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Abstract 

This thesis discusses the main obstacles facing wide clinical 

implementation of magnetic resonance spectroscopic imaging (MRSI) as a 

tumor delineation tool for radiotherapy treatment planning, particularly for 

gliomas. These main obstacles are identified as 1. observer bias and poor 

interpretational reproducibility of the results of MRSI scans, and 2. the long 

scan times required to conduct MRSI scans. An examination of an existing 

user-independent MRSI tumor delineation technique known as the 

choline-to-NAA index (CNI) is conducted to assess its utility in providing a 

tool for reproducible interpretation of MRSI results. While working with 

spatial resolutions typically twice those on which the CNI model was 

originally designed, a region of statistical uncertainty was discovered 

between the tumor and normal tissue populations and as such a 

modification to the CNI model was introduced to clearly identify that 

region.  To address the issue of long scan times, a series of studies were 

conducted to adapt a scan acceleration technique, compressed sensing 

(CS), to work with MRSI and to quantify the effects of such a novel 

technique on the modulation transfer function (MTF), an important 

quantitative imaging metric. The studies included the development of the 

first phantom based method of measuring the MTF for MRSI data, a study 

of the correlation between the k-space sampling patterns used for 

compressed sensing and the resulting MTFs, and the introduction of a 

technique circumventing some of side-effects of compressed sensing by 

exploiting the conjugate symmetry property of k-space. The work in this 

thesis provides two essential steps towards wide clinical implementation of 

MRSI-based tumor delineation. The proposed modifications to the CNI 

method coupled with the application of CS to MRSI address the two main 

obstacles outlined. However, there continues to be room for improvement 

and questions that need to be answered by future research. 
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Chapter One 

1 Introduction 

1.1 Astrocytomas 

The World Health Organization (WHO) regularly publishes detailed 

tumor classification guidelines to aid in identifying and classifying different 

types of tumors. The WHO classification is based on the premise that 

each tumor type results from abnormal proliferation of a specific cell type 

and that the behavior of the tumor and its response to treatment is dictated 

by that cell type.1 Hence, accurate classification of tumor cell type is 

important in determining treatment choices and predicting prognosis. 

Astrocytic tumors are a specific yet diverse class of those tumors that 

span a wide range of neoplasm with very distinct clinical, histological and 

genetic features. Astrocytic tumors arise from astrocytes, a type of glial 

cell that form most types of cells in the brain, and are classified into four 

grades: Pilocytic Astrocytoma (non-invasive) (grade I), Astrocytoma (grade 

II), Anaplastic (malignant) Astrocytoma (grade III) (also commonly referred 

to as Glioma), and Glioblastoma Multiforme (GBM) (grade IV).1, 2 High 

grade gliomas are associated with very poor prognosis; ~60 weeks 

median survival is reported after a combination of surgery, radiotherapy 

and chemotherapy. Studies also report no significant changes in survival 

rate for GBMs between the early 1980’s and the late 1990’s even with 

changes in treatment protocols.3 Further complicating matters is the fact 

that individual histologically defined types of astrocytomas are even more 

diverse at a biological level. There are noted clinical and genetic 

differences between primary gliomas (grades III and IV) and secondary 

gliomas resulting from progression from lower grades. While it is not clear 

whether those distinctions affect prognosis it remains that they would likely 

respond differently to different treatments.1, 2 
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1.2 The Radiotherapy Process 

When an individual is diagnosed with cancer there are usually three 

treatment options: surgery, radiotherapy, and chemotherapy. Surgical 

resection is the most desired option for most solid tumors. However, 

combined modality treatments are usually used to improve survival and 

tumor control. For instance, Glioblastoma Multiforme is usually treated 

with surgery followed by radiotherapy and chemotherapy, as studies have 

shown that this combination leads to a significant improvement in tumor 

control.4-7 

The radiotherapy process consists of a series of stages that start 

with the patient being diagnosed with a tumor and ends with patient follow-

up after treatment. The process can be represented by a chain that is as 

strong as its weakest link. The main links on the chain are tumor definition, 

treatment planning, and treatment delivery.8 With advancements in 

treatment planning and delivery systems, tumor definition (delineation) has 

become the stage most in need of refinement. One of the characteristics 

of Glioblastomas is microscopic disease invasion outside of the gross 

tumor volume which is hard to detect using conventional imaging 

techniques. Left untreated or under-treated, microscopic disease accounts 

for a large portion of GBM recurrences.9-12 Conversely, biological imaging 

modalities such as Magnetic Resonance Spectroscopic Imaging (MRSI) 

and Positron Emission Tomography (PET) have been able to detect 

microscopic disease and predict progression outside the visible tumor 

volume.13-17 Incorporating those biological modalities in the radiotherapy 

process can lead to improved biological delineation of the tumors which 

may in turn lead to the reduction of microscopic disease related 

recurrences and improved tumor control.18-20 

This thesis will discuss the improvements that can be introduced to 

biologically based tumor delineation using MRSI. This chapter discusses 

the role of imaging in the radiotherapy process, specifically, the role MRI 

and MRSI play in tumor delineation. It also briefly discusses some of the 
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basics of contouring and the advancements in treatment delivery that have 

led to the increasing importance of biological imaging of solid tumors. 

1.3 Imaging and the Radiotherapy Process 

Imaging is essential to the radiotherapy processes especially in the 

case of solid tumors as it is involved in a number of its stages. Firstly, 

imaging plays a primary role in the diagnosis and the prognosis of cancer. 

Secondly, when radiotherapy is the treatment of choice, 3-D imaging 

becomes important for tumor delineation, organ localization and dose 

calculations. Finally, imaging on the treatment unit, in the form of mega-

voltage x-rays (portal imaging), mega-voltage computed tomography 

(MVCT), on-board kilo-voltage CT, and more recently conjoined or 

integrated MRI systems, is used for position verification and in some 

cases tumor tracking or dose reconstruction. This section briefly describes 

the uses of different imaging modalities in the diagnosis and treatment 

planning of cancer. 

1.3.1 Diagnostic and 3-D Imaging 

Imaging modalities can be divided into two main categories; 

anatomic and functional modalities. Anatomic modalities such as X-Ray, 

Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 

Ultra-Sound (US) provide images of anatomic structures. They rely on 

different mechanisms for imaging the anatomic structures and can 

sometimes indicate the functionality of an organ. However, anatomic 

modalities are generally unable to detect metabolic or biochemical 

changes within tissue.  

On the other hand, functional and metabolic modalities such as 

Positron Emission Tomography (PET), Single Photon Emission Computed 

Tomography (SPECT), functional MRI (fMRI) and MR Spectroscopic 

Imaging (MRSI) provide images of the metabolism or functionality of 

different organs. Those modalities depend on either radiopharmaceutical 
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uptake in the case of PET and SPECT, changes in blood oxygenation 

levels for fMRI or on biochemical compositions within the imaged body as 

in MRSI. 

CT is of specific importance to the radiotherapy process. Besides 

being a good diagnostic imaging modality of generally high-spatial 

resolution with short scan times, CT is an x-ray based modality and hence 

its images provide the electron density information necessary for dose 

calculations and treatment planning. Accordingly, a planning CT is used as 

the basis for most radiotherapy treatment planning. The contrast 

mechanism of CT relies on differences in x-ray attenuation coefficients 

between the imaged tissue types. This allows CT to provide excellent 

contrast between soft tissue, bony structures and air. However, contrast 

within the soft tissue (soft tissue contrast) is poor in CT due to the 

similarity of the attenuation coefficients within soft tissue. Thus, relying on 

CT alone for tumor delineation and organ localization in soft tissue may 

lead to poor organ definitions due to the reduced contrast. As a result soft 

tissue contrast is sometimes enhanced by using different x-ray energies or 

by using a contrast agent. The contrast agent is a high electron density 

material that is usually injected or swallowed by the patient and is imaged 

directly by CT.  

1.3.2 MRI and Tumor Delineation 

Because MRI most commonly relies on hydrogen protons for signal, 

it may appear that the only source of contrast in MRI is proton density. In 

that case it is not much different from CT which relies on electron density 

for contrast. However, MRI can detect subtle changes in tissue caused by 

changes in tissue specific molecular environment or the surrounding 

chemistry. Such changes can manifest themselves as changes in the 

available detectable MRI signal and more is accurately referred to as 

relaxation. That difference in relaxation is the most used contrast 

mechanism in MRI. 
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Differences in relaxation arise from the differences in chemical 

composition between tissue types. (See Chapter II for the explanation of 

relaxation mechanisms in MRI.) These changes in relaxation can be 

detected in MRI and used for contrast. By optimizing the scan parameters, 

the relative signal received from different tissues can be changed without 

the need of any exogenous contrast agents. In the case of the brain, white 

matter would appear brighter than grey matter on scans optimized to 

exploit longitudinal relaxation (T1 weighted), while on T2 weighted scans 

(optimized for contrast in transverse relaxation) white matter would appear 

darker than grey matter. Sources of contrast in MRI are not limited to 

relaxation; other sources of contrast include diffusion, perfusion, and 

magnetization transfer which is used for non-invasive angiography.  

In GBM studies, MRI scans are routinely used for treatment 

planning.18, 19 Due to the breakage of the blood brain barrier at the tumor 

site, a contrast agent in the blood stream enhances the appearance of the 

tumor while the surrounding edema and necrosis are left un-enhanced, 

providing very high contrast in T1 weighted scans. These scans are the 

most commonly used scans for GBM delineation. In addition, T2 weighted 

scans show the extent of the tumor and the surrounding edema. Also, MRI 

diffusion and perfusion studies can be performed to define and evaluate 

tumor malignancy and stage.21 

The same scanners used for MRI are able to perform biochemical 

imaging in the form of MR Spectroscopy (MRS). MRS relies on the 

chemical shift phenomenon to distinguish between different chemical 

compounds in the same way an in-vitro NMR experiment would. 

Combined with spatial encoding, MRS can be transformed into MRSI 

where an image can be produced describing the biochemical composition 

of the imaged subject. 
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1.3.3 MRI vs. CT 

In radiotherapy treatment planning, the electron density of tissue is 

important in order to perform correct dose calculations. While many 

methods have been proposed to perform MRI based treatment planning, 

CT remains the most widely used and dependable source of electron 

density information. It is in the versatility of MRI that its strength lies. A 

single MR study can be used to produce anatomic images with multiple 

contrast, along with biochemical information that can potentially be used 

for biological assessment. 21 

Combining the excellent soft tissue contrast of MRI for better tumor 

(target) delineation with the electron density information provided by CT 

for dose calculations can lead to more conformal plans compared to using 

CT alone. Furthermore, the use of MRSI adds the dimension of biological 

targeting to the otherwise purely anatomically based tumor delineation. 

Image registration techniques such as slice alignment using fiducial 

makers, or mutual information are used to fuse CT images with their 

corresponding MRI and MRSI counterparts. The resulting fused images 

are used in the treatment planning system for tumor delineation, organ 

localization and dose calculations.20 

1.4 Treatment Planning 

The goal of radiotherapy is to deliver a prescribed dose of radiation 

to the tumor while minimizing the dose delivered to the surrounding normal 

tissue. To achieve this goal a treatment plan is developed in which the 

target tumor volume as well as the organs at risk are contoured. Those 

volumes are contoured using the images acquired in the previous 3-D 

imaging stage. Accordingly, the quality of those images, whether anatomic 

or biochemical, affects the target contours and in turn the outcome of the 

treatment. 

Generally, three contours are used to define the target for radiation; 

the gross tumor volume (GTV), the clinical target volume (CTV), and the 
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planning target volume (PTV).  The GTV is usually contoured by the 

clinician and is defined by the boundaries of the visible tumor on the 

anatomic scan. In GBM the GTV is defined on the T1 contrast enhanced 

images by the boundaries of contrast enhancement (edge enhancement). 

The CTV includes the GTV and extends beyond it to include possible 

regions of microscopic disease. The margin between GTV and CTV varies 

according to the tumor site and stage. For GBM the margin between GTV 

and CTV is typically 2 cm as it is here that most recurrences exist.10, 11, 22 

PTV is then defined to include both GTV and CTV and is the main target 

for treatment planning. The PTV is larger than CTV and accounts for setup 

errors and patient movement. The margin of the PTV usually doesn’t 

exceed 5 mm from the CTV depending on the tumor site, immobilization 

devices, reproducibility of patient setup and organ movements.10, 11 The 

PTV is the volume to which the prescribed dose is to be delivered.  

One may add two more volumes; the irradiated volume (IV) and the 

biological target volume (BTV).8, 17 Although not used in the initial 

planning, the IV represents the actual irradiated volume for a beam 

selection. The IV is always larger than the desired PTV due to build up 

and exit doses. In the beam selection and optimization stage which follows 

target definition, the treatment planning goal is to reduce the dose to 

normal tissue, commonly referred to as organs at risk (OAR), within the IV 

in order to reduce complications. 

Unlike the previously mentioned GTV, the BTV is defined using 

biochemical or functional modalities.17 It outlines regions of tumor activity 

and is interpreted differently depending on the tumor type and stage.17 In 

some cases the BTV can be used to define dose boost volumes or 

nonuniform margins for tumor extent and microscopic disease.14 

Following target definition, the treatment protocol and beam 

arrangements are selected. Dose calculations are performed and the 

treatment plan is optimized for the goals of the treatment. 
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1.5 Treatment Delivery 

Delivering radiation therapy can be done using two commonly used 

techniques: external beam radiotherapy using x-ray or gamma ray emitting 

units, or brachytherapy using sources placed inside or in close proximity to 

tumors. Only advancements in external beam radiotherapy will be 

discussed in this section. 

External beam radiation devices range from kilo-voltage (kV) x-ray 

units that are used for superficial treatments through cobalt units and 

linear accelerators (linacs). With the exception of Cobalt units, all external 

beam radiotherapy units rely on producing x-rays through bremsstrahlung. 

Electrons are accelerated and focused onto a lead/tungsten target which 

causes them to decelerate rapidly and thereby produce x-rays, hence the 

name bremsstrahlung (braking radiation). In kV units the electrons are 

accelerated using conventional x-ray tubes. However, in a linac, due to the 

high electron energies needed (6MeV and greater), the electron 

acceleration process is achieved using high frequency wave guides that 

differ in design according to the manufacturers.  

Some of the most notable advancements in treatment delivery are 

beam shaping devices. The introduction of multi-leaf collimators has led to 

the development of Intensity Modulated Radiotherapy (IMRT). The ability 

to modulate the dose within the PTV provides the opportunity of dose 

boosting to the BTV. 

 Portal imaging devices and on-board imagers outfitted to linacs as 

well as mega-voltage CT are readily used for setup verification purposes. 

However, there is great potential for utilizing those devices for Image 

Guided Adaptive Radiotherapy in which the treatment plan is adjusted on 

a dose-to-dose basis to compensate for organ movements and previous 

setup errors. Moreover, there has been an avalanche of interest in recent 

years to integrate MRI systems with linacs with the ultimate goal of real-

time tumor tracking. 
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All the above mentioned advancements in treatment delivery have 

had a great influence on either improving the outcome or reducing the 

toxicity of radiotherapy.23-26 Novel planning techniques and algorithms 

combined with IMRT and Helical Tomotherapy have all provided the 

means of producing and, in most cases, delivering a treatment plan that is 

highly conformal to the PTV. This leads to treatments that can be tailored 

to boost dose to the predefined margins within the tumor while sparing 

radiosensitive organs, hence, improving tumor control probability and 

minimizing normal tissue complications. 

With the advancements of delivery techniques it has become clear 

that tumor definition is currently one of the most important links in the 

radiotherapy process. The GTV for most tumors is usually visible using 

conventional anatomic imaging modalities. It is the microscopic extent and 

the biological activity of the tumors that these modalities fail to detect (e.g. 

in GBM most recurrences arise within 2 cm from the visible GTV). Using a 

biochemical imaging modality to probe metabolite concentrations that can 

be linked to tumor growth and characterization, a BTV may be added to 

the delineation stage. 

MRSI is a multi-voxel non-invasive biochemical imaging modality 

that can be used for this purpose. It has been shown that MRSI can be 

used to probe different metabolite concentrations in the brain and the 

prostate. Those studies have been correlated with physical biopsies taken 

from tumor sites.12, 14, 18, 20, 21 However, wide clinical implementation of 

MRSI in the radiotherapy process has been lagging due to two main 

practical shortcomings: Firstly, interpretation of MRSI data has been 

largely inconsistent for clinical implementation. It is largely based on 

qualitative assessment of the metabolite peaks by radiologists or 

oncologist based on spectra whose quality is heavily dependent on the 

institutional scanning and processing protocols used. Accordingly, efforts 

to biologically delineate tumors from MRSI have been largely subjective 

and irreproducible. This has been the main limiting factor in performing 
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serial or population based studies. Also, MRSI scans are highly dependent 

on the scanner and scanning sequence used, adding to the complexity of 

performing inter-institution studies. Moreover, correlation with histology 

has relied on stereotactic biopsies which, while being a largely accurate 

method, provide only a point based correlation with MRSI. Two-

dimensional correlation, especially at the tumor/normal tissue boundaries 

is very poorly reported. 

Secondly, most commonly used MRSI sequences suffer from long 

scan times (~ 15 minutes) and poor spatial resolution (~ 1 cm3). With 

advancements in treatment delivery, there has arisen a need to improve 

the spatial resolution of MRSI scans to be considered clinically viable. 

However, increasing the resolution (~ 0.5 cm3) usually corresponds to 

increasing the scan time (~ 30 minutes), rendering MRSI increasingly 

harder to incorporate in everyday clinical MRI studies. 

The purpose of this thesis is to tackle the two main practical hurdles 

to implementing MRSI in the radiotherapy process outlined above. 

Chapter Two introduces the reader to the theory of MRI, contrast 

mechanisms, signal and noise considerations, as well as a detailed 

introduction to MRSI, its theory, and acquisition techniques. Chapter Three 

discusses our proposal for a modification to an automatic delineation 

technique of GBM in an effort to improve the objectivity and reproducibility 

of biological target delineation for radiotherapy planning. Chapter Four 

discusses accelerating MRSI acquisitions using compressed sensing -

currently a popular technique in MRI circles - in which we investigate the 

possible costs and benefits of such technique on the image quality of 

MRSI scans. Chapter Five investigates the correlation between the 

manner in which compressed sensing is implemented and its effects on 

image quality. Chapter Six discusses recent results in our effort to exploit 

inherent properties of spatial frequency space (k-space) to reduce the cost 

of compressed sensing on image quality. This chapter consists mainly of 

simulations and outlines future work that may need to be conducted on the 
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subject. Finally, Chapter Seven summarizes the conclusions reached in 

this work and outlines areas of future development and research towards 

wider clinical application of MRSI in biological tumor delineation. 
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Chapter Two 

2 Theory of Magnetic Resonance Imaging 

2.1 Introduction 

In Chapter One we have introduced the role that MRI plays in the 

radiotherapy process and how biological imaging has the potential to 

improve outcomes in radiotherapy. This Chapter explains in detail the 

basic physics of nuclear magnetic resonance (NMR), MRI and MRSI. 

The physics of NMR can be described using both classical and 

quantum mechanics. While the classical description is simpler to 

understand, a brief quantum mechanical description of NMR will be 

introduced to describe the basic theory of the behavior of spins in the 

presence of a static uniform magnetic field. Since the classical description 

will be used for the chapter as a whole, the quantum mechanical 

description of the preparation stage will be discussed first so as not to 

disrupt the continuity of the chapter. The process of producing and 

acquiring an NMR signal can best be described by breaking it into three 

basic stages; the preparation stage, the excitation stage, and the 

acquisition stage.  

2.2 Quantum Mechanical Description of NMR 

2.2.1 Spin ½ in a static magnetic field (preparation) 

Consider a system consisting primarily of protons with spin ½ as our 

sample for the NMR experiment. Spin angular momentum of nuclei is a 

vector quantity defined as: 
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where h is Plank’s constant and I is the quantum mechanical spin 

operator. The magetic dipole moment associated with S is: 
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where  is the gyromagnetic ratio of the nuclei. For hydrogen protons, 

 = 267.513×106 radians/(second · Tesla).  

 

The interaction energy of a magnetic dipole moment with a static magnetic 

field B0 is defined by: 

0Bμ E          (2-3) 

 

In a static uniform field oriented along the z-direction, Eq. 2-3 becomes: 
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The Zeeman Hamiltonian (HB0) can hence be used to describe the 

interaction of the spins with the static magnetic field as: 

zI020
BhH B 


         (2-5) 

 

For hydrogen nuclei (protons), Iz, the quantum mechanical spin operator, 

has two eigenstates, +1/2 and -1/2. Applying the Zeeman Hamiltonian to 

the energy eigenstates in the spin wave function, we get the energy 

eigenvalues corresponding to those eigenstates: 
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where   and   are spin states oriented parallel and anti-parallel to B0, 

respectively.  
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Accordingly, when a spin ½ system is placed in a uniform static 

magnetic field there are only two possible energy states in which the spin 

can be described. The whole system can either be a mixture of those 

states or purely one or the other.1 From Eq. 2-6 the Zeeman energy 

separation between the eigenstates can also be written as: 

0
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hfE

BhE







          (2-7) 

where 0f  is referred to the as the Larmor frequency and 0 as the 

angular Larmor frequency such that: 
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At 3T, f0 = 127.728 MHz, and 0= 802.539×106 radian/second, 

respectively. 
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Figure  2-1: The energy level diagram of a spin ½ system observed in B0 = 0 and B0 ≠ 0 
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In thermal equilibrium, the relative populations of the spins in the 

eigenstates is defined by the Boltzman distribution 2: 

kTEeNN //          (2-9) 

where N is the spin population of a particular state, k is Boltzman constant 

(1.38 x 10-23 J/K) and T is the temperature in Kelvin. 

 

Accordingly, in the absence of the magnetic field, where E = 0, the 

spins have equal probability to be oriented in any direction resulting in a 

net magnetization of zero. However, in the presence of a static magnetic 

field, where E ≠ 0, the spins will orient themselves either parallel or anti-

parallel to the field but due to the population statistics described in Eq. 2-9, 

there is a net longitudinal magnetization parallel to B0. 

2.3 The classical description of NMR 

Consider a volume containing an arbitrary sample of protons each 

with magnetic moment µ. The net magnetization within the sample volume 

is equal to the sum of the magnetic moment vectors of the protons in the 

sample: 


volume

i0 μM          (2-10) 

 

In the absence of a magnetic field the magnetic moment vectors 

are oriented randomly as shown in Fig. 2-2a. Accordingly, the magnetic 

moments cancel each other in vector sum and the net magnetization of 

the sample is zero.2  

2.3.1 Magnetic moments in a static magnetic field B0 

(preparation) 

In thermal equilibrium in the presence of a static magnetic field B0 

the magnetic moments of the protons present in our sample would align in 

a direction either parallel or anti-parallel to the magnetic field. As 
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discussed earlier, the population of spins in the parallel orientation will be 

greater than that in the anti-parallel orientation resulting in a net 

magnetization along the direction of the applied static magnetic field. 

 

2.3.2 The excitation process 

The aim of the excitation process is to disrupt the thermal 

equilibrium state of the magnetization vector M0, and produce a 

component of the magnetization vector in the xy-plane which can be 

detected using an antenna. The excitation process is achieved by applying 

a circularly polarized (rotating) magnetic field B1 with angular frequency 

clockwise in the xy-plane. B1 is applied by a radio-frequency (RF) pulse 

(a)    B0 = 0           (b)       B0 ≠ 0 
Figure  2-2: Magnetic moment vectors within a sample shown in: (a) The absence of a 

uniform external magnetic field resulting in random orientations zero net magnetization. 

(b) The magnetic moments are arranged in the parallel and anti-parallel orientation with 

respect to the applied magnetic field. The net magnetization vector M0 resulting is shown 

as the big arrow. 
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in the presence of and orthogonal to the static magnetic field B0. The total 

magnetic field B experienced by the spins then becomes: 

)(t10 BBB          (2-11) 

where ),0,0( 0B0B  and )0,sin,cos( 11 tBtB  1B resulting in: 

),sin,cos( 011 BtBtB  B       (2-12) 

where the z-axis is defined along the axis of B0 and the xy-plane is 

referred to as the transverse plane. 

 

The time varying orthogonal magnetic field causes the magnetic dipole 

moment to experience torque causing a time varying change in angular 

momentum. Equating the rate of change of angular momentum to the 

torque experienced by the dipole moment: 
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h
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        (2-13) 

 

Multiplying both sides by  and from Eq. 2-2, we obtain: 

Bμμ  dtd /         (2-14) 

 

Considering Eq. 2-10, the equation of motion now becomes: 
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which can be written as: 
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Equation 2-17 shows that the motion of the magnetization vector 

under both B1 and B0 becomes fairly complex since it involves rotation 

around the z-axis superimposed with rotation about the transverse axes. 

In order to better visualize the motion of M and to simplify the mathematics 

we will consider a reference frame other than the Cartesian laboratory 

frame. The new reference frame is a rotating reference frame rotating with 

angular frequency  equal to that of the circularly polarized B1.
1, 3 In the 

rotating frame now both B1 and B0 appear to be static in the xy-plane and 

z-axis, respectively. 

 

 

From Figure  2-5, the components of the magnetization vector Min 

the rotating frame are related to the magnetization vector M in the 

laboratory frame through: 

Figure  2-3: The rotating frame of reference (x,y) with respect to the 

laboratory frame (x,y). The rotating frame rotates about the z-axis therefore, z 

is equivalent to z. 
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The derivation of these equations and substitution with the 

derivatives in the laboratory frame from Eq. 2-17 now yield the equations 

of motion in the rotating frame: 
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     (2-19) 

 

These equations can now be combined in one simple equation of motion: 

effρρ BMM  dtd /        (2-20) 

where, 

  kBiB ˆ)/(ˆ
01 effB        (2-21) 

where, î  and k̂  are unit vectors in the x and z directions, respectively. 

 

The resulting equation of motion in the rotating frame is of the same 

form as the one in the laboratory frame Eq. 2-15. The major difference is 

the presence of the effective time-dependent magnetic field Beff instead of 

B. Beff also has components in the x and z directions implying that the 

magnetization vector will precess in a cone about the Beff axis with 

frequency eff =  Beff in the laboratory frame. 
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If the angular frequency of the circularly polarized B1 field is = 

B0, Bo is eliminated from Eq. 2-20 and Beff becomes B1. This is referred 

to as the resonance condition. Accordingly, if B1 is applied parallel to the 

y-axis the magnetization vector will precess in a circular motion in the z-

plane. The circularly polarized magnetic field B1, is produced by an RF 

pulse, and is usually referred to as an excitation pulse. The excitation 

pulse causes the magnetization vector to tip from the equilibrium position 

along the z-axis to the transverse plane resulting in a signal that can be 

detected using an antenna which is explained in the following section.4 

The angle between the magnetization vector and the z-axis 

resulting from an excitation pulse is known as the flip angle which is 

defined as: 

 dttBt )()( 1         (2-22) 

Figure  2-4: The magnetization vector precession about Beff in the rotating 

reference frame. 
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Accordingly, if B1 is applied for time t =2B1 the resulting flip angle 

would be /2 which is known as a 90o flip angle (pulse). Similarly, t = /B1 

results in an 180o flip angle (pulse). 

 
Figure  2-5: The motion of the magnetization vector during a 90o excitation pulse 

shown in a. the laboratory frame and b. the rotating frame. 

2.3.3 Description of the signal-inducing excited state 

(acquisition stage) 

In the laboratory frame, after excitation, the magnetization vector 

may have a longitudinal component Mz along the z-axis and a transverse 

component Mxy in the xy-plane. After excitation, B1 is turned off and the 

magnetization vector is now under the influence of only one magnetic field 

i.e. B0. The transverse component of the magnetization vector is 

described here in complex form as: 

yxyx iMMMM  )0,,(xyM       (2-23) 

where, 1i . 

 

The equations of motion for the transverse component of the 

moment vectors can be expressed by equating the rate of change of 

angular momentum to the torque experienced by those moment vectors.5 

0BμI dtd
h
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2

        (2-24) 
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From Eq. 2-2, we obtain: 

0Bμμ  dtd /         (2-25) 

 

From Eq. 2-10 the equation of motion now becomes: 

   0xyxyxy BμMμ dtd
dt

d
/)(  

0xyxy BMM  dtd /        (2-26) 
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or, in complex form:  
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Solving the differential equation above with the initial condition that 

0iMxyM at t = 0: 

)exp()( 00 tBiiMt xyM        (2-29) 

 

Thus the magnetization vector precesses around the z-axis with 

frequency 0 = B0. The rotation is in the negative sense (clockwise) for 

protons where  is positive. It is important to note that the Mxy rotates 

about the z-axis in the same manner and frequency required to achieve 

the on-resonance excitation described in the excitation stage. 
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By placing an antenna adjacent to our excited sample, the rotating 

magnetization vector would induce a current in the conductor resulting in 

the detection of the signal.1 The Fourier transform of the detected current 

is a peak at the resonance frequency 0 of the magnetization vector. (Fig. 

2-7) 

 

Figure  2-7: (a) the time domain induced e.m.f in the coil and (b) frequency profile of 

the detected signal. (Ignoring relaxation) 

Figure  2-6: Magnetization vector M0 precessing in a negative sense about the z-

axis in the presence of a static magnetic field B0 applied along the z-direction. 
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2.4 Relaxation mechanisms and the Bloch equations 

The magnetic moments represented by the magnetization vector M 

do not revolve indefinitely around the z-axis after excitation. Magnetic 

moments tend to relax to their equilibrium state along the z-axis resulting 

in a reduction in the measurable signal over time. The relaxation process 

is controlled by two related processes of longitudinal and transverse 

relaxation. 

2.4.1 Longitudinal relaxation 

Longitudinal relaxation describes the change of the Mz component 

of the magnetization vector M from the excited state to its thermal 

equilibrium state M0. Longitudinal relaxation is also known as T1 relaxation 

where the longitudinal relaxation time is T1 = 1/relaxation constant. 

Longitudinal relaxation occurs through spin-lattice interactions where 

energy is exchanged between the resonant nuclei and the surrounding 

molecular lattice. Any one proton in a sample is closely surrounded by 

similar magnetic dipoles giving rise to inter-nuclear dipole fields of the 

same order of magnitude of B1 used in the excitation stage. Those 

microscopic magnetic fields are randomly changing due to the motion of 

the dipole lattice. Such change results in energy exchange between the 

spins and the lattice.  

The energy exchange rates depend on the molecular lattice; 

accordingly, different materials exhibit different exchange rate. Bloch and 

Purcell, in independent accounts, showed that the longitudinal relaxation 

rate was proportional to the degree by which the magnetic moments have 

been removed from the thermal equilibrium state.6, 7 Thus, the change in 

longitudinal component of the magnetization vector is expressed as: 

))((
1

1
/)( 0 tMM

T
dttdM zz        (2-30) 
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where M0 is the thermal equilibrium state magnetization and T1 is the 

longitudinal relaxation time, a constant that that varies for different 

materials.  

 

The first order differential equation gives: 

1/
00 ))0(()( Tt

zz eMMMtM        (2-31) 

 

For a 90o pulse, Mz(0) = 0, and Mz(t) becomes: 

)1()( 1/
0

Tt
z eMtM         (2-32) 

and for an 180o pulse, Mz(0) = -M0, and Mz(t) becomes: 

)21()( 1/
0

Tt
z eMtM         (2-33) 

 

Table 2-1 shows different T1 values for different tissue at both 1.5T 

and 3.0T.3, 5 Contrast between tissues can be obtained through the choice 

of an appropriate timing as shown in Fig. 2-8 and Fig. 2-9. 

Table  2-1: T1 value of different tissue at 1.5T and 3T. 

Tissue T1 (ms) @ 1.5 Tesla T1 (ms) @ 3.0 Tesla 

White Matter 790 850

Grey Matter 920 1300

Cerebrospinal Fluid (CSF) > 4000 > 4000

Muscle 870 1073

Fat 250 419
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Figure  2-8: longitudinal relaxation of white matter at 3T following a 90 pulse and 

an 180 pulse. 
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Figure  2-9: longitudinal relaxation of white matter and grey matter at 3T following a 

90o pulse. 

2.4.2 Transverse Relaxation 

Transverse relaxation describes the decay of the Mxy component of 

the magnetization vector M from its excited state back to its thermal 
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equilibrium state. Transverse magnetization is more complicated than 

longitudinal relaxation as it is composed of two processes, a reversible 

time-independent process and an irreversible time-dependent process. 

Similar to longitudinal relaxation, transverse relaxation is governed 

by a relaxation constant k′, where the transverse relaxation time T2* = 1/k′. 

The reversible and irreversible components of T2* relaxation are defined 

as 2: 

2

1

2

1

*2

1



TTT

        (2-34) 

where 2T  and 2T  are the irreversible and reversible components 

respectively.  

 

Similar to Eq. 2-30, the rate of change of Mxy is expressed as: 

))(0(
*2

1
/)( tM

T
dttdM xyxy        (2-35) 

 

The first order differential equation gives: 

*2/

0
)( Tt

xyxy eMtM          (2-36) 

 

The reversible component T2′ arises from the inhomogeneity in the 

main static magnetic field B0 as experienced by different protons in the 

sample. Due to manufacturing imperfections in the hardware and varying 

magnetic susceptibilities within the sample, not all protons experience the 

same magnetic field B0. This causes the signal generating protons to have 

slightly different precession frequencies and a loss of coherence in 

transverse magnetization. However, since this decay component is 

constant in time, it can be reversed by using so called echoes, as we will 

show later. 

The irreversible component T2 results from several factors.8 Among 

the various factors is the spin-spin interaction which is similar to the same 

mechanism in longitudinal relaxation. In spin-spin interactions, an excited 
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dipole produces a magnetic field similar in effect to B1 and excites the 

surrounding dipole moments. Moreover, fluctuation of the resonance 

frequency 0 due to molecular vibrations and rotations result in the loss of 

coherence in the detected signal and also contributes to T2.(Fig. 2-10) 

These mechanisms result in permanent loss in the detectable signal and is 

hence called, irreversible decay. Table 2-2 shows typical T2 times at 1.5 

T. 

 
Table  2-2: T2 values for brain tissue at 1.5 T. 

Tissue T2 (ms) 

White Matter 92

Grey Matter 100

Muscle 470

2.5 Spatial Encoding 

Spatial encoding is the process by which the signal received in an 

NMR experiment is related to the location it corresponds to within the 

anatomy. Spatial encoding distinguishes MRI from any NMR experiment. 

The Imaging in Magnetic Resonance Imaging comes from the ability to 

correlate physical location with the signal received. To do this, a linearly 

varying magnetic field gradient with slope Gr is applied along the direction 

of the main field B0 resulting in a spatial varying Btotal : 

Figure  2-10: Fluctuations in 0 resulting in phase spread and loss of coherent 

signal. 

Time = 0 Time > 0 
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rGr  0BBtotal         (2-37) 

where r is the displacement along the direction of the gradient Gr. (Fig. 2-

11)  

 

The resonance frequency now becomes linearly varying as: 

)( 0 rGr  Btotal         (2-38) 

 

In the rotating frame Eq. 2-38 becomes: 

rGr   )(r         (2-39) 

 

Equation 2-39 is the basis for the spatial encoding used in three ways in 

MRI as described in the following sections. 

Spatial encoding is achieved using primarily three methods; slice 

selection, frequency encoding, and phase encoding. Each of those 

methods makes use of the magnetic field gradients to either limit the 

excitation to a certain region of the object or to spatially encode the 

excited volume into smaller voxels. 

2.5.1 Slice Selection 

In slice selection, a gradient Gz is applied simultaneously with the 

bandwidth limited RF pulse. As shown in Fig. 2-11 the gradient results in 

spreading the resonance frequencies of the spins along the slice direction 

(direction of the gradient). The pulse used to excite the spins is a shaped 

RF envelope with bandwidth BWrf and therefore excites the spins whose 

resonance frequencies lie within the bandwidth of the pulse.9 Hence: 

zrf

zrf

GBWz

zGBW





/2

2/




        (2-40) 

where z is the slice thickness.  

The slice location can be changed by changing the center frequency of the 

RF pulse. 
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Figure  2-11: A description of the application of magnetic field gradients for spatial 

encoding. 
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2.5.1.1 Radio-Frequency excitation pulses 
Equation 2-40 shows that as the slice selection gradient spreads 

the frequencies of the spins over a certain range, the bandwidth of the RF 

pulse is the limiting factor of the slice thickness. The frequency profile of 

an RF pulse is simply the Fourier transform of the time domain pulse 

signal. The bandwidth of the pulse (BWrf) is defined as the full width at half 

maximum of that frequency profile. 

Two of the basic RF pulses used in MRI are hard and soft pulses. 

Hard pulses have a square envelope in the time domain and have a 

corresponding sinc function frequency profile. Hard pulses have the 

advantage of achieving large tip angles in a very short time. However, due 

to its frequency profile, it is considered a broadband pulse that results in 

poor slice definition.(Fig. 2-12) The side lobes in the frequency profile of 

the pulse lead to contamination of signal of the slice with signal from 

neighboring slices.  

 
Figure  2-12: An ideal hard pulse envelope as shown in a. time domain and b. 

frequency domain. 

Soft pulses on the other hand, have truncated sinc pulse envelopes 

in the time domain with a corresponding approximately square frequency 

profile.10 Although soft pulses have a relatively long play time, the resulting 

frequency response get sharper and better defined with greater time 

lengths. It is a trait that is sought for in imaging since it provides sharply 

defined slices as shown in Fig. 2-13. 
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Figure  2-13: An ideal soft pulse envelope as shown in a. time domain and b. 

frequency domain (assuming infinite time domain playtime). 

The latter observation is true for all pulses. As a general rule of 

thumb, the time domain play time and frequency domain bandwidth are 

inversely proportional. This means that the narrower the time domain 

profile of a pulse is, the wider its frequency profile and visa-versa. 

2.5.2 Frequency Encoding 

In frequency encoding, a gradient is applied during the acquisition 

of the signal along any arbitrary direction. For the purposes of this thesis 

we’ll assume that the frequency encoding gradient is applied along the x-

direction of the laboratory frame. In this case, the gradient will be referred 

to as Gx. As in slice selection, the gradient has the effect of spreading the 

resonance frequencies of the spins along the direction of the gradient. 

This leads to a frequency spread in the acquired signal. The frequency 

spread can be detected by Fourier transforming the acquired time domain 

signal into its frequency components which are directly related to the 

spatial locations along Gx. The range of frequencies in the acquired signal 

is related to the gradient strength and field-of-view by: 

 2/2/)( minmaxmax xxx FOVGxxGf       (2-41) 

where FOVx is the field-of-view in the x-direction and is equal to (xmax-xmin). 

 

Assuming FOVx is centered around 0, the maximum frequency in the 

acquired signal is predictable and defined as: 
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 4/max xxFOVGf          (2-42) 

 

Since the acquired signal is digitized into the MRI system, to avoid 

aliasing, the sampling frequency of the acquired signal must be greater 

than or equal to twice the maximum frequency of the signal as stated by 

Nyquist criteria. Hence, the sampling bandwidth of the signal acquired in 

the frequency encoding direction must be: 

 2/xxsam FOVGBW         (2-43) 

 

Aliasing is usually eliminated in scanners by using a higher 

sampling bandwidth than required by the Nyquist criterion and using a 

band-pass filter that only allows the frequencies within the acquisition 

sampling bandwidth. 

2.5.3 Phase Encoding 

Phase encoding is similar to frequency encoding in that it uses 

gradients and accumulating phase to encode for the y-direction. A gradient 

Gy is switched on for a fixed time before acquisition. This results in the 

accumulation of phase that is linear with the position along the phase 

encoding direction. Accordingly, at the start of the acquisition the all spins 

along a vector in the phase-encoding (y) direction will have the same 

resonance frequency but with phase spread linearly along the y-direction. 

 


 tydtGy y )()(        (2-44) 

where  is the phase accumulated before acquisition. 

 

To mimic frequency encoding, the gradient strength is incremented 

by discrete linear increments of Gy before each acquisition. The resulting 

distribution of phase along the phase encoding direction resembles 

pseudo-frequencies that are linearly related to the spins’ y location. The 

maximum phase shift between two adjacent points is given by: 
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2/2 maxmax yy FOVGf         (2-45) 

where FOVy is the field-of-view in the phase encoding direction. 

 

Similar to frequency encoding, to satisfy the Nyquist criteria the 

maximum phase shift between adjacent samples must be less than or 

equal to . The gradient increments then have to be: 
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        (2-46) 

2.6 The Signal Equation 

The focus of this section is to discuss the signal received after 

excitation and spatial encoding and how this signal is processed to give us 

the image we desire. For simplicity we will consider a basic two-

dimensional sequence whose resulting signal is detected by a phase 

sensitive detector. We shall also ignore T2 relaxation for the time being. 

In the selectively excited slice, the receiving coil detects the signal 

from all the precessing spins. The received signal is the sum of all 

transverse magnetization in the excited slice. The frequency and phase 

encode gradients result in a phase shift in the detected signal that is equal 

to the area under the gradient as experienced by each spin. The sum of 

the received signals from the magnetization vector Mxy can be written as 

an integral:5 

    
x y

t t

yx dydxtydtGitxdtGiyxMtS
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])()(exp[),()(    (2-47) 

 

Consider defining a new variable k where: 
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Substituting with Eq. 2-48 in Eq. 2-47: 

  
x y

ytkxtki
yx dydxeyxMkkS yx ))()((2),(),(       (2-49) 

 

It is very important to notice the similarity between Eq. 2-49 and the 

definition of the Fourier transform.11 Such similarity allows us to 

reconstruct the distribution of the signal M(x,y) in the form of an image 

using the 2-D inverse Fourier transformation. 

The introduction of the terms kx and ky in our discussion lead to 

questions about their significance. kx and ky are components in k-space in 

which spatial frequency space (k-space) replaces the normally understood 

displacement real space. For instance if an MRI image is Fourier 

transformed in 2 dimensions, the result would be an image with the same 

number of points but in k-space. Thus, in order to correctly acquire a 

complete high-resolution image, all k-space points of the image have to be 

correctly sampled. As it has been described before and through Eq. 2-49, 

this is achieved through the application of gradients in the frequency and 

phase encoding. 

To illustrate how k-space is sampled in MRI, consider a 2D gradient 

echo sequence. As in Fig. 2-14 the sequence is divided into time t1 and 

time t2. During t1the phase encode gradient (Gy) and negative half 

readout gradient (Gx) are on. Both gradients result in a shift in 

accumulated phase to the k-space coordinates (kx1, ky1). For a time t2 the 

frequency encode (readout) gradient is turned on, phase is accumulated in 

the x-direction, and the signal is acquired leading to a precession of the 

coordinates through a row of kx in k-space.5 In the next acquisition, the 

same steps are repeated but with incrementing the phase encoding 

gradient Gy by Gy. This results in sampling another row of k-space. This 

process is repeated until all k-space is properly sampled. There are of 

course several ways in which k-space can be sampled each with its pros 

and cons and it is generally a process optimized for each application.2, 3, 12 
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(a)  (b) 

 

According to the sampling theory, sampling in one domain 

corresponds to replication in the corresponding transform domain.5 Since 

in MR sampling is done in k-space, the replication of the image must be 

considered. Replication occurs at intervals of 1/kx and 1/ky in the x and 

y directions respectively.5 The field of view is therefore related to the k-

space sampling rate through: 
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Similarly, the extent of sampled k-space is related to the spatial resolution 

through:  
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Figure  2-14: a. Schematic of a gradient echo sequence. b. The k-space sampling 
trajectory caused by the application of the gradients in the sequence. 
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Therefore, the nominal in-plane voxel dimensions can be determined by 

dividing the field of view by its corresponding phase/frequency encoding 

steps. 

2.7 MR spectroscopy 

Magnetic resonance imaging is based on imaging primarily water 

protons, as it is the most abundant molecule in the human body, and relies 

heavily on differences in relaxation times as a source of contrast. As 

opposed to imaging which relies on all protons having the same 

resonance frequency, MR spectroscopy (MRS) exploits the chemical shift 

phenomenon to detect different chemical compositions within a sample. 

Since atoms are the building blocks of molecules, nuclei within 

those atoms are affected by the distribution of electrons in the chemical 

bond in the molecule. That distribution of electrons affects the resonance 

frequency of the protons in the molecule. This dependence of the 

resonance frequency on the molecular structure compared to a water 

proton is known as the chemical shift. 

Nuclei within the molecules are shielded from the static magnetic 

field B0 through the electron cloud surrounding them. According to Lenz’s 

law, due to circulation induced by B0 in the electron cloud, a magnetic field 

Bi is induced by the electron cloud to oppose the circulation from B0. The 

induced field Bi has a magnitude that is proportional to the original field B0 

and a direction opposite to B0, thus: 

ilocal BBB  0  .        (2-54) 

 

The induced field is directly proportional to the applied field with the 

constant of proportionality being  the shielding constant.  is unique to 

the local environment of the nucleus.5 Therefore Eq. 2-54 becomes: 

)1(0  BBlocal         (2-55) 

 

Therefore, the precession frequency  of those protons is: 
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)1(0   B          (2-56) 

So, 

0
 

  

 

Accordingly, the frequency shift between the protons in different 

electronic environments is dependent on the applied magnetic field; the 

larger the field, the larger the shift. Therefore the use of high fields would 

improve peak separation and spectral resolution as well as the SNR as 

shown in the following sections. 

Due to the dependence of the chemical shift frequency on the 

applied field, a the parts-per-million (ppm) , , scale is used as a 

normalized measure of chemical shift.5  

 ppm
moleculereference

moleculereferencemolecule 610






      (2-57) 

 

Most relevant metabolites of interest in-vivo are in the range of 1-

4.7 ppm. Such range corresponds to a frequency spread of approximately 

473 Hz and 236 Hz at 3T and 1.5T respectively.  

2.8 Localization Techniques of MRS 

For single voxel spectroscopy, localization of the source of the 

signal is important. The most popular techniques for localization involve 

applying three RF pulses on the three orthogonal planes, where the 

intersection of the planes defines the voxel from which the signal is 

acquired. Stimulated Echo Acquisition Mode (STEAM) and Point Resolved 

Spectroscopy (PRESS) are the most popular spectroscopy of those pulse 

sequences that utilize this method of localization. 
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2.8.1 Stimulated Echo acquisition Mode (STEAM) 

STEAM uses three 90o excitation pulses applied on the three 

orthogonal planes. The three excitation pulses generate a stimulated echo 

only at the intersection of the three planes therefore acquiring the signal 

from the defined cube.13 Echo time (TE) is independent of the mixing time 

(TM) between the second and the third pulse. Accordingly, TM can be 

easily adjusted and the overall scan time can be reduced significantly 

compared to PRESS. 

 
Figure  2-15: Schematic for a STEAM sequence. The three 90o excitation pulses 

applied on the three orthogonal planes define a volume of interest (voxel) from 

which the signal is acquired. 

2.8.2 Point Resolved Spectroscopy (PRESS) 

Similar to STEAM, PRESS relies on three RF pulses. However, in 

the case of PRESS, the first 90o excitation pulse is followed by two 180o 

pulses generating a spin echo at the intersection of the 3 planes on which 

they are applied.14-16 
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PRESS and STEAM each have different advantages and 

disadvantages. STEAM permits the detection of metabolites with shorter 

T2 relaxation due to its shorter TE compared to PRESS. However, PRESS 

inherently has a higher SNR due to the inherent loss of signal in the 

stimulated echoes. 

 
Figure  2-16: Schematic of a PRESS Sequence. Similar to STEAM, the 90o excitation 

pulse along with the two 180o refocusing pulses applied on the three orthogonal 

planes define a volume of interest (voxel) from which the signal is acquired. 

The biggest disadvantage of MRS is that the entire signal within the 

defined volume of interest is summed and only one relatively large voxel is 

acquired leaving out any spatial information. Hence, prior knowledge of 

the location of the spectroscopy target is needed to decide the location of 

the single voxel.  

2.8.3 Spectroscopic Imaging (SI) (Chemical Shift Imaging) 

As in MRI, spatial encoding can be used to transform single-voxel 

MRS to multi-voxel MR spectroscopic imaging (MRSI). 

Recall the signal equation ignoring chemical shift is shown in Eq. 2-50: 

  
x y

ykxki
yx dydxeyxMkkS yx )(2),(),(       (2-50)  
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However, if the spins are allowed to precess under chemical shift, that 

results in an additional accumulated phase which is has to be accounted 

for in the signal equation. Accordingly, Eq. 2-50 becomes 5: 

   


 
x y

tfykxki
yx dydxdeyxMtkkS yx )(2 0),,(),,(    (2-58) 

where t is the acquisition time, and  is the relative chemical shift defined 

as 
0
 

  and kf  can be defined as kf = f0. 

 

Hence, to fill the spatio-temporal frequency space (k-space) we 

need to fill kx, ky and kf. After acquisition, a 3-D inverse Fourier transform 

is performed to reconstruct the signal from k-t space to xy- space. 

In the most common spatial encoding methods, the nuclei are left to 

precess under their natural precession frequencies, i.e. chemical shift, and 

accordingly, no readout gradient is applied in the frequency encoding 

direction. Instead, both x and y directions are phase encoded. 

The advantage of 2-D phase encoding is that it is a simple spatial 

encoding method which can be incorporated to any MRS sequence hence 

transforming the single voxel sequence to an SI one. The most popular 

sequence, 2-D PRESS, is shown in Fig. 2-17. The main shortcoming of 2-

D phase encoding is very long scan time. For 32×32 voxel scans, we have 

to step through k-space one step per repetition time (TR), resulting in 1024 

repetitions. Therefore, for a 1500 ms TR, a 32×32 voxel scan would take 

approximately 26 minutes. Furthermore, phase encoding can be applied in 

the z-direction to perform multi-slice MRSI.17 In that case, an additional 

Fourier transform in the z-direction is needed to reconstruct the voxels. 
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Figure  2-17: A schematic of a 2-D PRESS sequence. 

2.9 Signal and Noise Considerations 

 In MRSI, the signal-to-noise ratio (SNR) is a very important factor 

that determines the quality of the spectra acquired in the scans. The need 

to maximize the SNR while maintaining achievable imaging parameters is 

crucial for in-vivo scans where noise levels are usually higher than in-vitro 

experiments. This section discusses the dependence of the signal and 

noise on the imaging parameters and hardware. 

2.9.1 Signal 

The magnitude of the signal is proportional to 4 parameters: 

1. Larmour frequency of the protons in the main magnetic field. EMF 

induced in the receiving coil is proportional to the rate of change of 

the magnetic flux B which in turn is proportional to the Larmour 

frequency. 

2. The available magnetization vector M0 which is dependent on: 

a. The energy difference between the spin-down and spin-up 

eigenstates. Where the relative populations of the spins in 

the spin-down / spin-up eigenstates at thermal equilibrium is: 



 46

kTBeNN /0/ 
        (2-8) 

where N and N  are the populations of the spins in the 

spin-down and spin-up eigenstates respectively. 

b. The density of the spins in the sample 

3. The amount of transverse magnetic field BT that could be generated 

by the receiving coil. By reciprocity, this corresponds to the 

reception quality (sensitivity) of the receive coil which defines the 

ability of the coil to convert the change in magnetic flux to 

electromagnetic force. 

4. The spin response to the imaging sequence and parameters. For 

instance, repetition time (TR), echo time (TE), and flip angle. 

Ignoring the fourth parameter and assuming constant spin density, the 

signal S is then: 

TVBMS 00         (2-59) 

where V is the voxel volume.  

M0 and 0 are both proportional to B0, accordingly 2, 5:  

TVBBS 2
0          (2-60) 

2.9.2 Noise 

The main source of noise in magnetic resonance is thermal noise 

resulting from the Brownian motion of electrons which in turn generate 

random magnetic fields. Thermal noise arises mainly from the resistance 

in the receiving coil and the resistance of the imaged body as observed by 

the coil. For thermal noise, the variance of the noise within the signal can 

therefore be described as 5: 

samn BWRTk42          (2-61) 

where k is Boltzman’s constant, T is the temperature in Kelvin, and R is 

the total resistance of the coil (Rc) and the imaged body (Rb). BW is the 

bandwidth of the signal which is equal to sampling bandwidth. 
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Thermal noise is Gaussian distributed, white, and additive; hence, noise is 

the square root the variance. From Eq. 2-61: 

RNoise n  2         (2-62) 

and,  

bc RRR           (2-63) 

 

From Eq. 2-62 and Eq. 2-63: 

bc RRNoise          (2-64) 

where Rc and Rb are proportional to 0
1/2 and 0

2 respectively.5  

 

However, resistance in MRI is generally dominated by the resistance of 

the imaged body rather than the coil, hence Eq. 2-64 becomes 5: 

00 BRNoise b          (2-65) 

 

Another factor affecting noise is the number of phase encodes. Due 

to the Fourier transforms applied to reconstruct the images, noise is 

averaged out. If k-space consists of N points in one direction, after the 

Fourier transform the noise is proportional to (1/N)1/2 .2, 5 Accordingly, for 

phase encoding steps equal to NP 2, 5: 

2/1)(

1

PN
Noise          (2-66) 

 

For MRSI, where phase is used to encode both the x and y directions: 

2/1)(

1

yPxP NN
Noise         (2-67) 

 

Overall noise is then: 

2/1
0 )

1
(

yx PP NN
BNoise         (2-68) 
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2.9.3 Signal-to-Noise Ratio (SNR) 

Recall Eq. 2-61 5: 

samn BW2          (2-69) 

where BWsam is the readout sampling bandwidth and is defined as: 

)(/ readoutsam TtimereadoutsamplesofNumberBW     (2-70) 

 

While the signal is independent of BWsam, doubling the readout time 

(Treadout) halves BWsam which in turn decreases the noise by 2 as shown 

in Eq. 2-71:  

2
2 sam

n

BW
Noise          (2-71) 

 

Comparing SNR1 to SNR2 with readout times equal to Treadout and 

2×Treadout respectively: 

2

2

/ 12 
S

BW

BW

S
SNRSNR sam

sam

     (2-72) 

 

Generally, the SNR is related to the readout time (Treadout) such that 5: 

readoutTSNR          (2-73) 

 

Therefore from Eq. (2-60), Eq. (2-68) and Eq. (2-73): 

2/1
0

2/1
0

2
0 )(

)
1

(
readoutPPT

PP

readoutTreadout TNNVBB

NN
B

TVBB

Noise

TS
SNR

yx

yx

   (2-74) 

Therefore, in MRSI it is desirable to use high B0 field strengths and 

long readout times. Also, in high-resolution MRSI, high B0 field strengths 

help offset the decrease in SNR that occurs to the decrease in voxel size. 
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Chapter Three 

3 An updated method for automatic tumor 

delineation using MRSI 

3.1 Introduction 

Quantifying the relative levels of choline to N-acetyl aspartate 

(NAA) has been the method of choice by many groups as a means to 

identify tumors in the brain.1-5 Studies have shown that tumors exhibit a 

sharp increase in Choline coupled with a sharp decrease in NAA levels 

compared to normal brain tissue.6-11 These opposing trends result in the 

Choline-to-NAA ratio providing a dramatic response to tumor presence. 

However, a barrier to the wide clinical application of this ratio in treatment 

planning has been the lack of a standardized method of tumor delineation. 

Differentiation between normal tissue and tumor has often been 

accomplished using visual assessment of magnetic resonance 

spectroscopic imaging (MRSI) spectra. Both the inherent inter-operator 

subjectivity of this visual method as well as the inter-patient variability in 

apparent metabolite concentrations has resulted in compromised 

differentiation between normal and tumor tissue.12 Moreover, variations in 

scanning sequences between different scanning sites render cross-

sectional inter-patient comparisons very complicated. As a means to 

address some of these concerns McKnight et al. introduced a statistical 

approach for assessing tumors based on biological data collected using 

MRSI.12 This statistical model automatically separates voxels into normal 

tissue and tumor populations based on their relative concentrations of 

choline and NAA. Rather than relying on a strict metabolite ratio, the data 

are assigned a new metric, the Choline-to-NAA Index (CNI), which 

identifies the number of standard deviations a voxel is removed from the 

ratio of normal tissue. By relying on a statistical user-independent model, 
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this method circumvents the drawbacks of the visual assessment method. 

The statistical model also aides in identifying a normal tissue population of 

voxels that can be used as control for serial studies of the same patient. 

Further, the CNI method inherently accounts for inter-patient variability in 

metabolite concentrations, effectively normalizing the tumor delineation 

criterion to each patient.  

In the CNI model it is assumed that the variation in the relative 

levels of choline to NAA in normal brain tissue is not significantly affected 

by partial volume effects of cerebrospinal fluid. The model also assumes 

that the tissue-type related variations in the relative levels of choline to 

NAA in normal brain tissue (i.e. white versus grey matter) are small 

compared to the difference between normal and diseased brain. 

Developments in MRSI sequences have facilitated the acquisition of high-

resolution MRSI data in clinically acceptable scan times, a change that 

may call the aforementioned assumptions into question. The move to 

higher resolution has enabled the detectablity of more variations within the 

relative levels of choline to NAA in normal tissue. For example, at a 

nominal voxel size of 0.34 cm3 detectable variations in metabolite 

concentrations between grey matter and white matter were reported.13 

With the variation in the choline to NAA levels of normal tissue increasing, 

it is essential to consider the implications with regard to the CNI method, 

and any possible modifications to the approach to improve its specificity in 

the high resolution regime. 

In this work we are introducing a modification to the CNI model that 

would address the uncertainty in tumor delineation resulting from normal 

tissue variation. The original CNI method segregates voxels into tumor 

and normal tissue based solely on their CNI score to define tumor 

boundaries. In this work we argue that due to the nature of the distribution, 

the increased detectable variability of choline and NAA levels in normal 

tissue, and the statistical model itself, that there will always be a region of 

mixed population of normal tissue and tumor where simple thresholding is 
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insufficient to separate the tumor and normal tissue populations. Hence, 

our proposed modification would divide the voxels into three regions: 1. a 

high certainty normal tissue region, 2. a high certainty tumor region, and 3. 

an uncertainty region of mixed population.  

3.2 Materials and Methods 

3.2.1 MRSI sequence 

Scans were performed on a Philips Intera 3 T MRI (Philips 

Healthcare, Bothell, WA) unit together with a transmit/receive birdcage 

head coil. In total, twelve glioblastoma multiforme (GBM) clinical subjects 

and three healthy volunteer were scanned between April 2005 and 

February 2010. Two different scanning sequences were used to acquire 

the MRSI spectra. Six clinical subjects were scanned using a muti-slice 2-

echo Spin Echo Spectroscopic Imaging (SESI) sequence. SESI offers the 

choice of acquiring more than one echo per repetition, hence decreasing 

the overall scan time while maximizing the coverage of the brain.14 The TR 

was set to 3800 ms, the TE to 100 ms, and inter-echo spacing was set to 

200 ms. In-plane nominal resolutions were set between 0.58 cm and 0.75 

cm, while slice thickness was set between 1 cm, and 1.5 cm in order to 

maximize tumor coverage. The resulting nominal voxel sizes ranged 

between 0.39 cm3 and 0.73 cm3. Another six clinical subjects were 

scanned using a multi-echo 3-D Point Resolved Spectroscopy sequence 

(3-D PRESS) which also acquired two echoes per repetition. The nominal 

voxel size for those studies ranged between 0.625×0.625×0.7 (0.274) cm3 

and 0.7×0.7×0.7 (0.343) cm3. Prior to running the MRSI scans, second 

order shimming was established over the volume-of-interest (VOI). Water 

suppression was achieved by a mix of chemical shift selective (CHESS) 

suppression and inversion recovery.  
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3.2.2 Processing 

The raw data acquired from the MRSI scans were processed on the 

scanner console using MR Systems Intera (release 2.5.3) (Philips 

Healthcare, Bothell, WA) software package. The frequency domain data 

was exported to Matlab (The MathWorks, Natick, MA) where it was further 

analyzed using software to integrate metabolite peak areas.15 The peak 

fitting algorithm used fits a sum of complex Lorentzian functions to the 

acquired spectra.16   The resulting Lorentzian parameters were used to 

analytically calculate the area under the choline and NAA peaks from each 

voxel. 

3.2.3 Choline-to-NAA Index calculation 

As discussed earlier, the CNI statistical model is based on key 

assumptions that result in the following: (a) normal tissue can be 

considered as a coherent tightly packed population in terms of the relative 

choline to NAA levels detectable by MRSI, while (b) tumors exhibit a 

statistically significant variation in the relative choline to NAA levels that 

can be used to delineate the tumor. To differentiate the two populations; 

normal tissue and tumor, the choline levels are plotted against those of 

NAA, for every voxel, yielding a scatter plot. The data is fitted using linear 

regression, and the z-score (the perpendicular residual/standard deviation) 

is calculated for all voxels.12 The criterion for normality is a z-score (CNI) 

of less than 1.95, corresponding to a 97.5% probability that the voxel 

belongs to the fitted Gaussian distributed population. Voxels with z-scores 

higher than 1.95 were excluded and the process then repeated until no 

points are excluded, i.e. all the remaining voxels met the criteria of normal 

tissue. The final best fit line and standard deviation are used to calculate 

the CNI for all the voxels in the scan. In addition to the clinical cases, this 

process was also performed on MRSI scans of healthy volunteers to 

illustrate the difference between CNI values in healthy brains and clinical 

GBM cases.  
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The distribution of the CNI scores for the healthy volunteers 

appears to be roughly symmetric about a CNI score of zero (Figure  3-1). 

The three volunteers’ CNI histograms agree to within a reasonable extent. 

The histogram of the CNI scores for the clinical volunteers show some 

similarity to that of those of healthy volunteers in the central region of the 

histogram, while they also exhibit an extended tail towards higher CNI 

score which corresponds to the tumor population (Figure  3-2).  

 

Figure  3-1: Histograms of CNI values for healthy volunteers. 

 

Figure  3-2: Histograms of CNI values for three GBM patients. 
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3.2.4 Tumor delineation 

In the original CNI method, all points above the CNI = 2 line would 

lie outside the normal region and, since those points have a high 

choline/NAA ratio, would be associated with tumor. All points lying below 

the -2 CNI line have a low choline/NAA ratio and hence do not meet the 

tumor criterion. Those voxels are considered normal deviations from the 

normal distribution. 

McKnight at al. (2001)12 reported that during their studies of normal 

brain 5% of the all voxels scored higher than CNI = 2; i.e. incorrectly failed 

to pass the criteria of normal tissue.12 Since delineation is based on the 2 

standard deviation line, it would be expected that ~ 5% of the normal 

tissue distribution to lie outside the CNI ±2 range. However, the 5% were 

reported from one side of the distribution (CNI ≥ 2), indicating that the 

iterative process, while necessary to segregate tumors from normal tissue, 

results in an abnormally small standard deviation for the distribution of 

normal tissue. This seems to increase the probability of false positives 

two-fold (from ~2.5 % to ~5%).  

Moreover, it was reported that the CNI scores of healthy volunteer 

voxels excluded as abnormal by the algorithm ranged between 2.2 and 5.3 

while for patients with histologically proven Gliomas, the CNI of excluded 

voxels ranged between 2.6 and 15.0 indicating an overlapping region 

between the tails of the normal and diseased brain distributions lying 

between CNI scores of 2.6 and 5.3. This is reinforced by a simple visual 

inspection of a typical scatter plot as displayed in Figure 3-3, which lacks a 

clear distinction between normal brain population and that of disease. 

Although the specificity and sensitivity of the CNI delineation method could 

be changed by simply shifting the delineation criterion up or down, this 

cannot compensate for the overlapping nature of the two distributions.  

To compensate for the increased probability of false positives 

caused by iterative linear regression and the overlap between the tumor 

and normal tissue populations, we suggest a modification of the tumor 
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delineation criteria to include a region of uncertainty covering the overlap 

between the two distributions. Our scatter plot would now consist of 3 

regions, a normal tissue region below CNI = 2, a confirmed tumor region 

above a pre-determined CNI score, and an uncertainty region in between. 

The method we propose to define an uncertainty region that exploits the 

symmetry that we expect to exist in the normal population as shown in the 

histogram of the healthy volunteers (Figure  3-1). For example, in the GBM 

volunteer data shown (Figure  3-2), it was calculated that 97.5% of the 

points lying below the best-fit line are within a CNI scores of 0 and -4. If it 

is assumed that such a deviation is symmetric about the best fit line, a 

similar region between the CNI = 2 and the CNI = 4 lines can be 

considered an uncertainty region where voxels could be expected to 

belong to either normal tissue or tumors. This is consistent with McKnight 

et al. who found an overlap region between CNI scores of 2.6 and 5.3 

stated earlier.12 This region is shown in Figure 3-3 between the dashed 

and dotted lines. 

 

Figure  3-3: Scatter plot of choline levels vs. NAA levels for a typical clinical GBM 

subject. 

In the proposed method, all voxels with CNI score ≥ 4 (dashed line 

in Fig. 3-3) would be considered tumor, while all with CNI score < 2 

(dotted line) have a high probability (>97.5%) of being normal tissue and 
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would be considered to be so. All voxels with 2  CNI < 4 are of mixed 

probability and would be subject to further investigation.  

3.3 Results 

 

Figure  3-4: T1 weighted contrast enhanced images of adjacent MRSI slices 

showing voxels with CNI ≥ 2. 

 

Figure  3-5: T1 weighted contrast enhanced images of adjacent MRSI slices 

showing voxels classified using the modified CNI method. Green voxels represent 

tumor, while white voxels represent voxels with mixed probability (uncertain). 

 Figure  3-4 and Figure  3-5 show a T1-weighted contrast enhanced 

image of a GBM patient’s brain coupled with the abnormal MRSI voxel as 

delineated using the original and the modified CNI methods, respectively. 
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There appears to be good agreement between the two methods at the 

right side of the brain (image left). That region coincides with the contrast 

enhancement region in the T1-weighted post contrast image. The original 

CNI method however shows regions of metabolic abnormality at the centre 

of the image (ventricle region) and in the contra lateral hemisphere 

(patient left) whereas the modified method shows voxels at those regions 

belonging to the uncertainty region.  

Figure  3-6 displays a selection of spectra overlapping the ventricles 

and surrounding voxels in this same clinical subject. Examination of this 

figure reveals that the metabolites in the four spectra at the top left 

quadrant of the highlighted voxels appear to be affected by their proximity 

to the ventricles. The relative level of NAA in this region appears to be less 

than that of neighboring normal tissue suggesting that proximity to CSF 

preferentially affects the detected levels of NAA. While an explanation for 

this result is beyond the scope of this work, it seems to contradict the 

conceptual expectation that CSF would not affect the relative levels of 

choline and NAA. Figure  3-7 shows the same effect of CSF on the relative 

levels of choline and NAA in a healthy volunteer (middle two columns).  
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Figure  3-6: T1 weighted contrast enhanced image of a GBM patient showing 

spectra at different voxel locations. Peaks 1 and 2 correspond to choline and NAA, 

respectively. 

 

Figure  3-7: T2 weighted contrast enhanced image of a healthy volunteer showing 

spectra at different voxel locations. Peaks 1 and 2 correspond to choline and NAA, 

respectively. The middle two columns show the preferential effect of CSF on the 

NAA peak. 
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Furthermore, voxels delineated as tumor at centre of the image 

(Figure  3-4 and Figure  3-5) in close proximity to the ventricles were found 

to have a relatively low CNI score (2.8 – 4.8) compared to the tumor 

volume on the image left. Altogether, these voxels’ relatively low CNI 

score, their remoteness from any voxels with large CNI score, and their 

proximity to the ventricles, make the classification of these voxels as tumor 

by the original CNI method highly suspect.  

Table  3-1: Comparison between voxels designated as abnormal (CNI ≥ 2) and 

voxels designated as uncertain (uncertainty limit > CNI ≥ 2) over twelve clinical 

subjects and three healthy volunteers. 

 Clinical Subjects (n=12) Healthy Volunteers (n=3) 

 CNI ≥ 2 

Uncertainty 

limit > CNI ≥ 

2 

CNI ≥ 2 

Uncertainty 

limit > CNI ≥ 

2 

# of voxels 92.8 ±66.4 37.3 ±27.9 54.3 ±21.9 50.3 ±21.7 

% of VOI 13.5 ±7.4 5.4 ±3.1 7.6 ±3.0 7.0 ±3.0 

To obtain a feel for the magnitude of abnormalities demarcated by 

our modified technique as uncertain, the absolute number of voxels 

considered uncertain and the % of the VOI they represent was compared 

to the total abnormalities defined by the CNI ≥ 2 criterion assessed over 

the twelve clinical volunteers and tabulated in Table  3-1. While the sample 

size is not large (n=12), these early results indicate that on average 5.4% 

of the VOI can be expected to be uncertain in clinical subjects. This 

number is consistent with the findings of McKnight et al.12 for healthy 

volunteers as well as our own findings for the small healthy volunteer 

population shown in Table  3-1 and Figure 3-8. Moreover, the mean CNI 

limit for the uncertainty zone was found to be 3.7 ±1.1 for the clinical 

volunteers, which is also consistent with the value found for healthy 

volunteers (3.4 ±0.6). While a portion of voxels identified as uncertain in 

these clinical subjects was expectedly found at the outer reaches of the 

tumor, voxels in the uncertain region were also found at more distant 
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locations in close proximity to the ventricles, which reflect the trends that 

were discussed earlier.  

 

Figure  3-8: Percentage of VOI designated as abnormal and as uncertain for clinical 

subjects (n=12) and healthy volunteers (n=3). 

3.4 Discussion 

The original CNI method is based on two key assumptions for the 

statistical model: 1. that the relative levels of choline to NAA in normal 

brain tissue are not affected by cerebrospinal fluid present in sulci or 

ventricles and 2. that the variance of the choline to NAA ratio in normal 

brain is small compared with the difference between normal and diseased 

brain.12 The above assumptions are generally valid in most MRSI scans. 

Large voxel sizes (~1cm3) dilute differences in choline and NAA 

concentrations of different tissues and limit the effects of CSF on the 

resulting spectra. However, in this study, variations in choline and NAA 

concentrations due to differing tissue types and anatomical features are 

more readily detected due to the small voxel size (~0.4 cm3).13 Moreover, 

the iterative thresholding method necessary to differentiate normal tissue 

from tumor only serves to exaggerate the apparent homogeneity of the 
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normal tissue population by artificially decreasing the final standard 

deviations. 

Furthermore, in our scans, CSF seems to cause enough effects to 

noticeably influence the relative levels of choline and NAA. In addition, 

Mcknight et al. used a relatively small volume of interest (~200 – 300 cm3) 

in their MRSI scans which limits the variety of normal tissue present in the 

sample. In studies similar to ours where greater coverage of the brain is 

desired, a large volume of interest (~400 cm3) widens the variety of normal 

tissue samples and may lead to a broadened normal tissue population. 

These factors combined, support the argument for the existence of mixed 

population region on the scatter plots and accordingly, necessitate a 

modification if not a revision of the original CNI model. 

3.4.1 Correlation with Histology 

It is worth noting that the original CNI model has been validated via 

correlations with histology. Stereotactic biopsies were used to collect 

tissue samples from patients with glioma and have yielded good 

correlation with the CNI model.17 However, it should be understood that 

stereotactic biopsies provide at best a histological profile of a few points in 

space, when only fully resection and dissection of tumor and surrounding 

normal tissue would provide the necessary spatio-hystological profiling for 

correlation with a tumor delineation method like CNI.  

The argument in our work should not be mistaken as a 

disagreement with the histological confirmation of the original CNI model. 

Our method relies on the statistical model and the argument that the 

original CNI model is quite conservative in estimating the statistical spread 

of CNI values of normal tissue. We suspect that even with full resection 

and a 2-D spatio-histological evaluation of tumor and normal tissue, and 

comparison with CNI values, a region of uncertainty would still exist due to 

underlying statistics of the population.  
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3.5 Conclusion 

The increased interest in incorporating MRSI into treatment 

planning has increased the need for a reliable method of delineating a 

biological target volume. While McKnight et al12 introduced a promising 

user independent method for achieving such a goal; it seems that with 

constant improvements in MRSI sequences some of the assumptions 

upon which the model is built need to be revised. It is therefore necessary 

to introduce adjustments to the existing CNI method of tumor delineation 

to account for the increased detectable variation in the relative choline and 

NAA levels within normal tissue. 

The original CNI method relied on MRSI scans with a nominal 

spatial resolution of 1 cm3.12 At such a resolution the assumptions upon 

which the model was formulated were more valid; the influence of CSF on 

relative metabolite levels of surrounding voxels is minimal, and variations 

within those metabolites in normal tissue are hardly detectable. At higher 

resolutions, similar to the one used in our study; we have shown that those 

assumptions need to be reconsidered. In addition, we have noticed from 

the scatter plots (Figure  3-3) and McKnight et al.’s results that there exists 

a region of mixed population consisting of normal and tumor tissues that is 

not accounted for in the original CNI model. While increasing the 

delineation CNI threshold of tumors from the suggested 2 to 2.5 or 3, 

would correct for the increased variability in the normal tissue CNI scores, 

the mixed populations would only result in decreasing the rate of false 

positives and increasing the rate of false negatives. 

We have therefore proposed a modification to the CNI method that 

would address those shortfalls. Instead of segregating the voxels into two 

discrete populations of normal tissue and tumor, we propose that we 

introduce a third region of mixed population of normal tissue and tumor. 

We used the normal tissue population below the best-fit line to evaluate 

the size of that uncertainty region. The interpretation of the voxels in the 

uncertainty region is at present not straightforward. Future work utilizing 
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additional information may hopefully lead to an educated classification of 

this region, which, it can be argued at present is statistically indeterminate. 

However, it is the assertion of this work that in order to use the choline-to-

NAA ratio to its full potential in the present day radiotherapy environment, 

the person preparing the RT plan should be made aware of both statistical 

zones. In this manner, all the benefits of the statistical approach are 

preserved (namely lack of operator bias, and consistency between 

patients, scanners, centres, etc.) while clearly identifying those voxels 

having high tumor probability, and those voxels for which there is inherent 

ambiguity. This uncertainty region will indicate that a voxel is suspect, but 

at present its designation as an area to be treated will ultimately rely on 

the planner’s experience and information gleaned from other sequences 

and/or modalities. The authors see that the real strength of the CNI 

methods thus lies in its statistical user-independent approach to analyzing 

MRSI scans, while technological limitations prevent it from becoming a 

reliable tumor delineation technique for the time being. 
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Chapter Four 

4 MTF behaviour of compressed sensing MR 

spectroscopic imaging† 

4.1 Introduction 

Magnetic resonance spectroscopic imaging (MRSI) is a technique 

that exploits the chemical shift phenomenon with spatial encoding to 

produce a distribution of spatially dependent spectra that can yield 

information regarding the biochemistry of the underlying tissue.  As 

discussed in Chapter Three, the bio-chemical information provided by 

MRSI has often been used to assess tumor activity, particularly in the 

brain and the prostate, and to enhance targeting and assessment of 

conventional radiation-therapy and stereotactic radio-surgery.1-5 

Commonly used MRSI techniques generally do not employ read-out 

frequency encoding and instead rely entirely on phase encoding for spatial 

encoding. As a result, MRSI is known to suffer from long scan times. For 

example, a typical clinical 3-D brain Point Resolved Spectroscopy 

(PRESS) sequence takes about 14 minutes (12×12×4 voxels, FOV 

12×12×4 cm3, TR = 1500 ms) to complete while achieving only 1 cm3 

voxels. This limits the maximum resolution and field-of-view achievable in 

a clinically reasonable time frame. Reduction in scan time can clearly be 

achieved by acquiring fewer k-space samples, but if acquired in the 

traditional regularly-sampled Cartesian manner this implies either sacrifice 

in terms of lower resolution, or a risk of coherent aliasing artifacts (fold-

over). Two prominent techniques used to circumvent these effects are 

parallel imaging and more recently Compressed Sensing (CS). While 

there is much interest in both techniques for implementation in MRSI, they 

                                                 
† A. A. Heikal, K. Wachowicz and B. G. Fallone, "MTF behavior of compressed sensing MR 
spectroscopic imaging," Med Phys 40 (5), 052302 (2013). 
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are essentially independent processes.6-8 This work focuses on CS as 

applied to MRSI and the potential costs and benefits of such a technique. 

Compressed sensing has been a topic of interest in MRI circles and 

conferences in recent years.  Compressed Sensing MRI (CS-MRI) offers 

the ability to accelerate MRI sequences while suffering minimal artifacts 

compared to conventional fast MRI techniques.9 CS-MRI exploits the 

inherent sparsity of MRI images and incoherent artifacts of pseudo-

random sub-Nyquist sampling of k-space combined with nonlinear 

reconstruction to produce MRI images.  It can be used to either increase 

the resolution with no penalty in scan time, or reducing the scan time while 

suffering minimum aliasing (coherent) artifacts.9 Consequently, 

compressed sensing is potentially an invaluable tool to overcome some of 

the shortcomings of conventional MRSI.  In this work we adopt the 

compressed sensing technique to accelerate a clinically relevant 2-D Point 

RESolved Spectroscopy (PRESS) sequence. While compressed sensing 

has been applied to hyper-polarized 13C MRSI sequences,10, 11 little has 

been reported in its application to 1H spectroscopic imaging potentially 

due to the relatively high signal-to-noise ratio requirements of compressed 

sensing.6, 7, 10  CS-MRSI can be used as an acceleration tool to decrease 

scan times while maintaining acceptable spatial definition or to enable the 

acquisition of higher resolution scans while minimizing the associated time 

penalty.9 

The modulation transfer function (MTF) is valuable image quality 

metric that is closely related to the point spread function and quantitatively 

defines the system’s spatial frequency response and spatial resolution. 

The MTF quantifies how sharp transitions such as brain 

matter/cerebrospinal fluid boundaries, and healthy brain/tumor boundaries 

are represented in in-vivo MRSI scans. While there have been extensive 

efforts to quantify image quality, namely spatial resolution and MTF, of MR 

imaging,12-14 such efforts have not been mirrored in MRSI community. 

With typical spatial resolution an order of magnitude lower than their MRI 
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counterparts and the need for spectral processing and peak-fitting to yield 

metabolite images, there arises the need for an MTF measurement 

method specifically designed for MRSI purposes. Furthermore, there has 

not been any quantitative assessment of the MTF of CS-MRSI compared 

to conventional Nyquist sampled MRSI.  Since most fast-imaging 

techniques are associated with a loss in image quality in one way or 

another, the user usually has to weigh costs and benefits to decide 

whether or not to use such a technique. That process is further 

complicated due to the unique nonlinear nature of compressed-sensing 

reconstruction. Weights for different sparsifying transforms are required for 

reconstruction, and the quantitative impact of these weighting choices on 

image quality have not yet been addressed in the literature. As a result, 

that cost vs. benefit analysis has largely relied on qualitative assessments. 

In this work we set out to investigate the MTF behaviour of CS-

MRSI with regard to CS reconstruction weights and the acquired peak 

signal-to-noise ratio (SNR). We developed a phantom and a method to 

calculate the MTF of spectroscopic imaging sequences. We used 

simulations to test the dependence of that function on peak SNR and 

reconstruction weights. Furthermore, our results were used to derive an 

optimized set of reconstruction parameters based on the modulation 

transfer function to reconstruct an experimental, clinically relevant CS-

MRSI dataset.  

4.2 Theory 

4.2.1 Modulation Transfer Function 

System transfer characteristic functions are a set of functions that 

treat an imaging system as a black box and describe the relationship 

between the output of the system to the input. They rely on the system 

satisfying two properties: The first of these is linearity, where the output of 

a linear system corresponding to the sum of inputs is equal to the sum of 

outputs corresponding to the separate inputs, and that the multiplication of 
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the input by a constant multiplies the output by the same constant. The 

second of these is invariance, where the image of a point retains its shape 

as the object point is moved in the object plane. By treating a linear, shift 

invariant imaging system as a black box, the output corresponding to any 

conceivable input can be determined knowing the system transfer 

function.  

The modulation transfer function quantifies the amount of 

modulation at a specific frequency that is encoded in the output image, 

relative to input modulation at the same frequency. In this way, not only 

the limiting resolution can be quantified, but the ability of an imaging 

protocol to represent a complete range of spatial frequencies can be 

quantitatively recorded. The modulation transfer function is defined as the 

ratio of the output modulation to the input modulation of a sinusoidal 

distribution of a specific spatial frequency through an imaging system. It 

can be defined as the ratio between output and input sinusoidal 

amplitudes of the same frequency, normalized to the DC scaling factor of 

the system (see below).  In this way the zero-frequency, or DC response 

of the system is always normalized to unity. Although the CS algorithm 

can reconstruct the sub-Nyquist under-sampled k-space data with greatly 

reduced artifact, it is unlikely that the MTF does not suffer to some degree, 

especially at k-space frequencies with severe under-sampling. 

Scaling DC System(k)Amplitude  Sinusoidal Input

(k)Amplitude  Sinusoidal Output

(k) Modulation Input

(k) Modulation Output

sinusoid of Mean

(k) sinusoid ofAmplitude 
 

1




MTF

and

Modulation
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4.2.2 Compressed Sensing 

CS-MRI relies on two principles: (1) sub-Nyquist under-sampling of 

k-space in a manner that promotes incoherent interference rather than 

coherent aliasing, and (2) reconstruction of the image via a nonlinear 

method that exploits the sparsity of the data and promotes consistency 
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with the acquired under-sampled k-space points.9, 15-18 Random sampling 

of k-space produces incoherent interference as opposed to the aliasing 

produced as a result of periodic under-sampling. A Monte-Carlo based 

algorithm can be used to assess the interference resulting from different k-

space under-sampling patterns and choose the pattern that most 

effectively minimizes aliasing. The patterns can be generated randomly or 

pseudo-randomly according to a desired distribution function.9 

A nonlinear method is required to reconstruct the data and is 

achieved by solving the following: 

1
2

2 |||| || argmin mymFum        (4-2) 

where m is the desired image,  is a sparsifying wavelet transform,  is 

the reconstruction weight used for the wavelet, Fu is the under-sampled 

Fourier transform, and y is the acquired under-sampled k-space. The first 

half minimizes the l2 norm and hence promotes consistency between the 

acquired under-sampled k-space data and the corresponding points of the 

Fourier transform of the reconstructed image.  Conversely, the second half 

minimizes the l1 norm of the sparsifying transform domain data, and 

hence promotes sparsity. An array of methods including  iterative soft 

thresholding,19-21 iterative reweighted least squares,22, 23 interior point 

methods 24, 25 and projections onto convex sets 26 have been proposed to 

solve the above problem. 

4.3 Materials and Methods 

4.3.1 Phantom 

A phantom was required to assess the spatial accuracy and 

resolution resulting from different MRSI sequences and reconstructions. 

Optimum phantom design would produce high contrast images with 

varying degrees of spatial detail and include a uniform normalization area. 

Also, it was designed such that the phantom’s physical dimensions fit in a 

head coil. The phantom consists of an insert made up of nine 10o wedges 
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arranged in a fan-shaped semicircle separated by nine 10o voids.  Zero-

frequency is represented by a uniform region positioned below the wedges 

as show in Figure  4-1. The insert is immersed in a 21 cm cylinder filled 

with a solution of choline (6 mM), creatine (20 mM) and acetate (25 mM). 

Upon taking arc profiles of the resulting axial images of the phantom, a 

square wave pattern can be reproduced at varying radii from the centre of 

the semi-circle, effectively producing a series of square waves of varying 

spatial frequency. The analysis region of interest shown in Figure 4-1 was 

defined by the limitations of clinically relevant fields-of-view for the 

sequence used. The dimensions of the wedges along with the need for a 

uniform region for normalization of the profiles at zero-frequency, limit the 

measurable spatial frequency range to ~0.4 lp/cm – 6.0 lp/cm.  

 

Figure  4-1: Left: T2-weighted image of the phantom with the white box showing the 

MRSI field-of-view. Right: Fully sampled acetate area map. The high-lighted pie-

shaped region the region of interest used for MTF calculation. The dashed arrow 

signifies the location of the arc profile shown in Figure 2. The black box region is 

the uniform region used to normalize the arc profiles. 

4.3.2 MTF calculation method 

As outlined earlier, arc profiles of the phantom represent a series of 

square waves whose frequencies are inversely proportional to the radius. 

These square waves were used to generate the input modulation that was 

used in calculating the MTF (Fig. 4-2).  As the MTF will be affected by the 

spatial non-uniformity of the imaging coil and the asymmetry of the 
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randomization of the under-sampling pattern used for compressed 

sensing, special care was needed to account for those effects. The 

analysis region was limited by the clinically relevant FOV used (Fig. 4-1) 

which limited the span of analysis to 4 line pairs instead of the 8 available. 

The angular variation of k-space content (arising from both the 

randomization of the CS sampling as well as the variable k-space span 

from a lateral direction to the diagonal) would require at least two phantom 

orientations 90 degrees apart to obtain an average MTF response.  A 

further two orientations were acquired in this work for every sampling 

pattern in order to better account for spatial coil and B0 non-uniformities. 

While the coil response would not have changed, by rotating the phantom 

we ensured that all regions of the phantom experience a variety of non-

uniformity in coil response and B0. This ensures that such effects are 

averaged out in our measurements. The MTF was independently 

calculated for each of the four angular orientations of the phantom and the 

resulting MTFs were then averaged to give the final MTF.  

For each scan, a mathematically generated square wave response 

at each arc profile was calculated and transformed to Fourier space (Fig. 

4-3). The MTF calculation was performed on acetate images 

reconstructed to a 128×128 grid (discussed in the processing section 

below) and as such, the arc profiles were sampled densely enough to 

minimize any aliasing effects from higher order peaks onto the 

fundamental frequency.  Given the sampling density used herein of 32 

samples per line pair and the worst case scenario of a perfect square 

wave, comparisons of our measured response to a Fourier-series 

decomposition found the largest aliasing contribution to be 0.16 percent of 

the fundamental amplitude. The arc profiles generated from the acetate-

area images were normalised to the uniform-zero-frequency region of the 

phantom shown in Figure 4-1 before the corresponding Fourier transforms 

were calculated. The ratio of the magnitude between the fundamental 

frequency component of the acetate-area arc profile (Fig. 4-3) to that of 
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the mathematically generated input square-wave was calculated resulting 

in the MTF at that spatial frequency and was repeated at 0.05 lp/cm 

increments. The procedure was repeated for 12 experimental scans (3 

scans × 4 orientations) and the resulting MTFs were averaged to give the 

final measured modulation transfer function.  

 

Figure  4-2: Arc profile of the acetate-area images along with the mathematically 

generated input modulation square wave 

 

Figure  4-3: Frequency response of the arc profile of the acetate-area image 

4.3.3 Sub-Nyquist Sampling 

Sub-Nyquist k-space sampling patterns were generated using a 

Monte-Carlo based pseudo-random method in which a distribution function 
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forces full sampling of the centre of k-space (Fig. 4-4). This method was 

found to be superior to randomly sampled k-space patterns based on a 

uniform distribution function.9, 10 The resulting optimized under-sampling 

pattern was generated for an acceleration factor of 4 (Fig. 4-4) where the 

total number of k-space samples acquired is ¼ of that of the fully sampled 

32×32 k-space grid. 

  

Figure  4-4: Left: The probability distribution function used for generating the k-

space sampling pattern. Right: k-space sampling pattern used for 4-fold 

acceleration 

4.3.4 Imaging sequence 

The scans were performed on a Philips Achieva 3 T MRI (Philips 

Healthcare, Bothell, WA) unit together with an 8 element head coil. To 

avoid added effects of signal combination the acquisition was performed 

with the coil operating in quadrature mode.  A 2-D Point RESolved 

Spectroscopy (2-D PRESS) sequence was used to scan the phantom. A 

32×32 k-space grid was used to sample k-space covering a field of view of 

11.2×11.2 cm2 and a resulting in-plane nominal spatial resolution of 

0.35×0.35 cm2. It is important to note that in the case of k-space 

acquisition in a square field-of-view, the limit in resolution is defined by the 

diagonal extent of k-space. Accordingly, while the nominal resolution for 

the scan described above is 0.35 cm, the limit in resolution is 0.25 cm due 

to a diagonal k-space extent that is 40% larger than the lateral k-space 

extent. The slice thickness was set to 0.7 cm. Half-echo acquisition was 

performed over 512 ms where 1024 time points were sampled at a rate of 



76 
 

2000 Hz. The repetition and echo times were set to 1400 ms and 32 ms, 

respectively.  

Three scans were acquired with the phantom oriented in each of 

four angular orientations with respect to the centre wedge; at 0, 90, 180 

and 270. The raw data was arranged in a 3 dimensional matrix 

corresponding to ky-kx-t, where ky and kx are the k-space coordinates in 

the y and x directions, respectively, and t is the acquisition time. This data 

was later subsampled using the optimized undersampling pattern to 

generate the compressed sensing datasets. 

4.3.5 Simulated data 

A two-dimensional model of the phantom was created in Matlab 

(The MathWorks, Natick, MA) based on the geometry and the spectral 

quality acquired from the 2D-PRESS scan of the phantom above (32×32 

pixels with nominal resolution of 3.5×3.5 mm2). The simulated peak height 

was chosen together with the addition of noise to achieve a similar peak 

SNR to that of the acquired data. Peak SNR is the ratio of the magnitude 

of the acetate peak to the standard deviation of the noise in a spectrum 

acquired from the uniform region of the phantom. In other simulations, 

spectral noise was varied to simulate different peak SNR’s while 

maintaining the same peak heights. Simulations were repeated five times 

for each mean peak SNR value. The simulated k-space data was 

arranged in a ky-kx-t matrix similar to that of the experimental phantom 

scans. As the simulations do not suffer any spatial non-uniformity from an 

imaging system, MTF calculations for the simulations only considered 2 

orientations of the phantom; at 0 and 90. 
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Figure  4-5: Simulated phantom geometry along with the simulated MRSI grid 

showing metabolite peaks with and without noise 

4.3.6 Reconstruction 

It was found empirically that applying a wavelet transform to a 

spectrum in the frequency domain produces a sparser representation than 

applying the transform to the time domain FID signal. A 3-D wavelet 

transform was applied on a sample dataset and reconstructed using only 

the highest 25% of the 3-D wavelet coefficients. A root mean square error 

(rmse) of 0.29% was observed between the original and the reconstructed 

datasets when applying the wavelet transform to the spectrum in the 

frequency domain versus an rmse of 0.44% when applying the transform 

to the time domain FID signal. Accordingly, a 1-D Fourier transform is 

applied to the CS-MRSI data in the t-direction to transform it to kx-ky-f. 

Subsequently, a 3-D wavelet transform in the x-y-f dimensions serves as 

the sparsifying transform for the reconstruction.  

The CS reconstruction algorithm is based on an iterative 

nonlinear conjugate gradient method with a line search function is 

used in the Matlab code provided by M. Lustig 
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(http://www.msrl.stanford.edu/∼mlustig/software).9 The code was 

modified in-house to work with MR spectroscopic imaging data. 

The nature of the CS reconstruction requires optimization of the 

weights for the sparsifying transforms to balance the data fidelity 

and sparsity constraints.  Previously, this was achieved empirically 

and is thought to have little impact on reconstruction accuracy.9-11 

Using the simulated datasets, we tested the effect of different 

reconstruction weights on the MTF of the resulting acetate images.  

Also, due to the nonlinearity of the CS reconstruction process, peak 

SNR may have an impact on the MTF of the reconstructed metabolite 

images, as opposed to linear systems where the two are fundamentally 

independent. Accordingly, we repeated the same experiment for datasets 

with different peak SNRs to investigate the combined effect of 

reconstruction weights and peak SNR on MTF.  

For every experimental CS-MRSI dataset, two Nyquist sampled 

datasets were reconstructed using the traditional 2D inverse Fourier 

transform: a fully sampled 32x32 dataset and a Nyquist-sampled low-

resolution dataset consisting of the same number of k-space samples as 

the sub-Nyquist-sampled compressed sensing dataset. All datasets were 

reconstructed to a 128x128 grid using zero-padding in k-space prior to 

spectral processing and peak-fitting.  

4.3.7 Processing 

The x-y-f data resulting from the CS nonlinear reconstruction was 

inverse-Fourier transformed back to x-y-t domain to undergo the same 

processing steps as the Nyquist sampled data. Post reconstruction, all 

datasets were subjected to the same spectral processing and peak fitting 

steps as follows: 

Firstly, in the x-y-t domain, additional water suppression was 

achieved by convolving the time domain FID with a 7.5 ms Gaussian and 

subtracting the result of the convolution from the FID. This is equivalent to 
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applying a high-pass filter that selectively supresses the remaining water 

signal.  Furthermore, a half-gaussian apodizing filter was applied to the 

water-suppressed FID to reduce spectral noise. 

Secondly, the apodized x-y-t data was then forward Fourier 

transformed to x-y-f where it was phase corrected and further analyzed 

using software that calculates the area under different metabolite peaks.27 

The peak fitting algorithm fits a sum of complex Lorentzian functions to the 

acquired spectra.28 The resulting Lorentzian parameters were used to 

analytically calculate the area under the choline, creatine and acetate 

peaks from each voxel. The acetate-area map was used to calculate the 

MTF of its respective scan. Normalized root-mean-square error (nrmse) 

was calculated for CS reconstructions in comparison to the fully sampled 

acetate images. The nrmse is defined as the ratio of the root-mean-square 

error between the CS reconstruction and the fully sampled acetate image, 

to the root-mean-square of the fully sampled acetate image. 

4.4 Results and Discussion 

Like MRI, resolution in MRSI is dependent on the extent (width) of 

sampled k-space. In the case of k-space acquisition in a square field-of-

view, the limit in resolution is defined by the diagonal extent of k-space. 

For example, in the case of the fully sampled 32 k-space points wide 

dataset described above, the lateral voxel size is 0.35 cm (corresponding 

to a measurable resolution of ~1.4 lp/cm), however the diagonal extent of 

k-space is ~ 40% larger, resulting in a limit resolution of 0.25 cm (~2.0 

lp/cm). Because k-space is not amplitude modulated by filtering or from 

signal decay (as would occur with multi-echo approaches) during an 

unaccelerated 2-D PRESS acquisition, the MTF is expected to be 

relatively constant from 0 lp/cm to the lateral frequency cutoff (1.4 lp/cm). 

Due to the square field-of-view acquisition, not all orientations of k-space 

are sampled between the circular and the diagonal cut-off frequencies (1.4 

and 2.0 lp/cm, respectively). Accordingly, the MTF gradually declines to 
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zero between 1.4 lp/cm and 2.0 lp/cm. Similarly, for the low-resolution 

scans (shown in Figure 8), the cutoff frequency is expected to be 1.0 lp/cm 

rather than 0.7 lp/cm as a four-fold reduction in scan time corresponds to a 

two-fold reduction in sampled k-space in each direction. Figure 4-6 shows 

that our fully-sampled MTFs agree in general form with the theoretically 

expected Nyquist-sampled MTF shapes explained above.  

 

Figure  4-6: MTF of fully sampled simulations and showing the effect of processing 

filters and noise on the MTF. 

Figure 4-6 shows that on noiseless simulations, the data processing 

filters used had no effect on the MTF. This is expected as no filters were 

applied in the k-space domain. Moreover, when noise was added to 

simulations, the average response is seen to converge to the noiseless 

case.  The lack of a k-space apodizing filter leads to Gibbs ringing artifacts 

in the spatial domain caused by the discontinuity in k-space when zero-

padding from 32×32 to 128×128. These artifacts lead to an unexpected 

dip in the MTF at 1.0 lp/cm and peaks at 1.1 lp/cm and 1.2 lp/cm due to 

destructive and constructive interference, respectively. A k-space 

apodizing filter (e.g Butterworth filter) would decrease the Gibbs ringing 

but it would also greatly influence the shape of the MTF especially at the 

cutoff frequencies. We chose to tolerate the ringing to preserve the cutoff 

frequencies. 
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Figure  4-7: Calculated MTFs for CS reconstructions from simulation using varying 

weights for different peak SNRs 

For the MTF to be treated as a system characteristic function, an 

assumption of system linearity is required for the function to fully describe 

the frequency response of the system. However, the nonlinearity of CS 

reconstruction might lead to differences in system response based on 

peak SNR inputs. Figure 4-7 shows the mean MTFs for CS reconstruction 

of the simulated phantom spectra using different reconstruction weights for 

simulations with different peak SNRs.  These MTFs calculations were 

repeated with a number of different noise sets to average out noise 

perturbations on the shape of the MTF.   

The frequency response of the system was very robust across a 

wide range of SNRs when a reconstruction weighting of 0.003 was utilized 

(Fig. 4-7b).  The robustness of the frequency responses with differing 

noise levels suggest that for this particular reconstruction weight, the 

system can be considered linear, and the frequency response curves can 

be considered as the characteristic MTF of the system.  However, the 

implementation of other reconstruction weights was seen to generate sub-

optimal response curves at some of the SNR levels tested.  This implies 

that when selecting reconstruction weights, it is important to consider the 

response over a range of SNRs that one expects to encounter.  An ideal 
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weighting will generate both an optimal and consistent response over this 

range.  If this step is not taken, a satisfactory response curve obtained at a 

high signal level may not be applicable for a lower one, and visa-versa 

(Fig. 4-7a).   

Furthermore, while using different reconstruction weights at times 

led to varying MTFs, this was not necessarily reflected in the nrmse of the 

reconstructions. This suggests that using nrmse as the sole 

reconstruction-goodness parameter can lead to reconstructions with a 

sub-optimal and potentially nonlinear response..  

 

Figure  4-8: Calculated MTFs for simulated CS reconstructions using varying 

weights for a peak SNR value similar to that of the physical phantom 

The average peak SNR of the spectra acquired from the 2-D 

experimental scan of the phantom was found to be 24.9. Figure 4-8 shows 

the varying MTFs for a set of simulated data with peak SNR of 27.5 similar 

to that of the experimental data.  From the figure is it is clear that at that 

peak SNR the best MTFs are produced when the reconstruction weights 

used are 0.001, 0.003 and 0.008.  

It is most likely that in the case of disease that the peak SNR for a 

specific scan would be unknown, hence, it is important that the chosen 

reconstruction weight is robust across a wide peak SNR range. 

Accordingly, due to the robustness of the 0.003 weight across the peak 
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SNR range (Fig. 4-7b), it appears that this reconstruction weight is the 

optimum for reconstructing the experimental scans.  

 

Figure  4-9: MTF of noiseless simulations using different CS reconstruction weights 

Similar to Figure 4-8, it was found that the MTF of CS for noiseless 

simulated datasets also depended on the reconstruction weight used, as 

shown in Figure 4-9.  It is important to note that although the resulting 

MTFs are very similar between the noiseless and noise-added scenarios 

(Fig. 4-9 and 4-8, respectively), the optimum reconstruction weights are 

different. This again suggests that peak SNR plays a major role in 

determining the optimum reconstruction weight.  

MTFs corresponding to all reconstruction weights tested were plotted 

for each peak SNR (not shown). The reconstruction weight yielding the 

best MTF at each peak SNR was chosen and the corresponding MTF 

plotted in Figure 4-10. It is clear from Figure 4-10 that all the resulting 

MTFs agree within error. This suggests that although the reconstruction 

process is nonlinear with respect to reconstruction weights, the optimum 

reconstruction seems to yield an MTF that is independent of peak SNR.  
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Figure  4-10: The best MTF achievable for CS-MRSI over a wide range of peak SNR 

 

Figure  4-11: Reconstructed MRSI spectra overlaid on T2-weighted images of the 

phantom 

The optimized reconstruction weight of 0.003 was used to 

reconstruct a four-fold accelerated compressed sensing MRSI scan of the 

phantom described earlier. Figure 4-11 shows the spectra resulting from 

compressed sensing MRSI scan compared to a fully-sampled scan and an 

equivalent Nyquist sampled low-resolution scan.   
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Compared to the fully-sampled scan, both the low-resolution and 

the CS spectra suffer from partial volume artifacts in the form of visible 

signal in dark regions of the phantom. However, there is a visible reduction 

of noise in the CS spectra due to the application of the wavelet transform 

in the reconstruction. Moreover, the top row shows better correlation with 

the geometry of the underlying phantom for the low-resolution spectra than 

the CS ones. Both CS and the low-resolution spectra appear to be very 

similar in the second row from the top. In the bottom two rows 

(corresponding to a higher resolution region), the CS spectra show better 

correlation to the phantom geometry than the low-resolution ones. 

 

Figure  4-12: MTF of the experimental CS dataset compared to equivalent Nyquist-

sampled  low-resolution and the fully-sampled Fourier reconstructions 

Figure 4-12 shows the calculated MTF for a four-fold accelerated 

CS-MRSI scan of the phantom. There is good agreement between the 

MTF calculated for simulations and that of the experimental datasets. The 

ringing artifacts evidenced in the MTF of the noiseless datasets discussed 

earlier (Fig. 4-6) are visible in the experimental measurements (Fig. 4-12). 

The magnitude of the artifact (<0.1) is smaller than the error bars 

associated with the experimental measurements and significantly smaller 

than the drop in MTF associated with CS, indicating that the 

aforementioned ringing artifacts would have limited effect on the results 

below.  
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Expectedly, the resolution at 0.1 MTF decreases for both the CS 

(1.25 lp/cm) and the low-resolution (0.95 lp/cm) datasets compared to the 

fully sampled dataset (1.85 lp/cm), a decrease of 32.4% and 48.6%, 

respectively. CS-MRSI maintains a higher MTF between 0.8 lp/cm and 1.4 

lp/cm leading to higher effective resolution than the equivalent low-

resolution dataset. However, the increase in effective resolution comes at 

the cost of low-resolution response.  Between 0.4 and 0.8 lp/cm, the CS 

scans have a visibly lower MTF compared to their Nyquist-sampled low-

resolution counterparts which is also apparent in Figure 8. The lessened 

low-resolution performance is attributed to the pseudo-random under-

sampling of k-space inherent to the CS method and the inability of CS to 

accurately fill in the missing k-space data as expected.  In the case of the 

Nyquist-sampled low-resolution scans, 256 (16x16) points are used to 

periodically sample k-space, while in the case of CS-MRSI, the same 

number of points are used to sample a k-space area four times larger. 

That results in a reduction in sampling density of k-space at the 

aforementioned spatial frequencies, which by extension may translate to 

the observed reduction in signal response at those frequencies.  

4.5 Conclusions 

In this work we have investigated MTF behaviour of compressed-

sensing MRSI reconstruction, including the specific effects of CS 

reconstruction weights and peak SNR on MTF. While CS reconstruction is 

nonlinear by definition, our results show that when proper care is taken in 

choosing the reconstruction weighting factor, the resulting MTFs were 

found to be robust with regards to peak SNR. Furthermore and importantly 

for practical application of this technique, the optimal weighting factor was 

found to be dependent on peak SNR. Accordingly, prior knowledge of the 

expected peak SNR range is important to yield optimum MTF response of 

the CS reconstruction.  
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The phantom-MTF technique proposed in this work provides an 

excellent quantitative measure of the performance of MRSI sequences 

that to the best of our knowledge is the first attempt to quantify the MTF of 

MRSI metabolite images. We have successfully used it to compare CS-

MRSI to fully sampled conventional MRSI. Our quantitative method of 

evaluating the MTF for MRSI along with simulations and a purposefully 

designed phantom enabled us to optimize the reconstruction weight to 

produce the best possible MTFs across a range of peak SNRs (8.98 – 

34.9). We used the optimized weight to successfully reconstruct an 

experimentally acquired CS dataset using a clinically relevant 1H MRSI 

sequence. Our method was able to quantify an average decrease of 

32.4% in spatial resolution in the CS-MRSI scans at 0.1 MTF compared to 

a loss of 48.6% for the equivalent Nyquist-sampled low-resolution scans. 

Moreover, we were also able to quantify the cost of the increase in 

resolution, with CS-MRSI showing decreased low-resolution response 

compared to the equivalent low-resolution datasets. 
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Chapter Five 

5 Effect of the k-space Sampling Pattern on the 

MTF of Compressed Sensing MRSI 

5.1 Introduction 

As introduced in Chapter Four, Compressed sensing (CS) is an 

acceleration technique that has appeared relatively recently in the field of 

MR, and more recently has been applied to MRS imaging.1-6 When applied 

to MRI, CS exploits the incoherent nature of aliasing artifacts associated 

with randomized sub-Nyquist sampling of k-space rather than the coherent 

aliasing (fold-over) artifacts associated with periodic sub-Nyquist sampling. 

The recovery of the original image relies on the sparsity of the MRI images 

in a transform domain to suppress the incoherent aliasing artifacts and 

reconstruct the original image using a constrained nonlinear algorithm. 

Since little-to-no time efficiency can be gained from randomly sub-

sampling a frequency-encoded trajectory, this sub-sampling is generally 

achieved by selectively omitting random phase-encoding steps. 

Because of its typical reliance on nested phase-encoding loops for 

spatial definition, spectroscopic imaging is a prime candidate for 

acceleration through this technique. For example, a typical clinical 3-D 

brain Point RESolved Spectroscopy (PRESS) MRSI sequence (12×12×4 

voxels, FOV 12×12×4 cm3, TR = 1500 ms) takes about 14 minutes to 

complete while achieving only 1 cm3 voxels. This limits the maximum 

resolution and field-of-view achievable in a clinically reasonable time 

frame. Two-fold undersampling of each in-plane direction (four-fold 

overall) would therefore allow for either decreasing the scan time to ~ 3 

minutes or increasing the in-plane nominal resolution to ~ 0.25 cm2. 

Consequently, CS-MRSI can be used as an acceleration tool to decrease 

the scan time while maintaining acceptable spatial definition or to enable 
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the acquisition of higher resolution scans while minimizing the associated 

time penalty.1-8 

It is reasonable to expect that most acceleration schemes will have 

some undesired consequences on image quality. The nature of such 

sacrifices depends on the acceleration technique employed, and the 

degree of acceleration. The user usually weighs costs and benefits to 

decide whether or not to use such technique and the degree of 

acceleration. In the case of compressed sensing, the literature has usually 

relied on qualitative comparisons between compressed sensing 

reconstructions and their Nyquist sampled counterparts. While those 

comparisons show subtle differences in high-detail resolution between 

compressed sensing and Nyquist sampled images, the lack of a 

quantitative measure of those measurements may lead some to misjudge 

compressed sensing as a lossless acceleration technique.1-3 One metric 

that has been repeatedly used in the literature is the normalized root mean 

square error (nRMSE) between a compressed sensed image and its full 

Nyquist sampled counterpart.2-4 While the nRMSE score provides a 

measure of the fidelity of the compressed sensing reconstruction, it fails to 

provide any information about any possible losses in local resolution. 

The MTF is a metric that quantifies the amount of modulation at a 

specific frequency that is encoded in the output image, relative to input 

modulation at the same frequency. The MTF is normalized to 1 at zero 

frequency (uniform signal). For example, if an MRI were to image an 

object with a sinusoidally varying intensity, and the output image was only 

able to replicate the signal with an amplitude 80% that of the input (relative 

to the transfer of uniform signal), the MTF would record a response of 0.8 

at that frequency. In this way, not only the limiting resolution can be 

quantified, but the ability of an imaging protocol to represent a complete 

range of spatial frequencies can be quantitatively recorded. In that sense, 

quantifying the MTF would provide an accurate measure of the effect 

compressed sensing has on representing the spatial frequencies present 
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in the imaged object. Chapter Four introduced a method to quantify the 

MTF of MRSI scans and to provide a quantitative measure of the cost and 

benefit of CS-MRSI.6 

With random sub-Nyquist sampling of k-space, aliasing artifacts 

become incoherent, and can be suppressed by a constrained optimization. 

However, this undersampling has been found to have an insidious 

consequence. As shown in Chapter Four, MTFs of the CS metabolite 

images were found to be distinctly different from their corresponding full 

Nyquist sampled counterparts.6 It was also shown that the CS-MTF 

response was greatly reduced at high spatial frequencies which 

correspond to severely undersampled regions of k-space. Reduced high 

spatial frequency response corresponds to a widening of the point spread 

function, effectively reducing the spatial resolution of the CS 

reconstruction to a value far lower than the expected nominal value of the 

full Nyquist sampled images. This effect would be hard to detect on clinical 

subjects and phantoms not designed for MTF quantification. 

Random sampling of k-space leads to variations in the density of 

the k-space sampling at various spatial frequencies compared to 

conventional Nyquist sampling which we suspect is the main factor 

affecting the MTF. In this work we set out to investigate the MTF 

behaviour of CS-MRSI with regard to different k-space sampling patterns. 

We suspect that there is a correlation between the manner in which k-

space is being sampled (i.e. k-space sampling density of the CS sampling 

patterns) and the MTF of the resulting CS reconstruction. Comparing CS-

MRSI and Nyquist sampled 32×32 reconstructions with identical TR/TE 

times and the absence of amplitude modulation or filtering of k-space, one 

would expect the Nyquist sampled 32×32 MTF to define the upper limit of 

the available response at each spatial frequency. Accordingly, CS-MTF 

can be considered a subset of the Nyquist sampled 32×32 response. 

Given that the difference between the Nyquist sampled response and the 

compressed sensing response is mainly the sub-Nyquist sampling of k-
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space, we are proposing the relationship between the Nyquist sampled 

32×32 MTF and the CS-MTF to be explained as follows: 

MTF(k)-NS (k) ratiosampling   MTF(k)-CS

(k) samplesspace -k NS of# 

(k) samplesspace -k CS of# 

MTF(k)-NS

MTF(k)-CS





or    (5-1) 

where NS-MTF corresponds to the Nyquist sampled 32×32 simulations 

and the sampling ratio is defined as the ratio of number the k-space 

samples acquired in the CS sampling pattern to those acquired in a full 

Nyquist sampled 32×32 grid, at each spatial-frequency (k).  

If true, Eq. 5-1 would provide the ability to theoretically predict the 

CS-MTF (and by extension the point spread function) based on the 

manner of k-space sampling without having to measure the individual MTF 

response of each CS reconstruction. This would yield the benefit of 

knowing the likely cost of applying CS, at least in terms of resolution, 

before a scan is implemented. It would allow for the design of appropriate 

under-sampling schemes (tailored to the imaging requirements at hand) 

without the need for time-consuming trial and error.   

In this work we relied on simulations of the detail phantom 

described in the literature to calculate the MTF of a spectroscopic imaging 

sequence and test the dependence of that function on the sampling ratio 

of the sub-Nyquist k-space sampling pattern used in compressed 

sensing.6 Using the knowledge of the relationship between the sampling 

ratio and MTF, we explored means to improve the predictability and 

potential customization of the MTF of CS-MRSI by modifying the algorithm 

responsible for generating the k-space sampling patterns used in 

compressed sensing. 

5.2 Materials and Methods 

Compressed Sensing MRI relies on two principles: (1) sub-Nyquist 

under-sampling of k-space in a manner that promotes incoherent 

interference rather than coherent aliasing, and (2) reconstruction of the 
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image via a nonlinear method that exploits the sparsity of the data in the 

transform domain and promotes consistency with the acquired under-

sampled k-space points.1, 7, 9-12  

Sub-Nyquist k-space sampling patterns are generated using a 

Monte-Carlo based pseudo-random method in which a probability 

distribution function (PDF) guides the sampling probability of different 

regions in k-space.1, 3 The algorithm assesses the interference in the 

transform domain resulting from different sub-Nyquist k-space sampling 

patterns (generated randomly based on the PDF) and chooses the pattern 

that most effectively minimizes aliasing over a predetermined number of 

iterations (10000). The acceptance criterion for the final selected sampling 

pattern is solely based on minimizing the interference caused by sub-

Nyquist sampling. This can lead to cases where the resulting sampling 

pattern is very effective in reducing interference but whose sampling ratio 

is different from the desired PDF. We shall refer to patterns generated 

using this algorithm as density unconstrained patterns. For this work, k-

space sampling patterns were generated where the total number of k-

space samples acquired is ¼ of that of the fully sampled 32×32 k-space 

grid (Fig.5-1) achieving an acceleration factor of 4 in scan times. Three 

sets of ten k-space sampling patterns were generated using a step, 1/r2, 

and half-Gaussian PDFs, respectively. All PDFs fully sample an inner 

radius of 2 k-space points to improve SNR.1, 3  

The afore-mentioned algorithm was then modified to produce k-

space sampling patterns whose sampling ratios are constrained to adhere 

to the desired PDFs. As before, it is an iterative process where the final 

selection criterion for a sampling pattern is based on minimizing the 

interference caused by sub-Nyquist sampling. However, the resulting k-

space sampling patterns are optimized for both reduction in interference 

and adherence to the PDF. For the purpose of this paper we shall refer to 

k-space sampling patterns produced by the modified algorithm as PDF-

constrained patterns. Three sets of ten PDF-constrained patterns were 
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generated using a step, 1/r2, and half Gaussian PDFs, respectively, and a 

fully sampled radius of 2 k-space points.  

 

Figure  5-1: Examples of the probability distribution function (PDF) (left), a 

corresponding profile through the centre of k-space (middle) and an example of a 

corresponding k-space sampling pattern (right) for (a) a step, (b) a 1/r2, and (c) a 

half-Gaussian PDF. 

5.2.1 Phantom 

A two-dimensional model of the phantom used in Chapter Four 

(Section 4.3.1) was created in Matlab (The MathWorks, Natick, MA) based 

on the geometry and the spectral quality acquired from a 2D-PRESS scan 

of the phantom (32×32 pixels with nominal resolution of 3.5×3.5 mm2, 

TR/TE of 1400/32 ms, half-echo acquisition over 512 ms, sampling rate of 

2000 Hz). First, a T2-weighted 512×512 scan of the phantom was 

acquired over the same field-of-view as the MRSI scan.  The T2-weighted 

image was segmented into a 2-D mask (0 for the wedges and 1 for signal). 

The mask was 2-D Fourier transformed to a 2-D k-space representation of 

the phantom geometry. Second, the central 32×32 pixels of the k-space 
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were multiplied by a sum of decaying exponentials representing the time-

domian FID corresponding to the Choline, Creatine and Acetate signals, 

resulting in the three dimensional k-space (kx,ky,t) simulation of the 

phantom. The simulated peak heights were chosen together with the 

addition of noise to achieve a similar peak SNR to that of a previously 

acquired dataset. Peak SNR is the ratio of the magnitude of the acetate 

peak to the standard deviation of the noise in a spectrum acquired from 

the uniform region of the phantom. Three simulations (noise sets) were 

generated with mean peak-SNR of 27.8.  

 

Figure  5-2: (a) T2-weighted image of the phantom with the white box showing the 

MRSI field-of-view. (b) Fully sampled acetate area map. The high-lighted pie-

shaped region the region of interest used for MTF calculation. The dashed arrow 

signifies the location of the arc profile shown in figure 2. The black box region is 

the uniform region used to normalize the arc profiles. 

5.2.2 Reconstruction 

The CS reconstruction algorithm is based on an iterative 

nonlinear conjugate gradient method with a line search function 

used in the Matlab code provided by M. Lustig 

(http://www.msrl.stanford.edu/~mlustig/software). The code was 

modified in-house to work with MR spectroscopic imaging data. A 
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3-D wavelet transform in the x-y-f dimensions serves as the 

sparsifying transform for the 3-D reconstruction. The nature of the 

CS reconstruction requires optimization of the weights for the 

sparsifying transforms to balance the data fidelity and sparsity 

constraints. The optimum weight for CS reconstruction was 

empirically determined to be 0.001. Each phantom simulation was 

reconstructed using 10 k-space sampling patterns for each PDF, 

yielding a total of 30 (3 simulations × 10 sampling patterns/PDF) 

reconstructions per PDF. To account for asymmetries in the k-

space sampling patterns, the CS reconstructions were repeated 

with the phantom orientation rotated 90o in-plane using the same 

un-rotated sampling patterns.6 This yielded a total of 60 

reconstructions for each probability distribution function. 

For every CS-MRSI dataset, two Nyquist sampled datasets were 

reconstructed using the traditional 2D inverse Fourier transform: a fully 

sampled 32×32 dataset and a time-equivalent Nyquist-sampled low-

resolution 16×16 dataset consisting of the same number of k-space 

samples as the sub-Nyquist-sampled compressed sensing dataset. All 

datasets were reconstructed to a 128×128 grid using zero-padding in k-

space prior to spectral processing and peak-fitting.  

5.2.3 Processing 

The x-y-f data resulting from the CS non-linear reconstruction was 

inverse-Fourier transformed back to x-y-t domain to undergo the same 

processing steps as the Nyquist sampled data. Post reconstruction, all 

datasets were subjected to the following spectral processing and peak 

fitting steps: First, in the x-y-t domain, additional water suppression was 

achieved by convolving the time domain FID with a 7.5 ms Gaussian and 

subtracting the result of the convolution from the FID. This is equivalent to 

applying a high-pass filter that selectively supresses the remaining water 
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signal. Furthermore, a half-gaussian apodizing filter was applied to the 

water-suppressed FID to reduce spectral noise.  

Second, the apodized x-y-t data was then forward Fourier 

transformed to x-y-f where it was phase corrected and further analyzed 

using software that calculates the area under different metabolite peaks.13 

The peak fitting algorithm fits a sum of complex Lorentzian functions to the 

acquired spectra.14 The resulting Lorentzian parameters were used to 

analytically calculate the area under the choline, creatine and acetate 

peaks from each voxel. The acetate-area map was used to calculate the 

MTF of its respective simulation.  

5.2.4 MTF calculation method 

The MTF calculation method explained in Section 4.3.2 was used to 

calculate the MTFs used in this work.6 MTF calculations were performed 

for 60 CS-MRSI reconstructions (2 orientations × 3 simulations × 10 

sampling patterns/PDF) and the resulting MTFs were averaged to give the 

final measured modulation transfer function.  

5.2.5 Sampling ratio 

To calculate the sampling ratio, k-space was first binned into 0.09 

lp/cm (1 pixel-wide) radial bins from the centre of k-space. Second, the 

sampling ratio was calculated by dividing the number of k-space samples 

defined in the sampling pattern by the number of samples available at 

each spatial-frequency bin. The product of the sampling ratio and the 

Nyquist sampled 32×32 MTF (RHS of Eq. 5-1) will henceforth be referred 

to as the sampling-modulated NS-MTF.  

5.3 Results and Discussion 

As discussed in Section 4.4, the Nyquist sampled  MTF is expected 

to be relatively constant from 0 lp/cm to the lateral frequency cut-off (1.4 

lp/cm) and gradually declining to zero between 1.4 lp/cm and 2.0 lp/cm 

(the diagonal cut-off frequency). Similarly, for the low-resolution scans, the 
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cut-off frequency is expected to be 1.0 lp/cm rather than 0.7 lp/cm as a 

four-fold reduction in scan time corresponds to a two-fold reduction in 

sampled k-space in each direction. Often, to reduce scan times, the 

corners of k-space beyond the lateral cut-off frequencies are not acquired. 

In that case, no orientation of k-space is sampled between the lateral and 

diagonal cut-off frequencies; as a result, the MTF can be expected to drop 

suddenly after the lateral cut-off frequency due to the lack of spatial-

frequency information beyond this threshold.  In this work it was decided to 

investigate the full square cartesian k-space domain and its more 

complicated MTF.  Theory established here will flow nicely to the radially-

symmetric circular k-space domain. 

 

Figure  5-3: MTFs of experimental CS dataset compared to the equivalent Nyquist-

sampled  low-resolution (16×16) and the fully-sampled (32×32) Fourier 

reconstructions. MTFs of simulations are shown for comparison. 

Figure  5-3, shows a comparison between high-resolution Nyquist 

sampled reconstructions, 4× compressed sensing reconstructions using 

the 1/r2 sampling pattern, and the time equivalent Nyquist sampled low-

resolution reconstructions. The figure shows that the MTFs of the Nyquist 

sampled datasets agree in general form with the theoretically expected 

MTF shapes explained above. Furthermore, there is good agreement 

between the MTFs calculated for simulations and those of the 
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experimental datasets. This is in agreement with what has been 

demonstrated in the literature.6 

 

Figure  5-4: Simulated acetate area reconstructions for (a) full Nyquist sampling 

(32×32), (b) CS equivalent low-resolution sampling (16×16), (c) 4× CS-MRSI using a 

step PDF, and (d) 4× CS-MRSI using a 1/r2 PDF.  

Figure  5-4 shows compressed sensing acetate area reconstructions 

using the step PDF and the 1/r2 PDF compared to the Nyquist sampled 

32×32 simulations and the compressed sensing equivalent Nyquist 

sampled 16×16 simulations. The apparent negative peak areas are a 

result of the Gibbs ringing artifacts in the spatial domain. The Gibbs 

ringing is caused by the discontinuity in k-space when zero-padding from 

32×32 to 128×128. These artifacts lead to destructive and constructive 

interference, and the apparent negative peaks. That effect could have 

been mitigated by applying a k-space apodizing filter (e.g Butterworth 

filter) to decrease the Gibbs ringing but it would have also greatly 

influenced the shape of the MTF especially at the cutoff frequencies. We 

chose to tolerate the ringing to preserve the cutoff frequencies.  

From Fig. 5-4, the step PDF reconstruction shows a modest 

improvement in high-detail resolution (closer to the centre of the fan) but at 

the cost of compromised details at the low-detail region (outer parts of the 

fan). The 1/r2 PDF reconstruction appears to recover low-detail response 

but the high-detail does not appear as well resolved as the step-function 

reconstruction. 
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Figure  5-5: MTFs of acetate area simulations of full Nyquist sampled (32×32) 

reconstructions, CS equivalent low-resolution (16×16) reconstructions, 4× CS-MRSI 

using a step PDF and a 1/r2 PDF 

Figure 5-5 shows the MTFs resulting from the reconstruction shown 

in Fig. 5-4 averaged over ten sampling patterns per PDF compared to their 

corresponding Nyquist sampled simulations. Figure 5-5, also shows that 

the tested CS-MRSI maintains a higher MTF between 0.8 lp/cm and 1.4 

lp/cm indicating a higher effective resolution than the time equivalent low-

resolution dataset. However, the increase in effective resolution comes at 

the cost of low-frequency response.  Between 0.4 and 0.8 lp/cm, the CS 

reconstructions have a visibly lower MTF compared to their Nyquist-

sampled low-resolution counterparts as noticed in Fig 5-4. The diminished 

low-frequency performance is attributed to the weighted random under-

sampling of k-space inherent to the CS method and the inability of CS to 

accurately fill in the missing k-space data as expected. In the case of the 

Nyquist-sampled low-resolution scans, 256 (16×16) points are used to 

periodically sample k-space, while in the case of CS-MRSI, the same 

number of points are used to sample a k-space area four times larger. 

This results in a reduction in sampling density of k-space at the 

aforementioned spatial frequencies, which by extension translates to the 

observed reduction in signal response at those frequencies.  
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While the general trends are similar between the CS-MTFs, there is 

a distinct difference between both sets of MTFs especially between 0.4 

lp/cm – 0.8 lp/cm where the 1/r2 PDF reconstructions exhibit higher 

response. Conversely, the step PDF reconstructions exhibit higher 

response between 1.0 – 1.8 lp/cm which is consistent with the 

observations in Figure 5-4. The discrepancy in response between the two 

CS dataset is most likely caused by the different PDF used to generate the 

k-space sampling patterns. Figure  5-1 shows the difference in k-space 

sampling patterns resulting from different PDFs. It is clear that the step-

functions result in sampling patterns that tend to sample the farther 

extents of k-space more densely than the 1/r2 function. On the other hand 

1/r2 function results in denser sampling close to the centre of k-space. This 

reflects the same trends shown in the CS-MTFs above, where the step-

function MTF shows slightly higher response at higher spatial frequencies 

(far k-space) while the 1/r2 function shows superior response at low spatial 

frequencies (near k-space).  

 

Figure  5-6: Comparison between the CS-MTF and the sampling-modulated NS-MTF 

of (a) step PDF, (b) 1/r2 PDF, and (c) half-Gaussian PDF 
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Figure  5-6 shows the relationship between the CS-MTF (circles) 

and the sampling-modulated NS-MTF (diamonds) averaged over 10 k-

space sampling patterns for each PDF. A strong correlation between the 

CS-MTF and the sampling-modulated NS-MTF (R2 of 0.964, 0.989, and 

0.994) coupled with a low l2 norm of residuals (0.212, 0.152, 0.125) are 

noticed for the step, 1/r2, and half-Gaussian PDFs, respectively, strongly 

supporting our proposition in Eq. 5-1. Prediction of CS-MTF shape can 

hence be achieved by calculating the sampling ratio of the pattern used 

and the known Nyquist-sampled MTF. 

 

Figure  5-7: Comparison between the prescribed PDF and the average sampling 

ratio for k-space sampling patterns generated using the original algorithm. (a) Step 

PDF. (b) 1/r2 PDF. (c) Half-Gaussian PDF. 

As explained earlier, the unconstrained algorithm responsible for 

generating the k-space sampling pattern prioritises reducing the coherent 

interference caused by sub-Nyquist to produce the best sampling pattern 

over a number of iterations. This can lead to the cases where the resulting 

sampling pattern is very effective in reducing interference but whose 

sampling ratio is different from the prescribed PDF. This effect is illustrated 
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in Figure 5-7 where a consistent tendency to over sample k-space 

between 0.5 – 0.7 lp/cm compared to the PDF is clearly visible for all the 

investigated PDFs. The large error bars are indicative of the variation in 

sampling ratio between ten patterns produced using the same PDF. 

Accordingly, while the shape of the CS-MTF can be predicted knowing the 

sampling ratio of a sampling pattern, that response cannot be reliably 

predicted or influenced by knowing the PDF. Furthermore, that response is 

not robustly reproducible as evidenced by the relatively large error bars for 

CS-MTF shown in Figure  5-6. 

 

Figure  5-8: Comparison between the prescribed PDF and the average sampling 

ratio for k-space sampling patterns generated using the density-constrained 

algorithm. (a) Step PDF. (b) 1/r2 PDF. (c) Half-Gaussian PDF. 

On the other hand, the PDF-constrained k-space sampling 

algorithm generates patterns whose sampling ratios adhere to the 

prescribed PDF. Figure 5-8 shows the PDFs and sampling ratios of three 

sets of ten PDF-constrained patterns generated using the same PDFs 

used to generate the unconstrained sets shown earlier. It is clear how the 

sampling ratios adhere to the PDFs and the small error bars are indicative 
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of the small variation in sampling ratios between patterns of the same 

PDF. 

 

Figure  5-9: Side-by-side comparison of the CS-MTF, the sampling-modulated NS-

MTF and the PDF-modulated NS-MTF resulting from the unconstrained (left) and 

constrained (right) algorithms for (a) step PDF, (b) 1/r2 PDF and (c) half-Gaussian 

PDF 

Figure 5-9 illustrates the improvement in agreement between the 

Nyquist sampled MTF modulated by the PDF (PDF-modulated NS-MTF) 

(solid line with no markers) and the CS-MTF (circles) for the constrained 

patterns compared to the unconstrained ones. The improvement is 

accompanied by a reduction in the error bars of both the CS-MTF and the 

sampling-modulated NS-MTF indicating a reduction in the variability of 

response between different sampling patterns of the same PDF and an 

improvement in the robustness of predicting the CS-MTF when using the 

PDF-constrained algorithm. 
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Figure  5-10: (a) Coefficients of determination between the PDF-modulated NS-MTF 

and the CS-MTF for step, 1/r2, and half-Gaussian PDFs. (b) Norm of residuals 

between the PDF-modulated NS-MTF and the CS-MTF for step, 1/r2, and half-

Gaussian PDFs. 

In addition to the visual agreement between the PDF-modulated 

NS-MTF and the CS-MTF to within 1 standard deviation, there is a 

consistent improvement in the coefficient of determination (R2) values with 

the use of density constrained sampling patterns, as detailed in Figure 

 5-10a. The l2 norm of residuals values shown in Figure  5-10b, show a 

similar improvement in agreement between the PDF-modulated NS-MTF 

and the CS-MTF with the use of the density constrained algorithm.  

The robustness of the density constrained algorithm as evidenced 

in the agreement between the sampling ratio and the PDF in Fig. 5-8 and 

Fig. 5-9 as well as the high R2 (0.983 – 0.996) and low norms of residuals 

(0.108 – 0.221) between the PDF-modulated NS-MTF and CS-MTF 

supports the substitution of the sampling ratio with the PDF in Eq. 5-1. 

Therefore, the CS-MTF can be expressed as: 

MTF-NS  PDF  MTF-CS       (5-2) 

 

where CS-MTF can be predicted directly by knowing the PDF of the 

density constrained pattern, negating the need to calculate the sampling 

ratio of the specific sampling pattern used. Moreover, since the PDF is a 

user defined function, the result is not limited to improved robustness in 

predicting the CS-MTF, but also provides an opportunity to 
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predefine/prescribe a desired CS-MTF response by means of customizing 

the PDF. 

5.4 Conclusions 

In this work we have investigated the dependence of the MTF of the 

CS reconstructed acetate metabolite maps on the manner in which k-

space is sampled in CS MRSI. As suspected initially, the sampling ratio of 

the patterns used for CS MRSI has a direct effect on MTF. Moreover, high 

R2 values are observed between the sampling-modulated NS-NTF and the 

CS-MTF. These R2 values and the good visual agreement between the 

CS-MTF and the sampling-modulated NS-MTF curves offer a means of 

predicting the MTF of CS MRSI. The relationship established in Eq. 5-1 

provides the user with the ability to theoretically assess the MTF of CS 

MRSI and compare the effect of different k-space sampling patterns 

without the need to perform individual MTF measurements. For example, 

for applications where preserving low-resolution response is desired, 

sampling patterns generated using a half-Gaussian PDF would be more 

suitable than a PDF with a high probability of sampling far k-space (e.g. 

step function) which is more suitable for increasing the effective spatial 

resolution preserving response at high frequencies. 

In addition, the improved agreement between the sampling ratios of 

patterns produced by the density constrained algorithm and the 

prescribing PDFs, along with improved R2 and norm of residuals values 

between the PDF-modulated NS-MTF and the CS-MTF support the 

substitution of the sampling ratio with the PDF in Eq. 5-1. This results in a 

solution for the MTF of CS MRSI that is not only predictable but also 

customizable to the user’s needs. Here arises the potential for the user to 

prescribe a desired CS-MTF response based on the nature of the spatial 

frequency range of the imaged object.  

Also as expected, the unconstrained algorithm used for generating 

the k-space sampling patterns produced sampling patterns that reduced 
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coherent aliasing artifacts at the cost of deviating from the prescribing 

PDF. The proposed density-constrained algorithm achieves the same 

goals while minimizing the deviation from PDF. This results in improved 

reproducibility, as evidenced by reduced error-bars, in sampling ratios 

between sampling patterns produced with the same PDF. It was also 

shown to improve the robustness of the CS-MTF and improve the 

agreement between the CS-MTF and the PDF-modulated NS-MTF. 
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Chapter Six 

6 Conjugate mapped compressed sensing MRSI 

6.1 Introduction 

As introduced in Chapters Four and Five, Compressed Sensing is a 

promising technique for the acceleration of acquisition especially when 

applied to MR spectroscopic imaging where nested phase encoding is the 

most common method of spatial encoding.1-6 However, CS-MRSI is not a 

lossless technique, as has been demonstrated in the previous chapters. 

While CS-MRSI results in increased spatial resolution compared to its 

time-equivalent Nyquist sampled low-resolution counterpart (31.6% higher 

contrast at a threshold of 0.1 MTF for 4-times acceleration), CS-MTF has 

been shown to be directly dependent on the PDF used for generating the 

sub-Nyquist sampling pattern necessary for CS.6 This results in a loss of 

response at spatial frequencies which are not fully sampled and ultimately 

leads to the loss in spatial resolution of up to 32.4% at 0.1 MTF compared 

to full Nyquist-sampled high-resolution reconstructions. Moreover, there is 

a visible decrease in response at lower frequencies even when compared 

to time-equivalent Nyquist sampled reconstructions. (see Fig. 4-12) 

In this work we attempt to circumvent the reduced CS-MTF 

response caused by undersampling by exploiting the complex conjugate 

symmetry property of k-space. Utilizing techniques optimized in Chapter 

Five, we generated PDF-constrained k-space sampling patterns where 

redundant sampling of conjugate k-space points is avoided below a PDF 

of 0.5. With careful consideration to phase, unacquired points of k-space 

were mapped with their conjugate counterparts prior to reconstruction, 

boosting the apparent sampling ratio (i.e. density of k-space samples 

compared to Nyquist sampling). Similar to the work shown in Chapter 

Four, the boosted apparent sampling ratio is expected to improve the MTF 
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at the conjugate mapped frequencies. The reason behind this expectation 

is that similar to reducing the amount of undersampling, conjugate 

mapping is expected to reduce the number of degrees of freedom of the 

solution, encouraging convergence to a more accurate solution. 

Furthermore, the use of a PDF-constrained k-space sampling pattern 

should result in a relationship between the CS-MTF and the PDF-

modulated NS-MTF similar to the one demonstrated in Chapter Five (Eq. 

5-2).  

MTF-NS  PDF  MTF-CS       (6-1) 

 

Since k-space conjugate mapping (pre-filling) up to doubles the 

apparent sampling ratio when combined with non-redundant sampling of 

conjugate points, one would expect the conjugate mapped compressed 

sensing (CMaCS) MTF to be up to double the corresponding CS-MTF as 

shown in Eq. 6-2. 









0.5PDF for  MTF-NS  PDF2

0.5PDF for  MTF-NS
  MTF-CMaCS   (6-2) 

6.2 Theory 

Recall the two dimensional MRSI signal equation (Eq. 2-49): 

  
x y

ykxki
yx dydxeyxMkkS yx )(2),(),( 

          (6-3) 

where kx, and ky are the k-space components in the x, and y directions, 

respectively. 

 

Consider the complex conjugate of Eq. 6-37: 
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if M(x,y) is a real function, then Eq. 6-4 becomes: 
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   
x y

ykxki
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or 7 

),(),( yxyx kkSkkS         (6-6) 

which describes k-space conjugate symmetry. 

 

Figure  6-1: An illustration of 2-D complex conjugate symmetry in k-space 

Reconstruction of the image m can now be achieved by solving the 

following: 

1
2

2 |||| mymF CMuCMum    || argmin     (6-7) 

where m is the desired image,  is a sparsifying wavelet transform,  is 

the reconstruction weight used for the wavelet, and Fu+CM is the Fourier 

transform at the undersampled (u) and the conjugated mapped (CM) 

locations, respectively. Similarly, yu+CM is the complex conjugate 

augmented k-space. Similar to Eq. 4-2, the first half minimizes the l2 norm 

and hence promotes consistency between the conjugate augmented 

under-sampled k-space data and the corresponding points of the Fourier 

transform of the reconstructed image. Conversely, the second half 

minimizes the l1 norm of the sparsifying transform domain data, and 

hence promotes sparsity. 
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6.3 Materials and Methods 

Sub-Nyquist k-space sampling patterns are generated using the 

PDF-constrained Monte-Carlo based pseudo-random method described in 

Chapter Five (Section 5.2.1).1, 3 The algorithm was modified to ensure 

non-redundant sampling of conjugate k-space points at sampling 

probabilities less than or equal to 0.5. k-Space sampling patterns were 

generated where the total number of k-space samples acquired was 1/4, 

1/5 and 1/6 of that of the fully sampled 32×32 k-space grid achieving 

acceleration factors of 4, 5 and 6 in scan times, respectively. Ten k-space 

sampling patterns were generated for each acceleration factor using a 1/r2 

PDF with a fully sampled radius of 2 k-space points.1, 3 

 
Figure  6-2: (a) T2-weighted image of the phantom with the white box showing the 

MRSI field-of-view. (b) Fully sampled acetate area map. The high-lighted pie-

shaped region the region of interest used for MTF calculation. The dashed arrow 

signifies the location of the arc profile shown in figure 2. The black box region is 

the uniform region used to normalize the arc profiles. 

6.3.1 Imaging sequence 

Scans of the fan phantom used in Chapter Four (Section 4.3.1) 

(Fig. 6-2) were performed on a Philips Achieva 3 T MRI (Philips 

Healthcare, Bothell, WA) unit together with an 8 element head coil. To 
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avoid added effects of signal combination the acquisition was performed 

with the coil operating in quadrature mode. A 2-D Point RESolved 

Spectroscopy (2-D PRESS) sequence was used to scan the phantom 

(32×32 pixels with nominal resolution of 0.35×0.35 cm2, TR/TE of 1400/32 

ms, half-echo acquisition over 512 ms, sampling rate of 2000 Hz). The 

slice thickness was set to 0.7 cm. 

Three scans were acquired with the phantom oriented in each of 

four angular orientations with respect to the centre wedge; at 0, 90, 180 

and 270 to account for asymmetries in the k-space sampling patterns and 

spatial non-uniformity of the imaging coil.6 This data was subsampled 

using the optimized k-space sampling patterns to generate the 

compressed sensing datasets. 

A two-dimensional mathematical model of the phantom was created 

in Matlab (The MathWorks, Natick, MA) based on the geometry and the 

spectral quality acquired from the 2D-PRESS scans. Three simulations 

with the simulated peak heights chosen together with the addition of three 

random noise sets to achieve a mean peak-SNR (27.8) similar to that of 

the acquired datasets (24.9). 

6.3.2 Conjugate Mapped Compressed Sensing (CmaCS) 

As shown by Eq. 6-4 – Eq. 6-6, conjugate symmetry is only valid if 

the imaged object M(x,y,) is represented by a real function. Accordingly, 

proper phase estimation and adjustment is required prior to conjugate 

filling of the missing k-space samples. Zero-order (DC) phase estimation 

and adjustment was independently performed on the two-dimensional 

dataset at each spectral frequency. This allowed the filling of the paired k-

space samples with their conjugate counterparts (Fig 6-3). This phase 

adjustment was subsequently reversed prior to reconstruction. 
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Figure  6-3: (a) an example of k-space sampling pattern. (b) Conjugate-filled k-

space. The lines show the 4 quadrants of k-space. 

6.3.3 Reconstruction 

The CS reconstruction algorithm is based on an iterative non-linear 

conjugate gradient method with a line search function used in the Matlab 

code provided by M. Lustig 

(http://www.msrl.stanford.edu/~mlustig/software).1 The code was modified 

in-house to work with MR spectroscopic imaging data.6 A 3-D wavelet 

transform in the x-y-f dimensions serves as the sparsifying transform for 

the 3-D reconstruction.6 The optimum weight for CS reconstruction was 

empirically determined to be 0.001. Simulations were reconstructed using 

the 10 k-space sampling patterns for each acceleration factor, yielding a 

total of 30 (3 noise sets × 10 sampling patterns/acceleration) 

reconstructions per acceleration factor. Similar to previous chapters, CS 

reconstructions were repeated with the phantom rotated 90o in-plane using 

the same un-rotated sampling patterns in order to account for 

asymmetries in the k-space sampling patterns.6 This yielded a total of 60 

reconstructions for each acceleration factor. For demonstration purposes, 

experimental scans were reconstructed using one 4-times accelerated k-
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space sampling pattern yielding a total of 12 reconstruction (3 scans × 4 

orientations). 

For every CS-MRSI dataset, two Nyquist sampled datasets were 

reconstructed using the traditional 2D inverse Fourier transform: a fully 

sampled 32×32 dataset and a 4-times CS-MRSI time-equivalent Nyquist-

sampled low-resolution 16×16 dataset. All datasets were reconstructed to 

a 128×128 grid using zero-padding in k-space prior to spectral processing 

and peak-fitting. 

6.3.4 Processing 

The x-y-f data resulting from the CS non-linear reconstruction was 

inverse-Fourier transformed back to x-y-t domain to undergo the same 

processing steps as the Nyquist sampled data. Post reconstruction, all 

datasets were subjected to the same spectral processing and peak fitting 

steps described in Chapter Four. (Section 4.3.7) 

6.3.5 MTF calculation method 

The MTF calculation method explained in Section 4.3.2 was used to 

calculate the MTFs used in this work.6 For simulations, MTF calculations 

were performed for 60 CS-MRSI reconstructions (2 orientations × 3 

simulations × 10 sampling patterns/acceleration) and the resulting MTFs 

were averaged to give the final measured modulation transfer function. 

The same procedure was used for experimental measurements with the 

MTFs averaged over 12 reconstructions (4 orientations × 3 scans). 
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6.4 Results and Discussion 

 

Figure  6-4: Acetate area maps for (a) Nyquist sampled (32×32), (b) 4-times CS time-

equivalent NS (16×16), (c) 4-times, (d) 5-times, (e) 6-times conventional CS, (f) 4-

times, (g) 5-times, and (h) 6-times CMaCS reconstructions. 

 Acetate maps reconstructed using the CMaCS technique are 

shown in Fig. 6-4 along with their CS counterparts. CMaCS 

reconstructions clearly show an overall increase in contrast particularly in 

the low-resolution regions of the phantom across the acceleration factors 

tested. There is also a small but noticeable increase in detail shown 

towards the centre of the fan, indicating a possible increase in spatial 

resolution. 
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Figure  6-5: MTFs of 4-, 5-, and 6-times accelerated reconstructions for simulated 

datasets using (a) conventional CS, and (b) CMaCS.  

MTFs of the reconstructions (Fig. 6-5) provide a more detailed 

insight into results. Fig. 6-5a is consistent with the reported and previously 

observed MTF for CS-MRSI.6 The decreased response at low frequencies 

is consistent with the results of Chapter Five with a strong relation 

between the CS-MTF and the PDF-modulated NS-MTF (R2 of 0.993, 

0.995, and 0.998 for 4-times, 5-times and 6-times acceleration, 

respectively). Hence, according to Eq. 5-2, CS-MTF is expected to decline 

steadily following the PDF (since the Nysquist sampled MTF is roughly 

unity at low frequencies). 

On the other hand, Fig. 6-5b shows a consistent improvement in the 

MTF of CMaCS reconstructions by almost a factor of two. Most notably, 
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CMaCS-MTFs preserved a unity response up to 0.6 lp/cm for 4-times 

acceleration, 0.5 lp/cm for 5-times acceleration, and 0.4 lp/cm for 6-times 

acceleration. Moreover, spatial resolution at 0.1 MTF improved from 1.36, 

1.2 and 1.1 lp/cm for 4-, 5-, and 6-times acceleration, respectively, for CS 

reconstructions, to 1.5, 1.35 and 1.35 lp/cm, respectively, for CmaCS 

reconstructions.  

 

Figure  6-6: Comparison between CMaCS-MTF and 2× PDF-modulated NS-MTF 

(capped at 1) for (a) 4-times, (b) 5-times, and (c) 6-times acceleration. 

Furthermore, Fig. 6-6 illustrates the strong correlation between the 

CmaCS-MTF and 2×PDF×NS(32×32) lines as expected by Eq. 6-2. As in 

the case of CS-MTF (see Chapter 5), the resulting CMaCS-MTF are highly 

predictably as evidenced by the high R2 scores (0.997, 0.999, and 0.999, 

respectively) coupled with low l2 norm of residuals (0.106, 0.060, and 

0.111, respectively). 
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While the MTF gains of CMaCS are clearly very promising, it must 

not be forgotten that the above results are for simulations where it appears 

that Zeroth-order (DC) phase estimation was sufficient to approximate the 

phase adjustment needed for accurate conjugate mapping. It is very likely 

that real experimental data would suffer from more complicated phase 

shift patterns where zero-order estimation of the phase is insufficient for 

accurate conjugate mapping. 

 

Figure  6-7: MTFs of 4-, 5-, and 6-times accelerated reconstructions for 

experimentally acquired datasets using (a) conventional CS, and (b) CMaCS. 

Figure 6-7 shows the MTFs of 4-times accelerated CS and their 

corresponding CMaCS reconstructions for 12 experimentally acquired 

datasets (3 scans × 4 orientations). While there are clear gains in the case 

of CMaCS-MTF similar to those demonstrated in simulations, there appear 
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to be large error bars associated with the CMaCS-MTF at low spatial 

frequencies, an indication of instability in response for the12 different 

experiments. That instability might be caused by phase discontinuities, or 

B0 field inhomogeneities causing inaccurate conjugate mapping due to 

inadequate phase estimation and adjustment. 

6.5 Conclusion: 

With the cost of accelerated acquisition using Compressed Sensing 

evidenced as reduced response at low spatial frequencies, the aim of this 

work was to exploit the redundancy of k-space in the form of complex 

conjugate symmetry to provide prior information necessary to partially 

mitigate the shortcomings of CS-MRSI. Simulations have shown that with 

proper phase estimation and adjustment, k-space can be pre-filled 

(mapped) with complex conjugates of the acquired k-space samples, 

resulting in increasing the apparent sampling ratio by up to two-fold, and 

improving  MTF response by the same magnitude post reconstruction (Eq. 

6-2). More importantly, recovery of the MTF response to unity at low 

frequencies (up to 0.6 lp/cm for 4-times acceleration) was achieved with 

CMaCS accompanied by an overall increase in MTF response and limit-

resolution at 0.1 MTF. 

CMaCS reconstruction of experimentally acquired datasets showed 

similar improvements in MTF. A two-fold increase in MTF was noticed 

between CMaCS and CS reconstructions at spatial frequencies higher 

than 0.8 lp/cm. While improvements in MTF were also noticeable at lower 

frequencies, the improvements were not as pronounced as in the case of 

simulations. B0 inhomogeneities and sub-optimal phase adjustment, 

leading to inaccurate conjugate filling, are the likely causes of the 

discrepancies. Those issues can be addressed in the future by acquiring a 

low-resolution phase map or iterative higher-order phase estimation and 

adjustment. 
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Furthermore, due to the use of PDF-constrained sampling patterns, 

and non-redundant sampling of conjugate points, strong correlation was 

demonstrated between simulated CMaCS-MTF and the RHS of Eq. 6-2. 

Similar to the findings of Chapter Five, this indicates that CMaCS-MTF is 

not only predictable, but also customizable by the user, thus increasing the 

potential utility of the CMaCS technique. 
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Chapter Seven 

7 Conclusion and Future Work 

7.1 Conclusion 

The advancements in radiation therapy delivery techniques 

discussed in Chapter One highlight the importance of accurate tumor 

delineation as an integral part of the radiotherapy process. While the gross 

tumor volume (GTV) of solid tumors is usually visible and easily delineated 

using conventional anatomic imaging modalities, the microscopic extent, 

from which most recurrences originate, are only detectable using 

specialized biochemical imaging modalities. MRSI has been suggested as 

one of such modalities which can be used to delineate a biological target 

volume (BTV) for the purpose of identifying and targeting biological 

abnormalities and preventing such recurrences.1-5 Unfortunately, 

implementation of MRSI in the radiotherapy process has been largely 

confined to research studies with wide clinical implementation lagging due 

to two main practical shortcomings: Firstly, efforts to biologically delineate 

tumors from MRSI have been largely subjective and inconsistent. Also, 

strong dependence on the scanner, scanning sequence used and peak 

quantification method (peak area vs. peak height), adds to the complexity 

of performing inter-institution studies which has been the main limiting 

factor in performing serial or population based studies.  

Secondly, most commonly used MRSI sequences rely on nested 

phase encoding loops for spatial encoding, resulting in long scan times 

that are unsuitable for time-efficient clinical use. With the advancements in 

treatment delivery requiring improvement in the spatial resolution of MRSI, 

the associated increase in scan times has rendered MRSI increasingly 

harder to incorporate in everyday clinical MRI studies. The purpose of this 
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thesis is to tackle these two main practical hurdles to implementing MRSI 

in the radiotherapy process. 

In Chapter Three we resorted to the statistically based CNI method 

of biological tumor delineation to address the subjectivity and user-

dependence problems characterized above.6 However, when implemented 

on the relatively higher spatial-resolution MRSI used in our study; we 

noticed that the original CNI method’s assumptions need to be revised. In 

addition, we noticed that due to the statistical nature of the model itself, 

there exists a region of mixed population of normal and tumor tissues that 

is not accounted for in the original CNI model. It was therefore necessary 

to introduce adjustments to the existing method of tumor delineation to 

account for the observed shortfalls. We proposed a modification to the CNI 

method that would introduce a third region of mixed population of normal 

tissue and tumor to account for the increased detectable variation in the 

relative choline and NAA levels within normal tissue as well as the 

statistical uncertainty in voxel segmentation. In this manner, all the 

benefits of the statistical approach are preserved (namely lack of operator 

bias, and consistency between patients, scanners, centres, etc.) while 

clearly identifying which voxels have high tumor probability, and the voxels 

for which there is inherent ambiguity. The uncertainty region will indicate 

that a voxel is suspect, but at present its designation as an area to be 

treated will ultimately rely on the planner’s experience and information 

gleaned from other sequences and/or modalities.  

Unfortunately, it is the assertion of this work that automatic 

delineation of a BTV is only partially realizable using the current model. 

The person preparing the radiation therapy plan should have to be made 

aware of the limitations of the model and of the mixed-population statistical 

uncertainty zone. 

To overcome the time-consuming nature of most MRSI sequences 

we decided to implement the relatively new technique of Compressed 

Sensing to MRSI. This thesis approached the issue of applying CS to 
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MRSI over three main steps: (1) development of a quantitative method the 

assess the utility of CS-MRSI and any associated costs in image quality, 

(2) correlation and prediction of the factors affecting the MTF of CS-MRSI, 

and (3) exploring potential methods of mitigating the shortcomings of CS-

MRSI. 

In Chapter Four, we developed a phantom-based method to 

measure of the performance of MRSI which to the best of our knowledge 

is the first attempt to quantify the MTF of MRSI metabolite images.7 Using 

the developed technique we investigated the MTF behaviour of CS-MRSI 

reconstruction, especially, the specific effects of CS reconstruction weights 

and peak SNR on MTF. Despite the non-linearity of the CS reconstruction 

process, our results showed robust MTFs with regards to peak-SNRs 

when proper care is taken in choosing the reconstruction weighting factor. 

More importantly, it was found that the optimal reconstruction weighting 

factor was dependent on peak SNR. Accordingly, prior knowledge of the 

expected peak SNR range is integral to yielding optimum MTF response of 

the CS reconstruction.  

Moreover, when compared to Nyquist-sampled conventional MRSI 

reconstructions, our method was used to quantify an average decrease of 

32.4% in spatial resolution in the CS-MRSI scans at 0.1 MTF compared to 

a loss of 48.6% for the equivalent Nyquist-sampled low-resolution scans, 

at 4-times acceleration. CS-MTF also showed a significant decrease in 

low-resolution response compared to the time-equivalent Nyquist sampled 

datasets; a direct cost of the increase in resolution. Such effects would 

have been impossible to detect using the commonly used normalized root 

mean square error (nRMSE) metric of deciding the optimum 

reconstruction weight. 

With the development of an accurate, quantitative method for 

assessing the MTF of CS-MRSI, we set off in Chapter Five to investigate 

the relationship between CS-MTF and the manner in which k-space is 

sampled in CS-MRSI. We hypothesised that the CS-MTF is a subset of 



127 
 

the NS-MTF with the relationship controlled by the sampling ratio (the 

amount of undersampling) at each frequency. Using simulations and k-

space sampling patterns produced using three different PDFs; we were 

able to test the hypothesis. The results showed strong visual and 

statistical agreement between the CS-MTFs of each of the three PDFs 

and their corresponding sampling-modulated NS-MTF. As such, that 

relationship established provides the user with the ability to theoretically 

assess the MTF of CS MRSI and compare the effect of different k-space 

sampling patterns without the need to perform individual MTF 

measurements.  

Moreover, we successfully demonstrated that PDF-constrained k-

space sampling patterns improved the agreement between the CS-MTS 

and the PDF-modulated NS-MTF, which results in a solution for the MTF 

of CS-MRSI that is not only predictable but also customizable to the user’s 

needs. This provides the user with the potential to prescribe a desired CS-

MTF response based on the nature of the spatial frequency range of the 

imaged object. For example, for applications where preserving low-

resolution response is desired, sampling patterns generated using a half-

Gaussian PDF would be more suitable than a PDF with a high probability 

of sampling far k-space (e.g. step function) which is more suitable for 

increasing the effective spatial resolution preserving response at high 

frequencies. 

Finally, with the cost of accelerated acquisition using Compressed 

Sensing quantifiable and controllable by the user’s choice of 

undersampling scheme, Chapter Six aimed to exploit the redundancy of k-

space to provide prior information necessary to circumvent the short 

comings of CS-MRSI, namely, the reduced response at low spatial 

frequencies. Exploiting complex conjugate symmetry, we used simulations 

to demonstrate that provided proper phase estimation and adjustment, k-

space can be pre-filled (mapped) with complex conjugates of the acquired 

k-space samples prior to CS reconstruction, increasing the apparent 
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sampling ratio by up to two-fold and the resulting CS-MTF response post 

reconstruction by the same magnitude.  

More importantly, CMaCS reconstruction of experimentally acquired 

datasets showed similar improvements in MTF. With up to a two-fold 

increase in MTF noticeable between CMaCS and CS reconstructions at 

high-frequencies (> 0.8 lp/cm) and more moderate improvement at lower 

frequencies, there is little doubt that provided proper phase estimation, 

CMaCS provides a costless improvement in response, compared to 

conventional CS-MRSI. However, full recovery of experimentally acquired 

CMaCS-MTF to levels similar to simulations has proven more complicated 

due to B0 inhomogeneities and sub-optimal phase adjustment, leading to 

inaccurate conjugate filling.  

In conclusion, we believe that the work in this Thesis provides two 

essential steps towards wide clinical implementation of MRSI-based BTV 

delineation. The proposed modifications to the CNI method coupled with 

the application of CS to MRSI address the two main obstacles outlined in 

the beginning of this Chapter. However, there continues to be room for 

improvement and questions that need to be answered by future research 

as outlined below. 

7.2 Future Work 

The interpretation of the voxels in the uncertainty region of the 

modified CNI method is at present not straightforward. Future work 

utilizing additional information extracted from serial studies or full two-

dimensional correlation with histology in animal models may hopefully lead 

to an educated classification of this region.  

Also, a more accurate method of phase estimation and adjustment 

is needed to maximize the gains of applying CMaCS on experimental 

datasets. This can be achieved by acquiring a low-resolution phase map 

or iterative higher-order phase estimation and adjustment. 
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Furthermore, a comparative study of automatic tumor delineation 

using conventional Nyquist-sampled MRSI vs. CS- and CMaCS-MRSI is 

needed to identify the effect of acceleration on tumor definition. The study 

should also attempt to define the PDF and acceleration factors that most 

optimally minimize the cost in inaccurate tumor delineation while 

maximizing the time gains. 
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