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. ABSTRACT ‘ .

During the last twenty years, our world has'*undergone consider-

'ab'le transformations, this is especial]y% evident in the areas.of trans- |

R

portation and conmunications. Now one’ has easy\ access to other places

in ;he worid and we have aimost reached the~ global village" predicted |

e

_by MacLuhan _ 0f~ ‘course, this has oniy been possibie because of the

deveiopments of new techno] ogiiZ /’ | o »3‘» ‘

"One ‘area where great progress has been made i’s that of materia]s

science, with ti?é prod&c\tion of new alioys and the introduction of ad-

, A
) vanced composite materia}s Fibre-reiriforced conmosite materia]s are .

discussed in this thesis. These are (‘tained by combining materiais

"'with different properties in an originai way . The resuiting composites‘

'often have properties combining those of @%hei r.constituents. For exam- .

/
ple, this technique may be used to create a new material wiﬁ: high
s v R " .
stren th-to-wei ht’ ra jo. T~ ,;_\» . . oo
gih-to-welght ratfo. oy . |

The analysis of composite materials is a wide and compiex matter -

and one aspect that has’ attracted researchers s the prediction of thei r o

behf\liour under mt\ntiaxia'l stress states. Analytical functions known as |

. \\ ) .
faiiure criteria are used to predic;. the composite s strength under any

4"_in-p1ane, 'ioading condition. There are’ now many faiiure theories andl-"

'
N C‘

3 N most of these are generaiizations of yieid theories for ductiie mate- L

riais..:. Nnong ai'l existing theories, the "tensor po'lynomia'l criterion

is now the most wide'iy discussed. o However, its. deve10pment seems toi"

g proach t° this"prob'lem wi'li be identified here. L ’,

have- reached a piateau in the recent years, and the need’ fo. a n'éw ap-"‘:'




51m11ar problems had been faced previously 1n the area of p1as-i‘

‘ttc+€y and recent]y, the use of. parametric quations was advocated as °]1

' means to. deScribe the y1EId surfaces for ductile materials. It wf]l be”

. hypothesized. 1n this thesis that following the same rat1ona1e as for

}the other fai]ure theories this parametric approach can be generalized"f
‘to write fafiure criteria for cbmposite ma‘erials under plane stress

1oad1ng cond1t10ns The flex1b111ty of th1s new approaeh w111 be de-

monstrated by writing parametric failure equations for vario s mate-
- rials, for which experimental results have been pub1ished in the litera-,

ture.
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- CHAPTER 1
| INTRODUCTION L
| The word ”composite" designates a material con51sting of two or '
‘-:more components separated by a distinct interface. These materials are
'designed in order to obtain better combinations of mechanica] properties

'h'than their individual components. Among these properties are strengthJ '

-to-weight ratio, stiffness t0ughness, and high temperature performance“

| “.ChaPaCteristics. e SRS | )
, \ ' ' ) ‘ i :
Different applications require different types of . composite mate-

riais. For exampie,,reinforced concrete is a composite used successfuiQ

: ‘ly in construction. Another type of composite is the variety of fibre-

reinforced materiais considered here. These are’ wide]y ‘used - in tme.V

faeronauti ' and aerospace industries. Typicai fibres are produced from

“glass,‘ ron, carbon, and graphite, with diameters in the range of one f

| 'micron.(‘The fibres are embedded in thin pTastic or epoxy Tayers ca]iedhﬂh

l

“m‘"iaminae“ which have thicknesses of. about 0 25 mm. The resuiting mate-

'»‘,rial combines the iow weight of the matrix with the high strength of the

"j{fibre., During the Tast twenty years, these composites with hlghft

-

:figstrength-to-weight ratios have gained an ever-increasing importance inf“”‘j'

,f,‘aeronautics..'E~V‘ o ”Q?fj},‘f;uljf“;l‘ 3'1"1‘r , iv‘n:,.

:“7i¥ Nhen aTl the fibres are embedded in the same direction 1nSTdel¥ R




Ca bidirectionai 1amina the 1 and 2 axes both indichte a fibre orienta-

;htion, with the strongest in the 1- direction The 3—axis is aiways pe

pendicu]ar to the piane of the lamina Asba rough estimate it can be | 5?

“'assuned that the stiffness and strength of unidirectiona] Janinae in’the
‘ fibre direction are of the order of those for the fibre materiaiki;hie‘uﬂum
these properties in the transverse direction are of the order of. those-
for the matrix a1one Experimentai studies have demonstrated that many
unidirectionai materia]s show a iinear stress strain re]ationship up to ;
faiiure for on-axis 1oadings Non-linear curves are obtained for compo-
"»sites with very Tow fibre voiume fraction and with matrices capable of
- plastic deformation Shear stress- strain re]ationships are aiso gener-w,.
vaily non-1inear up to faiiure . d" o . _
_ Since a lamina is often not continuous and‘isotropic‘at the‘miﬁi‘

croscopic scale, its behaviour'can be'rather compiex. This is COnfirmedk
by the variety of failure modes observed when simple tests are performed : i;-
‘ .on. a singie fibre-reinforced lamina. Some of—the failure modes are.,‘n
'shown schematicaliy-in Figure 1. 2 Three principa] failure modes are ‘}
observed “for unidirectionai iaminae stressed in tension in the fibre:‘t ,

f;direction f Nhen breakage is due to a weak fibre cross-section,‘it is

"7‘,characterized by a clear-cut fracture surface perpendicular to the e

.-,bres., If some fibres have broken prior to totai failure, stress concengjff;f

lw‘ﬂ rations at broken fibre ends may be' identified by fibre puil-out aiongggir;

”pthe fracture surface.‘ Cracks perpendicu]ar to the fibres at differentft;If
| i%cross-sections can also be joined by cracks in the matrix parailei to,}];7
M!fithe fibres.; A unidirectional lamina under transverse tensiie 1oad USUd;f;?f

h{aily fails by splitting of the matrix or because of insufficient inter-Za:'ﬁ

prffaciai bond between fibres and matrix., For a 1amina unde‘ iongitudinaiﬁﬂj‘ﬁ
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. ‘compressive 1oading, a: possibie faiiure mode is by transverse faiiure L

' ‘resuiting from the Poisson ratio effect. More 1ike1y is faiiur

imicrobuckiing of the fibres, “in-phase" for high fibre content and "ouit

B v ‘of-phase for iow fibre cont%nt. In piane shear can a'iso produce de-‘
bonding of the co’ri§tituents and matrix shear fai’lure u Combinations of ,

C these faii«ure modes are also possible, ‘especiaiiy‘ under compiex Toading

’ S . S e

conditions. L v

The strength and stiffness of iaminae in the fibre direction can.

‘be dramaticaiiy. reduced by various factors “misorientation of some~

—

‘ fibres discontinuous fibres, fibres of . non- uniform strength inter‘fa;}

cial stresses b’etween fibres and matrix residua1 stresses resuiting Ny

\’from temperature curing, etc. It has indeed been obServed that faiiure

~ of. individual fibres in a 1amina 1oaded axiaiiy can be initiated at

f'loads much sma]ier than the composite failure 1oad The breakage of
\ individua'i fibres causes stress concentrations ‘at’ the broken ends and -

usubsequent 'Iamina behaviour depends nn the matrix properties Ammatrix(

._with good shear capacity wou'ld transmit the ioad from one end of the ) B

“fbroken fibre to the other. In the opposite case, the stress concentra-
N .tions wi‘ii cause microcracks in; the matrix. Pr0pagation of these cracks‘ BRE
paraiie] to the fibres wouid cause the composite to behave as a ‘bundle;rj.*

"j..?‘;of fibres.‘ Crack propagation perpendicuiar to the fibres wouid causeﬂ

t.':;‘wy.;.faiiure of the 1amina., The above probiems are usualiy studied from a.

:";V”_',micrasco'ic-*approach which takes i‘into account the behaviour of the.'

-',

'fgjll"“"'-j':i ndividua fibres and th “ r relationship“' ‘:'ith the surrounding matrix.

:.,";‘.'\llstress concentrations in neighbouring fiiaments and uitimateiy, totai}

The strength. stiffness, faiiure modes. and overaii behaviour_l‘_"»*"

‘-“/-,';',.:

_‘;’.are.',”_trongly wdi-rectional. , In order to»;.-‘f’v‘.f-.
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withstand various load combinations and improve material behaviour under

complex loads laminae are usually stacked together in’ a specific se-

quence of orientations .éi‘ to form a “laminate as illustrated in"

.,"

'“”Figure 1.3. The stacking sequence within a laminate is described by{A
(8 ii?.é’ ‘;L., o) andois determined upon consideration of anticipated

“.loading conditions nAll lamina failure modes discussed above.couldv

.
\
0 "

“conceivably occur in individual laminae within a laminate.. Failure'of a '

_ complex laminate could furthermore be produced by debonding of the lami-

. nae. This phenomenon tenned "delamination is more likely to take place “"

either at a discontinuity in the laminate or at a free edge ‘

» The prediction of laminate behaviour s a complicated matter and-
“some simplifying assumptions are usually made First, each comprised
‘lamina is viewed as a continuous and anisotropic material Second, the'

'bond between laminae is considered to be infinitely thin and is neglec-.

ted in laminate analysis. Nevertheless the comprised laminae are ana-

' lyzed as perfectly bonded and the strain is supposed to be identical

throughout the laminate. The equations of elasticity for anisotropicl

".lmaterials are thus the basis for the’ analysis of laminae and laminatespf"

o f,fram a macroscopic point of view. These equations will be reviewed;

';b"ieﬂy in Chapter 2. ' o : ; _“‘ L g

The prediction of the behaviour of fibre-eeinforced 1naterials~;“’

"fhﬂin their axes of physical symmetry is a complex problem,.often dealtfif?

‘*"‘ with using the microscopic approach.‘ Alternatively, material propertiesvtjﬁ’

'5sin these directions can be measured directly for the given lamina. Oneb: '
~75pmajor issue in composite materials analysis is the predicti'ngof theirfffﬁ

ﬂpf;behaviour under complex loading conditions.* The determinationr
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failure surface from simple tests {% a task undertaken by many resear-,

chers in the last twenty years, and 1s. still widely discussed to this

“ 'day.‘ This matter is important for single laminae ‘and’ for complex lami-

l Inates. Accordingly, a significant number of failure criteria for fibre-

lreinforced composites have been proposed over the years. A review of
these criteria will be presented in Chapter 3 It will be observed that
‘dmost existing criteria can be gr0uped in categories sharing common ‘char-
,\acteristics. The most recent proposals will be discussed and the need

ffor aqnew approach to this problem will be underlined This chapter

also contains 2a review of the experimental data available in the litera- -

, ¢
N

ture.‘
‘ A o ‘
There have been interesting similarities between the development

fiof failure criteria for fibre-reinforced materials and that of yield

criteria for anisotropic ductile materials. ln recent years, the use. of

. a new parametric expression was proposed as a new way to write yield ,

”;vcriteria for anisotropic materials. ~The advantages of this new approach
igtwill be discussed\in Chapter 4. i As a proposed solution to the need

“illustrated in Chapter 3 for new composite material failure criteria, a

figeneralization of this technique will -be’ proposed for transversely iso- _’

“ﬁ'tropic materials and unidirectional fibre~reinforced laminae in partic—:

Vf;ular., It will be shown that a parametric failure criterion can Satlsfy

'dxall‘c°"d1tl°"5 PEQUired to describe the failure surfaces of fibre- rein~ ,:l‘? L

{,;forced laminae., Different forms of this new failure criterion will be j”

A



~ been eondueted However. some of these resu]ts w111 be used: to demons— '
trate the flexibi]ity of thelnew parametric fa11yre criterion for trans-
verse]y 1sotrop1c materia]s It wil] be shown that 1n certain cases,‘,
’ﬂ%he experimental theoretical corre1ation can be great]y 1mproved by‘
using the proposed parametric criterion 1nstead of one of the trad1tion-S
al fai]ure criteria: It will a]so be shown«that a parametric fa11ure
‘\enve1ope can be easi]y modified to accomodate additiona] failure results“

" in a way that no other criteria haye as yet been able to do Examp1eso |

“w111 be given for sing1e 1am1nae and for a 1am1nate.

' kq

.‘71’ s
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CHAPTER 2
ANALYTICAL FORMJLATIONS'

2.1 INTRODUCTION
As discussed in the introductory chapter, the macromechanical
approach to the analysis of - fibre-reinforced composite materials is

based on the representation of the material by homogeneous yet aniso-

tropic materials For a unidirectional lamina it is generally‘assumed‘

that it has the same strength in the 2- and 3 directions The plane
;perpendicular to the fibre axis is therefore viewed as a plane of iso-

tropy, and the lamina is analyzed‘as'a‘material.transversely isptrOpic

with respéct to the l-axis. For a bidirectional lamina, there are no-’

planes of isotropy, and it is analyzed as an orthotropic material " The

corresponding equations of elasticity will be presented here. The ana-

12

3 lysis of single laminae can be extended to laminates by using classical “

lamination theory., This theory will be introduced in this chapter A.

7

procedure frequently used to determine whether the failure of a compri-

sed lamina triggers complete laminate failure will also be presented

2.2 EQUATIONS OF ELASTICITY T

" The generalized Hooke 'S law of - linear elasticity can be written‘

. vas (Jones. 1975)

'- ;7‘;;‘.5--_"13" Cigke e 0 o
T S, t 22 2

t

: uhere; 011 {isethefstreSSftensor;l‘ek‘ isithe strain}tensor,r cijkzl is -

L




i \ "
Lo
A ta

.or " gy

the tensor of e]astic moduli and‘ Sijkx

notation can be‘contracted to:

9y = Ci'j cj' ‘

1]
U

* where ‘i,j!=.1,2,...,6. The reiatibnshios‘between the contracted "and

tensor notations are sunmarized in Table 2.1. The matrices. C;; and

S

r contain’36‘independent'components but because'of‘materia] symme-

‘tries, this can be reduceq to nine independent constants for an ortho-

“tropic material, and to‘only five in the case of a transversely isotrop-

ic material. ;

In most structura] applications it‘is assumed that-the fibre-
reinforced laminae are under a state of plane stress. “Only - this case
will be examined here. The constitutive equations of an orthotropic or

transversely isotropic lamina with its. piane of symmetry perpendicuiar

to the 1~direction would in both cases reduce to the foliowing plane ‘

\

stress system of equations (Jones, 1975)

_— ‘ -
]l %e o
T I L R T A
or to- a0
Sl 0 6.  (M12

(2-2)

13

is the compliance tensor.  This '




where . Sy = VE 'h‘f R
StV ST PR
. S - (2-5)

Sy2 % - viffy
| Se6 = /615
. --and - o : A
| 0y = B vppuy)
A ® B/ L - vypvyy) o
05 = Ep/(1 = vppupy) . (2:8)
612 )
‘In these re'lati'ons;i"E1 and E, are the Young's moduli‘in the tiwo
| , principal directions, viz ‘is the maiOr Poisson's ratio, land Glz,uihe

shear modulus. These four constants are sufficient to characterize any

p]ane stre§§ condition. The Poisson ratio ‘“21 .js related to the other

constants through

For a iamina oriented at. an angie ) with the appiied 1oads o*,

a, and 1 shown in Figure 2. 1, the stresses in the materiai directions”

LY. Xy
o of symmetry are caicuiated from the foilowing transformation law (Jones

1975) o 7-;i“fﬁ-<u~; SRSy | PR
geirty {°}12 [T] l°} RS [[5triu'r" (2- 8)

e -‘°°529 \i\~ 'sinzef.'_.' 2 sin O”Cosﬂé
+= 1 sinze fﬁ;ffcosze'f'57';,'-2 sin ¢ cos’ e"
L e

. -sin o cos K fﬁzsin 0. cos e : (cosze sin e)

i R

"klt,can then beishown that the reiationships between the stresses and

14




“stralns in the‘d1rectlons, x - and yr“beconei‘
Iy 49 Oy s € o
YT e B U & (. . (210
! L e % % | \ng)
“where ' B - '
= o4 T 2.2
0, = Qll cos '8 +~Q22 stn’6. + 2(Q +2Q66) sin 8 cose
0 = 2, 2. " -
le : le(cos 9 +sin” e) + (011+Q22 4066) sln ] cos o . g
T - 3 _ !
BRUPS (011 Q5" 2066) sln 8 cos”e + (012 022+2066) s1n3 o cos 9 -
0. = ind . PR (2-11)
‘QZé = 011 s n"e + 022 cos \? +, 2(012+2066) sin e cos g A
o ) 3
Qe (Q11 012 2066) sin3 o cos e + (Q12 022+ 2066) sin, @ cos 0
n = 2 4
Q66t_ (Qu+022 2012 2066) sin 0 cos o+ 066 (sln 9 + cos’ e) \

2;3;4' CLASSICAL LAMINATION THEORY

.\

s

with classical lam1nat10n theory, the analysls of slngle lamlnaew._'t

can be extended to complex laminates. Thls theory 1s based on the hypo-t }

thesis that the laminae are. perfectly bonded together that the,bondlng |
materlal 1s 1nf1niteslmally thln, and the laminae cannot sllp relatlve;d
‘ to each other.v Thls 1mpl1es that plane surfaces remaln plane, and that:l

the strain at a dlstance h‘ from the laminate mldplane 1s glven by the‘ ;a_l

following (Petlt and Haddoups, 1969 Jones, 1975)5‘;;‘

B TV O




-

| where the superscript ( ) identifies the midplane of the laminate and

A

is the curvature of the middle surface. The resultant forces and mo-”

s ments applied on the laminate, as shown in Figure 2 2 - are given py

‘»[ié

,‘(Jones, 1975) ;‘ : itV"Hi“ ‘ ff\"
- Nk L e e }‘ 218)
N} = {N_; N ;s Nso} = {d.; o z - (2-14)
\iM} e {Mx;.My; M*y}ve-_‘{/él {°x?f°¥? ‘xy} z dz ‘ (Z-IS)S
. " ' . ) o L e

| where t is the total laminate thickness. ‘p

Combining Equations (2- 10), (2- 12), (2 14), and (2 15) leads to«i:;’

| “the following relation

Lo o- e
e = vz * |
. where - 717'A1j = _b{/ ijldz | .(2-l7)
S *M,f'ktyz" Y EE (','.’-
B, s Q L e (2-18)
oo -t/2: ‘J ‘} B
o Itlz - é' e (219)
by = Qi L (219
13, »--t/z 3 ,,J.‘. - "f IR Lo

___‘_—-—_—-———

”,nghe above submatrices A B and D are respectively the extensional."‘

; v; tiffness. coupling stiffness, and bending stiffness matrices. Equaéif‘ﬂ

"}ftions (2 16) and (2 18) indicate that in-plane loading would producef“‘ -

'jéfbending as well as extension whenjthe submatrix [B] is non-zero.}fff°‘f*

;ates symmetrical wit'ﬁrespect to theﬂmpdplane, thus making [B] vanish.

fg{.Also, the application of moments {M} would cause extension as well asefz

These coupling effects ‘can be_prevented by constructing lamin-joﬁ,clgif

.For a‘given set ‘o0 applied stresses onfaFlaminate, forces and moments A




, '"fﬁtin Figure 2 3 (e g. Tennyson, 1981l;?

7

‘“al:ke,ldeformations are foung using Equation (2 16) These values are _;W

' then substituted back into Equations (2-9) and (2- 10)° to find the fnter-

‘

nal stresses in each . lamina For laminates submitted to in-plane loads

| p{N} only, the same lamina stresses will be found for any modification ofl

a specific stacking sequence provided that the entire laminate remains“

: symmetrieal - This is contrary to experimental observations, probablyr
‘ because the interlaminar stresses are neglected in the classical lamina5

tion theory " o S . ‘.,' : .v5‘1,: Co . oo

.)“

2. PROGRESSIVE DAMAGE" ACCUMULATION A =

"

A large number of load configurations can be applied to a given'

compOSite structure. However, it is hot a" practicable task to submit

‘ such a structure to ‘an extensive testing programme that would reproduce‘ L

' all probable loading conditions to which it might be submitted duringl

its lifetime. Instead analytical functions known as failure criteria
are used that define limiting envelopes in stress or strain space. The

‘f;'structural integrity of the lamina is maintained as long as the loading

: condition remains inside the failure envelope defined by the assumed“UTJ

f‘Jcriterion.‘ Nhen these limits are exceeded lamina failure will occur.'

"‘An extensive survey of existing criteria is the subject of the nextf

f:chapter

2

fh‘wpossibility that a particular lamina may fail without causing failure of:f[?‘

/

For multilayered Taminates, the problem is complicated by the?f_;

'7“$~,the entire laminate., A procedure used to calculate the first laminaffﬁﬁ

- '5nifailure as well as the ultimate strength of the laminate is summarizedﬂj}ﬂf

It is an iterative procedure inﬁ} o

'iffffj;which the applied loads are increasedvproportionately and monotonically.*rui3
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:;It combines classical lamination theory, the assumed failure criterion"r

Vand the following hypotheses on the stiffness reduction due to lamina .

} ‘failures. - ”. 'itl N
f‘\"‘l At a given load the stresses in each lamina are compared to-the
“‘aSSuned tailure criterion. If no failure is detected the loads are‘

‘increased proportionately until breakage is found If failure is detec- ;
:1 ted the failure mode is identified and the lamina stiffness is reduced

accordingly.‘ The failure modes generally conSidered are fibre breakage‘

and matrix failure.h ;or the case of fibre breakage, the matrix [Q] of.
J“quuation (2 3) is reduced to zero in the subsequent calculations. 'For

‘}matrix breakage, the following terms are inserted in the matrix [Q]
~,1912‘f 022 ?ﬂoss =0 o i'v‘ - (2-29)‘

"This means that only the stiffness in the fibre direction TS kept for‘

- the broken lamina. The above procedure is repeated for each lamina and: "
"new stiffness matrices [A] {B] and [D] are calculated for-the lami-'d‘
"‘lnate._ The same loads are reapplied to the modified laminate until nov“
ﬁfmore damage is detected for this loading condition. The loads are then‘fgl""‘
;h‘iincreased and the entire procedure repeated dntil complete laminate7,ﬁ-"
"rffailure, in which case the matrices [A] and [D] become singular.

Y By joining together the first failure points at different stress;vfi;fﬁfl
@faratios for the same laminate, "first ply-failure“ envelope is obtain;{rfi‘

7ﬁf d.: As long as a load applied to the laminate remains inside this enve-i"

;ﬂ;ﬁlopE. the laminateiretains its structural integrity.: By Joining togeth-fo;-?f-.f

Jﬂ‘e mthefpoint'“of‘ultimate strength at different stress ratlos an "ulti




than those c%using the first structural damage. However, it is observed'.‘
f, that the shape of the ultimate ply failure’ envelope ts dependent on the .

‘ loading history. With the method outlined above, this envelope is: ob-

)

tained’under the assunption of'proportional loading. 4 Other types of“

'nloading could eventually lead to different failure envelopes<because the'

*

sequence of damage might differ from that obtained from proportional

.loading.

[ ,
ol PR )

2.5 CONCLUSION

In this chapter, the fundamentals of fibre reinforced lamina andv

A

. laminate analySis were introduced Simplifying aSSumptions of homogen-‘

‘eity and transversely isotropic behaviour are usually adopted for unidi-‘

‘_rectional laminae. ‘The theory pf elasticity for transversely isorquiC'

materials combined with classical lam%

the analySis ﬁpr complex laminates: iBoth theories were presented in

i'this chapter. The usual methodology for laminate analysis beyond first

"faﬂure was alSO brlefly sunmarized s ) o | o
| The problem of modelling failure with appropriate failure crite-‘

‘ ?fria was briefly mentioned This topic will. be reviewed extensively inf -

' f‘\]ithe next chapter. g ;-;ft'x" L . ‘fu : ‘i‘f. ‘ »‘V‘i“

Jtion theory forms the basis of

9e
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I“:u‘: TABL$¢2;1 AfRéHat1onships BétweeﬁlTEnsor'a

a) Streés-épace“f‘

P
'

‘tensor

b) Strain space

tensor
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\ CHAPTER 3

®

A" REVIEW OF MACROSCOPIC FAILURE CRITERIA FOR,
FIBRE-REINFORCED COMPOSITE MATERIALS

v
\
\

A

\

o
3.1 INTRODPCTION
A faildre criterion attempts to predict mathematically whether ot

~not failure will occur for any given loading condition. Its accuracy

can only be judged from the agreement between the predicted results and ‘

experimental data. [Ideally, the number of parameters necessary to defi-

ne the failure function should be as small‘as'possible. For example,

knowing the failure stress of an isotropic material under uniaxial load,:

a failure criterion,might be‘developed that-would:predict its strength

\
‘under any biaxial loading condition. In fact, a single parameter such

as uniaxial tensile s@rength is often sufficient for isotropic matert-
\ \ ‘

;als. In contrast to ‘isotropic materials the strength properties of

l

f1bre reinforced materials are strongly dependent on the direction of
loading. Accordingly, mdre than one parameter is’ needed to describe the

failure criterion. This hapter will focus on the variOus failure theo-

ries that have been propo ed for composite materials. He shall limitiv

{ \}

attention to quasi static m croscopic failure and exclude from our dis

cussion phenomena such as fa igue, fracture, creep and nﬂcroscopic dam-’

age,
Material failure can be' efined in a number of ways, for example,
to.be either fracture or a stat, of excessively large deformation. Many

. so-called "failure criteria” iwer}

ftrst developed to predict the onset .

25

of yield or plastic flow in ductile metals. This was the case with the_}“




L “nates are also discussed In addition a survey of experimental results
S

a .

w:isotropic failure criteria of ‘'von Mises and Tresca, and with the ortho-

tropic failure criterion proposed by Hi11 (1948) - For fibre-reinforced '

materials,‘“failure clearly is not due to plastic yielding. It is

associated‘with a loss of streng%h or stress—carrying capability. Thus,

when a loading condition exceeds~those defined by the failure criterion,

'the material is deemed to have faile in one of among a number of pos-

sible modes, possibly one of those de cribed in Chapter 1.
| Only a few tailure criteria have been proposed for isotropic

-materials and these are reviewed briefly in.the‘next section. The de-

.velopment of failure criteria for orthotropic and‘transversely isotropic'"

materials is based on analogous hypotheses. One of the desifed.thar-
’.acteristics of orthotropic failure criteria is. that they reduce ‘to iso-
tropic criteria when identical strength characteristics are present in

oan directions. ~ Over. the last two.decades, a significant number~of

‘failure criteriaﬂfor‘composite materials,‘or more generally-for’aniso-‘
’ tropic materials have been proposed They can belclassified into gens
eral families and each group will in turn be reviewed in this chapter{

Failure criteria that have been proposed to characterize composite lami~‘

,published over the last twenty years will be presented

In most applications, it can be assumed that a lamina of the
'f‘composite is under a state of plane stress It is therefore sufficient :

. to describe ‘the failure envelope in the three-dimensional stress space

“’1.","’2. Y2 12

o stress.. For transversely isotrOpic or orthotropic laminae, the 1 axis"

< v
C

where °1' 02 are normal stresses and 3 is the shear7,

26

*'ryfand Z-axis are taken to coincide with the material axes bf symmetny; ,I
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uSince material behaviour is indifferent to the direction of the shear .

”‘27 .

stress 1 12 ; the entire envelope must be symmetrical with respect to

| 12
terms‘as possible.

.theﬁplane‘x = 0. ‘Ideally, this envelope should be described by as few

»

The tensile stresses at failure for uniaxial loading in the di- B

rections 1 and 2 are denoted respectively by X' and Y . The‘corresp-

onding compressive strengths are X' and Y' . The‘value"é is the

B failure stress in pure shea? These specific stresses are commonly uiedjl

‘i to. characterize the failure envelope. However, most failure criterga

- for composites require the .use of additiona@ points to define the surfa- -

- ce more accurately. - : : : e .

When the prinCipal axes of a lamina are oriented at an angle 9

with respect to the direction of loading, the specimen is referred to as

an off-axis"'lamina._ Shear tests: S or’ S'\ on off axis laminae are

often suggested in addition to the above uniaxial tests. Most of these'i

are performed at an angle of +45° and the strengths obtained are desig-x'_V

nated as . 545 and SAS respectively. Tensile or compressive strengths

f:under equi-biaxial Poading P and P' can also be measured to provide*.'}

more points on the failure envelope._ Uniaxial tensile and compressive_('

‘strengths U' or U‘ on’ off axis laminae oriénted at an angle e can,

0

‘4falso provide USeful information on the failure envelope. The variobs'(J

-”tests performed on uniaxial laminae are summarized in Table 3 1.

'3'3.2T A REVIEH OF FAILURE CRITERIA FOR iSOTROPIc MATERIALS _
The behaviour of an isotropic nnterial _subjected to a set of
:'fcomplex loads is the simplest case which arises.- For this case, failure

~7vcriteria are often based on the additional assunption that their tensile

s"\,Lyﬂ
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: and compressive strengths are identical There is not yet a unified |

o theory applicable to all isotropic materials without exception. Indeed,

several criteria have often been proposed for the’ same material
Since atl planes ‘of an isotropic material are planes of material

symmetry, it is convenient ‘to, transform the, applied stresses into. their

‘principal values op Bq and °r“ (The subscripts p,iq, a(§:§;:d

here to ‘avoid confusion with'the system of axes 1 2, 3 that iden ifhes

: the axes of material symmetry for an orthotropic material ) For the‘ '

;plane stress case, °r = 0.

The simplest criterion proposed to date for isotropic materials

is the maximum stress criterion., It stipulates that failure occurs when

one of the following conditions is attained

= Xfiul or‘.
lopl D o‘qli
.this-critenion_canfalso‘belwritten.as .

-

=X .'(3-1)“ o

o where X is the uniaxial tensile strength of the material. This is a

on-interactive criterion in the sense that failure takes place when an",f

x-'_individual stress component reaches the critical value X*,'regardless_gV'

,’

‘jof the value of the other.' This failure condition is sometimes applied‘,l
r,ﬁt° brittle isotropic materials. From similar hypotheseS.-a non-interJVn_

.ffacfive failure criterion with principal strains as parameters can be;~.

:;f;defined in plane stress as

‘ifﬁ@here;fh is the‘modulus of elasticity._ rt can be observed by drawingfi,;{;ﬁ;

. . ‘ .,: ;

= X/E | r"X/E (3-3)
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Equations (3¥1i and"(3?3)'in.the'same spacefthat‘these‘criteria'are “a:
'identical on]y for the theoreticai case of zero Poisson s ratio.l | B
. The observation that failure in isotropic materials ofteﬁ‘SEé;rQ‘

*by siipping on a. piane at 45° from the ioad axes led Tresca to hypothe-t
lsize that the shear stress component’ was: the criticai cause of faiiure.g‘

This hypothesis ieads to\thé foiiowing set of equations , S
£ _ AR Lo ,
log L =X . e al S feye g T X (3-8)
This fatlure condition is most suitable for describing plastic yieidingr
'in ductiie materials.. | | | | | ‘
- Another criterion the maximum distortion energy criterion 13‘
based on,the~decomposition of the total e]astic energy stored in a mate-
riai into the sun of the diiatationai energy and the distortion energy.'.'r,
Developed originaiiy for the yieiding of metals it asSumes that faiiure
is unaffected by the hydrostatic pressure. in terms of principai stres- q

this can be expressed as’

e (° "°) i (" ) ") + (o - o)l a® (38

";Under piane stress conditions, Eﬁé 0‘and}the*condition‘(§§5)“can}bewjig

[ ! '
D Y

F"'transformed to

"‘” “”‘f‘ f”z e

-

' *,”This criterion is known as’ the von Mises or Hencky-von Mises yieid cri-lr"

o terion.v From a theoreticai point of view, the use of this criterion isif&fz

i:‘ﬂ;ﬂattractive because it is a continuous and interactiye function. As with};
733ﬂTresca s fai]ure criterion, this criterion is often used t;udescribe

"Efrfyielding of ductiie'materiais"7
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, 3.3 MAXIMUM STRESS AND MAXIMUM STRAIN CRITERIA

30 .

In view: of its inherent directional properties, the strength of.“

‘ran orthotropic fibre-reinforced Tamina’ is'strongly dependent on the o

A4

:direction of loading. Also the different fai ure mechanisms 1n tension ‘

and compression will cause failure at differen values of applied load

'The simplest failure criterion for such a material can be obtained ‘from

: ‘a direct extension of the isotropic maximum stress criterion.; It Stlp-‘

‘ﬁ.ulates that failure will occur when any one of the following conditionsh o

1s exceeded (Tsai 1983) A DR
«X < 9 ‘<. X
. -YI < 0'2‘ < Y | o . . | B | (3_7)
- . o -S < 't‘l‘z < S

“‘To apply this,-the internal stresses must first be transformed to the '

“;tmaterial axes of symmetry.‘ This will be the case for all failure crite-r“i‘

'i“;ria considered here.. As is ‘the case for its isotropic counterpart thlS

jcriterion is non-interactive, since failure is predicted 1ndependently o

‘Qiby any one_ of the three of' Equations (3 7) A similar extension of the“f""”

lM isotropic maximum strain criterion produces the next set of equations,ff"

. “ i
,".“ R

St

{ﬁ;(rsai 1983) oo : » ~
,,l g . o C ‘-‘ | , v-‘ ,i. " ‘l‘v‘ ’l‘ii K » v. . e - : + . _“': ‘ |

c‘siu

Wy s




L f3_4 HILL-TYPE CRITERIA DR ;;ff:fﬂ

o R ' “‘ 2
Q4,0 S QlZ 2. | °12
—— +. g Q,, - e { —z—— ¢ Q .
O "l ('1?l‘922.}' 1t Y ‘E‘" e _022)
P SR LT (3 9)
Q.1201_+ & (Q,y, = —_012 )’<‘o g '01201 + ’E (Q 012 )
SOy T2 V22T %2 Ty Tt V2 T T
. o -S <1:<S | ;

12

L ,r},

This f“iiure envelope c01ncides with: the conditions (3 7) oniy when the‘.

P0isson ratios 12 v21l- 0.

According to a survey by the AIAA composite structures subcommit-
=

tee (see. Soni 1983), the two preceding criteria are the most wideiy used,“

: by designers of composite structures more than 50% of the respondentsi--

'surveyed ciaimed to use one' of thﬂ&e. The popuiarity of these criteria

stems from their SimpiiCity rather than their accuracy. Nhen these‘

L criteria are used for unidirectionai iaminae, it is generaiiy assumed_i

that fibre fracture occurs when ci

. that failure due to 62 ,or 112 is associated with matrix failure.,

f;Experimentai resuits seem to indicate that the maximum stress criterion

r

exceeds the iimiting vaiues andi

gives good resuits oniy for compOSites with very iow moduii, and that“‘P

‘ :"the maximum strain criterion is representative of some composites withfpﬂf

-Triow shear moduii

In 1948 Hiii proposed a criterion to describe piastic yieldingfﬁff

%”;:ffor anisotropic metals._ On the assumption that an anaiogous criterionf?@r

: since been?adapted to composite materiaiss Hiii si{riterion has inspi-
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The criterion proposed by Hill (1948) was developed in a generali

form for orthotropic materials. Hill generalized the von Mises distor-

tional energy criterion to account for anisotropy. Basically, he assum-‘

t

ed that such a criterion would have to satisfy the following conditions

o 4‘%,;

First it should be of quadratic form. Second “supposing that the ten-.

e

sile and compressive strengths would be the same, all the linear terms]:‘

:] of the quadratic expression would be equal to zero. Third the axes of‘ﬁ

' reference would be taken to coincide wifh the principal axes of ortho-'

: tropy. To sa;i,;‘ these conditions, the criterion was postulated as:;

follows o e RS o ‘
2f(ay,) = Floy0y)? + 6(6y-6)2 + (a0 2 A ey
(61502 Flogog) * Blogmey) + Hloy-op 23 :
o (3-10)
R AR SURPEE S |
TR ?31i¢*.2“u‘12‘ - f'_ _ |

"wherei F G, H L, Ma-and N are constants characteristic of the mate-

rial In Hill s original proposal these values were obtained from the

yield stresses in the principal material directions., The‘values of thev ‘\

constants ‘F G H " are then

e s

'”*ffﬁa"d M vanish Substituting




‘ .'ntifoiiowing 'ﬁ;&g“FrffpjfT',fff ?Vf pg'*griﬁ”

[ v )
[ , , . Lot " .
. il

to:" LT
2 27 —;f g

o This expression is equivalent to .the von Mises faiiure criterion (3- 6)

(3:13)

It was observed experimentaliy that the shapes of failure enveio-A

pes for fibre-reinforced materials were similar to those obtained for

For an’ isotropic mediun X = Y'#‘i =/35 and (3-12i reducesffurther \

‘yieiding of orthotrOpic materials This ied to the use of Hiil s, crite- -

trion (3 12), originaily intended as a yieid criterion for me;ais, for“"

‘ithe prediction of failure in fibre-reinforced 1aminae In this case,‘

the constants F G H and N are caicuiated from the strengths in the‘
‘bprincipal matériai directions.. This extension of Hiil“s criterion was ‘,“
first suggested by Azzi and Tsai (1965). Since the criterion (3 12) wasf{
inot deveioped specificaliy for fibre-reinforced materiais. it s of i

"liimited applicability for them nminiy because of the hypothesis of‘

"equai strengths in tension and compression j However other-criteria

speciaiiy intended for use with fibre-reinforced iaminae were obtained

"from extensions or modifications of (3 12)

. For unidirectional composites,;Azzi and Tsai (1965) invoked theig

‘ i transverse isotropy condition in the piane perpendicuiar to the fibre;f Ql

chompression. some author 'use different vaiues of x aand Y dependingb

fﬁ7fﬂﬁfd1rection to insert the equaiity Z Y in. (3 12) This ieads to thef“i‘“"



b“usually taken as 1/X

—

"“in which quadrant of theispace °l -102 the load conditions fall Thisﬁ

'fpoints where it intersects the °1 and 02 axes. These slope disconti-*

3

"-“produces a failure envelope that has discontinu0us slopes at the four”"‘

nuities can be eliminated by multiplying the cross product term °l oz~by‘ ; S

g;the same coefficient in the four quadrants.‘ This common coefficient s

2 , as computed in the . first quadrant

. WOod s an. example of a natural material with directionally— T

Vdependent pr0perties and it is often assumed to be orthotropic. 'in“f

:v‘plane stress, a failure criterion for wood has been proposed by NOFFlS"

i='(1950)

. ‘ L N - x ¢
‘ S 01, g.0 -0, T LN N 4
! — 1,2 172y 2,2 12,2
LT (T) -‘(,X‘Y‘ ) "’( )+ ( S"‘) =‘\‘1 . R (3-‘15)v | S

This criterion is very similar to the fai]ure criteria proposed by AZth

i

o and Tsai,: and by Hill As for the previous criterion different valuesi‘

' of X and Y can be used depending on the signs of the stresses._ To -

'_Jensure slope continuity where the envelOpe intersects the ~61 and 2'

‘axes, the coefficient of the cross product cl‘ozj obtained with p051t1-_7u

3ve X and Y is usually retained for the entire envelope. Norris also_;l)

'\,Postulated the additional condition that the stresixvalues should noti*‘gt‘}a'

‘7§'exceed the maximpm strength in the 1- and 2-directions that is

o This produces a failure envelope which is truncated by flat planes per—i,}gﬂr

“lendiCular to the axes*at the values of maximum'uniaxial strengthS in;jfiL&

x' < ol < x ; Y' < 02 < v J" (3 16) Lo



'115 that associated with the product

u_ultlmate strength U

o

i

The only term that dlffers 1n the above cr1 eria (3 13) to (3 15)

‘fterm however depends only on the unlaxlal strengths . xlﬂ and ‘.Y‘,

1hAshkenazl 1966) proposed that the value of thls 1nteractlon parameter

;un1ax1al tenslle test on a lamlna at e = 45° and uslng the value of 1ts~1j‘ |

&
1n the computatlon of the 1nteract10n term.

45 .
twith thus new value Ashkena21 s criter1on becomes —
: - ‘ ‘ W :
0, ., s ‘ e
IR PR IY) oy e
EVEET (‘"s") DLt R —2] o1 (-17)

T

,#45-

“ol 2 The//gefficlent .of this

1,,*0ther authors have proposed crlteria in which the value of the lnterac- :

*
i

3

_ije found by perfoqning an addltlonal test He Suggested cpnductlng a

t1on parameter would be a function of the elastlc constants of the lami- -

‘“«Z‘*na 1n the pr1ncipal directions. A slight modlfication to Norrls cr1te-

IR matrlx materials reads as__ e

'ﬁmheref‘K ‘is g1ven as:

r1on has thus been proposed by F1scher (1967)

c o g o c'o co l s .
rl 2 .72 2 ‘\12 2' . 172 . R gy
Qi‘) -t (7‘)' + (- S‘) =Ky =1 LR - (3-18)

o

E (1 + 1) '+ E2(1 + v

z_[e (1 + VZI)(.l + vlz)]

‘.‘.

‘"‘tended to take 1nto account the properties of the constttuent fibre and

ﬂ

f( r"nz)

T K 9la 115

rleaB :£12 S¥J¢;:58}§§i. ;v._“

12 . ”‘. ' . ‘(3-19)]/

"
S

f§ A comparable cr1terion, proposed by Chamis (1969), that Was 1n-‘ff‘ﬂ“”




. L | o

-

where f(ox,Sl;Kllz) < 0 1ndicates faitlure. In this equation, there are

et -

two correlatton coefficients: Kilz ap fs a theory-experiment correlation
coefficient, and Ko 18 defined as: '
(10+ 4 v12 - v13) E, + (1 - v23) El (3-21)

Kx 3
[5152(2 vyt )24 vy + vy 1

¥
¢

In’Equation (3-20) the subscripts « and B differentiate between the
tension and compression modes. The values of Sll&’ Sllﬂf sza! SgZﬁ’

112 are the ultimate strengths in tension, compression and shear

g Chamis calculates thesé values using the elastic properties of the cons-

tituent materials, Howeven; they could be found experimentally, and

would -then be equivalent to the values X, X', Y, Y', and S , respect-

ively. ‘Forzan isotropic material, this criterion reduces to the uon
Mises theory.‘”with different strengths in tension and compression, this
produces 5 failure enyélope with discontinuous slopes at the four points
where'it;intersects the o, - and g,-axes.

1
_The failure criteria of KTl (3-12), Azzi and Tsaf (3-14), Norris

(3- 15) Fisher (3- 18). Ashkenazi (3-17), and Chamis (3 20) all represent
ﬁl Ly

ellipsoids‘in the stress space o) = 9y = Type ‘With the hypothesis of

unequal strengths in tension and compression different strength param-

'.eters are- used in each quadrant, and ‘each portion of the surface is’a

‘section of an-ellipsoid. All ellipsoids or portions thereof are center- )

ed at the origin, Their respective length and orientation are determin-

' {éd'by the‘coefficient of 0y Gpe According to these criteria.the-shape

of the failure curve in a plane T " constant will Femain identical

for: any shear stress 112 . In fact with fncreasing 12 . the failure

-ff"curvewwill shrink towards the point (ol= 0 ay =0, 112 S), as shown

-

36

¥



' equations, dependinglon whether the stresses are tensile or compressive, '

L2 ;2 o '
Kl(ol. - 01?2) f.KZUZ + Kyoq + Kqop + K5112 = 1 (3-23)
. where: '
Ky o= XK
. =A, '
HKZ = 1/7YY _ . | N
L Kgom Ux-t - L (3-2)
' E K4 = . 1/? - 1/Y‘¥§;_‘ .
S S V7

"o and o

e
[

[

in Figure 3.1. ,fhese criteria thus make it 1wpossible for the shear

stress to be greater than S . This is not‘the case for the stresses

] » which can reach values higher than X and Y , except when

this is specifically prevented with additional conditions, such as those

specified by Norris, Equations (3-16).°

" The only way to account for different strengths in tenston ‘and
. RN .

. \ . .
compression in the above-criteria 1s by using different constants in the

The entire failure enveTope is therefore defined with four different

portions of ellipse, one in each quadrant. Hoffman (1967) 3;1ed to

‘tmprove Hill's failure condition by including more terms to taﬁe the

!

while still describing the failure ‘envelope byla singie eqdation. This
' % '

i

was achieved by including linear terms in ¢ in Equation (3-10).

g

» 959 O
L 1° 72" 73 |
His criterion contained nine strength-pangmeters instead of six:

| 2 S22
Cilog=03)" + Cylo5-01)" + Cyla=0,)" + Cpop + Lgop + Coog

2
8T13 * Co%12

Cprpg” + € =1.

For plane stress conditions-and transverse isotropy with respect,te‘tﬁe

1-axis, this reduces to:

2

possibility of unequal tensile and compressiQe strengths into accodqQt

37
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Raghava and Caddeii:(1974)‘aiso proposed (3-22) as a fallure criterion
for an orthotropic polycarbonate;- Because of’the assumption of ortho-

tropy, that equation becomes, in plane stress:

2 2 | 2 S ‘
Kyop *+ Kpdy * K30y * Kgap * Kgopp = 2Kgopop = 17 (3-25)

where the constants K1 to K are given by (3-24) and

.- — 1 1 '
. ‘ B K6 = (XX' * YT - Z;')‘_ | . (.3"26)

For a material transversely isotropic with mespect to the l-direction

=Zand Y' = 7', so that K

6 = 1/XX' and Equation (3-25) becomes jden-

tical to (3-23).
’ A generaliiation of the von Mises‘theohy to orthotropiC'mate-
rials, taking into account different teﬁsi[e and"compressive strengths,
, has been proposed by Marin (1957) Assuming the reference axes to coin-.

"cide with those of. material symmetry and. principai stress directions,

this criterion is given as: o o \
,K1(°1' +_§2 ) * Ko * Kyay * Kgopop 21 “‘ts-27)
where: ‘ , )
” Ky = 1/xx! ’
L Ky = 1{x - AN ) |
- Ky = 1¥=-yxx 0 L (3-28).
- o p2 1011 1 10 Yo :
DU S+ ,«f«‘si*s(i'r'v*w)]

This’ theory has two major disadvantages. “First it dbgs not.take into .
.account the compressive strength in the 2-direction.' More importantiy;?‘
.j‘the hypothesis of coincidence of principal stress axes and the axes of"
";material symmetry limits the range of‘ applicable stresses since the
;shearhstress 2P is ignored According to this theory, ”tlé. has no L

'_-'infiuence”on theystrength,‘



The three failure criteria'proposed by Hoffman (3-23), Raghava

and Caddell (3-25), and Marin (3-27), can all be written in the form:

2, .
Aoy + Rpop + A3010p + Aoy + Aga, + Agry 12 Tl (3-29)
" This is the genehalmequation for anqellipsoid in the space dlr- o -1
symmetrical about the plane 112 = 0... As shownqby‘sohling et al.
'(1985), the center of that ellipsoid will be at (olc,‘ozc,‘O) where:
. C _ A3A5 } 2A2A4
. 9 F
oo ‘IA -4 A A2| '
o BN (3-30)
P s A3"4 2 MAg 2
2 |A -4 AR

" centered about the same axis. Ultimately, these ellipses will converge"

- towards the point (al » G C, SC) where S

)

' 'strength S ‘in pure shear.,;

(RS

2 | 2

These parameters are shown in Figore.3 2. The major axis of the ellipse
will be oriented at an angle 6 with the 1 direction equal to
; A"

=1 : 3
‘6 =7 arctan- (¢

1° Az)

The above -parameters are shown in Figure 3.2,.. Like the other Hill;type

(3-31).

criteria, ihcreasing the value‘of 112

N

is given by:

c .
- AA, 1/2 .
2 (34_AA)

O]

Aecordingly, for any ellipse not centered about the origin the shear

mstress 112: at failure may reach a yalue Sc which is. higher than the

W

' In this section, we have shown that all Hill-type failure crite-;:jl‘,eu?

ria for plane stress have the shapiif f_h ellipsoid symmetrical about

12

reSults in a shrunken»ellipse"

39

(3-32) . .
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the plane ' T ® 0. In some versions the envelope is given by differ-

ent portions of ellipsoids in each quadrant The general form of these

criteria can be represented by - Equation (3 29). Nhen A4 = AS =0, the
ellipsoid or portion thereof 1is centered at the origin and the shear

stress cannot exceed S . Nhen A4 £ 0 or A5* 0 , the’ center of the

- ellipsoid Ais located at the point given by Equation (3 30), and the ‘

" maximum- shear at failure can exceed S . All criteria assume that the

overall shape of. the fail¥fre envelope is the same at different levels of

the shear stress 12 . " and that it shrinks as a function of ¢122. All

the criteria could actually‘be written as:

ot
.5X

3.5 TENSOR POLYNOMIAL CRITERIA

flapep) = 1= (5 12)2 o | (3-33)

»

- where the parameters of f(°1'°2) are fixed and calculated from the uni-

axial strengths of the lamina with- respect to its axes of material smn-

‘depends on the uniaxial strength of‘a lamina oriented at e = 45° R

40

. metry. With Ashkenazi s failure equation, one of ‘these values also

In the 1960's “the 1dea that the mathematical model of a failure" -

envelope of fibre-reinforced materials be. invariant with respect to the

choice of coordinate axes was advanced It was also suggested that the

model should have enough flexibilitx to describe a failure envelope of, ’117

any shape. This motivated the:use of tensorial notation,_the stress

ties by scalar or tensorial quantities. It was recognized that a crite-

rion of that nature should take into account different tensile and coms‘;

pressive strengths, and the dependence of the ultimate shear strength on‘~



‘ ';‘-The interaction paraheter F.

u E@i T
D |

K the direction of'the applied shear stresses. Finaiiy, it was stipulated

that such a criterion should reduce to the we]i estab]ished faiiure‘

criteria for 1sotropic materia]s when provided with the appropriate‘

nstrength properties. :

A general failure criterion ab]e to satisfy a]] these conditions"

: was first proposed by Gol' denb]at ‘and Kopnov (1966) and was postuiated

" as fol]ows

An infinite numbér of faiiure enveiopes can be obtained with this crite-

‘ rion. However, the authors restrained their 1nvestigations to the spe-’

—

g c1al case with .x.; 1, 1/2 po=- In’ plane stress, Equation
-(3-38) reduces to: | o

| | 222
[Fyoy * Faopd + TFy1op + Fopop * Fegmip . 2F 199

. From uniaXiaT testS'aiong the:naterieldaXes.ot‘symmetry,,the;strength ;

.perametersiafég;» v;_;- | i f‘ . :W:h;..
R L S N X s 2l
LT BRI ARE T2

12 . found from positive and negative shear

L ﬁstresses gpplied to a iamina with its fibres at an angle e = 45°‘ i 73'7i' /

. ,f” 1 'é R
. i,‘ F1 8 [(x +"“) + (y *"') ' ('s'" +-§E) ] (3'37)
The failure criterion of Maimeister (1966) can be obtained from

*~'(3-34) by simply putting all‘exponents equai to unity, that is.'f?ﬁifi“

Yo (33)

4] o

S (3:36)




a2 -

CFig 1j°1 3 * Fijk 199 e 51 IR . (3 38)

| ;For the speciflc problem of‘plane stress, he suggested keeping,only the o
l terms up to the’ second order.v This glves the following equation |

2

F o 2 ap 4 F 11 l + 2F

a2,
222 66 12

Y o
1219 * -=,1‘ | (3‘39)
, where the strength parameters Fit and Fli‘ are found from unlax1al

‘tests along the materlal axes of symmetry

coLalay 1
Fy = (X,r'yr) = 7yr R
' 1 1 Caa
Fo G-y =Wr (3-40)
T
“F = -
R
‘%?.From a positlve shear test on a lamina with flbres at an angle e = 45° T
-the 1nteractlon parameter Flé is calculated as: .' H;‘ ’
. v“v‘ f _ F '. v f"".:: ‘ | ] ) o
of el 2 e 1 A PR
Bt I 2 S S (3-8

| fAmong the researchers that have used the failure equat1on (3 38), some }'
f;ﬁflnd the strength parameters F1 and F1j from best fittlng techniques
, Lzof experimental data, rather than calculating them from>Equations (3 40)
?j:and (3 41) | _‘ LT Ly o
. Assuning that Hill s failure conditlon could be improved by the

P

vﬂu;additlon of linear terms and that the 1nteractlons between the stresses

1/;55h°“]d “°t be flxed Tsai and “U‘(1971) Proposed a criterlon very sxml- -Ws:;ffffﬂf
'_fflar to (3 38) o e e
X 2;_F

i;flhe linear tenms are kept to cha"acterize the different strengths in

f{;tenslon“and compression,‘while the quadratic terms provide an ellipsoid--.s f}ﬂ




'F‘jshaped surface in stress space. The cubic and higher terms are elimina-
" 'ted on . the basis that they. could result in an open faiiure envelope.
"iAlso retaining these terms implies a iarge amount of experimental worki?

u‘to determine ‘the numerous strength coefficients. Tsai and wu did not ;'f

il

assume a priori that the pOSitive and negative pure shear strengths in "
‘ the 1 2 plane would be idéntical For the case of plane stress and

f? transverse 1sotropy in the 1- direction their criterion reduces to
2 22 "
119 f*Fzz"z +F%6112

Fro, +Foo, + Fery) + Fo ¥ 2F

“Fyoy ¥ Fpop + FeTnp (343)

12 1 2

, where the strength parameters F1 Fz”Fll" é2 are given by (3 ao) and
. .‘ ‘--1- 1 . . ‘ 1 . ““
Foi5o 5T ‘Fs 's'f“ BRERR 44)
The value of the interaction parameter F12 must be determined from a
‘ biaxial test.‘ Furthermore to ensure that the failure surface is clo-

}sed the following relations must be satisfied

i F.. F F2‘>‘0,:

11 F22 - F12 B PT LMDV o
Fzz Fss a0 ot .
e . SRR e " o

'dewhen this is so, ‘the' failure envelope is an eliipsoid which can still bef;%(

'more or less elongated and be oriented within a wide range of angles;¢
bi,f4¥7tn“' Since the tensor polynomial theory has gained wide acceptance,,ﬁ*?jtff
i ”fflmany attempts have been made to properly define the value of the interpik*’J

,,fuaction factor F12 The influence of this parameter on the failure”,jsﬁf'

'im’ff%envelope was discussed recently by Suhling et al (1985) Tsai and uahni];if?
S (1981) defined an interaction paraneter Flz*q”a ) 8 o



: :,‘f i:j“f: Hp‘f 3‘33 ?“"f‘fji‘rrfﬁ“;‘f';“\~‘ 1“.‘“‘ r;ﬁ”ef | 5;5445
‘:;iand proposed that 1t have a fiXed vaiue of Flz.—;- 1/2.‘ This assunp-\‘
fntion 1s not based on phys1cal grounds but is assumed qu1te arbitrarily

iofand 1s not app11cable to every material Hofﬂman s theory (3m23),

‘cspec1a1 case of the Tsa1 wu criterion (3 43),,1n wh1ch the 1nteraction<u~'ﬁ
|7:.4a\;‘;parameter is: urﬂ‘ S _ o - ‘A} “‘f.f‘,_;ﬁ

L R . ,-‘1/(2'xx?)‘ “, N WY

. ‘ A theory that was first developed by Hankinson 1n 1921 to" pred1ctvh:

:’the strength of wood 1n compress1on was reintroduced by Cow1n (1979) 1n
| ‘ ahorder to calcu]ate the coefficient F12 , The compressive strength ofa
ffi H‘v.wood at an’ angle '8 with the’ grain was found empiri;a1]y by Hank1nson o

Pt

:f.to be

».‘.U' b= ‘ - S " (3-48)
' "er‘fwxﬁ sinze +'Y'.cos29 ‘ - e

:'v s‘Cow1n shows that this strength should a]so be given by
‘ TR P : : “a“

. y

e (Y COS 9) + (X Sin 9)2 f{ ¥ cos o s1n e) [zF "lil
“‘,‘ ‘ )

: ‘U'2 ' 4& ‘ (X Y l , (3 49):

- f”tEquat1ons (3 48) and (3 49) give s

l_vi;To account for different strengths in tension and compression, Rowlands’“@Vg ‘

S "Ef(1985) modifies Equation (3 50) as follows- ;' :




‘;'equai to zero. Even though good resuits are sometimes found from thisi
simplifying assumption no physica] argument has been brought forward to]i u,affg
_.f____~_explain why this term shouid vanish A recent proposal by Nu and'jgh.‘ﬁ,'r

Stachursky (1984) puts | ‘ »
‘Eiéj=fzz:;lngh..‘ i“ [P | rff;L 3(3<52)0:p
| Recent studies have suggested that the quadratic form' of thef
'tensor po]ynomial criteria was not f]exib]e enough to é;scribe the faii-u ,7‘
‘ ure enve]ope of a 1amina Consequentiy, ‘some. investigators, (e g :
‘i Tennyson et ai (1978)) have proposed retaining the cubic terms inh
(3 38). This gives f‘“‘- - S p,, o . R

\ .F o 111 3 Ankoij 2 =1. " o (3;3)

" For a 1amina under p]ane stress ‘the assumption of equai shear strengths
. for p051tive and negative shear and tensoria1 symmetry ieads to thep‘r‘
' F”foiiowing criterion ip;ﬂ" '(f\ o ' ‘

| e 2 2. | -2
§F1°1 : Fz 2 Fop -+ F22°2 + F55‘12 *_2F12°1°2 + 3F112°1 5%

R g e ) @0
EIREAE ‘f‘gxp* ! 3F221"1 2t 3F155°1‘12 f 3F266°2 12 =L

‘ Qh;In this equation al] terms Fi. and F associated with unidirection-:fpfgf?fﬂﬂ

“if,al 1oadings have the same vaiues as given by (3 40) for the quadraticogﬂﬂ

””hﬁﬁﬂjifonn of the polynomia1 criterion.. However, alliinteraction terms mustf; B

‘ L:gbe reca]cuiated. The determination of F12’ FIiZ’ 221- 1663"d F266;

o ‘??iis not a straightforward matter. Tennyson et ai. have proposed an iter

.at1ve procedure invoiving biaxial*;’,

ﬁ“trength tests and four constrainti
, '“iequations for each term. Another difficultyfw h‘the “ubic form is that;




Y
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. five interaction parameters as’ opposed to the one parameter F12 for-v\7f

the quadratic criterion.“ Some authors such as Huang (1985) have used '

‘”‘ best- fitting techniques to find the strength parameters F 11,‘p 1jk o

AN the failure criteria discussed so far have been expressed in

terms of stresses.; If we assume 1inear elastic behaviour up to failure

they can all be transformed directly into strain space Tsai and Hahn y

(1981) postulated the following general failure criterion in strain L

space analogous to (3 42)

B3¢ i J

’o ‘Vj\z.¢ e, . [ - h”[‘f o (355)

where the strain parameters Gi and ij are obtained from a: transfor-

mation of the stress strength parameters F1‘ and Fij This strain .

tensor criterion is sometimes preferred in analyses of laminates based

3 - ‘on classical lamination theory, since the failure surface of a lamina in

strain space is not influenced by its thickness.‘f

‘f.f In this section» failure criteria proposed by Gol denblat and ’

Kopnov (3 34) Malmeister (3 38) Tsai and wu (3 42) Tennyson et al

(3 54), and Tsai and Hahn (3 55) were reviewed. Among these the cr1- ‘.ilj

v\‘
S

teria of Tsai wu and Malmeister are those that have gained the widest

aCCeptance to date. However, whether or not the interactidn parameter HQ'“

r.

12, should be dropped is still a debated issue. Its value can be ob-a\~

tained fram a_;appropriate biaxial strength test or by using one of

B Equations (3-46). (3- 47), (- so). (3 51) or (3 52) These criteria are’

! "of'the quadratic form (3-29) and have the general shape of‘an ellipsoid




with respect to the plane 112 =f0iinrstress space and'can.be‘nritteniasi‘“v".
S f(olsoz) = c T ( o ‘ R (3 56) ‘,‘,.v.*
'v;wheref _C‘,is a- constant equal to unity except for the Cubic criterion”
where the‘valuelof c is given-by;a |
1

- o .. C = - : SN “‘ T o (5-57)ﬁ3
- "’ <00 Tet 3F1661+3F2662 ce

.It can be seen from this equation that even if Symmetry about the plane”
1 lzv. Q is maintained the shape of the failure envelope in the direc-
"tion" 12 of the failure surface is no longer a unique function of the f»va‘;
' shear stress as shown in Figure 3 3..
3.6 FAILURE MODE IDENTIFICATION |
. The failure modes usually conSidered for fibre-reinforced laminaev‘
; are fibre breakage and matrix failure.k The failure criteria presented
in the previous two sections provide no information concerning the mode h‘
that causes the failure of the lamina._ Figure 3 4 illustrates two pro-“i
w‘( cedures that are generally used to distinguish between the two principal: G?ii
modes. ,Qne method postulates that fibre breakage is triggered for everyﬁ;i
wf point on the failure envelope for which -

t o ’ :-;““."

. ‘(.,‘

All other points indicate matrix failure. This procedure seems to bejy“"‘
',y‘,the |nost commonly used The second approach postulates that fibreff[?ff?

breakage is found for every point on the failure envelope that satisfies{iaf;f

‘*Qii one of the conditions.

| 0y v/x (a”>o)
: <i v /X' (o < 0)

'f‘.".




“1ndependent of the other. 0bserv1ng that for small lamina angles :

‘ ;”envelope depend on the particular procedure employed

Some fallure cr1ter1a have been proposed that 1ncorporate failure .

!

"mode 1dent1f1cat1on. Nhltney et al (1982) proposed using a maximum“

i

'stress cr1terion to 1dent1fy fibre fatlure together with a quadratlc |

criterlon 1n whlch the terms 1nvolv1ng of' are deleted to 1dentify

matrlx fa1lure.- This gives the two fold criterion. )

| r‘oli‘e‘ Xhﬁ v , - fu,; " “‘QJ'” fibre failure _
e S | 3-60)
N S SRS BT SR T I (8-
.(Yf’fVT}f’Z f‘-ygrl:o (—g—) : 1 : matrlx fallure

oy

Hashln and Rotem (1973) also postulated each fa1lure mode to be

>v‘(e < 2°) the Toad ls carried malnly by the fibres, failure 1n th1s di-'

1

‘rectlon 1s taken as a function of fibre strength only.' For larger an-g

.\gles, the 1n-plane and transverse shear stresses 1ncrease, causlng the

‘“sults justlfled the use of a, second-order equatlon for good curve f1ts

‘;?é;}X\fi%ﬁigﬁﬁnu”‘. fibre failure

)= ‘:~W§trjf7failuﬁe R

H

g ‘48‘

”The relatlve proportlons of matrlx failure’ and f1bre damage on a glven: '_ﬁ

t @growth of cracks parallel to. the fibres, A study of exper1mental re-‘hl

’ftinsensltive to the dlrectlon of shear stress. This leads to the follow-;‘"“ o



a9 -

under any rotat1on 1n the p]ane perpendicular to this ax1s.“In‘p1ane.tf :

stress this 1ed to the four fold criterion

v

'°1" = X' : fibredpompress1ve fai]ure
no I '.)U : ‘\. ) ‘ ’ ) " .' “
‘1;@Xl)2”+ (e%g)z =1 oo fjbre.tens1le“fa11ure'
g S SN ke (3 -62)
%2 S22 o | |
"Vf) + f‘§*) =1 = matrix tepsile fa11ure |
4 v 2‘ RO 027 2 ‘Tlé‘zﬁ‘ls- ‘ ‘, 1~1 o L fo s
Q_T)[Qz__) 2 1], f‘ggg;)‘hf (—g—) =1 : matr1xvcompressjve fatlure -

~ where 1STV is the shear strength in the plane of . isotropy

Voloshin and Arcan (1980) developed a criterion sim1lar to Equa-u'

tlons (3 61) but with a debendence on the s1gn of shear stress. They

also accounted for d1fferent tensile and compress1¢e/strengths using a
: 4
"s1ngle equation. Matrix fai]ure 1s descr1bed by: ‘
N . | R SR
‘ 02 1 : ' . 1‘:‘1‘
777- + (Y +y7) 9 le + f“‘) 0 (e-83)

: = eﬁ \
Another cr1terlon based on the Azz1 Tsa1 fa11ure equation was proposed :

by L1fsh1tz (1982), He assuned that when matrix failure occurred the

propert1es and state of the fibres should not appear 1n the cr1ter10n.

h” He suggested that the matrix load 1n the fibre direction be g1ven by t{'

a," -——l-a=4 ‘ 21 2 o -'¢flkfg :(3-64)J

,+ el
1 1= v12 21 12 21 2.

e1 1

S

where E1 1s the Young s moduTus of the matr1x 1n the 1 d1rect10n. V?qr,,"“ﬂ

matrix failure,‘Azzi and TSai s failure criterion 1s then rewritten as

is.the strength of the matrix in the 1 dfrection._ Fibre

N;reaches*the_value,vx ‘ .




Q)

Puck and Schneider (1969) have proposed a failure criterion that
attempts to distinguish between three failure modes: fibre failure,
matrix faﬂure and debonding at the fibre-matrix interface. The three

‘modes” are given by:

op & Xg . o» | :vf'ibre failure
I [¢] . (o} g, O T . .
1,2 242 171 2 12,2 ’ " .
) F) -1 + (—==)" = 1 : matrix failure (3-66)
) ) g ) X
G, . % ) ; o ‘ <
G2 2P =1 : adhesion failure
1» 1 . s N

where the snbscripts f, m, i -3nd*for fibre, matrix, .and interface

stren@h respectfve'ly This 1s apparently the only criterion that
accounts for more than two faﬂure modes ~
The need to 1dent1fy failure modes in the analy—sis o‘f laminates

has long been recognized. . One approach to this problem consists of

‘iid;\tifyfng“ the failure 'mode on ‘a portion ‘of a co_n‘ttnuous envelppe by

@

means of expressions such as (3 58) or (3-59). This can also be done by

-writing new faﬂure criteria that provide direct information concerning

the nature of ‘the damage. . 'This is. the case with the criteria proposeﬂ"

'.by Lifshitz (3-65) whitney et al (3- 60) Hashin (3-61{, ‘(3-62),

'.-_Vo'loshin and Arcan (3-63) Puck and Séhneider (3-66). These criteria
- . consist of p1ecewise functions where each section of the enve10pe cor-'

x 'responds to a particular faﬂure mode. Th'ls requires that many equa

Q\

tions be examined to check for the possible occurrence of failure.

It shouId be pointed out that for zero shear stn‘ss 112 s
)

criteria (3-60) to (3-63) reduce to four straight Hnes. as\’does the}

LA
umaximum stress criterion.: Thus, no oy - 2 1nteraction is predicted

contrary to experimental evidjence.» *‘These criteria 1mp1y that the .

;ﬁ}



i@

overall shape of the failure envelope does not change as“"ﬁt12

" They can still be writtefl tn the form (3-33).

Both Voloshin's and Puck's failure criterion predict that the

shape of the failore envelope changes ‘as = is increased. With .

12

" Vvoloshin's failure criterion, symmetry with respect to the plane ., = 0

12
can be achieved only if the absolute value of the shear {s taken in
(3-63).
3.7 FAILURE CRITERIA FOR LAMINATES ’ ‘P'?‘

In the previous sections the various macroscopic failure criteria
that have been proposed for fibre-reinforced laminae were reviewed The

use of these criteria in conJunction w1th classical lamination theory

sometimes produces theoretical results quite different from, experimental

data. This is partially due to the fact that certain effects such as -

ipterlaminar stresses are neglected with this theory. Thus,\althoughlit
is wellfknown that a variation of the stacking sequence ‘can affect the
strength of a lam%hate, classical laminatioh theory predicts the same
strength under in-plane;loading if'the~layers in a symmetric laminate

are re-arranoed in a symmetric fashion. Sometimes part of the difficul-

ty lies in a poor correlation between experimental and theoretical fail--

ure envelopes of the individual laminae comprising the laminate. To
~counter these difficulties, failure criteria intended fbr direct appli-
cation to the laminate as a whole have been developed | -_
"For a general anisotropic lamina or laminate, Puppo and Evensen
‘(1972) defined an interaction factor as follows: —
. » L ‘ . o

L qvé%(-%- - . (a8

"varies..



where y vartes from'y - O'for‘non-interacting materials to‘y =1 for
1sotropic'materiais. The authors also define ‘the principal strength
directions £ and n‘ of the materiai as those for which y is a rela-
tive extremum. These directions do not necessarily coincide with the
axes of orthotropy, nor are they required to ‘be orthogonai ihe
Fstrengths é, n, S._relative to principal strength axes are then used to

&N
define a new interaction factor y' with respect to the directions £, n:

! _‘._'§IL . . ‘ . (3-‘68)

G- v (R v G - |
: ' ' o * 0 (3-69) .
o] (I | g T .
vEE ey B e @2 22 -0
- 1 “En

- These formulas are for }' < 1. Another set of simiiarveXptessionsvis

"usea/hhen y' >1 . Nhen y = i, Equations (3- 69) reduce to the von
Mises criterion for isotropic materials. . .

A cubic strength criterion simiiar to Equation (3 54) has also
been proposed by " Wu and Scheubiein (1974) to describe the failure
envelope for Taminates. For a. symmetric iaminate with equal positive
and negative shear strengths the criterion in plane stress reduces to

2 2 2
fl“x,*er°y * F11°x * F22°y * Fo6Txy

243

+ 2F ’
12%%Y  (3.99)

L2 2 2
3F1129x % * 1%y 166°x‘xy * 3 266°y‘xy =1

This criterion has the same drawbacks as the ‘cubic criterion prOposed )
for a singie iamina, in that compiicated iterative procedures are requi-~

red to evaiuate the interaction parameters F12’ 112’.F221’ F166’ 266 '

Fa

52 .
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The“values of‘F | 2, Flys é'andlf 6 can sti11 be obtained from uni-
axial strength tests in tension compression and shear

N The idea of formulating a failure equation for an entire laminate
s’ attractive because it eliminates the 'need for considering the
stresses‘in each lamina interlaminarvstresses and delamination, aslwell
as all the other effects that are not taken into account with classical
lamination theory. On the other hand with this approach it becomes
necessary to perform a specific set of experiments for each possible

laminate‘configuration‘ This is perhaps the main reason that this -ap-

proach .has been virtually abandoned in recent ‘'years.

.0

3.8  NONLINEAR LAMINATE ANALYSIS -
A number of 1investigators have tried to improve theoretical-

experimental’ correlations by introducing. nonlinear effects. Methods -

based on the maximum strain theory .and on“energy principles have been

proposed. The first was developed by Petit and waddoups (1969) and is 3
based on uniaxial stress -strain data in tension and compression of the

‘;individual laminae along the axes of orthotropy as well as ‘the shear

stress-strain data.u It also requires a knowledge of the variation of

the Poisson ratio v with elongation. The procedure is incremental:

12

small " stress increments are applied to the laminate and the computed

- strain’ increments are added to the previous values. The individual

“ e

1amina strains are then used to reevaluate the current laminate stiff-‘
ness and compliance. Failure of: a layer is detected using the maximum-"
-strain’ criterion, and the mode of failure identified accordingly._ Nhen“,.‘
failure is observed in a lamina, its modulus is set to a pegative value"

until complete unloading of the lamina~ occurs.’ It is subsequently: -

53
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assigned ‘a negligible value to simulate zero stiffness. This permits a

gradual load transfer from a failed lamina to its neighbours. The com-”

plete failure of a laminate is assuned to occur when ‘fts stiffness ma-

‘trix either becomes singular or when one of its diagonal components

becomes negative. This method lS generally used in conjunction wlth

'classical lamination theory anduas_such neglects‘the‘effectsuof inter-

laminar stresses.

Sandhu (1974) proposed a similar procedure but with a failure

strain, This criterion is - - ‘ €y R

f(o,e) =. T Ki | oi'dei‘ =1 (3-71)
, i=1,2,6 0 .

When experimental data is unavailable,.the exponent my is usually

kY

taken as unity and the factors Ki are found from the following.

i

‘where the‘ eio's are the ultimate strains.< Apart from the form of the '

‘ " -1 . .
: iu : B :
Ky = [ o dei] "~ (no sum on iy, . (3-72)

54

. criterion based on the total stratn energy rather than on maximum o

failure criterion -the procedure suggested by Sandhu is identical to the'.jj -

'one suggested by Petit and waddoups._°

Although a significant number of failure criteria have been pro{

»

- _: posed to date for fibre-reinforced composites the number of experiment-'

?=7been rather limited. This is largely due to the complexity of the bl-

',:ure envelope in the 1‘ ‘dz - 112 space is very difficult and thef

A
c AR '

'al studies perfonmed to establish the validity -of these criteria has*f‘;_

: axial tests that have to be carried out to determine the various“ﬁ ;T_e

Cus "strength parameters. The experimental determination of a complete fail-‘:‘f



. more than ‘a very limited range of stress combinationsf A survey of .

_ their’ properties are often not reported In the followi#g, we' will~

*”respect to the orientation of the fibres until the fai]ure load is at-gﬁ_y‘

‘tained (Figure 3. 6) Hhen a lamina is loaded ‘at an angle 9 = 0° or

validity of existing failure criteria has rarely been demonstrated for

1

published experimental results will be presented in this section.

A wide range of anisotropic, orthotropic and transversely iso-“
tropic materials have been investigated over the years. A list of these

materials can be ‘found in‘ Appendix 1. It includes ,various? plastics

of wood It should be mentioned that many of the fibre reinforced mate-;[

rials ﬁested were fabricated by the experimentalist and that some of

discuss the different types of tests ‘that were’ performed on. these mate—
rials and determine their range -of validity. Depending on the type of"

loading imposed on a- single lamina, different portions of the failure “.‘f‘

envelope are obtained. These are shown in Figure 3 5.

391 Off-axis tests o L.

This type of test is by far the Simplest that can be performed on

a single lamina.f It consists of loading the lamina at -‘an angle with_‘

85 .

reinforced with a diversity'of'fibres, as‘Well as bOne‘and derivatives o

| ﬂ'~—4>£r=990 the failure values fall directly on the. axes i? and °2 Nhen o

+

©the lamina is loaded at any other angle e , the stresses °i"°2 -and1fg

Tpare. | ;,‘_ o
01.‘= u 'cosze“*’ji , . s
"tiz ?(- U sin e cos e

"1..;;'where:fb"- is the applied stress. In general experimentalfreSults‘arefﬂfv

)




56“;
‘presented in terms of the maximum appTied stress U versus the angie 0.

3 Off-axis tests have been performed on a wide variety of materiﬁn
aTs, both An tension and in compression.; They have been discussed in
.the foTlowing references,— Azzi and Tsai (1965), Cowin (1979), Hashin“
3(1980), Pabiot (1970) SokoTov (1979 19789, Stanowsky (1985), SuhTing et ;

. (1985), Tennyson (1981), Tsai and Wu (1971) The results typicaliyh
lgshow a very high strength in the direction of the fibres which decreases
“ very. rapid]y with an increase in the angle 0. The ultimate strength of"’
the Tamina is very sensitive to smaTT changes of orientation 0 when this‘i

"angTe is small Nhen e is near 90° the change of orientation does not

'v'have much infiuence on the maximum strength of the Tamina. A theoretic-g

‘*'aT evaTuation of the uniaxiaT strength as a function of e can be found

| for each failure criterion.. with the maximum stress criterion (3 7),‘ :

”:faiTure occurs when one’ of the foTTowing three conditions is met "." ;,
- “\= X/cosze | | ' f | v“i | e
e "‘”/S‘"Ze B R L
- T S/(sin 0 cos e) “‘:v"*‘_-“ -;;:, ) Ce

| For the maximum strain criterion (3 8), we. have o

| Ug = X/(cos e - vy 2 sin e) 1;!“" iﬁgflfwflli:*;t» :
l7va Y/(sin e -»v21 cos e) g ‘;h’jﬂQ ; >(3a75)5; ‘j”fi—i
, -‘-e= S/(sin e cos e) * iﬁﬁffifg;'[if;ﬁ'f S ”:‘l?

'7;VFor the Tsai-HiTT criterion (3 14) the faiiure vaTue is given by

24 4 sinze coszed

2 e sin

”[cos4e cos e sin

9
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"'accommodate very we]l ail experimenta] resuits obtained with this test

'-,'This can be verified in the above references An objection raised;”°

' against the maximum stress criterion is that the first of Equations\:‘

+ .

) (3 74) actuai]y predicts an increase of iamina strength for very smaii

o8

' ‘;angle 9, which in fact has not been observed experimentaiiy. ‘A tension_"”‘

| -test on. an off-axis 1amina induces bending and loss of a’ uniform piane'

stress condition when bending is prevented high stress concéﬁtrations

i}are introduced at the corners of the 1amina and the%e often precipitate '
premature faiiure The applicabiiity of this test is therefore of lim-

ited vaiue for determining p1ane stress faiiure envelopes for 1aminae,'

p‘On the faiiure envelopg, the resuits of uniaxiai off-axis tests faii'oh "h

D ""\\

] the 1ines iilustrated in Figure 3: 5. yf L L U v“*j;;Q~“

f A much iess frequentiy performed test consists of measuring thei“"
,‘rvshear strength of a. 1amina at different fibre orientations eg,‘ Thisﬁf~f

*'fftest is more compiicated to execute than the uniaxiaT test A common{l»-:

",

g.-l\ i

:q‘procedure for unidirectionai laminae consists of winding the fiiamentsbf\_

S in a tube with the desired orientatio(nj and then ioading the tubes in

;}torsion., In this case, the stresses in. the materia1 directions of sym-ffr

f“metry are ,<f‘i'?ﬂwf“‘." » ‘*l_"‘ f ,e ,
. .’ ‘Lqi,‘=f'2$" 5intG‘COS“6*‘~ff R AR TS
;aéf ga-zs sin e cos e 'ff“;fjﬁff:ffp.[r{‘piﬁ;ZZ{pfFra
‘tlzif Se (cos o T,Sin e)

r el

‘ﬂ:ﬁftBy substituting these vaiues in a given faiiure criterion, one can deéyﬁ5}

,“*ff_i_tenmine the shear strength~as a function of the angie e 5 Resaits from:°'h



‘58"‘;

o 9 = -45° K od 9 = 45° under positive shear stresseskprovides the sec4‘
‘i tion_offfaiiure envelope shown in Figure 3 5. , o i
L The results of ‘Tsai and Wu (1971) show considerable scatter in:
pure shear and are not well described by their criterion.‘ For his set
“of . results, Tennyson (1981) finds a better agreement when the cubic form‘ia
_ of the tensor polynomial criterion is employed However, some discrep-:
| ancies between experimental and theoretical results still exist for the |
hiQREP~¥alues of _eiL The data published by Sokolov et al. (T§7§T'—_—‘—;f
appear to be in better agreement with theory though the nunber of exper-k l“f“
imental points is very limited The parameters of th@ir failure crite-fix
rion are calculated frmn a best fit technique.‘ Cowin (1979) uses re-:;‘f
""EﬁTfE‘ previously published by Ashkenazi for pine wood loaded with a‘;
“ combination of shear stresses and compares these with Hankinson s form-,i”
e ula combined with Tsai wu s theory., Here again a least square fit of. N
‘ff the experimental data 1s made. ‘ v ‘“' .‘_ s ’. S
‘~ 5 In short the uniaxial off-axis test provides useful informationl
.ﬁ but it cannot be utilized to discriminate efficiently between the var- L
. ious failure theories._ The existing quadratic failure criteria do not:,‘]'

G generally provige i satisfactory c0rrelation of the experimental results'fylv'gli

m§<for the off'axis shear test., The inclusion of third-order terms in theg;:h;';a

ft tensor polynomfﬁl failure theory leads toi"n improved correlation.,,,,'“ o

~éf,.¥ 0,: "2""" 0. can be found in the_-:.v




‘::of the principal material axes. This was done on flat specimens and' o

‘also by means of internal pressure in a cylindrical tube combined with‘

l

‘axial tension or compression Both kinds of tests require sophisticated"

S equipment In the planes °1‘ 0 or’ 02‘ 5 0 the curves can be obtai:' '
‘ned by applying torsion to a cylinder combined with axial tension or :

| \"compression, a test that also requires sophisticated e;uipment . In most. '
_cases, because of the many conplications involved with these experi-'

ments | only sections of the failure surfaces in thése pl anes have beer\

S obtained S = S A " \\. . ‘ o ,,-'!
» . e i . e ' /—-.,..s-.,
Most results correspond to portions of the failur‘e Qrve ih the
\ \ .
‘plane T T 0 . They can be found in the following references de Ruvo i

et al. (1980), Guess (1980), Huang (1985) Jones (1969) Maksimov et al.

‘ “(d-979) Owen et al. (1978 1981 1982) Skudra and Bulavs (1982), and Neng
""(1968) | weng‘11968) has published results of biaxial loadings 9 - ‘~‘62
~for a JT-SO graphite particul ate,‘ a material that exhibits transverse i
XJSotropy. Maksimov et al (1979) have reported results for biaxia\l%;"f
: .‘.}.“i-.'_'loadings in the plane 01. 2 for a. glass-textolite, an. organic texto-;l'v;_,j
: ,‘.,lite, and three hybrid conposites containing organic fibres and glass‘fi
","'._i"‘_'fibre:j : l?hey show results only for uniaxial tension, compression and-ly‘l'?‘.f-
; I-f'j-i‘ipure shear at‘ e 45 o Biaxial tension test resul ts vfor the organic:'~:f'»l-fi:

S fibre composite were also reported at two di fferent stress ratios. with“"-.“‘”ﬂ_

= i'»fthis limited nunber of results, they obtained the parameters ’of“yv{.;’-'

'-'.'_‘-',‘Malmei ster:s‘~i;failure griterion by :‘a' least—squares techni que

they : onclude that -the G




R

r‘r'faiiure criterion of Norris provides the bestlfit However"they point
!‘_ out that the Timited ggreement between predictions and experimental ]ﬁ T r
wresuits could onTy be obtained after a highly subJeccive seiection of o
~data.- .T | , O ‘ .
R The biaxial strength of paper was studied recently by de Ruvo and
‘i‘.co-workers (1980) The two. types of paper studied are anisotropic and
their failure. is compared to the %%ximum stress theory and to- Tsai Wu's
o tensor poTynomiaT criterion 1n the biaxiai tension quadrant The iatter RUTI
't‘theory—gives the best approximation. Huang (1985) ‘has recentiy publish-_‘
“m"ed data for a transversely isotropic graphite of grade AGOT and stress )
vz‘combinations in the °1 - °2 pTane. His results are compared with the

SN

‘:,tensor poTynomiaT theory and a reasonabie curve fit can only be obtained liﬁ
'v;if the cubic order terms are’ inciuded | - |

lv | In addition to the faiiure surface in the pTane »tiéié Q"ﬁsome
*‘authors have aiso pubiished experimenta] failure surfaces for the p]anes
I’f; iia 0 “or ioéi= 0 . Hutter et aT (1974) compared their resuits for a ’.-:“
'j_bgiass-epoxy with the criteria of Tsai Norris and Puck ' Puck s criteri-r'
fiﬂon seems to give good agreement in the pianes °1 - Oy and cl‘- ‘12 ; .

rifﬁbut the agreementvis not.so good in the piane °1';»°f’ especialiy when fjbiil

is compress ve. Thinagreement in this piane is no better with the

Yoy

:':;‘other two criteria. | Plume and Maksimov (1979) reported a fai" numbe" °f

;eXperimentai points on\the_three surfaces for a woven fibergiass. with




s thors, inc"

“'f~ff§(1984), and Suhiing et aT (1935) L Thi "",

e

giass epoxy in. the pTane 02 ; 112 These results are insufficient to

- judge the vaTidity of the theoretical faiTure criteria but they indicat

te a very good correTation in the investigated region.n

'

| ‘for composites is perhaps the tensor poTynomiaT formuTation advocated‘

'by Tsai and Wu (1971) An extensive experimentai investigation usingii'

The most,pOpuTar of aTT the faiTure criteria suggested to date ‘H

ithis criterion has been pubTished by Wu (1974). : He studied a fibre-_v‘

'Jreinforced epoxy Tamina (Morganite I1): by submitting it to uniaxiai

i biaxial,‘and uniaxf/i shear Toad combinations with reSpect to. the mate-

7a combination of. uniaxial and shear stresses for X different fibre

;‘orientations | This permitted a much more complete eva]uation of the“.
_‘entire faiTure surface In order to simpTify the comparison of the

.‘failure criterion with experimentaT resuTts wu used a convoiution tech-,v‘

‘”nique that aTTowed him to represent aTT the data in the pTane

*'.[provides an extensive experimentaT investigation of - the faiTure surfacei'
‘iof a iamina ; The very good agreement shown in this early pubTication,‘ :
h\.yf:may expiain the scarcity of subsequent experimentai research on )the

Lo ,;i N vproblem. |

Lo

g = 0 .
. 1 2
The agreement is very good This work byowu is one of the ‘very few thatv” k

(‘<<“ria1 directions He also conducted a series of tests on a- Tamina under:f

The Tsai wu faiiure criterion is stiTT widely discussed primari--

JVJfly because of the difficuity encountered in determining the so-caTTed

ﬁngaMcmmmwsuwswm1%m Wamsnmwwi
MFindicate that the off-axis

- Txfﬂ_"interactionsparameter ‘”i” This point Tas’ been’ studied by many au-;uﬁ;
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'lis not very sensitive to. the - value of F12 Suhling et al. (1985)*dis-"1

cuss various methods for determining the value of F12 and illustrate‘
iy the dramatic influence of this parameter on the shape of the failure‘_‘
: , envelope for paperboard They also give a complete set of experimental[

-results for biaxiag loading of paperboard combined with various shear'

‘loads,.

' '
.‘

‘7publish "

ced materials in the three-dimensional stress space °1»‘ g 25‘- T

\

" The most complete studies in this area are those of wu (1974a) and

"Suhling et al. (1985) There are, however many published results for ,,-'

restricted portions of the failure envelope of a given material, very,j ‘

‘often limited to a single quadrant. I

| 3 9 3 Failure mode identification o

ﬂ“~’ In all the references mentioned above, the validity of a’ given
'efailure criterion was established by cdmparing experimentally obtained. _3,“‘

ﬂ.'failure envelopes with theoretical criteria. Unfortunately, almost none“‘,‘f:f~

:;ﬁof them report on the corresponding modes of failureJ

ﬂlfthe proposed criteria account for the mode of failure (e g Puck andi‘ff"“%:

Q;;Schneider (1969) and Hashin (1980)) these investigators do not indicate{*vﬁlhc

{3jwhether the actual failure detected in a material corresponded to thelff*f;gg

for the determination of the failure surface of fibre reinfor-

An summary, there are not many extensive egperimental results‘:

Although some ofei‘vfiha



‘*”?imaximum stréin criterion. “ﬁf‘x j;,~']mv ‘.le;z.p. a.‘”

3.9. 4 Laminate tests

s

' 1’
" "

"" ‘1nae the following references contain results from the testing of lam—

'.inates Francis et al (1-979) Guess (1980).. Hlltter et al. (-1974),

In addition to experimental data for the failure of various lam— RN

‘Ikegami et al (1982 1983) Meshkov et al (l982), Jones (1969) Skudra B

'bfand Bulavs ‘(1982), Tennxson et al. .(1978,l981),, wu‘.and_ Scheublein_. .

(1994) , ‘ ‘
\\ Jones (1969) published experimental results for the biaxial ten-L

,ﬁ:sion of a glass reinforced plastic laminate The tested laminate was a’
' o

;cross-ply (0 90 ) and a maximum stress criterion appeared to give a'*

'good approxination for this portion of the laminate failure surface
‘p'The same set of results was used by Skudra and Bulavs (1982)

Hutter et al. (1974) gave a series df experimental points for a

(90 30 -30 90 ) glass reinforced plastic laminate. Their results are.

f

Itwell represented by Puppo and Evensen s failure g“terion except in the‘ |

;-

‘.biax1al compressionggpne In this region the poor correlation is ap-

,parently due to laminate buckling

Nu and Scheublein (1974) provided only five experimental points[{f“'
( - for a (0 90 ) graphite-epoxy laminate to verify the validity of their"ﬁaff

1

[FR—

L;,j:failure criterion , Francis et al (1979) published experimental biaxiala;fff'
( ﬁfrftension results f0r (0 90 ) cross-ply and (+45 ) angle-ply graphiteqf«aung
.3?‘j]epoxy laminates.‘ The first failure and ultimate strength of these lami-ﬁjlmff

*Qil“fnates are well beyond the first-ply failure envelOpe obtained using theifj_;:

Tennyson et al (1978 1981) tested (+e) glass-epoxy and graphi,ﬂu s

""ﬂifp;te-epoxy ]aminates- They published values for the failure pressure of a fl




o \ “ . .
N ) . s
e '
L f ‘ :
. ) o, ‘ '
[ " ."* . N
) .
. ' ’

- laminated cylinder as a function of fibre orientation. Their analysis

1s complemented by the testing of (0°,;60°,-60")S graphite—epo;\y tubeZ/
*under internal pressure and torsion. The ag‘reement with the quadratic

w form of the tensor polynomial failure theory is not very good, but the .

A}

&
9 1nclusion of third order tenn/s improves the correlation conSiderably.

o e Ikegami "and his co-workers (1982,1983) used Hoffman s and
TR A v, '

IS
'

Tsai- wu"-s criterfa, to describe the fa"ilure surﬁf a glass- -epoxy, a
carbon fibre—reidforced plastic (CFRP), and a ' Reylar fibre reinforced

plastic« (KFRP) * In their Jinvesti ation t‘hey find that these failure

P N

criteria give a g od representation of the 1amina ffailuf‘e surface in the
~ ' 1 ]

. planes 112 = 0 dnd °1 = 0. . However the behaviour of different angle-

ply laminates is not predicted Successfully. For example the theory

L4

predicts the highest tensil’e\strengths of angle-ply laminates to occur

when the fibres are oriented\ at +15°, which is not observed experiment-

R o

ally. The strerrgth of angle-ply laminates ‘under combined teosile and

shear stresses also correlates poorly with theoretical predictions.

Guess (1980) performed tests on (30° -30° 90°) cyi‘indrical spe-
o Je

P cimens of three different fibre—epoxy laminates. He compared his re-

7~ sults witgi the ma x imum stress criteriw and Hill s theery. Meshkov et

(1982) gave a series of points for four different orientations of -
- .

-

fibreg’lass laminates in lthe planes T, =0 and oy = 0 . As iks’ the |

12

case in most of the Soviet literature in the area. ‘the parameters of the

failure criterion are obtained by a least__squ\ares technique. There are |

- 64

no experimental ‘points given in ‘the biaxial compression area of the v

[ r.

failure envelope. In this publication, it is also not p0551ble to rela- f

: te the layer properties with those- of i:he lam/inate.,




-

" In short, the number of experimental analyses on laminates is

quite . 1imited. In three references, Francis et al. (1979), Jones

(1969), .MeshkoV et al. (1982), the layer .properties are not'given and .

A‘cannot therefore be related to the laminate properties. In.the’other
cases the portion of the laminate failure envelope investigated is very
1imi ted. MoreOver there are significant discrepancies between experi-
mental results.and theoretical predictions of failure based on classical
1amination theory This may be attributed partially to the existence of

. failure modes that are not taken into account ‘such as delamination.

However when tubular spec1mens are tested, this effect should be 1imit-

ed: The discrepancies in this;caseimight be attributed to the fact
that: (ii‘most criteriatdo not identify clearly the mode-responsible
for failure and, (if) the theoretical lamina failure criterion~may not
describe properly the real failure envelope of a single layer

3.10  CONCLUSION DU A L

Over the last twenty‘years a great_pumber bf failure critérgajj

/

have been proposed for anisotropic materials theorétically applicable~
to many materials including fibre-reinforded compositesh They can be

‘grouped under the following categories maximum stress and’ maximum |

strain criteria Hill type criteria tensor polynomial type or Tsai wu

“criteria, and criteria that iaclude failure mode identification.

65

A recent survey (Soni 19835 contends that the maximum stress and.n:,;‘

g maximum straip criteria are the fost widely used in design.‘ The popufa?

"rity of this approach seems “to be based more on its relative simplicity{[

r}than on its ability to accurately represent-experimental data.i In the
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q

biaxial tensionvregion, these criteria generally appear to be conserva-
tivev Mor'eover" the fact that the stress components in the materiai
axes of symmetry are considered to be non-interactive does not corrobo-
rate most experimental observations ‘ L

.- The most popu]ar of the interactive failure criteria is the one

by Tsat and Wy (1971), Equation (3%42). 1In their original article,

these authors show that the maximum stress and strain criteria, as we'll
as all Hill-type criteria, are special cases of their tensor polynomial

formulation., They. SUggested using terms up t_o the second order. . This

criterion can then be represented as an ellipsoid in the ‘space o‘l 9y -

Eouation (3-29).. Such an,eﬂipsoid can also represent all,

Hill- type criteria and is symmetrical about the piane 12 = 0. For

~ different values of the shear stress 1), the faiiure curve is an eia/.

lipse, but its size decreases’ as 1y, increasés. It can be represented

by Eq‘uation (3-56). With - criteria of that- form all but o'ne of the

stre‘ngth pa.rame‘ters Fi' and FU are usual]y ca]cu]ated from the re- ‘
sults of uniax1a1 tensile strength tests-in tension compression and -

.pure shear, in the principal directions o‘ mate\'ial symmetry There is

| ,controversy, however, with regard tq the calcu'lation of the remaining

parameter, the interaction term F12 To ensure that the failure sur-

66

, face remains closed this interaction parameter has to faH within the B

| limi'ts given byfquation (3- 45) S
o~

Due to the very,v conp'licated nature of the tests that must be;?‘

.

performed most researchers have conducted experiments only on restrict- .

-----

ed portions of the entire failure enve10pe. The most comprehensivej

"‘epoxy Iamina is the one by wu (1974) for which the; B



’ the experimental results. A fairly complete experimental failure enve-
‘ )

lope for paperboard has been published very recently by Suhling et al.

(1985) and Rowlands et al. (1985) . Owen and his co-workers (1978,1981,

1982) have also presented significant sections of faflure surfaces for

67

fabric-reinforced epoxy The last two 1nvestigations demonstrate the

highly subjective 1nterpretation of results that 1s necessary to obtain'

a'good fit of the theoretical criteria with the experimental results.

The results of Ikegami (1982,1983) are also useful, especially

when it is necessary to demonstrate the validity of a given failure

criterion for laminae and angle-ply 1am1nates.. The results of'Tepnyson
\ o ‘

et al. (1978,1981) are also interesting contributions to the study of .

angle-ply 1am%nates and provide useful {information on the relation be- p

tween lamina and laminate behaviour.

)* N AL
]
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- TABLE 3.1 - Tests.on Uniaxial Laminae
v ! ]
8 : Orientatfon~of the 1_am1‘na with respect- to the principal axis ¢ :
X ,Un1a;1al tensile strength in.the fibre direction z

e

Xt : Uniaxial compres‘s‘fve strength uin the fibre‘direction '
Y"‘ : :Uniaxial te‘nsﬂe s-trength perpendicolar to the fibres
N ,Y'y_* : Uniaxial compressive strength perpendicu]ar to the fibres
S~ | Shear strength along the material axes of sgmmetry )
St ¢ Transverse shear strength '

Positive shear strength of a 45° of f- axis 1am1na

- 545 N
- 535 @ “Negativd shear strength of a 45° off- axis. lamina
| D T On axis equal - biaxial tensﬂe strength '
‘ - .'j;"_"';P' | On-axis equal biaxial compressive strenoth . o
“ | ‘7~-U§5ﬁ Uniaxial tensﬂe strength of -a 45° of f- m}amina *
T \ - 'U435‘ ' Uniaxiab compressive strength of a 45° 'off-axis lamina SRR
‘4“ Ue T Uniaxial tensﬂe strength of a e-degree off-axis Iamfna , | E
’ B Ug? Un1ax1a1 compressive strength of a, e-degree off-axis lamina v'l;‘,-_"
‘ ! S9 Positive shear strength of a e-—degree off-axis 1am1na | )
; "15-1_8'"* Negative shear strength of Q -degree off-axis lamina
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CHAPTER 4

) .

RATY'Y NEW FAILURE CRITERION FOR FIBRE REINFORCED MATERIALS

© 4.1 INTRODWCTION “"*"\,'~‘;, I R SRR
- In the 1ast chapter,va review of existing failure criteria*fori“'p;ﬁ

1f1bre-reinforced materials was’ presented Structural components fabri--

‘rvcated from these materials are usually thin plates loaded in their plane"
and failure theories are generally written for p]ane stress conditions.”‘
Among the failure criteria proposed to date for fibre reinforced compo- ;

w;nsites in plane stress, the maximum stress andrmaximum strain criteria‘f

Ay
i

5ﬂ{are sti]l the most widely used 4 This is. mostly because they are re]a-“”
1iptive1y simple and easy to use.» Aiso, simp]e hypotheses concerning«faii- ‘
d‘wure modes can easiiy be associated with the fai]ure values. However;i‘f
;fimore accurate theories are still needed and )mong the existing crite-;vi-rf
oEfria, the tensoqvpoiynomial theory has received the, widest attention fromfh'ii,ap

\

f*fresearchers in recent years. This acceptance is due to the mathematicaL‘j‘\‘ o

v O]

fftgenerality of7the tensoriai expression which can be manipulated accordQ[rﬂn;[ﬁ

‘ﬁwing,to' eil-established rules.u Moreover, it has‘been shown that,thisc\

n




ﬂ oo v"-:-‘.“ -". .

' ~N .\M.

oﬁ the maJor and mindr axes of ’ the eilipsoid and is usuaiiy caicul ated

A from a biaxiai test.‘ iIt has been found experimentaliy that the vaiue of“ o -

2,
R

" ; [

‘performe Actuaily, different tests can eventual]y ]ead to different‘

' i |
P vaiues “for' the interaction parameter, and consequently define different

3 1

2

iy the proper way to describé anaiyticaliy the experimentai faiiure enve- i

| . lopes of a fibre-remforce iamina.
'|"‘"

betweén the experimental data and the theoreticai turve. In that \case,‘ "

however, the gain in precision is obtained at the price of a signifi-

cantiy greater comp]ication in the determination of the additionai

. ow - Vi o,

k strength parameters of the faﬂure “envelope.\ In the piane stress case,"‘

mth the quadratic expansion,- Despite this serious difficuity,.’this

RS

approach seems to be the one t,hat has received the most attention re-"‘ff.'.'\ B

?i‘ f this i'nteraction term is very dependent oni the type of biaxial testf
"‘f‘ faiiﬁre envelopes. This suggests that an eilipsoid may not aiways be' :

This observation has ied some authors to inc]ude the third order, o

t‘eirrns ef the polynomiai in ‘an attempt to obtain a better correiatiOnh ‘

there is now uncertainty on five intechtion parameters instead of one.i.\;“;.v,,ﬂv,‘



| .
i

| ] materiais transversely isotropic in their plane will ‘be presented An

’ ‘extension of this criterion to describe failure of fibre reinforced

LY |

"‘laminae wi]l then be proposed and the generality of this new faiiure

‘equation will be demonstrated

f -

| 4;2"L ESSENTIAL CHARACTERISTICS OF A FAILWRE. CRITERION* o
-FOR ‘FIBRE-REINFORCED COMPOSITES o e

.?l As explained previousiy in Sections 2. 2 and 3. 1, it is‘generai]}

"assumed that the unidirectionai and bi directiona] iaminaé’conSidered"

‘Vf;here are under a state of plane stress.. Therefore,,they can be submit-,q

“gnﬁed in their lifetime to various combinations of-in plane-tensiie can<

( ‘.‘

: *fpressive, and shear ]oading\;~ For a lamina that is not isotronic in 1tS'

37?p1ane. no\\oniy the value of the applied 1oads but aiso their orienta;

‘ﬁ—tion with respect to the axes ‘of maximum strength is important As a

-Y“matter of convenience, and aiso because it is normaiiy expected that the,~

‘fffmaximum strength wii] be measured 1n. the fibre directions, the materiai"

'.‘properties are usuaiiy measured with reSpect to the mpst easiiy‘identi-,

Qﬁ,fiable axes,‘that is paral]el and perpendicu]ar to the fibre orientafr‘d‘h;n




However symmetries Jin thégmaterial properties when there are any,y

‘ : - " '-'7“ S s L
N sh0uld 1ntroduce symmetries in the failure envelope. For example, in ¥*
\ 3 o BT

the case of 1sotropic materials the uniaxial tensile strength must beg"‘

',‘ ‘ id@ﬁtical 1n any d1rection, anq it is also common practice to assume an”fvv'
"‘E5§i strength in uniaxial tension and compression. These two observaflﬂriV
| ' t:ons Justif the symmetries with respect to the planes (op‘+ o. ) hndml~“i
, ",w(ap f_o ) forSisotropic materials.! - "f i 4*1:0{_‘3w.'?'n ‘y1‘ipw <
. With unidirectional composites ‘tne".ténglie 'and“cbmpfééslve
strengths in the direction parallel to the fibres are normally di?ferent

v

from those in the perpendicular direction. This rules out the possibil :

! ‘h

f A ity of symmetry with respec? "to. the axis (o + 02) as well as to the

’gw‘ planes o1 0 and 02 -'d This is confinmed from pure shear loadings of

N ‘Q‘

a lamina oriented at e = 45°,, Accurding to the 1aws. of stress transfor-

O

' matlon‘(Z 9),e a lamlna Wlth fibres oriented at an angle o = 45°‘ ’d_'“

nder pure shear 545 lS equivalent to a lamina under a set of combined

L}

axial loads °1 = “°2 5‘ Sa] when the same lamina 1s oriented wit'

Te

fibres at e ,-45°'and with applied shear stresses‘ 545 o it i

flent to the set of loads-—oi a. 45. Since the styengths 545.

v P
are generally diffeﬂ!ht thﬁs.confirms the absence of symmetry

ﬁ’@the plane (o 2) Similafly, by applying Eiaxial tension
| P ;ﬁbiaxial compression °1 '”2}- P', and with thé strength P

e e
”1t is found that there is no‘ nh




, .

r\*shear,is positives or negative. Also, if a lamina with a positive fibre.

~\

\ﬂ} As Figure 4.2 indicates, a ]amina undér pure shear with respect
to its principal directions shou]d possess the same strength whether the
E?ﬁ\e'-é 1s submitted to a pesitive\shear stress, and a lamina of the
Psame mgtenia] with a negative angle ;e to negative pure shear, Both of
qnén wfﬂi‘exhibit the same ultimate strength value. In that case, fol-
lowing the laws of stress transformation ?o calculate the loads 1n the

ptinc1pa1 directiens, it 1s found that they are identical in both cases

_except for the s1gn of the shear stress. This implies that the faflure

envé]ope must be symmetrica] with respect ' to the p]ane T 0.‘ This 1s

12
the only symmetry that is inherent to the material and it must be satis-

fied by any failure equation.
It is also desirable that the parameters of the faflure criterion
be- expressed in terms of easy-to-measure strength characteristics.

-These are the tensile strengths X, Y, U o the compressive strEhgths X',

Y', Ué; the shear strengths S, SB’ Sé; the bfaxial strengths P and P'.

"Of all these values, the tensile strengths along the principal materfal

7 directions are the easiest to measure experimentally. For that reason,

itlﬁns observed fin Chap%er\3 that most existing failure criteria age
expressed in terms of the strengths X, Y, X', Y' and S. However, {t
should be pointed out that tE1s fs not an absolute requirement, and ft
may sometimes be more convenient to use other strength characteristics. .

Finally, we recall from the‘prev;ous chapfer that the number of
complete experimental failure envelopes published in the 11teretdre is
rather 1imited. However, from the-results;published by Wu (1974a) for a
graphite-epoxy and by Suhling et al. (1985) for a paperboard, one can

assume as a first approximation that the failyre envelope keeps the
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same overall shape at different levels of constant shear stress 112..

\
This observation can be retained as an hypothest§ for some materials and
N

can eventually be included in a simplified fatlure criterion. Although

a formal recognition of this has never been specified in the development

of existing failure criterta, this hypothesis {s fmplicitly verified in’

'
all non-interactive and all’ quadratic failure criteria proposed to date

| . S
since all of them can be written in the form of Equation (3-~33).
In suﬁmary, any plane stress faflure criterion can be written in

terms of the stresses o . o. and < Its graphical representation in
. N

. 17 2 12°
this three-dimerisional space should not tnclude in general any 1nhé?ent
symmetry except the one about the plane gp = 0. The criterion par;mea
ters could be calculated from any combination of experiments,‘and not
necessarily from uniaxtal tensile or compressive tests in the lamina's
principal directions. Finally, as a first approximation, the shape of
the failure envelope at diffekent levels of constant shear stress 12
coﬁ]d be 1dentical but smaller 1in area than the one in the plane
112 = 0.
4.3 © BUDIANSKY'S YIELD CRITERION

, "Previous researchers have ob§erved that the shapes of failure
envelopes for fibre-reinforced materials were analoéous té‘yiefd surfa-

ces for ductile materials. As shown in Chapter 3, this led many to

develop faflure criteria for composites by extending yield criteria for

metals. lmong these, the yield cri;eridn for orthotropic metals propo-‘

"sed by Hi11 has been modified by many authors in an\attempt to describe

.the failure envelope of fibre-reinforced laﬁinae. This was done by
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substituting strength values in the lamina pr1nc1pa1 directions in place

of the original yield values. It should thén be emphasized that failure
envelopes for compost e laminae are not/ yfe]d sprffces but rather
stréength surfaces. In this section, a recent yield criterion proposed
by Budiansky (1984) will be presented, and/in the following one, {1t will
be extended 1in brder.to degcribe fallure envelopes of f1pggfag1nfofbed
materials. .

.In the area of sheet-metal foqn1n§, the effgcés of anisotropy are

often . jmportant. Some sheets are transversely isotropjc, with their
. f * . .

plane of 1sotropy in the_plane of the sh#et-metal, and 1imited to plane

stress conditions. This has motivated tﬂe devélopment of yleld cr1ten1i

aspecially applicable to these mater1aﬁs and loading conditions. ihe
yield criterion of Hill, Equatign (3~{0 , originally written for aniso-
tropiq materials, has been used for thaﬁ purpose by reducing the appro-
briate parameters to the tr;nsverselij<ptrop1c case. Since this origi-
Qallprgposal, Hi11 (1979) has also_int‘odqced a set of new yleld crite-
nda applicable to anisotroéic materiais‘ A new yield criterion for a
. Sheet-metal under in-plane load in fits piané of isotropy has also been
introdyced récently’by Bud1$n$ky (1984). The latter shows that all the
'Dreviously propo§ed criteria are all special cases of his generalized
yield surface. '

) AsSuning'that the sheet-metal is isotropic in its plane and sub-

rﬂﬁﬁtﬁﬁzg;;;\:;\in-plane load, the Budiansky yield criterfon is written

In terms of the two principal stresses-in the plane,‘op and oh' This -

" Pormulation thus takes 1n£o acgouht any possible in-plane shear, A

qenera)] failure envelope in the normalized stress space o - a§ fs 11-
lystrated in Figure 4,3. For such a material, there is automatic-

ally symmetry with respect to a .plane oriented at 45° with the axis
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‘.°p . Budfansky also considers the case of equal strength in tensign'qnd
{n compression This causes further symmetry of the faflure envelope,

this time ‘'with respect to an axfs orfented at -45° with the reference
axis qp- The 45’ ;and -45° exes of symmetry_intereept the faflure
surface at the points of yfeld under bfaxial tension % and under pure
. ghear Ig reSpectively This allowed Budiansky to postulate that any
_..fallure condition can be prescribed parametrically in the following

po1ah coordinate form: C !

o +o0o

x
»

= g(8) cos g
%t -

g, -0

' —97;—-9 = g('p) sin g [ | (8-1)

S

. %
« M

where the yfeld ‘surface fs given {n the normalized coordinate system

shown ip Figure 4.4. In the equations above, the failure criterion

g = 9(p) is a function of the angle g . In his publication, Budiansky :

showed that all yfeld criteria previously . proposed for 1sotrop1c ‘mate-
rials are special cases of Equation (4-1). Moreover;" th1s new parame-
tric fonn can accomodate any shape of faily eeenvelope, making it theor-
etically possible to describe 'precisely ny experimental data. For
exanple, he suggests that an experimenta1 yie]d locus could be fitted

with suitable expressions of the fonn

g(p) = 2‘an cos (2 ng) - ‘ (4-2)
- where the .a_ are eonstants; In the event that an equation such as the
one above were chosen to describe - the experimental data _enough terms
wou1d have to be included for good curve fitting. It would also be

possibie to fit different pO?tTons of the: failure enVelope w1t§jn a

" range. of ang]es B by different equations.



. 4.4 A NEN FAILURE CRTTERION FOR FIBRE- RElNFORCED MATERIALS
" In Chapter 3, 1t was explalned that . the o¥1glnal "y1eld" crite-
\
rion of Hill had been modified’ to become a “strength\ crlter1on appllc-

able to fibre- reinforced lamlnae. +The justification beh1nd this tfans-

formation’ was that slmilarly shaped yield or strength surfaces are obapl

i \

_ tained experlmentally for bBOBth problems. In th1s sectlon a slmllar

N
peration will be performed on the Budiansky crlterlon described above

with the purpose of extending 1ts use to fibre- re1nforced materlalsa“ln“

this case, when a loading condltion falls outs1de the bounds oﬂ the.

+

. l ‘
envelope, it is assumed that ‘a. breakage of the lamlna by one of.the
1 1, 1o
mechanisms described in Chapter 1 wlll occur, rather, than‘yleld ‘

In Section 4.2, it was established that the fallure envelope of

composite lamlnae under plane stress had to: satisfy the two following

fl

. 82

conditions: (1) .it must be a closed surface in the three- dlmensional"\

space 0'1 -‘0'2 - 1.'12,

plane T C 0. A general ‘failure envelope sat1sfy1ng these: conditions
)

and (2), it must be symmetrlcal w1th reSpect to thefr

L -
is shown in Figure 4.5. Only the upper half of the entire envelope is

pictured, since a mirror ‘image would appear on the negative side of‘the

" plane = 0. The posifTBn of any point on this fallure surface can be -

12
1dent4£wed 1n the spherical coordinates system as:

’

o = pla,9) cos ¢ sin ¢ |

o, = pla,¢) sln‘a sln.o - . ,f B (433)
L , S ,

112 pla, o) coslo, _

where p(a ) 1s the magnitude of the vector going from the or1gin of the

system of axes "to the failure polnt for the glven load combination the |

angle a locates the relatlve position of this vector wlth resnect to,v

the axes 0 .2 and 02 ’ and o 1ndtcates its angular position relatlve~T‘

. p . x . A . - .
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to the rlz-axis. These three parameters can be defined separately as

func'tions 'of the stresses ol 02 and T12° The value of angle a* is

‘given by: S 5 : o
o o « = arc tan (=%) (0 <a< 21;) “(8+4)
. ' 1 S N
The angular position of the faflure pofnt from 112‘-axis is given by:
3 v . - e ' ' l " ' f
g
. o * o ¥
¢ = arc cos 1+ —= L (0 < < n) ¢ (4-5)
i‘ . AR ‘,‘71‘2“ ‘ o

hd

The‘leng‘th of the'yector going from the origin to the failure point is: |
p(a o) = ( 12 + 022 + 1122)& ; . - {4-6)

! ' - :
: \

This value must be posi%ve at any angle '« and o .
Since the angles a and a are sufficiept to identify the szi—
tion of any stress vector (°1’ 02,' 112) in this three-dimensional space,
the modulus of that vector can be specified as a function of angles a
and ¢ , thus explaining the notation p(a,o) above. Geometric consis-

teucy and symmetry with respect to the plane 1;% = 0 requires that the,,

r

foiiowing equalities be satisfied for all the points: ' wt
. plase) = pla+ 180°, ’“a) . o wen
. p(a.o) = ola,. 180° - - ¢) . i ,

The, set of Equations (4 3) can therefore be seen as art extension of
p

"'Budiansky s failure critérion applicable to fibre-reinforced laminae”

"under plane stress. This new parametric failure criterion is’ given by
: p = p(a/o;' and is. always a closed surface when appropriate functions of |
the angles « and“ KR are chosen.- Many functions of these angles
‘.‘can be echosen to represent the. failure surface. : Once the function‘_‘
‘.p = p(a,e) is determined in the material axes of symmetry, it can, be'“,'\

usei!"'to find the failure value for any stress combination using Equa-'

-_.Ltions (2-9) o Tff: o» -
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d.S*‘ GENERALITY OF THE NEW FAILURE CRITERION ‘M" | f‘f”- ‘1e‘, :“ .
It has been demonstrated: by Wu (1974&) that the tensOr polynom1a1 | |
criterion _as expressed by Equation (3 38) encompnsses ta11 faflure -
‘:‘criteria suggested previously for fibre-refnforced laminae It w111 now _©
be shown that the’ tensor polynomial- cr1terion is 1tse1f a spec1a1 case oo ;
' of‘Equations (4-3) when the olane stness terms are retained. The tensor I

polynomial equation 1s\wr1tten as: - » o v

~

} o Fyop Py % o4 * 1Jk°1°j°k *

L =1 (3-38)

2 12

(4-3), we find that: ° o - ;§ D ;f -

nooL | Kl\ T
L p(a,¢) fk(a.o) 1. ' ‘ (4-8) -
k=1 e |

. Substituting 1n this equation the va]ues °1’ g, and v, from %quatio\

where n. is the‘degree of the tensor bo]ynomia]\expresSion; The cons-,:
tants Fi’vFij’ Fijk‘ etc. are 1ncorporated’tofthe various functions n
fw(a,¢), To 111ui§rate this, 1et s consider the second degree expansion {

of the tensor pol , or Tsa1 Wu - failure cg}ter1on, given as fo]-
Jows: ' o SRR .
' | 2 2 2 S Lo

- F1"1\+ Faop + F11°1 e Fss‘xz + 2F12 °1%. 1. (3‘43)

"'Substituting the three relatfons given by Equations (4 3) 1n this ex- )

"pression we get V | | .
| P(a.o) filea) + of o) fylase) =1 P )
-ﬁéﬂhere4 fi(a,o).=‘Flrc05‘a sin'o +'F2:s1n'a sine *, 4,.(4310)‘ A
! "‘ | .‘. ) ) : ) s ..‘1‘ ) ’.. " ‘ / " ‘. . " P '
L TR 2 2 2 2.
- fz(“'°) -_F11 cos @ sin ¢ + F22 sin @ sin o + F66 coﬁgo
= ,5_' R T ‘,’_‘ 2 "‘:“ (4-11)
B .+ oF mSaﬂnaﬂno,NM S =
TR e e ‘ qv S
o P * ':_ - "‘ N : sz" i

N
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In this casg, the failure function is given by the positive value of the df{ﬂf

f .
f“n- 3 ! Te ! .“J“

-equat‘lon . . \\" ,,,H , M N

RETI -f (a,o) :Jf (a, ¢) + 4f (a «») ‘I,\:.'f'
p(’u o r“, — 2 F (& ¢) ' L ; ‘ (4 la)
\

,vi-'-‘

V\“,
LT

’ ‘In the same way, the third degree expansion of the tensor poiynomiai,ﬁ
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'Jexpressed as Teghyson s failure criterion of Equation (3;54),.can be”h

' 1

written underi@he foliowing,form . . . -',u" “'h';' . ]
. (4 13)

,.p(a,;»),fi(a,o) +;=p (a.-n f, (a,nfa p3(a.¢) Falang) = 1

? = B
. : . ~ 04
“ J/Ch::e ef ia,o) and f (a,o) arengiven by Equations §4- 10) and (4 11)

a

fala,0)7 15 A : Lo .EA:; S L

A o | e e,
Cf (a.o) = IF, . cosza sin L sin3a + 3F,. sihza cos « sin3

ce T3leee 112 '@ I 73| 9
| PO ’ e ot . o (4- 14)

+’3Ff66 cas a sin ¢ cosga + 3F266 sin a sin a\cosz}

~ Once again,'it would be possib]e‘to write' a function p = pla,o) that ~“._,

t [ ¢

R ‘ | ‘ ‘
wouid'coincide exactly-with the cubic tensor poiynomial equation
Obviously, in the two exampies above, the functions p = pla,o)

are. more compiicated to write than the originai tensor poiynomiai formu-

”lations For higher than second degree tensor poiynomial the‘corre- 5
| sponhing expression for p = p(a.a) may not even be" explicit However

' »,.thggwﬁexampi S were only intended to demonstrate the generaiity of. the
gs v .

_ parametric function p(a.o), and aiso to. show that the tensor polynomial

v ftheory is a particular case of Equations (4 3)

ghe mathematicai reiationships between the new failure functions
3~(4 3) and the Budiansky criterion (4 1) are detaiied in Appendix 11,
u{where it is shown that the iatter is a specia1 ca;e of Equations (4 3)
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4.6“ ALTERNATIVE PARAMETRIC CRITERIA ‘ et

Q !

" 1In Section 4. 4 a new fallure crlterlon for transue:sely 1sotrop-

{c materlals was presented This criterion was wrltten 1n a parametrlc

‘fonn and spherical codrdlnates were used Dependlng on the valGES of

\

the . experimental data, 1t may, be more convenient 40 use other spaces or‘

" coordinate systems In this sectlon alternatlves to Equatlons (4- 3)

wlll be presented using normalized systems of axes and cylindrlcal coor-

dinates.

[ N s

4.6.1 " Failure Crfterion 1n‘Normal1§edﬂStres§ Space - | - -

For isotropic materlals, it is common practlce‘to‘represent the

v \

failure envelope in non-dimenslonal fonn : In that case the shape of

the failure envelope is not modifled by t?ls normalization process be-

f

‘cause'the stresses along each axis are divided by the same constant the‘ij ‘4

P . \
.~ ultimate strength 1n tension. For a° transversely 1sotrop1c material

the results canrbe normalized by representing the fallure stresses ln

the system of éxes 9 /X - 2/Y - 12/S although an effect of this oper-

atlon is to modlfy the visual appearance of the fallure envelope This

modification will depend on the ratio of the, strengths x Y and S rela- -

tive to each other. If the fallure criterion 15 wrltten 1n the normal-

ized system of axes, the followlng set of equations. simllar to Equa-‘“

tions (4- 3) ‘are obtalned

‘ 101/X ,? P (G o ) cos a’ sln ¢ . ﬁplyf
;oé)yl,; p (a .o ) sln a sfn ¢ o Q*r ‘.ﬂ Tidflé)“t
"1‘2/5",.9 (3 »¢, )«cos o'

. t ot 2 B B i . . Lo
L , .

.'where the parameters a' o and p (a al)'areﬁlllpstratédlln[Flgure 4.6, s .

T

PR
PN
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' . . (/‘, ' . )
: In terms of applied stresses and strengths Xs—¥ and S, these parameters

',are ca?culated as foHows The ang]e ‘@ 1dent1fy1ng the posftion of

the vector o (o .0 ') with respect. to the axes 9 /X and o /Y is given

L4

by ’ . ‘ . : :
" X 02 - ' ' o )
a" = arc tan (Y_) . : (0 < a' < 2n)"(4-16)
‘ o | : kS | - |
The angular pos1t10n of the same vector from the "12/5',3?‘15 is
: y : . "

| S BOIEAE 2022) o ,

- - ¢ =arccos |1+ 272 —— . (0 < o' < a) (8-17)

LTI : S

Finally,« the magnitude of the vector p'(«',¢') is

A -b‘(a'.o') =7;§ ' lzvrzs2 + 0‘22)(2252 + 1122)('2,,2)” | ‘(4-1'8)'

The set of Equations (4 15) to (4-18) is another extens‘ion of
Budiansky' s cr1ter10n to the failure ana]ysis of fibre—reinforceﬁ,\

- Vaminae 1n plane stress As seen earliér for Equation (4 3), it can be
shown that these expressions encompass the most general failure equation :

\proposed to date. that 1is the tensor po1ynom1 al. the‘/ Of course for

geometrical consistency, the selected failure equat‘ion p = p (a ,»0')

\

must also satisfy the fol1ow1ng equaHties . ‘ 'y

' 4

——————=~e(a .o) p(a +180° .'°) R ‘(4-15)
' p(a.o)=p(a..0 o') K RPN

.

. E%ations (4 3) and (4 -15) are both written in spherical;'\‘v =

'.'coordinaj:es. when a 1s taken as a constant and the ang1e ¢ varies,} .‘ C

._aH— the po'lnts He on the same p1ane. As showrr in Figure 4 7, this','
plane 15 perpendicu'lar to the tlé = 0 pl ane, passes through the axisff e

] 112, and is oriented at an. ang]e [ with respect to the al-axfs. In i




\\ ‘:“

s -

/. rameters ‘@ and ¢(a) can be written as foI]ows ’

B A \” 8
K /\ B . . ,
the normalized space the angﬂe'ua' also/descrtpes a similar plane

’ . .
However, th same 1s not true of the angles ¢ dnd o' by g1v1ng a

f1xed‘va4ue to the ang]es .t and o'/, the set of point% obtained do

not lie necessar11y on the same plane / 112 , except when' o = 0 and when‘

¢ = 90°. This 1s 111ustrated 1n F1gure 4.8.

!

\
1

4. 6 2. Faflure Cr1terion in Cy11ndr1ca1 Coordinates

-

" Some authors pub1ished/é;per1menta1 fa11ure surfaces at different‘_

.a]ues of the sWEar stress {;2

“in Section 4. 2 that the shape of the failure envelope may. remain fden-

Moreover, since 1t has been suggested

t1ca1 at differentfvaltes of the shear stress 12-, 1t should be. easy
in that case to 1solate "slices" of the failure surface at d1fferent
shear stress levels7 Th1s could be achieved more conveniently if the.
fai]ure criteria /were written in terms of cy]indrica] rather than ‘
spherica], coordinateS‘ Thjs is 111ustrated 1n«ngure 4.9, ’where the

L~
failure envelope can be described parametr1ca11y in cyl1ndr1ca1 coordf'— ‘

nates as /-

/ "01 = ¢(a) COS a ‘ ' ' o ) e
///R 02' = ¢(a) sin a ' - \ '(4-20)
,/ 12T 1z e

4

where/the new parameter ¢(a) is the magnitude of the vector going from
the iz-axis to the failure point in the p]ane of the shear stress tlz
e/:ng1e a ‘st111 1nd1cates the orientation of that vector with re-

N 3
'pect to the ol-axfs.‘ In terms of the stresses ol and 02 . the pa-‘ o

,.g——‘

':e = arc tan (02/0 ) . (0 <ac Zx) ' t4-4)g'."

s
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The vector joining the orlgin of the syst.n of axis to the failure point

can be written as: 7 IR

T(a”tlz)”'= (4’ ((x) + le , s o “?;. - o (4‘22) ‘

A normalized System of axes could also be set in the space

1/x - c /Y - 2/S, as shown in Figure 4, 10 and be described as fol-

' lows ' ‘ s.
‘Ol/x' =.¢'(a') cos at’
o, /Y = 4¢"(¢') sin a' “ S ‘(4,23)
2 T \ o |
e 112/5 =’$12/S, | T | " 2 l‘
where " | q,‘(a') = -L‘ (YZU‘Z:.;* xzo .2)} VRS N ! (4-24) ‘
' » ._' ‘ . Xy . 1 ST 2 | ‘ s ,‘\\\ i . "‘
: . , o x‘oz'w L : o |
and cat=arctan (7=5) (0 <q <20 (4-16)
: : - s : 1 N . o
| Finally, the equation ’
T(a'ss /s> -4»2'(«?) . (E' '/s>2-% . (4-25)‘
* 12 r 12 ‘

',is an expression of the radius from the origin of the system of axis to
' the failure point : Equations (4 20) and (4 23) can also be seen as

extensions of &:diansky s formulation. .

N 4, 6 3 Relationships between spherical and Cylindrical
' Faranetri Cr Ttera , . ‘

Since the expressions (4-3) and (4 20), (4 15) and (4 23) are

89

N4

,only di fferent mathematical representations of the same failure envel- o

. fope,'-the failure surfaces in sgherical and’ cylindrical COOPdlnateS are .

o "y
o “;'related to each other by means of the following equalities

L

Lt Cele) e p(a o) sin o = T(“"‘ ) Stne (4-26)
SR ’.'v : ‘
Cang 4, (a ) s p (a .@ ) sin ¢ = 'r-(a » s 2/5) sin ¢ (4-27)
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In this section, it was shown that the fai]ure enve]ope of a

‘fibre reinforced lamina can be’ represented in the three-dimensiona]

~ space 01 - 0y 3y, 10 spherica] coordinates with a function'of the

. shape . ; DN -
") ' ' = v, W ‘ . ‘ /”‘; — 8 . c
Ty, 12) o(a0) o i (4-28)
or in cyiindrica] coordinates by the function | ) ‘

In Section 4,2, it was pointed out thathOme experimenta].resuits‘can-‘

justify'the‘hypothesis that the failure curves keep the same shape at

different levels of shear stress T but Vary in, area. This hypothe-

12’
sis has not been taken iato account yet in the development of the above

expressions,'. However, when this hypothesis 1s valid the fo]iowing

re]ation'can be written

) r(a <) - ola) rs) S @e30)

where the function mo(a)‘ is the radial distance from the -axis to

"2
‘the faiiure point and P(le) is a function of the shear stress which

‘controls the area of the faiiure surface at various shear Jevels.

.“90~§n

It can be verified that most ' of the failure equations presentedxéy

in Chapterﬁguare different expressions of Equation (4 30).. The maximum

‘stress and maximum strain criteria, which are non-interactive with the

© e

_ shear Tl

AL, Hi]l type criteria and ail those providing faiiure mode 1dentifica-

. tion, as wel] as the tensor polynomial up to the second degree, can be
‘;written as Equation (3 33), or-‘ o . ‘f"?‘

1'i

L . ' Ve ' o .
Pt i . " . . . -3 R " . N . o <
ST ST \ R . L
. N i . . o ° i , . .
? ooe } Lo . . .
i . . . .

Tl ‘- \ o '
2.3 are automatica]iy special cases of this new expression.,

: f("1"’ ) -1- g(‘12) Jﬂ, S "a(973;3;ii\"’



where : ‘
9(1yp) = (5,579)? | (4-32)

\

Therefore, it is possible to demonstrate that these criteria are spectal

cases, of Equation (4-30). Since each criteripn can be written as;:

h(cl,oz,tlz) a ] ' (4-33)

and relatton (4-31) can be rewritten as:

| Cflo)a0,) = Vi(sy,)» ’ + (4-34)
where Hzyp) = 1/ (1-9(x},)) (4-35)
Equation (4-33) 1s then equivalent to:
' 4
‘h(°1’°2’112) = 1(01595)3(%))) (4-36)

~
which {s similar to Equation (4-30) since the value of the angle «

depends only on 9 and Iy -

4.6.4 Summary
Equations (4-3), (a-15), (4-20)?'and (4-23) are four different

express1ons for -a fa11ure criterion which satisfies the conditions de-
fined' in Section 4.2, If one assunes further that the overall shape of
the failure function is not 1nf1uenced by the shear stress T2 Equa-
tion (4 30) is also an acceptable expression for the failure surface.
It has also been shown in th1s section that most of the failure criteria
reviéwed in Chapter 3 arﬁ aiready special cases of this equation. In -

the remaining section of ‘this chapter it will be shown how these new

expressions caﬁ be used to represent the ‘experimental data.




4.7 GUIDELINES FOR THE USE OF THE NEW FAILURE
CRITERION IN EXPERIMENTAL STUDIES

In this section, it {s assumed that the experimentalist has the
capability to perform any required test on a given fibre-reinforced
lamina. This includes unfaxial and biaxial tests, both tension and
compression, as well as pure shear tests. It will be shown'here that
each type of test ocpupies a ffxéd angular position on :;e failure enve-
lope, whatever the material characteristics. The position of these
tests will be fdentifted. From these observations, it will be possible
to tdentify important tests'to be pe;formed on a lamina. A chart that
can be used as'a gdideline t% experimental studies will also be provi-
ded.

One hypothesis presented in Chapter 2 and kept throughout the
analysis of fibre—refnf&rced laminae ts to congider these as homogenous.
Therefore, any in-plane loading condition can be transformed into compo-
 heNt§xp1, oé, ilZ in the prinéipa] material axes by using the stress
transformation law, Equation (2-9). If a lamina with fibres orfented at

an angle © 1{s put under biaxtal stresses o, and oy = aox, Equations

(4-4) to (4-6) can be transformed into

§1n26 + a cosze B ~\ - .
a = arc tan 3 5 (4-37)
| cos 6 +asin®
r L2 2.2 . . 2 2 2]t
o =arccos| 1+ (sin®6 + a cos”6)” + (cos 6 + a sin @) (4-38)
\ 7 ' 2 . N
_ o N

(a-l)2 cosze sin

. " |
' p(a,0) = o [ (co§49 + sin%o) (1+2)2 + (stne cosze)(a+1)2_] (4-39)
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It can be seen from Equations (4-37) and (4-38) that the value of the

angles « ~and ¢ 1s a function of the layer orientation e , and of

the ratfo between the applied stresses a = oy/ox. Hence, the values of -

a and ¢ are independent of the applied stress magnitude. The latter
value is required only for the calculation of the function p = p(a o) -
Since there are no restrfc¢tions on the value of” @ and a = o /o , it
{715 possible to find any po?nt on the faflure envelope with an appropria-
te combination of these -values. It is also true that any point identi-

f1eq\by the parameters 'a. and ¢ can be found from only one combina-

tion of a =0 /0. and e .
Yy X

In the event that a combination of stresses r;y and o = b Ty is

N .
applied to the fibre-refnforced lamina, Equations (4-4) to (4-6) can

also be §r1tten as follows:

2. ‘ ‘
« = arc tan[:b sinze - 2 sin 6 cos e] (4-40)
b cos™@ + 2 sin 8 cos @ ,
¢= arccos| 1 +

. B , e

-

(b cos®e + 2 sin o cos o° + (b sinze - 2 sin 8 cos e)2
(-b sin e cos o + (cosze - sinze))2
| (4-41)
pla,q) = “y [:bz + (c0549 + sin%0 + 6 sino + cosze)
N . 3, _ I U
b + 2b (sin 6 cos” - cos @ sin e)] ; (4-42)
: , I

-

_Once again, it is observed that the values of « and. ¢ are indepen-

)dent of the applied stress magnitude, which is required only for the
calculation of the function p = p(a,o) However’ some pdints on the
failure surface cannot be found by any combination of b = ok/rxy'and e:

“these are those of biaxial tension and biaxial compression.
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" The most frequent plane stress tests performed on a sinble lamina
are §unmarized in Table 4.1. This table indicates clearly that the an-

gular position of any test on the faflure surface is totally 1ﬁdependent

of the material strength characteristics. It can also be noted that'

only two points on the faflure surface are absolutely 1ndependent of the
lamina orientat1on 8: these are the‘équa1 biaxfal tensfle strength P
and compressive ;trehgth P'. It seems thenlyhat experimentalists ;ho
have the capability to perform biaxial tést§ shéd]d try to measure these
values because. these  are theoretically not influenced by a possible
misorientation of the lamina with respect to the‘app11ed loads.

In order to write the failure function p = pka;o) directly in
terms‘of the qng]es "« and ¢ , one may choose to measure experfmental
data along planes of constant angles . and ; , 25 a way to &ea] with
oniy one variable at a time. To simg:1fy this. 'task, .Equations (4-37)
and (4-38) can be represented grgphica]]y. The result is shown 1ﬁ Fig-
ure 4.11. The tyo.axes of this graph are the anglé ¢ as abscissa, and

R le a as ordinate. Plotted on this graph are lines of constant
anglie © ‘and constant stress ;atio a= oy/o;. For simplicity, only a
‘few of these lines are shown. It can be observed that this figure is
syhmetrical with respéct to the -axts ¢ = 0°. It should be clearly un-
derstood, however, that this symmetry does not indicate any symmetny on
the failure enve10pe itself since p(a.¢) and pla,-¢) are not necessarfly

‘identical. This chart indicates only the relative angular position of

experimental tests relative to each otner; It can be verified that all

lines of“constant angle -6 converge towards the points P and P'
signifying'%hat the same va1ue of the equa1 biaxial strength should be

Ameasured for any lamina orientation 0.
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Theiee$1t1on of 'some of the most commonly used tests on the tai]-
ure surface are indicated in Figure 4.11. Most of'than fall on the
'11nes ¢ = 90° or ¢ = -90°, which correspond to zero shear stress Yo

For all untaxial tests Ue’ or Ué at vartous angles e', a = 0 can be

. substituted 1n‘Equat1ons (4-37) end {4-38). In Figure 4.11, thesé‘teste

correspond to the 1ines Y - U - X in tension and Y}- U' -~ X' in compres-

“ston. . Finally, it can also be observed that a]Lche points on .the ac-

- tual fatlure surface correspend to a single point in Figure 4.9, except

for the pure‘shear strese T2 ° S. In fact, any vaiue of a on the
verbtcaf ex1s ¢ = 0° corresponds to this point,

A horizontal lihe in Figure 4.11 correspohds to a vertical plane’

' conta1n1hg the 112 axis on the faflure surface such as thehonelillustra-)

‘ted In Figure 4.7. It 1s at an orientation « relative to the o axis.

In Figure 4,11, the axis a = 0 represents the single point T2 = S on

the actual failure envelope, that is the nwxihum shear stress in the
material axis of symmetry. Any series of failure points on a horizontal

11ne in Figure 4,9 thus lie on the same plane a = constant. For exam-

ple, b1ax1al tests on a’ layer with fibres at o = 45° and any streSS'
ratfo a = ¢ /cx would give results ‘on the failure surface along the line

P'- U'- § - U - P ”Similarly, pure shear tests on a lamina with an;
[¢)

f*?f%§w$“ _fibre orientation would indicate a failure point on the horizontal 1ine
‘:§{§_-‘S - 545 Besides the two special planes a = 45° and a = -45°,
there is not apy other plane that correSponds to a sing1e layer orienta-
~tion or-a single test type. '

‘A experimentalist who seeks failure points on the same a-plane
'can draw a horizontal line at the corresponding value of «a in Figure

4 11 and perfonn any of the b?axial tests 1nd1cated along that line,

.
P

. . . - N

\
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For example, if one 1nvestigates ‘the faflure surface 'at‘ an 'angle

a = .18°, the hor1zonta1 1ine at this level 1nd1cates that untaxial tests
(a=0) on a lamipa with f1bres at an angle g = 30 o 30 and U30, as well
as the pure shear stress T2 " S would fa]l-on this.surface. ‘Similar1y,
one can decide to perform tests at constant ahg]é@kot‘and‘therefore; any
test along the verticag line corresponding to the chosen ¢ angle cOuld

be selected. For example, the uniax1a] strengths u U

30* Ygo» U3p 2nd
Uéo could be measured if one chooses to perform tests to obtain detai]s

of the failure surface at an angle ¢ = 61°. However in this case, one

’ shou]d remember that, on the actual failure enve1opes these points~do
not genera]]v fall on the same plane, as was 111ustrated;tn Figure 4ﬁ8'
except when ¢ 5\:90’. ! |

A graph of ¢' and a' can‘a}so_be obtained; Thjs‘figure,‘hghev-
er, would be .a* distorted version ovaigure 4.11 because 1t would also
| ‘depend on the material characteristics X, and S. Ot'codrse, such a
chart cannot be of general use because it depends on material proper-
ties. ‘It would be observed hqyever, ‘that planes of constant ang]e a'

correspond to another plane of constant ang]e a 1n Figure 4.11.

. 4.8 " CONCLUSION

.96 -

In this chapter the Budiansky yield criterion recently proposed' :

“to describe p1ast1c flow of transversely 1sotropfc ductile materials,

hwas presented This criterion was or1ginal1y developed for sheet meta1s .
with their plane of isotropy 1n the plane of the sheet. Following thel7
same rationale’ that led fo the adoption of H111 s yield criterion tof»

' describe fa11ure of’ composite laminae, a new failure‘;riterion for

. fibre-reinforced Iaminae 1n plane stress, 1nspired from the Budiansky R




criterion. was then proposed._ This new parametric criterion satisfies‘

‘the essential characteristics presented in Section 4. 2 It can be writ-

ten inA spherical- coordinates, quat}bns (4- 3) “or fn cylindrical

.coortdinates, Equations (4 20), in the three-dimensional stress space

dl'- oév - 112." It can also be represented in normalized stress space

by Equations?(4-15) or (4 23). when appr0priate functions of the angles“

« and: ¢ 1in the normal stress space, or .a and o in normalized‘

stress space, are chosen the failure surface is always closed

It was shown that all failure criteria previously proposed are

special cases of this new criterion Specifically, any failure surface

described by the tensor polynomial theory can be transformed to the new

parametric criterion If one assumes that the shape of ‘the faiture

envelope ,remains the same but encloses different areas at different-

“values of the shear'stress lei the faflure criterion can further be
'reduc%d to'Equation (4-30) b

Finally, it was shown that any point on the failure surface can

‘\. be found from an appropriate combination of biaxial stresses and Tamina

: orientation. These combinations are illustrated in Figure 4 11, which

indicates the angular position of any biaxial test on ‘the failure surfa-

' ce. This chart can be used as a guideline for experiments designed to

, implement the,new failure criterion. Examples of application of the

parametric failure criterion will be presented in the next chapter.‘

Kae
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N\, TABLE'4.1 - Angular Position of Some Experimental Tests on a Lamina
Equations (4-37) to (4-39)

Type a=afo " 6() a(®) . e°) Strength

Unfaxial o 0o 0 .90 . ox v
I - 0 . 0 . e
| 30 - 18.4 1.3 |
45 45 1547 }—  u,U°
I 60 71.6 613
L 90 | 9 - 90 . Y.
m 9 9, -90 . v

Biaxial T an a3 9 . P
S : all. . ,45: “ <90 pr

A}

~ Cylinder with 0.5 0 . 26.6 . £90
Cinternal '3 855 178.6
...~ pressure f o 45 . .45 £76.7 ‘
: | 60 54.5  178.6 o -
90 634  x90 . o
. N .

é% ‘A‘Pure shear - -1 . "0 -45 :r9Q‘:> 54593
S | - 30, -45 $39.2 S
T 45 45 . 0 s
- ‘ﬁ¥ -1+ D1 89,2 . L <
%0 I U TR

W

v

" Equations {4-40) to (4-42) I S R
. Type’ b= _[a  -8(°) a(®) .- #(°) . Strength: .
O N A R S A S AR

i =——— R

LT SRR [+ I =45 #67.8 .o
T s A5 290 SeSs SRR
o 60 -85 678 0 T T

SIPRINCY ' v ! P ' : i 4

Ce T s b s e
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- CHAPTER 5
APPLICATIONS OF THE NEW FAILURE CRITERION

5.1 INTRODUCTION t | | ‘ :
The validity of an analytical strength‘ criterfon can only be
judged from the point of view of its ability to predict . properly mate-
rial failure under any loading condition. In this chapter, experimental
data published by.different authors, for a selection of fibre-reinforced
and transversely f{sotropic materials in plane stress, will be used to
demonstrate the applicatrility of‘the'new failure criterion proposed 1n
“the previous chapter. o
. For most experimental studies published in the literature and
~ discussed in Chapter 3, only smallmsections of the failure envelope have
been invéstigated. For those experimental data that the quadratfc fail-
ure criterion fits satisfactorily, there is no fmmediate need toyuse the
parametric criterion. However, certain researchers who have found the

quadratic‘tensor polynomial criterion fnadequate have published data

-coveringtsignificant'portions of thebfailure envelopeQ This 1s the case

for the studies of Huang (1985), Tennyson and Wharram (1985), and‘

Rowlands et al. (1985). These results will be used here. in the section
on single lamina examples to demonstrate the flexibility “of the new
parametric failure criterion. Different approaches %S the determination
| of the failure equation p = p(a,a) will be shown, depending on the type

© of expgrimental resul ts available.

It often happens that a faildre criterion ‘appears to provide a

good correlation with experimental results for a single lamina. How-

‘~ever. when this criterion is combined with classical lamination theory
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to predict laminate behdviour, the technique is not always accurate.
This was the case;in the work of Ikegami and Takahashi (1983). These

results will be used in the section on laminate examples. It will be
\ ‘ ‘ N .

shown how lamfnate experimental data can be,infbrﬁdr%ted in the lamina’

ana1y§1s and how the failure criterfon can'be modi fied locally to better

simulate these additional results.

5.2, EXPERIMENTAL-THEORETlCAL CORRELATION

- 109

with a failure cr1ter1on p = pla,¢), many functions of the angles

'a and o can be written, and the one that provides the best correla-
t1dnfwfth experimental results has to be selected. :
In this chapter, a best-fit technique will sometimes be used to

find the value of an undefined parameter fn the failure criterion. This

value minimizes the error between experimental data and the criterion

and {is calculated as follows. The error ca]cu1ation method used is

111ustrated 1n Figure 5.1 where, as a. matter of convenience, only the

plane Yo T 0 1is shown. Considering that a 1am1na in p1ane stress would

be loaded proportionally from the origin of the system of axes to the '
. v ! . ' .

amm—

failure point, the total error between the experimental data and the

parametric curve o - 02'--r12 lel,be'@efjned as:_

\. . .

Etz nfl (p*n(GQO) - Pn$a|¢‘) )2 " . . | (5-1)

A

where N 1s the tota1 number of experimental points, ph(a,Q) 1s the L

- predicted failure strength for the nth 1oading path as ca]cu]ated from';

o the~tested criterion, and p;«(a ¢) 1s the rad1a1 distance from the h

' origin of the system of axes to the nt failure point.

x oA ' . “‘..



. . . /,. e
when a faiiure criterion 1s written in the normalized space
/x - °2/Y - 12/S the total error between the experimental data and

3

' the theoretical strength surface’ wiTT be ca]cuiated as:

n

N , ‘ .
Bt = £ (pkpla's ") - pplat, 1))
n=1

where‘ N is the'totahinumber of experimentai points, pA(a',') and
~p;n(a‘, ') are the. theoretical ‘and experimenta] failure points respect;
“ively. Since there is no reTationship between Equations (5-1) and
‘ (5-2) the best-fit of the same failure criterion may be obtained with
different parameters depending on which one of these equations is used
to caTculate the minimum error '

b

5.3 SINGLE LAMINA APPLICATIONS

. 5 3. 1 Examp]e 1: Transverseiy Isotropic Graphite\__
| a) ﬂate[iai_dgsgriptign

The'resuits used in this section'have recently been pub]ished'
‘by Huang'(1985) These are for a porous and. brittle graphjte referred
to as a grade.AGOT graphite. It is compressible and exhibits transvers-
al, isotropy in its plane. This material has been tested under ‘a wide
‘range of biaxial, tensile and compressive Toads Neither pure shear nor

combined shear-tension or’ shear-compression tests have been performed

110 -

S

¢ [

‘The resuits are entirely in the plane 112‘~ 0 and were presented graph- :

ically by the author. These results, as tabuiated from the original
figure,,are listed in TabTe 5 1 and reproduced graphicaily in Figure
5. 2. These data show considerabie scatter, particularly in the fourth
.;quadrant 1in- which significantly different faiiure points along the same

'Toading path have been measured.. This observation is common for such



materiais but in this case, the resu]ts in the fourth quadrant are ap-

[

1,

| parentiy “disconnected" from the others In the biaxial compression ‘

quadrant “there 1s a1so some scatter but it is re]ativeiy iess important ‘

P

than in'the fourth one.

In order to fit the experimenta] failure data with a single fail-i‘

| ure equation Huang suggests using the Gol denb]at and K0pnov (1966)

failure criterion with inclusion of cubic order terms:

2 2

(Frop + Ry 2’ + (Fppoy Fzz 2 + Fe

+2F

12 1°2 66 Y2 S L

3 -3 + F 2 -

. ‘ R
PRt Fage% F Fiiet o t Frgors” (5-3)

. . ‘ “ 2 . -
L+ Pty it Fegapip )P = 1 T,
( o

Since, no_ shear stress T12 is applied;ﬂthis‘ ke further reduced. to

P

the folloLing expression

2 3

| . 2 2 A 3 ‘
(Fpoy + Fz“z)‘ * ‘F1191 * Py ?F12°1°2) * (F1}1°1 F222%

(5-4)"

: This equation contains twelve constants but the author gives no indica-.

"tion about the method used to calcuiate these in ‘order: ‘to’ fit the expe-
nrimentaI data. In the work by Huang, two quadratic failure surfaces as

’ well as Equation (5 4) were i1lustrated and are reproduced here in Fig-

f{ure 5 2. All three curves give a fairly good representation of the ..

-'experimental data in the first three quadrants. : Unfortunateiy, thef:~~

,ﬂexpansion of the faiiure equation to cubic form did not realiy improveﬂv

W\;the simulation where it was the most important to obtain a better curve-mjf~,

[ 2

’j.ffit namely in the fourth quadrant. in view‘ofgthe\considerabie;amount,c*d



~ of work required to identify the twelve constants in Equation (5 4),

attempted to obtain much simpler and more satisfactory failure envelopeS‘

'

.using. the previously proposed parametric criterion.

b) First solution for Example 1:

i, bttt s, ot o o e i

lnstead of the above cubic failure criterion the new failure‘

- criterion proposed in Chapter 4 will now be used Since experimental

’data are available in the plane T
" 12.

.

=0 only, Equation (4-30) will be

easfer to use:

A function such as S :
| . C
SN 12
: (o) = S
« f
-

. is.possible,lbut no experimental'data‘can confirm the validity‘of'this

"+ equation. However, since there are no data‘available‘to evaluate the

function'r =4P(112), the following equality will be assumed
F(112)6= 1 (5-5)
- for all the points on the plane T, , = O. The problem iS'now reduced to

12

finding an acceptable expression ¢ = ¢(a) able to describe satisfactori-*

ily the set of experimental data.

™(a,1,) f“’l(a)-r(rlz) S e

O

nz -

The functions of the angle « that will be assumed are the tri-?

gonometric functions sin a and cos a. A function that may be attempted‘

is the following

!

2

(a) P cos a + P2 sin a + P3 cosa - T
R T & S
;u.f Pa‘sinzq + es_sin*e cos a o o
"x-Where«’ is the angle mgfsured counterclockwise from the ai-axis..flnir

this equation, the values PifltofﬂPsf are constants to be determinedj EED.

ST SUTIE



“‘Eif;;ga function such as } f'f“‘ fkn_ ﬁ.‘g~t ;jf.‘.;h :. lf”f BT
p - (“) = P |C°5 “la +R IS’" OllE U ".',.';'(5“'-.9)‘ B

ARy

"345 , ¢( 45) = v 2 545 = 3. 017x10

AN

. al

: from experimentaT results. .In‘order‘to‘include the uniaxfal strengths

‘p‘inmtherprihcipaiymateriaijdirectiOns ‘al and .02 , the fo]iowing vaiues

‘"forrthefconstants-are_optained:\ | , o __'o I
L1 IR
P, =5 (X -X') P,=5 (Y -Y) .
! 7 e o (5-7)
= é-(x * x') - Py.= % (Y +Y')

oM
-

.In principle, the remaining parameter r? can be fOund from any test

invoiving 01} and 02."

"For. this case, Psu was found using the average shear strength
3

lope is then given by the foliowing equation

la) = -1 8665 cos a - 2.2940 $in a + 4.0165 cosza " (s8)

+3.4940 sinza . 2. 0811 stn acos a

" This equation is iiiustrated in Figure S 3 together with the experiment—,
al data This parametric failure envelope describes the failure data as '
”.:'efficiently as the quadratic and cubic failure equation shown in Figure

’.5 2 and oniy five parameters were required to obtain this result The

‘region -90 <a < -60

c)' Second solution for Examg]e 1

.—————.—._———.——

Another possibiiity to describe the experimental data may ‘be

4

psi The theoreticai fai]ure enveQ

ns3

‘ resuits in the fourth quadrant are stiii slightiy overestimated in the -

S to it a different. faiiure equation n each quadrant'rather than tof'*‘

,‘{write a single equation., In that case, the.?our sections of the faiiure1~"‘?~

f-,'surface must Join tOgether at the points X, X‘ Y and Y' Foruexampie,.;-“'
i L



Cwa-

iia‘
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'can be fitted to experimenta] data in each quadrant where P and R

are uni:Xial strengths bounding the quadrant and £ . 1s a real va]ue to

be determined in each quadrant This produces the fo]]owing set of

'equations . | |
¢(a)‘é x cosg + Y sing s (0 <a. < n/2) (5710)_
| ¢la) = ¥ cosg(a #/2) + X' sing(a n/2)
' =Y sini_a +.x=(cos a)g | (n/2 <a< n) . (5-11). o
ela) = X'cos™(a-n) + Y'sin® (a=n) |
( - ';'x'(-cos a)§‘+\Y'(;sin a)i- C(n < a < 3w/2). (5-12)
'i ¢(a) = ¥ cosg(a~3n/2) +'X ana(a 3n/2) '
=¥ (esin 2% + X cosg (w2 <as 20 (5-13)
For. ‘the- -graphite material discussed above, atdifferent value for
'the exponent Hg‘ has been found to best- fit the experimentai data inf_
each quadrant by u51ng Equation (5 1) Substituting these values and .
those of X, X . Y and Y in<the equations above 'we obtain the foliowing
faiiure surface in four distinct regions - n
e = 2.15 cos1 844 4122 sinl 84 (o < a< u/g)*(s-14) .
“t(a) = 1.2 sin3 430 @+ s 8833 (-cos a)3 430 (n/2 <ac n) (5- 15)
ela) . 5.8833 (-cos a)1 190, 7875 (-sin a)1 190 (n1< @< 3n/2)(5 16)
365 R q-”
= 5 7875 (-sin a) + 2 15 COS HREY S _‘(3.1!/2 '< @ < n)(§-1-7,)

rThese equations and the experimentai data of Tab1e 5 1 are reproduced in
'ﬁ‘J_Figure 5. 4 A'very good curve fit has been obtained in the first three |
"quadrants.‘ In the third quadrant the faiiure surface given by Equation 'fﬁ
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(5 16) is practicai]y the same ‘as’ the one obtained with the cubic Equa- |

tion (5 4) The curve fit of the fourth nuadrant with Equation (5- 17)»

is howe5zr, stii] unsatisfactory This s due mainiy to the very sig-

3

’ nificant scatter of 2?he experimenta] resu]ts aiong simi]ar 1oading
\. i ‘

. paths. K
,P "

An aiternate so]ution for the faiiure surface in the fourth quad—

‘ rantﬂcan be obtained by supposing‘a 1fnear reiationship between the ol‘

‘" and o, stresses in the fourth quadrant only Assuming that this fail-

, 2
.ure equation should inciude the point gy = —Y'" it would be written‘as
follows: ‘ .‘ ;
B L (5-18)

. 1 'v“

“For best-fitting of the points in. the region where a is comprised

' within the bounds 3n/2 < a < Zn, the minimum error as caicU]ated,from‘

Y

Equation (5-1), is\obtained when

. % 7“5?7375 Fl98 e o (s19)

frn“terms of a«.’and ¢la) -, it can'be verified that this equation can

also be written as

Sina - 1. 968 COS «

o ¢(¢) ‘ =5.7875 . .(3ﬁ/2‘$‘a <2m) (5 20)

'»,fFinaily, to provide continuity of the faiiure enveiope between the first :

tfeand fourth quadrants, the following equation can be added

¢(a) < X/cos a = & 15/cos @ (3n/2 < a. < 2n) (S 21)

.. ‘-

””Q‘The entire faiiure envelope wiii therefore be represented by Equations:}:‘

(5-21) inmthe remaining section where 1 801 T < < Zn.‘ This new enve-ieh

iope ishiliustrated in Figure_s 4, and is visuaiiy more appropriate thanﬁ'lhﬂ;f~?

LR

the previous one.‘lpgf‘;;y.-i*v-h L



"IV. In both quadrants the shape of the faflure suftface resembles that_

BRI

It can be speculated that dlfferent failure equ7hlons in each -

.quadrant may account for dlfferent fallure modes In quadrant I, the‘

graphlte fails in tenslon, and compression failure 1s found in quadrant"

A

of an elllpse In the two remalnfng quadrants. the 1rregular shape of

the envelope may indicate some transitlon mode between tensile and com-

presslve failure modes Unfortunately, experimental observations are'

r‘not avallable to confirm these conJectures

“more.variable 1in shape than w1th prevlous crlteria Thls can even be3 -

' d) Summary “of Examp]e 1:

—_ e R e e =

with thls example it was demonstrated that it is poss1ble'

wlth the new failure criterion proposed here to obtain strength surfaces

achleved with fewer parameters Moreover desplte the compllcated shape

' of the fallure surfaces such as. those shown in Flgures 5. 3 and 5. 4 the

calculatlon of the theoretical strength valueffor a given loadlng path

s simpler than using the tradltlonal criterla such ‘as the tensor poly-

k'nomial because 1t depends only on the value of the angle a . It can
thus be calculated straightforwardly 1nstead of solving for the roots of

Ta quadratlc cublc, or even higher order equatlbn It can also be added

S

: that this new criterlon does not require ‘the verlflcation of additlonal

o~ ,\)%

| equations to lnsure that the fallure surface 1s closed because thls -

J‘condition can always be satlsfied automat1cally wlth the use of appro- g

: prlate trlgonometric functlons

One advantage of thls new failure criterlon 1s that the number off‘

parameters can easily be adjusted as a functlon of the number of experl-‘

. -
R

?mental data available and the desired degree of accuracy. A simple‘i37"

"7iﬁequatlon can usually be "tallored" to flt almost perfectly with the;ir;f



5

5 3.2 Exampie 2: Graphite-Epoxy Fabrir

experimentai data, as,it is demonstrated in Figore 5\3 For this: exam—

. ple, it was also shown that it is possible to fit properly portions of

envelopes ifn each quadrant with a different equation This is iilus—

trated 1n Figure 5 4,f A tensor poiynomial equation may be more elegant

—_—

efficient for comp]icated enveTOpes Finaily, it can be observed that

_ the curve-fit of - the data with the new failure criterion has been ob-

tained from five or eight parameters with resuits visuaily comparabie to

K= A=),

a) Materiai description’“

—— o a— — —— — o — —

" -

‘ mathematioaiiy ‘but a parmnetric equation wiii b%f-more caicuiation-

‘ the cubic Equation (5 4) which contained tweive constants (nine if"f”

For the second examp]e, the results published by Tennyson and .

"Hharrmn (1985) will be used. ‘These arehfor an orthotropic graphite-

epoxy composite. | Here the epoxy matrix is reinforced by a graphite'

fabric. The lamina is identified as a NARMCO Rigidite 3368 WT300,"

t

K

’3;of the tests are 1isted in'Table 5.2, which aiso indicates the calcula-
:ited maximum strengths in tension, compression. and shear in the princi-
. pai materiai directions.‘ These resu]ts show a very good consistency for\ﬂ

| 'f“ail loading paths.v, There is, however, some scatter for the uniaxiai .

compressive tfsts in the directions of reinforcement. N

| -‘piain weave (over 1 under 1) of uce Thornei 300 graphite fibres impreg-r
‘nated with Narmco 5208 Resin.l Tension and’ compressinn\tests were per-
‘formed on fiat coupons; and torsion tests _were. performed on tubular“

; specimens which were also used for biaxiai ioading tests. The resuitsI4

T
N

-7
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It can be observed that the |nax1mum strengths in- tension and

C s

,compression in. the two material axes of symmetry are essentlally 1dentf;‘ o

o

*cal. Th1s makes it, an ideal case to demonstrate the use of the new
7fa1lure crlterion in the normalized space o, /x 2/ 12/S .In Table
5.3 the experimental results obtained by Tennyson and wharram (1985)

expressed 1n ‘the normalized system are listed . Also 1nd1cated in the

same table "are the angles ‘ a“ ‘ and of; and the, radlal distance‘

p (a ,o ) from the or1g1n of the system of axes to the measured fa1lure

po1nt The failure equatton proposed for thls materlal was the cub1c‘

‘ 'expansion of the’ tensor polynomial Equation (3-54). In the plane

?12
. F

=‘O, the quadratic form Was found to be,the best 'and the constants

12> F122° P12

conStants F166 -and F was, detenmined by usinq the fallure re%ults for

were set equal to zero . The value of the rema1n1ng ’

chl1nders submitted to 1nternal pressure The fallure equatlon was then. o

Yy

- given by the followlng:

9.183x107% o) .~ 6.174x10° 7 o, + 2.296x10710 o % & 2.129x10‘1°§i2
9 2 ‘ 18, 2
+ 3.380x10, 12 + d(—1r097x10 ) o1 12 B
+ 3(-8. 845x10‘15) S L (5-22)
_ : 2 12 . PEEETR o
This equation is that of an ellipse 1n any plane T = const‘ The‘posl;

"2

’1't1on of the ellipse s centre varies with the level of shear stress xlz;"

but all ellipses have their axes, 1n the direction of the ol - "% axes

's1nce there are no 1nteraction terms between o1 and oz The normal- |

,

5ized data of Table 5 3 and the failure Equation (5 22) are shown4graph-'
”h“[ically in Figure 5 5 ‘ In the plane ? 2/S 0 the failure surface ls ;‘

r'\lcircular but 1s slightly off center from the or191" of the*system °Fh

“‘faxes. Slices of the failure envelope at various angles: a are also*T e

‘ » “.QV‘N';

a
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P

&

4

iu
show‘?ie It can be verified that" this fatlure surface gives an accurate
representation of the experimenta] results for most points. It can a]so
"

be observed that the failure envelope slightly overestimates the famina

| strﬁngth fn the plane clz/S \\? and underestimates it everywhere else,

strength va{ue for a given ratio between the stresses ¢

but these errors are not very {important. The biggest probiem actually

I

encountered with Equation (5-22) is actuaily to find the theoretical.

- 0

17 %7 12
which must be found by solving for the roots of the cubic equation.

’This process could be greatly simplified by using a faflure equation of

the form proposed in Chapter 4.
; @
b) First.solution for Example.2:

,—..-—...—.,._._,_.._.,_,._—__.._.._._.

[t will now be assumed that the failure equation has the

" theoretical ‘form given by:

p'(a',0') = T‘(af,r /S) =(¢'(a") r (r 2/S) (5-23)

i
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"

This equation 1ndicatg1 that the shape Qf the failure surface will re—*f'

by the function r'(rlz/S). In the plane 112/5 0, the foiiowing equak:

Y

fty will have to be satisfied |
I'(x),/S) =0 (0) = 1 | (5-24)

“

main identical in all the p]anes T /S, but its size will be controlled |

Since the faflure strengths in tension and compression appear to be =

identica] in the principal materia] directions, a possible function

| ¢ = ¢ (a ) cagibe taken as:.. | o '

Hee =10 o ¥Bes)

K4

This represents a~cjrcle;in the”olanerrlz/s = 0 and provides'én)accurate

\desertptiOn of the experimentai data in'this piane ‘Above this‘blane
) the function r a ' (112/5) should control the area of this circle in




. 120

different planes .1n sugh a way that it would reproduce as accurate]y
as possible the faflure data listed in Table S.é. Therefore, at any
level of shear stress T ft is assumed that the fa;}ure function 1s
a circle gentered on the 2 axi§. It can thenhbe written that

P'(mlz/S) = Q'(a',tlz/S)/¢'(a',0) = constan# (5-26)

§ince P”(wiQ/S) is a constant value at'hny constant level of shear Y2
the following equality can be substituted in Equation (5-23):
P*(v,/S) = ' (e") . (5-27)

" One éan observe that for any value of qa' and ¢' that does not
l1ie on the plane 112/5 = 0 or on the axisrrlz, the experimental radius
5'*(«',¢') is always greater than unfty. For that reason, the following
function ©' = r'(¢') among many others can be suggested:

' U T(e') = 1.0 + P(sin ¢ cos ¢)° (5-28)
L} A i + -
for which the conditions r'(0°) = r'(90°) = 1.0 are satisfied,.and P
is a parameter to be determined. By minimizing the error obtained W1th‘
Equation (5-1), the best value of the éonstant' P , for the avaflable

data, has been: found to be P = 1.17. Therefore, the faflure equation

% can be written as follows:
o' (a',0') = (1.0)(1.0 + 1.17 [cos ¢' sin ¢'1%) (5-29)

This ‘is shown in‘Figure 5.6 with the experimenfa] data.'. In the plane
‘pi2/5-= o, the‘failufe surface stin overestimates sfigpt]y the strength

) | ‘at most of .the points, except .on the axes. - Above that ;ﬁane, Equation
(5-29) produces a "crown-shaped"'faﬂuré surface that)lis identical for

‘ any p‘lané at an angle «'. It can be observed that this shape tends to

follow more closely the emerime}tq results above the plane Ty © 0.

—-—



given by Equation (5-29) in this area cannot really be assessed

121

.-/‘—‘-.’ "
Since no data are available for negative values of the angle ¢ ,&}he

‘superiority of the tensor polynomfa) criterion or of the new cr1terion

Since many points are avaflable 1n the plane Y /S = 0 and s1nce
they seem to define a circular area, a slight 1mprovement of the theorf
et1ca1-experimenta1 correlatfon could be obtafned'in‘th1s case by defin- -
ing the function ¢'(a') as | “_*

¢'(a') =‘0.§684S L ' - (5-30)
nhich s the average radius froh the orfgfn of the system of axis to the

experimenta] failure points on this plane. According1y, tthe entire

strength surface can also be rewritten as follows:

p'(a',¢') = 1.00125 cos®e + 0.96845 sine -+ P sine’ cosle' (5-31)

.where a new value of constant P has to be determinéd. By minimizing

 the error giVen with the experimental data, the_value-B-= 1.24 is found.

The failure criterion can therefore be written as: ' ' , \

2
p'(a',0') = 1. 00125 coséo + 0.96845 s1nzo

+ 1.24 s1n2¢'bcos ¢'. (5-32)

.This equation 1s also reproduced in Figure 5 6. .It can be observed'that

a significant 1mprovement over Equation (5- 29) has been obtained in the

kp?ane T 2/S =, 0 but that the error has slightly increased for the

points ‘above that plane.

c)" Second solution for Example 2:

In the previous solutfon, it was assumed that the failure

,e%fEiope wou]d be circular in qup_nlane 112/5, and centered on the

112/5 axis. Invthat case, it was easier,to write a”failune equation'

in cylindrical’ coofdinates. The fesu]ting failure envelope ‘differed



- .considerably from the one obtained with the cubic tensor polynomial

theory. In both cases, the available e}perimental data are described as
®

well, a]though the portions of the failure surface where no experimental
points“were measured are represented very different1y To demonstrate

‘the f]e*ibility J( the parametric approach an a]ternate failure enve-

. \
Tope will now be written for the same experimental data.

122

It w111,now\te assuned that the faflure equat1on has the -form .

| given by Equation (4&15) in spherica] cooqginates‘ As for the previous
N
solution, the normalgzed system of axes wil] be used. A1so, the fol-

lowing equalities must\be satisfied: | /

A

p'(a',90) = 1.0 and  '(a',0) = 1.0 (5-33)

For‘any value of « and ¢ not on the plane 2 /S 0, or on the
axis T 2/3 the experimental radius p* “(a', 0 ) 1s always greater than

unity. For that reason; the following function p' = p'(a',9') is advan-

ced: .
(a .@ ') =1+ f(a') sin ¢' |cos ¢'| : (5- 34)
i}

which satisfies the conditions (5-33). This equation differs from

(5-29) as it is no 1onger symnetrical with respect to the angle o'
The absolute value of cos ¢' i's taken here to ensure symmetry of the

failure enve]ope with respect to the plane T, /S = 0 This will cause

128
slope discontinuity of the surface at this plane.

The experimental,data to be\used with‘Equation (5-34) are sum-

marized in Table 5.4.7 Al data fal] on the planes a' =0 ,a =44°,

a! = 68', a' = 90°.  The. value of the function f(a') to fit each. point '

. is also given in the tab]e. Assumin

clude the four average points on each—

'failure function on these four planes is shown in Figure 5.7. ,The.shape'

that'the functfon fla') will 1n-y

f-planes 11sted in Table 5.4, the :
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"

of this failure }unction‘d1ffens considerably fri%ﬁthe first solution
and frbh the cubic tensor polynomial theory.
A function f = f(ef) now has to be written. 'Many equations can

actually be suggested. If a single equation 1s written for‘the‘entire‘

-surface, 1t‘has to satisfy the following condition:
o' (a',¢') = p (a + 180, -¢') o (a- 19)
Considering Equatfon (5 34) this leads to the restraint given by
f(a') = - f(a' + 180) " . (5-35)

Acpordingly, this function can be written as a’'series of sines and cosi-
J " » : Lo
nes, such as:

f(a')=¢Db ,sin2m°1 a' + T a_cos” a. + zc_ sinPa' cos%at (5-36)
. @ M , an M s 3 ‘

Vo

where the sun p + q must be odd. Since four points must be fitted,-fodh
terms of this equation must be kept. A first solution can be obtained

with'

f(a') f (a ) = a; cos a' + b1 sin «' + a, cosZa’
‘ o+ ¢, cos a sinza'

.tSubst1tut1ng the average.values from Table 5.4, this becomes

(5-37)

f(a') = 0.419 cos a' '+ 0.344 sin a' - 0.322 cos’a’
© +0.598 cos o' sinza L (5-38)

' ' ’ Y
Alternatively, the function f = f(a ) cou]d be given by: '
f(a ) = fz(a ) = a, cos a*+ b1 sin a' o+ a2 cos3a\ + a3 cossa (5-3§)

—

;which becomes the following function after substitution of. the experi-

mental data.

fola') ) - 0. 957 cos- a' +0. 344‘;1n a' - 1,097 cos3a' ¥ o. 549 cos5a

(5 40)

¥
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The two functions f (a }and f (a') are shown in Figure 5.8.
It is difficult to decide which one of these functions wouid give the
best result when substituted back into Equation (5-34) since both of

,them inciude the average experimentai points listed in Tab]e 5.4.  How-

ever, since the.function f(a') =,f2(a') has a more regular shape, it
- owill be expected to produce better results. ‘Therefore, the‘failure'

‘envelope’ for the graphite-epoky »fabric studied here 1is given by the:

combination of Equations (5-34) and (5- 40)

p'(a’,0') = 1.0 + fz(a') sin KX | cos ¢' | | (5-41)

This failure surface' has the irregular shape shown- in’ Figure
iy
5 7 and in the additiona] angular "s]ices" shown in Figure 5.9.

A quantitative assessnent of the error (Equation (5- 2)) obtained

1
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A

by comparing the experimental data with the faiiure surfaces of Tennyson-'

._______iEq (5- 22)) and with the new parametric failure criteria, as given by

»Equations (5- 29), (5 32) or (5 41), 1is availabie in- Table 5 5. It can
be observed that all equations produce approximately the same total

error., In the plane 112/5 = 0 oniy, Tennyson s criterion produces a

- smaller error than by taking simply ¢‘(q‘) =-1.0 or p'(a’,9') = 1.0 but_

slightly gfeateruthan withvo‘(a')'=‘0 96845 which is the average radius =

in this piane;ﬂ Above the piane 2 /S = 0 however, the error has been'j'

‘reduced aimost by one half with the faiiure Equation (5 29), and 'to,_‘i

"almost nothing with Equation (5-41) 0verail it is difficult to ciaim ‘

‘that one of these criteria gives a mqre accurate result than the others;

and more - experimental data would be useful to assess the accuracy of the i;‘

icriteria n the~portions of failure enveiope where data are missing. _ip‘quj:'?f-
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i any case, the calculation of theoretical values is much simpler with’ the -
‘new parametric criteria than with the tensor polynomial. Moreover for
- this very specific case, | the. tensor polynomial theory required that' “
.‘fseven parameters be known on the other hand Equation (5-29) required‘
that only the parmneters X Y S and R be used For this very specific
N case, there is therefore a definite advantage to use the parametric |
failure criterion since it can simplify the subsequent analysis Final&;l:i; :
ly, in the event that experimental data would be available in other ' 3
‘ regions of the failure surface and would not correSpond to the analytic-
al function that one’ could easily be rewritten as was shown by writing
two parametric solutions for this example. For the.tensor polynomial,
‘formulation, on‘the’other hand, new values for‘the‘strength parameters
| and F wouldihave to be found, and this has'been shown to be

Fyyoand Fagy
relatively complicated.

5 3 3 Example 3: Paperboard

Ata) !pjmgﬁjp_desgriptign_ | \

The results published by Rowlands et al. (1985) will be use&f
“.in the following example. The material tested is described as a machine o
made 100 percent Lake State Softwood,,unbleached kraft paper, of basislf‘

_ weight 205" g/m and mass density of 670 kg/m,.’ This is a unidirection-lf
xljally reinforced material Uniaxial coupons, cylinders and crucifonn""

‘specimens of this paperboard were. subjected to various in-plane combina-,lpifl
| .ﬂtions of axial stresses and shear stresses.’ The results are given atf,lfl_f

"sffour values of the shear stress 1‘12: Wthh was kePt CO"Sta"t "hi]e the?h“

, -“%11‘; oy ‘and azstresses were varied. In the plane 112’- 0 alone, there are 68

’:-}fexperimental points. At the four stress levels 112 0 6 9 10 3 and;“ﬁ~“n



'~ Table 5 6, cover a very substantia] portion of the failure enveiope in“v

»

“same shape of faiiure enveiope is obtained at aii shear ieve]s cad’be

'fievei

e

15.9 MPa, there is a totai of 143 points These results, Tisted in‘

the g

tabie, as well as the equal biaxiai tensi]e and compressive strengths

: and the shear strength at the;L:nina angle 9 = +45°,

. The resuyts of Table 5. 6 for paperboard are shown inAFigure 5 10

It can be observed that the experimentai results show a very good con-

'sistency along simi]ar Toading paths A weil defined failure surface is

obtained at aii Teveis of shear stress T

12 . The hypothesis that the

lY' 02 - 12 space The caicuiated strengths in tension compres-

26

3 sion and shear in the principai directions are aiso Tisted in this'w

justified from these resuits There are reiativeiy more resu]ts in the

o biaxiaT compression quadrant than in the others and the‘faiiure envel-

ope is very weiT identified in that area especiaiiy at the t,, = 0

12

-~ '

Rowiands et ai (1985) compared the above experimentai resuTtS-

with many Hiii type failure criteria the Tsai Hiii criterion (3 14)

,; NorriS‘criterion (3 15) and Ashkenazi criterion (3 17) -Aiso the vaiue;;

» of ‘the interaction parameter Flz‘ has been caicuiated in each quadrant'f

from the. strengths P, P' s

S' ..

45" This is referred to as "Rowlands

45°.

:"rion produced af open faiiure surface, and was consequentiy unacceptabieg

- for this materia]. For~the other three theories tested the correiation

12

: theory" in this Section It was found that the Ashkenazi faiiure crite-ip"'

“‘WaS very 900d in quadrants 2 3 4 and the value of F ’ was found notd’f’-‘”\
"V'ito infTuence greatly the faiiure enveiope in this area. The first quad-aﬂf,."L‘
"?rant however,;is poorTy described by these criteria.g The Tsai-HiTl}'ﬂ-'

| '“vtheory, especialiy, underestimates the strength in this quadrant., The-ifhi
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a best correlation was obtained with Norris s equation, and it was obser- ‘

."ved ‘that this theory co\uld predict reasonably well the strength of’ pa- E
perboard for 112/5 < 0 65 This f%ilure theoryuis also represented in

| Figure 5.10.- S ' R " o

' One. disadvantage of the above theories is that they do not permit
values of the shear stress 112 to reach values higher than the shear

Pwstrength S 1n the principal material directions/i However a few ex- -
. A | perimental results where Tlé > S were reported by the authors ‘This‘
inconvenience can. be overcome by using tensorial strength equations |
-Rowlands et al. (1985) also published an analysis on, the use of thew
quadratic tensor polynomial to describe . the paperboard experimental

) resul ts. In a second article Suhling et al. (1985) compare various
methods for' dbtaining the val-ue of the. interaction parameter FIZ\ in

Equation (3 39) ' Theoretically, this value ‘can be obtained from anyw
| biaxial 'loa'ding‘ It was indicated in Chapter 3, however that various

( | "‘.'authors have advocated the use of one specific test among many others .

”7_in order to obtain that value In the above reference, no less than‘ ‘

- : twenty nine different tests were performed to calculate F12 : Each one :

:of these tests produced a different F1z" value.‘ The’ degree of correla-,

| " ;tion with the experimental data varied from very good for some values of :

" F12 to very poor for some others. Hith the uniaxial strengths listed .
- in Table 5 6 the conditions (3 45) for closure of the failure surface-f“‘

‘ 'forced & value of ‘the interaction parameter to be compri sed withi n thel'

’ o e : , .

e - ;1"-‘49"5,45“10"3 'Mraj?;_'gfl-"i'zi < 11496xio‘3 :‘Mpai“?f ',"-;:(5,.‘42‘)* o

.e:-

w“.

However, some tests led to a value of i-']u2 that would not satisfy the S

'-",A":above"mndition. It was found that the value F12 0 would provide the ‘7 R




bestrrepresentation of the expérimentai data with this theory‘

\
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In 0rder to compare the fai]ure theories discussed above~with the i'

K _experimental data obtained for paperboard the totai error. between the"

theoretica] and experimentai resuits of Table 5.6 was ca]cu]ated These' :

: error vaiues were ca]culated according to the method outlined in Section

5.2 The error between the experimentai ‘data and the theories of Tsai-.‘

0 -

| Hi]l Norris Row]ands and the quadratic tensor polynomial with F12
| andF12 = - 2 017x10 al MPa -2 are 1isted in: Tabie 5 7. The error. on the‘i
fp]ane 112 Q and for the. data on al] four Yo planes are given Ith

can be observed that the tensor po]ynomial with F12

| causes the 1east error when a]l experimenta] points are considered .

o is the one that[l

However, when only thecfesults in the piane 112 = 0 are taken into ac- .

‘count, three of the ot er failure theories iisted in the piane T ='0‘

12
‘produce significantly better results

b) Fai]ure criterion for paperboard

As commented above ~ the experimental resu]ts justify the :

' _assumption that the shape of the failure enveiope is the same at a11"

: shear ievels but reduces in size as ‘ti increases ‘Also,gsince ail“p

. -A“\
criteria discussed above cou]d be written as .
‘which corresponds to .‘; | “‘ N " , i T S
, [ T(a, 1:12) wq;(a) I’(T ) .‘ C ‘. (4'30) o

‘;it can be speculated that a different function g g(rlz) or r P(T XVQ‘fH;

uj]”couid produce a better data representation.: It w111 now be shown howfgfi”*

Qthhe new failure criterion (4 30) can iead to an improved analytica1~ﬁ75’?

'1?experimenta1 correlation than the theories discussed above.;_‘jf?vafaﬁ‘ivﬁff*f




,-ieveT‘ the totai e::,A

:g = 9(112) couid do to improve the experimentai theoreticai correiation ‘
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)

Q'

R

error between the experimentai data and the faiiure thsory considered at "

15
each levei of- constant shear 10 The error is défined as Equation
-

Nith the five above theories we shai] attempt to find an- as yet' ‘
\unknown function g = g(r ) that will produce the best curve—fit at aii'T

"‘shear 1eveis 112“ This function wii] be obtained by minimizing the :

(S 2) The best-fitting vaiues of the function g = g(r ) at the four '

"\shear levels are listed in Tabie 5. 8 for the five faifure theories The

‘coimnq of Tabie 5. 8 ihis totai error is the iowest that can be found‘

‘couid be found that‘e{;ais the best-fit value obtained at each shear,

~error measured in each case is also indicated * If a function g = g(mlz) o

'{each theory would be the one in the ”Iast“.

for each theory.. when these values are compared with the corresponding K

"ones in Tabie 5. 7 it can be observed how much an appropriate function

For the Tsai Hiii Norris,iand Rowlands theories, the improvement~

wouid be very good. In the case of the tensor poiynomial theory, the‘y

’:'gain in precision wouid hard]y be worth the. energy spent in finding the1

P

best function g g(rlz) This is éspeciaiiy true for the F12 f 0 case, 1_7
f'ffor which the" totai error in Tabies 5 7 and 5 8 is approximateiy thevw»i'iff

BN same. However, since the Norris theory, with an idealized function}l-

'jfan'“improved Norris equation“ wiil be written for this material.'

‘_(112) that wouid produce the best curve fitting/of the experimentai

tq_?”ff 2‘51
U= (1;2/5) | ‘

gp»gtg g(rlz) wouid give a significantiy better resuit than the other theo-‘f“

;fi,ries, a fUﬂthOﬂ g.= 9(112) wiii be found for this case.‘ Accordingiy,f].tf.'?ff
Figure 5 11 shows the five vaiues 121 and the corresponding?fgf]lj:"

~ﬁAiso depicted on this figure is the standard functionfg;i'i~[fg
As observed by Rowiands et ai. (1935) the NOPris;f\"“ o




"7f}i_therefore be written as f011°W5

fow

theorv gives a good representatfon‘ of  the fai]ure"envelope for
ot /S < 0:.65, and this 1s clearly 11lustrated 1n Figure 5.11. On' the

- other hand the va]ue of g(m ) at TIZ = 15.9 is poorly represented‘by‘

, this funct1on

a0

Alternate functions g = g(mlz) can be written that will compr1sef

‘ al] points in: Figure 5.11 and therefore produce the, lowest error between‘

experimenta]‘and theoretical. failure values.‘ For.example, a polynom1a1
function such as | |
- 3 -1. 2
+ 1774§x}0 Y,

+t§.135X}0‘ ‘112

| g(riz) = - 5. 331x10" - 1. 689x102 lx

| T12 l 12I

’

‘would be perfectly appropriate.‘ However, a 1ook at this funct1on also

shown in Figure 5. 11 clear]y 1nd1tates that 1t will not provide good

- representation of the data at- other shear values. In fact it

12

g h‘appears that simple 11near funct1ons of the shear stress would" g1ve goodf

¥
v
Lof e

resu]ts.

T

It can easily be found that the'1fnear fuhét1on of th that

‘”'1nc1udes the point g(O) 0 and best fits the points g(6 9) and g(lO 3)‘V:f} -

is given by

Sl

9(112) 0 035 112';;.‘

U

B A

.3,that 1s

2(112) o 058 112

. v .».'4

(5 43) |

'-83528”"« SRR R

‘31(5:44)'h;‘ :

. 'naf”Another 11near function can a]so fit the points g(15 9) and g(16 6),p:

“‘ﬂ‘The "improved Norris criterion", as fitted for this paperboard only, canjia A

1
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(0 57, <15.8 MPa)
- (5-46)

. 01 2 Co 01102 ' :022 ‘ . . . - . X ‘ | , i : )
h(-) - QTKY—-) + (Y-) +‘0.05§ 112'— 8;628‘= i (15.8 <‘112 < 16.6‘MPai
.where the values of x and Yy change in each quadrant except for the
interaction tenn "that {s aiways computed from the tensiie uniaxiai

strengths These equaticns can aiso be written in the form of Equation .

(4-30) . B N
| o : | T(o 112 (a) r‘(tlz) - | ~ "‘ | (4;30).
Cas follows: [ e o B a,
T(a 112) — 2 i ‘} : — é " 1‘1 ;(1 )
‘/'cos « , sin-a cos a‘+ sin“a | \ ,12
Cx¢ x4 S (5-47)

where g(rlz) is given alternative]y by Equation (5- 44) if Yo < 15 8 MPa :

or by Equation (5- 45) otherwise
c) .§ennecxlef_§5emnle_2_ )
The failure equations (5 46) or (5 47) are shown in Figure'j‘,

5.12. with the experimental data Comparing this figure with Figure‘

5 10 it REN observed that a iess conservative representation of the

results have been obtained at high ievei of the shear stress Tlé‘" How-ﬂi

ever. the portion of the failure envelope with compressive ‘01 is’ now,*}‘f
, overestimated. Aiso, despite an overail improvement in theoretical-f‘;"

LIS

stiii produces a better curve fit on the piane rlé = 15 9 MPa, as can be

SO
LEREEEE

: { observed in Tabies s 7 and 5. s The ”improved Norris equation“ does not

o  ——

al?ow any shear stress vaiue to be higher than the maximum shear vaiue ‘l o

‘.‘, . S ."f:“.' C. _.." ! .‘ .
. [ . W ' . N L . ‘ N
S K} .“ B e Lo e
e T
P oy T e s
R



5.4 LAMINATE-APPLICATION: CARBON-EPOXY
5.8.1 Material descript1on )

The experimental PESultS‘ published by Ikegaml and Takahashl

(1983) will now be used to demonstrate how experlmental results for
L l
lam1nates can be used to define more preclsely,ihe-fallure envelope.

' These researchers have tested carbon flbre relnforced plastlcs ustng
& '

; fllament wound tubes whlch they fabricated Detalls on the speclmenl

| fabrlcatlon were 1ncluded 1n their artlcle. Single lamlnae were tested

\ v

. under varlous comb1nat1ons of 1n plane loads and results are glven in

the,planes T, & O and gy

12 1

0 of the fa1lure envelope. These are listed |

rﬁln,Table‘5;9. The compresslve strength ln the f1bre dlrectlon is given dh

as 809 MPa‘ although this po1nt was . not meas:red experlmentally De- .

: talls ‘are not given ‘on the method used to calculate this value. Angle-_ .

ply lam1nates (ae) were. also tested 1n unlaxlal tension and compres-, ‘

sion.. Lamlnate strengths for these cases are llsted in Table 5. 10:

This “table also lndlcates the correspond1ng fallure stresses in the

compr1sed laminae, as calculated from classical laminatlon theory.i

vSlnce all layers of the laminate afe subJected to the same stresses,”

‘they fa1led s1multaneously under un{axial loads.

The fa1lure equatlons tested for this materlal were Hofﬂnan S\““

‘ ;ftheory, Equation (3-23), and the quadratlc tensor polynomlal Equatlonf:'

"‘(3 39) In both cases, the calculated value X' =, 809 MPa was used as a:‘g

“strength parameter. The strength under biaxlal loads w1th o /o = - IO.Q;f :

6 2

7jgwas used to calculate the interactlon term F12 2 7 47x10 MPa in thevf;”xﬂ

: f::f:,quadratic tensor polynomial ; Hofﬁnan s fallure crlterlon underestimated?l};,ﬂf

'J'ff_the strength very slgnificantly and wlll not be discussed here.- Thehf~u ;

Q_quadratlc failure surface proposed by Ikegami 1s given by Equationfj a.;

. . . IR . i
- Lo . Lo ot . L v r f ) ! '
: . . ) PO . R S
! i . . . . ' !



T
=
e

(3-39) with the following strength parameters: = #
X=1360 X' =809 'Y=28 .Y' =123.5 S = 62.6 (MPa)

In the pTanes 61 = 0 and o " O.of the faflure surface, the representa-
‘ \ :

tion of the exper1menta1 data is very good However, when one takes

1nto adccount' the laminate faflure strengths in Table 5.10, it is obser-

_ved that this criterion does not predfct the failure of ang]e-p]y lami-

nates y1th low b-values very well. In fact, it predicts the highest

strength under unfaxial load when the laminae are ortfented at 113°.

This has clearly not been observed eiperimentally.

5.4. 2 Proposed Fa1lure Criterion

The first step undertaken here ‘to improve the above solution was

to use only the available experimental results, and not use the point
X' = 809 MPa in Ehe strength parameter calculatfon. A faidure envelope

that best fits the experimental points in the plane T, = 0 is given

by G N
, 2 - 2 2
% %2 % 9% 9 9% *12

m‘m T TWT * Tz el Woies - (5-48).

N

In the plane o = 0, this enve]ope is identical to the one suggested by

g,

dkegami and Takahashi. It can be observed in Figure 5.13 that this

equation prbvides an'e%ce11ent correlatidn with the available experimen-

tal data in the planes o =0 and ty, = 0. 'However, angle-ply laminate

sxrength under uniaxial loads s stil poorly predicted in the range of
8 < 30°. Figure 5 14 shows the uniaxial strength ‘versus ply angle ?’

criterion (5-48) and the corresponding experimenta] results. An ideal--

1zed relationship is also represented. It will now be shown how

133



Equatfon (5-48) can be modified in order to provtde the same curve fit

in the planes o = 0 and T2~ 0, and also the idealized failure surface

in Figure 5.14. The new parametric failure eouation will be used.

Since the quadratic tensor polynomial provides a satisfactory
12 =0 and o = 0,.1t
is desirable that the parametric criterion coincide with the quadratic

correlation with experimental data in the planes ¢

expression‘on those planes. In parametric form, this criterion is writ-

134

ten as , )
Tfl(a’¢)+Jf12(a’¢) + 4 fz(“p@)
plaso) = 7T, Tae) @-12)
where
_ | sin ¢sina sin ¢ cos a | K
Flase) [ 3.2 © 441 ] - (549
f (@) = sin coszé%*'sinza sin . sine cos asin a,
2029 _TS%B'ET‘ 3 458 57 817 Tm&a
) ¢ (5-50)
The above failure equation in the planes 9 =.0 and T T 0 is shown in

- Figure 5.13. Now, "slices" of the failure envelope can be taken at

a-angles. - Three of them are shown in Figure 5.15, where the‘experimen-

tal points 11]ustrated are those for angIe-ply laminate faflure under~

~ uniaxial loadings. It is observed that the point with the iowest va1ue
of the angle « is overestimated by the criterion while the fajlure

point at a = - 5.3° is underestimated by the faflure equation. The

faﬂure equation must therefore be mo'(H'F"d in order to follow more .

closely the experimental failure data in the portion of the failure

envelope where 414f <aq <0 The Tower Aimit for « has been set 4



- arbitrartly because no data are avai]aﬁ]e in this region. OQutside these
bounds,. 1t 1s assumed that Equations (4-12), (5-49) and (5-50) are ap-
-propr1éte, since the 1aminate strenéth is well predicted.

1}1 ‘order to modify the failure envelope 1n’.the area -14° <a < 0°,

the following modification to Eduation (5-50) 1is suggested

(a,0) = sinz@ coszav+ S1n2a sian + S1DZQ €o0S ‘a sin a
% é 455 581 3 458 57 817
+ 29532_

3918.8 + f(a,9) (5-51)

ey

| where the function f(a,¢) must equal zero on the p]‘anes‘o1 =0, 62‘= 0,
Ty ® 0 in order to coincide with the quadratic tensor polynomial on
these planes. The following function can be taken:-

f(a,0) = g(a,¢) cos a sin a cos ¢ sin ¢ (5-52)

u

where g = g(«,¢) has still to be determined. The sines and cosines in
".the above eqdation force the failure surface to fo]low the quadratic

failure Surface on the planes ‘of the system of ‘axes. A -function

g g(a ¢) can now. be determined by us1ng the experimental results for.

135

the 1am1nate that were ill- represented with the quadratic criter!on.“‘

"For the two concerned po1nts the following values are ca]culated.

p(-1.8,8].8)~= 1 262 Land g(-1;8,8$.8)”=«- 11 530
' S ' , (5 53)‘
= 653 9(-3.5,85.5) = - 171 040~ -

0(-3.5,85.5)

" .Also, since it is desired that the fgiTure.fUnction'return to the quad-. -

" ratic leynOmialﬁat a -“414”,chewnext equatioﬁ must be gatiéfied F,“ f

[}

-1, =0 . L (s.sa)

Lo ) . ' ' . R S

for all angles ¢ .
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Manj'functions g = g(o,o)’can be written that would sat{sfy Equa-..‘
tions (5i53) and (5-54). With only three knonn values for this func-
tion, 1t can be assumed that g = g(a,o) will be a function of the angle

a alone. The following one is therefore suggested
L . 2 o ,
g9(a,9) = Acos’a + B sin"a + C sin acos a + (5-55)
When the values 1n (5-53) and (5-54) are subst{tuted in.(5—46), the

-

following constants are found:

A= - 1/792 -
| B = - 1/15 . (5-56)
SR , . iy
: . C=-1/47

o

The new failure criterion’is therefore given by

(ay0) +\/f a,4) + 4 fo(a,0)

pla,¢) = 2 f' (a ) | ‘ ‘(4-1'2) )
where ) . A
‘ _ | sin ¢sin a sin ¢ sina ‘ : .
o flee) = | e - Taaag ] - (5-49)
f ( )'= sin?g cosza + sin’a sinzo ; sinzq cos a sin a c052¢
2\ ¥ [ 455581 . 3458. . 57817 3918 8

o : 2 2 “
, + W cos « sin a cos ¢-sin ¢ (vvcggza - 5125“ - 51" a4;°? “)]

. L (sssT)

M

Y In Equation (5- 57) W= 1 for -14 <a <0, and zero, othegwise. )

The effect of using the new failure criterion “ig illustratede}*
in Figure 5. 16. .It can be observed that the failure envelope 4s now
much more complicated than an ellipsoid. On the planes °1 a 0‘ g, = 0,

= 0, it coincides with the quadratic failurenenvelope, as shown in:\:

Ty
12
. FigureLB,IG.: Nith Equation (5-41). the ellipsoid is then modified fn

s
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the iourth quadrant. As the angle af varies from 0° to -2°, the ellip- :
soid s gradually shrunken in order to include the failure point -at
a = -1.8°, Following that, the ellipsoid now expands. and includes the

failure point at a.= -5 3°‘ which was originally above the failure sur-

face. Finally, the, failure envelope decreases again to Join with the,
A
quadratic failure envelope at a = -14q The quadratic tensor polynomial

is still used for the remainder of ‘the: failure envelope because it pro-
vides‘% good representation of the failure data available. The effect

‘of the new failure envelope is also shown in Figure 5.14.

5. 4 3 - Sumary of Exanple 4

" This was a typical example where the quadratic tensor polynomial
seems to provide -ood correlation ‘between theoretical and experimental,
results, at least in the_planes op = 0 and Ty = 0- Therefore, it was
‘ appropriate to use this criterion in these planes. However, it was
'observed that some angle-ply laminate results could not be accurately
| compared.with_this criterion. It was then shown that the quadratic
wtensor‘polynomial when written parametrically in terms of angles a

t .and o, could easily be modified to include. these failure data., It‘was'

possible .to write.‘a failure function p = p(aga) that includes these

‘ points yet sti11 cOincideS»with the quadratic failure Criterion‘in the -

. planes where it was shown to be satisfactory. The shape of the failure

| envelope then became much ‘more complicated than an ellipsoid in the;t
‘_ci_- ozﬁf 112 space, but only three additional constants were required.
‘This parametric criterion is more flexible than cubic or higher expan-;\
"sions of the tensor polynomial Nith the cubic expansion for example,

‘iit would be impossible to nnintain the elliptic shape of the failure '



O

%mction in both the planes o = -0 and\r12 = 0 simultaneously The

value of the strength under any loading condition is also easy to calcu-

‘late with the parametric criterion by substituting the appropriate va-

' lues of the angles « 'and"o 1n Equation (4 12). Finally, 1f addi-
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tional experimental results were obtained and required further modifica-,‘t

A}

- tion of the failure surface, this could be achieved straightforwardly by

following the same procedure as, above ’ -

5.5 CONCLUSION

= Different applications of the new parametric failure criterion '

introduced in Chapter 4 were presented in this chapter. Examples with
single laminae. and one. laminate were considered, and a different feature
of the parametric failure criterion was demonstrated for each case. The

"hypotheses that led to each of these’parametric functions are summarized
) Y

in Appendix III; The analytical experimental correlation was improved

~ over the original solution for all examples discussed

It was demonstrated that the main advantage of this parametric

| approach is its great flexibility It is possible to write new failure

'equations .or ‘even tofmodify existing criteria when this is found neces-

"sary to describe complicated experimental failure surfaces.l. Eor all'

f‘ cases discussed here, the improved correlation was obtained without

) -'using an excessive number of parameters, and in all cases less parame-f"

‘:ters than with the tensor polynomial theory. The flexibility of this:

approaqh was also shown by writing different paramgtric solutions for a‘,""l

single example.,’

B Among the parametric solutions discussed the following possi-z'

‘ ibilities were advanced use of high order equations, use of non-integer;hf‘;_ﬂ.g

. Y



| ;considerably simpler than solving for the roots of quadratic or cubic

‘i,ized areas of the failure surface. Although the physical meaning ‘of

‘”fdamage occurrence in a lamina."‘”'

'fftreinforced laminae was not written. 'Apnew

exponents in the failure equation fitting of different portions of the

failure surface with different equations and local improvement of Hill~
type or. tensor polynomial criteria ‘ The possibilities _are endless.
‘ However. when a new criterion has. to be written for a set of experiment—

' al,results it seems best to attempt using primarily trigonometric func- "

tions

Using trigonometric functions has two major advantages over the

an appropriate choice of trigonometric functions. In fact ensuring

' closure of the failure surface has always been a problem in the previous

theories. and this difficulty can' now be eliminated when using parame- '

-

tric equations. The second advantage of a parametric equation is its

proportional loading condition can be obtained directly by substituting

the appropriate values of e and ¢ in the fatlure equation This is

139 .

"previous theories First the failure surface will always be closed for .

facility of use once defined In fact material strength under any -

equations as in previous theories. Finally, a secondary feature of this‘i'

‘LVloading path dependency of the failure sﬂrface and to the sequence of

In this thesis, a single parametrif;

l\‘

'«'parametric approach 1s the possibility of providing concavity in local- S

this can be debated there are some instances where this was observedr S

:experimentally.,. A possible explanation of this may be related to the.‘7

"'tion valid for all fibre-
.lure equation must - conse-ff*<’ '
.;';quently be written for each case. This is a disadvantage in °°mParison' ‘eti.:.

"1th Hi]] type and tensor POIYnomial theories.. For these,‘the strength7:‘5E‘*"



140

parameters are defined directly from specific experimental results such:f

as uniaxial strengths in the axis of symmetry The result however s

.that all failure envelopes described with one: of the above theories have -

' the same shape - For example, all quadratic tensor polynomials are el-

lipsoids This raises the question as' to whether or not it is feasiblept

to derive a single equation to represent all possible failure envelopes-

for fibre- reinforced laminae It would certainly be useful if such aﬁ.,

) equation werewavailable and this was one feature of the tensor polyno- ,»"

mial‘theory‘ However this point has not been investigated in detaf?

 here.’ There is some reason to believe that such a general equation, if

- 1t indeed does exist might be easier to. obtain in parametric form than

with. the tensor polynomial “The reason is that series of closed trigo-

nometric functions can now be used. This is more likely to generate the

general failure surface than the higher degrees of the tensor polyno-v

'mial which are not necessarily closed over the second order

It can actually be shown that the following series satisfies al

b

:requirements discussed in Chapter 4

p(a;o)- LB s‘in[(2n-1)a] sin[(Zm—l)o] l's,-’séy

.Y n

'The development of this equation is discussed in Appendix IV. This;,

| equation ~can theoretically describe any failure surface symmetrical;}
| l‘about the plane p(u 90 ) but a high number of terms must be generated'}:p‘l

~to converge toward the real failure surfacerl It can bE'hypothesizedfs‘”'

' that other functions requiring less terms can be written., This could be‘,f

| 'gfapproach This eventual equation would be more useful for-- design pur-f

‘ 3\poses than the general equation proposed above. _,{i?l“"i““:“*{‘

R an area to explore more closely in future developments of the parametric3;.”
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- TABLE 5.1 - Exdmplé‘lz Biaxiai StrgSSés»in Graphite Gadde‘AGOT

‘.‘_2‘

G,

1.5,

Q

0.0
0.0
“0.0|
- 1.25
1.4
12|
L

1.7
1.8 |
0.0

0.0
S 0.0
- 30,0 o

1.4
1.4

1.7

| -5.5
-5.3.
-6.25 -1.7
-6.9
-6.5

-6.8
-6.9
-7.3

-6.3

-5.9
1-5.3
-4.9.
4.8
1-4.4
8.2
-4
;3;7i-"

0.0
0.0 |

3.1
"402
4,1

-4.3
-4.9 |

=5.5

e -504 ‘
‘5.8'

-3.2

3.6 .
3.4
-3.2 .
-3.1
-2.8 |
1-2.5
-1.55

-1.55

'1’. 55 »

-1.4

1.2

0.5

|05
1-000
0.0
0.0
0.0
0.0. .

-6.3 |

-5.9
-6.1
-5.4
-6.8

“.6.4' .
~7.3
=7.2
._7.1
6.2

0.0

0.0

0.0
1. 0.8

| 0.73
| 072

0.7
0.67

0.6
0.57
1 0.52
| 150
U
| 1.85
L4

2.4

S 2.3
.7

.56
'-5.5
- -5.8

-4.8|
. -4.8

4.3
-4.2

4.0
=3.6

23.4

3.1,
-3.5 |
L34
-3
“-248

f2.‘4

. -2.3
1.7

‘xo

s 7875 X 103 psi*" |

3

‘2 15 x 10° psi
35.8833 x '10°

3

BUTEEN A 12 x 103 psi:

psii»" g
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", TABLE 5.2 - Example 2: Blaxial Strength of Graphite-Epoxy Fabric

R

’L(ai1‘un1ts: 103 psi)

[« 8
=]

(=4}
o

o 0 0 o0 o o

)

To.a .
P .o

2 % 12

(4] ~J
; R, Y- =
© O 00 OO W o o P o

o o
a o -

[}
(=)
(3, ]
w

-42.5
-58.5
-67.5

0.0

0.0

0.0

O.Q'
69.7
7
T8

65.4

71.5

'70.0
0.0
0.0 .

‘0.0

0.0

" 0.0
0.0

0.0 | 0.0
0.0 | 0.0 0.0 _16.6]

. 0.0 | 57.3
0.0 | 58.2

0.0{ | 0.0

0.0 {-73.3

0.0 | 0.0
0.0/ | 0.0 -68.1 0.0
0.0 | 0.0 -76.3 ' 0.0
0.0 0.0 17.5

0.0 { 0.0 " 0.0 17.1
0.00 | 0.00 0.0 17.5

0.0 | 0.0 0.0" -16.7

_ 10.0 .- 0.0
©0.0¢"| 0.0. -51.4 ' 0.0]
s SR

6.0/ .| 0.0 -82.3 0.0
-57:3° 0.0|

0.0, -17.6]
0.0 | 0.0 0.0 -17.6]
0.0 | 0.0 0.0 -17.2

}

29.1.
0.0
5.1
'33.6

45.6
| 85.8--- 47.0-
| 73.2:¢
59.3.

27.2
29.6
29.5
27.9
58.8

57.5

] 45,4
|-26.8

28.6 0.0] |
129.1 0.0

581

© 43.1
0.0

[ 0.0
46.9

59.0
55.8

. 29.4
23:8:”

,4§.6

57;5‘

0.0

16.8 |

‘17.55

18.4 |/

15.4

15.5 |

6.1

0.0 |
10.0 |

© 0.0
0.0
- 0.0.
'15.3

'1Q.0‘

Xt

oy

1}

[ LA (N | e

t

65.8 x 10° psi

66.2 x 100 psi
70.0 x 10° psi
67.1 x}103‘p$j o
'17;2,x=1O3 psi-

o
[ B
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TABLE 5.3 - Example 2: Normalized and Radial Data”

Gy

. él/x . OZ/YT | -  ‘~.“ 112/5 . ‘.'(g"‘ K | 5‘,{' - Pf'(af,q»') o
S - U B ') () ' :
1,073~ 0.0  0b [ - |00 9.0 1073
1.009 0.0 0.0 0.0 9.0 . 1.009
0.87 . 0.0 0.0 [ . |00 ' 9.0 . - 0.8
0.988 00 .. 0.0 [ |00 9.0 - - 098
| R " oloo 9.0 ~ ¢ 1017
0.0 90.0 . 1.012
90.0 - 90.0. ' 0.99 .|
90.0 90.0  1.028
90.0 . 90.0 . 1.0%6
90.0 . 90.0 . . 0.934
9.0, 90,00 1.021
90.0 90.0 °©  1.000
0,0 -90.0 . 0.992°
0.0 -=90.0 . 0.646
0.0 " -90.0. 0.889
0.0 . -90.0 . ~  1.026
100, -9.0 118
90.0 - -90.0 . . 0734 | . .
leo0 w00 0 1ae | @
) 90.0 0 -90.0 o 0.819 o
40 ]e0.00 c -g00 - 0.973
1900 000 -00.0 71,090
oAl o o
Co a0 e 00965 |
cfan s oo 00994
S A TN X BRI o) ) A B
Solane e s |
a0 008 f o vt
faro 00 o
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‘ TABLE'S.B.— Examp1é 2: Normalized and Radial Data (cont’d)"f -

)

o /X

9/

\

" " 112/5

1o0.871
| 0.884"
10.442

| 0.0

0.533 "
0.511

0.693 .
0.696
0.413.

|70.424

0.984
10.874

0.690
-0.407

0.450
| 0.2a8.

0.416
0.830
0.616"

0.670
©0.671
" 1.086
10.847

0.843

U 0.797
0.420
0.411
0.666

0409 1

OgO .
0.0 ..

0.821

10.0
0.0
0.0
10.977
1.017
1.070

0.895 |

£0.901

0,385

0.0
0.0

" 0.0
0.0
0.0

©0.890 | .

0.0

.
a
o

)

o

’ B
&
)

orta o]

*

e
R

Vs

25.154 "
25.201
61.963 .

| 90.0
0.0

0.0
44,033

| 43.952
| 68.454
| -62.019

62.012
61.987
25.164
25.185
43,986 -

1116.369

90.0
‘ ‘90‘.0I .

90.0
32.231

27.659
. 25.528
47123
47,017
72.481
90.0

90.0

90,0
90.0

90.0

90.0

47.137

0.962

0,977 |

0.940

1185

1.148
1.186
.35

1.322

1.179
10.959
0.955.
0.903
0:988
0.966
1.308
0.916
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‘ TABLE°5s4 - Example‘Z:‘Ayerage Rédial Data‘for ¢12'¢ 0

}

.]45 

o) o
ARG

‘
(o.), .

-,
Pavg

'

[}
a
avg

)

@

Favgle')

»

. 1.148

1.322
1.308

 1.315

1.179

1.155

) "

o
43.952

143,986
44,033
© 68.454

S

$27.659

' 25.528

47.017
147.137

470123 .
1.179 - 68.45
10155’ . 90

' 72.481

32,231 .

-
. ~

1.167 0

1,315 44

" ..°0.360
20478

0.646
0.618
0.632
‘Q.Géh“
.10.384

0,419

. 0.632

0.624

. 0.344.

" TABLE 5.5 - Example 2: Experimental-Theoretical Correlation’

\

4

A\l

Falure .

".éqbation

Error on the

. ‘P]aﬂévf

=0

1279
(31 pts)

‘Error fqr
e So 1) i

12

(s pts)

Error

Total ‘f‘ "\

.(4b ﬁfs); |

| Téhnyéonﬁs.f

‘p‘épbiclédﬁéﬁfqn‘q‘
Eq. (5-22) .

0131673

[

R

©170.04068 -

[

0.35741

CEG-)

0.38037

. 0.02189 .

0.36626 -

1fi”f7 jqu;t(s;3é)J';? )fﬂf

[EIE R

0.02766 - 0.38117

N
Aot

B L A X R I R

?
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TABLE 5.6 - Example 3: Biaxial, Strength of Paperboard (all
n .

g,

,

FPa)" “‘

l"o

s

~22.3

= 4.8

-12.4
~18.5

11.8
- 9.3

~15.4‘0
53,0
52.9

35,5
©=11.7
S=13.1

36 05 )

n

_13.7
-11.4

16.1

-14.3

112.7

24.4

A11.7
-13.1
36.5

7.6

25.6
24.6 |
35.5

~15.3
-19.6
-2.0
~11.5
9 -5.2
-13.2

~17.

23.1

- 8.1

" 6.4

54,5
-13.4°

35.9
34.5

22,9
1.4

-12.9

<12.6

-13.0

| 32.5
- 25.4

-13.4
135.9
34.5

- 6.4
~15.0

-19.3
7.2
-~ 9.4
-16.8

27.9

51.7
17.9

-12.1

~13. 1
36.5

-12.7

22.7
- 2.5

h13.1-

~13.1

~-8.0 -
‘-12.%

6.5

37.0,
-12.1°

<13.1
36. 5
35 5

-20.3
"‘1.2 -5“

- 4.8
~12.1

-18.1

16.2-
- 8.2

6.3
54.3"
-13.8
35.9
345
-12.

,\\ '

8.5,

‘11\07'
~ 6.7

13.6

: 32’1

6.4,
-13
35,9

4.5,
-12.4.
36 s

-19.4

-17.7
. 2743
45.8

\’lgkl
—13 ol'
35,9

7‘16.7‘

=150

‘ﬂL1104
-13.4

5.2

-8.7

4.0

5122

26.4

‘—21,5’

3.3
35,7 L
388
-12.1
13400, 1
35,9
35.2

T2 T

. -16.6

'52.7
-20.3
34.1

'24.1‘

- 8.3

= 6.9:
19.0

5.9

3.1
34.1
32,4

-11.0.

-12.1

44.5
6.9

- 3.5
=13.1

44.8
30.7 .

12.1
21.3
32.1

-11.4
<5, 5
28 3-

35.5 .

50.2

46.0

34.1
12.4

11,4
50.0

f6.2
21.4

_36 6/

1. 55.2
3.7
29.0 |

-11.4°

[ 12.4-

'6;4

7.9
37.9.
25.5

’-16.6A

A 30»5.1
‘ 25;7:
-~ 1,84

30.0
—12¢1
19 0

"45"9
38,5
5.9

-MP 7

i '

o
2.3
BRI R
9.7

ie 3 124,00

31 1

"2 @

6.3 .
o490
“ ‘23.4
3 '-'5.5

10.3:

26.3

oo |
I 310
176 .
”-“5;2

29.3

120.5

32,8
3p»b
" 29, 7

= 8 .6

33.1.

27.8

va‘

(48,3
46,9
1104

. 37.9

3.1 |

21.8"

L 0.3

25.9

'V 2.8

6 3
52 6 N

-9, 0

28 3

6 6

9.3

" ‘9.0v

a5

L L

45 5
-15 9

197

1314

21.2~,v

9.3 .
27‘.9' ,“ ' “

I‘”48;6

- 25.9
13.4.1
21, dg

< b

11.7

33 6
22.1

26,2
1.2

16 1
22 A

0.7
231 |

ﬂézs.z

v?38;s;
. 3854,
23,5
44,1 .

‘3016

17 9
18. 4

‘so 3

¢f19 8 -
. 805"

BN
zéljg
3.

293:“

|

368
- 3.8
 13‘4*i"4'8ﬂ;:} 4.5,
i 5 4.1ffn‘:; l

B L

- k”%-5559‘~;'”
PL=38.T L,

;Xigéﬂéﬁ,sﬁj;

.ﬁs‘

¥ =308,

o 45;?;13f§;

SRIPSTE N

545 . 17.9

\'A. W
a \

S ' 16 5
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a,)

TABLE 5.7 - Example 3: Error Calculation

(a1 units: MPaz).-

Theory - L ) Erroft 5= 0 Error 127 0 Total Error
Tsat-Hu, F|,%0.0  1086.3 802.2  1848.5
Tsal-Wu, F ,=-2.017x10"" . s588.4 1708.4 2296.8
Tsal-Hi1 1005.7 ©10585.3 * ,  11591.0 -
Norris 579.0 8204.4 - 8783.4 o
Rowl ands 4031 8316.5 8719.6
&
o .
, o ’ )
YN ' -
. \ B
N - % / >
‘ — .
a ¥ . -
/ -
") » (J k .
'; s : ' |
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TABLE 5.8 - Paperboard Calculation of Best-fit fop Fach Plane
, . it '

-

{4
- Tre, ‘ ‘ ' Total
Theory 2 g(le) Error  Error
Tsai-Wu o, 0 1046.3
Flp=0 6.9 IR U VL S 363.3
10.3 0.447 . 301.9
15.9 ©0.957 110.1 1821.6
Tsaf-Wu 0 0 g‘ 588.4
Flp=-2-017%100% 6.9 0.35%0 | 4733 ¢ .7
10.3 0.594 - // 241.8 ,
15.9 1.0 * § " 437.6 1741.0
l b B N
/
. Tsai-Hil , o 0 . 1005.7
6.9 - 0.061 398.7
10.3 . 0.173 o 328.2 '
¢ 15.9 0.486 ' 444.8 2177.8
Norris 0 S0 579.0
“ 6.9 0.247 388.2
©10.3 0.352 - 187.6
15.9 © . 0.594 - 340.4 . 1495,1
Rowlands . 0 | 0 403.1
' - 6.9 ©0.269 - 299.2
10.3 0.369 . 448.4

15,9 0.618 . 488.3 1639.0

i



TABLE 5.9 - Example 4: Expérimen@al Results for Carbon-Epoxy -

'ol' 9, 112 . a ¢ p(a, ¢)
(MPa).  (Mpa) (Mpa). () (°) (MPa)
1360 0 0o 0’ 90 1360
0 28 0 90 90 | 28
0 -123.5 0 =90 90 123.5
0 0 62.6 90 0 62.6
1673 -167 0 - 5.7 9 - 1681
688 - =172 0 - -14 90 709
648 -162 0 -4 90 668
0 9.2 16.1 90 297 18,5
0 12,0 43.8 90 15.3 45.4
) 0 -48.3 83.6 -90 30 96.5
0 -92.8 62.6 -90 56 111.9
TABLE 5.10 - Example 4: Uniaxial .Tension of Angle-Ply Laminates
o e ‘ % ‘ 2 '112 A « ¢ ola, )"
—thpa)  (°)  (MPa) (WPa). (Wa) (®) ()  (MPa)
r220 12,5 1260 -40 .°F49 - 1.8 v 87.8 1262
610 .+28.75 673  -63 127 . -5.3 79.4 688,
53 9.7 a1 " 12 7729 16.3  55.8 51.6
81, 61,5 16 - 26 F22 56,3 «52.7 36.3
23 #1895 1 22 s 6 814 74.8°  22.8
-135  $49.4  -105.4 -29.2 © +74.0 15.5 -55.9  °132.1
-108 . 1.5, -43.2 -64.5 "£57.3 56.2 -53%  96.5
135 #79.5 - 6.8 -128.6  +30.4 87.0 .-76.7,. 132.2
‘Ey = 122 011 W Sy a,1g§xid'j_n?a‘i -
E, = 9141 MPa Syp = 1}0Q4x10';6HPa'-1‘ .
Vg e 0.3975 S5 * e3.258x104' MPaill
- 8y, = 55002 * Sgg = 1.818x107" MPa”

.. 266
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CHAPTER 6
coNCLUSION

b

[."\

165 -

The topic of this thesis is the failure prediction of fibre- .

reinforced composite materials. In the‘first chapter, the basfc assump-

, tions made. in order to analyze these materials were fntroduced. Despite

the-complexity‘of observed failure'modes, the hypotheses of homogeneity

and orthotrOpy are retained for.thefanalysis of'unidirectionar or bi-

-

directional laminae. ' The corresponding equations of elasticity were

_presented in ‘the second chapter

.

Over the last twenty years many failure criteria have been pro-"

posed: for composite materials A review of these theories was presented

in Chapter 3. Among them, a survey has shown that the maximum streSS'

and maximum strain theories are the most widely employed in practice

although they are generally viewed as conservative Other criteria have

been obtained by modifying the well known HITY theory of plastic yield-

for anisotropic materials. The tensor polynomial theory, finst -

proposed inhthe 1970 s" is now the most discussed amon;\}esearchers,

It is attractive for many reasons it encompasses every criterion pro-f}

-

posed previously, Jt is a single continuous function and the rules of -

transformation are well known for. tensors.‘ The quagratic tensor polyno-

.- i

mial is now the most popular.\ However, this failure envelope is always‘f

an ellipsoid and does not provide an accurate representation of failure

\‘ B

‘L“data for;_ll composites. Some researchers have recently -advocated thekki\?

:d-order’;ensor polynomials.? This causes an increase “in thef;,",
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the failure envelope cannot always be guaranteed Also to find the '

failure stresses under any loading condition ~one . has to solve for the

)
AN

roots of a cubic equatfon. ;.o.

with‘the d?scussion still underway on the»merits of the tensor

polynomial theory, and with thfs approach becoming increasingly compli-.

cated, it seemed timely to investigate new techniques‘to'predict failure

of fibre—reinforced materials in plane stress. In Chapter{% "a ‘method

which was recently brought forward by Budiansky to predict plastic .

yielding in sheet materials was introduced Then a generalization of
this method to predict the failure of fibre-reinforced materials ﬂn
plane stress was proposed Although the failure sur;ace to pe defined
is in the 01 - 02 - T space, the new criterion is not‘written directl9

. in tenns of these stresses It is rather suggested that a parametric

-
!

]
ety
[T

vequation of the failure surface can be written as p p(a o) ‘where '5 :

is the length of the vector going from (0 0 0) to the failuro point

- for a proportionate stress‘path. The values a and "¢ - depend on the

PN
L]

L. C ' .

f'loading orientation M

The following characteristdcs of the parametric criterion were SR

discussed First,_it»was shown that the tensor polynomial theory was a f

. special case of the new parametric criterion., It follows that,all ex-
:‘isting criteria could be written in parametric form.; Second the fail-

}'¥5ure surface can always be closed if apprOpriate tunctions of the angles

*r”lch and '3 are selected There is no need for additional conditionf to

’i:“ensure closure of the failure envelope.

e

H
“
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_were: use of high order equations; use of non—integer exponents, fit--.

ting ‘of different portions of the failure surface with different equa-

'tions. The maJor advantage of this approach is therefore its- flexibili- |

_Ity. This was demonstrated through the examples of Chapter 5 Finally,

it’should be pointed out that, in applying the parametric criterion it

is’a simple task to identify the: failure strength for any proportional
'loading path. One only needs to insert the appr0priate values of the
‘angles a and o in the failure equatior;r |

.QZJB‘_ A disadvantage with the new parametric criterion at this time is

that it does not yet provide a single equation that would apply to all'

fibre-reinforced materials A new equation p = p(a ¢) has to be written,

‘ for'each~material depending on the available experimental data. when

'only the uniaxial strengths in the axes bf material symmetry are known

it is still appropriate to write ‘the quadratic tensor polynomial equa—‘

,tion because all experimental data are then well reproduced However - .

,when additional results are available that cannot be satisfied with this

pcriterion the expansioﬁ of the tenpor equation to include third-order ' .f'

gterms may - ‘not. always be the best solution. The parametric failure cri- i

N BERX . ;
~,;«'., NI

ﬂterion can be a useful alternative solution.jﬁ}"f, 'ﬁ‘;ggfi

y /different failure equations in parametric coordinategﬁ
BERITN

couldeelgenerated for different materials.{ A question that can bef-ﬂ*fiﬁ°1l

‘\,

'o"be developed for all_fibre—reinforced laminae., This question wasffj
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No experimenta] work has been performed in this investigation

es

'oniy experimenta] results availabie in the 1iterature have been used to

)

idemOnstrate the fiexbi]ity of this new approach A further step wouid

‘now be' to measure experimentai data in order to use the criterion aS'”‘

efficientiy as possibie that is aiong planes of constant ¢ and ¢ -

‘A chart 1dentifying the tests 1ying on these pianes was provided in.

{ 'Chapter 4. With that technique it wou]d be easier to write a faiiure K

function because oniy one term varies at a time \ ‘ »ﬁ-;

f

Another area where complementary research shouid aiso be done

concerns the inf]uence of the loading path on the shape of the fai]ure

enveiOpe. AlJ faiiure theories deveioped S0 far are for proportionate

e'ioading paths ‘ However it is now we]l known that the 1oading path, has "‘

g

e

a significant effect on the faiiure strength of fibre-reinforced 1ami-

nae. Nhen this is observed",the areas affected shouid be identified andi,‘

~this effect taken into account in the fai]ure eq tiona This can pos-f‘“ “
'esibiy be achieved by writing different equationsuioh\different ]oading‘ :
u»:paths A better undenstanding of the loading path in{luence on faiiuref,)ﬁﬂ:<

: surfaces for laminae would certainiy improve the accuracy of laminate

anaiyses..
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: f
LIST OF TESTED MATERIALS

I

/

<IN THE, LITERATURE

K\

l A
TYPE OF , ; /'
"MATERIAL IDENTIFICATION ° ‘ REFERENCE s i
| ! ) i
GLASS- .. 9lass epoxy TennySon et al (1978)
EPOXY AVCO 5505 ' \ Hashin 1980; ~ B
, K glass epoxy Hashin (1980 Co Cg
' . glass epoxy ; . Azzt and Tsai (1965
glass epoxy - | Ikegami et al 1982;
glass-reinfdrced-plastic (grp). Hitter et al (1974)
glass-reinforced-plastic (grp) Greenwood -
glass-epoxy Meshkov et al (1982)
glass-plastic i Skudra and Bulavs (1982)"
glass-plastic , Jones (1969) .
glass-textile ' Maks imov et al (1979)
glass-epoxy b , Puck and Schneider (1969) i
|
GRAPHITE~ _graphite epoxy AS/3501-5 .o Kim. .
EPOXY Morganite II Wu. (1974a) .
' graphite-epoxy . Tsaf-Mu (1971)
i graphite-epoxy SP- 288T300 (3M) Tennyson et a1§1978 ,1981)
CFRP Ikegami et al (1983) "
graphite + thorne] Guess (1980)
graphite epoxy T1300/1034 Francis et al (1979)
graphite epoxy_fabric ~ Tennyson and Wharram
NARMCO 5208-WT300 ‘ _ (1985)
KEVLAR kevlar-reinforced plastic Ikegami et al (1983)
' kevlar + organic fibre’ Guess (1980)
ORGANIC organic fibre + textile Maksimov et al (1979)
4 hybrid glass + organic fibre Sokolov (1979) :
and textile’ ‘ - o
SILICIUM-,  silicium-epoxy Pabiot (1970)
EPOXY L Lo
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LIST OF TESTED MATERIALS IN FHE LITERATURE (CONT'D) - o
. TYPE OF Lo | m
MATERIAL IDENTIFICATION . : ‘ REFERENCE ‘
WOOD - pine : ’ Cowin (1979)
' : paperboard T S Suhling et al-(1985) .
paper . o * de Ruvo et al (1980) o
N \ .
POLY- = polycarbonate , “ Raghava (1974) o
'CARBONATE ;
v"
BONES bones - o Cowin (1979)
rd IS Q :
" GRAPHITE:  “~graphite AGOT - Huang (1985) .:
.. type G graphite - ~ Franklin (1968)
h O
. , , /
PARTICULATE graphite particulate JT-50 Wang (1968) '
. : o Chamis (1969)
WOVEN fabric (weave + woven) ‘ Owen and Rice (1981) .
FABRIC + polyester resin . Owen and Griffiths (1978
: . - woven fiberglass . Plume and Maksimov (1978
fiberglass cloth +. epoxy Sokolov et al (1978)
- P Griffith and Baldwin) .-
o 3 (1962)
'.‘:,.-‘ -\\ : .




"-Equations (4-1), it is found that

APPENDIX 1.
MATHEMATICAL RELATIONSHIPS BETNEEN BUDIANSKY‘S-

.'\:

CRITERION AND THE NEN PARQMETRIC FAILURE‘CRITERION

A
o ' ! ! . , ‘
From the strength of materia]s stress transformation laws, 1t 1s$
' i l N \\ '

known_(Popov, 1976) that the pr1nc1pal stresses of e p]ane stress system

"

are given by

- o A ‘T'.T\, S
[( 2 | .z].* N
N ‘ P 2 12 ! ‘(Ii&.'lk)t
o~ _ . ' 'l ‘
The values of the stresses o) 02, 11 can be expressed as a function of
the<;;§:5?ree d1mens1ona] parametric failure equation
op = ° (“’¢).C95 a sin ¢ -~T.; o i B ‘: . ;
10y = pla,s) sin a sirt ¢ W | , (4-3). .

p(a,9) cos ¢

Substituting Equations (4-3) ~and (LI-1) into éﬁdjansky's criterion,

- Al

a(8) cos B = pla,0) sin ¢ (cos a sin;ql

~.

)

' , . 2 . 2 | |
g(g) sin g = - p(z,t) ‘/ sine (coz a - sin @l* + cosZs
[ ' ' S. " ) X '

Consequently; it can be shown that any’jsotropicwfunétion g(ﬁ).can be

~ transformed ihtO"a-p(¢,¢),fdntt10na_‘Tﬁentrahsfbrmatioh 1aw 1s-given byJ\

olene) = g(p)| Sine (st e v cos a)® sfnl o (cos @ Sf" a?
v \ : .

B ik o, E
S (- 3) S
DR | cos2 1 | L
S X
‘.’0 .

X ; si :
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f \: ‘ N .’u‘ ‘ ; l
) ' a L -180 "
v oV,
» - - " h ! 'u‘
where the value of the ang]e~ a o oL B
5t', - $n2 ¢ (cos ;-- sin a) + 4 coszo Ly
o ﬁ = arc tan |- , 5 (II 4)
‘ : | sin ¢ (cos a+sin a) EERFCE S
oa w0 K
o For examp]e the von Hises cr1ter10n can be written uhde
Bud1ansky S parametr1c formu]ation as . ' '
BT I SR R |
W ' : ' & AR o :
B A
» . ol : . ,
\ % .7 "//— T
‘ Subst1tutjng these values 1nto (II 4), the von Misesﬂcriterion can now @
be written 1n the stress space °1 -'52’- T2 using the new fai]ure cr1- SIS
.terion. This g1ves "sm:'_“ Co B ‘ B S
' sin®e (1. o 3 collg ]t ‘ ¥ -
p(a.¢) - | £ (1‘4-'51n a cos &) + =523 (11-6)
' ~ \ X . . 1

Lt was show&&@bove that any function g(B) can be transformed 1nto

a. function p(a, o) Any function p(a ¢) showing symmetry with respect to
&

b

theﬁpIanes a = 45°\and a = -45° can in reverse be written into the form 0

g(B) using the following transformation. . . ‘ , '5,
A o A\ C L ' T T \
. g(p) - ;(& oy sinzo (sin a4 cos a) sinzo'(eoswa,- sin ql? C _
R EEP T SR a6l -
., Lo bt . . s
- I B N T D 03 5 )
oS T L cosT o) :
L ,\,. C L L+ 7 | -
i e et % ) \
‘"heref,f' 3 °bt ' p(45 90) AN N C
oy :,,2;..~1," p(_45’90) ef; i; g - o f“(;I'g)i‘ ;l’ev‘»f‘g
“'~_ . b ~ ‘ &.' _:" ) i t ‘ .
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CEXAMPLE 10 - . e e
b . K ) o [ : . B N

Graphite Grade AGOT ~ *~ .  First parametrid, Solutfon (Fig. 5:3) " "
- Ref.: Huang‘(1985) | ; ijotﬁésis: | ‘

»

Original solution: Gol'denblat a) With data in ‘plane , = 0-only,

\
L

" and Kopnov (£q.(3-34),  use fq. (4-23) with - '\ |
. 'Fig. 5.2) o) =

12 =0 only "b)‘ste a‘function of §in a,

(Table 5.1) - - cos a, ..., etc.

Results in plane 1

c) Fit the points X} x' v,y

Cd) ’F1t the curve at p(‘45‘90) a
, - Parametric fai]ure envelope ,f
e ; T
e (Eq. ( 5#) ~

fo(a) P1 cos a + Py sina .
+ P3 cosza + P4 sin?q

+ Pé sin « cos a

- ﬂ':" 3 Second Parametric Solution (Fig 5. 4) f

C L Hypothesis (a).r‘ (c) above ~J”f""u,f

PO R d) Fit each quadrant with a differ- SRR
. U ¢ ‘ s .

| ent function ¢(a) /\
Parametric fai1ure enve]ope a
1CY (5-9)) e e e
¢(a) = P |cos a|E + R |sin alz

.,__,_,___ -—ien T
3 R . T
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1}Exauppsﬂé Ty
R : N l . , N l “ N . L‘ "
‘,—{Gfaphite EPOXy’fébﬂiC f ‘ F1rst Parametr1c Solution (Fig 5. 5)
| | ] . : *

- Ref.: Tennyson L Hypothes‘ls

[

&'é' " and Wharram (19&5) a) With X = Xf‘ano Y =Y', use norm-
;- 0r191na1 §ogut1on Cub1c tensor f alizgd coordinate gy;tems'f? f
polynomial’ (Eq. (3- 53) b)‘;Qne'fo11urg.point oér‘shq£F 1ev- |
/)ﬂ( | | ﬁnl. 'f i\ Fig. 5. 5) ‘..‘ e1,ftheg'assumé arcirculof‘f5§1;
- Results: (Tablé 5;2) S \:l O, dre eﬁJe]bpe‘cehtefed oo"xlz-axfs
o A at each shear level. Use cylin—
. drica] coordinate (Eq. (4 -23)).
- - . ¢)  Use Eq.(5- 27) special cqse of
‘V Eq (5 23) ," ~: : , o 1
‘ ) \ T((f,tlz/S) ela') 1"(¢ ) w1th |

_ ' .j¢'(a‘)i 1.0 for a circle 'q/
N o (%)
_‘ ey
R | - r‘-w, ’> 1.0 to fit 511 data*

1.0

1,0

AR ‘j". 1-  : ;  o . N d) ‘write eq. symmetrical w.r. to P

ST "212 ° P‘a"e SRR

“, .‘ ' : B L o 'Parametric failure enve101pe ¥ﬁ11{.
AT N} (5-29)) | R

| ? R T (¢ ) =1 0 + P(sin ¢ cos ¢)2

‘:’:Q_fi”,fTw‘;?f‘;%iﬂoj'o_  \:,{}“<f" wjth P best-fit value of data. |

......
- em - e -, -
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Pen . o | , '}‘ - e
| - | Second Parametric Solution (Fig 5. 7)
| _\‘: Hypothesis: (a). aboyg ' o
' ‘ 'b) Use spherica1 coordinate s o
o ) ~ Equation (4-15). S
Q) p‘(a 90) = o Ca 0) = 1. 0 )
‘ Parametric fai]ure enve]ope
, o o Equatioh (5-41).-
N | R P (a ,0') = 1.0 '+ f(a ) sin ¢ Fos o ,
‘ with f(a ) an equation to fit exper— ‘
1menta1 data (see Eq.(5-36) to (5-40) .
for development) N L ‘ )

Ly

ot
-
£
[
A

~ EXAMPLE 3 c f'; e e

- Paperboard

“-'Ref : Rowlands et al. (1985)‘

Paranetric Solution (Fig 5. 12)

Hypothesis* RN . K

"- Original so]utions Quadratic ,7 a) Saﬁ shape of failure surface

tEnsor polynom1a1 (Eq.(3- 39)),‘
‘Norris theory (Eq 03- 15))
Tsai- HiT theony (Eq. (3- -14))
-~ Results in fodr: T2
(Table/5.3) . |
)

— . ) . : - i

‘cylikdrica1 coord1nates
‘tion: (4 20)

planes: b) ~Norris faibure criterion

~and’ r(r )

at a11 shear levels., then-use A
Equa-

good

at t,, = O

12 : e
Use Equation (4- 30) T

12‘“’112) ¢la) F(t U
with ¢(a) Norris criterion at
=0, . )
11near equation to et
best-fit experimental results

12

‘ru,(see Eq. (5-43) to (5-46) for
_development) ' o ‘_-<‘;;V¢ )
. 7"Parametr1c failure enve]ope:
‘ (see Eq (5-47;)

L;\\/
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EXAMPLE 4 N R
- Ry
‘ | N
- Carbdn epoxy o Parametric So]ution (Fig 5.16)
) Ref.: Ikegam1 ‘and - ' Hypothesis |
| } Tagahoshi (;933) Qf,‘ i a) Keggiquagrﬁtic tensor po]ynomia] N
- Oriofnai oolutiohsl‘ouodratio | 1n p]aoes 112‘?‘0,‘01 ‘0,‘02“= Q
tensor po]ynomial [Eq (3- 39)),‘ b) 'Moq1fyrxeh50r po]ynom1a]twﬁere :
Hoffman s theory (Eq (3 23)) l.needed f—14°~< a <‘b°) for
- Results in Tables 5.9 ano.5.10 ~ improved correlation. ,
16c1uJ; aqgie-ply laminates. | Add fla,¢) to f (a, o) 1n Eq (8- 12)/ ‘
‘1n‘uoiaxfal;§énsfonV ‘ ‘:‘ ‘f c) f(o° ,o) = f(90 ,0) = f(a 90° )
B . s f(-14°, 9) =

‘Paraﬁétric fai]ure enve1ope'was in.
(b) with f(a @) = g(a ) cos a sina
. COS ¢ sin )

-2 2 -

where g(a o) = Acos’a ¢ B sin“a .

and A,8,C are.chosen xo fit exper- -

sin a Cos a

" imental data.
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. APPENDIX Iv e
\ . ‘ 4
DEVELOPMENT 0F EQUATI N (5 58) A
' , , S
Assuming that a genera] failure surface satisfying ai]’conditions

in Chapter 4 is given by the followi L]

L p(a,o) = LB (na) g(mo) _ - (Iv-1).
‘ . . ~men - » o e “ ‘
the equoﬁions iina) and g(me) most be -found. - One oonzetions (4-7)
'nﬁﬁuires that/\ N | “ | | ‘M | | “ | ‘ |
p(a 180 )/t p(a 0) o L o 3 | ‘.(4-‘7) -
" to provide symmetrydhith/respECt to thg plane ¢12 é.llsoossituting.ini
a Equation (IV 1), the foi]owing is found: \\';_ L "j .
' L ,' 9(¢/’-‘9(180 ¢) S F_\ o (1v-2)
."‘Possible functions/satisfying Zhis equality ake | i | |
=sin (2n-1) ¢~ m> a1 }(IV—Q)
= édszﬁ'mo m 3'1 . . (1v-4)
0f these, on"y'ﬁqution'(xv-3i satisfies the sondition‘fhat‘ o
' g(o) * 9(-0) L - Tv-s) |
fThe second of Equations (4 -7) now has to be satisfied . Sl
| CRle180%eg) plae) o wen

EComb ning this. with Equations (1v- 1) and (IV-3) it is found that - T
| fla) —i-‘f(a+180 ) ) o
(IV-6)

vi1i“The foliowing equation satisfies this requirement i".iiif§§“iﬁ»,i:j‘y S
o fla) = sin (2n-1) o Qf_ n >:1:”‘_";'11‘~va;7>;t,vf:r
.PEquation (IV 1) then becomes L ‘EL‘VE_‘Ein invs.el:fi‘_'L :

o (a o) g B sin [(Zn-lia] sin [(2m—1)¢] '(5:5§f?xfi.?f
o ,m;ﬂ~,, , , R Dl e

C oA



