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The Lord said:

“ . . if you accept my words

and store up my commands within you,

turning your ear to wisdom

and applying your heart to understanding,

and if you call out for insight

and cry aloud for understanding,

and if you look for it as for silver

and search for it as for hidden treasure,

then you will understand the fear of the Lord

and find the knowledge of God.

For the Lord gives wisdom,

and from his mouth comes knowledge and understanding.”

Proverbs 2:1-6 (NIV)
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ABSTRACT

Visual identification of the epileptic seizure onset and location
in the surface EEGis often difficult. To improve the efficacy of the
surface EEG, data dependent digital filtering techniques can be
utilised. Traditional bandpass filters eliminate baseline shifts and
other artifacts while temporal and spatial pattern filters reduce the
pre-ictal background and exclude extraneous ictal activity. The data
dependant temporal and spatial pattern filters are derived from the
singular value decomposition of composite autocovariance and
covariance matrices formed from abnormal and normal segments of
the EEG. The temporal and spatial patterns which account for
maximal variance in the abnormal segment are used in the filters.
The filtering was applied to one simulated and two clinical EEGs
with combinations of surface, subdural, and intracranial BE5G
recordings. The surface tracings initially failed to lateralize the
seizure onset, whereas after filtering the seizure onset was clearly

identifiable and the responsible source easily localised.
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1. INTRODUCTION

Problem Statement

An intriguing problem and challenge in digital signal processing
is the separation of specific signals from a conglomerate of
background signals, artifacts and noise. The research which this
thesis describes, addresses this problem as it pertains to the
clinical application of invasive and non-invasive recording of the
electrical activity of the brain, the electroencephalogram (EEG). The
goal is to enhance the characteristic signal of an epileptic seizure
within the EEG by eliminating those signal components which do not

contribute to this abnormal activity.

The method through which this goal is achieved incorporates
three filters; a temporal bandpass, a temporal pattern and a spatial
pattern filter. It is the combination of the three filters which
consistently achieves the desired resuits. Both the temporal pattern
and the spatial pattern filters are designed following the same four
steps of a data dependent design procedure. First, through the use of
equations for potentials based on the current dipole model, singular
value decomposition and spatio-temporal decomposition, a set of
optimal basis vectors are determined. These basis vectors, referred
to as temporal or spatial patterns, span a measurement space which
embodies the data points of two EEG segments. Second, using a
linear transformation which optimally aligns the basis vectors, the

corresponding temporal waveforms are calculated. Third, the



abnomal and normal basis vectors and corresponding temporal
waveforms are identified and separated. The last step utilizes a
selected set of the abnormal basis vectors to derive the filter. The
filter is then applied to an extended segment of the EEG resulting in
filtered EEG with the abnormal activity enhanced. Finally, the
spatio-temporal decomposition of a temporally and spatially
fitered EEG effectively isolates the abnormal activity. This
decomposition provides estimates of the abnormal source
waveforms and spatial patterns. The abnormal source waveforms
display the seizure onset and the abnormal spatial patterns lead to

the location in the brain of the responsible sources.

Problem Overview

The term EEG generally refers to a set of tracings which display
measurements taken at the multiple electrode sites spread
internally in the brain or externally over the surface of the head. The
EEG presents tracings of the simultaneous measurements taken from
the electrode sites stacked \vertically. Thus the horizontal
perspective presents the signals as they develop over time. The
vertical perspective presents the brain activity as it changes
through time. Each tracing is a recording of the activity from the
perspective of a different electrode location. Neurologists typically
use EEGs in combination with neurological examinations,
neuropsychological profiles, Nuclear Magnetic Resonance Imaging
(MRI) and Single Photon Emission Computed Tomography (SPECT)
procedures, along with patient history and clinical symptoms to

analyze the activity in the brain. The EEGs are recorded during the

2



diagnosis and treatment of patients who are suspected of having a
wide range of neurological problems, including epileptic seizures. |t
is the objective of the electroencephalographer to relate the
potentials measured on the scalp to the underlying physiological

processes.

In a clinical setting, expert analysts identify distinctive
rhythms as normal and abnormal brain processes based on their
temporal and spatial characteristics as presented in the EEG
Segments of the EEG display the amplitude, polarity, and frequency
content temporally and spatially as distinctive rhythms. In addition
to these attributes, it is the temporal development and the spatial
progression of the rhythms over an extended EEG which provides
valuable information to the experienced analyst. When the two
dimensions of the EEG, temporal and spatial, are viewed
simultaneously, it is the noticeable changes in each electrode
tracing and differences between the electrode tracings which
provide information regarding the underlying processes. This
information provides an encoded view of abnormal and normal
behavior present and possibly suggests the location of the

responsible sources.

One of the most difficuit EEGs to confidently analyze is one
where the distinctive abnormal pattern is swamped by the strength
of other potentials present at the electrode sites. In this case, the
distinctive rhythm may not stand out against the other activity,
thereby not providing visibility of the underlying abnormal process.

Since the brain tissue is considered a conductive medium, each



electrode is able to sense every source even those with very small
amplitudes. The challenge is to remove the interference and to
expose distinctive patterns of the underlying abnormal process. This
research endeavors to decompose the EEG into temporal and spatial
components and these components are analyzed separately to

determine seizure onset and source location.

To this end, the brain activity may be viewed as the
intermingling of electric fields generated by muitiple internal
sources. Potentials measured at an electrode site result from the
collective activity of many nerve cells. When the potentials in a
group of neurons change synchronously they create distinctive
rhythmical patterns. In some situations, the collective strength of a
single pattern may be large enough to dominate potentials generated
by other groups of neurons. In this case, the single pattern may be
seen clearly in the EEG tracings at the closest electrode site and
most probably at adjacent electrode sites. This dominant pattern can
be identified as being associated with an abnormal or normal
process. The coexistence of the abnormal and normal processes leads
to the total brain activity being decomposed into subsets of

abnormal and normal processes.

Since, the potential variations recorded at the electrode sites
are composite signals, the model for the genesis of the EEG can be
based on the superposition principle [Hjorth et al. 1988]. This
principle states that the recorded signal can be represented as the

linear sum of the signals generated by each of the sources whether



abnormal or normal. The following equation represents this principle

for the potential at the i electrode site:

(1.1) vi = Y Musss
1

Each row of the N channel EEG, as shown in equation 1.1, can be
considered the linear combination of source waveforms. The
elements of the row vector, [M; M, .. M., are the weighting
coefficients corresponding to each of the p source waveforms, S,
through S,. Since all of the p sources are common to all the rows of
the EEG, the complete EEG can be decomposed into matrices M and S.
The matrix M contains the stacked row vectors of weighting
coefficients and the matrix S contains the row vectors of source
waveforms. When viewed as a set of column vectors, the matrix M
details the spatial characteristics, which specifies the distribution
strengths at each electrode site, corresponding to the temporal
characteristics, the source waveforms. The matrix M is referred to
as the spatial pattern matrix and each column as a spatial pattern.
The source waveforms display temporal patterns of normal and
abnormal activity. The specific intent of this research is to isolate
and identify the temporal and spatial characteristics attributed to

abnormal processes.

For this purpose, the EEG can be viewed as a matrix of data
samples with characteristics, relationships and dependencies which
relate the temporal and spatial characteristics. Digital signal
processing techniques such as singular value decomposition, spatio-

temporal decomposition, and linear transformations can be applied



to derive temporal pattem and spatial pattern filters. The
application of these filters, in combination with a traditional
temporal bandpass filter, can be used to isolate the abnormal
activity within an EEG. In fact, the data matrix can be decomposed
into subsets of abnormal and normal spatial patterns, M, and M,, and
corresponding temporal waveforms, S, and $,[Koles 1991]. Thus, the
spatio-temporal decomposition equation for the data matrix, V, can
be written as

(1.2) V = MS = [mn..][‘]

So

Filtering the EEG should expose the temporal waveforms of the
abnormal processes, S,, which exhibits the seizure onset and the
spatial patterns, M,, from which the location of the sources of the

abnormal processes can be determined [Koles 1991].

Area of Application

The medical condition towards which this research is focused
is epilepsy. Individuals with epilepsy have distinctive types of EEG
abnormalities which occur between and during clinically detectable
seizures. The general term for the persistent abnormal activity
particular to epilepsy is epileptiform activity [Tyner et al. 1983]. As
described in more detail in the next chapter, the epileptiform
activity typically has a rhythmical pattern which persists for
various lengths of time, ranging from seconds to portions of

minutes.



As previously mentioned, the EEG displays the collective
summation of normal background activity, artifacts and abnormal
activity. The term artifact refers to any electrical activity other
than that generated by the patient’s brain which is present in the
tracing of the potentials at the electrode sites [Tyner et al. 1983].
All these signals combined in varying strengths hamper the
identification of seizure onset and the source location. Therefore,
the goal is to first separate the epileptiform activity from normal
background signals, other abnormal signals and artifactual activity
and second to quantify the temporal and spatial characteristics of

the epileptiform activity.

Previous Research

Many filter design techniques have been employed to extract the
abnormal activity from the EEG. Over the years, filters have changed
from analog filters to digital filters. However, the result was still
some combination of low-pass, high-pass and bandpass filters.
These filters were designed using conventional filter design
procedures, where the frequency response was known and the filter
was designed to achieve that response. An example of this is the use
of digital filtering to remove the electromyographic (EMG) artifact
[Gotman et al. 1981].

Filters tuned to specific signals emerged from the quest to
determine where and when a specific waveform appeared in an EEG
Matched inverse filters incorporating the autocorrelation of the BEG

were used [Lopes Da Silva et al. 1977, Pfurtscheller et al. 1977,



Barlow 1979] to prepare the EEG prior to the use of event detection
algorithms. In these filters, the frequency response of a filter
template was based on a desired impulse response. Typically, the
EEG was filtered using a filter selected from a stored set of
standard waveforms representing standard epileptiform activities.
Thereby the abnormal activity in the filtered EEG approximated a

standard epileptiform activity.

A form of filtering, as applied to epilepsy, has been used
[Gotman et al. 1976, Gotman 1982] to detect seizure onset through
the decomposition of the EEG into wave segments. The pattern of
these wave segments, in combination with the appearance of
appropriate circumstances which typically precede an epileptic
seizure, signify the likelihood of the onset of a seizure. These

detection algorithms are used to trigger EEG recording machines.

Commonly, EEG research projects are based on the superposition
principle [Hjorth et al. 1988]. Some also make use of autoregressive
modeling used alone [Franaszczuk, 1994] or combined with inverse
filtering [Pfurtscheller, 1977]. Autoregressive modeling assumes
that an electrode potential can be predicted from the sum of

previous potentials plus noise.

The similarity between all of the methods employed by the
research projects mentioned above, is that they determine the filter
based on standardized characteristics of the epileptic seizure. This
addresses the challenge to design a process or filter which could be
used for all seizures. The problem that arises is that this filter

design tends to be broader in bandwidth and not specific enough to



eliminate the majority of extraneous activity. More recently,
Kobayashi et al. [1996] utilized the source location to design a data
dependent filter to extract obscure activity during an epileptic
seizure from the EEG. Koles et al. [1995] developed a data dependent
spatial filtering procedure which determined the spatial patterns of
an EEG. These spatial patterns were then used to determine the
source location. The research presented in this thesis builds on the
concept of a data dependent filter. The design procedure developed
was applied to evolve both temporal and spatial pattern filters
specific to a patient's EEG. The application of these filters result in

the isolation of the abnormal activity present in the EEG.

Research Objective

This research employs a traditional digital temporal bandpass
filter, a newly developed data dependent temporal pattern filter
followed with a previously developed [Koles, 1991] data dependent
spatial filter. The bandpass filter is used to eliminate the base line
shifts and any higher frequencies such as the EMG artifact or the 60

Hz power line noise.

The temporal data dependent filter design procedure
decomposes a single electrode recording into a set of temporal
pattern filtered (TPF) temporal waveforms. An epileptologist
selects those waveforms which exhibit the particular epileptiform
activity specific to each EEG. The selection is guided by the
percentage of variance which the corresponding temporal basis

vectors account for in the normal and abnormal activity. The



temporal pattern filter results from the recombination of temporal
basis vectors which correspond to the selected TPF temporal
waveforms. The filter is a template for the precise temporal
characteristic of the abnormal process within a particular EEG. In
the time domain, the temporal pattern filter defines the rhythmical
potential variations characteristic of the abnormal process as seen
horizontally in the EEG tracings. In the frequency domain, the
temporal pattern filter is transformed into a set of frequency
components with corresponding magnitudes which characterize the

abnormal temporal process, defining the filter's frequency response.

The spatial pattern filter design procedure, applied to the
temporally filtered EEG, determines the optimal common spatial
patterns and the corresponding spatial pattern filtered (SPF)
temporal waveforms. The spatial patterns which specify the relative
amplitudes of the corresponding temporal waveforms at each
electrode site can be used to determine the source location within
the brain [Koles et al. 1995].

The ultimate objective of this research area is to filter the EEG
separating the epileptiform activity into a single abnormal SPF
temporal waveform and abnormal spatial pattern. The source
location can then be derived from this spatial pattern. Therefore,
isolating the abnormal temporal and spatial patterns is analogous to
finding the key which decodes the EEG into the address for the group

of neurons responsible for the epileptic behavior.
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Document Overview

This document continues with a chapter reviewing the medical
background of epilepsy, specifically the epileptic seizure, the
genesis of potentials in the head, EEG terminology and types of
electrodes. The third chapter presents the mathematical background
from which the data dependent filter design procedure is developed.
The fourth chapter describes the method used in this research. The
method specifies, in detail, the application of the temporal bandpass
fiter and the four step filter design procedure for the design and
application of the temporal pattern and the spatial pattern filters.
The fifth chapter presents the results and the discussion of the
filtering method as applied to three EEGs. These EEGs include a
simulated EEG, a clinical EEG recorded from electrodes within the
brain as well as on the surface of the brain and a clinical BG
recorded from only surface electrodes. The last chapter, Chapter six,
contains the conclusions resuiting from this research and identifies

questions and further research topics.
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2. MEDICAL BACKGROUND

This chapter starts with a description, based on the anatomy of
the brain, of how the potentials measured at electrode sites are
generated. The discussion continues with a review of the
terminology used to describe EEGs and to classify the activity
within an EEG as abnormal or normal. This chapter also includes the
criteria for the identification of the abnormal activity typical of the
epileptic seizures. It is this distinctive signal with its temporal and
spatial characteristics which the epileptologist desires to identify
and isolate. An understanding of the temporal and spatial
characteristics of the epileptiform activity is helpful to
substantiate the new data dependent filtering method developed. The
chapter concludes with a discussion of surface, subdural and depth

electrodes.

The first section presents an overview of the genesis of
bioelectric potentials from the brain and is a paraphrase of the
material presented by J. W. Clark in Chapter 4 of the text Medical
Instrumentation:  Application and Design [Webster 1992]. The
information contained in the remaining sections of this chapter is a
brief review of the material presented in Chapters 10 and 14 from
the book Fundamentals of EEG Technology [Tyner et al. 1983]. As the
references are numerous, it can be assumed that unless otherwise
specified the information can be credited to the authors of these

two books.
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Bioelectric Potentials from the Brain

The anatomical structures of the brain generate electric fields
within the brain and thus allow for electric potentials to be
measured throughout the brain. The three major parts of the brain,
the brainstem, the cerebellum and the cerebrum, as identified in
Figure 2.1, form a closed system. The brainstem, an extension of the
spinal cord, provides the link between the cerebral cortex, the spinal
cord and the cerebellum. The brainstem controls life sustaining
processes such as breathing, circulation and digestion as well as
regulation of various muscle reflexes. The cerebellum coordinates
the voluntary muscle system and acts in conjunction with the
brainstem and cerebral cortex to maintain balance and coordination
of muscle movements. The cerebrum, the largest portion of the
brain, is the portion to which the conscious functions of the nervous

system can be localized.

The cerebrum is split into pairs, the right and left cerebral
hemispheres with each hemisphere relating to the opposite side of
the body. The outer layer, the cerebral cortex, is the convoluted
surface extending underneath the brain into the centermost part of
the head. Some parts of this layer receive sensory information from
skin, eyes, ears, and other receptors throughout the body, The
cerebral cortex is packed with nerve cells that appear gray in color,
and consequently this volume is referred to as the gray matter. The
gray matter surrounds a core of white matter which consists of

bundles of mylinated nerve fibers, the axons. Deep within the
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cerebral white matter are several masses of gray matter, the basal

nuclei, consisting of neuronal cell bodies.

Cerebrum

Brain Stem Cerebellum

Figure 2.1 Parts of the Brain (From Medical Instrumentation Application and
Design, JG Webster Editor, 1992, page 195)

The cerebral cortex, shown in Figure 2.2, is organized into a six
layer stratification made up of mainly pyramidal cells and granule
cells. The cortical neurons are not randomly distributed but instead
are aligned along the axis normal to the cortical surface. This
orderliness extends to both the distribution of cell types and their
packing density. The normally oriented pyramidal cells, such as the
one labeled a giant pyramidal cell in Figure 2.2, have long apical

dendrites running parallel to one another.
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Figure 2.2 Cortical Layérs (From Medical Instrumentation Application and
Design, JG Webster Editor, 1992, page 202)

Differences in potentials can be measured in one part of a
single cell body relative to another part. These differences in
potentials create electric fields along which intercellular currents
flow. The subthreshold current flows, as shown in Figure 2.3, in a
closed path through the dendrites and cell body of the pyramidal
cells, returning to the synaptic sites via the extracellular fluid. Due
to the orderly alignment, the orientation of the cells, and if enough

cells are synchronized, the potential difference can sometimes be

measured at the cortical surface.
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Figure 2.3 Cortical Dipole Field Potential (From Medical Instrumentation
Application and Design, JG Webster Editor, 1992, page 205)

Although conducted action potentials in the axons are relatively
significant in amplitude they contribute little to surface cortical
records. Their net influence on the potential at the surface is
negligible because these actions potentials occur asynchronously in
a large quantity of axons, which run in many directions relative to
the surface. But due to the alignment of each pyramidal cell, their
current flow is additive within the system of cells. Thus a potential
difference recorded at the surface results in the peaks and valleys,

presenting an intricate signal attributed to the pyramidal potentials.

The resultant effect of this potential difference, referred to as
a dendritic postsynaptic potential (PSP), depends on a combination
of: the sign (excitatory (-) or inhibitory (+)), the orientation, and on

the location relative to the potential measurement site. The effect
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of each PSP may be regarded as creating an oriented dipole. The
continuing synaptic input creates a series of potential dipoles and
the resulting current flows are staggered but overlap in space and
time. Thus, surface potentials can be generated by one population of

presynaptic fibers and the cells on which they terminate.

Since the head is viewed as a large conductive medium of active
elements [Gevins et al. 1991, Soong and Koles 1995, Nunez et al.
1991], a recorded potential change is a measure of the net potential
difference between the electrode site and the reference electrode at
that moment in time. Recordings can be taken from the inner
surfaces of the brain, using subdural or depth electrodes, or from
the scalp, using surface electrodes. The intensities of the brain
waves recorded on the exposed surfaces of the brain, relative to a
distant reference electrode such as the earlobe, range in values as
large as 10 mV. Those recorded from the scalp have smaller
amplitudes, approximately 100 uV, with frequencies ranging from
0.5 to 100 Hz. These oscillating electric potentials are referred to
as brain waves and a recording of the potentials at multiple

electrode sites is the electroencephalogram (EEG).

It appears as if brain waves are irregular and no general pattern
can be observed, but distinct patterns do occur. The intensity and the
patterns of the continuously oscillating electric activity is a
measure of the functional activity of the brain. Some of the patterns
can be recognized and are classified, based on the frequency per
second, as belonging to one of four wave groups; alpha, beta, theta,

and delta. These patterns under certain conditions and other patterns
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not solely classified according to frequency can be attributed to
specific abnormalities of the brain. Analysis of these patterns are

crucial to the classification of EEGs.

EEG Descriptive Traits

EEGs are described in terms of their content, in that major
patterns and changes in activity are referred to as they appear
against a background. The background is the setting from which a
change or pattern is distinguished and can be classified as normal or
abnormal. EEG activity must be analyzed in reference to the patient’s
age and state of responsiveness; drowsy, awake and asleep. BEG
activity can be described using a number of variables, those that are
pertinent to this research are; frequency, amplitude, morphology,

continuity and location.

A significant trait that is used to describe EEG activity is the
stability of the frequency content, referring specifically to the
rhythmic repetitive EEG activity. The pattern is rhythmic if the BEG
activity consists of waves of approximately constant frequency. The
EEG activity is arrhythmic if no stable rhythms are present.
Dysrhythmic activity refers to rhythms and/or patterns of BEG
activity which should not be present in a specific state in the

healthy patients.

The voltage of an EEGis described in terms of amplitude level
and attentuation. This term can be used in reference to either
average voltage or peak voltage of EEG activity. A period of

attenuation, the reduction of amplitude of EEG activity, has some
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significance if the flattening of activity is seen prior to a burst of
dysrhythmia. An increase in voltage and regularity of rhythmic
activity implies an increase in the number of neural elements
contributing to the rhythm. Both a normal or abnormal activity can
emerge from the background with a rapid onset, and may reach a high
voltage and end with an abrupt return to the underlying background

activity.

Morphology refers to the shape of the waveform. The shape of
the wave of the EEG pattern is determined by the frequencies that
combine to make up the waveform and by their phase and amplitude
relationships. Surface polarity is either negative or positive in
reference to a particular activity or waveform at specific electrode
locations. The terms monomorphic or polymorphic describe the
number of dominant frequencies combined to form a simple or
complex waveform. Sinusoidal refers to waves that resemble sine
waves. A transient is a isolated event, a wave or pattern that is
distinctly different from background activity such as a spike or
sharp wave. A complex refers to a sequence of two or more
waveforms, not necessarily of the same frequency, creating a

pattern distinctly different from the background activity.

The specific EEG activity can be continuous, discontinuous or
intermittent, regular and irregular. This term can be used to

describe the continuity of a particular pattern or series of events.

Location of the EEG activity refers to the scalp distribution of
that particular rhythm or pattern. The location is generalized if the

activity is not limited to a specific area. The pattern is lateral or
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lateralized if it appears to come from one side of the brain; or
bilateral, if it comes from both sides. The term focal indicates the
involvement of a specific part of the brain rather than the whole
brain. The EEG activity is symmetrical when the pattern is equally

distributed over structurally corresponding areas.

EEG Classifications

A significant element in the analysis of an EEG for the purposes
of diagnosis is the change in activity from normal to abnormal. Most
significant is the identification of the onset of the abnormal
activity. Therefore the distinction between normal and abnormal
activity is fundamental to the filter design method presented in the

following chapters.

Normal EEG activity is defined as any distinctive activity that
appears in the EEGs of large groups of people known to have no
complaints, no symptoms, no neurological or other disease and no
family history of neurological disease. Any EEG activity observed in
this healthy group, the control group, is considered normal EG
activity. Abnormal EEG activity is defined as any of the HG

activities which do not appear in the EEGs of the control group.

Normal EEG activity is different for individuals who are awake
and for those who are asleep. Awake activity typically consists of
combinations of alpha, beta, theta activity, mu rhythm, lambda
waves and posterior slow waves. Alpha activity has the frequency
range of 8 to 13 Hz, but averages about 10 Hz. Beta activity is an

activity with a frequency faster than 13 Hz, generally referring to
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rhythmic activity in the 14 to 25 Hz range. Theta activity includes
frequencies between 4 and 7.5 Hz. Mu rhythm is an archlike activity
with average frequency of 9 Hz, but ranging from 7 to 11 Hz. Lambda
waves are sharp waves with an equivalent frequency of 4 to 6 Hz
which occur during drowsiness. Posterior slow waves of youth are
delta, below 3.5 Hz, and alpha activity intermixed and sometimes

resembles sharp and slow wave activity.

Abnormal EEG activity must have one or more of the following

six conditions to be considered abnormal:

i) an increase or decrease of the frequency of the basic
rhythm, in comparison to a similar aged control group,

particularly if asymmetrical;

ii) an increase or decrease in amplitude of the particular
EEG activity, in comparison to the control group,

particularly if asymmetrical;

iii) a difference in the locations of various frequencies, in

comparison to the control group;

iv) a difference in the morphology of the waveforms,

compared to those encountered in the control group;

v) an appearance of distinctive elements with a delay
between appearances, which is unusual for the age and

state;

vi) an atypical response or loss of reactivity to stimulation.
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Some specific abnormal EEG patterns include spikes, sharp
waves, spike and wave complexes, sharp and slow wave complexes,
rhythmic hypersynchronous activity, periodic discharges, triphasic
waves, excessively slow activity, excessively fast activity, and

excessively high amplitude activity.

As mentioned previously, the EEG does not represent only
cerebral activity, but includes other electrical activity that is not
of cerebral origin. This activity, referred to as noise or artifact,
includes physiological effects such as electromyographic (EMG) or
muscle artifact, electrocardiographic activity (pulse and pacemaker
artifacts), eye movement, myogenic (jaw movement) and
glossokinetic (tongue movement) potentials, respiration, tremor and
electroretinogram. Other non-physiological artifacts such as those
arising from the 60 Hz powerline, electrode noise, and body

movement may also be present in an EEG.

The descriptions of normal and abnormal activity has been made
in reference to activity recorded from groups of people. But similar
distinctions can be made for segments within a single EEG record.
Therefore, a single EEG record can contain a section of abnormal BEEG

activity and a section of normal EEG activity.

Epileptic Seizures

The term epileptic seizure is an abstract description as there
are many different types of epileptic seizures. Each patient may
have multiple seizures, each having different clinical signs and

symptoms The seizure free period preceding a seizure and the
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interval between seizures are termed the preictal period and the
interictal period, respectively. These periods, during which the
patient appears to be in her/his usual state, define the normal
activity within a specific EEG. The interval of altered behavior, the
ictus, includes the onset of the abnormal activity and the
progression of that particular activity. The seizure onset may be
focal or generalized and the duration of the ictus is variable in type
and severity. There may be immediate and total loss of
consciousness, partial impairment of consciousness or no
impairment throughout the ictus. As the signs and symptoms of the
seizure end, a postictal period begins during which a transient BEEG

abnormality may be present.

The abnormal neuronal activity during the ictal period of the
EEG appears as a discharge with epileptiform characteristics. The
observable epileptiform pattern generally consists of distinctive
waves or complexes, which are distinguishable from background
activity. The development of the observable seizure phenomena
requires, even for the production of a focal seizure, the synchronized

firing of a large population of cerebral neurons.

As described previously, with respect to general brain activity,
the neurons of the brain normally function through orderly processes
of excitation and inhibition; the resultant balance establishes the
cerebral state and behavior. During an epileptic seizure, groups of
cerebral neurons discharge in an uncontrolled, and abnormal manner,
and the normal course of behavior is disrupted. Uncontrolied

neuronal activity can be caused by three conditions; i) too much
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excitation, ii) too little inhibition, and iii) the development of
hyperirritable neurons that are either continuously or recurrently so

close to their firing thresholds that they discharge spontaneously.

Typically, epileptic seizures are classified into three groups:
partial seizures, generalized seizures and unclassified seizures.
Partial seizures are characterized by symptoms with the onset
limited to neurons in one part of the cerebral hemisphere. Simple
partial seizures have no impairment of consciousness whereas
complex partial seizures are those with altered consciousness.
Generalized seizures are characterized by clinical behavior which
may represent the initial involvement of both hemispheres with
consciousness severely impaired and during which bilateral motor

manifestation occur.

The Recording Electrodes

If generators within the brain are represented as dipoles with
current flowing between the cell body, the source, and the dendrites,
the sink. Placing an electrode in the electric field generated by this
dipole will enable the potential difference between this electrode
and a reference electrode to be measured. Electrodes placed at a
significant distance, will not be able to pick up the field potentials
of a single neuron since the potentials are too small and are also
affected by the activity of adjacent neurons. Neurons arranged
randomly in space and those which are activated randomly do not
produce significant field effects because their activities cancel

each other. Therefore, the potentials which are recorded at a
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distance from the generators are the result of dipoles which are
geometrically aligned and activated synchronously. As seen in Figure
2.4, a surface electrode (macroelectrode) generally reflects the
activity of a large number of neurons when they are activated
synchronously. A depth electrode (microelectrode) frequently
reflects the activity of a small number of neurons which may not be

representative of the majority of the neurons.

I
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Figure 2.4 Cortical Tissue with Electrodes (From Electric Fields of the Brain, A.
Nunez, 1981, page 77)

Non-invasive recording uses surface electrodes typically placed
on the scalp following the International 10-20 System of electrode
placement. Figure 2.5 displays the superior view of the electrode
site locations and Table 2.1 identifies the label, specifying the

appropriate channel, and the location of each electrode site.
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Figure 2.5 Electrode Positions- The Extended International 10/20 System
(Adapted from Current Practice of Clinical Electroencephalography, DD Daly and

TA Pedley Editors, 1990, page 47)

Label Spin Tip Label Spin Tip
FP1 -108.00 90.00 FP2 -72.00 90.00
/3 -130.71 58.57 R -49.29 58.57
< -180.00 45.00 0.00 45.00
P3 -229.29 58.57 P4 49.29 58.57
o1 -252.00 90.00 02 72.00 90.00
F? -144.00 80.00 FB -36.00 80.00
T3 -180.00 90.00 T4 0.00 90.00
T5 -216.00 90.00 76 36.00 90.00
Fz - 80.00 45.00 o4 -90.00 0.00
Pz -270.00 45.00 ez 90.00 90.00
LSPH or FT9 -162.00 112.50 RSPH or FT10 -18.00 112.50
LMAS or TP9 162.00 112.50 RMAS or TP10 18.00 112.50

Table 2.1 Electrode Angles (Adapted from working material of the Biomedical
Engineering Department, University of Alberta, ZJ Koles, 1996)

In this system the electrodes are located on the top half of a perfect

sphere. The center of the head is then assumed to be placed at the
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center of the 3 dimensional coordinate system. Thus two angles, tip
and spin specify the electrode site location. These angles are listed

in Table 2.1 and depicted in Figure 2.6.

Right Ear

Figure 2.6 Tip and Spin (From working material of the Biomedical Engineering
Department, University of Alberta, | Buclieu, 1996)

One of the limitations of recording from surface electrodes is
the low amplitude of the electrical brain potentials. Theretfore,
contamination of the recording with noise and artifacts represents a
significant difficulty especially when trying to record the extremely

low amplitude potentials.

Invasive recording, using subdural or depth electrodes, allows
for the elimination of some artifactual interference and the
attentuation of the potentials due to the skull resistance. Another
advantage of invasive recording is that the electrodes conduct
potentials generated by a relatively small number of generators.
Specifically, from those located deep in the brain, or from those

oriented in such a way in the folds of the cortex that it makes it
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difficuit to pick up their activity from the surface. Therefore
invasive techniques, with the electrodes placed closer to the
generators, generally reflect the activity of a smaller number of

neurons, those closest to the electrode.

Subdural electrodes are designed to provide cortical recordings.
The electrodes are placed in a grid or in strips. The grid, a 2
dimensional array of electrodes, covers an extensive local area. The
strip electrodes are slipped under the dura into the subdural space.
The strip electrode sites range from the point of entry through to a

desired location.

Depth electrodes are arrays of electrodes designed for
introduction directly into the substance of the brain and the
recording of subcortical structures. Depth EEG recordings usually
demonstrate excellent signal-to-noise ratios, since the electrodes
are not generally plagued with interference by muscle and movement
artifacts and bypass the high-resistance of the skull. The
morphology of the epileptiform activity recorded using depth
electrodes can be considered the gold standard for the
representation of the abnormal waveform. Although, the
epileptiform activity originating in a particular depth electrode only
indicates that this electrode location is closer than the others to
the seizure focus. Thus, the ictal changes detected by this electrode
do not necessarily begin in the structures from which the recording
is obtained. Thus it is advantageous when invasively recording, to
simultaneously record from multiple electrode types and locations,

including from surface electrodes.
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3. MATHEMATICAL BACKGROUND

This chapter presents the mathematical background on which a
data dependent filter design procedure is based. As described in
Chapter 1, the filter is designed to extract seizure related ictal
activity from recorded brain activity. This objective is split into
three parts; first, the approximation of recorded brain activity,
second, the decomposition of the brain activity into abnormal and
normal activity, and third, the extraction of the epileptiform

activity.

The mathematical background consists of mathematical
principles and operations that are fundamental to the above stated
objective. Initially, this chapter includes a brief review of the
approximation of source potentials. The bulk of the chapter
incorporates a detailed review of matrix algebra operations as
applied to recorded data. These operations lead to the decomposition
of the recorded data and aid in the separation of the epileptiform

activity from extraneous ictal, artifactual and background activity.

Approximation of Source Potentials

The current dipole has been used as an aCceptable model for the
source of electrical activity within the brain [Nunez et al. 1991]. As
described in Chapter 2, a group of synchronously acting neurons can
be considered the source of the electrical activity. The potentials
generated by current dipole sources have been used to approximate

the electrophysiological processes of this group of neurons. The

29



electrical currents generated by these sources are volume conducted
throughout the brain to the recording electrodes [Gevins et al. 1991,
Soong and Koles 1995, Nunez et al. 1991]. Based on this, the
potentials due to localized sources spread over various areas of the
scalp. It follows that the potential measured at a scalp electrode
site represents the summation of signals from many sources,
including abnormal and normal sources [Gevins et al. 1991, Koles
1991].

This summation of the activity from muitiple sources is an
application of the linear superposition principle. This principle
states that the composite electric field due to many sources can be
expressed as a vector sum of the individual fields produced by each
source [Hjorth et al. 1988]. Based on this, equations for the
potentials measured at electrode sites can be written that combine
both abnormal and normal source activity [Koles 1991]. These

equations will be specified in a later section.

To summarize, three concepts of significant importance can be
employed. The first concept is that each source can be modeled
separately as a current dipole source. The second is that the
summation of the separate source activities can be equated to the
potential at each electrode site, The third concept, discussed in the
previous chapter, is that of the utility of medical expertise and
information. As presented in Chapter 2, this information can be used
to identify the abnormal and normal patterns that may appear
temporally and spatially within composite signals. The combination

of these three concepts, as reported by Koles [1991], provide the
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framework for the decomposition of the recorded EEG. Further, using
this decomposition, the spatial and temporal information of the

abnormal source(s) can be determined.

The application of these concepts are used to develop the
potential equations representative of each channel recording. These
equations and the basic matrix operations applied in previous

research studies are presented in detail in the following sections.

EEG Data Matrix

Basic to signal processing is the fundamental concept of
vectors and matrices. A matrix is an array of real or complex
numbers. In the case of the EEG, the numbers correspond to digitally
converted EEG signals [Hamer 1990]. Most computerized analysis of
EEGs utilize this concept [Koles 1991, Harner 1990, Hjorth 1989,
Hjorth and Rodin 1988].

To this end, the multichannel EEG record can be viewed as a
matrix of data points simultaneously sampled at different electrode
sites at regular intervals [Koles 1991]. The T potential
measurements taken from each of the N electrode sites can be
formatted as an (NxT) data matrix:

(V11 Vi2 Vis - Vir

Va1 V22 V23 .. Var
(3.1) V31 V32 Vas .. Var

VN1 Vn2 VN3 - UnT
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The above matrix can be viewed in each of its two dimensions;
horizontal rows and vertical columns. The view of the data matrix,
as a set of horizontal rows of data points is referred to as the
temporal view. The rows of the matrix correspond to wave
amplitudes as a function of time in each electrode recording [Harner
1990]. Therefore, each row provides a different measurement
viewpoint of the underlying processes within the brain as they

change over time.

The spatial view of the data matrix, is a set of vertical columns
of data points. A single column of the measurement matrix contains
one set of simuitaneous potential measurements taken at each of the
N electrode sites. This single column can be interpreted as a
snapshot of the spatial distribution of the collective activity within

the brain, at that specific moment in time.

Spatio-Temporal Decomposition

Hjorth et al. [1988] and Koles [1991] both base their analysis on
the EEG data matrix viewed as a linear combination of source
waveforms. As mentioned in a previous section, the linear
superposition of the potentials generated by each source measured
at each electrode site can be specified by a general equation. Thus,
the potential measured at a specific electrode generated from p

sources can be written as:

(3.2) Vi = iuLj Sj
=1
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The index i identifies which of the N electrode recordings or which
row of the data matrix is being defined. The index j specifies the

particular source.

Using equation 3.2, each row of the data matrix presented in
equation 3.1 can be approximated. Equation 3.3 presents this result
in a general format that is typically referred to as the spatio-

temporal decomposition of a data matrix.
(3.3) Vv=MS

The above equation presents the data matrix, V, decomposed into
two matrices, the spatial matrix and the corresponding temporal
waveform matrix [Koles et al. 1995, Koles 1991]. According to
equation 3.2, the spatial matrix, M, consists of p columns. Each
column is referred to as a spatial pattern. A spatial pattern is the
distribution of the field strength of the corresponding temporal
waveform across the N electrode sites. These values reflect the
location of the source that generates the corresponding electrical
activity [Hjorth et al. 1988]. The temporal waveform matrix, S, can
be viewed as p rows of source waveforms. These source waveforms
represent the variation in potential of each source within the brain
as it changes through time. By convention the labels M and S are
reserved for reference to the exact spatial patterns and temporal
waveforms of sources that generate the brain activity. Other spatio-

temporal decompositions will use other labels.

Using the format of equation 3.3, the spatial matrix can be
viewed as a matrix specifying the electrode from which the

electrical activity was recorded. The sampled potentials are
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assigned the corresponding row in the temporal waveform matrix.
Therefore, these two matrices provide both the spatial and temporal
information responding to the questions “from where” and “what and
when” with regard to the recorded data. These details are displayed
in equation 3.4. The spatial matrix, in this case the identity matrix,
identifying the specific electrode from which the data has been
obtained. The temporal waveform matrix is the data measurement
matrix shown in equation 3.1 and in this decomposition is equivalent

to the data matrix V.

-y

’1 00 - OTVu Vi2Viz .. Vi
010 .- 0f| Va1 V22 Va3 .. Var
(34) V=]001 --- 0fV31V32V33 . Var

000 - 1[|Vn1VN2Vn3 .. Vnr

The spatio-temporal decomposition of a particular data matrix is
not unique. In fact any number of temporal waveform and spatial

pattern matrices may be used to reconstruct the data matrix.

Basis Vectors

A set of spatial patterns that are linearly independent and span
the space that embodies the data may be referred to as a basis set
[Strang, 1976]. A set of vectors is linearly independent if none of the
vectors can be written as a linear combination of the others [Strang,
1976]. Each of these spatial patterns can be referred to as a basis
vector. Usually, but not necessarily, basis vectors are not only
linearly independent but orthogonal. Orthogonal vectors are vectors

that have a dot product of zero [Strang, 1976]. If the vectors are also
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normalized, then the basis vectors have unit length and are referred

to as being orthonormal [Strang, 1976].

Any data matrix can be expressed in terms of a linear weighted
sum of basis vectors. These basis vectors can be non orthogonal,
orthogonal or orthonormal. This concept can be expanded so that a
particular set of basis vectors can be derived according to

particular specifications.

Singular Value Decomposition

One such specification is to constrain the basis vectors to be
not only orthonormal but also optimal with respect to the portion of
total variance they each account for in the data matrix. The
derivation of basis vectors meeting these constraints is termed
singular value decomposition (SVD) analysis. This analysis is a
linear expansion of the data matrix through the use of a minimal set
of orthonormal basis vectors each constrained to account for
maximum variance. [Hjorth et al. 1988, Hjorth 1989, Harmer 1990,
Koles 1991].

As presented by Koles, singular value decomposition expands a

(NxT) data matrix, V, into three matrices;
(3.5) V=UAiAQ

The columns of the (NxN) matrix U form the minimal set of
orthonormal basis vectors, the eigenvectors of the covariance

matrix VV’. A following section discusses in detail this covariance

matrix. The eigenvectors occur in descending order according to the
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variance they account for in the data matrix. The first vector
represents the most prominent, highly correlated and widespread
feature of the original data matrix [Harner 1990]. The singular value

matrix, A, is a (NxT) matrix of singular values and is equal to the

square root of the variance. The elements of the singular value
matrix are zero except for the diagonal elements. The diagonal of
Ay IS the vector [A,, A, A5 .. A]. The diagonal element, A,
corresponds to the j'" column vector and row vector of the matrices
U and Q respectively. The matrix, Q, is a (TxT) orthonormal matrix of
eigenvectors of the covariance matrix V’V. If V is a square data
matrix then UQ = I, where | the identity matrix. In this case, Q can
be shown to be the inverse of U as well as the transpose of U, and

are termed unitary. The elements of matrices A and Q are ordered

corresponding to the order within U.

Although the matrix A is of dimension (NxT), the rank of V will

be equal to or less than N. The rank of a matrix is equivalent to the
maximum number of nonzero singular values. Typically, the rank also
represents the minimal number of orthogonal vectors required to
span the space. In many cases, the data matrix, V, is overdetermined
and the rank will be less than N. This means that the data matrix
requires less than N orthogonal vectors to reconstruct the data
matrix V [Hjorth et al. 1988, Harner 1990, Koles 1991]. But in
general the rank of a matrix also indicates the number of linearly
independent vectors in a basis set of vectors [Strang 1976]. This
suggests that if a set of vectors can be found such that the

difference in their direction is not zero but this set is of full rank
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and spans the space then this set can also be referred to as a basis
set for that space. it follows that these vectors are also linearly

independent.

Linear Transformations

The results of the singular value decomposition of a data matrix
can be equated to the results of a spatio-temporal decomposition of
the same data matrix. If the temporal waveform matrix is defined as

the rows of Q scaled by the singular values;
(3.6) Y=1Q

and the spatial pattern matrix as the basis vector matrix U, then
based on equation 3.3, a spatio-temporal decomposition of the data

matrix, V, can be written as:

(3.7) V=UY
Basis Vectors 4 1
Temporal Waveforms J
Since the basis vectors, the columns of U from the singular value
decomposition, are orthonormal equation 3.7 can be inverted and

rewritten as:
(3.8) Y=UV

It is this form of Y that can be viewed as a linear transformation of
V where U’ is the (NxN) transformation matrix [Fukunaga 1972] In
the new coordinate system, the unit length basis vectors define the
direction of the axes. The linear transformation can be thought of as

the projection of the data matrix, V, onto the basis vectors,
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resuiting in the temporal waveforms, Y, that correspond to the
distances along the new axes. In practice, if the basis vectors, U,
and the data matrix, V, are known then equation 3.8 can be used to
calculate the temporal waveforms Y. Each value in Y corresponds to

an original data point in V.

Transformations can be used to reduce the dimension of the data
set, as in the case when the data matrix is overdetermined. To
accomplish this the transformation matrix is derived from a reduced
set of basis vectors that span the same measurement space. A
typical reduced set is based on the fact that the number of
orthogonal basis vectors having a magnitude of any significance is
always much smaller than the number of electrodes contained in the
original EEG [Hamer 1990, Hjorth et al. 1988]. Hjorth and Rodin also
report that since a few eigenvalues stand out significantly from the
general noise level of the remaining eigenvalues, then these
eigenvalues represent the choice of eigenvectors and temporal

waveforms to be studied.

For example, if a set of basis vectors, B, and a corresponding
set of temporal waveforms, (¢, are derived by some linear

transformation of U and Y respectively, then the data matrix, V, can

be constructed using JB and Q. If the basis vectors, B, are unitary

then equation 3.7 can be used. But if the set of basis vectors are

derived such that BB ‘' = |, then the inverse is used instead of the

transpose in the construction of V:
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(3.9) V=(B')'C
Basis Vectors J d
Temporal Waveforms o

Further, should the matrix of basis vectors, B, be of the dimension

that is traditionally non-invertible then the psuedo-inverse can be

used in place of the inverse in equation 3.9.

In the above example, based on the naming convention
established in equation 3.7, equation 3.9 also depicts a spatio-
temporal decomposition of the data matrix V. Therefore matrix
transformations can be used to derive other spatio-temporal
decompositions of an EEG. The goal in this research is to find a
spatio-temporal decomposition that isolates, to a minimal number
of basis vectors, the abnormal patterns that may or may not be

apparent from the recorded data samples.

Covariance Matrix

Transformations can also be used to enhance specific features.
One such transformation makes use of the covariance of the data.
The covariance matrix describes relational information among the
EEG channels based mainly on the waveform but also taking into
account the amplitudes [Hamer 1990]. An estimate of the spatial
covariance matrix of any data matrix can be obtained from the
product of the data matrix and its transpose [Hjorth et al. 1988,

Koles 1991]. Thus the covariance matrix of V, R, can be written as:
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(3.10) R,=VV

where Ry is a (NxN) matrix containing, on the diagonal, a measure of
the variance of each of the rows of V and, off diagonal, a measure of
the covariance between all possible rows [Koles 1991]. If the data
matrix V is expressed in terms of a singular value decomposition

then the covariance equation can be written as:
(3.11) R,=(UAQ)(UArQy
svr@Q)r v
=UAUY

Therefore, the singular value decomposition of a general (NxN)

covariance matrix can be written in the following format:
(3.12) R=UAUV

This means that any covariance matrix, R, can be decomposed into a

matrix of orthonormal basis vectors, U, the transpose matrix, U’,
and a diagonal matrix of eigenvalues, A. The diagonal elements of A

are the square of the singular values, A?, of V.

Applying this result, the covariance matrix of Y, where Y is a
linearly transformed data matrix, can be determined. Based on

equation 3.8 and 3.10, the covariance matrix Ry, is:
(3.13) Ry=YY

uvvu

v (R) U
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The covariance of the original data matrix, R,, can be further

expanded using the spatio-temporal decomposition of equation 3.11:

R, =U (UAZU) U

From this result the covariance matrix, Ry, is as a diagonal matrix.
In summary, a linear transformation matrix that will diagonalize the
covariance matrix of data points in a new coordinate system is the
transpose of the basis vectors derived from the covariance matrix of
the data points in the old coordinate system [Fukunaga, 1972]. The
diagonal matrix indicates that the transformed data elements, Y, are
uncorrelated [Hjorth 1989] whereas the original data elements, V,
are typically correlated. Since the orthonormal basis vectors, the
columns of U, are linearly independent, each column can be used as a

mutually perpendicular axis in the new coordinate system.

Whitening Transformation

Transformations can be used to enhance, identify and separate
the data points. One such transformation is the whitening
transformation [Fukunaga 1972, Koles 1991]. The whitening
transformation matrix, W, that transforms the data matrix V into

the whitened data matrix, Z, can be defined as:

(3.14) W= A2y’
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where the eigenvalue matrix, A, and the basis vector matrix, U, are

derived from the decomposition of a covariance matrix as shown in

equation 3.12. The transformation equation can be written as:
(3.15) Z=A"U'V=WV

Although applied as a unit, the whitening transformation matrix

can be subdivided into the two linear transformation matrices, U’
and A-V2. To clarify the effect of the application of each of these

transformations they are analyzed separately. First as defined in
equation 3.16 the linear transformation, Y, is a projection of the

data matrix into another coordinate system,
(3.16) Y=UV

where any data matrix V is transformed into Y, the corresponding
temporal waveforms in the new coordinate system. As previously
mentioned, the covariance of the linearly transformed matrix Y

results in a diagonalized covariance matrix, A:
(3.17) Ry=URU=UVUAU)U=A

The second transformation, the scaling of the basis vectors by A -'/2

will modify the covariance matrix, Ry, to equal the diagonal identity

matrix, I:
(3.18) R,=A U RUAM=A A=

Therefore, the whitening transformation matrix, W, shown in
equation 3.14, scales the basis vectors, U, to be inversely

proportional to the square root of the corresponding eigenvalue in A.
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Although R, remains diagonal, the use of the scaling matrix in the
whitening transformation does not preserve orthonormality

[Fukunaga 1972] since:
(A2 Uy (A2 U) = L

In summary, the whitening transformation, Z, can be viewed as a
projection of the data matrix onto the scaled axes of the new
coordinate system. As described later, the simultaneous
diagonalization of two covariance matrices incorporates this

whitening transformation [Fukunaga 1972].

Composite Covariance Matrix

If an EEG record contains both abnormal and normal segments
then this information can be used to derive the axes of a new
coordinate system that embodies data from both segments [Koles
1991]. The technique, reported by Koles, that can be used to derive a
common set of basis vectors, U, for two EEGsis the singular value
decomposition of a composite covariance matrix. The composite
covariance matrix, R., is built from the covariance matrices of both
an abnormal segment, V,, and a normal segment, V,. Each segment,

V, and V,, can be portrayed using the same format as equation 3.1.
The composite covariance matrix is defined as:
(3.19) R. = R, + R,

where the covariance matrices, R, and R,, are initially calculated
as defined in equation 3.10 but are also normalized. Each matrix is

normalized, as shown in equation 3.20, using the trace of the
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appropriate covariance matrix. The trace of a matrix is the sum of

the diagonal values.
(3.20) R, =V, V., [ trace(V, V,’)
Ry =V, V,” / trace(V, V')

The normalization accommodates the different magnitudes of the
potentials from the two different data segments and allows the two
covariance matrices to be added without amplitude bias [Koles
1991].

The square composite covariance matrix, R., can then be

expanded into three matrices by singular value decomposition.
(3.21) R.=U_A U/

These orthonormal basis vectors U. can be used as the axes in a new
coordinate system that encompass data from both the abnormal and

normal EEG.

Simultaneous Diagonalization

The technique of simultaneous diagonalization pulls together
two transformations that enable the partitioning of the elements of
an EEG data matrix into abnormal and normal EEG data matrices.
First, the composite covariance matrix provides the whitening
transformation elements to derive a set of scaled basis vectors that
can be used as a set of axes in a new coordinate system. This new
coordinate system encompasses data from both the abnormal and

nomal EEG data matrices. Second, a whitened covariance matrix
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provides a set of basis vectors which can be used to transform the
data points in the new coordinate system into a partitionable space.
This section is a review of an application of simultaneous

diagonalization as reported by Koles [1991].

To this end, the whitening transformation matrix, W, is built
using the matrices derived from the singular value decomposition of
the composite covariance matrix as shown in equation 3.21. Thus,
the two transformed data matrices, Z, and Z,, can be obtained from
the linear transformation of the abnormal and normal data matrices,

V,and V:
(3.22) Z, =AUV, =WV,
Zy.= AUV, =WV,

Next, the whitened covariance matrices, Ry, and Ry, can be derived
using equation 3.13 for the covariance matrix of a linearly
transformed data matrix. Further, each whitened covariance matrix
can be expanded into 3 matrices by singular value decomposition

[Koles, 1995]. Thus,
(3.23) Rya=WR, W=By, B
Rww=WR, W=By,bB
where
(3.24) Y +y, =1

The matrix B is a set of common basis vectors and y, and y, are the

corresponding abnormal and normal diagonal eigenvalue matrices
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[Fukunaga 1972]. The label common refers to the fact that the basis
vectors, B, are common to both the abnormal and the normal
subspaces. The eigenvalues, y, and y,, represent the percentage of
combined variance that each basis vector in B accounts for in the
abnormal and nomal EEG respectively. The combined variance is the
sum of the diagonal elements of the eigenvalue matrix. Equation 3.24
specifies that the sum of each corresponding abnormal and normal
eigenvalue equals 1. This indicates that the eigenvector that
accounts for the maximum variance in the abnormal EEG is the
eigenvector that accounts for the minimum variance in the normal

EEG, and vice versa.

This result implies that a transformation matrix can be
designed to simultaneously diagonalize both whitened covariance
matrices, Ry, and R,,. The linear transformation matrix that

accomplishes this is the transpose of the common basis vectors, B:
(3.25) C=B2

If this transformation is applied to Z, and Z,, then the diagonalized
covariance matrices, Rc, and Ry, of the transformed abnormal and

normal data matrices can be written as:

(3.26) Rca=B' Ry, B=B"(By,B)B=y,

Ren=B"Ryys B=B" (Byy B) B =y,

in conclusion, the whitening transformation, W, and the linear
transformation, B, can be written as a single transformation applied

to a general data matrix, V:
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(3.27) C=B (WV)= (W ByV

The diagonalized covariance matrices in equation 3.26 indicate that
any data vectors transformed by (W’ B)’ will be uncorrelated.
Although, the use of the linear whitening transformation does not
preserve orthogonality. As well, equation 3.24 indicates that the
order of the eigenvalues in the diagonalized matrices suggest the

partitioning of these uncorrelated transformed data vectors.

Using equation 3.27, a reconstructed data matrix V can now be

written using the spatio-temporal decomposition format:
(3.28) v= ((Ww By)'c=(B,)' C
T —T
Basis Vectors . J 2
Temporal Waveforms .J

The inverse, rather than transpose, is used in equation 3.28
since the basis vectors are not unitary due to the fact that the
whitening transformation does not preserve orthogonality. Should R,
be ill-conditioned or for estimation purposes be less than full rank,
then W would be computed using only the significant eigenvalues
[Koles 1991] and the psuedo inverse can be used in equation 3.28 in
place of the inverse. When the matrix, (B,’)", is not reduced for ease
of calculation, it is of full rank, invertible and spans the
measurement space of containing both the abnormal and normal data.
Therefore, this matrix can be termed a basis set. Using the spatio-

temporal decomposition naming convention the columns of (B,)!
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can be referred to as the basis vectors and can be considered
linearly independent. The rows of C are referred to as the

corresponding temporal waveforms.

In summary, two results are significant. First, the simultaneous
diagonalization of abnormal and normal covariance matrices, R., and
Ry, result in both the abnormal and the normal subspaces being
spanned by a common set of basis vectors, (B,’)". This means that
these basis vectors can be used as axes for the new coordinate
system. Thus, any signal that is a member of the combined space can
be written in terms of these basis vectors. The proportion of each
basis vector required to construct the signal, in the new coordinate
system is determined by projecting the signal onto each basis
vector. The matrix that contain these proportions is the transformed

data matrix C.

Second, the simultaneous diagonalization transformation orders

the eigenvalues, y, and y,, and the corresponding basis vectors. This

is significant since the eigenvalues, indicate whether the signal is
relatively more normal or abnormal. Therefore, the abnormality of a
basis vectors can be quantified according to the percentage of
variance accounted for in the abnormal EEG. The basis vectors that
account for maximal variance in the abnormal EEG also account for
minimal variance in the nommal EEG. The projection of the data
matrix onto this set of common basis vectors can be thought of as a
transformation that enables the partitioning of the data matrix into

abnormal and normal subspaces.
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4. METHOD

This chapter describes a filtering method used to isolate the
abnormal activity within an EEG recorded from an epileptic patient.
The three filter method separates the selected abnormmal activity
from normal background activity, any extraneous abnormal activity,
noise components and other artifacts. Two of the three filters used
are designed following the data dependent filter design procedure
outlined within this chapter. Also inciluded is an overview, a
presentation of naming conventions and a summary of equations. The
final three sections of the chapter detail the application of the
filter design procedure to a generic EEG recorded from an epileptic

patient.

Method Overview

The filtering method eliminates the undesirable information,
utilizing three forms of filtering; temporal bandpass, temporal
pattern and spatial pattern filtering. Each filter eliminates
distinctly different content from the EEG. The method begins with
bandpass filtering to remove the base line shifts, 60 Hz power line
interference, any high frequency artifacts and noise. Next, the
temporal pattern filter design procedure derives an optimal set of
temporal basis vectors, also known as temporal patterns, from a
selected electrode recording. Then the EEG is filtered, using a
temporal pattern filter designed from a reduced set of temporal

basis vectors. The temporal basis vectors, included in this reduced
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set, incorporate the epileptiform activity and account for maximum
variance in the abnormal segment. Finally, spatial pattern filtering
decomposes the temporally filtered EEG into an optimal set of
spatial basis vectors, commonly referred to as spatial patterns, and
a corresponding set of temporal waveforms. The abnormal portion of
the temporally and spatially filtered EEGis reconstructed from the
abnormal spatial patterns and the corresponding temporal
waveforms. The abnormal spatial patterns are those that isolate the
epileptiform activity. The method is successful if the epileptiform
activity is isolated to a minimal number of temporal waveforms. The
spatial patterns corresponding to these few temporal waveforms
can then be used to the estimate the source location. [Koles et al,
1995]

Data Dependent Filter Design Procedure

Both the temporal pattern and the spatial pattern filters are
designed using the same filter design procedure. The steps of the

procedure are as follows:

Step 1. Basis Vectors: This step determines the optimal basis
vectors that span a measurement space and account for both
the normal and the abnormal activity in the EEG. The
simultaneous diagonalization of a composite covariance
matrix results in a set of common basis vectors. The
temporal and spatial basis vectors are derived from

different data matrices.
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Step 2. Temporal Waveforms: The temporal waveforms
corresponding to the basis vectors are calculated using the
linear transformation matrix that is the transpose of the

basis vectors.

Step 3. Partitioning of Matrices: The basis vector matrix is
partitioned into those that span the abnormal subspace and
those that span the nommal subspace. The calculated

temporal waveform matrix is correspondingly partitioned.

Step 4. Filter Design and Application: The basis vectors that
account for significantly more variance in the abnormal
segment than in the normal segment are used for the filters.
This process is different for temporal pattern and spatial

pattern filters.

Naming Conventions

The naming conventions for specific vectors and matrices used
in the remaining of this chapter are listed in Table 4.1. The labels
temporal and spatial and the subscripts, t and s, when used in
reference to basis vectors, refer to the type of filter. The terms
temporal and spatial filters are also associated with the aspect of
the EEG that is being processed. In general, all the basis vectors in
Table 4.1 are either temporal or spatial basis vectors. But for
clarity and historical consistency, the specific terms temporal
basis vectors and spatial basis vectors are reserved for P, and P,.
These basis vectors relate to the spatio-temporal decomposition of

the corresponding data matrices, D and V. The use of the terms
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temporal patterns and spatial pattems for these vectors, is intended

to prevent any ambiguity from arising.

Table 4.1 Filter Design Naming Conventions

Temporal Pattern Filtering] Spatial Pattern Filtering
Label Name Label Name
D Data matrix v Data matrix
U, Basis vectors u,. Basis vectors
B, Common basis B, Common basis
vectors vectors
W, Whitening w, Whitening
transformation transformation
matrix matrix
B.. =W, B, Whitened common B,. =W, B, Whitened common
basis vectors basis vectors
B.. =(W, BJ' Transformation B.. =(W,’ B.)' Transformation
matrix matrix

P=((W/ Bt)’)-1

C.

Temporal basis
vectors or Temporal
patterns

Temporal Pattern
Filtered (TPF)
temporal waveforms

P.=((W, B,))"

C.

Spatial basis
vectors or Spatial
patterns

Spatial Pattern
Filtered (SPF)
temporal waveforms

Equation Summary
Table 4.2 contains a summary of the equations for the temporal

and spatial pattern filtering procedure. The equations are listed in

order that they appear during the application of the filter design

procedure. Table 4.2 includes the references to equations developed

in Chapter 3 and to the equations in the remaining sections of

Chapter 4.
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Table 4.2 Comparative Summary of Filter Design Equations

Temporat Pattern Filter

Design Equations

Spatlial Pattern Filter
Design Equations

Composite Covariance Matrices:

D, D,

.

D, D,

.

TecAeeToe =Ry = —+

tmace (D, D, )

trace (D, D, )

Equation References: 3.19, 3.20, 3.21
‘ v, V,
O AU =R = AL ¢ YuVu -
trace (V,V, ) ctace(V,V, )

Whitening Transformation Matrices:

ey, .
We=A, 0O

Equation References: 3.14, 3.22, 4.3, 4.20

an
w,=A, Uge

Whitened Covarlance Matrices:

L4 4

Be'¥uBe =Reyy = W R, W,

Equation Relerence: 3.23

B,¥.B, =R, =W R,W,

Abnormal Whitened Eigenvalue Matrices:

Wea = (W Be) Ren (M Be)

Equation Reference: 3.23

.

You = (ulal)‘ R, (W ,B,)

Whitened Basis Vectors:

.

Bw =W, B,

Equation References: 3.28, 4.4, 4.21

.

STEP 1: Basls Vectors:

172

P.=(By )" =U.A, B,

Equation Relerences: 3.28. 4.5, 4.6, 4.22. 423

‘ ’
P,=(B, ) =0 AL "B,

STEP 2. Temporal Waveforms:

.

Cc=By D

Equation Raferences: 3.27, 3.28, 4.7, 4.24

.

Cy =By Vyr

Spatio-Temporal Decomposition:

D=(Bgy )'C,

Equation References: 3.28, 4.8, 4.26

Ve=(Bg )" C,

STEP 3. Partitioning of Matrices:

0= Ce = [Pr P Caa
c‘.

Equation References: 4.10, 4.11, 4.25, 4.27
Cc
Ve =B C, =[PM Py {C“]

STEP 4. Filter Design and Application:

Ver = (P b B evwf

Equation References: 4.17, 4.18, 4.28
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In comparing the two sets of design equations in Table 4.2 the
similarity between the 2 columns can be easily identified with a
few exceptions. First, the original data matrices for the two
filtering techniques are different. This is seen in the pair of
equations in the first row and the rows labeled Step 2 and Step 3. A
second more obvious difference is between the pair of equations for
Step 4. Lastly, a trivial exception is the naming convention
subscripts purposely added to delineate between the spatial and

temporal aspects.

The remaining 3 sections of this chapter describe the step by
step application of temporal bandpass filtering, temporal pattern
filtering and spatial pattern filtering to a generic EEG recorded from
an epileptic patient. Table 4.2 can be used as an outline of the

presentation contained within the last two sections.

Temporal Bandpass Filtering

The filtering method starts with a bandpass filter to eliminate
those frequencies outside the bounds of the epileptiform activity,
such as the 60 Hz artifact and any dc level base line shifts. The
bandpass filter is designed using conventional data independent
digital filter design techniques. Low-pass and high-pass filters are

combined to form the desired bandpass filter.

The N channel EEG record containing T sample measurements is
represented by the data matrix V. The time domain or impulse
response of the bandpass filter is represented by the vector F,, in

the following equation. The symbols 7 and 7~ represent the Fourier
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transformation and the inverse Fourier transformation respectively.
The bandpass filter can be applied to the data matrix, V, in the
frequency domain creating a (NxT) bandpass filtered data matrix,
labeled V.

(4.1) Vipt = ?-’(7(':») * ?(V))

Temporal Pattern Filtering

The (NxT) data matrix, V,,, can be viewed as N rows of data
points with a spatio-temporal decomposition as shown in equation
3.4. Each row is a different perspective of all the activity within the
brain. Abnormal activity in the EEG will be most evident in the rows
that correspond to electrode sites closest to the sources of this
activity. If the amplitude of the abnormal activity is large in
comparison to the normal or background activity the abnormal
temporal activity will dominate the data points. It is this temporal

activity that will be isolated.

in some EEGs this temporal activity may be obscured. The
amplitude of the source potential of the abnormal activity may be
equal to or smaller than the normal activity. In these cases,
traditional methods of temporal filtering may not isolate the
frequency components of the abnormal temporal activity. The
temporal filter design, using the method of simultaneous
diagonalization of autocovariance matrices from both abnormal and

normal EEGs, is used to isolate the desired frequency components.
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The temporal pattern filter is designed following the general
data dependent filter design procedure. The specific equations are
summarized in Table 4.2. This procedure is adapted from the spatial
pattern filtering method developed by Koles [1991]. The filter is
based on the temporal basis vectors that account for maximum
variance in the abnormal EEG and minimum variance in the normali
EEG. The temporal pattern filter that results matches the specific
abnormal temporal activity contained within a single row of the BG
data matrix. Based on the linear superposition principle as applied to
the EEG activity, presented in Chapter 3, this activity is assumed to
be present to some extent in each tracing of the EEG. Therefore when
the frequency response of the filter is applied to an EEG this
abnormal temporal activity will be enhanced within each of the N

electrode recordings.

Step 1. Temporal Basis Vectors:

The first step consists of determining a set of temporal basis
vectors that span the measurement space. These basis vectors are
derived from the decomposition and transformation of two data
matrices. These data matrices are derived from two segments of a
single row of data points in the EEG. The two segments are chosen

from the normal and the abnormal sections of the recording.

Data Matrices:

The temporal pattern filter design begins with the selection of
an electrode recording, V,, from the bandpass filtered data matrix,
V... The selected recording must contain at least 3 seconds of

persistent abnormal activity and at least 3 seconds of normal



activity. Chapter 2 describes the criteria for identification of
abnormal and normal activity and is used in the selection of the two
segments. Denoted by the vectors V,, and V,,, these segments are

used to form the abnormal and the normal data matrices, D, and D,,.

The data matrices, are derived from data points in each

segment as:
v, Vo Y Ve
Va V3 Vg = Vg
(4.2) Vi Voo Vs - Vg

vl vl( +1 vlloz - vl.#ll-l

In this data matrix, the row vector [V, V, V, ... V] contains the first

L data points of a selected data segment. The data matrices, D, or
D,. are formed such that each of the M rows is a shifted selection of
L data points from the original segments, V,, or V. Since L > M, the
length of the original segment, [V, V, V, .. V, ], must be at least
twice the number of shifts, M. The data matrix, D,, includes both the
abnormal and normal data points, whereas the data matrix, D,,
contains only the normal data points. This distinction allows for the

partitioning of the data points into normal and abnormal subspaces.

Autocovariance Matrices:
The matrices, R, and R,,, derived from the data matrices D,

and D, are an estimate of the autocovariance of V,, and V,,. These
autocovariance matrices are calculated with the data matrices D,
and D, replacing V, and V, in equation 3.20. The autocovariance
defines the dependence of the data points within a segment on each

other. The autocovariance matrices, R,, and R,,, enable the different
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temporal patterns in the vector segments V, and V,, to be
identified. The differences in these temporal patterns are quantified
so that the measurement space can be partitioned into abnormal and
normal subspaces. This quantification is obtained through the
simultaneously diagonalizing of the two autocovariance matrices.
For this purpose, the composite autocovariance matrix, R, is

derived based on equation 3.19.

Whitening Transformation Matrix:
The second step towards simultaneously diagonalizing R,, and

R, is the derivation of the whitening transformation matrix.
(4.3) W,= A Uy’

The transformation matrix components A, and U, in equation 4.3

are derived from the singular value decomposition of the composite

autocovariance matrix, R,c, as shown in equation 3.21.

Whitened Basis Vectors:
The common basis vectors, B, are derived from the singular

value decomposition of either the whitened autocovariance matrices
R,wa Of R,y as shown in equation 3.23. The whitened common basis
vectors, B,,, as the name suggests can be viewed as the common
basis vectors, B, transformed by the whitening transformation

matrix, W,, and can be written as:
(4.4) B, = W/ B,

The detailed derivation of the whitening transformation matrix and
the whitened common basis vectors, B,,, are detailed in the

simultaneous diagonalization section of Chapter 3.



Temporal Patterns:
The temporal basis vectors, the columns of (B,,’)" also referred

to as temporal pattems, P,, are given by:
(4.5) P,= (Bm')-1 = ((wt’ Bt)')-1

The inverse is used in equation 4.5 instead of the transpose due to
the fact that the use of the whitening transformation matrix, W,
does not preserve orthonormality [Fukunaga 1972]. Should R, be iil-
conditioned or for estimation purposes be of less than full rank, then
W, would be computed using the psuedo-inverse in place of the full
inverse [Koles 1991]. For computational purpose equation 4.5 is

written as:
(4.6) P,= U A2 B,

Each of the temporal patterns, P,, are common to each data segment
and are ordered according to the percentage of variance each
accounts for in the abnormal or normal EEG segments respectively.
The abnormal and normal eigenvalue matrices, y,, and y,, that
contain this information are derived in a previous calculation from
the singular value decomposition of the whitened autocovariance

matrices Ry, and R,,, based on equation 3.23.

Step 2. TPF Temporal Waveforms:

Any data matrix D, built from a data segment in the form of
equation 4.2, can be transformed, using the temporal basis vectors,
into a partitionable coordinate system. As a result of this

transformation the data points within the data matrix D in the old
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coordinate system correspond to the temporal waveforms in the new
coordinate system. To this end, the linear transformation required to
derive the temporal waveforms can be viewed as the projection of
the data matrix onto each of the transposed whitened common basis

vectors.
The equation for this transformation is
(4.7) C=(w/B)D=B,’D

where the transformation matrix, B,,’, transforms the data matrix D
into the temporal waveforms, C,. Using this transformation each of
the temporal waveforms corresponding to the temporal patterns in
P, can be calculated. Equation 4.7 can also be viewed as a filtering
process where the original data segment used to create the data
matrix is filtered by each temporal pattern. To this end the data
matrix, D, can be viewed as a convolution matrix of the data
segment. Therefore based on this perspective the rows of C, are

referred to as temporal pattern filtered (TPF) temporal waveforms.

Spatio-Temporal Decomposition:

The transformation that enables the partitioning of the data
matrix used in this research is equation 4.7. Rewriting this equation
according to the convention of spatio-temporal decomposition the

data matrix D can be written as:
(4.8) D = (Bu)" C,
Temporal Basis Vectors J d

or Temporal Patterns  J

TPF Temporal Waveforms .
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it is from this form of the transformation that the labels temporal
basis vectors, temporal pattems and TPF temporal waveforms are

assigned.

Step 3. Partitioning of Matrices:

As discussed in Chapter 3, since (B,,’)"' is invertible the
whitened common basis vectors, B,,, are linearly independent. The
whitened common basis vectors, B,,, are also ordered corresponding
to the order of the eigenvalues and therefore can be partitioned as

follows:

(4.9) Bw = [Bu.m Bum]

Because P,is inversely related to B,, and can be written in terms of
the diagonal matrices and matrices of linear independent vectors as
expressed in equation 4.6, the temporal patterns can also be
similarly partitioned into abnormal and normal subsets. It follows
as a result of equation 4.7 that the transformed data matrix, C,,
corresponding to the data points in D, can also be partitioned into
two sets of TPF temporal waveforms. Each waveform is a member of
either an abnormal subspace or a normal subspace in the new

coordinate system.

The reconstruction of the data matrix given by equation 4.8,
using the temporal patterns, P, and the derived TPF temporal

waveforms, C, is:

(4.10) D = P,C,
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Therefore, the partitioned equation for the reconstruction of the

data matrix is:

Ca
(4.11) D = [Pa pu.Lm]

it follows that the abnormal and normal subspaces are spanned by
temporal patterns, P, and P, respectively. In practice the
partitioning is accomplished by a visual inspection of C, and is
guided by the percentage of variance each temporal pattern accounts
for in the abnormal data matrix. The percentage of variance
accounted for in the abnormal data matrix corresponding to each
temporal pattern is the corresponding element in the eigenvalue

matrix, ..

Step 4. Fiiter Design and Application:

The definition of a data matrix, D, using equation 4.2 indicates
that the first row, D,, of the data matrix is the first L data points
of the original segment from a electrode tracing, V... An equation
for this row can be written using the form of equation 4.10 for D,

and then substituting equation 4.8 for C,
(4.12) D,= (P), C= (P), (Btw' D) = ((Pt)1 Btw')D

Equation 4.12 indicates that the first row, D, referred toas the data
segment, V,,, can be viewed as the product of the row vector, F, and

the data matrix, D,
(4.13) Vi.=F. D

where the vector F, is defined as

62



(4.14) Fe= ((Pt)l Btv:')

Using the partitioning of equations 4.9 and 4.11 in equation 4.14 the
vector F, can then be similarly partitioned into abnormal and normal

submatrices:

4

Br.vA)
(4.15) Ft = Fa + Fuw = [(Pr.)u (Pr.)m] ’

(o)

Instead of recombining all the temporal patterns, as suggested
by equation 4.13, a subset can be used. in particular, those temporal
patterns that represent only the abnormal activity can be
recombined to reconstruct the abnormal portion of the electrode
recording. Thus, the segment from the single electrode recording,
V... can be viewed as the sum of the abnormal activity, V... and the

remainder.
(4.16) Voo =Via + Viu=F,. D+ Fy D

Although the remainder is labeled normal, V,,, this signal segment
typically is composed of any combination of normal background

activity, irrelevant abnormal activity and artifacts.

Using equation 4.15, the abnormal temporal pattern, F,,, is
derived from a linear reconstruction of the rows of abnormal
whitened common basis vectors, B,,.,that contain the epileptiform

activity, and the corresponding temporal pattern coefficients,
(Poa:
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Bew1’
(4.17) Fa = (Pt)n BcuA'=[(Pc)u ce+ (Ptha

Bewa’

The index A represents the row elements, [1 ... al, that have been
identified as abnormal. The reconstructed vector, Fy,, is a template
for the abnormal activity specifically the epileptiform activity for
the particular selection of normal and abnormal segments. This

template is referred to as the temporal pattern filter.

Although the abnormal activity s derived from the
decomposition of a single electrode recording, the principle of linear
superposition states that this abnormal activity is present in each
electrode recording to some degree. Even though in some electrode
recordings this activity may be swamped by other stronger normal
signals and is not as clearly apparent. Therefore, the subspace that
contains the abnormal data points from the single electrode
recording should be the same subspace that contains the abnormal
data points from the complete EEG. As a resuit, similar abnormal
components within the EEG can be determined by temporally

filtering the complete EEG with the same temporal pattern filter.

Temporal filtering can be performed in either the time domain
or in the frequency domain. In the time domain, the temporal pattern
filter, F,., can be convolved with the bandpass filtered EEG, V., to
create the temporally filtered EEG, V. The convolution function is

represented by the symbol ®.

(4.18) Vy= Fia ® Vo
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The filtering can be accomplished in the frequency domain by
multiplication of the frequency response of both the bandpass
fitered EEG and the temporal pattern filter. In this domain both

temporal filters can be applied in a single calculation:

(4.19) Vy=Z(Z(F) « Z(F..) « #V))

Equation 4.19 includes the process described by equation 4.1.

Spatial Pattern Filtering

Similar to temporal pattern filtering, spatial pattern filtering
utilizes two data segments, abnormal and normal, from a single BEG
record. One difference is that while temporal pattern filtering uses
a single electrode recording, spatial filtering use all N electrode
recordings. Following the method developed by Koles [1991] the data
dependent design process for a the spatial pattern filter begins with
the derivation of an optimal set of spatial basis vectors. Following
this, the corresponding common temporal waveforms are calculated
and the abnormal and the normal spatial patterns and their
corresponding temporal waveforms are separated. Finally, a data
matrix is spatially filtered when the abnormal spatial patterns and
the corresponding common temporal waveforms are recombined.
Fundamental to this process, the technique of simultaneously
diagonalizing of a composite covariance matrix is described in
detail in Chapter 3 and is outlined here for completeness and to
specify the equations with appropriate labeling. The specific

equations are also summarized in Table 4.2.
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Step 1. Spatial Basis Vectors:

The first step in the spatial pattern filter design consists of
determining the spatial basis vectors of the N channel temporally

filtered EEG data matrix.

Data Matrices:

The two data matrices, V, and V,, used for this purpose are
data segments selected from the N channel temporally filtered data
matrix, V,. Each (N x T) data matrix contains at least 3 seconds of
persistent abnormal or normal activity and has a spatio-temporal

decomposition as shown in equation 3.4.

Covariance Matrices:

The covariance matrices of the data matrices V, and V, are
calculated as shown in equation 3.20. The covariance matrices,
relabeled as R,, and R,,, enable the differences between the spatial
patterns in the EEG segments V, and V, to be identified. These
differences are used to separate the activity in the measurement
space into abnormal and normal subspaces according to the locations
the sources. The composite covariance matrix, R, is calculated as

in equation 3.19.

Whitening Transformation Matrix:

The whitening transformation matrix, W,, as defined in equation
3.14, is created from the eigenvalues and eigenvectors of the

composite covariance matrix and is relabeled in equation 4.20.

(4.20) W,= AU,



Whitened Basis Vectors:
The common basis vectors, B,, are the eigenvectors of the
whitened normal or abnormmal covariance matrices, R,, or R,,. The

whitened common basis vectors are given by the equation:

(4.21) B,, = W,’ B,

Spatial Patterns:
The spatial basis vectors, the columns of (B,,’)"', commonly
referred to as spatial patterns, are derived from the whitened

common basis vectors calculated as in equation 4.21 and can be

written as:
(4.22) P.= ((W, B,))"

For computational purpose equation 4.22 is written as:
(4.23) P.= U, A B,

The inverse is used in equation 4.22 instead of the transpose due to
fact that the use of the whitening transformation, W, does not
preserve orthonormality. Should R,. be ill-conditioned or for
estimation purposes be of less than full rank, then W, would be
computed using only the significant eigenvalues and the psuedo-
inverse used in place of the inverse [Koles 1991]. Each spatial basis
vector is common to both data matrices and accounts for maximum

variance, v,,, in the abnormal EEG segment while accounting for

minimum variance, v,,, in the normal EEG segment.
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Step 2. Temporal Waveforms:
Similar to temporal pattern filtering, spatial pattern filtering
utilizes the linear transformation of equation 3.27 to derive the

temporal waveforms, C,.
(4.24) C,=(W,/B,) V,

To distinguish these temporal waveforms from the temporal
waveforms derived during temporal pattern filtering they are
referred to as spatial pattern filtered (SPF) temporal waveforms.
Equation 4.24 can also be viewed as a form of filtering where the
data matrix is filtered by each spatial pattern. The linear
transformation, given by equation 4.24 can be used to calculate the

SPF temporal waveforms of any data matrix, V,,.

Spatio-Temporal Decomposition:
The temporally filtered data matrix, V,, can be reconstructed
using the spatial patterns and their corresponding SPF temporal

waveforms using the spatio-temporal decomposition format:

(4.25) Vy=P, C,
Spatial Basis Vectors 2 |
SPF Temporal Waveforms .
A more specific equation can be obtained by substituting equation
4.22 for P,:

(4.26) Ve =((W, B))' C,=(B,,)"C,



Step 3. Partitioning of Matrices:

As a result of the ordering of the eigenvectors within the
spatial patterns, P,, the calculated SPF temporal waveforms are
correspondingly ordered and the partitioning of the matrices is
possible. The partitioning of the data matrix, V,, can be viewed as
rows of composite signals that are composed of abnormal signals,
V., and the remainder. The remaining activity labeled, V,, may
consist of any combination of normal background, extraneous
abnormal activity or artifacts. The partitioning of the spatial
patterns and the corresponding waveforms is most easily
accomplished by identifying those SPF temporal waveforms that
contain the epileptiform activity. Labeled as abnormal, these SPF
temporal waveforms typically are those that also account for a
significant percentage of the variance in the abnormal EEG. Using
this partitioning the data matrix can be written as foliows:

(4.27) Vee = [P p,,,{gu]

aN

Step 4. Filter Design and Application:

The complete set of spatial patterns can be used to reconstruct
the temporally filtered data matrix, V,, as shown by equation 4.27.
But using the partitioning, the abnormal and normal submatrices can

now be defined as:

(4.28) Vi = Pgy Csa Vi = Pgy Csn



Therefore, the filtered EEG, V,,, shown in equation 4.28, is the
result of the recombination of the abnormal spatial patterns, Pg,,

and their corresponding SPF temporal waveforms, Cg,.

Since the data matrix, V., in equation 427 is a temporally
filtered EEG, the partial reconstruction, V,,, results in a new BEG
data matrix that is both temporally and spatially filtered. This
filtered EEG should exhibit both an enhanced view of the seizure
onset and the distribution of the abnormal activity over the surface
of the brain at the electrode sites. It follows that the abnormal
activity contained within the temporally and spatially filtered EEG,
V.., can be attributed to a subset of the total sources active within
the brain. The number of sources in the subset is less than or equal
to the number of abnormal spatial patterns used in the

reconstruction.

In conclusion, temporal and spatial filtering is used to elicit
the abnormal source activity from the EEG separating it from any
extraneous activity. This method results in information about i) the
number of possible abnormal sources active in the abnormal BEEG
segment, ii) the associated abnormal spatial patterns and iii) the
corresponding SPF temporal waveforms. The enhanced seizure onset
and the evolution of the abnormal source potentials through time can
be easily identified visually in both the abnormal SPF temporal
waveforms and abnormal EEG. Spatial mapping will give a coarse
indication of the source location. The actual source locations inside
the brain can be determined by using the spatial patterns as input to

source localization techniques [Koles et al. 1995].
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5. RESULTS

The 3 filter method described in the previous chapter was
applied to more than 60 clinical EEGs and numerous simulated EEGs.
This chapter assembles three sets of results; one simulated EEG and
two clinical EEGs. These results will be used to validate the data

dependent temporal and spatial pattern filter design procedure.

The chapter begins with the detailing of suitable values for the
parameters used in the temporal and spatial pattern fiiter design
procedure and the EEG analyses follow. The first set of results, the
analysis of the simulated EEG included in this chapter has been
chosen to exhibit the temporal and spatial filtering concept using
clearly defined abnormal data. Since the spatial pattern
corresponding to the seizure activity is known for the simulated
EEG, the error will be calculated between the known and estimated

spatial patterns resulting from different filter designs.

The next two sets of results are from the analysis of clinical
data. The clinical EEGs that have been analyzed can be separated into
two groups; those which include both invasive and non-invasive
simultaneous electrode recordings and those with only non-invasive
electrode recordings. An example EEG presented from the first group,
recorded using Telefactor equipment at New York University,
illustrates the effectiveness of a temporal pattern filter designed
using a surface electrode recording in comparison to a gold standard
of a depth electrode recording. The third EEG analysis is an example

of the filtering method applied to an EEG from the second group, the
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non-invasive clinical EEGs. This EEG was recorded from surface
electrodes using BMSI equipment in the Long Term EEG Monitoring
Unit at the University of Alberta Hospital.

Filter Parameters

The step by step filter design method detailed in Chapter 4
identified several parameters. The majority of these parameters are
defined by the specific EEG data analyzed. Table 5.1 presents values
used for the 3 EEGs analyzed in this chapter. The first 2 parameters,
number of shifts and length of data segments, are related to the
effectiveness of the temporal pattern filter. These settings were
determined experimentally, resulting in filters that were effective

for a range of abnormal activity.

Table 5.1 Filter Design Parameters

VARIABLES Label | Simulated| Patient 1 Patient 2
Number of Shifts M 100 100 100
Number of Samples in L 500 500 500
Data Matrix
Sampling Frequency fs 200 200 200
(samples/sec)

Length of Data Segment T 600 600 600

(Number of samples)

Abnormal (ictal) Onset Vea S seconds 27.5 seconds 30 seconds

Normal (Preictal) Ven 0 seconds 23 seconds 20 seconds

Onset

Number of Electrodes N 24 27 24

Seiected Eiectrode V. T4 Surface: f10 T3
Depth: B6
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The first parameter, the number of shifts, is fundamental to the
temporal pattern filter design. The temporal pattern filter design
procedure is based on the autocovariance matrices of the 2 selected
signal segments. An autocovariance matrix was estimated using the
covariance of a data matrix comprised of shifted versions of an
electrode recording segment as shown in equation 4.2. The number of
shifts, M, used to create the data matrix, D, is related to the
frequency resolution of the data matrix. With a sampling frequency,
f,, of 200 Hz, a 0.5 second segment of the data is equivalent to 100
data samples. Therefore if the number of shifts is 100, the minimum
frequency which can be resolved is 2 Hz. The maximum frequency is

determined by the Nyquist frequency, f/2, of 100 Hz.

The use of a rectangular data matrix, (MxL), rather than a square
(MxM) matrix, improves the estimate of the autocovariance and thus
increases the effectiveness of the filter design. Therefore, the
shifted data matrix, D, as described in equation 4.2, is a (MxL)
matrix where the number of samples in the data matrix, L, the
second parameter in Table 5.1, is set to be T-M-1. T, the length of
the data segment, has been set at 600 samples, since the
epileptiform activity is defined to be abnormal activity which

persists for 3 seconds,

The abnormal data segment was chosen from the portion of the
epileptiform activity within the selected electrode recording that
contains the identifiable activity of the seizure. The normal data
segment was chosen from the portion of the selected electroae

recording that reflects the background and artifact activity. The
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beginning of both abnormal and normal data segments and the
selected electrode recording used for each EEG are listed in the

Table 5.1

Simulated Data

The simulated EEG consists of eyeblink artifact, epileptiform
activity, noise and normal background activity. These 4 types of
brain activity are attributed to separate sources. The corresponding
source waveforms, shown in Figure 5.1, form the (5x2000) matrix S

in equation 5.1.

5

4.5

3.5

* 3

2.5

Waveform

time (sec)
Figure 5.1 Source Waveforms; Simulated Data
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Since the fundamental frequency of the epileptiform activity may
change during the ictal period, the abnormal source waveform
mimics this behavior. The abnormal waveform displays a seizure
depicted by a sinusoid with an initial frequency of 4 Hz, between 5
and 7 seconds, which changes to the second frequency of 2.5 Hz at 7
seconds. The normal activity is the result of a combination of 3
sinusoidal waveforms with significant strength to be visible
throughout the 10 second segment. The noise source waveform
consists of random values scaled to obscure the seizure onset. The
eyeblink artifact source waveform consists of segments of a 2 Hz

sine waveform.

The columns of the (24x5) matrix, M, contain spatial patterns,
normalized using the Euclidean norm, that correspond to the source
waveforms. The spatial patterns of the simulated EEG that specify
the distribution strengths of the source waveforms associated with
each of the 24 electrode sites are listed in Table 5.2. The spatial
pattern for the eyeblink artifact activity is a vector of surface
potentials generated by placing, within a three spherical shell
model, two unit dipoles at a radius of 0.7 at the locations defined by
a tip angle of 90 degrees and spin angles of -110 and -70 degrees
with the dipole orientation defined by pitch and yaw angles of O
degrees. This general location is underneath the frontal and frontal-
polar electrode sites. The spatial pattern corresponding to the
epileptiform activity focuses the source location underneath a point
half way between the T4 and F8 electrode sites in the right anterior
temporal lobe. The spatial pattern is a vector of potentials

generated by a unit dipole placed at a radius of 0.4 at a location
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defined by the tip and spin angles of 90 and -18 degrees with the

dipole orientation defined by pitch and yaw angles of O degrees.

Table 5.2 Spatial Patterns; Simulated Data

Electrode| Eye Blink| Abnormal| Noise Normal
FP1 0.5971 0.0345 0.0299 -0.2475
FP2 0.5971 0.2292 0.0180 -0.2283
F3 0.2245 -0.0329 0.0212 -0.2304
Fa 0.2245 0.2858 0.1488 -0.1769
c3 0.0430 -0.0833 0.0608 -0.1797
c4a 0.0430 0.2464 0.1278 -0.0158
P3 -0.0155 -0.0891 0.3072 -0.0607
P4 -0.0155 0.1206 0.3267 0.3889
01 -0.0307 -0.0698 0.2856 0.0467
02 -0.0307 0.0345 0.0141 0.3889
F7 0.2247 -0.0699 0.1082 -0.2440
F8 0.2247 0.4451 0.2967 -0.1718
T3 0.0499 -0.11258 0.1443 -0.2149
T4 0.0499 0.4451 0.1819 -0.0331
TS -0.0106 -0.1125 0.0641 -0.1383
T6 -0.0106 0.2292 0.3083 0.2719
Fz 0.2229 0.0828 0.2612 -0.2080
Cz 0.0365 0.0224 0.1893 -0.1037
Pz -0.0199 -0.0185 0.2722 0.1430
LSPH 0.1029 -0.0907 0.2961 -0.2364
LMAS 0.1029 0.4098 0.1651 -0.1411
RSPH 0.0132 -0.1102 0.0718 -0.1951
RMAS 0.0132 0.3029 0.1647 0.0023

Oz -0.0328 -0.0273 0.3084 0.2091
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The spatial pattern for the noise is a vector of random potentials.
The spatial pattern corresponding to the normal activity is a vector
of potentials generated by a unit dipole placed at a radius of 0.6 at a
location defined by a tip angle of 75 degrees and a spin angle of 60
degrees with the dipole orientation defined by pitch and yaw angles
of 0 degrees. This general location is underneath a point half way
between the O2 and P4 electrode sites in the right occipital lobe.
Refer to Figures 2.5 and 2.6 for descriptions of angle definition and

electrode site locations.

Noise Normal
Figure 5.2 Spatial Maps; Simulated Data
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The spatial maps corresponding to each of the source waveforms
are shown in Figure 5.2. A spatial map is a visual depiction of a
spatial pattern. The map is a quantized superior view of potentials
on the surface of a sphere with the potentials at the electrode sites
corresponding to the spatial pattern. The value of the spatial
distribution between the electrode sites is determined using

spherical harmonic interpolation [Soong et al. 1993].
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Figure 5.3 Raw EEG; Simulated Data
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Data Matrix Construction
The two matrices, S and M, were combined to create the

simulated data matrix, V, using the spatio-temporal decomposition

matrix equation;
(5.1) V=MS

The simulated data matrix, V, is presented in EEG form in Figure 5.3.
The selected electrode, V,, the abnormal, V.., and the normal, V,,,
segments that are specified in Table 5.1, are also identified in
Figure 5.3. The data points corresponding to the selected electrode,
T4, within the abnormal (5 seconds to 8 seconds) and the normal (0O
seconds to 3 seconds) segments are used to form the data matrices,

D, and D,.

Temporal Filtering
The temporal pattern filter design procedure, described in

Chapter 4, was followed using the parameters set according to the
values in Table 5.1. The first result of the procedure is the matrix of
temporal pattern filtered (TPF) temporal waveforms corresponding
to each of the temporal patterns derived from step 2 of the
procedure. This result is useful when selecting the temporal
patterns to be used in forming the temporal pattern filter. The
complete set of TPF temporal waveforms, C,, shown in Figure 5.4,
are the result of a data matrix, D,, projected onto each of the
temporal patterns, P,. The data matrix, D,, was created, using the
form of equation 4.2, from 10 seconds of the selected electrode

recording, T4, from the simulated EEG.
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Figure 5.4 TPF Temporal Waveforms; Simulated Data

Each of the TPF tempora] waveforms can be viewed as a
temporally filtered version of the 10 second data segment from the
selected electrode recording. Each waveform was the result of the
data matrix, D,, projected onto a single temporal pattern. The
selected electrode recording, T4, can be viewed as the linear
summation of all the TPF temporal waveforms. The percentage of
variance that each temporal pattern accounts for in the abnormal
segment from the selected electrode recording is listed to right of

the corresponding TPF temporal waveforms. The top waveform
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corresponds to the temporal pattern which accounts for the
minimum variance in the abnormal segment while accounting for
maximum variance in the normal segment. The activity seen in the
normal and background activity in the raw EEG in Figure 5.1 and in
the source waveforms in Figure 5.3 can be identified in the top few
TPF temporal waveforms. The bottom waveform corresponds to the
temporal pattern which accounts for the maximum variance in the
abnormal segment while accounting for minimum variance in the
normal segment. As designed, the abnormal activity in this TPF
temporal waveform is most visually pronounced in the abnormal
segment (5-8 seconds) and least pronounced in the normal segment

(0-3 seconds).
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Figure 5.5 TPF Temporal Waveforms corresponding to the Temporal Patterns
which account for the four largest variances in the abnormal
segment; Simulated Data.
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For clarity Figure 5.5 shc;ws the bottom four TPF temporal
waveforms. In this example, the TPF temporal waveforms appear to
be in pairs, each pair containing the dominant frequencies of the
abnormal source waveform. The second pair also contains more of
the noise and normal activity which is reflected in the reduced
variance. The temporal pattern that corresponds to the bottom TPF
temporal waveform was used to form the temporal pattern filter
applied in this analysis. Figure 5.6 shows the frequency response o f

the temporal filter used in this example.
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Figure 5.6 Temporal Filter Frequency Response; Simulated Data
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The top plot in Figure 5.6 shows the frequency response of the
temporal bandpass filter. The bandpass temporal filter, for the
simulated EEG, passes frequencies between 1 Hz and 29 Hz
untouched, and removes any frequencies above 30 Hz. The middle plot
in Figure 5.6 shows the frequency response of the temporal pattern
filter, based on equation 4.17 and following the procedure described
in Chapter 4. The result of the combination of the temporal bandpass
filter and the temporal pattern filter based on equation 4.19, is
shown in bottom plot. The bandpass filtered EEG, filtered using only

the temporal bandpass filter, is shown in Figure 5.7.
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Figure 5.7 Temporal Bandpass Filtered EEG; Simulated Data
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The temporally filtered EEG, using the combined bandpass and
temporal pattern filter, is shown in Figure 5.8. The epileptiform
activity is clearly displayed in this filtered EEG. This temporally
filtered EEG clearly reveals the seizure onset at 5 seconds as well
as lateralizes the seizure to the right hemisphere. (Note even

numbered electrodes are located on the right hemisphere.)
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Figure 5.8 Temporally Filtered EEG; Simulated Data

Spatial Fiitering
The procedure continues with the design of the spatial pattern

filter. Spatial filtering results in further separation of the
remaining activity within the temporally filtered EEGinto abnormal

and background spatial patterns and corresponding temporal
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waveforms. The spatial pattern filtered (SPF) temporal waveforms
derived by projecting the data matrix, V,, onto the spatial patterns
are displayed in Figure 5.9. The percentage of variance each spatial
pattern accounts for in the abnormal EEG segment is listed to the

right of the corresponding SPF temporal waveform.
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Figure 5.9 SPF Temporal Waveforms; Simulated Data

From these waveforms, it can be seen that the abnormal activity
was isolated to a single SPF temporal waveform, waveform #1
which corresponds to the spatial pattern that accounts for the
largest variance in the abnormal EEG segment. In fact, the normal
activity was also isolated to a separate SPF temporal waveform,

waveform #3. Although most of the noise was eliminated using the
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temporal filter the remaining noise and eyeblink artifact can also be
identified in the remaining two SPF temporal waveforms, waveform

#2 and 3 respectively.

Table 5.3 Common Spatial Patterns, Simulated Data

Electrode| Waveform| Waveform| Waveform| Waveform
Site # 1 #2 #3 %4
FP1 0.0248 0.0239 -0.1214 -0.4943
FP2 0.2105 0.0296 -0.1133 -0.4944

F3 -0.0345 0.0349 -0.0998 -0.1812
Fa 0.2679 -0.0588 -0.0845 -0.1901
Cc3 -0.0807 -0.0264 -0.0747 -0.0326
Cc4 0.2330 -0.0607 -0.0135 -0.0424
P3 -0.0879 -0.1532 -0.0366 -0.0011
P4 0.1118 -0.1658 0.1385 -0.0191
Ot -0.0691 -0.1441 0.0070 0.0088
02 0.0332 -0.0114 0.1528 0.0104
F7 -0.0707 -0.0382 -0.1090 -0.1855
F8 0.4183 -0.1323 -0.0890 -0.1984
T3 -0.1094 -0.0672 -0.0924 -0.0415
T4 0.4218 -0.0871 -0.0229 -0.0504
TS -0.1077 -0.0316 -0.0565 0.0107
T6 -0.2155 -0.1556 0.0933 -0.0178
Fz 0.0733 -0.1146 -0.1015 -0.1935
Cz 0.0189 -0.0911 -0.0503 -0.0369
Pz -0.0173 -0.1374 0.0448 -0.0032
LSPH -0.0909 -0.1392 -0.1095 -0.0934
LMAS 0.3876 -0.0747 -0.0664 -0.0901
RSPH -0.1060 -0.0336 -0.0800 -0.0076
RMAS 0.2869 -0.0810 -0.0068 -0.0200
Oz -0.0288 -0.1566 0.0696 0.0033



The normalized common spatial patterns from which the
common spatial pattern filter was derived are listed in Table 5.3
and are shown as spatial maps in Figure 5.10. The comparison of the
spatial maps in Figure 5.10 to those in Figure 5.2 show that the first
(100% Variance) spatial map in Figure 5.10 can clearly be identified
with the abnormal spatial map in Figure 52. It follows that the
spatial maps of the normal activity, the eyeblink artifact and to
some extent the noise activity in Figure 5.2 can also be associated

with the third (4% Variance), fourth (2% Variance) and second (38%

Variance) spatial maps in Figure 5.10 respectively.

A

100% Variance 38% Variance

A

4% Variance 2% Variance
Figure 5.10 Mapping of Derived Spatial Patterns; Simulated Data
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Even though the maps in Figures 5.10 and 5.2 look very similar,
some inaccuracy is apparent when the SPF temporal waveforms and
source waveforms are compared. Although, another choice of
temporal pattern filter may provide a better visual isolation of the
activity into the SPF temporal waveforms, the abnormal spatial
pattern presented is the most accurate out of the filter design
choices tested. The comparison of a few alternative filter designs

are discussed later in this chapter.

The first spatial pattern which accounts for the maximum
variance in the abnormal EEG corresponds to the bottom SPF
temporal waveform in Figure 5.9. This spatial pattern was identified
as abnormal and was used to spatially filter the temporally tiltered
data matrix. The temporally and spatially filtered simulated BEG
was the result of the reconstruction of the abnormal spatial pattern
and the corresponding SPF temporal waveform. The temporally and
spatially filtered EEG, with enhanced epileptiform activity, is shown

in Figure 5.11.

The strongest temporally and spatially filtered simulated
electrode recordings, as seen in Figure 5.12, are F8, T4 and RSPH
which are associated with the right temporal lobe. This is reflected
as the bright red area in the first spatial map of Figure 5.10 and is
confirmed by the corresponding values in Table 5.3. It is clear that
the source of the activity in the temporally and spatially filtered
simulated EEG has been localized to a single focus between the F8
and T4 electrodes. This can be seen by the amplitude comparisons of

the temporally and spatially filtered electrode recordings and by the



quantization of these amplitudes in the spatial map. The seizure
onset at 5§ seconds is clearly confirmed in the temporally and

spatially filtered EEG.

25 T T z 3 T T T -3 T
EP1 1 { 1 1 et d L L
-ER2 — SAATAVAVAVIYAVAVAVAVAVAVAV)
E3 . " " 4 —:~W1M~|-M.ifw-i.M
t t : ~t t
WYY,
! ! ! ! i/WV\M/W\/\N\/\N\‘
P ! ! 1 ! I hnanan A AAAANAA
> B l I 1 darArA~nAAA~AA~AIAAA~A
e L e B T T R SR FEEE S
3 EZ 4 4 — 4
) - S S \/
s 3— T 1 T )
2 —Ti“ ] T i
w10 i [ i
I6
i > A ! !
7 | ! I
| PZ__ 1 i
LSPH ; i L
o 7T S —
IIInQ- -
TP AR A—
0 ] i |
1 2 3

time (sec)

Figure 5.11 Temporally and Spatially Filtered EEG; Simulated Data
Filter Designh Comparison

Since a spatial pattern is a basis vector, the spatial pattern
defines an axis in the new coordinate system. The accuracy of the
filter design can be quantified using the difference in the alignment

between two spatial patterns. Thus, the angle between the assigned
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spatial pattern and the derived spatial patterns can be defined as
the error in the alignment of the derived spatial pattern. This error

is an indication of how well the isolation of the abnormal subspace

has been achieved.

The simulated EEG was analyzed using many variations in
filtering. Figure 5.12 shows the frequency response of 7 temporal
pattern filters which correspond to various combinations of the four
TPF temporal waveforms shown in Figure 5.5. The top four plots are
the frequency responses of filters designed using each of the first
four temporal patterns separately. The next three frequency

responses correspond to the temporal pattern filters created from

combiqations of temporal patterns.
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Figure 5.12 Frequency Response for 7 Temporal Pattern Filters; Simulated
Data
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The error between the assigned and the derived abnormal
spatial patterns resulting from 8 different temporal pattern filter
designs are shown in Table 5.4. The first variation used temporal
bandpass filtering followed only with spatial filtering. The
following rows show the errors in alignment resulting from
temporal and spatial filtering, incorporating the different
combinations of temporal pattern filters. The temporal pattern
filter was designed using the temporal patterns corresponding to the
boxes in Table 5.4 marked with an “X". Rows 2 through 5 show the
results when a single temporal pattern is used. Rows 6 through 8
show the result using two, then three temporal patterns, until the
last row where the all four temporal patterns are used. The errors in
degrees, «, between the normalized derived abnormal spatial
patterns C, and the normalized assigned abnormal spatial pattern M,
are listed in the final column of the table. The error defined in

radians can be calculated using the following equation:
(5.2) a, = cos™ (M, C)

The index i refers to each of the derived abnormal spatial patterns

and the corresponding alignment angle.

The results shown in Table 5.4 suggest that the temporal
pattern filter using only the first temporal pattern provides the
maximum accuracy in deriving the abnormal spatial pattern. The
filter design using the temporal pattern that accounts for maximum
variance in the abnormal segment is the design criterion applied to

the remaining EEG analyses presented in this thesis.
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Table 5.4 Alignment Error Comparisons, Simulated EEG

Temporal No Temporail Temporal] Temporal] Temporal
Pattern | Temporal P Error
Waveform| Waveform| Waveform| Wavefor
Filiter Pattern #1 &2 3 24
Design | Flitering (degrees)
1 X
2 X
3 X
4 X
3 X
6 X X
4 X X X
8 X X X X

in summary, prefiltering with a temporal pattern filter

spatial filtering an EEG improved source localization.

before

The temporal

and spatial pattern filter design procedure creates filters that are

able to decompose an EEG into accurate spatial

temporal waveforms.
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Clinical Data

In this section, the two EEGs analyzed were recorded from
patients diagnosed with epileptic disorders. The first EEG consists
of simultaneous depth, subdural and surface recordings. In this case,
the abnormal activity enhanced by the temporal pattern filter which
was designed using a surface electrode recording can be compared
against a standard. The standard used is the abnormal activity which
was recorded using a depth electrode placed closer to the source.
The second EEG discussed in this section is typical of those analyzed
during an informal clinical trial. In this trial, the temporal and
spatial filter design procedure was applied to clinical EEGs recorded
using only surface electrodes. The results are representative are
those typically presented at the weekly Epilepsy Seizure Conference

at the University of Alberta Hospital.

Clinical Validation Results

The data dependent filter design process was applied to EEGs
from patients diagnosed with mesial temporal sclerosis. The EEGs
contained combinations of simuitaneously recorded depth, subdural
and surface electrodes. This data was recorded using Telefactor
recording equipment at the Epilepsy Center at Yale School of
Medicine from Patient 1. Figure 5.13 shows the outlines of MRI
images of Patient 1's brain and identifies the locations of the
electrode sites. For this analysis, the 64 simultaneous electrode
recordings have been reformatted into a montage of 3 sets of

electrode recordings. These sets include 8 depth recordings (B, RPT,
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right depth electrode), 5 subdural strip recordings (F, RAT, right
subdural anterior temporal electrode strip) and 14 surface

recordings (f9, 7, 3, 3, c3, 10, {8, t4, t6, f4, c4, fpz, cz, and o0z).

B = RPT, Right Depth Electrode
F = RAT, Right Anterior Temporal Subdural Electrode Strip

Figure 5.13 MRI Tracing of Electrode Locations; Patient 1
Figure 5.14 shows a 10 second portion of these electrode

recordings from the raw EEG. Each of the depth, subdural and surface
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electrode recordings, in Figure 5.14, are labeled with the
appropriate identifier corresponding to the labels specified in Figure
5.13. Each of the sections, the depth, subdural and surface
electrodes were scaled independently so that the activity in each
set is visible. In comparing the three groups of electrode recording
the apparent spikes of the seizure onset are evident in the surface
electrode recordings. Although jt is important to note that based on
these raw surface EEG recordings alone the seizure onset can not be
confidently identified and the sources of the epileptiform activity

cannot be lateralized.

Abnormal

> <

30

25

N
Q

Electrode #
o

b
Q

Figure 5.14 Raw EEG; Patient 1
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Temporal Filtering
EEG recordings from depth electrodes which were invasively

inserted into the brain provides the closest facsimile of the true
abnormal activity. Depth recordings typically, are not obscured by
muscle artifact or other extraneous activity as the abnormal
activity prevails over the background or other activity [Tyner et al.
1983]. Therefore, a depth electrode recording can be used as the
standard to which the results can be compared. The temporal and
spatial filtering of simultaneously recorded surface and depth
electrode recordings enables a comparison of a test set of results to
a standard set of results. The test set of filtered recordings was
obtained using a temporal pattern filter designed from a surface
electrode recording. The standard set of filtered recordings was
obtained using a temporal pattern filter designed from a depth
electrode recording. These two filters are referred to as the surface

and the depth designed temporal filters, respectively.

The two temporal pattern filters were designed using the
selected depth and surface electrode recordings identified in Figure
5.14 as B6 and f10, respectively. Also indicated on Figure 5.14 are
the abnormal and the normal segments selected from each of the
depth and surface electrode recordings identified in Table 5.1. Recall
from Chapter 2 the terms ictal and preictal. The abnormal segment
incorporates the ictal activity which is defined as a change, that
persists for a period of 3 seconds, from the normal frequency or
waveform pattern. The normal segment incorporates the preictal
activity and was selected from an EEG segment where the apparent

ictal components are not present. In this case, the period between
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27.5 seconds and 30.5 seconds was chosen as the abnormal segment

and the period between 23 seconds and 26 seconds was chosen as the

normal segment.

The results of applying a temporal bandpass filter to the 10
second portion of the raw EEGis shown in Figure 5.15 with the 3
separate sections scaled independently. The (0-1-30) temporal
bandpass filter consists of low frequency cut off set at 0 Hz with
the high frequency cut off set at 30 Hz. The DC bias has been
removed from the data and thus the B6 depth electrode recording and

the f10 surface electrode recording can be more clearly identified.

Abnormal
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N
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Electrode #
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Qo

0

22 24 26 28 30
time (sec)
Figure 5.15 Temporal Bandpass Filtered EEG; Patient 1
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At this point the temporal patterns and the TPF temporal waveforms
were derived using both the selected depth and surface electrode
recordings. The depth and surface designed TPF temporal waveforms,
shown in Figure 5.16 and 5.17, can be viewed as a decomposition of
the depth and surface electrode recording, respectively. The column
of numbers on the right side of the waveforms are the corresponding
percentage of variance that each temporal pattern accounts for in
the abnormal segment of the selected electrode recording. The TPF
temporal waveforms that correspond to the temporal pattern which
account for maximum variance in the abnormal segment and the
minimum variance in the normal segment are displayed at the
bottom of the figures. Figure 5.16, displays the TPF temporal
waveforms corresponding to each of the depth designed temporal
patterns. According to the design criterion, established in the
Simulated Data section of this chapter, the first temporal pattern
which accounts for 97% variance in the abnormal segment was used
in the depth designed temporal filter. Figure 5.17, displays the TPF
temporal waveforms corresponding to each of the surface designed
temporal patterns. The first temporal pattern which accounts for
98% variance in the abnormal segment was used in the surface
designed temporal filter. The low frequency (approximately 8 Hz)
that is apparent in the raw B6 depth recording is clearly evident in

the bottom TPF temporal waveforms in both figures.
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Figure 5.16 TPF Temporal Waveforms for Temporal Pattern Filter Designed

Using a Depth Electrode; Patient 1
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Figure 5.18 presents the frequency response of the temporal
bandpass, the temporal pattern and the combined temporal filter for
the depth and surface designed ‘temporal fiters. The comparison of
the frequency responses for the two combined temporal pattern
filters indicates that the surface and the depth designed temporal
filter both consist of similar fundamental frequency content under

10 Hz.
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Figure 5.18 Frequency Response for Depth and Surface Designed Temporal

Filters; Patient 1
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Figures 5.19 and 5.20 exhibit the temporally filtered EEGs using
the depth designed temporal filter and the surface designed
temporal filter, respectively. The filters were applied to the 10
second portion of the raw EEG data shown in Figure 5.14. Each group
of electrode recordings within these figures was independently
scaled. The application of both temporal filters to the raw EEG data,
resulted in the enhancement of the selected ictal components within

the depth, subdural and surface electrodes.

Reviewing the surface electrode recordings alone, in both
temporally filtered EEGs, the seizure onset can be easily identified.
The correlation of the seizure onset, indicated by the consistent
presence of an increased amplitude of the rhythmic low frequency at
approximately 5 seconds, is clearly seen in all three sets of
electrode recordings. Even though the seizure onset is visible in the
temporally filtered surface recordings the seizure cannot be
visually lateralized. Although in Figure 520, in the 27.5 to 28.5 sec
interval, the amplitude of the temporally filtered electrode
recordings, f9, f7, t3 and 3 are not as large as the amplitude of the
temporally filtered electrode recordings 10, 8, t4 and t6

suggesting a right temporal lobe focus.
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Spatial Flitering

The analysis continues with the design of a spatial pattern
filter following the procedure outlined in Chapter 4. Only the surface
electrode recordings were used in the spatial pattern filtering.
Figures 5.21 and 5.22 present the SPF temporal waveforms which
correspond to the spatial pattems of the temporal filtered surface
electrode recordings using the depth and surface designed temporal
fiters. In both cases, the abnormal activity was isolated to the SPF
temporal waveform which accounts for maximum variance in the
abnomal surface electrode recordings. According to equation 4.28
the corresponding spatial pattern and SPF temporal waveform and

filtered EEG can be now labelled as abnommal.

Depth Electrode Design % Variance

Waveform #

]
i
]
0 ]
21 22 23 24 25 26 27 28 29 30
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Figure 5.21 SPF Temporal Waveforms of Surface Electrode Recordings Using A
Depth Designed Temporal Filter; Patient 1
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Surface Electrode Design 9% Variance

Waveform #

Figure 5.22 SPF Temporal Waveforms of Surface Electrode Recordings Using A
Surface Designed Temporal Filter; Patient 1

Recombining the abnormal SPF temporal waveform and the
corresponding spatial pattern for surface electrodes creates the
temporally and spatially filtered surface electrode recordings. The
filtered EEGs derived from use of the depth and surface designed
filters are shown in Figures 5.23 and 5.24. These filtered EEGs are
scaled according to the minimum weight within the spatial pattern
(C=C-min(C)) to distribute the difference between the weightings.
Although the complete set of surface electrodes are not used, both
fitered EEGs confirm the seizure onset at 26 seconds and lateralize

the seizure to the right temporal lobe.
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Fliter Design Comparisons

To evaluate the effectiveness of the temporal pattern filter an
analysis of the EEG was completed without a temporal pattern filter.
Figure 5.25 presents the SPF temporal waveforms using only the
temporally bandpass filtered surface electrodes. In this case
different segments were selected from those used for the surface
and depth designed spatial temporal filters. The abnormal and
nomal segments, of 25 seconds to 30 seconds and 22 seconds to 25
seconds respectively, were selected to improve the resuits for
spatial pattern filtering without temporal pattern filtering. In fact,

in this case the burst between 26 and 27 seconds had to be included.
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Figure 5.25 SPF Temporal Waveforms for a Filter Designed without a Temporal
Pattem Filter; Patient 1

The second SPF temporal waveform was selected as the abnormal
SPF temporal waveform containing epileptiform activity. However,

the abnommal activity can not be confidently attributed to an
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epileptic seizure. The SPF temporal waveforms, compared to those
in Figures 5.21 and 5.22, indicate that prefiltering with a temporal

pattern filter improves the isolation of the abnormal activity.

Quantifying the comparisons of the effectiveness of the filter
designs, Table 5.5 lists the normalized abnormal spatial patterns for
temporally and spatially filtered surface electrode recordings using
three temporal filter options. The three temporal filter options are
the surface designed temporal filter, the depth designed temporal
fiters and no temporal pattern filter but using a bandpass temporal

filter.

Table 5.5 Comparison of Abnormal Spatial Patterns; Patient 1

Electrode Depth Surface No Temporal
Site Designed | Designed | Pattern Filter
Filter Filter

f9 0.2223 0.2165 0.2503

t7 0.2258 0.2219 0.2332

t3 0.2291 0.2167 0.2394

f3 0.2320 0.2300 0.2572

c3 0.2491 0.2407 0.2319
ft10 0.2827 0.2865 0.2869

f8 0.3149 0.3216 0.3123

t4 0.3042 0.3091 0.2937

te6 0.2900 0.2981 0.2618

f4 0.2841 0.2873 0.2679

cd 0.2873 0.2900 0.2862
fpz 0.2628 0.2652 0.2868

cz 0.2734 0.2729 0.2693

X 0.2616 0.2533 0.2500
2:‘3;: 0.0° 1.3114° 3.5293°
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The filters designed using the surface designed temporal filter and
the design without a temporal pattern filter are compared to the
fiter design using the depth designed temporal filter. A narrower
bandpass filter (0-1-10) was applied to focus the spatial filters on
the rhythmic low frequency pattern and to improve accuracy of the
design without a temporal pattern filter. The error between the
spatial patterns, shown on the last line of Table 5.5, is a quantified
measure of the improvement in filter design. The errors were

calculated using equation 5.2.

The mapping of the abnormal spatial patterns corresponding to
the filter design using the depth and surface designed temporal
fiters and the design without a temporal pattern filter are
displayed in Figure 5.26. Comparing the three abnormal spatial
patterns, the spatial maps corresponding to the surface and depth
designed filters are very similar, as confirmed by the low errors.
The design without a temporal pattern filter appears to focus more
anterior in the right temporal region. The irregularity of the
distribution in the left hemisphere indicates that the spatial pattern
corresponds to activity that originates from more than one source.
This is an indication that the filter design has not totally isolated
the abnormal source. But in general, all 3 spatial maps pin point the
source undemeath the right anterior temporal electrodes. The wide
spread distribution of the abnormal source indicates that the source
is deeper than if the distribution was more highly focused. This
location is confirmed by the location of the depth electrode site, B6,

as seen in Figure 5.13. Thus, through the use of temporal and spatial
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filtering the abnormal activity can be lateralized using only the

surface electrode recordings.

Surface Electrode Design

No Temporal Pattern Design

Figure 5.26 Mapping of Abnormal Spatial Patterns for Depth and Surface
Designed Temporal Filters and a Filter without a Temporal Pattern
Filter; Patient 1

Another measure of accuracy is achieved through the
comparisons of frequency spectra. In this case, the correlation of
the low frequency in both the temporally filtered surface recordings
using the depth designed and the surface designed temporal filters
is corroborated in Figure 5.27. This figure presents a visual
comparison of the sets of filtered electrode recordings. The insets
display the cross spectral densities of the paired recordings. The
cross spectrum identifies the frequency components that the two

recordings have in common during the one second interval. The
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interval analysed is identified by the sequence of stars above the
time axis. The top cross spectral density is the comparison between
the bandpass filtered B6 depth electrode recording and the
temporally and spatially filtered f10 surface electrode recording
using the depth designed temporal filter. The bottom cross spectral
density is between the bandpass filtered B6 depth electrode
recording and the temporally and spatially filtered {10 surface
electrode recording using the surface designed temporal filter. The
graphs are labeled with the peak frequency that is most common

between the pair of electrode recordings.
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Figure 5.27 Comparison of Filtered Electrode Recordings Resulting from Depth
and Surface Designed Temporal Filters; Patient 1
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A comparison of the 2 cross spectral densities shows a strong
correlation at the peak frequency of 7.96 Hz. This indicates that this
low frequency is the strongest frequency component in the bandpass
filtered depth recording, B6, and the temporally and spatially
fitered surface recording, f10, using both the depth and surface
designed temporal filter. The fact that the bottom cross spectral
density has a higher peak frequency density is not surprising since
the magnitude of this frequency in the frequency response of the
surface designed temporal pattern filter is higher than the
magnitude of this frequency in the depth designed temporal pattern
filter frequency response. Refer to the middle plots of Figure 5.18.
The significant fact which is quantified by the cross spectral
density comparisons is that both pairs of electrode recordings have
the same peak frequency. This suggests that the same information
can be derived through the temporal and spatial filtering of the non-
invasive surface electrode recordings as can be derived from the

invasive depth electrode recordings.

In summary, the simulated EEG analysis suggests that the
temporal pattern fiitering is a useful procedure and an improvement
over spatial filtering alone. The analysis of the Patient 1’'s BG
indicates that temporal and spatial pattern filtering is able to
provide seizure onset and lateralization results from surface
electrode recordings alone which are comparable to those results

derived from depth electrode recordings.
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Clinical Trial Results

During the ongoing informal clinical trial, temporal bandpass,
temporal pattern and spatial pattern filtering was applied to an G
recorded from an adult patient, Patient 2, admitted for Long Term
Monitoring at the University of Alberta Hospital under the care of Dr.
M. Javidan. The data was recorded as a required element of the
patient's diagnosis and treatment under the Comprehensive Epilepsy
Program. The patient data was recorded on BMSI equipment with
surface electrodes using an extended 10/20 electrode placement
system. Refer to Figure 2.5 and Table 2.1. The standard 20 electrodes
were supplemented with 4 extra electrodes placed on the left and
right temporal lobes in the FT10, FT9, TP10, and TP9 positions.
These 4 electrodes are referred to as RSPH, LSPH, RMAS and LMAS
respectively. The standard surface reference electrode was placed
at Cpz, half way between Cz and Pz.

The results presented are representative of the analysis of
patient EEGs completed prior to the weekly epilepsy seizure
conference. The EEG from this patient has preictal activity that is
similar in frequency content to the ictal activity and as such this
EEG does not easily and clearly depict the seizure onset, either
temporally or spatially. The questions that are posed regarding this
particular EEG are:

e What effect does this level of preictal activity have on the

fitering method?

e At what time does the seizure really start?
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e What impact does the 6 Hz waveform pattern, during the
30 to 32 second interval in the right temporal electrode
recordings, have on the seizure onset?

e Does the epileptiform onset activity consist solely of the
3 Hz activity seen in the left temporal electrode
recordings?

e Is there seizure activity between 28 and 30 seconds? Is it
overshadowed by other activity as seen in the temporal
(LSPH, RSPH, LMAS and RMAS) electrode recordings

The segment of the EEG which has been analyzed has been

extended to 20 seconds so that the first bursts of epileptiform

activity can be identified. Figures 5.28a and 5.28b present the raw

EEG, showing the normal (20 to 23 seconds) and abnormal (30 to 33

seconds) segments as well as the selected electrode (T3).
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Figure 5.28b Raw EEG; Patient 2
The fully developed epileptic seizure activity (33.5 to 38 seconds)
can be lateralized to the left temporal regions but the identification

and lateralization of the seizure onset is not clear.

Temporal Filtering

Figures 5.29a and 5.29b display the bandpass filtered EEG. The
bandpass filter (0-1-20) was chosen. Figures 5.30a and 5.30b
present the TPF temporal waveforms. The temporal pattern filter
was created using the first temporal pattern. The frequency
response of the temporal filter shown in Figure 5.31 shows that the
dominant frequencies of the temporal pattern filter are below 10Hz.
A 5-6 Hz waveform pattermn .can be seen in the normal TPF temporal
waveforms 3 to 6. The frequency response of the combined temporal

fiter, shown in Figure 5.31, contains broad based peaks which
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suggest that both the 6 Hz and 3 Hz frequencies will be enhanced in

the temporally filtered EEG.
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Figure 5.29b Temporally Bandpass Filtered EEG, Patient 2
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Figure 5.31 Frequency Response for Temporal Pattemn Filter; Patient 2

Figures 5.32a and 5.32b display the result of the raw EEG
filtered both with the bandpass filter and the temporal pattern
filter. As expected, the 3 Hz left temporal activity is more clearly
presented. The 6 Hz right temporal activity, in the 30 to 32 second
interval, has been suppressed. The activity in the temporally filtered
EEG appears to begin to be lateralized to the left hemisphere at 24
seconds with short bursts or waves of the same frequency as the
fully developed seizure activity. Although, the left and right
temporal electrode recordings, in the 28 to 30 second interval, still

contain similar activity
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Figure 5.32b Temporally Filtered EEG; Patient 2
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Spatial Flitering

To capture the complete epileptiform activity in one spatial
pattern the abnormal onset for the spatial pattern filter design for
this EEG was set for 31.5 seconds. Also a 5.5 second segment of the
EEG was used to derive the spatial pattemn filter. The seizure onset
can be more clearly and accurately identified in the review of the
SPF temporal waveforms, as seen in Figures 5.33a and 5.33b. The
first burst of seizure can be seen at 26.5 seconds with a second
burst at 31.5 seconds evolving into persistent epileptiform activity.
Guided by the high percentage of variance, accounted for in the
abnomal segment, of 89% and 83%, the temporally and spatially
filtered EEG was reconstructed from the two corresponding spatial

patterns and SPF temporal waveforms.
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Figure 5.33a SPF Temporal Waveforms; Patient 2
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Variances in the Abnormal EEG, Patient 2
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Figure 5.34 presents the spatial maps of the spatial patterns
which account for the 2 largest variances in the abnormal EEG
segment. The two spatial maps corresponding to the distribution of
abnormal activity suggest the seizure onset as well as the fully
developed seizure activity is lateralized to the left temporai lobe.

Figures 5.35a and 5.35a present the temporally and spatially
filtered EEG which was reconstructed from the two abnormal SPF
temporal waveform and corresponding spatial patterns. The 6 Hz
activity has now been eliminated and the seizure focus has been
lateralized to left hemisphere electrode recordings with the largest

amplitudes seen at the left temporal T3 and T5 electrode sites.
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Figure 5.35b Temporally and Spatially Filtered EEG, Patient 2

This patient has undergone a left temporal lobectomy which
included the mesial temporal structures and is now seizure free.
Although this was a simple case, the utility of temporal and spatial
filtering to isolate and separate the abnormal activity from normal,
background, artifacts and noise has been illustrated. The value of
this clinical tool is in the quantification and the confirmation of the
visual and experiential analysis of the electrical information

provided by the expert epileptologist.
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6. CONCLUSION

The data dependent filter design procedure and the method of
temporal and spatial filtering of an EEG are useful tools to enhance
the seizure onset and to improve the accuracy of source localization.
The method used is a variation of singular value decomposition and
an extension of spatial filtering procedures [Koles 1991]. The
analysis of autocovariance matrices of two segments from a single
electrode recording results in a temporal pattern filter. This filter
is a linear combination of selected temporal basis vectors, or
temporal patterns, which are common to both abnormal and normal
segments but account for maximum variance in the abnormal
segment while accounting for minimum variance in the normal
segment.

The improvement in presentation of the seizure onset from the
raw EEG to the temporally filtered EEG is evident in all the cases
presented in the previous chapter. The temporal pattern filter
enhances the abnormal activity within each electrode recording of
the EEG by suppressing the activity which does not pertain to the
epileptiform activity. Prefiltering the simulated EEG with a
temporal pattern filter prior to spatial filtering improved the
source localization, shown by a reduction in the error between the
assigned and derived spatial patterns. Temporal and spatial pattern
filtering of surface recordings of simultaneously recorded depth,
subdural and surface electrode recordings of clinical data, for
Patient 1, showed that the surface designed temporal pattern filter

is able to highlight the same seizure activity as a depth designed

123



temporal pattern filter and improved seizure onset identification
and source localization. Whereas the seizure onset and lateralization
of the seizure activity in the raw or bandpass filtered surface
electrode recordings were inconclusive. The temporal and spatial
filtering of the clinical EEG from Patient 2 showed that this
analysis increases the utility of surface EEGs recorded from
epileptic patients in a clinical setting. The filtering enables various
temporal patterns within the activity during the seizure onset to be
analyzed as to their contribution to the seizure activity. In general,
each of the filtered EEGs, the bandpass filtered, the temporally
fitered and the temporally and spatially filtered EEGs add a level of
improvement over the raw EEG. Typically, the seizure onset can be
confidently detected in the temporally filtered EEG while the
temporally and spatially filtered EEG provides improved source
lateralization.

The critical elements of temporal pattern filtering are the
choices in the data dependent filter design. These choices make this
approach dependent on an experienced human analyst for expert
judgments. Specifically, the selection of a single electrode
recording, the abnormal and the normal segments and the temporal
patterns from which the filter is constructed.

Tests during this research suggested that temporal pattern
filtering technique appears to be more sensitive to the normal
segment selection than the abnormal segment selection. Filters
based on ictal, interictal and even generalized abnormal segment
selections provide results generally consistent with each other. This

is helpful in situations when the seizure rapidly deteriorates into a
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generalized seizure. When the normal segment contains similar
frequency content as the abnormal segment, the choice of the normal
segment is more critical. The indication of this is that the maximum
variance accounted for in the abnormal segment or EEG is somewhat
less than 100%, as in the analysis of Patient 2. It is then that the
selection of the nomal segment just prior to seizure onset may not
be the best choice. Rather, a normal segment at some interval prior
to the seizure onset may be a better choice.

The selection of the temporal patterns is another decision which
will strongly determine the value of the final results. The resuits
presented in this thesis follow the filter design criterion which is
based on minimum spatial pattern error. The simulated EEG results
indicated that the use of only the temporal pattern which accounts
for the maximum variance in the filter will result in minimum error
in source localization. The design criterion which provides the most
cautious result is the based on the selection of temporal patterns
which meet the following three limitations:

Each temporal pattern is evaluated and can be used in the
temporal pattern filter design if;

) the epileptiform activity is contained in the
corresponding TPF temporal waveform,

ii) the percentage of variance accounted for by the
temporal pattern in the abnormal segment is more
than 70%, ideally near 100% and

iii) the difference between the percentage of variances
accounted for in the abnormal segment by successive

temporal patterns is less than 20%.
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The data dependent filter design method for temporal and
spatial pattern filters results in filters that are able to isolate the
abnormal activity both temporally and spatially. The temporal
pattern filter has been validated using both simulated and clinical
data. The addition of temporal pattern filtering to spatial filtering
of simulated and clinical EEGs results in improved source
localization and seizure onset detection. An additional value of this
filtering method as a clinical tool is the quantification and the
analytical confirmation of the visual and experiential based EEG
analysis provided by an expert epileptologist. In conclusion, the
results suggest that in some cases both the ictal and preictal data
information from scalp EEGs can be used in the filter design to
effectivly reduce the number of active sources to a manageable few.
These few sources can then be localized to provide insight into the

behavior of complicated seizure activity.

Future Work

The development of a data dependent filter design procedure for
temporal and spatial filters compietes another step towards a real
time automatic seizure detection and source localization tool. A
next step would incorporate temporal patterns from more than one
electrode in the temporal pattern filter design procedure.

An issue not addressed by this thesis is the impact of the length
of segments to be used in the decomposition. This research used as a
guideline, the definition that a seizure must have a sustained change
in frequency and/or amplitude behaviour for a period of at least 3

seconds. Thus, the data segments were typically selected to be 3

126



seconds in length. Other lengths were tested, but a conclusive
decision as to the most effective length for all cases was not
determined. Experience suggests that lengths of segments chosen to
match the length of the pattern (normal or abnormal) as seen in the
EEG channel recording may provide better pattern isolation and
resuit in identifiable temporal waveforms and higher variances.
More exhaustive tests are required to evaluate this parameter with
the aim of quantifying the best length for specific abnormalities.
Also tied into the impact of the choice of length of segments is the
particular choice of onset of normal and abnormal segments. The
best choices are based on the knowledge of the seizure onset.

The development of a real time automated seizure onset
detection algorithm based on the procedures presented in this
thesis, would be a possible next step towards a comprehensive tool.
The ultimate goal is to eliminate the need for decisions, completely.
This goal requires further investigation into the quantification of

each of these decisions and the introduction of real time processing.
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