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Abstract

This thesis investigates a new approach to model-based reinforcement learning
using background planning: mixing (approximate) dynamic programming up-
dates and model-free updates, similar to the Dyna architecture. Background
planning with learned models is often worse than model-free alternatives, such
as Double DQN, even though the former uses significantly more memory and
computation. The fundamental problem is that learned models can be inac-
curate and often generate invalid states, especially when iterated many steps.
In this work, we avoid this limitation by constraining background planning
to a set of (abstract) subgoals and learning only local, subgoal-conditioned
models. This goal-space planning (GSP) approach is more computationally
efficient, naturally incorporates temporal abstraction for faster long-horizon
planning and avoids learning the transition dynamics entirely. We show that
our GSP algorithm can learn significantly faster than a Double DQN baseline

in a variety of situations.
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Preface

This thesis is based on work that is currently pending review at the time of
writing, and was done in collaboration with Gabor Mihucz, Farzane Aminma-

sour, Adam White, and Martha White.
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The root of all evil is in always relying on one of your other possibilities to
get your wish. You must accept that you are the person here, now, and that

you cannot become anyone else other than that person.

— Higuchi Seitarou, Tatami Galazxy.
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Chapter 1

Introduction

The core idea behind reinforcement learning (RL) is learning from experience,
the interaction between an agent and the environment. RL algorithms are
often categorized into two groups: model-free and model-based RL algorithms.
Model-free algorithms learn directly from experience, whereas model-based
algorithms also uses experience to learn a model, an object that predicts the
results of actions in the environment, and through a computational process
called planning, uses knowledge from the model to improve the agent’s actions.

While historically, model-free algorithms tend to work better than model-
based alternatives, model-based RL is a key research area because learning a
model provides the opportunity to better store, query, and generalize across
experiences when compared to model-free algorithms. One basic form of a
model, the world model, allows the agent to predict the results of its action at
various states without actually performing the action in the environment. An
agent can then use this model to simulate data in the background during the
agent’s interaction to improve the agent’s policy, a process called background
planning. Dyna [41] is a classic example of background planning. On each step,
the agent simulates several transitions according to its model, and updates
with those transitions as if they were real experience. Learning and using such
a model is worthwhile in vast or ever-changing environments, where the agent
learns over a long time period and can benefit from re-using knowledge about
the environment.

The promise of Dyna is that we can exploit the Markov structure in the



RL formalism, to learn and adapt value estimates efficiently, but many open
problems remain to make it more widely useful. These include that (1) one-step
models learned in Dyna can be difficult to use for long-horizon planning, (2)
learning probabilities over outcome states can be complex, especially for high-
dimensional states and (3) planning itself can be computationally expensive
for large state spaces.

A variety of strategies have been proposed to improve long-horizon plan-
ning. Incorporating options as additional (macro) actions in planning is one
approach. An option is a policy coupled with a termination condition and ini-
tiation set [37]. They provide temporally-extended ways of behaving, allowing
the agent to reason about outcomes further into the future. Incorporating
options into planning is a central motivation of this work, particularly how to
do so under function approximation. Options for planning has largely only
been tested in tabular settings [37, 34, 49]. Recent work has considered mech-
anisms for identifying and learning option policies for planning under function
approximation [40], but as yet did not consider issues with learning the models.

A variety of other approaches have been developed to handle issues with
learning and iterating one-step models. Several papers have shown that us-
ing forward model simulations can produce simulated states that result in
catastrophically misleading values [17, 47, 22]. This problem has been tackled
by using reverse models [28, 17, 47]; primarily using the model for decision-
time planning [47, 32, 5|; and improving training strategies to account for
accumulated errors in rollouts [43, 48, 44]. An emerging trend is to avoid
approximating the true transition dynamics, and instead learn dynamics tai-
lored to predicting values on the next step correctly [10, 9, 2]. This trend
is also implicit in the variety of techniques that encode the planning proce-
dure into neural network architectures that can then be trained end-to-end
[45, 33, 27, 50, 11, 31]. We similarly attempt to avoid issues with iterating
models, but do so by considering a different type of model.

Much less work has been done for the third problem in Dyna: the expense
of planning. There is, however, a large literature on approximate dynamic

programming—where the model is given—that is focused on efficient planning
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(see [29]). Particularly relevant to this work is restricting value iteration to
a small subset of landmark states [23].) The resulting policy is suboptimal,
restricted to going between these landmark states, but planning is provably
much more efficient.

Beyond this planning setting where the model is given, the use of landmark
states has also been explored in goal-conditioned RL, where the agent is given a
desired goal state or states. The first work to exploit this idea in reinforcement
learning with function approximation, when learning online, was for learning
universal value function approximators (UVFAs) [16]. The UVFA conditions
action-values on both state-action pairs as well as landmark states. A search is
done on a learned graph between landmark states, to identify which landmark
to moves towards. A flurry of work followed, still in the goal-conditioned
setting [26, 8, 54, 53, 1, 14, 12, 19, 7].

In this work, we exploit the idea behind landmark states for efficient back-

ground planning in general online reinforcement learning problems.

1. We introduce subgoal-conditioned models: temporally-extended models
that condition on subgoals. Subgoal-conditioned models are designed to
be simpler to learn when compared to traditional world models, as they
are only learned for states local to subgoals and they avoid generating
entire next state vectors. We show that these models can be formu-
lated as general value functions and learned with standard off-policy TD

algorithms.

2. We develop a simple value iteration algorithm to perform planning only
over subgoals to quickly obtain subgoal values using subgoal-conditioned

models.

3. We propose a novel bootstrapping update for the main policy, which we

call subgoal-value bootstrapping, that leverages these quickly computed

LA similar idea to landmark states has been considered in more classical AI approaches,
under the term bi-level planning [52, 15, 6]. These techniques are built on logical operators,
and are quite different from the statistical foundations of Dyna-style planning—updating
values with (stochastic) dynamic programming updates—and so we do not consider them
further here.



subgoal values, but mitigates suboptimality by incorporating an update

on real experience.

4. We introduce the Goal-Space Planning (GSP) algorithm that puts it all
together: acting in the real world, learning models, background planning

and updating the value function using subgoal-value bootstrapping.

5. We provide empirical insights into the characteristics and performance of
GSP, the accuracy of models required to have good performance, and its
performance in non-stationary environments when function approxima-
tion is needed. We find that GSP is able to speed up learning significantly
with pre-learned models, is relatively robust to model inaccuracies, and
can handle a changing environment more quickly when compared to a

baseline model-free algorithm.

This thesis is divided into 5 chapters. Chapter 2 provides an overview of
relevant background knowledge. Chapter 3 describes our Goal-Space Planning
algorithm and its various components, and extensions to the deep RL setting.
Chapter 4 details the experimental studies performed to investigate the be-
haviour and performance of GSP. Finally, Chapter 5 concludes the thesis and

discusses possible future work.



Chapter 2

Background

In this chapter, we briefly cover concepts in reinforcement learning that are

relevant to this thesis.

2.1 Markov Decision Process

Reinforcement learning is a field which studies how an agent should interact
and learn to act through trial and error interaction with an environment to
achieve an objective. Typically, this objective is to maximize the accumulation
of a special signal called the reward. To maximize this cumulative reward, a
quantity which is called the value, the agent might need to make decisions that
might not maximize the immediate reward to receive more reward far into the
future.

A common way to formalize this learning problem is through a Markov
Decision Process (MDP). An MDP is defined as a tuple (S, A,R,P). S is the
state space and A the action space. R : S Xx A xS — R and the transition
probability P : S x A x § — [0, 1] describes the expected reward and proba-
bility of transitioning to a state, for a given state and action. On each discrete
time step t € 0, 1,2, ..., the agent is at state S; and selects an action A;. Based
on this action, the environment transitions to a new state S;.1 ~ P (S, Ay, )
and emits a scalar reward Ry11 = R(Si, Ay, Siy1). This process starts with the
agent starting at some state Sy, and is then repeat forever, or until the agent
reaches a terminal state, after which the episode ends and the agent begins

again at some state Sy based on a start state distribution.
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Figure 2.1: Diagram of the reinforcement learning interaction loop.

Action

The agent’s objective is to find a policy 7 : S x A — [0, 1], where if the
agent were to take action a at state s with probability 7(a|s) at all states,
would maximize the expected return, the future discounted reward Gy, at each

time step:

o0 k
Gi = Rip1 + v Rego + Y12 Ry + -+ = Z Rtk H Atk
k=0 j=1

The state-based discount ;41 € [0, 1] depends on Sy [38], which allows us to
specify termination. If S;;; is a terminal state, then .1 = 0; else, 41 = 7.

for some constant . € [0, 1].

2.2 Value Function

An important step to finding the best policy is to figure out the value of the
current policy, a task which is called the policy evaluation or prediction task.
For a given policy 7, the value v, : & — R is the expected return at state s

when following policy 7:
Uﬂ—(S) = EW[GASt = S],\V/S eS (21)

Here E,[-] describes the expected value of the random variable given the agent
follows 7w in the MDP. Similarly, the action-value ¢, : S x A — R is the

expected return at state s when taking action a and then following 7.
qr(s,a) = E [Gy| St = s, Ar = a,Vs € S,Va € A (2.2)

The action-value function for a given policy can be learned using algorithms

like Expected Sarsa [36], which at every time step t, updates the estimate @
6



at state S; with action A; using the Bellman equation:

Q(St, Ap) < Q(St, Ar) + aRep1 + e Z m(alSp41)Q(Ser1, @) — Q(S, Ar)]
acA
(2.3)

where « is the step size. Expected Sarsa is an off-policy algorithm, where
the behaviour policy (often denoted b) that takes actions in the environment
can be different from the target policy m whose action value function is being

estimated.

2.3 Q-Learning

Returning to the topic of finding the optimal policy, for any given MDP, we
know that there exists at least one optimal policy 7* that has the optimal
action-value function, in that for given any policy 7, ¢.(s,a) < g.+(s,a), Vs €
S,Va € A. While there might be multiple 7* where the above inequality
is satisfied, all optimal policies share the same unique optimal action-value
function ¢*. Therefore if we have ¢*, we can simply take the greedy policy
with respect to ¢* (such that 7(als) = 1 if a = max,ec4q*(s,a), otherwise
m(als) = 0) to recover an optimal policy.

Q-Learning is an off-policy algorithm which directly learns ¢*. At each

time step, Q-Learning updates the action value estimate Q(s, a) as follows:

Q(St, Ap) +— Q(Sy, Ay) + [Riy1 + Ve max Q(St1,a) — Q(S1, Ar)] - (2.4)

Notice how Q-Learning is exactly Expected Sarsa if the target policy is set to be
greedy with respect to the current estimated action-value function. Commonly;,
the behaviour policy is set to be e-greedy with respect to the current action
value estimate, where the policy is to take the greedy action generally, but

have € probability to take a random action.

2.4 Value Function Approximation

The algorithms we’ve described above all have implicitly assumed the use of

tabular representation, where the estimate for each state or state-action pair
7



is tracked individually. In cases where the number of states or state-action
pairs are too big to represent individually, we need to turn to approximate
solutions.

Many basic RL algorithms have natural semi-gradient extensions! when
function approximation is involved. For example, given that ¢(s,a;8) is the
estimated action-value function parameterized by 6, the semi-gradient Ex-
pected Sarsa update is

0 < 0+a[Rip1+v1 Y 7(alSie1)Q(Ses1, @) — Q(Se, Ay)Vod(Si, Az 8) (2.5)
acA

And similarly, the semi-gradient Q-Learning update is
0 — 0+ aR + Vi max Q(Si41,a) — Q(Sy, Ar)|Veq(Si, As; 6) (2.6)

These algorithms may not converge when using neural networks or under
off-policy sampling. However, they have been shown to often work in practice

when using neural networks given modifications described in Section 3.7.

2.5 Model-Based RL

The methods we have described in the previous section are all what is called
model-free RL algorithms. They are called model-free because they operate
directly from gathered experience (S, Ay, Riv1, Sta1,7e+1) to update the value
estimate. In contrast, model-based RL algorithms also uses experience to learn
a model, a computational object that answers predictive questions about the
environment, and uses a computational process called planning to transfer
knowledge from the model to improve the policy and value estimate.

The most common form of model is called a world model, which learns to
simulate environment transitions. When this model is perfectly accurate, the
agent can effectively simulate its own experience that mirrors real transitions
without interacting with the environment.

There are several ways an agent can use such a model. One way is to

use it to directly estimate the utility of different action choices at the current

1See [42] for more details about semi-gradient methods, and why they are often preferred
over true gradient alternatives.



state by “rolling out” the model and predicting the agent’s trajectory far into
the future. These decision-time planning algorithms improves the quality of
the action taken at the agent’s current state by predicting the result of future
trajectories using the model. Examples of such algorithms are model predictive
control algorithms and MuZero [31], which uses Monte Carlo tree search online
to perform these rollouts.

Another way to use such a model is to do background planning, which uses
the simulated data to update the estimates of different state-action pairs in
the background. The Dyna [41] architecture is a classic example of using both
model-free learning and background planning to update its policy and value
estimate. On each step, the agent simulates several transitions according to
its model, and updates with those transitions as if they were real experience.
Learning and using such a model is worthwhile in vast or ever-changing en-
vironments, where the agent learns over a long time period and can benefit
from re-using knowledge about the environment. A simple illustrative exam-
ple is Dyna-Q [41] which uses the standard Q-Learning update for both its

model-free update and planning:

Algorithm 1 Dyna-Q
Initialize Q(s, a) and model M(s,a)

Sg <— current state
fort€0,1,2,... do
Take action a; using @ (e.g., e-greedy), observe Syi1, i1, Vit1
M8t ar) <= Sig1, Vg1, Te1
Q(5¢, ar) <= Q(5¢, 1) + frep1 + Vg1 Maxge s Q(Se41,a) — Q(5¢, ar)]
for n times do
Sample s, a according to some algorithm or distribution
s ryy < M(s,a)
Q(s,a) « Q(s,a) + afr + ymaxge 4 Q(s',d") — Q(s,a)]

Many open problems with Dyna remain to make it more widely useful.
These include (1) one-step models learned in Dyna can be difficult to use for
long-horizon planning, (2) learning probabilities over outcome states can be
complex, especially for high-dimensional states and (3) planning itself can be

computationally expensive for large state spaces. The Goal-Space Planning

9



algorithm proposed in this thesis attempts to alleviate many of these issues.

2.6 Options and Temporal Abstraction

Options [37] are temporally extended courses of action that help the agent
reason at a higher level of temporal abstraction. They often represent skills
such as navigating to a specific room or opening the door, describing how to
accomplish subtasks an agent might want to perform to achieve its overall goal.
More formally, an option o is defined by the tuple (d, v, 7). d : S — {0,1} is
the initiation function that describes whether the option can be initiated from
that state (d(s) = 1) or not (d(s) = 0). v: S — [0, 1] describes the option
termination probability at state s, and 7 : S x A — [0, 1] is the policy that
describes how the agent should behave when performing the option.

A simple way to use options is to expand the agent’s action space with
options and learn an action-value function @) : S x (AU O) — R. The agent
decides if it could perform option o according to d,(s). If the agent can and
decides to perform option o based on Q(s, 0), it would follow 7, until the option
terminates as determined by 7,. When options are executed in this manner,
standard Q-Learning transfer seamlessly into this new action space, and these
temporally abstract actions allow the agent to “jump” multiple steps when
performing credit assignment, speeding up learning by reducing the horizon of

the problem.

2.7 Goal-Conditioned RL

Goals often serve as a foundation for higher-level abstraction when planning
for humans. We think of plans in terms of transitions between goals, and when
new information becomes available, we often form new goals that we include
when planning. These goals allow us to reason efficiently over long horizons
and allow us to adapt our behaviour quickly to account for goals we might
have in the far future.

There is a large and growing literature on goal-conditioned RL (GCRL),

which takes the concept of goals and applies it to RL. This is a problem setting
10



where the aim is to learn a policy 7(als, g), or action-value function Q(s, a|g)
that can be (zero-shot) conditioned to quickly reach different possible goals.
The agent learns for a given set of goals, with the assumption that at the start
of each episode the goal state is explicitly given to the agent and the agent’s
task is to reach that specific goal. After this training phase, the policy should
generalize to previously unseen goals. Naturally, this idea has particularly
been applied to navigation, having the agent learn to navigate to different
states (goals) in the environment.

Subgoals, also called landmark states, have also been used to improve plan-
ning for GCRL [16]. Planning is done between landmarks, using graph-based
search, to find the shortest path to the goal that paths through landmark
states. The policy is set to reach the nearest goal (using action-values with
cost-to-goal rewards of -1 per step) and learned distance functions between
states and goals and between goals.

The idea of learning models that immediately apply to new subtasks, us-
ing successor features, is like GCRL but goes beyond navigation. The option
keyboard involves encoding options (or policies) as vectors that describe the
corresponding (pseudo) reward [3]. This work has been expanded more re-
cently, using successor features [4]. New policies can then be easily obtained
for new reward functions, by linearly combining the (basis) vectors for the al-
ready learned options. No planning is involved in this work, beyond a one-step
decision-time choice amongst options.

This setting bears a strong resemblance to what we do in this work, but is
notably different. Our models can be seen as goal-conditioned models—part
of the solution—for planning in the general RL setting. GCRL, on the other
hand, is a problem setting. Many approaches do not consider planning, but
instead focus on effectively learning the goal-conditioned value functions or

policies.
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Chapter 3

Goal-Space Planning

Goal-Space Planning is an algorithm that incorporates the intuitive idea of
planning with subgoals to tackle the computational challenges of Dyna, to (1)
reduce accumulation of errors in long-horizon planning through using tempo-
rally abstract models, (2) avoid learning probabilities over outcome states, and
(3) make planning more efficient for large state spaces by planning at a more
abstract level.

The idea is that the agent has knowledge of a set of subgoals, and learns
a corresponding set of subgoal-conditioned models, a minimal model focused
around planning utility that answers how good the path to each subgoal is.
These models allow the agent to quickly find the value of reaching different
subgoals by planning in a temporally abstract MDP formed with subgoals as
states, and options to reach each subgoal as actions. Finally, we can update the
behaviour policy based on these subgoal values to speed up learning. Figure
3.1 provides a visual overview of this process.

These subgoal-conditioned models have several important properties that
make them easier to learn than one-step world models. The first is that these
models do not need to predict the next state feature, thus bypassing the pos-
sible issue of predicting irrelevant features. The second is that these models
only need to be learned within a local region where that subgoal is relevant
and reachable, further focusing function approximation resources.

First, we will provide an illustrative example of GSP for policy evaluation

to highlight the computational benefits of GSP in Section 3.1. We formalize
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o
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Subgoals Approximate Values

Figure 3.1: Visual overview of Goal-Space Planning in an example 2D en-
vironment (refer to Section 4.1 for details about the shown environment).
The agent begins with a set of subgoals (denoted in teal) and learns a set of
subgoal-conditioned models. (Abstraction) Using these models, the agent
forms an abstract goal-space MDP where the states are subgoals with options
to reach each subgoal as actions. (Planning) The agent then plans in this
abstract MDP to quickly learn the values of these subgoals. (Projection)
Using learned subgoal values, the agent obtains approximate values of states
based on nearby subgoals and their values. These quickly updated approxi-
mate values are then used to speed up learning.

the idea of subgoals, subgoal-conditioned models, and describe the basic algo-
rithms to learn these models in 3.2, 3.3, and 3.4. In Section 3.5, we describe
how to use these models to plan quickly and generate values of subgoals, and
how these values are used to improve the base policy. Then, we summarize the
full Goal-Space Planning algorithm in Section 3.6. Finally, we extend GSP to
the deep RL setting in Section 3.7.
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3.1 GSP for Policy Evaluation

To further illustrate the ideas of GSP and its computational benefits, let us
start with a simple version of GSP for a policy evaluation problem where
the goal is to learn v™ for a fixed deterministic policy 7 in a deterministic
environment, assuming access to perfect models.

The key idea is to propagate values quickly across the space by updating
between a subset of states that we call subgoals, g € G C S. (Later we
extend G ¢ S to abstract subgoal vectors that need not correspond to any
state.) To do so, we need temporally extended models between pairs g, ¢’ that
may be further than one-transition apart. For policy evaluation, these models
are the accumulated rewards 7, : § X § — R and discounted probabilities

P, :S8x8 —|0,1] of transitioning between goals under 7:

def

Tr (9, q) =E:[Riy1 + Vo' #4177 (St41, q)|S: = g

def

Prr(9,9") = Ex[1(Se1 = ¢ )Ver1 + Vg 141 Py (Sig1, 9')|Se = gl

where vy 441 = 0 if Siy1 = ¢’ and otherwise equals v,11, the environment
discount. In an undiscounted environment, because both the environment
and the policy are deterministic, P (g, ¢") would either be 1 or 0, indicating
whether the agent would or would not reach ¢’ from g under m, respectively.
With discounting, if the agent would reach ¢’ from g under =, then P ,(g,9’)
would be the multiplicative accumulation of discounts between g and ¢’ (i.e.
if the discount equals a constant v and it takes k steps under 7 to reach ¢’
from g, then P, .(g,9') = 7¥). If the agent would not reach ¢’ from g under
m, then P, (g, ¢') will simply be zero. We can treat G as our new state space

and plan in this space, to get value estimates v for all g € G

0(9) = T2~(9,9") + Prr(9,9)v(g")  where ¢’ = argmax . Pr (g, q)

where G = G U {Sicrminal } if there is a terminal state (episodic problems) and
otherwise G = G.! It is straightforward to show this converges, because P,

is a substochastic matrix (see Section 3.1.1).

'Remember that because the environment is deterministic, argmax, g Pr ,(g,9') gives
us the closest ¢’ to g.
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Once we have these values, we can propagate these to other states, locally,
again using the closest g to s. We can do so by noticing that the above
definitions can be easily extended to (s, ¢") and Py (s, ¢’), since for a pair

(s,g) they are about starting in the state s and reaching g under 7.

v(s) = 1r4(5,9) + Pry(s,9)v(g)  where g = argmax 5P, (s,9).  (3.1)

Because the rhs of this equation is fixed, we only cycle through these states
once to get their values.

All of this might seem like a lot of work for policy evaluation; indeed, it
will be more useful to have this formalism for control. But, even here Goal-
Space Planning can be beneficial. Let us assume the environment is a chain
S1,82, - -, Spn, where n = 1000 and G = {100, S200, - - - , S1000}- GSP tackles this
problem by first planning over a much smaller number of subgoals g € G, then
learning the values of other states based on these subgoals. Finding the value
of subgoals is much easier as it converts a 1000 step horizon problem into a
10 step one. Once the agent have the values of subgoals, we can update all
the states in one sweep, using Equation (3.1), to set the value of s to be the
expected return to reach g plus the value of g. As a result, changes in the
environment also propagate faster. If the reward at s’ changes, locally the
reward model around s’ can be updated quickly, to change r. (g, ¢") for pairs
g, g where ¢ is along the way from ¢ to ¢’. This local change quickly updates
the values back to earlier g € G.

We can also plan efficiently by updating the value at the end in s,,, and then
updating states backwards from the end. But, without knowing this structure,
it is not a general purpose strategy. For general MDPs, we would need smart
ways to do search control: the approach to pick states for one-step updates.
GSP effectively reduces the number of states we are required to sweep over by
constraining them to subgoals, then afterwards, backing up values from these
subgoals to individual states. In fact, we can leverage search control strategies
to improve the Goal-Space Planning step. Then we get the benefit of these

approaches, as well as the benefit of planning over a much smaller state space.
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One-step Backup

Terminal

Goal-Space Planning

DEEEHEEEEEEEE

Terminal

Figure 3.2: Comparing one-step backup with Goal-Space Planning. GSP first
focuses planning over a smaller set of subgoals (in red), then updates the values
of individual states.

3.1.1 Proofs for the Deterministic Policy Evaluation

We provide the proofs for deterministic policy evaluation here. We assume
throughout that the environment discount v;.; is a constant . € [0,1) for
every step in an episode, until termination when it is zero. The below results
can be extended to the case where 7. = 1, using the standard strategy for the
stochastic shortest path problem setting.

First, we want to show that given 7 , and P; ., we can guarantee that the
update for the values for G will converge. Recall that G = GU {Sterminal } 18 the
augmented goal space that includes the terminal state. This terminal state is

not a subgoal—since it is not a real state—but is key for appropriate planning.

Lemma 1. Assume that we have a deterministic MDP, deterministic policy
T, Y. < 1, a discrete set of subgoals G C S, and that we iteratively update
v, € RI9! with the dynamic programming update
vi(9) = 729, 9") + Pry(9,9)vi-1(g)  where ¢’ = argmax P ,(g,4") (3.2)
g'eg
for all g € G, starting from an arbitrary (finite) initialization vy € RI9!, with

Ut (Sterminal) fized at zero. Then then vy converges to a fized point.

Proof. To analyze this as a matrix update, we need to extend Py .(g,¢’) to

include an additional row transitioning from Siemina. This row is all zeros,
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because the value in the terminal state is always fixed at zero. Note that
there are ways to avoid introducing terminal states, using transition-based
discounting [51], but for this work it is actually simpler to explicitly reason
about them and reaching them from subgoals.

To show this we simply need to ensure that Py, is a substochastic matrix.

Recall that

def

P7r,’y(ga 9’) = Ew[l(st—i-l = 9/)%+1 + Vg’,t+1p7r,7(5t+17 9/)|St = 9]

where vy 441 = 0 if Siy1 = ¢’ and otherwise equals v,11, the environment
discount. If it is substochastic, then || P, |2 < 1. Consequently, the Bellman
operator

(Bo)(9) = 17+(9,9") + Prry(9,9)0(g)  where g’ = argmax Pro(g.9)
is a contraction, because ||Bvy — Bus|ls = || Pryv1 — Pryvalla < || Prsll2]lvr —
vall2 < [lor = valfa.

Because 7. < 1, then either g immediately terminates in ¢, giving 1(Sy41 =
)Vt + Vg 41 Prey(Si41,9") = Y41 + 0 < 4. Or, it does not immediately
terminate, and 1(Si41 = ¢') Vi1 +7g 141 Lry (Si41, §') = 0+ Pr 4 (Si41, 6') < e
because Py . (Sit1,9") < 1. Therefore, if v, < 1, then || P, |l2 < 7e.

0

Proposition 1. For a deterministic MDP, deterministic policy w, and a dis-
crete set of subgoals G C S that are all reached by 7 in the MDP, given the
0(g) obtained from Equation 3.2, if we set
v(s) =14(s,9) + Prry(s,9)0(9) where g = argmax P (s,9) (3.3)
g€eg

for all states s € S then we get that v = v,.

Proof. For a deterministic environment and deterministic policy this result is
straightforward. The term Py .(s,g) > 0 only if g is on the trajectory from
s when the policy 7 is executed. The term 7,(s, g) consists of deterministic
(discounted) rewards and ©(g) is the true value from g, as shown in Lemma 3.2
(namely ©(g) = v(g)). The subgoal g is the closest subgoal on the trajectory

from s, and Py (s, g) is 7. where ¢ is the number of steps from s to g. O
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3.2 Defining Subgoals

Intuitively, subgoals represents abstract intermediate objectives that the agent
can achieve. These can be at different levels of abstractions and cover many
different modes. It can be anything from the amount of sleep one needs, getting
to a pizza place, or the temperature outside.

We formalize each subgoal as a subgoal description vector that is within
the space of possible subgoal descriptions. Each subgoal vector could be a
one-hot vector encoding indicating the desired subgoal, and more generally
can be a vector of features describing the subgoal. This vector space need not
correspond directly to the (possibly continuous) state space, as subgoals can
be a further abstraction on states.

In this work, we assume that we have a finite set of subgoals, in the form
of a finite set of subgoal description vectors G. For example, one subgoal for a
robot might be a situation where both the front and side distance sensors of
a robot report low readings—what a person would call being in a corner.

To fully specify a subgoal, we need a membership function m that indicates
if a state s is a member of subgoal g: m(s, g) = 1, and zero otherwise. Many
states can be mapped to the same subgoal g. For the above example, if the
first two elements of the state vector s consist of the front and side distance
sensor, m(s,g) = 1 for any states where s, sy are less than some threshold e.

Finally, we only reason about reaching subgoals from a subset of states,
called initiation sets for options [37]. This constraint is key for locality, to
learn and reason about a subset of states for a subgoal. We assume the exis-
tence of a initiation function d(s,g) that is 1 if s is in the initiation set for g
(e.g., sufficiently close in terms of reachability) and zero otherwise. From this
initiation set, the agent needs an option policy 7, : S x A — [0, 1] for subgoal
g that starts from any s in the initiation set, and terminates in g—in § where
m(s,g) = 1.

Here, we assume that subgoals and their membership function are the
product of a subgoal discovery algorithm. We discuss some approaches to

learning the initiation function and option policy in Section 3.4
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3.3 Defining Subgoal-Conditioned Models

Goal-Space Planning involves planning and acting at two different levels. One
involves the goal-space MDP, formed by subgoals and options to reach each
subgoal. Another involves the state-space MDP, the one that the behaviour
policy operates in. This requires two different “levels” of models, state-to-
subgoal models that answers questions about reaching a subgoal g from state s,
and subgoal-to-subgoal models that answers questions about reaching subgoal
g’ from some subgoal g.

The state-to-subgoal models are 7, : S x G — Rand I' : § x G — [0, 1].

The reward-model 7, (s, g) is the discounted rewards under option policy 7:

T’y(sa 9) = Ewg [Rt+1 + 79(5t+1)r’7(5t+17 g)’St = 5]
where the discount is zero upon reaching subgoal g

e | 0 if m(Siy1,9) = 1, if subgoal g is achieved by being in Sy
Yg(St41) =

Y1 else
The discount-model I'(s, g) reflects the discounted number of steps until reach-

ing subgoal g starting from s, in expectation under option policy =,

['(s,g) = E., [m(Seq1, 9)Ye41 + 79(5t+1)r<st+17 9)|S; = s].

These state-to-subgoal models will only be queried for (s, g) where d(s, g) > 0:
they are local models.

To define subgoal-to-subgoal models,? 7, : GxG — R and [:GxG — [0, 1],
we use the state-to-subgoal models. For each subgoal ¢ € G, we aggregate

ry(s,¢") and I'(s, ¢’) for all s where m(s,g) = 1.

def def 1

7:'7 (97 gl) z(lg) Zs:m(s,g):l T’Y(S’ g,) and F(g7 g/) 2(g) Zs:m(s,g):l F(S7 g/)
(3.4)
def

for normalizer z(g) = ., ;=1 ™(s,g). This definition assumes a uniform

weighting over the states s where m(s,g) = 1. We could allow a non-uniform

2The first input is any g € G, the second is ¢’ € G, which includes Sterminal. We need to
reason about reaching any subgoal or Sierminal- BUt Sterminal 1S N0t a real state: we do not
reason about starting from it to reach subgoals.
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Figure 3.3: Ilustration of the original and abstract goal space. The colored
circles on the right represents different subgoals.

weighting, potentially based on visitation frequency in the environment. For
this work, however, we assume the subgoals are defined such that all states
s where m(s,g) = 1 have similar r.(s,¢’) and I'(s,¢’), making a uniform
weighting reasonable.

These models are also local models, as we can similarly extract (~i( g,¢') from
d(s,¢') and only reason about ¢’ nearby or relevant to g. We set d(g,q ) =
MAaXseS:m(s,9)>0 A(S, ¢'), indicating that if there is a state s that is in the initi-
ation set for ¢’ and has membership in ¢, then ¢’ is also relevant to g.

Let us consider an example, in Figure 3.3. The red states are members
of g (m(A,g) =1, m(B,g) = 1) and the blue members of ¢ (m(X,q) = 1,
m(Y,qg’) = 1). For all s in the diagram, d(s,¢’) > 0 (all are in the initiation
set): the policy 7y can be queried from any s to get to ¢’. The green path in the
left indicates the trajectory under 7, from A, stochastically reaching either X
or Y, with accumulated reward r, (A, ¢’) and discount I'(A, ¢’) (averaged over
reaching X and Y'). The subgoal-to-subgoal models, on the right, indicate ¢’
can be reached from g, with 7, (g, ¢') averaged over both r.,(A, ¢’) and (B, ¢')
and I'(g, ¢') over ['(A,¢') and I'(B, ¢'), as described in Equation (3.4).

3.4 Learning Subgoal-Conditioned Models

We have defined subgoal-conditioned models in the previous section, now we
need methods to learn them. We first introduce general value functions [38],
as we leverage this idea to apply standard off-policy RL algorithms to learn

state-to-subgoal models and option policies. Then, we discuss how to learn
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state-to-subgoal models (s, g) and I'(s, g) in Section 3.4.2 and how to learn
subgoal-to-subgoal models 7.(s,g) and I'(s,g) in Section 3.4.3. Finally, we

describe a general algorithm for learning option policies in Section 3.4.4.

3.4.1 General Value Functions

Just as value functions capture the expected return under a policy, it is possi-
ble to capture the expected accumulation of any other quantity. General value
functions (GVFs) [38] formalize this concept and measure the expected accu-
mulation of a signal (the cumulant) under some policy. Each GVF is defined
by a tuple of 3 functions (C,~v, 7). C: S x A xS — R is the cumulant func-
tion, the signal that is accumulated and which generalizes the reward function.
7:SXAxS — [0,1] is a transition-based discount function that is similar to
the environment’s discount function. 7 is the policy under which the cumulant
is accumulated.

Because of the similarity between value functions and general value func-
tions, standard RL algorithms like Expected Sarsa can be used to learn GVFs
by replacing the reward, discount, and policy with the GVF’s C', v, and 7.

Estimating the general value function when given a specific policy can be
seen as equivalent to the prediction problem in standard RL. There is also the
idea of a control GVF, where the goal is to learn a policy that maximizes the
expected cumulative cumulant given C' and +, just as the goal of a control
problem in standard RL is to learn a policy that maximizes the expected
return. Similarly, we can use Q-learning to learn this policy.

The generalization from value functions to GVFs extends the utility of
standard off-policy RL algorithms to learn any prediction and control ques-
tion that can be formulated as a prediction or maximization of the future
accumulation of a Markov quantity with discount, like our formulation of 7,
and I'. The exact details about how we perform off-policy learning to learn

these models and option policies are described in the sections below.
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3.4.2 Learning State-to-Subgoal Models

We start by assuming that we have 7, and discuss learning it after under-
standing learning these models. Note that the algorithms discussed here are
basic off-policy algorithms that might diverge in the function approximation
setting, but there exists practical techniques to stabilize learning in deep RL
that are discussed in Section 3.7. To improve model learning, we can leverage
the large literature on GVFs [38] and UVFAs [30]. There are also nuances
involved in (1) restricting updating to relevant states according to d(s, g) and
(2) considering ways to jointly learn d and I' that we discuss below.

The data is generated off-policy—according to some behavior b rather than
from 7,. We can either use importance sampling or we can learn the action-
value variants of these models to avoid importance sampling. We describe both
options here, but in our experiments we use the action-value variant since it
avoids importance sampling and the need to have the distribution over actions

under behavior b.

Model Update using Importance Sampling We can update (-, g) with

an importance-sampled temporal difference (TD) learning update p,6; Vr. (S, g)

mg(alSt)

sy and

where p; =

0 = Ry + Y9417 (Se4159) — 74(St, 9)

The discount model I'(s,g) can be learned similarly, because it is also a
GVF with cumulant m(S;11,¢)vi41 and discount v,,41. The TD update is
pi0L VI'(Sy, g) where

5tr = m(Se+1, 9)Vet1 + Vo410 (Se1, 9) — T'(Se, 9)

All of the above updates can be done using any off-policy GVF algorithm,
including those using clipping of IS ratios and gradient-based methods, and

can include replay.

Model Update without Importance Sampling Overloading notation,

let us define the action-value variants 7,(s, a, g) and I'(s, a, g). We get similar
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updates to above, now redefining

0 = Rit1 + Yger174(Str1, g (Se1), 9) — 174, (S, Aty )

and using update 6] Vr.,(S;, Ai, g). For I' we have

5{ = m(5t+1, 9)%+1 + Wg,t+1r(5t+17 7Tg(5t+1), g) - F(Su Ay, 9)

and using update 8] VI'(S;, A;, g). We then define (s, g) = (s, 7,(s), g) and

T'(s,9) = T(s,my(s),g) as deterministic functions of these learned functions.

Restricting the Model Update to Relevant States Recall, however,
that we need only query these models where d(s,g) > 0. We can focus our
function approximation resources on those states. This idea has previously
been introduced with an interest weighting for GVF's [39], with connections
made between interest and initiation sets [51]. For a large state space with
many subgoals, using Goal-Space Planning significantly expands the models
that need to be learned, especially if we learn one model per subgoal. Even
if we learn a model that generalizes across subgoal vectors, we are requiring
that model to know a lot: values from all states to all subgoals. It is likely
such a models would be hard to learn, and constraining what we learn about
with d(s, g) is likely key for practical performance.

The modification to the update is simple: we simply do not update (s, g)
and I'(s, g) in states s where d(s, g) = 0. For the action-value variant, we do
not update for state-action pairs (s,a) where d(s, g) = 0 and 7,(s) # a. The
model will only ever be queried in (s,a) where d(s, g) = 1 and 7,(s) = a.

One issue with limiting model updates only to relevant states is if the
state distribution for following the option policy, starting from some state s
where d(s,g) = 1, is non-zero at some other state s’ where d(s',g) = 0. If
that is the case, then the model will not converge to the correct values as the
update equation assumes that the next state s’ will also be updated. This
can be resolved with emphatic weightings [39] that allows us to use interest
weightings d(s, g) without suffering from bootstrapping off of inaccurate values

in states where d(s,g) = 0. Incorporating this algorithm would likely benefit
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the whole system, but we keep things simpler for now and stick with a typical
TD update. In our experiments, we found it sufficient to alleviate this issue
by encouraging the learned option policy to stay within the relevant states
by setting the bootstrap value of states where d(s,g) = 0 to the minimum
possible value for the reward function used to learn the option policy, such
that a well-learned option policy should always stay within relevant states

where the bootstrap target will be updated.

Learning the relevance model d We assume in this work that we simply
have d(s, g), but we can at least consider ways to learn it. One approach is to
learn and use I' to determine which states are pertinent. Those with I'(s, g)
closer to zero can have d(s,g) = 0. In fact, such an approach was taken for
discovering options [18], where both options and such a relevance function are
learned jointly. For us, they could also be learned jointly, where a larger set
of states start with d(s,g) = 1, then if I'(s, g) remains small, these may be
switched to d(s, g) = 0 and they will stop being learned in the model updates.

3.4.3 Learning Subgoal-to-Subgoal Models

Finally, we need to extract the subgoal-to-subgoal models 7, I from ry,I'. The
strategy involves updating towards the state-to-subgoal models, whenever a
state corresponds to a subgoal. In other words, for a given s, if m(s,g) = 1,

then for a given ¢’ (or iterating through all of them), we can update 7, using

(ry(s,9") = 7(9,9"))V7(9,9)

and update T using

(C(s,g) —T(g,9))VIL(g,9).

Note that these updates are not guaranteed to uniformly weight the states
where m(s, g) = 1. Instead, the implicit weighting is based on sampling s, such
as through which states are visited and in the replay buffer. We do not attempt
to correct this skew and presume that this bias is minimal. An important

next step is to better understand if this lack of reweighting causes convergence
24



issues, and how to modify the algorithm to account for a potentially changing

state visitation.

3.4.4 A General Algorithm for Learning Option Policies

Finally, we need to learn the option policies m,. In the simplest case, it is
enough to learn 7, that makes r,(s,¢) maximal for every relevant s (i.e.,
d(s,g) > 0). We can learn the action-value variant r,(s,a,g) using a Q-
learning update, and set m,(s) = argmax,. 4 7,($, a, g), where we overloaded
the definition of 7,. We can then extract r,(s,g) = maxq,ca7,(s,a,g), to use
in all the above updates and in planning.® In our experiments, this strategy
is sufficient for learning 7, and (s, g).

More generally, however, this approach may be ineffective because max-
imizing environment reward may be at odds with reaching the subgoal in a
reasonable number of steps (or at all). For example, in environments where
the reward is always positive, maximizing environment reward might encour-
age the option policy not to terminate.* However, we do want 7, to reach g,
while also obtaining the best return along the way to g. For example, if there
is a lava pit along the way to a goal, even if going through the lava pit is the
shortest path, we want the learned option to get to the goal by going around
the lava pit. We therefore want to be reward-respecting, as introduced for
reward-respecting subtasks [40], but also ensure termination.

We can consider a spectrum of option policies that range from the policy
that reaches the goal as fast as possible to one that focuses on environment

reward. We can specify a new reward for learning the option: Rt—‘,—l =cRi1 +

3The additional maximization over r4(s,a,g) to obtain the option policy can reduce the
quality of the estimate, as r is estimating the value for the policy induced by the previous
estimate instead of the current r,. While this will not be different when the induced option
policy has converged, we cannot guarantee this generally. However, we find that this way
of finding the option policy was sufficient for our experiments.

4t is not always the case that positive rewards result in option policies that do not
terminate. If there is a large, positive reward at the subgoal in the environment, Even if
all rewards are positive, if 7. < 1 and there is larger positive reward at the subgoal than in
other nearby states, then the return is higher when reaching this subgoal sooner, since that
reward is not discounted as many steps. This outcome is less nuanced for negative reward.
If the rewards are always negative, on the other hand, then the option policy will terminate,
trying to find the path with the best (but still negative) return.
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(1 —¢)(—1). When ¢ = 0, we have a cost-to-goal problem, where the learned
option policy should find the shortest path to the goal, regardless of reward
along the way. When ¢ = 1, the option policy focuses on environment reward,
but may not terminate in g. We can start by learning the option policy that
takes the shortest path with ¢ = 0, and the corresponding (s, g),I'(s, g).
The constant ¢ can be increased until 7, stops going to the goal, or until the
discounted probability I'(s, g) drops below a specified threshold.

Even without a well-specified ¢, the values under the option policy can still
be informative. For example, it might indicate that it is difficult or dangerous
to attempt to reach a goal. For this work, we propose a simple default, where
we fix ¢ = 0.5. Adaptive approaches, such as the idea described above, are left
to future work.

The resulting algorithm to learn 7, involves learning a separate value func-
tion for these rewards. We can learn action-values (or a parameterized policy)
using the above reward. For example, we can learn a policy with the Q-learning

update to action-values ¢

(CRt—i-l +c— 1 + ’yg,t—i-l maE}XQ(St-i—la alv g) - Z](Stv Ata g)) VZ](St, Ata g)

Then we can set 7, to be the greedy policy, m,(s) = argmax, 4 ¢(s, a, g).

3.5 GSP with Subgoal-Conditioned Models

We can now consider how to plan with these models. Planning involves learn-
ing ¥(g): the value for different subgoals. This can be achieved using an update

similar to value iteration, for all g € G

0(g) = maxycz.q,.0)>074(9,9) + I'(g,9)0(¢) (Background Planning)
(3.5)
The value of reaching ¢’ from ¢ is the discounted rewards along the way,
7+(g,9'), plus the discounted value in ¢'. If ['(g,¢) is very small, it is difficult
to reach ¢’ from g—or takes many steps—and so the value in ¢’ is discounted
by more. With a relatively small number of subgoals, we can sweep through

them all to quickly compute ©(g). With a larger set of subgoals, we can instead
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do as many updates possible, in the background on each step, by stochastically
sampling g.

We can interpret this update as a standard value iteration update in a
new MDP, where (1) the set of states is G, (2) the actions from g € G are
state-dependent, corresponding to choosing which ¢’ € G to go to in the set
where d(g,¢') > 0 and (3) the rewards are 7, and the discounted transition
probabilities are . Under this correspondence, it is straightforward to show
that the above converges to the optimal values in this new goal-space MDP,
shown in Proposition 2 in Section 3.5.1.

This goal-space planning approach does not suffer from typical issues with
model-based RL. First, the model is not iterated, but we still obtain temporal
abstraction because the model itself incorporates it. Second, we do not need to
predict entire state vectors—or distributions over them—because we instead
input the outcome ¢’ into the function approximator. This may feel like a false
success as it potentially requires restricting ourselves to a smaller number of
subgoals. If we want to use a larger number of subgoals, then we may need
a function to generate these subgoal vectors anyway—bringing us back to the
problem of generating vectors. However, this is likely easier as (1) the subgoals
themselves can be much smaller and more abstract, making it more feasibly to
procedurally generate them and (2) it may be more feasible to maintain a large
set of subgoal vectors, or generate individual subgoal vectors, than producing
relevant subgoal vectors from a given subgoal.

Now let us examine how to use ¥(g) to update our main policy. The
simplest way to decide how to behave from a state is to cycle through the

subgoals, and pick the one with the highest value.

Vsup () o MaX,eg.q(s,)>0 Ty (5, 9) + (s, 9)0(g)  (Projection Step) (3.6)

and take action a that corresponds to the action given by 7, for this maximizing
g. However, this approach has two issues. First, restricting to going through
subgoals might result in suboptimal policies. From a given state s, the set
of relevant subgoals g may not be on the optimal path. Second, the learned

models themselves may have inaccuracies, or planning may not have been
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r’Y(S/, gk) + F(S/a gk)f)(ng

Figure 3.4: Computing vg,,(S’) to update the policy at S.

completed in the background, resulting in 9(g) that are not yet fully accurate.
We instead propose to use vg,p(s) within the bootstrap target for the action-
values for the main policy. For a given transition (S, Ay, Riy1, Sia1), either as
the most recent experience or from a replay buffer, the proposed subgoal-value
bootstrapping update to parameterized q(S;, A;; w) uses TD error

0 R 901 (1= 9) a1y, '3 w) 45 i (Sia) ) = (e A w)

-~ -~

Standard bootstrap target Subgoal value

(3.7)

for some 5 € [0,1]. For § =0, we get the standard Q-learning update. For

B =1, we fully bootstrap off the value provided by vs,(S;+1). This may result

in suboptimal values ¢(S;, A;; w), but should learn faster because a reasonable

estimate of value has been propagated back quickly using goal-space planning.

On the other hand, 8 = 0 is not biased by a potentially suboptimal ©(g), but

does not take advantage of this fast propagation. An interim S can allow for
fast propagation, but also help overcome suboptimality in the values.

We can show that the above update improves the convergence rate. This
result is intuitive: subgoal-value bootstrapping changes the discount rate to
Ye+1(1— ). In the extreme case of § = 1, we are moving our estimate towards
Rii1 + Yi1Usun(Si11) for vgy, not based on ¢ without any bootstrapping: it
is effectively a regression problem. We prove this intuitive result in Section
3.5.1. One other benefit of this approach is that the initiation sets need not
cover the whole space: we can have a state d(s, g) = 0 for all g. If this occurs,

we simply do not use vg,, and bootstrap as usual.
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3.5.1 Proofs for the General Control Setting

In this section we assume that 7. < 1, to avoid some of the additional issues for
handling proper policies. The same strategies apply to the stochastic shortest

path setting with 7. = 1, with additional assumptions.

Proposition 2 (Convergence of Value Iteration in Goal-Space). Assuming
that T is a substochastic matriz, with vy € RI9 initialized to an arbitrary value
and fixing vi(Siermina) = 0 for all t, then iteratively sweeping through all g € G
with update

vi(g)= max  7,(g,¢)+T(g,9)vi1(g) (3.8)
g'€G:d(g,9')>0

convergences to a fived-point.

Proof. We can use the same approach typically used for value iteration. For

any vy € RI9! we can define the operator

(B)(9) = max  7(g,9") +T(g,9')0(g)
g'€G:d(g,9")>0
First we can show that BY is a ~.-contraction. Assume we are given any two
vectors vy, vo. Notice that I'(g, ¢') < 7., because for our problem setting the
discount is either equal to 7. or equal to zero at termination. Then we have

that for any g € G

|(B%v1)(g) — (B%v2)(9)]

=| max 7,(9.¢)+T(g,9)vilg)— max 7.(g.¢)+T(g ¢ )v(d)
9'€G:d(g,9")>0 9'€G:d(g,9")>0

< max |7y (9,¢) + (g, 9 )vi(g) — (7(9,d) +T(g, 9 )valg)]
g9'€G:d(g,9")>0

= max |T(g,9)(vi(g) — va(q))]
9'€G:d(g,9')>0

< max  lvi(g) —va(g)]
9'€G:d(g,9')>0

< Yellvr = v2fl
Since this is true for any g, it is true for the max over g, giving

| B9v1 — B3loe < 7ellvr — v2|co-

Because the operator BY is a contraction, since 7. < 1, we know by the Banach

Fixed-Point Theorem that the fixed-point exists and is unique. O
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Now we analyze the update to the main policy, that incorporates the sub-
goal value estimates into the bootstrap target. We assume we have a finite
number of state-action pairs n, with parameterized action-values ¢(-; w) € R™
represented as a vector with one entry per state-action pair. Value iteration

to find ¢* corresponds to updating with the Bellman optimality operator
B = P(s ! 'd 3.9
(B)(5,) = r(5.) + 3 P(s'ls, a1 (") magals ) (3.9)

On each step, for the current ¢, = q(-;wy), if we assume the parameterized
function class can represent Bg;, then we can reason about the iterations of

W1, Wy, ... obtain when minimizing distance between ¢(-; wy,1) and Bg;, with

q(s,a; Wip1) = (Ba(;; w1))(s, a)

Under function approximation, we do not simply update a table of values, but
we can get this equality by minimizing until we have zero Bellman error. Note
that ¢* = Bq*, by definition.

In this realizability regime, we can reason about the iterates produced by
value iteration. The convergence rate is dictated by 7., as is well known,

because
|1Bgi — B@2|loo < Yellgr — g2

Specifically, if we assume |r (s, a)| < 7max, then we can use the fact that (1) the

. . def « e . . .
maximal return is no greater than G = If—;", and (2) for any initialization
(&

o no larger in magnitude than this maximal return we have that ||go — ¢*[|cc <

2G max. Therefore, we get that

1Bgo — ¢ [|oc = |Bgo — Bq*||oo < Yell@o — ¢"||s0
and so after ¢ iterations we have
g — q*llso = I1Bgi-1 — B lloo < elltio1 — @%llso < ¥2Nt—2 — ¢*]loo - - -
< 'Yé“qo - q*Hoo = VéGmax

We can use the exact same strategy to show convergence of value iteration, un-

der our subgoal-value bootstrapping update. Let rou(s,a) = 3., P(s']s, a)van(s'),
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assuming vgup ¢ S — [—Gax, Gmax 18 @ given, fixed function. Then the modi-

fied Bellman optimality operator is

(B%q)(s,a) E r(s,a) + Breuw(s, a) ZP "|s,a)y )maxq(s a’)

(3.10)

Proposition 3 (Convergence rate of tabular value iteration under subgoal
bootstrapping). The fized point q5 = Bﬁqg exists and is unique. Further, for
qo, and the corresponding Wy, initialized such that |qo(s,a; wo)| < Gpaq, the
value iteration update with subgoal bootstrapping ¢ = BPq,_1 fort = 1,2, ...
satisfies

¢+ "maz + BGmas

lar — a3l < (1= B) YT = (1= B),

Proof. First we can show that B” is a 7,(1 — 3)-contraction. Assume we are
given any two vectors qi, qa. Notice that v(s) < =, because for our problem
setting it is either equal to 7. or equal to zero at termination. Then we have

that for any (s,a)

(B0, )~ (B0)(5.0)

=|(1- ZP |5, a)3(s") max a1 (s', a') — max ga(s’, ')
<(1- %ZP |5, a)|[max (5", o) — max gu(s', o)
< (1= e 3 Pl a5 ) — )
< (1= B)% Z P(s|s,0)  max |a(s',a) = ga(s', o)
< (=B P(sls,a)llg — g2l
= (1= B)vellar — @2lloo

Since this is true for any (s, a), it is true for the max, giving

IB%¢1 — BPga]lc0 < (1 = B)7ellr — @2/l oo-

Because the operator is a contraction, since (1 — )y, < 1, we know by the

Banach Fixed-Point Theorem that the fixed-point exists and is unique.
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Now we can also use contraction property for the convergence rate. Notice
first that we can consider 7(s,a) = 7(s,a) + Brew(s,a) as the new reward,

with maximum value 7yay + SGmax. Further, the new discount is (1 — 5)7..

Tmax+BGmax

Consequently, the maximal return is T

g — @3lloe = 1B%qi-1 — B°q5lloe < (1 = B)yelltt—1 — ¢ lloo - - -

< (1 =890 — ¢ [l
t ¢ 'max + ﬁGmax

<(1- —_—
This rate is dominated by ((1—f)7.)?, and for 8 near 1 gives a much faster
convergence rate than f = 0. We can determine after how many iteration
this term overcomes the increase in the upper bound on the return. In other

words, we want to know how big ¢ needs to be to get

t trmax+BGmax
1— s e

Rearranging terms, we get that this is true for
Tmax _'_ 5Gmax 1
t > log ( ) log <—> .
Gmax(l_ (1_5)70) / 1_6
For example if 7. = 1, 7. = 0.99 and S = 0.5, then we have that t > 1.56.

If we have that ry. = 10, 7. = 0.99 and S = 0.5, then we get that t > 5. If
we have that rp.c =1, 7. = 0.99 and 8 = 0.1, then we get that ¢ > 22.

< VG max-

3.6 Putting it All Together: The Full Goal-
Space Planning Algorithm

We summarize the algorithm and provide the pseudocode for the full GSP
algorithm along with model learning. Visualized in Figure 3.5, the steps of
agent-environment interaction include:

1) take action A; in state Sy, to get Siy1, Ryr1 and 7yi41;

2) query the model for r.,(Si11, 9), I'(Si11, 9), 0(g) for all g where d(Si41,9) > 0;
3) compute projection vg,(Si41) using Eq. (3.6) and step 2;

4) update the main policy with the transition and vg,(S;41), using Eq. (3.7).
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Figure 3.5: Overview of Goal-Space Planning.

All background computation is used for model learning using a replay buffer
and for planning to obtain v, so that it can be queried at any time on step 2.

We summarize the above updates in pseudocode in Algorithm 2, specifying
explicit parameters and how they are updated, and with a diagram in Figure
3.5. An online update is used for the action-values for the main policy, without
replay. All background computation is used for model learning using a replay
buffer and for planning with those models. The pseudocode assumes a small
set of subgoals, and is for episodic problems.

We learn action-value variants r.(s,a, g;0"), with parameters ", to avoid
importance sampling corrections. We learn the option-policy using action-
values (s, a;0™) with parameters §™. From this, we query the option-policy
using 7, (s; 67) = argmax,¢ 4 ¢(s,a, g; ™). The policy 7, is not directly learned,
but rather defined by ¢. Similarly, we do not directly learn 7,(s,g) and
I'(s, g); instead, it is defined by r,(s,a,¢;6") and I'(s,a,g;0"). Specifically,
for model parameters 6 = (07, 6", 607), we set (s, g;0) = 7(5,m4(5;67), 9;6")
and I'(s, g;0) = [(s,my(s;07),g;0"). We query these derived functions in the
pseudocode.

Finally, we assume access to a given set of subgoals. But there have been
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several natural ideas already proposed for option discovery that nicely apply
in our more constrained setting. One idea was to use subgoals that are often
visited by the agent [35]. Such a simple idea is likely a reasonable starting
point to make a GSP algorithm that learns everything from scratch, including

subgoals. Other approaches have used bottleneck states [24].

Algorithm 2 Goal-Space Planning for Episodic Problems

Assume given subgoals G and relevance function d
Initialize table v € Rl main policy w, model parameters 6 =
(07,07,07),0 = (87,8")
Sample initial state sy from the environment
forte€0,1,2,... do
Take action a; using ¢ (e.g., e-greedy), observe S;i1, i1, Vet1
ModelUpdate(S;, as, Sta1s Teats Verl)
Planning()
MainPolicyUpdate(s;, Gy, i1, Tes1, Vit1)

Algorithm 3 MainPolicyUpdate(s,a,s’,r, )

Usub < MaXgeg:d(s,g)>0 TW(Sa g; 9) + F(Sa g; e)f)(g)
d < 17+ YBvsup + ¥(1 — f) maxy q(s',a’; w) — q(s,a; w)
W W+ adVwq(s, a; w)

Algorithm 4 Planning|()

for n iterations, for each g € G do

6(9) — man’EG:d(g,g’)>O 'F’Y(ga g,; ér) + F(Q? gl; 7 )6(gl>
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Algorithm 5 ModelUpdate(s,a,s’,r, )

Add new transition (s, a,s’,r,v) to buffer B
for ¢’ € G, for multiple transitions (s, a,r, s’,y) sampled from B do
Vg (1 —m(s',g'))
// Update option policy
0"« 3(r — 1) + vy maxyea g(s',d’, ¢';0™) — q(s,a,g’; 07)
0™ < 0™ +a™6"Vq(s,a,q’;0™)
// Update reward model and discount model
a < my(s';07)
O —r+yyry(s,d,g0") —ry(s,a,9;0")
o' = m(s', g)y + 1T (s d',g';0") = T(s,a,9';0")
0" < 0"+ a"6"Vry(s,a,¢;0")
OF < 0V + a'6V'VI(s,a,g';0%)
// Update goal-to-goal models using state-to-goal models
for each g such that m(s,g) >0 do . .
0 0 +a"(ry(s,9:0) — 79,90 ))Viy(g.950)
0 <0 +a"(D(s,¢:6) —T(9.9:6) V(9,90 )

3.7 Extending GSP to Deep RL

While GSP as described in the prior sections are for the general function ap-
proximation setting, there are several deep RL specific techniques that are used
to stabilize learning with neural networks, which we use on our experiments.
Many examples of these techniques can be seen in the classic Deep Q-Networks
(DQN) [25]. The first involves the use of a separate target network to stabilize
learning by slowing the changes to the bootstrap target as the agent’s value
estimate updates. Another change involves the use of experience replay, where
prior experiences are stored in a buffer, which is then sampled from to perform
batch updates using prior experience.

Here, we describe Double DQN (DDQN) [46], a small modification to DQN
to reduce overestimation. In our implementation, rather than the standard
DQN implementation of the target network which is updated to match the
online network’s parameters every some number of steps, we opt to use Polyak
averaging, slowly updating the target network’s parameters based on an expo-
nential average of the prior online network’s parameters every step. Assuming

the standard environment interaction loop, we show the pseudocode for our
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DDQN implementation with subgoal-value bootstrapping in Algorithm 6.

Algorithm 6 MainPolicyDDQNUpdate(s,a,s’,r,7)

Add experience (s, a, s, r,7) to replay buffer D,
for n,,qi» mini-batches do
Sample batch By, = {(s,a,7,5,7)} from D,pein
Usub(s) - manEG’:d(s,g)>0 T’Y(Sa g; 9) + F(S7 9; 9)®<g)
Y<T7 8,7 7) =T+ f)/ﬁvsub + 7(1 - 6)(](8/7 maxg/ Q<S/7 0/; W)7 Wtarg)
L= m Z(s,a,r,s’,'y)eBmam (Y(T‘, 8,7 7) - Q(S, a; W>>2
W< W—aVyl
Wtarg — PW + (]— - p)wtarg

We also use neural networks for GSP’s option policies and state-to-subgoal

models and apply similar modifications.

Algorithm 7 ModelDDQNUpdate(s,a, s’,,7)

Add new transition (s, a,s’,r,v) to buffer D,,o4e
for ¢ € G do
for n,,,q4.; mini-batches do
Sample batch Byoae = {(s,a,7,8,7)} from D046
Vg (1 —m(s',g))
// Update option policy
a' < argmax, 4 q(s’,d’,¢';07)
0" (s,a,8',1,7)  5(r —1) +74q(s',d, ¢; Ofurg) — q(s,0a,9';07)
0" 07 + Oéﬂ-VleBm—lodel‘ Z(s,a,r,s’,v)eBmodel (6ﬂ(8’ a,s',r, 7))2
ngaTg < pmodeleﬂ- + (1 - pmodel)e&rg
// Update reward model and discount model
0" (s,a,r,8,77) <1 +7g (7,8 )y (s, ¢ 0 1arg) — T4(5,0,9";0")
6 (s,a,r, 8, 7) < m(s', g)v+yy (v, )T(S, d', g5 0" 1arg) T (5,0, ¢'; 67)
0; < 9;_ O/’FVWW Z(sia’r75,a7)€Bmodel (6T1)“22
0«0 —«a Vgl“m Z(s,a,r,s/,'«/)EBmodel<5 )
ertarg — pmodeleT + (1 - pmodel)ermr‘g
ertarg — pmodel(9F + (1 - pmodel)ertarg
// Update goal-to-goal models using state-to-goal models
...same as in prior pseudocode.

We would obtain a version of GSP with DDQN for its main policy and
state-to-subgoal model update if, in Algorithm 2, we replace ModelUpdate
with ModelDDQNUpdate and MainPolicyUpdate with MainPolicyDDQNUpdate.
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Chapter 4

Experiments with (Goal-Space
Planning

We investigate the utility of GSP, for (1) improving sample efficiency and (2)
re-learning under non-stationarity. We also investigate how well GSP per-
forms under different levels of model inaccuracy. We compare to Double DQN
(DDQN) [46], which uses replay and target networks.! We layer GSP on top
of this agent: the action-value update is modified to incorporate subgoal-value
bootstrapping. By selecting § = 0, we perfectly recover DDQN, allowing us
to test different 8 values to investigate the impact of incorporating subgoal

values computed using background planning.

4.1 Experiment Specification

We perform experiments in the PinBall environment [21].2 In this environ-
ment, the agent has to navigate a small ball to a destination in a maze-like
environment with fully elastic and irregularly shaped obstacles. The state is
described by 4 features: x € [0,1],y € [0,1],4 € [-1,1],% € [—1,1]. The agent
has 5 discrete actions: increase/decrease &, increase/decrease g/, and nothing.

The agent receives a reward of -5 per step and a reward of 10,000 upon termi-

! Aside from being a model-free baseline, DDQN can also be viewed as a simple form of
Dyna, where the replay buffer is a non-parametric model that is used to update the main
policy in the background.

20ur implementation is based on code at https://github.com/amarack/python-rl,
which was released under the GPL-3.0 license. We have modified the environment to support
additional features such as changing terminations, visualizing subgoals, and various bug
fixes. Our code is released at https://github.com/chunloklo/goal-space-planning
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nation at the goal location. PinBall has a continuous state space with complex
and sharp dynamics that make learning and control difficult. We use a harder
version of PinBall in our first experiment, shown in Figure 4.1, and a simpler
one for the non-stationary experiment, shown in Figure 4.6, to allow DDQN

a better chance to adapt under non-stationarity.?

Subgoal Selection and Definition The set of subgoals are chosen such
that (1) they roughly cover the environment in terms of (x,y) locations and
(2) it should be possible to access at least one subgoal from each subgoal, such
that the higher level goal-space MDP is connected. Note that this network of
subgoals does not necessarily contain the optimal path, and in our experiments,
they do not. We leave combining GSP with subgoal discovery algorithms for
future work.

For each subgoal g with location (x,,y,), we set m(s,g) = 1 for s =
(x,y,&,7) if the Euclidean distance between (z,y) and (z4,y,) is below 0.035.
Using a region, rather than requiring (z,y) = (x,4,y,), is necessary for a con-
tinuous state space. The agent’s velocity is not taken into account for subgoal
termination. The width of the region for the initiation function is 0.4. The
exact layout of the environment, positions of these subgoals and initiation

functions are shown in Figure 4.1 and 4.6

4.1.1 Algorithm Hyperparameters

The different hyperparameters we use in experiment 1 and 2 are summarized
in Table 4.1.

For both experiments, we use the Adam optimizer [20] for training both the
main policy and the subgoal models. We use the default hyperparameters for
Adam except the step size (b = 0.9,by = 0.999,¢ = 1le~8). The main policy
was trained with 4 mini-batches per step with batch size of 16, while the
subgoal models were trained with 1 mini-batch per step with the same batch

size. We use the e-greedy exploration strategy, with e fixed to e = 0.1 in our

3The pinball configurations used are based on the “simple” and “slightly harder config-
uration” found at http://irl.cs.brown.edu/pinball/.
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Common Hyperparameters

b1, by, € (Adam) 0.9,0.999, 1e~8
mini-batches (policy) nmain 4
mini-batches (model) 70461 1
batch size | Bpain|, | Bmodel| 16
e (e-greedy) 0.1
Experiment 1 Hyperparameters
~ 0.99
a’, ol Se~4
Model Network Hidden Layers (I', ) | [256, 256, 128, 128, 64, 64, 32, 32]
Policy Network Hidden Layers [256, 256, 128, 128, 64, 64]
Pmodel 0.4
Experiment 2 Hyperparameters
v 0.95
a’, ol le 3
Model Network Hidden Layers (T, r.) [128, 128,128, 128, 64, 64]
Policy Network Hidden Layers [256, 256, 128, 128, 64, 64]
Pmodel 0.1

Table 4.1: Summary of hyperparameters used in experiment 1 and 2 for DDQN
and GSP (where relevant). Network architecture lists the sizes of hidden layers
from closest to the input layer (left) to closest to the output layer (right). Each
layer except the last uses a ReLU activation function.

experiments. We use DDQN to learn 7., and set m,(s) = argmax,c 4 (s, a, g).

For experiment 1, v = 0.99, the model step sizes a” = ol = 5e~*, and
Pmodel = 0.4. For experiment 2, v = 0.95, a” = o' = 1le™3, and poqe = 0.1.
We selected the learning rate for Adam and the Polyak averaging rate p for
updating the main policy in each experiment using the methodology described

below.

Network Architecture We use separate feedforward neural networks for
learning the main policy, I', and 7, with ReLU activation function for each
layer aside from the output layer. Each layer’s weights are initialized using
He uniform initialization [13], with the bias weights being initialized to 0.001.
Each network output a vector of length 5, one for each action. The number of

layers and size of each layer varied between experiment 1 and 2, with details

listed in Table 4.1.
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Hyperparameter Experiment 1 Experiment 2
p [0.0125,0.025,0.05,0.1] | [0.8,0.4,0.2,0.1,0.05,0.025]
« [le=3,5e74 3¢, 11 [le=2,5e73,1e73, 5e 1]

Table 4.2: Ranges of hyperparameters swept for DDQN in experiment 1 across
4 seeds and experiment 2 across 8 seeds. The combination with the best

performance in each sweep is bolded. These combinations were used for
DDQN and GSP in experiment 1 and 2.

Hyperparameter Sweep Methodology We swept over the Polyak aver-
aging rate p and step size hyperparameter o for Adam for both experiments
for DDQN. Table 4.2 describes the ranges of p and o« swept, and the best
found combinations based on the average reward rate over 4 and 8 indepen-
dent random seed for experiment 1 and 2, respectively. We then used these
combinations of hyperparameters for both DDQN and GSP in experiment 1
and 2.

4.1.2 Learning Subgoal Models in PinBall

To ensure that we provide sufficient variety of data to learn the models ac-
curately when pre-training subgoal models, the agent is randomly initialized
in the environment at a valid state, ran in the environment for 20 steps with
a random policy, then randomly reset again. To ensure that the agent gets
sufficient experience near goal states, we initialize the agent, with a 0.01 prob-
ability, at states where m(s,g) = 1 for any g with added jitter sampled from
U(—0.01,0.01) for each feature. The model is trained for 300k steps in this
data gathering regime.

We restrict model update to relevant states in our experiments. Because
the only relevant experience for learning r., and I' are samples where d(s, g) >
0, we maintain a separate buffer for each subgoal g for learning (s, g) and
['(s, g) such that all experience within that buffer are relevant. We require 10k
samples in the buffer of each subgoal before learning for the corresponding 7,
and I' begins, so that the mini-batches drawn contain a sufficiently diverse set

of samples.
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Similarly, a sample is only relevant for updating T’ and 7y if m(s,g) > 0
for some ¢, but this might not be true for samples stored in the buffers for
learning I' and 7. To be able to obtain batches where all samples are relevant
for learning T’ and 7., the agent uses another buffer that exclusively stores
samples where m(s, g) > 0 to learn I and T

Experiments 1 and 2 described in this chapter all follow this procedure for
pre-training the model. What these learned models are like, their empirical
accuracy, and the effect of varying the levels of training for our model are

further discussed in Section 4.3.

4.1.3 Optimizations for GSP using Fixed Models

It is possible to reduce the computation cost of GSP when learning with a
pre-trained fixed model, as is the case in experiment 1. When the subgoal
models are fixed, vg,, for an experience sample does not change over time as
all components that are used to calculate vg,, are fixed. This means that the
agent can calculate vy, when it first receives the experience sample, save it
in the buffer, and use the same calculated vg,, whenever this sample is drawn
from the buffer to update the main policy. By doing so, vg,, only needs to be
calculated once per sample, instead of with every update. This is beneficial
when training neural networks, where each sample is often used multiple times
to update the network.

An additional optimization possible on top of caching of vg,;, in the replay
buffer is to batch the calculation of vy, of multiple samples together, which
can be more efficient than calculating vg,, individually for the single sample
received every step. To do this, we create an intermediate buffer that stores up
to some number of samples. When the agent experiences a transition, it adds
the sample to this intermediate buffer rather than the main buffer. When this
buffer is full, the agent calculates vgy, for all samples in this buffer at once and
adds the samples alongside vg,;, to the main buffer. This intermediate buffer is
then emptied and added to again every step. We use these optimizations and

set the maximum size for the intermediate buffer to 1024 in experiment 1.
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Figure 4.1: (left) The harder PinBall environment used in our first experi-
ment. The dark gray shapes are obstacles the ball bounces off of, the small
blue circle the starting position of the ball (with no velocity), and the red dot
the goal (termination). Solid circles indicate the location and radius of the
subgoals (m), with wider initiation set visualized for two subgoals (pink and
teal). (right) Performance in this environment for GSP with a variety of g
and DDQN (which is GSP with § = 0), with the standard error shown. Even
just increasing to 8 = 0.1 allows GSP to leverage the longer-horizon estimates
given by the subgoal values, making it learn much faster than DDQN. Once
is at 1, where it fully bootstraps off of potentially suboptimal subgoal values,
GSP still learns quickly but levels off at a suboptimal value, as expected.

1000 1500 2000 2500
Steps (x100)

4.2 Experiment 1: Comparing GSP with Pre-
learned Models and DDQN

We first investigate the utility of the models after they have been learned
in a pre-training phase. The models use the same updates as they would
when being learned online, and are not perfectly accurate. Pre-training the
model allows us to ask: if the GSP agent had previously learned a model in
the environment—or had offline data to train its model—can it leverage it to
learn faster now? One of the primary goals of model-based RL is precisely
this re-use, and so it is natural to start in a setting mimicking this use-case.
We assume the GSP agent can do many steps of background planning, so
that v is effectively computed in early learning; this is reasonable as we only
need to do value iteration for 9 subgoals, which is fast. We test GSP with
B € [1073,0.1,0.5,1.0].

We see in Figure 4.1 that GSP learns much faster than DDQN, and reaches
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Figure 4.2: Visualizing the action-values for DDQN and GSP (8 = 0.1) at
various points in training. Yellow and purple indicate states with high and
low value, respectively.

the same level of performance. This is the result we should expect—GSP gets
to leverage a pre-trained model, after all—but it is an important sanity check
that using models in this new way is effective. Of particular note is that even
just increasing 8 from 0 (which is DDQN) to 8 = 0.1 provides the learning
speed boost without resulting in suboptimal performance. Likely, in early
learning, the suboptimal subgoal values provide a coarse direction to follow,
to more quickly update the action-values, which is then refined with more
learning. We can see that for § = 0.5 and § = 1, we similarly get fast initial
learning, but it plateaus at a more suboptimal point. For 8 = 10~2 very close
to zero, we see that performance is more like DDQN. But even for such a small
[ we get improvements.

To further investigate the hypothesis that GSP more quickly changes its
value function early in learning, we visualize the value functions for both GSP
and DDQN over time in Figure 4.2. After 2000 steps, they are not yet that
different, because there are only four replay updates on each step and it takes
time to visit the state-space and update values by bootstrapping off of subgoal
values. By step 6000, though, GSP already has some of the structure of the
problem, whereas DDQN has simply pushed down many of its values (darker
blue).
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Figure 4.3: (left) Learned state-to-subgoal models for two different subgoals.
(right) v, obtained from using the learned subgoal values in the projection
step, as well as the trajectory that the ball must take to reach the goal. (both)
Yellow and purple indicate states with high and low value, respectively. White
indicates states where d(s, g) = 0.

4.3 Accuracy of the Learned Models

One potential benefit of GSP is that the models themselves may be easier to
learn, because we can leverage standard value function learning algorithms.
We visualize the models learned for the previous experiment, its accuracy, as
well as the resulting vgyp,.

In Figure 4.3 we see how learned state-to-subgoal models accurately learn
the structure. Each plot shows the learned state-to-subgoal for one subgoal,
visualized only for the initiation set d(s, g) > 0. We can see larger discount and
reward values predicted based on reachability. However, the models are not
perfect, as seen in Figure 4.4. The models learned tend to be more accurate
closer to the goal, and less accurate further away. The absolute error of I’
can be as low as 0.01 close to the goal, but increase to 0.2 and higher further
away. Similarly, the absolute error for r, can be as low as below 10 near goals,
but can increase to over 100 further away. While the magnitudes of errors
are not unreasonable, they are also not very near zero. This result is actually
encouraging: inaccuracies in the model do not prevent useful planning.

It is informative to visualize vg,,. We can see in Figure 4.3 that the general

structure is correct, matching the optimal path, but that it indeed looks sub-
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Figure 4.4: A heatmap of the absolute error of I' and 7, for two different
subgoal models learned at various (z,y) against the ground truth obtained
by rolling out the learned option policy at different (x,y) locations with 0
velocity. While the absolute error from states near subgoals can be quite low,
they increase substantially as the state gets further away. White indicates
states where d(s, g) = 0.

optimal compared to the final values computed in Figure 4.2 by DDQN. This
inaccuracy is likely due to some inaccuracy in the models and to the fact that
subgoal placement is not optimal. This explains why GSP has lower values
particularly in states near the bottom, likely skewed downwards by vgyp-
Finally, we test the impact on learning using less accurate models. After
all, the agent will want to start using its model as soon as possible, rather than
waiting for it to become more accurate. We ran GSP using models learned
online, using only 50k, 75k and 100k time steps to learn the models in a simpler
PinBall environment. We then froze the models and allowed GSP to learn with
them. We can see in Figure 4.5 that learning with too inaccurate of a model—
with 50k—fails, but already with 75k performance improves considerably and
with 100k we are already nearly at the same level of optimal performance as
the pre-learned models. This result highlights it should be feasible to learn

and use these models in GSP, all online.
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Figure 4.5: (left) The simple PinBall environment. (right) The impact on
planning performance using frozen models with differing accuracy (shading
shows the standard error).

4.4 Experiment 2: Adapting in Nonstationary
PinBall

Now we consider another typical use-case for model-based RL: quickly adapt-
ing to changes in the environment. We let the agent learn in PinBall for
50k steps, and then switch the goal to a new location for another 50k steps.
Goal information is never given to the agent, so it has to visit the old goal,
realize it is no longer rewarding, and re-explore to find the new goal. This
non-stationary setting is harder for DDQN, so we use a simpler configuration
for PinBall, shown in Figure 4.6.

We can leverage the idea of exploration bonuses, introduced in Dyna-Q+
[36]. Exploration bonuses are proportional to the last time that state-action
was visited. This encourages the agent to revisit parts of the state-space that
it has not seen recently, in case that part of the world has changed. For
us, this corresponds to including reward bonus 7pons in the planning and
projection steps: ¥(g) = Max,cg.q,4)>07(9:9) + T(g,d") (0(g") + rvonus(9"))
and vgup(5) = MaXyeg.q(s,9)>07(5,9) + T'(s,9) (0(g) + Tbonus(g)). Because we
have a small, finite set of subgoals, it is straightforward to leverage this idea
that was designed for the tabular setting. We use rponus(g) = 1000 if the count
for g is zero, and 0 otherwise. When the world changes, the agent recognizes

that it has changed, and resets all counts for the subgoals. Similarly, both
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Figure 4.6: (left) The Non-stationary PinBall environment. For the first half
of the experiment, the agent terminates at goal A while for the second half, the
agent terminates at goal B. (right) The performance of GSP (f = 0.1) and
DDQN in the environment. The mean of all 30 runs is shown as the dashed
line. The 25th and 75th percentile run for each algorithm are also highlighted.
We see that GSP with exploration bonus was able to adapt more quickly when
the terminal goal switches compared to the baseline DDQN algorithm where
goal values are not used.

agents (GSP and DDQN) clear their replay buffers.

The GSP agent can recognize the world has changed, but not how it has
changed. It has to update its models with experience. The state-to-subgoal
models and subgoal-to-subgoal models local to the previous terminal state
location and the new one need to change, but the rest of the models are
actually already accurate. The agent can leverage this existing accuracy.

In Figure 4.6, we can see both GSP and DDQN drop in performance when
the environment changes, with GSP recovering much more quickly. It is always
possible that an inaccurate model might actually make re-learning slower,
reinforcing incorrect values from the model. Here, though, updating these
local models is fast, allowing the subgoal values to also be updated quickly.
Though not shown in the plot, GSP without exploration bonuses performs
poorly. Its model causes it to avoid visiting the new goal region, so preventing

the model from updating, because the value in that bottom corner is low.
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4.5 Exploring a Natural Alternative: Incorpo-
rating Options into Dyna

A simple alternative to GSP, while still planning with temporally abstract
models, is to incorporate options directly into Dyna as additional actions. In
this section, we explore this alternative, describe some possible limitations,
and compare it to GSP and DDQN.

To incorporate options into Dyna, we expand the action space to include
options and learn the option and action value function @ : S x (AU O) — R.
If an option o is selected when taking a greedy action according to (), then
the first action given by 7, is executed. The model in Dyna needs to include
option models, which allows the agent to reason about accumulated rewards
under an option, and outcome states after executing an option. Otherwise,
the framework is identical to Dyna. It is a simple, elegant extension on Dyna
that allows for planning with temporal abstraction.

However, this approach has several limitations. One limitation is that as
we include new options—more abstraction—our value function needs to reason
over more actions. Our proposed approach allows us to obtain the benefits of
abstraction, without modifying the form of the policy. The model itself is like
an option model, but it is used to directly reason about values for low-level
states and actions. Another limitation is that the model in Dyna is the stan-
dard state-to-state model. Though Dyna with options has not been extended
to function approximation — somewhat surprisingly — the natural extension
suffers from similar problems of model errors and the use of expectation models
as standard Dyna.

We compare Dyna with options, DDQN, and GSP in the simple PinBall
environment. For Dyna with options, we use the subgoal-conditioned models
pre-learned by GSP as options models and set the predicted next state of each
option to (z4,y,,0,0). We found Dyna with options difficult to get working.
Instead, we used a modified version that only plans over options. This avoids
learning and using primitive action models. We see in Figure 4.7 that this

modified variant actually outperformed DDQN, but learned slower than GSP.
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Figure 4.7: The performance of Dyna with options, GSP (§ = 0.1), and
DDQN in the simple PinBall environment. Dyna with options is depicted
by the grey line. Dyna with options learns slower than GSP with its best
beta parameter, but faster than DDQN, and ultimately achieves the same
performance as GSP with its best configuration. Results are over 30 seeds as
before. Dyna with options is implemented with separate step size and Polyak
averaging rate hyperparameters for the separate primitive action and option
value networks, (0.001, 0.1) and (0.005, 0.05), respectively.
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Chapter 5

Conclusion and Future Work

In this thesis, we introduced a new planning framework, called Goal-Space
Planning (GSP). The key idea is to plan in a much smaller space of subgoals,
and use these (high-level) subgoal values to update state values using subgoal-
conditioned models. We show that, in the PinBall environment, that (1) the
subgoal-conditioned models can be accurately learned using standard value
estimation algorithms and (2) GSP can significantly improve speed of learn-
ing, over Double DQN. The formalism avoids learning transition dynamics and
iterating models, two of the sources of failure in previous model-based RL al-
gorithms. GSP provides a new approach to incorporate background planning
to improve action-value estimates, with minimalist, local models and compu-
tationally efficient planning.

Many new technical questions are introduced along with this new formal-
ism. We have only tested GSP with pre-learned models and assumed a given
set of subgoals. Our initial experiments learning the models online, from
scratch, indicate that GSP can get similar learning speed boosts. Using a
simple recency buffer, however, accumulates transitions only along the opti-
mal trajectory, sometimes causing the models to become highly inaccurate
part-way through learning, causing GSP to fail. An important next step is
to incorporate smarter strategies, such as curating the replay buffer, to learn
these models online. The other critical open question is in subgoal discovery.
We somewhat randomly selected subgoals across the PinBall environment,

with a successful outcome; such an approach is unlikely to work in many en-
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vironments. In general, option discovery and subgoal discovery remain open
questions. One utility of this work is that it could help narrow the scope of
the discovery question, to that of finding abstract subgoals that help the agent
plan more efficiently.

There are also other open questions. The approach we took in this work, it-
erating through each subgoals during an update and learning a separate model
for each, is unlikely to scale as the number of subgoals grow. Another avenue
of improvement is further considering how to select 3, the tradeoff between
using fast changing subgoal values and the slower but eventually optimal stan-
dard bootstrap target. It is possible that we could adaptively change 5 over
time depending on the agent’s state of knowledge about the environment to
adaptively rely more on subgoal values when the current value estimates are

inaccurate, and more on real experience when fine tuning behaviour.
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