t≥0 is attracted by a non-empty compact set. More details can
be found in Appendix C.

According to Theorem 2.6 in Magal and Zhao (2005) and Theorem 2.4 in D’Agata
et al. (2006), we know that {Φ(t, ·)}t≥0 has a global attractor.

2.5 Uniform persistence

In this section, we demonstrate that System (2) is uniformly persistent when R0 > 1.
To this end, we define the following symbols.

D0 =

{
(x1, x2, x3, x4, x5, x6, x7) ∈ Y : x3 + x5 +

∫ +∞

0
x6(b)db +

∫ +∞

0
x7(a)da > 0

}
,

and ∂D0 = Y\D0.

Theorem 4. The setsD0 and ∂D0 are positively invariant under the semiflow {Φ(t, ·)}t≥0.
Besides, the disease-free equilibrium P0 of System (2) is globally asymptotically sta-
ble for the semiflow {Φ(t, ·)}t≥0 restricted to ∂D0.

Proof. We use the comparison principle to prove that the sets D0 and ∂D0 are posi-
tively invariant under the semiflow {Φ(t, ·)}t≥0. For the global asymptotic stability of
P0, we first prove the local asymptotic stability of P0, then prove the global attractiv-
ity of P0. More details can be found in Appendix D.

By applying the results in Hale and Waltman (1989) and Magal and Zhao (2005),
we obtain the following theorem.

Theorem 5. If R0 > 1, the semiflow {Φ(t, ·)}t≥0 is uniformly persistent with respect
to (D0, ∂D0); that is, there exists ν > 0 such that

lim inf
t→+∞

d(Φ(t, x), ∂D0) ≥ ν for any x ∈ D0.
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Proof. Since the disease-free equilibrium P0 is globally asymptotically stable re-
stricted to ∂D0. Applying Theorem 4.2 in Hale and Waltman (1989), the semiflow
{Φ(t, ·)}t≥0 is uniformly persistent if and only if

W s(P0) ∩D0 = ∅, (26)

where W s(P0) =
{
x ∈ Y : lim

t→+∞
Φ(t, x) = P0

}
. More details can be found in Ap-

pendix E.

2.6 Global stablility of the disease-free equilibrium

In this section, we prove the global asymptotic stability of the disease-free equilibri-
um P0 when δ = 0.

Theorem 6. If R0 < 1, then the disease-free equilibrium P0 of System (2) is globally
asymptotically stable, and if R0 = 1, then the disease-free equilibrium P0 of System
(2) is globally attractive.

Proof. We prove Theorem 6 by constructing the Lyapunov function (see Appendix F).

2.7 Global attractivity of the endemic equilibrium

According to Eq. (25), the characteristic equation corresponding to P∗ is

G(ι) =
G∗1(ι)

[
q + ρ(1 − q)H1(ι)

]
G∗2(ι)

+ λ̂1(ι)
(
S ∗ + ηV∗

)[
q + ρ(1 − q)H1(ι)

]
− 1, (27)

where

G∗1(ι) =λ∗δγH3(ι)(ι + ηλ∗ + τ + d + ηα) − λ∗λ̂1(ι)(ι + δ + d)(ι + γ + d)

×
[
τηV∗ + η2V∗(ι + λ∗ + α + d) + S ∗(ι + ηλ∗ + τ + d + ηα)

]
,

G∗2(ι) =(ι + δ + d)(ι + γ + d)[(ι + λ∗ + d)(ι + ηλ∗ + τ + d) + α(ι + ηλ∗ + d)],

λ∗ and λ̂1(ι) are given by Eqs. (9) and (24), respectively. We only need to prove that
all the eigenvalues of the characteristic equation (27) have negative real parts when
R0 > 1. However, it is difficult to confirm it. In the following, we only prove that the
endemic equilibrium P∗ is globally attractive when δ = 0.

Theorem 7. The endemic equilibrium P∗ of System (2) is globally attractive if R0 >
1.

Proof. We also prove Theorem 7 by constructing the Lyapunov function (see Ap-
pendix G).
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3 Fitting the model to the TB data of Jiangsu Province

In this section, we estimate the unknown parameters and initial values of System (2)
using the number of new TB cases with infection age from 2009 to 2018 in Jiangsu
Province, and we obtain the mean value and confidence interval of the basic repro-
duction number, R0.

3.1 Data collection

To parameterize the mathematical model for the transmission dynamics of TB in
Jiangsu Province, we collect 351,401 data points from January 2009 to December
2018 in Jiangsu Province. The data was collected from the Jiangsu Provincial Center
for Disease Control and Prevention, including symptom-onset date, confirmed date,
and diagnostic result, etc. (see Table 2). We set the age of infection as the difference
between the symptom-onset date and confirmed date (see Fig. 2(A)). The number of
new TB cases varying with infection age and time is shown in Fig. 2(B).
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Fig. 2 (A) Frequency distribution of delay time. (B) The number of new TB cases in Jiangsu Province
from January 2009 to December 2018 changing with infection age and time.

It can be seen from Fig. 2(A) that the mean age of infection is 44.3 days, ranging
from 0 to 24726 days. We find 220,399 infected individuals with an infection age of
less than one month, accounting for 66% of the total infected individuals, and 10,532
infected individuals with an infection age of more than six months, accounting for
3% of the total infected individuals.

3.2 Parameter estimation

To simulate the number of new TB cases in Jiangsu Province, the feasibility of the
model is verified by the actual number of newly infected cases. System (2) is solved
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Table 2 The incidence data of TB in Jiangsu Province from January 2009 to December 2018.

Symptom-onset Date Confirmed Date Diagnostic Result
2008-12-23 2009-07-09 Positive
2008-11-26 2009-01-02 Positive
2009-02-08 2009-02-13 Positive
2009-01-21 2009-02-01 Positive
2009-01-21 2009-02-01 Positive
2008-12-11 2009-02-01 Negative
2009-01-14 2009-02-01 Positive
2009-01-15 2009-01-24 Negative
2009-01-24 2009-01-24 Positive
2009-01-24 2009-01-24 Positive
.
.
.

.

.

.
.
.
.

numerically using the forward/backward finite difference method for time and age
(see Appendix H) (implemented by the Python Programming Language). Next, we
estimate all the parameters and initial values of System (2).

(I) The recruitment rate of the population (i.e., Λ): According to the statistics
of the Jiangsu Statistical Yearbook (2022), we obtain that the annual numbers of
births from 2009 to 2018 was 743600, 763100, 756100, 746700, 748600, 751300,
721100, 779600, 778200, and 749300, respectively. Therefore, we can obtain that
the monthly average number of newborns of Jiangsu Province is about 62813, that is,
Λ = 62813 number/month.

(II) The natural mortality rate (i.e., d): According to the statistics of the National
Bureau of Statistics of China (2022), we conclude that the monthly natural mortality
rate of the population in Jiangsu Province in 2020 is approximately d = 1/(79 ×
12) per month, where the constant 79 represents the average life expectancy of the
population in Jiangsu Province.

(III) The proportion of new infections that develop into active TB (i.e., q): S-
ince approximately 10% of infected individuals will develop active TB during their
lifetime (World Health Organization, 2022b), and around 5% of these infected in-
dividuals will develop active TB during the first two years of infection (Ziv et al.,
2001). Therefore, we choose q = 0.05.

(IV) The proportion of new infections that develop into active TB from latent
individuals (i.e., ρ): According to the statement in (III), we know that approximately
10% of infected individuals will develop active TB during their lifetime. Hence, we
estimate the parameter ρ to be 0.1.

(V) The recovery rate (i.e., γ): TB patients can be cured after six months of drug
treatment (World Health Organization, 2022b). Thus, we choose γ = 1/6 per month.

(VI) The rate at which a recovered individual loses immunity (i.e., δ): Since TB
antibodies in the human body last for more than ten years (Aronson et al., 2004).
Therefore, we choose δ = 1/(12 × 10) per month.

(VII) The clearance rate of the Mycobacterium TB in the environments (i.e., c):
Mycobacterium TB can survive for several months or years in dry environments.
Thus, we assume that the average survival time of TB is six months, then c = 1/6 per
month.



Global analysis of an age-structured tuberculosis model with... 17

(VIII) The vaccination rate of the susceptible individuals (i.e., α): In addition
to BCG vaccine, there are no effective vaccines against TB for adults. Therefore,
we only consider the scenario of BCG vaccination. According to the statistics of the
Jiangsu Statistical Yearbook (2022), we obtain that the proportion of people under ten
years old is 0.084 in Jiangsu Province, then we let V(t)/(S (t) + V(t)) approximately
equal to 0.084 by changing the parameter α when the disease becomes extinct. At
this time, we have α = 0.00086.

(IX) The level of protection for vaccinated individuals due to immunity (i.e., 1 −
η): BCG has 60%-80% protective efficacy against severe forms of TB in children
(Roy et al., 2014). Thus, we assume 1 − η = 0.8.

(X) The duration of vaccine protection (i.e., 1/τ): As part of the childhood im-
munization program, BCG vaccine has a high protection rate and remains effective
for about ten years (Aronson et al., 2004; Xue et al., 2022). Therefore, we choose
τ = 1/(12 × 10) per month.

(XI) The progression rate of the latent individuals at stage b (i.e., σ(b)): Ac-
cording to the estimates from previous literature (Borgdorff et al., 2011; Yan and
Cao, 2019), we obtain that the progression rate of latent individuals gradually de-
creases with the increase of latent age. Therefore, we choose exponential function
σ(b) = σ1e−σ2b as the progression rate of the latent individuals, where σ1 and σ2 are
parameters to be estimated.

(XII) The diagnosis rate of the infected individuals at stage a (i.e., θ(a)): We
approximate the diagnosis rate of the infected individuals by Erlang-distributed diag-
nostic period using the frequency distribution of delay time (Champredon et al., 2018)
(see Fig. 2(A)). We assume that the maximum delay time is n̂ months and divide the
infected compartment into n̂ sub-compartments. Let Â denote the total number of
cases from January 2009 to December 2018. B̂i represents the total number of cases
with delay that is no longer than i months. Then the diagnostic rate of the infected
individuals in the i-th month can be expressed as

θ̂i =


B̂i

Â
n̂

1
n̂
, i = 1,

B̂i − B̂i−1

Â − B̂i−1
n̂

1
n̂
, i > 1,

which is shown in Fig. 3(A). The diagnosis rate of the infected individuals is a de-
creasing function. Hence, we choose the exponential function θ(a) = θ1e−θ2a to ap-
proximate the discretized data (θ̂i), where θ1 and θ2 are parameters to be estimated.
The fitting result of the diagnosis rate of the infected individuals is shown in Fig.
3(A).

(XIII) The transmission rate of infected individuals at stage a (i.e., β1(a)): Since
it is difficult to characterize the transmission rate that depends on the age of infection
(Ainseba et al., 2017; Feng et al., 2002), we assume that β1(a) is a constant, that is,
β1(a) ≡ β1, where β1 is derived by fitting the actual incidence.

(XIV) The transmission rate of treated individuals (i.e., β2): TB patients have
reduced transmission rates due to treatment, and we assume β2 = ωβ1, where ω ∈
(0, 1) is the coefficient that reduces the transmission rate due to treatment. According
to the estimation of Guo et al. (2021), we choose ω = 0.4387.
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(XV) The Mycobacterium TB shedding rates from infected and treated individ-
uals at stage a (i.e., ξ1(a) and ξ2): In order to reduce the complexity of estimating
parameters, we assume that ξ1(a) is a constant, that is, ξ1(a) ≡ ξ1. Since the W(t)
variable is of a different order of magnitude compared with the population variable,
we let ξ1 = 1, which means that an infected individual releases one unit of Mycobac-
terium TB per month (Cai et al., 2021). In general, the Mycobacterium TB shedding
rate from treated individuals at stage a is ξ2 ≤ ξ1 due to treatment.

(XVI) The initial values of System (2): According to the relevant data reported
by the Jiangsu Statistical Yearbook (2022), we choose the initial value of the total
population as N(0) = 85, 000, 000. We also obtain that the proportion of people under
ten years old is 0.084 in Jiangsu Province, then V(0) = 0.084N(0) = 7, 140, 000.
According to recent estimation, approximately 350 million people are infected with
Mycobacterium TB in China (Cui et al., 2020), we approximate that the initial value
of the latent individuals is∫ +∞

0
e(0, b)db =

3.5
14
× N(0) = 21250000,

where 14 means that average total population is 1.4 billion in China. Hence, we
choose

e(0, b) = 21250000ζ1e−ζ1b

to satisfy
∫ +∞

0 e(0, b)db = 21250000, where ζ1 is the parameter to be estimated. The
initial value i(0, a) of the density of the infected individuals, the initial value of treated
individuals T (0), the initial value of recovered individuals R(0), and the initial value
of the density of Mycobacterium TB in the environment W(0) are obtained by fitting
the data. For the functional form of i(0, a), we choose i(0, a) as an exponential func-
tion through Fig. 2(B), that is, i(0, a) = $1e−$2a, where $1 and $2 are parameters to
be estimated. The initial value of susceptible individuals is estimated as

S (0) = N(0) − V(0) −
∫ +∞

0
e(0, b)db −

∫ +∞

0
i(0, a)da − T (0) − R(0).

The set of unknown parameters and initial values is

χ̂ =
(
σ1, σ2, β1, β3, ξ2, ζ1,T (0),R(0),W(0)

)
.

The density of new TB cases with infection age a at time t is

Z1(t, a) = θ(a)i(t, a),

where the time step and age step are 0.5 and 1 in the simulation, respectively. We
choose the maximum time, maximum latent age and maximum infection age in the
simulation to be 120, 120 and 24 months, respectively. Since the monthly number of
new TB cases shows seasonality, we fit the model using the annual number of new
TB cases. The annual number of new TB cases is an annual integral in the form

Z2( j, a) =

∫
year j

θ(a)i(t, a)dt.



Global analysis of an age-structured tuberculosis model with... 19

In order to simplify our simulation, we first use MCMC method to fitZ1(0, a) to
the TB data at the initial time, which allows us to estimate the parameters $1 and $2,
as shown in Fig. 3(B).Z1(0, a) is represented as follows

Z1(0, a) = θ(a)i(0, a) = θ1e−θ2a$1e−$2a.

We then use the MCMC method (Haario et al., 2006) to fit System (2) for 200000
iterations with a burn-in of 180000 iterations. We estimate the unknown parameters
and initial conditions for System (2), using the MCMC package provided by Miles
(2019). More details on MCMC method can be found in Appendix I.

The mean and standard deviation of the parameters, and initial values are shown
in Table 3. Fig. 4(A) shows the 3D graph of the fitting results of the annual number
of new TB cases from 2009 to 2018. Fig. 4(B) shows the fitting results of the annual
number of new TB cases accumulated by age of infection from 2009 to 2018. The
simulated data is quite similar to the corresponding reported TB data.
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Fig. 3 (A) The fitting result of the diagnosis rate of the infected individuals. (B) The fitting result of initial
reported data. The solid red lines denote simulation median. Black circles represent actual data. The 95%
confidence and prediction intervals are shown in light green and blue, respectively.

4 Results

In this section, we aim to explore the possibility of achieving the goals of WHO
if we start diagnostic strategies and vaccinations for adults in 2025, as well as the
significance of incorporating age into the model.

4.1 Basic reproduction number and sensitivity analysis

Based on the estimated parameter values in the previous section, we calculate the
mean values of the basic reproduction number, R0, is 0.5320 (95%CI : (0.3060,
0.7556)). Since R0 < 1, the disease-free equilibrium P0 of System (2) is globally
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Fig. 4 (A) 3D graph of the fitting results of the annual numbers of new TB cases from 2009 to 2018.
The colored surface represents the simulation median. The black plus signs represent actual data. (B) The
fitting result of the annual number of new TB cases. The solid red lines denote the simulation median.
Black circles represent actual data. The 95% confidence and prediction intervals are shown in light green
and blue, respectively.

Table 3 The unknown parameters and initial values of System (2).

Parameters Mean value Std 95% CI Resource
θ1 0.6180 0.01460 [0.5891, 0.6468] MCMC
θ2 0.6653 0.03175 [0.6049, 0.7306] MCMC
$1 2696 22 [2652, 2740] MCMC
$2 0.5092 0.02300 [0.4652, 0.5556] MCMC
σ1 0.5213 0.4300 [0.09105, 1.6490] MCMC
σ2 8.3267 1.2636 [5.8606, 10.2709] MCMC
β1 9.1334 × 10−9 5.7626 × 10−9 [4.5205 × 10−10, 2.0965 × 10−8] MCMC
β3 8.9389 × 10−10 7.5513 × 10−10 [2.5203 × 10−11, 2.5065 × 10−9] MCMC
ξ2 0.7718 0.1047 [0.6135, 0.9794] MCMC
ζ1 399 270 [46, 956] MCMC

T (0) 35481 10075 [14587, 49285] MCMC
R(0) 5974730 2129618 [2324195, 9764701] MCMC
W(0) 67618 24349 [14842, 99373] MCMC

asymptotically stable, which indicates that TB will die out in Jiangsu Province. How-
ever, according to the fitting results, we find that the annual number of new TB cases
by 2050 will be 1151 (95%CI: (138, 8014)), which means that it is challenging to
achieve the goal of WHO by 2050. Next, to investigate how the parameters affect the
dynamics of System (2), we use the PRCC (Marino et al., 2008) to evaluate the impact
of ten main parameters on the basic reproduction number (R0). The input parameters
are θ1, θ2, β1, β2, β3, ξ1, ξ2, α, η, and c, and the output is the basic reproduction num-
ber (R0). We take 2000 samples for each parameter to conduct sensitivity analysis,
and repeat 1000 times to get 1000 sets of PRCCs for each parameter, then take the
average. All input parameters are normally distributed, with the mean and standard
deviation of θ1, θ2, β1, β3, and ξ2 given in Table 3, and the mean and standard devia-
tion of β2 and ξ1 are consistent with β1 and ξ2. We also assume that the mean values
of α, η, and c are 0.00086, 0.2 and 1/6, respectively, and their standard deviations
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are 1/5 times of the means. The results of the sensitivity analysis of parameters are
shown in Table 4.

Table 4 The PRCCs of the parameters with respect to the basic reproduction number (R0).

Parameters PRCC p value Parameters PRCC p value
θ1 −0.11 p < 0.01 ξ1 0.26 p < 0.01
θ2 0.20 p < 0.01 ξ2 0.10 p < 0.01
β1 0.94 p < 0.01 α −0.11 p < 0.01
β2 0.62 p < 0.01 η 0.03 p = 0.30
β3 0.93 p < 0.01 c −0.57 p < 0.01

Table 4 shows the sensitivity of the parameters θ1, θ2, β1, β2, β3, ξ1, ξ2, α, η, and
c with respect to the basic reproduction number (R0). Firstly, our results show that
the direct transmission rate of infected and treated individuals (β1 and β2) and the
indirect transmission rate of Mycobacterium TB (β3) are highly positively correlat-
ed with the basic reproduction number (R0). In particular, the correlation coefficient
between the indirect transmission rate of Mycobacterium TB (β3) and the basic re-
production number (R0) is more than 0.9, which means that Mycobacterium TB in
the environment has a great influence on the TB epidemic. Next, we find that both
parameters θ2 and ξ1 are moderately positively correlated with the basic reproduction
number (R0), which indicates that the diagnosis rate of the infected individuals and
the Mycobacterium TB shedding rate from infected individuals also have an impact
on the TB epidemic. Moreover, the clearance rate of the Mycobacterium TB in the
environments (c) is highly negatively correlated with the basic reproduction number
(R0). In particular, α has a lower correlation with the basic reproduction number (R0)
than those of β1, β2, β3, c , θ2, and ξ1, but improving the vaccination rate will also
effectively control the TB epidemic.

4.2 The impact of diagnostic strategies

Diagnostic delay of TB results in increasing cases, mortality, infection time and trans-
mission (Sreeramareddy et al., 2009). In order to shorten the duration of infectious-
ness to decrease the annual number of new TB cases. We reduce the annual number
of new TB cases by decreasing the diagnostic delay. To this end, we redefine the
diagnostic rate as

θ(a) =

 θ1e−θ2a, a ≤ Ta,

θ1e−θ2Ta , a > Ta.

The above equation indicates that when the diagnostic delay time is greater than Ta,
the diagnosis rate of infected individuals remains consistent with the diagnosis rate
at Ta, which means that the diagnosis rate has been increased. We set Ta to 5 and 4
to estimate the annual number of new TB cases, respectively. Using these estimated
parameters, our simulations show that the annual number of new TB cases will be
274 (95%CI: (22, 3000)) and 52 (95%CI: (2, 932)) by 2050, respectively, which
means that the goal of WHO in 2050 can be achieved when Ta = 4. In particular,
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we find that setting Ta to 5 and 4 can reduce the annual number of new TB cases
by 74.88% (95%CI: (47.42%, 86.77%)) and 95.28% (95%CI: (77.55%, 98.79%)) by
2050, respectively (see Fig. 5(A)), and can prevent 45351 (95%CI: (13997, 150655))
and 73137 (95%CI: (23906, 234086)) individuals from being infected from 2025 to
2050, respectively (see Fig. 5(B)), which indicates that reducing the diagnostic delay
can shorten the duration of infection, thereby reducing the number of new TB cases.
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Fig. 5 (A) The impact of improved diagnostic strategies starting from 2025 on the annual number of new
TB cases by year up to 2050. (B) The number of TB cases averted per year under improved diagnostic
strategies.

4.3 The impact of vaccinations for adults

Currently, there are no effective vaccines against TB for adults. In the simulations, we
assume that TB vaccinations for adults will start in 2025. We assume that the level
and duration of TB vaccine protection for adults vaccines and BCG vaccines are the
same, that is, we set the level of vaccine protection to be 80% (i.e., 1 − η = 0.8) and
the duration of vaccine protection to be ten years (i.e., 1/τ = 10 × 12), and assume
that the vaccine coverage of susceptible individuals is V/(S +V) by changing the vac-
cination rate α. We set the vaccine coverage of susceptible individuals over ten years
old to 10% and 20% to estimate the annual number of new TB cases, respectively.
Using these estimated parameters, our simulations find that the annual number of new
TB cases will be 262 (95%CI: (25, 2602)) and 46 (95%CI: (3, 590)) by 2050, respec-
tively, which means that the goal of WHO in 2050 can be achieved when vaccine
coverage is 20%. In particular, we further predict that increasing vaccine coverage
of susceptible individuals over ten years old to 10% and 20% can reduce the an-
nual number of new TB cases by 77.34% (95%CI: (67.42%, 83.36%)) and 95.97%
(95%CI: (91.58%, 97.88%)) by 2050, respectively (see Fig. 6(A)), and can prevent
33931 (95%CI: (9140, 130171)) and 54828 (95%CI: (15811, 206468)) individuals
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from being infected from 2025 to 2050, respectively (see Fig. 6(B)), which indicates
that vaccinating susceptible individuals over ten years old can effectively reduce the
annual number of new TB cases.
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Fig. 6 (A) The impact of adult vaccinations starting from 2025 on the annual number of new TB cases by
year up to 2050. (B) The number of TB cases averted per year when adults are vaccinated.

4.4 The significance of incorporating age into the model

The class-age is an important factor in the prevention and control of infectious dis-
eases when modeling long-term diseases (Iannelli and Milner, 2017). Firstly, the
symptoms of TB are atypical, that is, the early symptoms of TB are not obvious and
can resemble other illnesses such as colds and pneumonia, leading to missed diag-
noses and misdiagnoses (Sreeramareddy et al., 2009). Especially in Jiangsu Province,
the duration of diagnosis delay range from a few days to several hundred days. There-
fore, the diagnosis rate of TB individuals varies from person to person, and this phe-
nomenon can be characterized by an age structure model. Secondly, the duration of
the latent period of TB varies greatly depending on the individual physical condition,
immune response, the route and level of exposure to Mycobacterium TB. Some of
these people can remain in a latent state after infection for their entire lives and may
never develop active disease, while others may develop TB disease shortly after in-
fection, which means that progression rate of the latent individuals depends on the
latent age (Wikipedia, 2022). During modeling, we captured the age of infection be-
fore receiving treatment and latent age. Our model is very consistent with the TB data
in Jiangsu Province, which varies with the infection age and time (see Fig. 4(A)). In
Section 4.2, we evaluate the possibility of achieving the goals of WHO in Jiangsu
Province by changing the diagnostic rate function (θ(a)), which can not be studied
with a standard model that has no diagnostic delay. Our model not only allows more
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detailed grouping of latent individuals and infected individuals to obtain more accu-
rate transmission models, but also introduces the class-age in the modeling process
to predict the trend of epidemics at different infection ages, providing guidance for
formulating prevention and control policies.

5 Discussion

The effectiveness of TB control strategies depends on many factors, of which the
most important ones are diagnostic delay, adult vaccination, and the survival time
of Mycobacterium TB in the environment, etc., (Chinese Center for Disease Control
and Prevention, 2022; Harris et al., 2019, 2020; Sreeramareddy et al., 2009), which
presents a challenge for achieving the goal of WHO by 2050. In this work, we pro-
pose an age-structured model with latent age and infection age, and we incorporate
Mycobacterium TB in the environment into the model. Since the development of new
TB vaccines is rapid, we also introduce vaccination into the model. In particular, we
consider the age of infection before receiving treatment to represent diagnostic delay.
To start with, we derive the basic reproduction number (R0) of the System (2), which
is a very important threshold parameter for the persistence and extinction of the dis-
ease. Using the theories of infinite-dimensional systems and Lyapunov functions, we
have obtained a threshold for the global stability of the System (2) with respect to R0,
that is, when R0 is less than 1, the disease-free equilibrium is globally asymptotically
stable and the disease eventually dies out; when R0 is equal to 1, the disease-free
equilibrium is globally attractive; there exists a unique endemic equilibrium and the
endemic equilibrium is globally attractive whenR0 is greater than 1. Besides, we con-
duct a case study based on the epidemiological data stratified by the age of infection
in Jiangsu Province and evaluate the possibility of achieving the goals of WHO in
Jiangsu Province.

The study consists of 351,401 TB cases from January 2009 to December 2018 in
Jiangsu Province. The data include symptom-onset date, confirmed date, and diagnos-
tic result, etc. We set the age of infection as the difference between the symptom-onset
date and confirmed date, allowing us to obtain the epidemiological data classified by
the age of infection. We also find an average delay of 44 (95%CI: (1, 189)) days in
Jiangsu Province, which means that the risk of TB transmission in the community is
high.

According to the estimated parameter values, we calculate that the basic repro-
duction number, R0, is estimated to be 0.5320 (95%CI : (0.3060, 0.7556)), which
indicates that TB will die out in Jiangsu Province. Regrettably, we obtain that the
annual number of new TB cases by 2050 is 1151 (95%CI: (138, 8014)), which means
that it is challenging to achieve the goal of WHO by 2050. Our sensitivity analy-
sis indicates that the parameter θ2 is moderately positively correlated with the basic
reproduction number (R0), which indicates that the diagnosis rate of the infected in-
dividuals also has an impact on the TB epidemic, and the parameter α has a lower
correlation with the basic reproduction number (R0) than β1, β2, β3, c , θ2, and ξ1,
but improving the vaccination rate will also effectively control the TB epidemic. Ac-
cording to the results of sensitivity analysis, we find that the correlation between the



Global analysis of an age-structured tuberculosis model with... 25

diagnosis rate or vaccination rate and the basic reproduction number (R0) is not the
highest. Because other non-pharmaceutical interventions other than surgery are not
feasible for TB, we can only mitigate TB transmission by varying diagnostic rate and
vaccination coverage (NEWTON, 1912; Riquelme-Miralles et al., 2019).

Furthermore, we also evaluate the possibility of achieving the goals of WHO if
we start diagnostic strategies and adult vaccinations in 2025. We find that when the
diagnostic delay is reduced from longer than four months to four months, the annual
number of new TB cases will be 52 (95%CI: (2, 932)) by 2050, and 73137 (95%CI:
(23906, 234086)) individuals will be prevented from being infected from 2025 to
2050, which means that the goal of WHO by 2050 can be achieved. In addition, we
also find that the goal of WHO in 2050 can be achieved and 54828 (95%CI: (15811,
206468)) individuals will be prevented from being infected from 2025 to 2050 when
20% adults are vaccinated.

Our work provides a framework for determining how to quickly diagnose pop-
ulations with prolonged infections and better vaccinate adults when more advanced
diagnostic strategies and more effective vaccines for adults are available. Our re-
search results utilize a wide range of datasets. Specifically, we extract the diagnostic
rate from the dataset and fit the diagnostic rate function, which provided convenience
for us to study the impact of diagnostic strategies in Jiangsu Province. We discuss the
effectiveness of the diagnostic strategies and vaccinations for adults on the prevalence
of TB. Both the diagnosis strategy and vaccination for adults are likely to achieve the
goal of WHO in Jiangsu Province. In summary, reducing the delayed diagnosis time
can shorten the infection time of infected individuals, and vaccinating adults can pro-
tect susceptible individuals from infection, thereby reducing the number of new TB
cases, which is of great significance for reducing the prevalence of TB.

Our study still has several limitations. First, in the modeling, we don’t consider
relapses in recovered individuals in order to obtain the completed mathematical the-
oretical results. Second, we assume that the global attractivity of the equilibria are
obtained when the average period of immunity δ = 0. Third, since there is not e-
nough data to fit the progression rate of the latent individuals (σ(b)), we assume the
progression rate of the latent individuals to be σ(b) = σ1e−σ2b, which will be studied
in future work when relevant data become publicly available.
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Appendix A Proof of Theorem 1

Note that the total population size N(t) satisfies

dN(t)
dt

=
dS (t)

dt
+

dV(t)
dt

+
dT (t)

dt
+

dR(t)
dt

+
d
dt

∫ +∞

0
e(t, b)db +

d
dt

∫ +∞

0
i(t, a)da. (28)

According to Eq. (5), we have∫ +∞

0
e(t, b)db =

∫ t

0
e(t − b, 0)k1(b)db +

∫ +∞

t
e0(b − t)

k1(b)
k1(b − t)

db

=

∫ t

0
e(τ1, 0)k1(t − τ1)dτ1 +

∫ +∞

0
e0(τ2)

k1(t + τ2)
k1(τ2)

dτ2.

Then

d
dt

∫ +∞

0
e(t, b)db =

d
dt

∫ t

0
e(τ1, 0)k1(t − τ1)dτ1 +

d
dt

∫ +∞

0
e0(τ2)

k1(t + τ2)
k1(τ2)

dτ2

= e(t, 0)k1(0) +

∫ t

0
e(τ1, 0)

d
dt

k1(t − τ1)dτ1 +

∫ +∞

0

e0(τ2)
k1(τ2)

d
dt

k1(t + τ2)dτ2.

Note that k1(0) = 1 and d
db

k1(b) = −(ρσ(b) + d)k1(b) for almost all b ≥ 0. Thus, we have

d
dt

∫ +∞

0
e(t, b)db = e(t, 0) −

∫ t

0
e(τ1, 0)(ρσ(t − τ1) + d)k1(t − τ1)dτ1

−

∫ +∞

0

e0(τ2)
k1(τ2)

(ρσ(t + τ2) + d)k1(t + τ2)dτ2

= e(t, 0) −
∫ +∞

0
(ρσ(b) + d)e(t, b)db.

Similarly, we obtain
d
dt

∫ +∞

0
i(t, a)da = i(t, 0) −

∫ +∞

0
(θ(a) + d)i(t, a)da.

We deduce that N(t) satisfies the following equation

dN(t)
dt

= Λ − dN(t).

Solving the above equation, we have N(t) = Λ
d − e−dt( Λd − N0) and lim sup

t→∞
N(t) ≤ Λ

d for t ∈ R+, where N0

represents the total population at time t = 0.
Through the fifth equation of System (2), we obtain

dW(t)
dt

=

∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW(t) ≤

Λ(ξ̄1 + ξ2)
d

− cW(t).

Solving the above equation, we have that W(t) =
Λ(ξ̄1+ξ2)

dc −e−ct
(
Λ(ξ̄1+ξ2)

dc −W0
)

and lim sup
t→∞

W(t) ≤ Λ(ξ̄1+ξ2)
dc

for t ∈ R+, where W0 indicates the density of Mycobacterium TB at time t = 0. This completes the proof.
�

Appendix B Proof of Theorem 2

The characteristic equation corresponding to P0 is

G(ι) =
(
S 0 + ηV0){H2(ι) +

β2H3(ι)
ι + γ + d

+
β3[(ι + γ + d)H4(ι) + ξ2H3(ι)]

(ι + c)(ι + γ + d)

}[
q + ρ(1 − q)H1(ι)

]
− 1.
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When ι is real, we can acquire some basic properties of G(ι) as follows

G(0) = R0 − 1, G′(ι) < 0, lim
ι→−∞

G(ι) = +∞, lim
ι→+∞

G(ι) = −1.

Hence, when R0 > 1, the characteristic equation G(ι) = 0 has a real positive root. Then, the disease-free
equilibrium is unstable. When R0 < 1, the characteristic equation G(ι) = 0 does not have a solution with
non-negative real part. Otherwise, G(ι) = 0 has at least one root ι0 = α0 + iβ0 satisfying α0 ≥ 0. Then, we
have

0 = |G(ι0)| ≤ R0 − 1,

which contradicts with R0 < 1. Hence, when R0 < 1, the disease-free equilibrium is locally asymptotically
stable. This completes the proof. �

Appendix C Proof of Theorem 3

For t ≥ 0, let
Ψ (t, x) = (S (t),V(t),T (t),R(t),W(t), ẽ(t, ·), ĩ(t, ·)),

and
Θ(t, x) = (0, 0, 0, 0, 0, ϕe(t, ·), ϕi(t, ·)),

where

ẽ(t, b) =

 e(t − b, 0)k1(b), 0 ≤ b ≤ t,

0, 0 ≤ t ≤ b,
ĩ(t, a) =

 i(t − a, 0)k2(a), 0 ≤ a ≤ t,

0, 0 ≤ t ≤ a,

ϕe(t, b) =


0, 0 ≤ b ≤ t,

e0(b − t)
k1(b)

k1(b − t)
, 0 ≤ t ≤ b,

ϕi(t, a) =


0, 0 ≤ a ≤ t,

i0(a − t)
k2(a)

k2(a − t)
, 0 ≤ t ≤ a,

for x = (S (0),V(0),T (0),R(0),W(0), e0(b), i0(a)). Clearly, we have Φ(t, x) = Θ(t, x) + Ψ (t, x). Let B be a
bounded subset of Y, M is constants greater than max

{
N0,

Λ
d ,W0,

Λ(ξ̄1+ξ2)
dc

}
, for each x ∈ B. Hence, we

can derive

‖Θ(t, x)‖Y =

∫ +∞

t
e0(b − t)

k1(b)
k1(b − t)

db +

∫ +∞

t
i0(a − t)

k2(a)
k2(a − t)

da

=

∫ +∞

0
e0(τ1)

k1(τ1 + t)
k1(τ1)

dτ1 +

∫ +∞

0
i0(τ1)

k2(τ1 + t)
k2(τ1)

dτ1

=

∫ +∞

0
e0(τ1)e

−
∫ τ1+t
τ1

(ρσ(s)+d)ds
dτ1 +

∫ +∞

0
i0(τ1)e

−
∫ τ1+t
τ1

(θ(s)+d)ds
dτ1

≤ e−dt
( ∫ +∞

0
e0(τ1)dτ1 +

∫ +∞

0
i0(τ1)dτ1

)
≤ Me−dt .

This implies lim
t→∞

diam Θ(t,B) = 0. In the following, we will show that Ψ (t, x) has a compact closure for

each t ≥ 0. We know that S (t), V(t), T (t), R(t), and W(t) remain in the compact set [0,M] for all t ≥ 0.
Thus, we only need to prove that ẽ(t, b) and ĩ(t, a) remain in a pre-compact subset of L1

+(0,+∞), which is
independent of x ∈ B. According to

0 ≤ ẽ(t, b) =

 e(t − b, 0)k1(b), 0 ≤ b ≤ t,

0, 0 ≤ t ≤ b,

and assumption (A2), it is easy to show that

0 ≤ ẽ(t, b) ≤ (1 − q)(1 + η)(β̄1 + β2 + β3)M2e−db.
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Therefore, the conditions (i), (ii) and (iv) of Lemma 2 are satisfied. Next, we verify that condition (iii) of
Lemma 2 is satisfied.∫ +∞

0
|ẽ(t, b + h) − ẽ(t, b)|db =

∫ t−h

0
|ẽ(t, b + h) − ẽ(t, b)|db +

∫ t

t−h
|ẽ(t, b)|db

≤

∫ t−h

0
|e(t − b − h, 0)||k1(b + h) − k1(b)|db

+

∫ t−h

0
|e(t − b − h, 0) − e(t − b, 0)||k1(b)|db

+ (1 − q)(1 + η)(β̄1 + β2 + β3)M2h,

where ∫ t−h

0
|e(t − b − h, 0)||k1(b + h) − k1(b)|db

≤ (1 − q)(1 + η)(β̄1 + β2 + β3)M2
( ∫ t−h

0
k1(b)db −

∫ t−h

0
k1(b + h)db

)
= (1 − q)(1 + η)(β̄1 + β2 + β3)M2

( ∫ h

0
k1(b)db −

∫ h

t−h
k1(b)db −

∫ t

h
k1(s)ds

)
= (1 − q)(1 + η)(β̄1 + β2 + β3)M2

( ∫ h

0
k1(b)db −

∫ t

t−h
k1(s)ds

)
≤ (1 − q)(1 + η)(β̄1 + β2 + β3)M2h.

According to System (2), the following inequalities,∣∣∣∣dS (t)
dt

∣∣∣∣ ≤ Λ +
[
τ + δ + α + d + (β̄1 + β2 + β3)M

]
M,∣∣∣∣ dV(t)

dt

∣∣∣∣ ≤ [
α + η(β̄1 + β2 + β3)M + τ + d

]
M,∣∣∣∣ dT (t)

dt

∣∣∣∣ ≤ (θ̄ + γ + d)M,∣∣∣∣ dR(t)
dt

∣∣∣∣ ≤ (γ + δ + d)M,∣∣∣∣ dW(t)
dt

∣∣∣∣ ≤ (ξ̄1 + ξ2 + c)M,

can be obtained. Next, we prove that
∫ +∞

0 β1(a)i(t, a)da is Lipschitz continuous.∣∣∣∣∣ ∫ +∞

0
β1(a)i(t + h, a)da −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣∣
=

∣∣∣∣∣ ∫ h

0
β1(a)i(t + h, a)da +

∫ +∞

h
β1(a)i(t + h, a)da −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣∣
=

∣∣∣∣∣ ∫ h

0
β1(a)i(t + h − a, 0)k2(a)da +

∫ +∞

h
β1(a)i(t + h, a)da −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣∣
≤

[
q(1 + η)(β̄1 + β2 + β3)M + ρσ̄

]
β̄1Mh

+

∣∣∣∣∣ ∫ +∞

0
β1(τ1 + h)i(t + h, τ1 + h)dτ1 −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣∣
=

[
q(1 + η)(β̄1 + β2 + β3)M + ρσ̄

]
β̄1Mh

+

∣∣∣∣∣ ∫ +∞

0
β1(τ1 + h)i(t, τ1)

k2(τ1 + h)
k2(τ1)

dτ1 −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣∣.
According to assumption (A3), we note that∣∣∣∣∣ ∫ +∞

0
β1(a + h)i(t, a)

k2(a + h)
k2(a)

da −
∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣∣
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=

∣∣∣∣∣ ∫ +∞

0

(
β1(a + h)

k2(a + h)
k2(a)

− β1(a)
)
i(t, a)da

∣∣∣∣∣
=

∣∣∣∣∣ ∫ +∞

0
β1(a + h)i(t, a)

( k2(a + h)
k2(a)

− 1
)
da +

∫ +∞

0
(β1(a + h) − β1(a))i(t, a)da

∣∣∣∣∣
=

∣∣∣∣∣ ∫ +∞

0
β1(a + h)i(t, a)

(
e−

∫ a+h
a (θ(s)+d)ds

− 1
)
da +

∫ +∞

0
(β1(a + h) − β1(a))i(t, a)da

∣∣∣∣∣
≤ β̄1(θ̄ + d)Mh +

∣∣∣∣∣ ∫ +∞

0
(β1(a + h) − β1(a))i(t, a)da

∣∣∣∣∣
≤ β̄1(θ̄ + d)Mh +

∫ +∞

0

∣∣∣β1(a + h) − β1(a)
∣∣∣∣∣∣i(t, a)

∣∣∣da

≤
[
β̄1(θ̄ + d) + Mβ1

]
Mh.

Hence, we obtain ∣∣∣∣∣ ∫ +∞

0
β1(a)i(t + h, a)da −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣∣
≤

{[
q(1 + η)(β̄1 + β2 + β3)M + ρσ̄

]
β̄1 + β̄1(θ̄ + d) + Mβ1

}
Mh.

According to the above inequality, we have∣∣∣e(t − b − h, 0) − e(t − b, 0)
∣∣∣

= (1 − q)
∣∣∣λ(t − b − h)

(
S (t − b − h) + ηV(t − b − h)

)
− λ(t − b)

(
S (t − b) + ηV(t − b)

)∣∣∣
≤ (1 − q)

(∣∣∣∣S (t − b − h)
∫ +∞

0
β1(a)i(t − b − h, a)da − S (t − b)

∫ +∞

0
β1(a)i(t − b, a)da

∣∣∣∣
+β2

∣∣∣S (t − b − h)T (t − b − h) − S (t − b)T (t − b)
∣∣∣

+β3

∣∣∣∣S (t − b − h)W(t − b − h) − S (t − b)W(t − b)
∣∣∣∣

+η
∣∣∣∣V(t − b − h)

∫ +∞

0
β1(a)i(t − b − h, a)da − V(t − b)

∫ +∞

0
β1(a)i(t − b, a)da

∣∣∣∣
+ηβ2

∣∣∣V(t − b − h)T (t − b − h) − V(t − b)T (t − b)
∣∣∣

+ηβ3

∣∣∣∣V(t − b − h)W(t − b − h) − V(t − b)W(t − b)
∣∣∣∣) ≤ Υh,

where

Υ = (1 − q)M2
{[

q(1 + η)(β̄1 + β2 + β3)M + ρσ̄
]
β̄1 + β̄1(θ̄ + d) + Mβ1

}
+(1 − q)β̄1M

{
Λ +

[
τ + δ + α + d + (β̄1 + β2 + β3)M

]
M

}
+(1 − q)β2M

{
Λ +

[
θ̄ + γ + d + τ + δ + α + d + (β̄1 + β2 + β3)M

]
M

}
+(1 − q)β3M

{
Λ +

[
ξ̄1 + ξ2 + c + τ + δ + α + d + (β̄1 + β2 + β3)M

]
M

}
+(1 − q)ηM2

{[
q(1 + η)(β̄1 + β2 + β3)M + ρσ̄

]
β̄1 + β̄1(θ̄ + d) + Mβ1

}
+(1 − q)ηβ̄1M

2
{
α + η(β̄1 + β2 + β3)M + τ + d

}
+(1 − q)ηβ2M

2{θ̄ + γ + d + α + η(β̄1 + β2 + β3)M + τ + d
}

+(1 − q)ηβ3M
2
{
ξ̄1 + ξ2 + c + α + η(β̄1 + β2 + β3)M + τ + d

}
.

Then, we obtain ∫ t−h

0
|e(t − b − h, 0) − e(t − b, 0)||k1(b)|db ≤ Υh

∫ t−h

0
e−dbdb ≤

Υh
d
.

Hence, ∫ +∞

0
|ẽ(t, b + h) − ẽ(t, b)|db ≤

[
2(1 − q)(1 + η)(β̄1 + β2 + β3)M2 +

Υ

d

]
h.



30 Shuanglin Jing et al.

We have verified that ẽ(t, b) satisfies the conditions of Lemma 2. In a similar way, ĩ(t, a) also satisfies
the conditions of Lemma 2. As a result, ẽ(t, b) and ĩ(t, a) remain in pre-compact subsets Ae

M
and Ai

M
of

L1
+(0,+∞), respectively. Therefore, Ψ (t,B) ⊆ [0,M] × [0,M] × [0,M] × [0,M] × [0,M] × Ae

M
× Ai

M
,

which has a compact closure in Y. This implies that Ψ (t,B) has a compact closure, satisfying the second
condition of Lemma 1. Therefore, we conclude that {Φ(t, ·)}t≥0 is asymptotically smooth. This completes
the proof. �

Appendix D Proof of Theorem 4

Let

J(t) = T (t) + W(t) +

∫ +∞

0
e(t, b)db +

∫ +∞

0
i(t, a)da. (29)

For any Φ(0, x0) ∈ D0, we have

dJ(t)
dt

= −(γ + d)T (t) +

∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW(t)

−d
∫ +∞

0
e(t, b)db + λ(t)

(
S (t) + ηV(t)

)
− d

∫ +∞

0
i(t, a)da

≥ −(γ + d)T (t) − cW(t) − d
∫ +∞

0
e(t, b)db − d

∫ +∞

0
i(t, a)da

≥ −āJ(t),

where ā = max{γ + d, c}. Then, we obtain J(t) ≥ J(0)e−āt > 0. This implies that Φ(t,D0) ∈ D0, i.e.,D0 is
positively invariant under the semiflow {Φ(t, ·)}t≥0.

In addition, for any Φ(0, x0) ∈ ∂D0, we consider the following system

dT (t)
dt

=

∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),

dW(t)
dt

=

∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW(t),

∂e(t, b)
∂t

+
∂e(t, b)
∂b

= −(ρσ(b) + d)e(t, b),

∂i(t, a)
∂t

+
∂i(t, a)
∂a

= −(θ(a) + d)i(t, a), (30)

e(t, 0) = (1 − q)λ(t)
(
S (t) + ηV(t)

)
,

i(t, 0) = qλ(t)
(
S (t) + ηV(t)

)
+ ρ

∫ +∞

0
σ(b)e(t, b)db,

T (0) = 0,W(0) = 0, e(0, b) = e0(b), i(0, a) = i0(a),

where λ(t) is given by Eq. (1). Since S (t) + ηV(t) ≤ max
{
N0,

Λ
d

}
:= ℵ, then we set up the following

comparison system

dT (t)
dt

=

∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),

dW(t)
dt

=

∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW(t),

∂e(t, b)
∂t

+
∂e(t, b)
∂b

= −(ρσ(b) + d)e(t, b),

∂i(t, a)
∂t

+
∂i(t, a)
∂a

= −(θ(a) + d)i(t, a), (31)

e(t, 0) = (1 − q)λ(t)ℵ,
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i(t, 0) = qλ(t)ℵ + ρ

∫ +∞

0
σ(b)e(t, b)db,

T (0) = 0,W(0) = 0, e(0, b) = e0(b), i(0, a) = i0(a),

where λ(t) =
∫ +∞

0 β1(a)i(t, a)da + β2T (t) + β3W(t).
Integrating the equations for e(t, b) and i(t, a) in System (31) along the characteristic lines, t−b = const

and t − a = const, respectively, we obtain

e(t, b) =


e(t − b, 0)k1(b), 0 ≤ b ≤ t,

e0(b − t)
k1(b)

k1(b − t)
, 0 ≤ t ≤ b,

i(t, a) =


i(t − a, 0)k2(a), 0 ≤ a ≤ t,

i0(a − t)
k2(a)

k2(a − t)
, 0 ≤ t ≤ a.

(32)

Substituting Eq. (32) into System (31), we obtain

dT (t)
dt

=

∫ t

0
θ(a)i(t − a, 0)k2(a)da +

∫ +∞

t
θ(a)i0(a − t)

k2(a)
k2(a − t)

da − (γ + d)T (t),

dW(t)
dt

=

∫ t

0
ξ1(a)i(t − a, 0)k2(a)da +

∫ +∞

t
ξ1(a)i0(a − t)

k2(a)
k2(a − t)

da + ξ2T (t) − cW(t), (33)

T (0) = 0,W(0) = 0.

According to assumption (A2), one can obtain∫ +∞

t
θ(a)i0(a − t)

k2(a)
k2(a − t)

da ≤ θ̄
∫ +∞

0
i0(a)da,∫ +∞

t
ξ1(a)i0(a − t)

k2(a)
k2(a − t)

da ≤ ξ̄1

∫ +∞

0
i0(a)da,∫ +∞

t
σ(b)e0(b − t)

k1(b)
k1(b − t)

db ≤ σ̄
∫ +∞

0
e0(b)db,∫ +∞

t
β1(a)i0(a − t)

k2(a)
k2(a − t)

da ≤ β̄1

∫ +∞

0
i0(a)da.

For any Φ(0, x0) ∈ ∂D0, we have∫ +∞

t
θ(a)i0(a − t)

k2(a)
k2(a − t)

da = 0,
∫ +∞

t
ξ1(a)i0(a − t)

k2(a)
k2(a − t)

da = 0,∫ +∞

t
σ(b)e0(b − t)

k1(b)
k1(b − t)

db = 0,
∫ +∞

t
β1(a)i0(a − t)

k2(a)
k2(a − t)

da = 0.

Let

Le(t) = e(t, 0) = (1 − q)λ(t)ℵ,

Li(t) = i(t, 0) = qλ(t)ℵ + ρ

∫ +∞

0
σ(b)e(t, b)db,

we have

Le(t) = (1 − q)
[ ∫ t

0
β1(a)Li(t − a)k2(a)da + β2T (t) + β3W(t)

]
ℵ,

Li(t) = q
[ ∫ t

0
β1(a)Li(t − a)k2(a)da + β2T (t) + β3W(t)

]
ℵ + ρ

∫ t

0
σ(b)Le(t − b)k1(b)db.

Then, System (33) can be rewritten as

Le(t) = (1 − q)
[ ∫ t

0
β1(a)Li(t − a)k2(a)da + β2T (t) + β3W(t)

]
ℵ,
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Li(t) = q
[ ∫ t

0
β1(a)Li(t − a)k2(a)da + β2T (t) + β3W(t)

]
ℵ + ρ

∫ t

0
σ(b)Le(t − b)k1(b)db,

dT (t)
dt

=

∫ t

0
θ(a)Li(t − a)k2(a)da − (γ + d)T (t), (34)

dW(t)
dt

=

∫ t

0
ξ1(a)Li(t − a)k2(a)da + ξ2T (t) − cW(t),

Le(0) = 0, Li(0) = 0,T (0) = 0,W(0) = 0.

It is easy to show that System (34) has a unique solution Le(t) = 0, Li(t) = 0, T (t) = 0, and W(t) = 0.
From System (31) and Eq. (32), we obtain that e(t, t) = 0 and i(t, t) = 0 for 0 ≤ t ≤ t. Hence,

‖e(t, b)‖L1
+

=

∫ +∞

t
e0(b − t)

k1(b)
k1(b − t)

db ≤ ‖e0(t̄)‖L1
+

= 0.

Similarly, we can also obtain ‖i(t, a)‖L1
+

= 0. Since T (t) ≤ T (t), W(t) ≤ W(t), e(t, b) ≤ e(t, b), and

i(t, a) ≤ i(t, a), we have

T (t) = 0, W(t) = 0, ‖e(t, b)‖L1
+

= 0, ‖i(t, a)‖L1
+

= 0.

This implies that ∂D0 is positively invariant under the semiflow {Φ(t, ·)}t≥0.
Next, we prove that the disease-free equilibrium P0 of System (2) is globally asymptotically stable

for the semiflow {Φ(t, ·)}t≥0 restricted to ∂D0. Obviously, System (2) can be represented as

dS (t)
dt

= Λ + τV(t) + δR(t) − (α + d)S (t),

dV(t)
dt

= αS (t) − (τ + d)V(t), (35)

dR(t)
dt

= −(δ + d)R(t).

Obviously, the unique equilibrium (S 0,V0, 0) of System (35) is locally asymptotically stable. By solving
System (35), we obtain

S (t) = −
C3τ

α + τ
e−(d+δ)t +

Λ(τ + d)
d(α + τ + d)

+
αδC3

(α + τ)(α − δ + τ)
e−(d+δ)t

−C1e−(α+τ+d)t −
τC1

α
e−dt ,

V(t) = C2e−dt + C1e−(α+τ+d)t −
αδ

(α + τ)(α − δ + τ)
e−(d+δ)t

−
αC3

α + τ
e−(d+δ)t +

Λα

d(α + τ + d)
,

R(t) = C3e−(d+δ)t ,

where C1,C2,C3 are constants. Thus, limt→∞ S (t) =
Λ(τ+d)

d(α+τ+d) = S 0, limt→∞ V(t) = Λα
d(α+τ+d) = V0, and

limt→∞ R(t) = 0. Then, the disease-free equilibrium P0 is globally asymptotically stable restricted to ∂D0.
This completes the proof. �

Appendix E Proof of Theorem 5

We assume by contradiction that there exists x0 ∈ W s(P0) ∩ D0. In this case, one can find a sequence
{xn} ∈ D0 such that ∥∥∥Φ(t, xn) − P0

∥∥∥
Y
<

1
n
, t ≥ 0.

Here, Φ(t, xn) := (S n(t),Vn(t),Tn(t),Rn(t),Wn(t), en(t, ·), in(t, ·)).
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Now, we choose n > 0 large enough to ensure S 0 − 1
n > 0 and V0 − 1

n > 0. For the above given n > 0,
there exists a t1 > 0 such that for t > t1,

S 0 −
1
n
< S n(t) < S 0 +

1
n
, V0 −

1
n
< Vn(t) < V0 +

1
n
.

Then, System (2) can be written as

dT (t)
dt
≥

∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),

dW(t)
dt

≥

∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW(t),

∂e(t, b)
∂t

+
∂e(t, b)
∂b

≥ −(ρσ(b) + d)e(t, b),

∂i(t, a)
∂t

+
∂i(t, a)
∂a

≥ −(θ(a) + d)i(t, a),

e(t, 0) ≥ (1 − q)λ(t)
(
S 0 −

1
n

+ η(V0 −
1
n

)
)
,

i(t, 0) ≥ qλ(t)
(
S 0 −

1
n

+ η(V0 −
1
n

)
)

+ ρ

∫ +∞

0
σ(b)e(t, b)db,

T (0) = T0,W(0) = W0, e(0, b) = e0(b), i(0, a) = i0(a),

where λ(t) is given by Eq. (1). We consider the following auxiliary system

dT (t)
dt

=

∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),

dW(t)
dt

=

∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW(t),

∂e(t, b)
∂t

+
∂e(t, b)
∂b

= −(ρσ(b) + d)e(t, b),

∂i(t, a)
∂t

+
∂i(t, a)
∂a

= −(θ(a) + d)i(t, a), (36)

e(t, 0) = (1 − q)λ(t)
(
S 0 −

1
n

+ η(V0 −
1
n

)
)
,

i(t, 0) = qλ(t)
(
S 0 −

1
n

+ η(V0 −
1
n

)
)

+ ρ

∫ +∞

0
σ(b)e(t, b)db,

T (0) = T0,W(0) = W0, e(0, b) = e0(b), i(0, a) = i0(a),

where λ(t) =
∫ +∞

0 β1(a)i(t, a)da + β2T (t) + β3W(t). By Volterra formulation (5), we have

e(t, b) =


e(t − b, 0)k1(b), 0 ≤ b ≤ t,

e0(b − t)
k1(b)

k1(b − t)
, 0 ≤ t ≤ b,

i(t, a) =


i(t − a, 0)k2(a), 0 ≤ a ≤ t,

i0(a − t)
k2(a)

k2(a − t)
, 0 ≤ t ≤ a.

(37)

By direct calculation, the characteristic equation of System (36) at P0 is(
S 0 −

1
n

+ η(V0 −
1
n

)
){
H2(ι) +

β2H3(ι)
ι + γ + d

+
β3[(ι + γ + d)H4(ι) + ξ2H3(ι)]

(ι + c)(ι + γ + d)

}[
q + ρ(1 − q)H1(ι)

]
= 1,

whereH1(ι),H2(ι),H3(ι), andH4(ι) are given by Eq. (23). Let

f (ι) =

(
S 0 −

1
n

+ η(V0 −
1
n

)
){
H2(ι) +

β2H3(ι)
ι + γ + d

+
β3[(ι + γ + d)H4(ι) + ξ2H3(ι)]

(ι + c)(ι + γ + d)

}[
q + ρ(1 − q)H1(ι)

]
.

Clearly, we have f ′(ι) < 0 and lim
ι→+∞

f (ι) = 0. Furthermore, we also have f (0) > 1 for sufficiently large

n. Hence, when R0 > 1, the characteristic equation of System (36) has a real positive root. This implies
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that the solution (T (t),W(t), e(t, ·), i(t, ·)) of System (36) is unbounded. Since T (t) ≥ T (t), W(t) ≥ W(t),
e(t, ·) ≥ e(t, ·), and i(t, ·) ≥ i(t, ·), by comparison principle, we obtain that (T (t),W(t), e(t, ·), i(t, ·)) is un-
bounded, which contradicts with Proposition 1. Therefore, W s(P0)∩D0 = ∅. By Theorem 4.2 in Hale and
Waltman (1989), we conclude that semiflow {Φ(t, ·)}t≥0 generated by System (2) is uniformly persistent.
This completes the proof. �

Appendix F Proof of Theorem 6

Define a Lyapunov function

L(t) = Ls(t) +Lv(t) +Le(t) +Li(t) +Lt(t) +Lw(t) (38)

where

Ls(t) =
1

2S 0 (S (t) − S 0)2, Lv(t) =
1

2V0 (V(t) − V0)2,

Le(t) = Fb

∫ +∞

0
Fe(b)e(t, b)db, Li(t) =

(
S 0 + ηV0) ∫ +∞

0
Fi(a)i(t, a)da,

Lt(t) =
(
S 0 + ηV0)( β2

γ + d
+

β3ξ2

c(γ + d)

)
T (t), Lw(t) =

(
S 0 + ηV0)β3

c
W(t).

The nonnegative function L(t) is defined with respect to the disease-free equilibrium P0, which is a global
minimum. We choose

Fb =
(
S 0 + ηV0)(K2 +

β2K3

γ + d
+
β3K4

c
+
β3ξ2K3

c(γ + d)

)
,

Fe(b) =

∫ +∞

b
ρσ(υ)e−

∫ υ
b (ρσ(%)+d)d%dυ,

Fi(a) =

∫ +∞

a

(
β1(υ) +

β2θ(υ)
γ + d

+
β3ξ1(υ)

c
+
β3ξ2θ(υ)
c(γ + d)

)
e−

∫ υ
a (θ(%)+d)d%dυ.

By direct calculations, one obtains that

Fe(0) =

∫ +∞

0
ρσ(υ)e−

∫ υ
0 (ρσ(%)+d)d%dυ = ρK1,

Fi(0) =

∫ +∞

0

(
β1(υ) +

β2θ(υ)
γ + d

+
β3ξ1(υ)

c
+
β3ξ2θ(υ)
c(γ + d)

)
e−

∫ υ
0 (θ(%)+d)d%dυ

= K2 +
β2K3

γ + d
+
β3K4

c
+
β3ξ2K3

c(γ + d)
,

dFe(b)
db

= −ρσ(b) + (ρσ(b) + d)Fe(b),

dFi(a)
da

= −

(
β1(a) +

β2θ(a)
γ + d

+
β3ξ1(a)

c
+
β3ξ2θ(a)
c(γ + d)

)
+ (θ(a) + d)Fi(a).

Calculating the derivative of Ls(t), Lv(t), Le(t), Li(t), Lt(t), and Lw(t) along solutions of System (2),
respectively. We can obtain

dLs(t)
dt

=
1

S 0 (S (t) − S 0)
dS (t)

dt
=

1
S 0 (S (t) − S 0)

(
Λ + τV(t) − λ(t)S (t) − (α + d)S (t)

)
=

1
S 0 (S (t) − S 0)

[
− (α + d)(S (t) − S 0) + τ(V(t) − V0) − λ(t)(S (t) − S 0) − λ(t)S 0

]
= −

α + d
S 0 (S (t) − S 0)2 +

τ

S 0 (S (t) − S 0)(V(t) − V0) −
1

S 0 λ(t)(S (t) − S 0)2 − λ(t)S (t) + λ(t)S 0,
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where λ(t) is given by Eq. (1).

dLv(t)
dt

=
1

V0 (V(t) − V0)
dV(t)

dt
=

1
V0 (V(t) − V0)

(
αS (t) − ηλ(t)V(t) − (τ + d)V(t)

)
=

1
V0 (V(t) − V0)

[
α(S (t) − S 0) − (τ + d)(V(t) − V0) − ηλ(t)(V(t) − V0) − ηλ(t)V0

]
=

α

V0 (S (t) − S 0)(V(t) − V0) −
τ + d
V0 (V(t) − V0)2 −

η

V0 λ(t)(V(t) − V0)2 − ηλ(t)V(t) + ηλ(t)V0,

dLe(t)
dt

= Fb

∫ +∞

0
Fe(b)

de(t, b)
dt

db = −Fb

∫ +∞

0
Fe(b)

[
(ρσ(b) + d)e(t, b) +

∂e(t, b)
∂b

]
db

= Fb

(
−

∫ +∞

0
Fe(b)(ρσ(b) + d)e(t, b)db −

∫ +∞

0
Fe(b)de(t, b)

)
= Fb

(
−

∫ +∞

0
Fe(b)(ρσ(b) + d)e(t, b)db − Fe(b)e(t, b)

∣∣∣∣+∞
0

+

∫ +∞

0
e(t, b)dFe(b)

)
= Fb

(
−

∫ +∞

0
Fe(b)(ρσ(b) + d)e(t, b)db + Fe(0)e(t, 0)

+

∫ +∞

0
e(t, b)

[
− ρσ(b) + (ρσ(b) + d)Fe(b)

]
db

)
= Fb

(
Fe(0)e(t, 0) −

∫ +∞

0
ρσ(b)e(t, b)db

)
= Fb

(
ρK1e(t, 0) − ρ

∫ +∞

0
σ(b)e(t, b)db

)
= Fb

(
ρK1(1 − q)(S (t) + ηV(t))λ(t) − ρ

∫ +∞

0
σ(b)e(t, b)db

)
,

=
(
S 0 + ηV0)(K2 +

β2K3

γ + d
+
β3K4

c
+
β3ξ2K3

c(γ + d)

)
ρK1(1 − q)(S (t) + ηV(t))λ(t)

−
(
S 0 + ηV0)(K2 +

β2K3

γ + d
+
β3K4

c
+
β3ξ2K3

c(γ + d)

)
ρ

∫ +∞

0
σ(b)e(t, b)db,

dLi(t)
dt

=
(
S 0 + ηV0) ∫ +∞

0
Fi(a)

di(t, a)
dt

da

= −
(
S 0 + ηV0) ∫ +∞

0
Fi(a)

[
(θ(a) + d)i(t, a) +

∂i(t, a)
∂a

]
da

=
(
S 0 + ηV0)( − ∫ +∞

0
Fi(a)(θ(a) + d)i(t, a)da −

∫ +∞

0
Fi(a)di(t, a)

)
=

(
S 0 + ηV0)( − ∫ +∞

0
Fi(a)(θ(a) + d)i(t, a)db − Fi(a)i(t, a)

∣∣∣∣+∞
0

+

∫ +∞

0
i(t, a)dFi(a)

)
=

(
S 0 + ηV0){ − ∫ +∞

0
Fi(a)(θ(a) + d)i(t, a)db + Fi(0)i(t, 0)

+

∫ +∞

0
i(t, a)

[
−

(
β1(a) +

β2θ(a)
γ + d

+
β3ξ1(a)

c
+
β3ξ2θ(a)
c(γ + d)

)
+ (θ(a) + d)Fi(a)

]
da

}
=

(
S 0 + ηV0)(Fi(0)i(t, 0) −

∫ +∞

0
β1(a)i(t, a)da −

β2

γ + d

∫ +∞

0
θ(a)i(t, a)da

−
β3

c

∫ +∞

0
ξ1(a)i(t, a)da −

β3ξ2

c(γ + d)

∫ +∞

0
θ(a)i(t, a)da

)
=

(
S 0 + ηV0)(K2 +

β2K3

γ + d
+
β3K4

c
+
β3ξ2K3

c(γ + d)

)
q(S (t) + ηV(t))λ(t)
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+
(
S 0 + ηV0)(K2 +

β2K3

γ + d
+
β3K4

c
+
β3ξ2K3

c(γ + d)

)
ρ

∫ +∞

0
σ(b)e(t, b)db

−
(
S 0 + ηV0)( ∫ +∞

0
β1(a)i(t, a)da +

β2

γ + d

∫ +∞

0
θ(a)i(t, a)da

+
β3

c

∫ +∞

0
ξ1(a)i(t, a)da +

β3ξ2

c(γ + d)

∫ +∞

0
θ(a)i(t, a)da

)
,

dLt(t)
dt

=
(
S 0 + ηV0)( β2

γ + d
+

β3ξ2

c(γ + d)

)
dT (t)

dt

=
(
S 0 + ηV0)( β2

γ + d
+

β3ξ2

c(γ + d)

)( ∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t)

)
=

(
S 0 + ηV0)( β2

γ + d
+

β3ξ2

c(γ + d)

) ∫ +∞

0
θ(a)i(t, a)da −

(
S 0 + ηV0)(β2T (t) +

β3ξ2

c
T (t)

)
,

dLw(t)
dt

=
(
S 0 + ηV0)β3

c
dW(t)

dt

=
(
S 0 + ηV0)β3

c

( ∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW(t)

)
=

(
S 0 + ηV0)β3

c

∫ +∞

0
ξ1(a)i(t, a)da +

(
S 0 + ηV0)β3ξ2

c
T (t) −

(
S 0 + ηV0)β3W(t).

Therefore,

dL(t)
dt

= −
α + d

S 0 (S (t) − S 0)2 +

(
τ

S 0 +
α

V0

)
(S (t) − S 0)(V(t) − V0)

−
τ + d
V0 (V(t) − V0)2 −

1
S 0 λ(t)(S (t) − S 0)2 −

η

V0 λ(t)(V(t) − V0)2

−λ(t)(S (t) + ηV(t)) + λ(t)(S 0 + ηV0) + R0λ(t)(S (t) + ηV(t)) − λ(t)(S 0 + ηV0),

where λ(t) is given by Eq. (1). To confirm that dL(t)
dt

is a negative semidefinite function, we obtain

−
α + d

S 0 (S (t) − S 0)2 +

(
τ

S 0 +
α

V0

)
(S (t) − S 0)(V(t) − V0) −

τ + d
V0 (V(t) − V0)2

= −
α + d

S 0

[
(S (t) − S 0)2 −

τV0 + αS 0

(α + d)V0 (S (t) − S 0)(V(t) − V0) +
(τ + d)S 0

(α + d)V0 (V(t) − V0)2
]

= −
α + d

S 0

{
(S (t) − S 0)2 −

τV0 + αS 0

(α + d)V0 (S (t) − S 0)(V(t) − V0)

+
(τV0 + αS 0)2

4(α + d)2(V0)2 (V(t) − V0)2 −
(τV0 + αS 0)2

4(α + d)2(V0)2 (V(t) − V0)2 +
(τ + d)S 0

(α + d)V0 (V(t) − V0)2
}

= −
α + d

S 0

{[
(S (t) − S 0)2 −

τV0 + αS 0

2(α + d)V0 (V(t) − V0)
]2

+
4(τ + d)(α + d)S 0V0 − (τV0 + αS 0)2

4(α + d)2(V0)2 (V(t) − V0)2
}
. (39)

Substituting S 0 = τ+d
α V0 into Eq. (39), we have

−
α + d

S 0

{[
(S (t) − S 0)2 −

τV0 + αS 0

2(α + d)V0 (V(t) − V0)
]2

+
4(τ + d)(α + d)S 0V0 − (τV0 + αS 0)2

4(α + d)2(V0)2 (V(t) − V0)2
}
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= −
α + d

S 0

{[
(S (t) − S 0)2 −

τV0 + αS 0

2(α + d)V0 (V(t) − V0)
]2

+
αd(4τ + 3d) + 4d(τ + d)2

4α(α + d)2 (V(t) − V0)2
}
≤ 0.

Hence, we obtain

dL(t)
dt

= −
α + d

S 0

{[
(S (t) − S 0)2 −

τV0 + αS 0

2(α + d)V0 (V(t) − V0)
]2

+
αd(4τ + 3d) + 4d(τ + d)2

4α(α + d)2 (V(t) − V0)2
}

−
1

S 0 λ(t)(S (t) − S 0)2 −
η

V0 λ(t)(V(t) − V0)2 + (R0 − 1)(S (t) + ηV(t))λ(t),

where λ(t) is given by Eq. (1). Notice that if R0 ≤ 1, then dL(t)
dt
≤ 0, and the equality holds only for S (t) =

S 0, V(t) = V0, e(t, b) = 0, i(t, a) = 0, T (t) = 0, R(t) = 0, and W(t) = 0. LaSalle’s Invariance Principle
(LaSalle, 1960) implies that the bounded solutions of System (2) converges to the largest compact invariant
set of

{
(S (t),V(t),T (t),R(t),W(t), e(t, b), i(t, a)) ∈ D : dL(t)/dt = 0

}
. Since the disease-free equilibrium

P0 is the only invariant set of System (2) contained entirely in
{
(S (t),V(t),T (t),R(t),W(t), e(t, b), i(t, a)) ∈

D : dL(t)/dt = 0
}
. Hence, the disease-free equilibrium P0 is globally attractive. By Theorem 2, we obtain

that the disease-free equilibrium P0 is globally asymptotically stable when R0 < 1, and the disease-free
equilibrium P0 is globally attractive when R0 = 1. This completes the proof. �

Appendix G Proof of Theorem 7

Let p(x) = x − 1 − ln x, note that p(x) is non-negative and continuous in (0,+∞) with a unique root at
x = 1. Define a Lyapunov function

G(t) = Gs(t) + Gv(t) + Ge(t) + Gi(t) + Gt(t) + Gw(t), (40)

where

Gs(t) = S ∗p
( S (t)

S ∗

)
, Gv(t) = V∗p

(V(t)
V∗

)
,

Ge(t) =
(
S ∗ + ηV∗

)
Fa

∫ +∞

0
Fe(b)e∗(b)p

( e(t, b)
e∗(b)

)
db,

Gi(t) =
(
S ∗ + ηV∗

) ∫ +∞

0
Fi(a)i∗(a)p

( i(t, a)
i∗(a)

)
da,

Gt(t) =
(
S ∗ + ηV∗

)( β2

γ + d
+

β3ξ2

c(γ + d)

)
T ∗p

(T (t)
T ∗

)
,

Gw(t) =
(
S ∗ + ηV∗

)β3

c
W∗p

(W(t)
W∗

)
.

The nonnegative function G(t) is defined with respect to the endemic equilibrium P∗, which is a global
minimum. We choose

Fa = K2 +
β2K3

γ + d
+
β3K4

c
+
β3ξ2K3

c(γ + d)
,

Fe(b) =

∫ +∞

b
ρσ(υ)e−

∫ υ
b (ρσ(%)+d)d%dυ,

Fi(a) =

∫ +∞

a

(
β1(υ) +

β2θ(υ)
γ + d

+
β3ξ1(υ)

c
+
β3ξ2θ(υ)
c(γ + d)

)
e−

∫ υ
a (θ(%)+d)d%dυ.

Calculating the derivative of Gs(t), Gv(t), Ge(t), Gi(t), Gt(t), and Gw(t) along solutions of System (2),
respectively, we can obtain

dGs(t)
dt

=

(
1 −

S ∗

S (t)

)dS (t)
dt
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= Λ
(
2 −

S (t)
S ∗
−

S ∗

S (t)

)
+ τ

(
V(t) −

V(t)S ∗

S (t)
−

V∗S (t)
S ∗

+ V∗
)

−

∫ +∞

0
β1(a)

(
S (t)i(t, a) − S ∗i(t, a) − S (t)i∗(a) + S ∗i∗(a)

)
da

−β2
(
T (t)S (t) − T (t)S ∗ − T ∗S (t) + T ∗S ∗

)
−β3

(
W(t)S (t) −W(t)S ∗ −W∗S (t) + W∗S ∗

)
. (41)

dGv(t)
dt

=

(
1 −

V∗

V(t)

)dV(t)
dt

= α
(
S (t) −

S (t)V∗

V(t)
−

S ∗V(t)
V∗

+ S ∗
)

−η

∫ +∞

0
β1(a)

(
V(t)i(t, a) − V∗i(t, a) − V(t)i∗(a) + V∗i∗(a)

)
da

−ηβ2
(
T (t)V(t) − T (t)V∗ − T ∗V(t) + T ∗V∗

)
−ηβ3

(
W(t)V(t) −W(t)V∗ −W∗V(t) + W∗V∗

)
. (42)

We note that

∂

∂b
p
( e(t, b)

e∗(b)

)
=

1
e∗(b)

(
1 −

e∗(b)
e(t, b)

)(
∂e(t, b)
∂b

+ (ρσ(b) + d)e(t, b)
)
,

∂

∂a
p
( i(t, a)

i∗(a)

)
=

1
i∗(a)

(
1 −

i∗(a)
i(t, a)

)(
∂i(t, a)
∂a

+ (θ(a) + d)i(t, a)
)
.

Thus, we obtain

dGe(t)
dt

=
(
S ∗ + ηV∗

)
Fa

∫ +∞

0
Fe(b)

(
1 −

e∗(b)
e(t, b)

)
∂e(t, b)
∂t

db

= −
(
S ∗ + ηV∗

)
Fa

∫ +∞

0
Fe(b)

(
1 −

e∗(b)
e(t, b)

)(
∂e(t, b)
∂b

+ (ρσ(b) + d)e(t, b)
)
db

= −
(
S ∗ + ηV∗

)
Fa

∫ +∞

0
Fe(b)e∗(b)

∂

∂b
p
( e(t, b)

e∗(b)

)
db

=
(
S ∗ + ηV∗

)
Fa

[
Fe(0)e∗(0)p

( e(t, 0)
e∗(0)

)
− ρ

∫ +∞

0
σ(b)e∗(b)p

( e(t, b)
e∗(b)

)
db

]
=

(
S ∗ + ηV∗

)
FaρK1

[
(1 − q)(S (t) + ηV(t))

( ∫ +∞

0
β1(a)i(t, a)da + β2T (t)

+β3W(t)
)
− (1 − q)(S ∗ + ηV∗)

( ∫ +∞

0
β1(a)i∗(a)da + β2T ∗ + β3W∗

)
−(1 − q)(S ∗ + ηV∗)

( ∫ +∞

0
β1(a)i∗(a)da + β2T ∗ + β3W∗

)
ln

( e(t, 0)
e∗(0)

)]
−
(
S ∗ + ηV∗

)
Faρ

∫ +∞

0
σ(b)e∗(b)p

( e(t, b)
e∗(b)

)
db.

dGi(t)
dt

=
(
S ∗ + ηV∗

) ∫ +∞

0
Fi(a)

(
1 −

i∗(a)
i(t, a)

)
∂i(t, a)
∂t

da

= −
(
S ∗ + ηV∗

) ∫ +∞

0
Fi(a)

(
1 −

i∗(a)
i(t, a)

)(
∂i(t, a)
∂a

+ (θ(a) + d)i(t, a)
)
da

= −
(
S ∗ + ηV∗

) ∫ +∞

0
Fi(a)i∗(a)

∂

∂a
p
( i(t, a)

i∗(a)

)
da

=
(
S ∗ + ηV∗

)[
Fi(0)i∗(0)p

( i(t, 0)
i∗(0)

)
−

∫ +∞

0
β1(a)i∗(a)p

( i(t, a)
i∗(a)

)
da

−

(
β2

γ + d
+

β3ξ2

c(γ + d)

) ∫ +∞

0
θ(a)i∗(a)p

( i(t, a)
i∗(a)

)
da −

β3

c

∫ +∞

0
ξ1(a)i∗(a)p

( i(t, a)
i∗(a)

)
da

]
=

(
S ∗ + ηV∗

)
Fa

{
q(S (t) + ηV(t))

( ∫ +∞

0
β1(a)i(t, a)da + β2T (t) + β3W(t)

)
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+ρ

∫ +∞

0
σ(b)e(t, b)db −

[
q(S ∗ + ηV∗)

( ∫ +∞

0
β1(a)i∗(a)da + β2T ∗ + β3W∗

)
+ρ

∫ +∞

0
σ(b)e∗(b)db

]
−

[
q(S ∗ + ηV∗)

( ∫ +∞

0
β1(a)i∗(a)da + β2T ∗ + β3W∗

)
+ρ

∫ +∞

0
σ(b)e∗(b)db

]
ln

( i(t, 0)
i∗(0)

)}
−

(
S ∗ + ηV∗

)[ ∫ +∞

0
β1(a)i∗(a)p

( i(t, a)
i∗(a)

)
da

+

(
β2

γ + d
+

β3ξ2

c(γ + d)

) ∫ +∞

0
θ(a)i∗(a)p

( i(t, a)
i∗(a)

)
da +

β3

c

∫ +∞

0
ξ1(a)i∗(a)p

( i(t, a)
i∗(a)

)
da

]
,

dGt(t)
dt

=
(
S ∗ + ηV∗

)( β2

γ + d
+

β3ξ2

c(γ + d)

)(
1 −

T ∗

T (t)

) dT (t)
dt

=
(
S ∗ + ηV∗

)( β2

γ + d
+

β3ξ2

c(γ + d)

) ∫ +∞

0
θ(a)i∗(a)

[ i(t, a)
i∗(a)

−
T (t)
T ∗
−

T ∗i(t, a)
T (t)i∗(a)

+ 1
]
da

=
(
S ∗ + ηV∗

)( β2

γ + d
+

β3ξ2

c(γ + d)

) ∫ +∞

0
θ(a)i∗(a)

[
p
( i(t, a)

i∗(a)

)
− p

( T ∗i(t, a)
T (t)i∗(a)

)]
da

−
(
S ∗ + ηV∗

)
β2T ∗p

(T (t)
T ∗

)
−

(
S ∗ + ηV∗

)β3ξ2

c
T ∗p

(T (t)
T ∗

)
,

dGw(t)
dt

=
(
S ∗ + ηV∗

)β3

c

(
1 −

W∗

W(t)

) dW(t)
dt

=
(
S ∗ + ηV∗

)β3

c

∫ +∞

0
ξ1(a)i∗(a)

[ i(t, a)
i∗(a)

−
W(t)
W∗

−
W∗i(t, a)
W(t)i∗(a)

+ 1
]
da

+
(
S ∗ + ηV∗

)β3ξ2

c

[T (t)
T ∗
−

W(t)
W∗

−
W∗T (t)
W(t)T ∗

+ 1
]

=
(
S ∗ + ηV∗

)β3

c

∫ +∞

0
ξ1(a)i∗(a)

[
p
( i(t, a)

i∗(a)

)
− p

( W∗i(t, a)
W(t)i∗(a)

)]
da

+
(
S ∗ + ηV∗

)β3ξ2

c
T ∗

[
p
(T (t)

T ∗

)
− p

(W∗T (t)
W(t)T ∗

)]
−

(
S ∗ + ηV∗

)
β3W∗p

(W(t)
W∗

)
.

From the first two equations of System (2) and Eq. (16), we obtain(
S ∗ + ηV∗

)
Fa[q + ρ(1 − q)K1] = 1,

Λ = (S ∗ + ηV∗)
( ∫ +∞

0
β1(a)i∗(a)da + β2T ∗ + β3W∗

)
+ dS ∗ + dV∗,

α =
ηV∗

( ∫ +∞

0 β1(a)i∗(a)da + β2T ∗ + β3W∗
)

+ (τ + d)V∗

S ∗
.

Substituting the expressions of Λ and α into Eq. (41) and Eq. (42), respectively, we have

dG(t)
dt

=
dGs(t)

dt
+

dGv(t)
dt

+
dGe(t)

dt
+

dGi(t)
dt

+
dGt(t)

dt
+

dGw(t)
dt

= τV∗
(
2 −

S ∗V(t)
S (t)V∗

−
S (t)V∗

S ∗V(t)

)
+ dV∗

(
3 −

S ∗

S (t)
−

V(t)
V∗
−

S (t)V∗

S ∗V(t)

)
+dS ∗

(
2 −

S (t)
S ∗
−

S ∗

S (t)

)
+ (S ∗ + ηV∗)

( ∫ +∞

0
β1(a)i(t, a)da + β2T (t) + β3W(t)

)
−

(S ∗S ∗

S (t)
+ η

S ∗V∗

S (t)

)( ∫ +∞

0
β1(a)i∗(a)da + β2T ∗ + β3W∗

)
+η

(
V∗ −

S (t)V∗V∗

S ∗V(t)

)( ∫ +∞

0
β1(a)i∗(a)da + β2T ∗ + β3W∗

)
−(S ∗ + ηV∗)

[
FaρK1(1 − q) ln

( e(t, 0)
e∗(0)

)
+ Faq ln

( i(t, 0)
i∗(0)

)]
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×(S ∗ + ηV∗)
( ∫ +∞

0
β1(a)i∗(a)da + β2T ∗ + β3W∗

)
−
(
S ∗ + ηV∗

)
Faρ

∫ +∞

0
σ(b)e∗(b)p

( e(t, b)
e∗(b)

)
db +

(
S ∗ + ηV∗

)
Faρ

×

[ ∫ +∞

0
σ(b)e(t, b)db −

∫ +∞

0
σ(b)e∗(b)db −

∫ +∞

0
σ(b)e∗(b)db ln

( i(t, 0)
i∗(0)

)]
−
(
S ∗ + ηV∗

)[ ∫ +∞

0
β1(a)i∗(a)p

( i(t, a)
i∗(a)

)
da +

β3

c

∫ +∞

0
ξ1(a)i∗(a)p

( i(t, a)
i∗(a)

)
da

+

(
β2

γ + d
+

β3ξ2

c(γ + d)

) ∫ +∞

0
θ(a)i∗(a)p

( i(t, a)
i∗(a)

)
da

]
+
(
S ∗ + ηV∗

)( β2

γ + d
+

β3ξ2

c(γ + d)

) ∫ +∞

0
θ(a)i∗(a)

[
p
( i(t, a)

i∗(a)

)
− p

( T ∗i(t, a)
T (t)i∗(a)

)]
da

−
(
S ∗ + ηV∗

)
β2T ∗p

(T (t)
T ∗

)
−

(
S ∗ + ηV∗

)β3ξ2

c
T ∗p

(T (t)
T ∗

)
+
(
S ∗ + ηV∗

)β3

c

∫ +∞

0
ξ1(a)i∗(a)

[
p
( i(t, a)

i∗(a)

)
− p

( W∗i(t, a)
W(t)i∗(a)

)]
da

+
(
S ∗ + ηV∗

)β3ξ2

c
T ∗

[
p
(T (t)

T ∗

)
− p

(W∗T (t)
W(t)T ∗

)]
−

(
S ∗ + ηV∗

)
β3W∗p

(W(t)
W∗

)
.

For simplicity, we let

dG(t)
dt

=
dGs(t)

dt
+

dGv(t)
dt

+
dGe(t)

dt
+

dGi(t)
dt

+
dGt(t)

dt
+

dGw(t)
dt

= G1 + G2 + G3 + G4 + G5 + G6,

where

G1 = τV∗
(
2 −

S ∗V(t)
S (t)V∗

−
S (t)V∗

S ∗V(t)

)
+ dV∗

(
3 −

S ∗

S (t)
−

V(t)
V∗
−

S (t)V∗

S ∗V(t)

)
+dS ∗

(
2 −

S (t)
S ∗
−

S ∗

S (t)

)
≤ 0,

G2 = (S ∗ + ηV∗)Faq
{∫ +∞

0
β1(a)S ∗i∗(a)

[ i(t, a)
i∗(a)

−
S ∗

S (t)
− ln

( i(t, 0)
i∗(0)

)]
da

+β2S ∗T ∗
[T (t)

T ∗
−

S ∗

S (t)
− ln

( i(t, 0)
i∗(0)

)]
+ β3S ∗W∗

[W(t)
W∗

−
S ∗

S (t)
− ln

( i(t, 0)
i∗(0)

)]
+η

∫ +∞

0
β1(a)V∗i∗(a)

[ i(t, a)
i∗(a)

−
V∗

V(t)
− ln

( i(t, 0)
i∗(0)

)]
da

+ηβ2V∗T ∗
[T (t)

T ∗
−

V∗

V(t)
− ln

( i(t, 0)
i∗(0)

)]
+ ηβ3V∗W∗

[W(t)
W∗

−
V∗

V(t)
− ln

( i(t, 0)
i∗(0)

)]}
= (S ∗ + ηV∗)Faq

{∫ +∞

0
β1(a)S ∗i∗(a)

[
p
( i(t, a)

i∗(a)

)
− p

( S ∗

S (t)

)
− p

(S (t)i(t, a)i∗(0)
S ∗i∗(a)i(t, 0)

)]
da

+β2S ∗T ∗
[
p
(T (t)

T ∗

)
− p

( S ∗

S (t)

)
− p

( S (t)T (t)i∗(0)
S ∗T ∗i(t, 0)

)]
+β3S ∗W∗

[
p
(W(t)

W∗

)
− p

( S ∗

S (t)

)
− p

( S (t)W(t)i∗(0)
S ∗W∗i(t, 0)

)]
+η

∫ +∞

0
β1(a)V∗i∗(a)

[
p
( i(t, a)

i∗(a)

)
− p

( V∗

V(t)

)
− p

(V(t)i(t, a)i∗(0)
V∗i∗(a)i(t, 0)

)]
da

+ηβ2V∗T ∗
[
p
(T (t)

T ∗

)
− p

( V∗

V(t)

)
− p

(V(t)T (t)i∗(0)
V∗T ∗i(t, 0)

)]
+ηβ3V∗W∗

[
p
(W(t)

W∗

)
− p

( V∗

V(t)

)
− p

(V(t)W(t)i∗(0)
V∗W∗i(t, 0)

)]}
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+(S ∗ + ηV∗)Faρ

∫ +∞

0
σ(b)e∗(b)db − (S ∗ + ηV∗)Faρ

i∗(0)
i(t, 0)

∫ +∞

0
σ(b)e(t, b)db,

G3 = (S ∗ + ηV∗)Faρ(1 − q)K1

{∫ +∞

0
β1(a)S ∗i∗(a)

[ i(t, a)
i∗(a)

−
S ∗

S (t)
− ln

( e(t, 0)
e∗(0)

)]
da

+β2S ∗T ∗
[T (t)

T ∗
−

S ∗

S (t)
− ln

( e(t, 0)
e∗(0)

)]
+ β3S ∗W∗

[W(t)
W∗

−
S ∗

S (t)
− ln

( e(t, 0)
e∗(0)

)]
+η

∫ +∞

0
β1(a)V∗i∗(a)

[ i(t, a)
i∗(a)

−
V∗

V(t)
− ln

( e(t, 0)
e∗(0)

)]
da

+ηβ2V∗T ∗
[T (t)

T ∗
−

V∗

V(t)
− ln

( e(t, 0)
e∗(0)

)]
+ ηβ3V∗W∗

[W(t)
W∗

−
V∗

V(t)
− ln

( e(t, 0)
e∗(0)

)]}
= (S ∗ + ηV∗)Faρ(1 − q)K1

{∫ +∞

0
β1(a)S ∗i∗(a)

[
p
( i(t, a)

i∗(a)

)
− p

( S ∗

S (t)

)
−p

(S (t)i(t, a)e∗(0)
S ∗i∗(a)e(t, 0)

)]
da + β2S ∗T ∗

[
p
(T (t)

T ∗

)
− p

( S ∗

S (t)

)
− p

( S (t)T (t)e∗(0)
S ∗T ∗e(t, 0)

)]
+β3S ∗W∗

[
p
(W(t)

W∗

)
− p

( S ∗

S (t)

)
− p

( S (t)W(t)e∗(0)
S ∗W∗e(t, 0)

)]
+η

∫ +∞

0
β1(a)V∗i∗(a)

[
p
( i(t, a)

i∗(a)

)
− p

( V∗

V(t)

)
− p

(V(t)i(t, a)e∗(0)
V∗i∗(a)e(t, 0)

)]
da

+ηβ2V∗T ∗
[
p
(T (t)

T ∗

)
− p

( V∗

V(t)

)
− p

(V(t)T (t)e∗(0)
V∗T ∗e(t, 0)

)]
+ηβ3V∗W∗

[
p
(W(t)

W∗

)
− p

( V∗

V(t)

)
− p

(V(t)W(t)e∗(0)
V∗W∗e(t, 0)

)]}
,

G4 = η
(
1 +

V∗

V(t)
−

S ∗

S (t)
−

S (t)V∗

S ∗V(t)

)( ∫ +∞

0
β1(a)V∗i∗(a)da + β2V∗T ∗ + β3V∗W∗

)
= η

[
p
( V∗

V(t)

)
− p

( S ∗

S (t)

)
− p

( S (t)V∗

S ∗V(t)

)]( ∫ +∞

0
β1(a)V∗i∗(a)da + β2V∗T ∗ + β3V∗W∗

)
,

G5 =
(
S ∗ + ηV∗

)
Faρ

[ ∫ +∞

0
σ(b)e(t, b)db −

∫ +∞

0
σ(b)e∗(b)p

( e(t, b)
e∗(b)

)
db

−

∫ +∞

0
σ(b)e∗(b)db −

∫ +∞

0
σ(b)e∗(b)db ln

( i(t, 0)
i∗(0)

)]
−
(
S ∗ + ηV∗

)[ ∫ +∞

0
β1(a)i∗(a)p

( i(t, a)
i∗(a)

)
da +

β3

c

∫ +∞

0
ξ1(a)i∗(a)p

( i(t, a)
i∗(a)

)
da

+

(
β2

γ + d
+

β3ξ2

c(γ + d)

) ∫ +∞

0
θ(a)i∗(a)p

( i(t, a)
i∗(a)

)
da

]
,

G6 =
(
S ∗ + ηV∗

)( β2

γ + d
+

β3ξ2

c(γ + d)

) ∫ +∞

0
θ(a)i∗(a)

[
p
( i(t, a)

i∗(a)

)
− p

( T ∗i(t, a)
T (t)i∗(a)

)]
da

−
(
S ∗ + ηV∗

)
β2T ∗p

(T (t)
T ∗

)
−

(
S ∗ + ηV∗

)β3ξ2

c
T ∗p

(T (t)
T ∗

)
+
(
S ∗ + ηV∗

)β3

c

∫ +∞

0
ξ1(a)i∗(a)

[
p
( i(t, a)

i∗(a)

)
− p

( W∗i(t, a)
W(t)i∗(a)

)]
da

+
(
S ∗ + ηV∗

)β3ξ2

c
T ∗

[
p
(T (t)

T ∗

)
− p

(W∗T (t)
W(t)T ∗

)]
−

(
S ∗ + ηV∗

)
β3W∗p

(W(t)
W∗

)
.

Note that (
S ∗ + ηV∗

)
Faρ

[ ∫ +∞

0
σ(b)e(t, b)db −

∫ +∞

0
σ(b)e∗(b)p

( e(t, b)
e∗(b)

)
db
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−

∫ +∞

0
σ(b)e∗(b)db −

∫ +∞

0
σ(b)e∗(b)db ln

( i(t, 0)
i∗(0)

)
+

∫ +∞

0
σ(b)e∗(b)db −

i∗(0)
i(t, 0)

∫ +∞

0
σ(b)e(t, b)db

]
=

(
S ∗ + ηV∗

)
Faρ

∫ +∞

0
σ(b)e∗(b)

[
−

i∗(0)e(t, b)
i(t, 0)e∗(b)

+ 1 + ln
( i∗(0)e(t, b)

i(t, 0)e∗(b)

)]
db

= −
(
S ∗ + ηV∗

)
Faρ

∫ +∞

0
σ(b)e∗(b)p

( i∗(0)e(t, b)
i(t, 0)e∗(b)

)
db.

Hence, we have

6∑
i=2

Gi = −(S ∗ + ηV∗)Faq
[ ∫ +∞

0
β1(a)S ∗i∗(a)p

(S (t)i(t, a)i∗(0)
S ∗i∗(a)i(t, 0)

)
da

+β2S ∗T ∗p
( S (t)T (t)i∗(0)

S ∗T ∗i(t, 0)

)
+ β3S ∗W∗p

(S (t)W(t)i∗(0)
S ∗W∗i(t, 0)

)
+η

∫ +∞

0
β1(a)V∗i∗(a)p

(V(t)i(t, a)i∗(0)
V∗i∗(a)i(t, 0)

)
da + ηβ2V∗T ∗p

(V(t)T (t)i∗(0)
V∗T ∗i(t, 0)

)
+ηβ3V∗W∗p

(V(t)W(t)i∗(0)
V∗W∗i(t, 0)

)]
− (S ∗ + ηV∗)Faρ(1 − q)K1

×

[ ∫ +∞

0
β1(a)S ∗i∗(a)p

(S (t)i(t, a)e∗(0)
S ∗i∗(a)e(t, 0)

)
da + β2S ∗T ∗p

( S (t)T (t)e∗(0)
S ∗T ∗e(t, 0)

)
+β3S ∗W∗p

( S (t)W(t)e∗(0)
S ∗W∗e(t, 0)

)
+ η

∫ +∞

0
β1(a)V∗i∗(a)p

(V(t)i(t, a)e∗(0)
V∗i∗(a)e(t, 0)

)
da

+ηβ2V∗T ∗p
(V(t)T (t)e∗(0)

V∗T ∗e(t, 0)

)
+ ηβ3V∗W∗p

(V(t)W(t)e∗(0)
V∗W∗e(t, 0)

)]
(43)

−S ∗p
( S ∗

S (t)

)( ∫ +∞

0
β1(a)i∗(a)da + β2T ∗ + β3W∗

)
−ηV∗

[
p
( S ∗

S (t)

)
+ p

( S (t)V∗

S ∗V(t)

)]( ∫ +∞

0
β1(a)i∗(a)da + β2T ∗ + β3W∗

)
−
(
S ∗ + ηV∗

)[
Faρ

∫ +∞

0
σ(b)e∗(b)p

( i∗(0)e(t, b)
i(t, 0)e∗(b)

)
db

+

(
β2

γ + d
+

β3ξ2

c(γ + d)

) ∫ +∞

0
θ(a)i∗(a)p

( T ∗i(t, a)
T (t)i∗(a)

)
da

+
β3

c

∫ +∞

0
ξ1(a)i∗(a)p

( W∗i(t, a)
W(t)i∗(a)

)
da +

β3ξ2

c
T ∗p

(W∗T (t)
W(t)T ∗

)]
.

We find that all terms in Eq. (43) have the property of the function p(x) = x − 1 − ln x. This means
that positive-definite function G(t) has negative derivative dG(t)/dt. Furthermore, the equality dG(t)/dt =

0 holds if and only if S (t) = S ∗, V(t) = V∗, e(t, b) = e∗(b), i(t, a) = i∗(a), T (t) = T ∗, R(t) = R∗,
and W(t) = W∗. LaSalle’s Invariance Principle (LaSalle, 1960) implies that the bounded solutions of
System (2) converge to the largest compact invariant set of

{
(S (t),V(t),T (t),R(t),W(t), e(t, b), i(t, a)) ∈ D :

dG(t)/dt = 0
}
. Since the endemic equilibrium P∗ is the only invariant set of System (2) contained entirely

in
{
(S (t),V(t),T (t),R(t),W(t), e(t, b), i(t, a)) ∈ D : dG(t)/dt = 0

}
. Hence, every solution of System (2) in

setD\{P0} tends to the endemic equilibriumP∗, which is globally attractive when it exists. This completes
the proof. �

Appendix H Numerical method for System (2)

To compute the numerical solution, we use the forward/backward finite difference method for time and age
to discretize System (2) (Kenne et al., 2021; Martcheva, 2015). We define the finite domain with respect
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to time and age as follows

D =
{
(t, a, b) : 0 ≤ t ≤ T, 0 ≤ a ≤ Ka, 0 ≤ b ≤ Kb

}
.

To discretize the model, we divide the time interval (0,T) into T subintervals (tn, tn+1) with a time step
∆t = tn+1 − tn, for n = 0, 1, 2, · · · ,T − 1. Similarly, we also divide the latent age interval (0,Kb) and
the infected age interval (0,Ka) into Kb subintervals (bk , bk+1) with a time step ∆b = bk+1 − bk and
Ka subintervals (a j, a j+1) with a time step ∆a = a j+1 − a j, respectively, for k = 0, 1, 2, · · · ,Kb − 1,
j = 0, 1, 2, · · · ,Ka − 1. We define the symbol substitution rules as follows

S n = S (tn), Vn = V(tn), Tn = T (tn), Rn = R(tn), Wn = W(tn), i j
n = i(tn, a j),

ek
n = e(tn, bk), β j

1 = β1(a j), θ j = θ(a j), ξ
j
1 = ξ1(a j), σk = σ(bk).

Next, we use the trapezoidal rule to approximate several integral expressions in System (2), that is,∫ +∞

0
β1(a)i(t, a)da ≈ ∆a

(β0
1i(t, a0) + βKa−1

1 i(t, aKa−1)

2

)
+ ∆a

Ka−2∑
j=1

β
j
1i(t, a j),

∫ +∞

0
θ(a)i(t, a)da ≈ ∆a

( θ0i(t, a0) + θKa−1i(t, aKa−1)
2

)
+ ∆a

Ka−2∑
j=1

θ ji(t, a j),

∫ +∞

0
ξ1(a)i(t, a)da ≈ ∆a

( ξ0
1 i(t, a0) + ξKa−1

1 i(t, aKa−1)

2

)
+ ∆a

Ka−2∑
j=1

ξ
j
1i(t, a j),

∫ +∞

0
σ(b)e(t, b)db ≈ ∆b

(σ0e(t, b0) + σKb−1e(t, bKb−1)
2

)
+ ∆b

Kb−2∑
k=1

σke(t, bk).

Hence, the discrete form of System (2) can be expressed as

S n+1 − S n

∆t
= Λ + τVn + δRn − λnS n − (α + d)S n,

Vn+1 − Vn

∆t
= αS n − ηλnVn − (τ + d)Vn,

Tn+1 − Tn

∆t
= ∆a

( θ0i0n + θKa−1iKa−1
n

2

)
+ ∆a

Ka−2∑
j=1

θ ji j
n − (γ + d)Tn,

Rn+1 − Rn

∆t
= γTn − (δ + d)Rn,

Wn+1 −Wn

∆t
= ∆a

( ξ0
1 i0n + ξKa−1

1 iKa−1
n

2

)
+ ∆a

Ka−2∑
j=1

ξ
j
1i j

n + ξ2Tn − cWn, (44)

ek
n+1 − ek

n

∆t
+

ek
n − ek−1

n

∆b
= −(ρσk + d)ek

n,

i j
n+1 − i j

n

∆t
+

i j
n − i j−1

n

∆a
= −(θ j + d)i j

n,

e0
n = (1 − q)λn

(
S n + ηVn

)
,

i0n = qλn
(
S n + ηVn

)
+ ρ∆b

(σ0e0
n + σKb−1eKb−1

n

2

)
+ ρ∆b

Kb−2∑
k=1

σkek
n,

ek
0 = e0(bk), i j

0 = i0(a j),

where λn = ∆a
( β0

1i0n+βKa−1
1 iKa−1

n
2

)
+ ∆a

∑Ka−2
j=1 β

j
1i j

n + β2Tn + β3Wn. After some algebraic manipulation, the
first seven equations of System (44) can be rewritten as

S n+1 = S n + ∆t
[
Λ + τVn + δRn − λnS n − (α + d)S n

]
,
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Vn+1 = Vn + ∆t
[
αS n − ηλnVn − (τ + d)Vn

]
,

Tn+1 = Tn + ∆t
[
∆a

( θ0i0n + θKa−1iKa−1
n

2

)
+ ∆a

Ka−2∑
j=1

θ ji j
n − (γ + d)Tn

]
,

Rn+1 = Rn + ∆t
[
γTn − (δ + d)Rn

]
,

Wn+1 = Wn + ∆t
[
∆a

( ξ0
1 i0n + ξKa−1

1 iKa−1
n

2

)
+ ∆a

Ka−2∑
j=1

ξ
j
1i j

n + ξ2Tn − cWn

]
,

ek
n+1 =

[
1 −

∆t
∆b
− ∆t(ρσk + d)

]
ek

n +
∆t
∆b

ek−1
n ,

i j
n+1 =

[
1 −

∆t
∆a
− ∆t(θ j + d)

]
i j
n +

∆t
∆a

i j−1
n ,

i0n = qλn
(
S n + ηVn

)
+ ρ∆b

(σ0e0
n + σKb−1eKb−1

n

2

)
+ ρ∆b

Kb−2∑
k=1

σkek
n,

e0
n = (1 − q)λn

(
S n + ηVn

)
.

The explicit expressions for i0n and e0
n are as follows

i0n =



[
ρ∆bσ0(1 − q)(S n + ηVn)

2
+ q(S n + ηVn)

](
∆a

βKa−1
1 iKa−1

n

2
+ ∆a

Ka−2∑
j=1

β
j
1i j

n + β2Tn + β3Wn

)

+ ρ∆b
(
σKb−1eKb−1

n

2
+

Kb−2∑
k=1

σkek
n

)


1 −
q(S n+ηVn)∆aβ0

1
2 −

ρσ0(1−q)(S n+ηVn)∆a∆bβ0
1

4

,

and

e0
n = (1 − q)(S n + ηVn)

(
∆a

β0
1i0n + βKa−1

1 iKa−1
n

2
+ ∆a

Ka−2∑
j=1

β
j
1i j

n + β2Tn + β3Wn

)
.

Appendix I MCMC method for parameter estimation

Let ε be the fitting error, and ε follows the additive independent Gaussian distribution with mean zero and
unknown variance ξ2, which is based on the result of the Central Limit Theorem. Then, the observations y
can be expressed as follows

y = f (x, χ̂) + ε, ε ∼ N(0, Iξ2), (45)

where f (x, χ̂) is the nonlinear model (θ(a), Z1(0, a), or Z2( j, a)); x are the independent variables; χ̂ are
the unknown parameters and initial values.

For Ψ̂ independent identically distributed observations, the likelihood function p(y|χ̂, ξ2) from Eq.
(45) with a Gaussian error model is

p(y|χ̂, ξ2) =

(
1√

2πξ2

)Ψ̂
exp

[
−SS(χ̂)

2ξ2

]
,

where SS(χ̂) represents the sum of squares function

SS(χ̂) =

Ψ̂∑
i=1

[
(yi − f (χ̂)i)2

]
.

For simplicity, we assume that the unknown parameters χ̂ are an independent Gaussian prior specifi-
cation, that is,

χ̂ j ∼ N(ν j, ϕ
2
j ), j = 1, ..., M̂.
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where M̂ is the number of unknown parameters. For ξ−2, a Gamma distribution is used as a prior, that is,

p(ξ−2) ∼ Γ
(

n0

2
,

n0

2
S 2

0

)
,

where S 2
0 and n0 are the prior mean and prior accuracy of variance ξ2, respectively.

The conditional distribution p(ξ−2 |y, χ̂) can be expressed as follows

p(ξ−2 |y, χ̂) ∝
(
ξ−2)− Ψ̂+n0

2 −1 exp
[
−

SS(χ̂) + n0S 2
0

2ξ−2

]
.

Using the conditional conjugacy property of the Gamma distribution, the conditional distribution p(ξ−2 |y, χ̂)
is also a Gamma distribution with

p(ξ−2 |y, χ̂) = Γ

(
Ψ̂ + n0

2
,

SS(χ̂) + n0S 2
0

2

)
,

according to which we sample and update ξ−2 for other parameters within each run of Metropolis Hastings
simulations. Since we assume independent Gaussian prior specification for parameters χ̂, the prior sum of
squares for the given parameters χ̂ can be calculated as follows

SSpri(χ̂) =

M̂∑
i=1

[
χ̂i − νi

ϕi

]2

.

Then the posterior for the unknown parameters χ̂ can be estimated as

p(χ̂|y, ξ2) ∝ exp
[
−

1
2

(SS(χ̂)
ξ2 + SSpri(χ̂)

)]
.

In the simulation, we use Delayed Rejection Adaptive Metropolis (DRAM) algorithm to generate
efficient chains of estimated parameters (Haario et al., 2006). The variance of measured components θ(a),
Z1(0, a), and Z2( j, a) are given by inverse gamma distribution with hyper-parameters (0.01, 0.04), where
0.01 is the initial error variance, which is updated by inverse gamma distribution (Tang et al., 2018).
Prior information of unknown parameters is given by θ1 ∈ (0, 1000), θ2 ∈ (0, 1000), $1 ∈ (0, 10000),
$2 ∈ (0, 1000), σ1 ∈ (0, 10), σ2 ∈ (0, 1000), β1 ∈ (0, 1 × 10−7), β3 ∈ (0, 1 × 10−7), ξ2 ∈ (0.6, 1),
ζ1 ∈ (0, 1000), T (0) ∈ (10000, 50000), R(0) ∈ (2 × 106, 1 × 107), W(0) ∈ (1 × 104, 1 × 105), and the
proposal density follows a multivariate normal distribution.
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