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Abstract

To accomplish coherent relaying schemes in cooperative relay net-

works, accurate channel state information (CSI) is essential. To get such

CSI, channel training is employed in practice. In this thesis project, we

perform theoretical analysis on channel training design and training-

based decoding for multiple-input-multiple-output (MIMO) relay net-

works, which is in general very challenging for relay networks.

The objective of channel training for MIMO relay networks is to

obtain global CSI at the receiver. To perform training, training scheme

design, training code design, training time design, and power allocation,

are discussed respectively. Employing obtained channel estimations,

two coherent training-based decodings are studied for distributed space-

time coding (DSTC) MIMO relay networks: mismatched decoding and

matched decoding. For both decodings, the diversity and complexity

performance are investigated and compared with each other.
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1 Introduction to Cooperative Network and

Background

1.1 Wireless Channel

Wired channel communication enjoys reliable transmission due to the stable

channel condition between terminals. The drawback is, its application is quite

limited in geography. In contrast, the applications of wireless channel commu-

nication, such as cellphone, allow more freedom in communication, and become

more and more popular. Since the appearance of the first generation cellular

phone in early 1980s, the interest in communication with wireless channel has

been fuelled and a lot of researches have been started.

The characterization of the wireless channel is quite different from the char-

acterization of the wired channel. Due to the multi-path propagation that

arises from direct transmission, reflection, diffraction, and scattering between

the transmitter and the receiver, multiple versions of the transmit signal are

created at the receiver, which can decrease the received power in different

ways. Two of these that deserve special treatments are large-scale fading and

small-scale fading [1].

• Large-scale fading: It corresponds to the degradation of the signal power

over a large distance or the time-average behaviour of the signal.

Under this model, the received power is usually modelled by

Pr = βd−vPt, (1.1)

where Pr is the received power, Pt is the transmitted power, β is the

coefficient related to the carrier frequency and other factors, and v is the

path loss exponent typically ranging from 2 to 6.

• Small-scale fading: It corresponds to the characterization of the signal

over a short distance or a short time interval.
1



Denote the bandwidth of the signal as Bs. Also, denote the coherence

bandwidth of the channel asBc, over which the channel can be considered

as flat. The small-scale fading channels can then be classified as:

– Flat fading (Bs < Bc);

– Frequency selective fading (Bs > Bc).

In this work, we only consider flat fading, which characterizes the narrowband

wireless channels in indoor and urban areas. More specifically, the block-

wise flat fading channel model is adopted, where the channel is assumed to

be invariant in one transmission block and change independently the next

block. Such model is widely used in time division multiple access (TDMA) or

frequency-hopping systems [2].

To describe the amplitude of the received signal through flat fading channel,

one popular statistical model is Rayleigh fading model [1], which is used in this

thesis. In the Rayleigh fading model, the channel amplitude follows Rayleigh

distribution, i.e.,

p(r) =
r

σ2
e−

r2

2σ2 , r ≥ 0, (1.2)

and the channel response, or the channel coefficient, is described as Gaussian

with zero-mean. This channel model is suitable for the richly scattered en-

vironment without dominant propagation path. When such dominant path

exists between the transmitter and receiver, the Ricean fading model [1] can

be applied, where the channel amplitude follows Ricean distribution, i.e.,

p(r) =
r

σ2
e

−(r2+D2)

2σ2 I0

(
Dr

σ2

)

, r ≥ 0, D ≥ 0, (1.3)

with D the peak amplitude of the dominant signal and I0(.) the modified

Bessel function of the first kind and of zero-order, and the channel coefficient

is described as Gaussian with non-zero mean.

2



1.2 Diversity

In wired channel communication, since the channel between terminals is stable,

the transmission can be performed reliably. When a white Gaussian noise is

added at the receiver, described as the additive white Gaussian noise (AWGN)

channel model, the bit error rate (BER) is shown to decrease exponentially

with the average signal-to-noise ratio (SNR), i.e., e−SNR [3]. In wireless com-

munication, however, when the block-wise Rayleigh flat fading channel is con-

sidered, the BER is merely proportional to the inverse of the average SNR,

i.e., SNR−1 [3]. The reason for such significant degradation in BER is, there

is a high probability that the channel is in deep fade.

To combat the fading effect and hence improve the reliability of wireless

communication, the technology of diversity is suggested. The idea of diver-

sity is to create different versions of transmit signal at the receiver, which go

through independent fading. Since the corresponding channels fade indepen-

dently, the probability that the entire channels in deep fading drops signifi-

cantly. Therefore, the signal can be conveyed more reliably. For example, if M

such replicas of transmit signal are collected, the order of the error probability

drops to SNR−M , compared to SNR−1 for the case where only a single replica

is received. The achieved gain, reflected by the exponent of the SNR in the

reliability scaling, by employing diversity technology is called diversity gain.

There are several schemes to achieve diversity. In the following, three pop-

ular diversity schemes are listed and described.

• Temporal diversity;

• Frequency diversity;

• Spatial diversity, or antenna diversity.

Denote the coherence time of the channel as Tc, during which the channel keeps

roughly unchanged. To achieve temporal diversity, identical signals are sent

over different time slots, which are separated more than the coherence time

3



to ensure independent fading. Similarly, to obtain frequency diversity, the

identical signals are sent over different frequencies that are separated more

than the coherence bandwidth of the channel. Due to the redundancy in

transmission, these two schemes are, however, inefficient in bandwidth.

Spatial diversity is a promising technology in that it does not suffer from

the problem of bandwidth inefficiency. Compared to the former two schemes,

it utilizes spatial dimension to create diversity by sending or receiving replicas

of signal over multiple antennas. Based on the positions where the antennas

are located, spatial diversity is categorized into transmit diversity and receive

diversity. To guarantee independent fading, the antennas should be separated

more than half of the wavelength. For the large infrastructure like the base sta-

tion, multiple antennas can be deployed to gain spatial diversity. Nevertheless,

for small device like cellphone, due to its limitations in both size and power,

and considerations such as the cost, the deployment of multiple antennas is

sometimes impractical. Therefore, in the cellular communication system, by

deploying multiple antennas in the base station, we can achieve transmit diver-

sity in the downlink (from base station to cellphone), and receive diversity in

the uplink (from cellphone to base station), respectively. In this work, spatial

diversity is adopted to combat fading. Different spatial diversity schemes for

multiple-antenna system will be introduced in the next subsection.

To quantitively measure diversity, one commonly used definition of diversity

order, or diversity, is [1]

Gd = − lim
SNR→∞

log Pe

log SNR
, (1.4)

where Pe denotes the error probability. From this definition, we know that

diversity typically describes the log-log relationship between the error rate

and SNR at the high SNR region.

4



Transmitter

M antennas

Receiver

N antennas

Figure 1.1: Multiple-antenna system.

1.3 Multiple-Antenna System

The demand for higher data rate and lower error probability in wireless com-

munication system never stops. Compared to the single-antenna system,

multiple-antenna system [4] attracts widespread attentions in both industrial

and academic areas, for it can achieve considerable performance improvement

in these aspects. Besides, it can also be employed to suppress co-channel in-

terference, which is one of the biggest challenges in multi-user cellular wireless

communication system.

A typical multiple-input-multiple-output (MIMO) system is shown in Fig.

1.1, where multiple antennas are equipped at both the transmitter and the

receiver. Over the last two decades, aiming at different objectives, several novel

techniques were proposed in multiple-antenna system which can be mainly

divided into three categories [5]:

• Spatial multiplexing;

• Smart antennas;

• Spatial diversity.

Denote the transmitter-side channel state information (CSI) as Tx-CSI, and

the receiver-side CSI as Rx-CSI. To complete these schemes, different types

of CSI are required: To perform spatial multiplexing and spatial diversity,

5



the Rx-CSI is needed; while to apply smart antennas, both the Tx-CSI and

Rx-CSI are required. In the following, we first give brief introductions to

spatial multiplexing and smart antennas, then focus on the schemes of spatial

diversity that are adopted in this work.

Spatial multiplexing aims at high data rate. Assume that there are M

transmit antennas. Compared to the single-antenna system, in which a single

sequence is sent from the transmitter, by spatial multiplexing, M independent

sequences can be sent simultaneously from the transmit antennas which results

in M-fold increase in data rate. Examples of spatial multiplexing technique

are the well-known vertical Bell-Labs Layered Space-time Architecture (V-

BLAST) [6, 7] and diagonal Bell-Labs Layered Space-time Architecture (D-

BLAST) [8].

The technique associated with smart antennas is beamforming [9, 10]. The

idea of beamforming is to steer the transmit/receive beam pattern to the

directions of dominant paths in the multi-path propagation. So, the received

SNR can be largely boosted compared to not optimizing the transmit/receive

directions. Also, if there are multiple users in the cellular system, beamforming

technique can be used to suppress the co-channel interference by nulling the

directions where significant interference signals are present.

Spatial diversity is to improve the error rate performance in wireless com-

munication. To implement transmit diversity, several schemes are proposed,

e.g. [5]. One that is adopted in this work is (generalized) orthogonal space-time

codes (OSTBCs) [1, 11]. There are two important properties associated with

(generalized) OSTBCs. First, they can achieve full diversity with respect to

the numbers of transmit antennas and receive antennas. Second, they can pro-

vide separate maximum likelihood (ML) detection, whose complexity is linear

with the data rate and the number of transmit antennas. Due to these advan-

tages, OSTBCs attract lots of attentions since 1998, when Alamouti code [12]

was first introduced for two transmit antennas. In the following, the designing

rules for (generalized) OSTBCs with real entries are discussed. The designing

6



rules when the code is with complex entries are analogous, which can be found

in [1]. Consider the OSTBCs with real entries. An M × M real OSTBC S

with entries s1,−s1, · · · , sM ,−sM is designed such that

StS = (s21 + · · ·+ s2M)IM . (1.5)

To transmit S, the ij-th component of S is sent at the i-th time slot by the j-th

transmit antenna. So, the rate of the code is 1, which is the full rate. However,

such real OSTBCs only exist for M = 2, 4, 8. For other network settings, an

M ×M matrix which satisfies (1.5) cannot be found. Thus, generalized real

OSTBCs can be applied. A T × M generalized real OSTBC S with entries

s1,−s1, · · · , sk,−sk is designed such that

StS = c(s21 + · · ·+ s2k)IM , (1.6)

where c is a constant. The rate of the code is k/T .

To implement receive diversity, maximum ratio combiner (MRC) [13] can be

used to effectively combine the received signals from each path. Suppose that

the SNR of the i-th path is SNRi, and there are M independent paths. Using

MRC, the effective SNR can be shown to be
∑M

i=1 SNRi. So, if each path has

the same SNR, by MRC, there is M-fold increase in SNR, which leads to a

diversity of M .

1.4 MIMO Relay Network Model and Review on DSTC

In the previous section, it was shown that multiple-antenna system can have

much better performance compared to single-antenna system in several as-

pects. However, due to the limitations of both the cost and size, not all

devices can afford the deployment of multiple antennas and enjoy the asso-

ciated benefits. This motivates the idea of cooperative network [14–17], in

which a virtual multiple-antenna system can be created by exploiting the pos-

7



Transmitter

Relay

Receiver

Figure 1.2: Cooperative network with three nodes.

sible cooperation among the distributed nodes in the network, regardless of

the number of antennas equipped at the nodes.

To illustrate the basic idea behind cooperative network, let us look at the

network in Fig. 1.2, where the relay is appropriately assigned to help the com-

munication. Assume each node is equipped with a single antenna which can

transmit and receive signals. By sending the information from the transmitter

to the receiver directly, there is no diversity achieved and the received signal

power could be decreased significantly due to the fading. However, with the

help of the relay, i.e., a replica of the intended signal is sent by the relay to

the receiver, spatial diversity can be achieved provided that, the signals from

the transmitter and the relay go through independent fading.

To make the relay help the transmission, the transmitter needs to send a

copy of the signal to the relay. According to the operation that the relay takes,

the network can be categorized into decode-and-forward (DF) relay network

and amplify-and-forward (AF) relay network.

In DF relay network [17], after receiving the signal from the transmitter,

the relay will decode it and retransmit it to the receiver. This transmission

strategy actually splits the relay network into two systems, one of which is the

transmitter-relay system and the other of which is the relay-receiver system.

Since both systems are essentially multiple-antenna systems, many analysis

taken in the multiple-antenna system can be applied directly in DF relay

8



f11

r1           t1

Relays

Transmitter
Receiver

rR          tR

fM1

f1R

fMR

g11

g1N

gRN

gR1

Figure 1.3: MIMO relay network.

network.

In AF relay network [17], the relay amplifies what it receives and forwards

the amplified signal to the receiver. Note that, although the transmitted signal

by the relay is a noisy version of the intended signal, it can help the receiver

achieve a better performance if it goes through independent fading. Compared

to DF relay network, no decoding is required at the relay in AF relay network.

So, AF relay network is more attractive since at the relay, the processing is

simpler, and less resource is consumed.

In the above, we briefly described two transmission strategies in a basic

sing-relay single-antenna network. In practice, multiple relays can be assigned

to help the communication. It is also possible that multiple antennas are

equipped at the transmitter/relay/receiver nodes, which forms a MIMO relay

network, see Fig. 1.3. Several transmission strategies are proposed in such

relay networks [18–37]. For example,

• Relay selection, e.g. [18–20];

• Cooperative beamforming, e.g. [21, 22];

• Distributed space-time coding (DSTC), e.g. [23–37].
9



The main challenging of the investigation on MIMO relay network over that

on sing-relay single-antenna network stems from the curse of dimensionality.

As discussed in [25], the existence of multiple transmit and receive antennas

can largely complicate the performance analysis.

In this thesis, DSTC is employed for MIMO relay network. This scheme

can be used for networks with both AF and DF relays. The DSTC scheme

proposed in [24,25] is for networks with any number of non-regenerative relays

and transmit/receive antennas. The key idea is to design the transmit signal of

each relay antenna as a linear function of its received signal and its conjugate,

so that a linear space-time codeword is formed at the receiver. The scheme

is proved to achieve the optimal diversity. In addition, it has the advantages

of simple relay signal processing and no channel information requirement at

the relays. The differential use of DSTC in non-coherent relay networks is

introduced in [30–32]. Its diversity-multiplexing tradeoff is analyzed in [34].

Its use in asynchronous networks is discussed in [36, 37]. In [11, 33], revised

DSTC schemes are proposed for networks with partial channel information at

relays. Specific distributed space-time code designs are provided in [11,27,28].

We now give a review on transmission protocol and decoding metric for

DSTC network with perfect CSI. Consider a wireless relay network with M

antennas at the transmitter, N antennas at the receiver, and R(R ≥ 2) relays

each with a single antenna, as in Fig. 1.3. Perfect synchronization among

nodes is assumed. Denote the channel vector from the transmitter to the ith

relay as fi = [f1i · · · fMi]
t, and the channel vector from the ith relay to the

receiver as gi = [gi1 · · · giN ]. Let f = [f t1 · · · f tR]t, which is the MR × 1 vector

of the transmitter-relay channels, and G = [gt
1 · · · gt

R]
t, which is the R × N

matrix of the relay-receiver channels. The MR×N end-to-end channel matrix

is thus
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H = [(f1g1)
t · · · (fRgR)

t]t =























f11g11 f11g12 · · · f11g1N
...

...
. . .

...

fM1g11 fM1g12 · · · fM1g1N
...

...
. . .

...
...

...
. . .

...

f1RgR1 f1RgR2 · · · f1RgRN

...
...

. . .
...

fMRgR1 fMRgR2 · · · fMRgRN























, (1.7)

with the kl-th entry the end-to-end channel from the (k mod M)-th trans-

mit antenna to the l-th receive antenna via the ⌈ k
M
⌉-th relay. All channel

coefficients, i.e., the entries of f and G, are assumed to be i.i.d. block-wise

Rayleigh flat fading with the distribution CN (0, 1). All noises at each node

are assumed as i.i.d. Gaussian following CN (0, 1). Denote the transmit powers

at the transmitter and each relay as P and P1 respectively.

In the two-step DSTC protocol in [25], the information is encoded into a

T ×M matrix B, with the constraint E (tr(B∗B)) = M . To send B from the

transmitter to the receiver, 2T symbol periods are dedicated with T symbol

periods in each step. For the first step, B is sent by the transmitter. Denote

the signal received at the ith relay by ri, we have

ri =

√

PT

M
Bfi + vi, (1.8)

where vi is the noise at the ith relay. In the second step, Relay i sends ti, which

is designed as a linear function of its received signal, i.e., ti = αAiri, where

α ,

√
P1

1+P
, andAi is a pre-designed T×T unitary matrix. For the simplicity of

the presentation, we also assume that P = RP1, which is shown to be optimal

in the sense of maximizing the received SNR [25]. Hence, α =
√

P
R(P+1)

.
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The received matrix at the receiver can be calculated to be

X = βSH+W, (1.9)

where β ,

√
P 2T

MR(P+1)
, S = [A1B · · · ARB] is the distributed space-time code-

word formed at the receiver, H is the MR ×N end-to-end channel matrix in

(1.7), and

W = α [A1v1 · · · ARvR]G+WRx (1.10)

is the equivalent noise matrix with WRx the noise matrix at the receiver. The

covariance matrix of W can be derived to be RW = IN + α2G∗G.

With perfect CSI of both the relay-receiver channel matrix G and the end-

to-end channel matrix H, the ML decoding is

DEC0 : arg min
B

tr
(

X− βSH
)

R
−1

W

(

X− βSH
)∗
. (1.11)

Stacking the columns of X into one column vector, from (1.9), we have

−→
X = β(Gt ⊗ IT )S̃f +

−→
W = βZf +

−→
W, (1.12)

where

S̃ , diag{A1B, · · · , ARB}, (1.13)

an equivalent format for the distributed space-time codeword, and Z , (Gt ⊗
IT )S̃. From (1.12), the ML decoding with perfect G and f can be rewritten

as:

DEC0 : arg min
B

(−→
X − βZf

)∗
R−1−→

W

(−→
X − βZf

)

, (1.14)

where R−→
W

, RW ⊗ IT .

To use (1.11) for decoding, the knowledge of G and H is required at the

receiver; while to use (1.14), the knowledge of G and f is needed. It is note-
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Figure 1.4: DEC0 vs DEC0,simp for network with M = 1, R = N = 2.

worthy that the decoding rules in (1.11) and (1.14) are equivalent although

with different representations. It is proved in [25] that with the above ML

decoding, full diversity can be achieved. The decoding complexity, however,

is high since it requires the joint decoding of all the information symbols in B

even with orthogonal design of S such that S∗S = IMR [11].

To reduce the complexity, a simplification of DEC0 is proposed as

DEC0,simp : argmax
B

ℜtr(HX∗S), (1.15)

which can be derived straightforwardly from either (1.11) or (1.14) by replacing

GtG with its expectation RIN inRW and considering the orthogonal structure

of S. This decoding can be performed symbol-by-symbol [1], thus has much

lower complexity. Simulation shows that DEC0,simp performs almost the same

as the optimal decoding DEC0 in BLER performance. As an example, in
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Fig. 1.4, the BLER performance of DEC0 and DEC0,simp for the network

with M = 1, R = N = 2 are shown. Alamouti code with BPSK modulated

information symbols is applied for the data transmission [11]. We see that

DEC0,simp has almost the same behaviour as DEC0.

As a special case, we consider the network with M = 1, and R = N ≥ 2.

Since the signal sent by the transmitter is now a vector with the dimension

T × 1, a lowercase variable s , [s1 · · · sT ] is adopted instead of B. Let T ,

HX∗[A1 · · · AR], which is R×RT . Decompose T into blocks of size 1×T and

denote the block of the i-th row and the j-th column as Tb,ij for i, j = 1, · · · , R.

It can be shown with straightforward algebra that the simplified decoding is:

DEC0,simp : arg max
sj

ℜ sj

(
R∑

i=1

Tb,ii

)

j

, j = 1, · · · , T. (1.16)

1.5 Summary

The applications of wireless communication, such as cellphone, are very pop-

ular nowadays, and can be seen almost everywhere. In contrast to the stable

channel condition in wired communication, the wireless channel, however, suf-

fers from fading due to the multi-path propagation. To improve reliability

of wireless communication, the technique called diversity was suggested, and

one efficient way to create diversity is through multiple-antenna system. In

addition to providing diversity and hence to improving error rate performance,

multiple-antenna system can also increase data rate and suppress co-channel

interference. However, due to the limitation of resources, not all devices can

afford the deployment of multiple antennas. The cooperative network is then

attractive, for it can create a virtual multiple-antenna system by exploiting

the cooperation of nodes in the network, regardless of the number of antennas

equipped at each node. One cooperative scheme, called DSTC, was reviewed.
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2 Preliminary on Training-BasedMultiple-Antenna

System

To implement DSTC in cooperative network, the Rx-CSI is required. To get

such CSI, one commonly adopted method is channel training, where known pi-

lot signal is sent to track the channels. In this chapter, we provide preliminary

on channel training for multiple-antenna system. The reason for including this

is two-fold: First, such topic is well studied, e.g. [2, 38–46]; second, there are

some similarities between channel training for cooperative system and that

for multiple-antenna system, which helps our investigation later, although the

former is much more difficult and challenging.

In the following discussions, assume that the channel coefficients are Gaus-

sian following CN (0, ρ2), and all noises are Gaussian following CN (0, σ2)1.

To perform channel training, the coherence time Tc is split into two phases:

training phase and data transmission phase. In Section 2.1, we first illustrate

the idea of channel training by describing channel training for single-antenna

system, which is straightforward. Then, in Section 2.2, channel training for

multiple-antenna system is presented. In Section 2.3, decoding with imperfect

channel estimations for multiple-antenna system is discussed. In Section 2.4,

the contribution of this thesis is included.

2.1 Channel Training for Single-Antenna System

Consider a single-antenna system in Fig. 2.1, where the receiver needs to know

the channel coefficient h. In training phase, a power constraint pilot sp is sent

from the transmitter to track the channel, where the subscript “p” is used

to indicate training phase. Since sp is a scalar, without loss of generality, let

sp = 1. At the receiver, a noisy observation of the pilot is obtained:

xp = h+ wp, (2.1)

1Except in Chapter 2, ρ and σ are considered to be 1.
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Transmitter Receiver

Figure 2.1: Single-antenna system.

where wp is the noise. Denote the estimation of h as ĥ, and the estimation

error as ∆h , h− ĥ. To get ĥ, the mean square error (MSE) of ĥ is employed

as the criterion, which is defined as

MSE(ĥ) , E h,wp(|∆h|2). (2.2)

By minimizing MSE(ĥ), the minimum MSE (MMSE) estimation of h is ĥ =

E (h|xp). Generally, E (h|xp) is a non-linear function of xp. But, under the

condition that h and xp are jointly Gaussian, E (h|xp) is shown to be linear

with xp [52]. So, the MMSE estimation of h coincides with the linear MMSE

(LMMSE) estimation, and is derived as

ĥ = E (h|xp) =
ρ2

ρ2 + σ2
xp. (2.3)

In data transmission phase, the estimation of h in (2.3) is employed. Sup-

pose that sd is transmitted, where the subscript “d” is used to indicate data

transmission phase. Given ĥ, the received signal can be represented as

xd = sdĥ+ sd∆h + wp = sdĥ+ w′
p, (2.4)

where w′
p , sd∆h + wp is the equivalent noise including both the estimation

error and the noise.
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2.2 Channel Training for Multiple-Antenna System

Channel training for single-antenna system, as we have seen, is straightforward

since all variables are scalars (only the temporal dimension is induced). For

multiple-antenna system, where both the spatial and temporal dimensions are

induced, however, more efforts are needed for channel training.

Consider a point-to-point multiple-antenna system with M transmit anten-

nas and N receive antennas. Denote the MIMO channels as an M ×N matrix

H,

H =








h11 · · · h1N

...
. . .

...

hM1 · · · hMN







, (2.5)

where hij is the channel coefficient from the ith transmit antenna to the jth

receive antenna. Assume that all hij ’s are independent.

Decompose Tc = Tp + Td, where Tp is the number of symbol intervals ded-

icated for training, and Td is the number of symbol intervals for data trans-

mission. In training phase, a Tp × M pilot matrix
√

ρp
M
Sp is sent from the

transmitter, with ij-th entry the signal sent at i-th time slot from j-th trans-

mit antenna. Note that ρp is the corresponding SNR in the training phase,

and Sp satisfies the power constraint tr(SpS
∗
p) = MTp. At the receiver, the ob-

servation signal Xp is received. The whole training process can be represented

as [2]

Xp =

√
ρp
M

SpH+Wp, s.t. Sp ∈ CTp×M , tr(SpS
∗
p) = MTp, (2.6)

where Wp is the noise at the receiver. Stacking the columns of Xp into one

column vector, we have

−→
Xp =

[√
ρp
M

(IN ⊗ Sp)

]−→
H +

−→
Wp =

√
ρp
M

Lp

−→
H +

−→
Wp, (2.7)
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where Lp , IN ⊗ Sp.

Denote the estimation of
−→
H as

−̂→
H and its estimation error as ∆

−→
H ,

−→
H−−̂→

H.

By minimizing MSE of
−̂→
H, defined as MSE(

−̂→
H) , E H,Wp(‖∆

−→
H‖2F ), the MMSE

(also LMMSE) estimation of
−→
H can be derived by Bayesian Gauss-Markov

theorem [52] as

−̂→
H =

√
ρp
M

[(
σ

ρ

)2

IMN +
ρp
M

L∗
pLp

]−1

L∗
p

−→
Xp. (2.8)

In data transmission phase, suppose that the information signal Sd is sent

from the transmitter with the constraint E tr(SdS
∗
d) = MTd. The received

signal is then

Xd =

√
ρd
M

SdH+Wd, (2.9)

where ρd is the corresponding SNR in data transmission, andWd is the noise at

the receiver. Given the estimation
−̂→
H in (2.8), or equivalently, Ĥ, by straight-

forward transformation from (2.8), the received signal in (2.9) can be rewritten

as

Xd =

√
ρd
M

SdĤ+

√
ρd
M

Sd∆H+Wd =

√
ρd
M

SdĤ+W′
d, (2.10)

where W′
d ,

√
ρd
M
Sd∆H+Wd denotes the equivalent noise including both the

estimation error and the noise.

The time and power constraints for the training-based multiple-antenna sys-

tem can be summarized as

Tc = Tp + Td and ρTc = ρpTp + ρdTd, (2.11)

where ρ is the SNR during the whole transmission phase.

To perform channel training, we need to solve the following problems:

• How to design the pilot signal?
18



• How to allocate the transmission resources, e.g., power and time, between

training and data transmission?

From (2.7), the pilot signal design refers to the design of Sp. Unlike the pilot

for single-antenna system which is a scalar, here, Sp is two-dimensional. So,

the design of Sp refers to the design of pilots sent at each time slot and each

transmit antenna during the training phase. The allocation of the resources,

however, refers to the optimization over the training parameters Tp, Td, ρp,

and ρd.

It is plain to see that: Since the pilot signal does not carry desired infor-

mation for the user, allocating more resources to training seems like a kind

of “waste”. However, insufficient training could result in inaccurate chan-

nel estimation, which in turn would degrade the communication performance.

Therefore, there is a tradeoff between allocating more resources to data trans-

mission for higher data rate, and allocating more resources to training for more

accurate channel estimation.

To optimally solve the above training problems, several criteria have been

posed in the literature, such as MSE of the channel estimations, mutual infor-

mation (MI), and block error rate (BLER). The MSE criterion is performed

by minimizing the estimation error over the pilot signal Sp and training pa-

rameters. The advantage of such criterion is that, it is decoupled from the

data transmission phase, and thus is independent of the transmission scheme

the system applies. Such MSE-based training design can be found in [44]. In

contrast, the MI and BLER-based training designs depend on the data trans-

mission schemes. Since it is usually difficult to get the closed-form expressions

of MI and BLER, the corresponding bounds are instead employed as the crite-

ria, which are expressed as the functions of Sp and training parameters. The

optimal training designs are then obtained by maximizing or minimizing the

bounds of MI or BLER, respectively, e.g. [2, 48, 49].

In this work, to design the pilot signal, we employ the criterion of MSE;

to optimize the resource allocation, we aim at achieving full diversity in data
19



transmission, which is one the most important indices in wireless communica-

tions. From (1.4), we know that diversity is essentially a measurement based

on BLER.

2.3 Decoding with Imperfect Channel Estimations

One interesting study surrounding the training-based system is, how the im-

perfect channel estimations would affect the data transmission performance?

In this thesis project, we mainly consider the impact of imperfect channels on

diversity in data transmission.

In most literatures, the estimated channels are treated as if perfect in de-

coding, i.e., the estimation errors are ignored, for simplicity of analysis. This

decoding strategy is termed as mismatched decoding [50], for its mismatch

with the data equation in (2.9). In general, mismatched decoding is subopti-

mal, since the estimation error could be large. In [51], a sufficient condition

for the full diversity performance of mismatched decoding is proved, which is

restated as follows.

Consider the system equation in data transmission as

Xd = KSd +Wd, (2.12)

where K is an N ×M channel matrix, Sd is an M ×T transmit information

matrix drawn from a finite constellation of matrices, Wd is the noise matrix,

andXd is the received signal. Denote the estimation ofK as K̂ with estimation

error ∆K , K̂−K.

• Assumption 1: All entries of the channel matrix K and the noise matrix

W are independent, and are distributed as Gaussian with mean zero and

variance ρ2 and σ2, respectively.

• Assumption 2: The difference of any distinct information matrices S1,d

and S2,d has rank M . In other words, the information signal is designed
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as fully diverse.

• Assumption 3: The columns of ∆K are independently Gaussian dis-

tributed with mean zero and covariance matrix γ2σ2
I, where γ is some

constant (This covariance constraint actually says that the estimation

error has the same “size” as the noise.).

Theorem 2.1. [51] Under the assumptions shown above, full diversity MN

can be achieved by applying the mismatched decoding

arg min
Sd

‖Xd − K̂Sd‖. (2.13)

In [43], the authors also study the decoding where the estimation errors

are taken into account. We will call it matched decoding to emphasize the

distinction from the mismatched decoding. It is expected that matched de-

coding has a better performance than mismatched decoding, but with a higher

computational complexity.

2.4 Contribution of This Thesis

Cooperative relay network is very attractive as discussed in Section 1.4. How-

ever, to perform most of the proposed cooperative schemes, accurate CSI is

required at the receiver, and therefore, channel training is needed. In this thesis

project, we perform the theoretical analysis on channel training and training-

based decodings for MIMO relay networks with multiple single-antenna relays,

and multiple transmit and receive antennas, which is in general very challeng-

ing for relay networks.

In Chapter 3, channel training is first investigated. The objective is to esti-

mate the transmitter-relay channel vector f , the relay-receiver channel matrix

G, and the end-to-end channel matrix H at the receiver with no estimator

requirement at the relays, since such global CSI is commonly required at the

receiver by the transmission schemes such as AF and DSTC. We show that,

21



to estimate the transmitter-relay channel vector f , the knowledge of the relay-

receiver channel matrix G is needed. In other words, training of f is coupled

with training of G. The associated training design, which includes training

scheme design, training code design, training time design, and power alloca-

tion, are discussed respectively.

Employing the channel estimations provided in Chapter 3, the effect of

channel estimation errors on the network diversity performance is studied for

DSTC network. Two coherent decodings are considered: mismatched decoding

(Chapter 4) in which channel estimations are treated as if perfect, and matched

decoding (Chapter 5) in which estimation error is taken into account.

For mismatched decoding, we first show that with the shortest training time,

full diversity cannot always be achieved in data transmission. Then, an upper

bound on training time is given to ensure full diversity. However, since a long

training time is undesirable in practice, to shorten the training time while

maintain the full diversity, a novel training scheme, called adaptive training,

is provided, whose training time length is adaptive to the quality of the relay-

receiver channels.

For matched decoding, we show that it can achieve full diversity with the

shortest training time. So, matched decoding shortens the requirement on

training time without sacrificing diversity. However, its complexity is pro-

hibitively high. A modified matched decoding, adaptive decoding, is hence

introduced by switching between the simplified mismatched decoding and

matched decoding to balance the performance and complexity.

2.5 Summary

Before preceding to the investigation on training-based MIMO relay networks,

the preliminary on training-based multiple-antenna system was reviewed. To

give an idea, the channel training for single-antenna system was first intro-

duced. Then, for the multiple-antenna system, the training-based system

model, the training problem statement, and the training design criteria were
22



presented in detail. In addition, the decoding with imperfect channel esti-

mations was also discussed. In the end, the contribution of this thesis was

summarized.
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3 Channel Training in MIMO Relay Networks

3.1 Introduction and Literature Review

For cooperative networks with relaying, research activities on the channel

training and estimation issues are growing, e.g. [55–62]. Unlike DF relay net-

works, for AF relay networks, often, we cannot appeal to the results of the

point-to-point multiple-antenna system directly, because the end-to-end chan-

nels are often concatenations of channels of multiple communication stages.

For AF relay networks with single-antenna nodes and single relay, the channel

training is studied in [55–57]. In both [55] and [56], channel estimation is per-

formed at the receiver. In [57], the authors consider estimating the Tx-Relay

channel at the relay, and having the relay forward the channel information to

the receiver. The disadvantages are, the quantization error is induced, and

the complexity at the relay is increased. In [58], the channel training problem

is investigated for networks with multiple relays but single antenna at each

node, where the end-to-end channel coefficients are estimated at the receiver

directly.

To our best knowledge, there is little work on channel training for more

general MIMO relay networks with multiple relays and multiple antennas at

the transmitter and receiver. The main difficulties are two-fold: First, the

curse of dimensionality, which is the inherent difficult in MIMO relay networks;

second, the coupling of channel trainings for different communication stages:

Since there are multiple communication stages, it is possible that the channel

training for one stage is coupled with the channel trainings for other stages,

which results in a non-Gaussian estimation model making analysis even more

involved.

In this chapter, we will investigate channel training for general MIMO relay

networks (The detailed system model is refered to Section 1.4.). The objective

is to estimate the transmitter-relay channel vector f , the relay-receiver channel

matrix G, and the end-to-end channel matrix H at the receiver, since such
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global CSI is commonly required at the receiver for transmission schemes such

as AF and DSTC. Note that, with our training scheme, the relays are not re-

quired to be equipped with estimators. In other words, the channel estimation

is only conducted at the receiver.

To complete channel training, we investigate training scheme design, pilot

signal design, and training time design respectively in detail. The power al-

location between training phase and data transmission phase is pre-designed,

since the optimization over power allocation is beyond the scope. In partic-

ular, we set the average power of each node in the network to be the same

for both training and data transmission phases. The proposed schemes and

analysis results can be straightforwardly extended to other power settings.

In Section 3.2, the training of the relay-receiver channel matrix G is first

discussed. For the training of f , as we will see, since the estimation of f depends

on the knowledge of G, in Section 3.3, it is first investigated by assuming the

estimation of G as error-free; then, in Section 3.4, it is revisited by considering

the estimation error of G for a specific network with M = 1, R = N ≥ 2. In

Section 3.5, the training of H is investigated and two different schemes are

proposed to estimate H. In Section 3.6, further discussions with respect to

channel model and applications are included.

3.2 Training of the Relay-Receiver Channel Matrix G

The training of G is straightforward as the relay-receiver link is a virtual

multiple-antenna system, whose training has been well-investigated. Using

results in [2], we use the following training design and channel estimation. The

pilot
√
RP1IR is sent from the relays, where P1 is the average transmit power

at each relay for each transmission for both the training and data transmission

phases. Denote the received matrix at the receiver as Yp. We have

−→
Yp =

√

RP1
−→
G +

−→
Wg, (3.1)
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where Wg is the R × N noise matrix at the receiver. By Bayesian Gauss-

Markov theorem [52], the LMMSE estimation of
−→
G at the receiver is thus:

−̂→
G =

√
RP1

1 +RP1

−→
Yp. (3.2)

Since
−→
G and

−→
Yp are jointly Gaussian, (3.2) is also the MMSE estimation [52].

Due to the Gaussian model, it also follows that
−̂→
G ∼ CN

(

0, RP1

1+RP1
IRN

)

. Let

∆G , G− Ĝ, which is the estimation error on G. Invoking the geometric

property of the LMMSE estimator that ∆G and Ĝ are uncorrelated, we have

that ∆
−→
G ∼ CN

(

0, 1
1+RP1

IRN

)

. This training stage takes R symbol intervals.

3.3 Training of the Transmitter-Relay Channel Vector

f with Perfect G

In this section, the training of the transmitter-relay channel vector f is dis-

cussed, including the pilot design, and a lower bound on the training time. As

will be explained soon, to estimate f , the receiver needs to know G. Thus,

this training stage is performed after the training of G, which was presented

in Section 3.2. That is, the receiver has already obtained Ĝ. Since the esti-

mation of f is coupled with the estimation of G, for simplicity of analysis, in

this section we assume that the estimated G is perfect, i.e., Ĝ = G.

To estimate f at the receiver, we employ the two-step DSTC scheme [25,63].

The explanations of notation follow those in Section 1.4. This training stage

takes 2Np symbol intervals, with Np symbol intervals for each step. Let Bp

be the Np ×M pilot vector satisfying tr(B∗
pBp) = M . Let αp ,

√
P

R(P+1)
and

βp ,

√
P 2Np

RM(P+1)
, where P is the transmit power of the transmitter and also

the total transmit power of the relays. Following the derivation of (1.9) in

Section 1.4, at the receiver we have

Xp = βpSpH+Wp, (3.3)
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where Sp , [A1,pBp · · · AR,pBp], which is the distributed space-time codeword

formed at the receiver,

Wp , αp [A1,pv1,p · · · AR,pvR,p]G+Wr,p, (3.4)

which is the equivalent noise matrix with Wr,p the noise matrix at the receiver.

Stacking the columns of Xp into one column, we have

−→
Xp = βp[(G

t ⊗ INp)S̃p]f +
−→
Wp = βpZpf +

−→
Wp, (3.5)

where S̃p , diag{A1,pBp, · · · , AR,pBp}, and the NNp ×MR matrix

Zp , (Gt ⊗ INp)S̃p. (3.6)

If G is perfectly known at the receiver, from (3.5), Zp can function as the pilot

signal in estimating f . From the Bayesian Gauss-Markov theorem [52], the

LMMSE estimation of f can be obtained as

f̂ = βp(IMR + β2
pZ

∗
pR

−1−→
Wp

Zp)
−1Z∗

pR
−1−→
Wp

−→
Xp, (3.7)

where

R−→
Wp

, (IN + α2
pG

∗G)⊗ INp, (3.8)

is the covariance matrix of
−→
Wp. Since f and

−→
Xp are jointly Gaussian, (3.7) is

also the MMSE estimation. Let ∆f , f − f̂ be the estimation error vector. It

is thus Gaussian distributed with mean zero and covariance matrix

R∆f =
(

IMR + β2
pZ

∗
pR

−1−→
Wp

Zp

)−1

. (3.9)

3.3.1 Pilot Design

In this subsection, we investigate the optimal pilot design, i.e., the designs of

Bp and Ai,p’s, based on the MSE of the channel estimation, which is also the
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Algorithm 1 Optimal training code design for Np ≥ MR.

1: Let Bp = [IM 0M,Np−M ]t.
2: Generate an Np×MR unitary matrix Spo (e.g., Spo = [IMR 0MR,Np−MR]

t).
3: Generate the MR×MR permutation matrix Ui by switching the first M

columns with the (i− 1)M +1, · · · , iM-th columns of the identity matrix.
Let Ai,p = [SpoUi (SpoUi)

⊥].

power of the estimation error. The design problem can be represented formally

as

min
Ai,p,Bp

tr (R∆f ) s.t. tr(B∗
pBp) = M and A∗

i,pAi,p = INp, (3.10)

where R∆f is given in (3.9).

We consider the cases Np ≥ MR and Np < MR separately.

Theorem 3.1. If Np ≥ MR, tr (R∆f ) is minimized when S∗
pSp = IMR.

Proof. See Appendix 3.8.1.

Theorem 1 says that when Np ≥ MR, the optimal pilot design is to make

the distributed space-time codeword Sp unitary, which is consistent with the

pilot design in point-to-point MIMO system [2]. Our pilot design problem is

thereby reduced to finding Bp and Ai,p’s such that Sp is an Np ×MR unitary

matrix. We propose a pilot design method in Algorithm 1.

Now we show that the design in Algorithm 1 will result in an optimal code.

Note that Np ≥ MR ≥ M , so Step 1 of Algorithm 1 is always valid. Di-

vide Spo into R blocks each with dimension Np × M : Spo = [Sp1 · · · SpR].

From Step 3, the effect of right-multiplying Ui with Spo is to switch Sp1

and Spi, making Ai,p = [Spi S
⊥
pi]. Along with the Bp generated in Step 1,

Ai,pBp = [Spi S
⊥
pi][IM 0M,Np−M ]t = Spi. Hence, Sp = [A1,pBp · · · AR,pBp] =

[Sp1 · · · SpR] = Spo which is unitary. Thus, Algorithm 1 provides an optimal

pilot design.

When Np < MR, S∗
pSp is not full rank and S∗

pSp = IMR cannot be satisfied.

For this case, we propose Algorithm 2, which first (Steps 1 and 2) considers
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Algorithm 2 Optimal training code design for M ≤ Np < MR.

1: Let R̃ = ⌊Np/M⌋.
2: Use Algorithm 1 to generate Bp and Ai,p for i = 1, . . . , R̃.
3: For i = R̃ + 1, . . . , R, let Ai,p = Aimod R̃,p.

a network whose number of relays is R̃ , ⌊Np/M⌋. For this smaller network,

we have Np ≥ MR̃. Thus, Algorithm 1 can be used to optimally design

S′
p , [A1,pBp · · · AR̃,pBp] for such network. Then, in Step 3, we repeat the

design of S′
p. So, the pilot Sp has the structure [S

′
p S′

p · · · ]. Note that in Step

1 of Algorithm 2, we need R̃ ≥ 1 which implies that Np ≥ M . In the next

subsection, we will show that this condition is actually an necessary condition

for reliable training.

From the above illustration, Algorithm 2 is optimal in the sense of each

smaller network with R̃ relays. In the following, we will show that Algorithm

2 also minimizes an upper bound on the power of the estimation error. Let

Z̃p = (Gt ⊗ INp)diag{A1,pBp, · · · , AR̃,pBp}, (3.11)

which is the first MR̃ columns of Zp. Order the eigenvalues of

[Z̃p 0NNp,MR−MR̃]
∗R−1−→

Wp
[Z̃p 0NNp,MR−MR̃] (3.12)

as δ̃1 ≥ · · · ≥ δ̃MR ≥ 0. Order the eigenvalues of Z∗
pR

−1−→
Wp

Zp as δ1 ≥ · · · ≥
δMR ≥ 0. Using the interlacing property of matrices [68], we have δi ≥ δ̃i, for

i = 1, . . . ,MR, which results in 1
1+β2

pδi
≤ 1

1+β2
p δ̃i

. Hence,

tr (R∆f)≤tr (IMR + β2
p [Z̃p 0]∗R−1−→

Wp
[Z̃p 0])−1 (3.13)

=tr
(

IMR̃ + β2
pZ̃

∗
pR

−1−→
Wp

Z̃p

)−1

+M(R − R̃). (3.14)

Since S′
p = [A1,pBp · · · AR̃,pBp] is designed as unitary, based on Theorem

3.1, this upper bound is minimized as the first term is minimized.
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3.3.2 Lower Bound on the Training Time

In this subsection, the lower bound on the training time is discussed. The total

length of the training, including both the training of G and the training of f ,

is R + 2Np. From the estimation f̂ in (3.7), there is no requirement on Np to

conduct the LMMSE estimation. For good performance, however, the number

of independent training equations in (3.5) should be no less than that of the

unknowns. An interesting thing is that the equivalent pilot in the training

equation, Zp = (Gt ⊗ INp)S̃p, is a random matrix whose property depends on

the realization of G. We thus consider the best scenario of G being full rank

to obtain lower bounds on Np and on the total length of training.

WhenG is full rank, with a properly designed S̃p, the number of independent

equations in (3.5) is min(NNp, RNp,MR). Since the number of unknowns in

f is MR, for reliable training we need

Np ≥ max(⌈MR/N⌉ ,M) , Np,l, (3.15)

which is thus a lower bound on Np. Hence, a lower bound on the total training

length is R + 2Np,l.

For the training-based point-to-point MIMO system, such derived lower

bound can guarantee full diversity in the data transmission with mismatched

decoding [43, 51]. For the MIMO relay network, however, we find that due to

the complicated concatenation of the two layers of channels, this result does

not always hold considering different network settings. The detailed discus-

sions will be found in Chapter 4.

3.4 Training of the Transmitter-Relay Channel Vector

f with Estimated G

In Section 3.3, the training of f when G is known perfectly at the receiver

is discussed. In reality, only an estimation of G, shown in (3.2), is available.
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In this section, we will revisit the training of f when only the estimated G

given in (3.2) is available at the receiver. The challenging of this case over

the previous one is, now, to estimate f , the estimation error of G needs to be

considered. For tractable analysis, we restrict our attention to the network

with M = 1, and R = N(R ≥ 2), i.e., the network with a single-antenna

transmitter, R single-antenna relays, and a R-antenna receiver. The extension

to the general network will be discussed in Subsection 3.4.4. Since M = 1,

the pilot sent from the transmitter is with the dimension Np × 1, which is a

vector. To emphasize this point, we employ a lowercase variable sp to denote

the pilot sent from the transmitter.

The following theorem on the LMMSE estimation of f is proved.

Theorem 3.2. Given Ĝ in (3.2), the LMMSE estimation of f with the obser-

vation model in (3.5) is

f̂ = βp

(

IR + β2
pẐ

∗
pR

−1−→
We,p

Ẑp

)−1

Ẑ∗
pR

−1−→
We,p

−→
Xp, (3.16)

where Ẑp , (Ĝt ⊗ INp)S̃p, and

R−→
We,p

,
β2
p

1+P

(
IR ⊗ SpS

∗
p

)
+

Rα2
p

1+P
IRNp +

(

IR + α2
pĜ

tĜ
)

⊗ INp. (3.17)

Let ∆f , f − f̂ , which is the estimation error on f . ∆f has zero-mean i.e,

E (∆f) = 0. Its covariance matrix is

R∆f ,

(

IR + β2
pẐ

∗
pR

−1−→
We,p

Ẑp

)−1

. (3.18)

Proof. Replacing G with Ĝ +∆G in (3.5), we get

−→
Xp = βpẐpf + βp[(∆Gt ⊗ INp)S̃p]f +

−→
Wg1,p +

−→
Wg2,p +

−→
Wr,p, (3.19)
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where

Wg1,p , αp [A1,pv1,p · · · AR,pvR,p] Ĝ (3.20)

and

Wg2,p , αp [A1,pv1,p · · · AR,pvR,p]∆G. (3.21)

Define

−→
We,p , βp[(∆Gt ⊗ INp)S̃p]f +

−→
Wg1,p +

−→
Wg2,p +

−→
Wr,p, (3.22)

which is the equivalent noise in the training equation. It has zero-mean. Its

covariance matrix can be calculated as follows.

R−→
We,p

=E (
−→
We,p

−→
W∗

e,p)

=E

(

β2
p [(∆Gt ⊗ INp)S̃p]ff

∗[(∆Gt ⊗ INp)S̃p]
∗ +

−→
Wg1,p

−→
W∗

g1,p

+
−→
Wg2,p

−→
W∗

g2,p +
−→
Wr,p

−→
W∗

r,p

)

=
β2
p

1 + P
(IR ⊗ SpS

∗
p) +

Rα2
p

1 + P
IRNp + (IR + α2

pĜ
tĜ)⊗ INp,

which is (3.17). The second equality is derived since [(∆Gt ⊗ INp)S̃p]f ,
−→
Wg1,p,

−→
Wg2,p, and

−→
Wr,p are mutually uncorrelated. Note that although f , which is

to be estimated, is contained in
−→
We,p, it introduces no trouble in the LMMSE

estimator since
−→
We,p is uncorrelated with f . This can be seen by verifying that

E (
−→
We,pf

∗) = E (
−→
We,p)E (f∗) = 0. By Bayesian Gauss-Markov theorem [52],

the LMMSE estimation of f is given in (3.16), and the covariance matrix of

∆f is in (3.18).

Note that since f and
−→
Xp are not jointly Gaussian, the LMMSE estimation

of f in (3.16) is not the MMSE estimation, and the estimation error ∆f is not

Gaussian.
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3.4.1 Pilot Design

The pilot design problem is to find sp and Ai,p’s such that the power of the

estimation error of f̂ is minimized, i.e.,

min
Ai,p,sp

tr(R∆f) s.t. s∗psp = 1 and A∗
i,pAi,p = INp, (3.23)

where R∆f is given in (3.18). In Subsection 3.3.1, where G is assumed to be

perfectly known at the receiver, it is shown that if Np ≥ R, the power of the

estimation error is minimized when S∗
pSp = IR and an algorithm, Algorithm

1, is proposed to gain such a pilot; if 1 ≤ Np < R, Algorithm 2 is proposed.

However, when only Ĝ is available at the receiver, the expression of R∆f in

(3.18) is even more involved than that in (3.9), which largely complicates the

optimization problem in (3.23). For simplicity, we adopt the pilot designs in

Subsection 3.3.1. When the estimation on G has good quality, for example,

when the average power P is large, ∆G is small compared with G and it can

be expected that these pilot designs for perfect G perform close to optimal.

A case of special interest is when Np = 1. In this case, sp and Ai,p reduce

to scalars. An obvious code design is sp = Ai,p = 1 to satisfy the power

constraints.

3.4.2 Lower Bound on the Training Time

A lower bound on the training time can be derived similarly as that in Sub-

section 3.3.2, where the number of independent training equations in (3.19)

should be no less than that of the unknowns. The difference is, instead of the

perfect G, the estimation of G is available in estimating f . A lower bound on

Np is thus derived by assuming Ĝ as full rank. Since the number of unknowns

in f is R, a lower bound on Np is 1, i.e., Np ≥ 1, which is innocuous. A

lower bound on the total training length is thus R + 2, which includes both

the training of G and the training of f .

33



3.4.3 Estimation Error on Quality of f

In the following, we investigate the estimation error on f for the network with

M = 1, and R = N(R ≥ 2). Define the mean square error of the estimation

f̂ as MSE(f̂) , E Ĝ(tr(R∆f)), which is the average power of the estimation

error. Note that this definition is slightly different from the conventional one

due to the extra average over Ĝ. This is because in the training of f , the

equivalent pilot is a function of the random matrix Ĝ, while conventionally

the pilot is a fixed scalar or matrix. We analyze the behaviour of MSE(f̂)

under the aforementioned training and pilot designs. The results are essential

to the diversity derivations in Chapter 4 and Chapter 5 .

Theorem 3.3. With the estimation of f in (3.16) and the aforementioned

pilot designs, when Np = 1, MSE(f̂) = 2R2 logP/P + O(1/P ), when Np ≥ R,

MSE(f̂) = O(1/P ).

Proof. See Appendix 3.8.2.

The different scalings of MSE(f̂) for different values of Np is due to the

randomness of the equivalent pilot in (3.19) and can be intuitively explained

as follows. When Np = 1, with the proposed pilot designs, (3.19) can be

rewritten as
−→
Xp = βpĜ

tf+
−→
We,p. When Ĝ is full rank, there are R independent

equations. When Ĝ is rank deficient, the number of independent equations is

less than R, which consequently leads to inaccurate estimations since there are

R unknown parameters. Although Ĝ is full rank with probability 1, it can get

infinitely closed to singular with non-zero probability, which on average affects

the MSE behaviour. When Np ≥ R, the number of independent training

equations in (3.19) is at least R regardless of the rank of Ĝ. Since there are

R unknown elements in f , reliable estimation is expected.

When Np = 1, other than the scalings with respect to P discussed above,

we can also see from Theorem 3.3 that MSE(f̂) is proportional to R2 when

logP ≫ 1. Since there are R relays in total, the average MSE(f̂) per relay
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Figure 3.1: MSE(f̂) under perfect G and estimated G for the network with
R = 2.

is linear in R. This implies that, as the network has more relays and receive

antennas, the estimation quality gets worse.

When G is perfectly known at the receiver, we also briefly show in Ap-

pendix 3.8.2 that MSE(f̂) has similar behaviour: when Np = 1, MSE(f̂) =

R2 logP/P + O(1/P ), when Np ≥ R, MSE(f̂) = O(1/P ). When Np = 1,

comparing MSE(f̂) under estimated G with that under perfect G, there is

approximately 3dB degradation due to the estimation error on G.

In Fig. 3.1, to verify our results in Theorem 3.3, MSE(f̂) for Np = 1, 2, and

3 are shown for the network with R = 2. For comparison, MSE(f̂) under

perfect G is also exhibited. It is observed that given the same Np, MSE(f̂)

under perfect G is about 3dB lower than that under estimated G. It should be

emphasized that the 3dB difference is on MSE(f̂) not the BLER performance

of the network. With the proposed training for G, from our simulation, the

difference on the network BLER of the two cases is very small in DSTC net-
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work. The analytical results in Theorem 3.3, when Np = 1 MSE(f̂) scales as

logP/P , and when Np ≥ 2 MSE(f̂) scales as 1/P , are confirmed by Fig. 3.1

by reading the slopes of the MSE curves. We can also see that in the high

power region, to achieve the same level of MSE(f̂), by increasing Np from 1 to

2, 10dB power can be saved in training. But by further increasing Np from 2

to 3, only 0.5dB power can be saved.

3.4.4 Discussion on Extension

In the above discussions, we studied the training of f with estimated G by

constraining our focus on the relay network with a single-antenna transmitter,

R single-antenna relays, and a R-antenna receiver. In this subsection, we will

discuss the extension work to the more general network settings.

First, consider the network with a single-antenna transmitter, unequal num-

bers of relays and receive antennas. For this network, the training scheme of f

and its estimation rule (3.16) can be applied directly. Nevertheless, the anal-

ysis of the training properties can be further involved, and more investigation

is needed.

Second, consider the network with an M-antenna transmitter, R single-

antenna relays, and an N -antenna receiver. Denote the channel vector from

the i-th transmit antenna to the relays as f̃i = [fi1 · · · fiR]t. Since this general
network can be transformed into M sub networks each with a single-antenna

transmitter, R single-antenna relays, and an N -antenna receiver, training of f

can thus be split into training of f̃i, i = 1, · · · ,M , where our training scheme

and estimation rule in (3.16) can be applied.

3.5 Training of the End-to-End Channel Matrix H

In this section, to estimate the end-to-end channel matrix H, two training

strategies, separate training and direct training, are suggested and compared.
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3.5.1 Separate Training of H

In (1.7), the end-to-end channel matrixH is given asH = [(f1g1)
t · · · (fRgR)

t]t,

which is constructed by f andG. So, one straightforward method is to estimate

H through the estimations of f and G. Specifically, the estimation of H can

be obtained as

Ĥ = [(f̂1ĝ1)
t · · · (f̂RĝR)

t]t. (3.24)

In this case, the analysis of the training of H follows those discussed in the

previous sections.

3.5.2 Direct Training of H

Another method refers to estimate the end-to-end channel matrix H directly

at the receiver. Recall that the DSTC system equation is derived in (3.3) as

Xp = βpSpH + Wp. By stacking the columns of Xp into one single column

vector in a different way, (3.3) can be rewritten as

−→
Xp = βp(IN ⊗ Sp)

−→
H +

−→
Wp = βpLp

−→
H +

−→
Wp, (3.25)

where Lp , IN ⊗ Sp, which can be treated as the equivalent pilot signal in

estimating H. Note that, in contrast to the equivalent pilot signal Zp in

estimating f , with a pre-designed Sp, Lp is deterministic.

To obtain the LMMSE estimation of
−→
H from (3.25), we need to calculate the

mean and covariance matrix of
−→
H. It can be proved easily that E (

−→
H) = 0. As

all elements of f and G are i.i.d. CN (0, 1), we can obtain from straightforward

calculation that the covariance matrix of
−→
H is R−→

H
= IMNR. Thus, from the

Bayesian Gauss-Markov theorem [52], the LMMSE estimation of
−→
H is

−̂→
H = βp(IMNR + β2

pL
∗
pR

−1−→
Wp

Lp)
−1L∗

pR
−1−→
Wp

−→
Xp, (3.26)

whereR−→
Wp

is the covariance matrix of
−→
Wp given in (3.8). Let ∆

−→
H =

−→
H−−̂→

H be

the estimation error. The mean and covariance matrix of ∆
−→
H can be derived
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to be E (∆
−→
H) = 0 and R

∆
−→
H
, (IMNR + β2

pL
∗
pR

−1−→
Wp

Lp)
−1, respectively.

From (3.26), the estimation of
−→
H requires the information of G through

R−→
Wp

, where GtG is essentially needed. Since E (GtG) = R IN , we have

R−→
Wp

≈ (1 + α2
pR)INNp by replacing GtG with its expectation in R−→

Wp
. This

approximation is expected to be tight especially for large R. Hence, without

the trainings of G and f , an estimation of
−→
H can be derived as

−̂→
Hdir =

βp

1 + α2
pR

(

IMNR +
β2
p

1 + α2
pR

L∗
pLp

)−1

L∗
p

−→
Xp (3.27)

by replacing R−→
Wp

with its approximation in (3.26). The subscript “dir”

in (3.27) indicates the direct training scheme. Similarly, by using the ap-

proximation of R−→
Wp

, the covariance matrix of ∆
−→
H is transformed to be

R
∆
−→
H,dir

, (IMNR +
β2
p

1+α2
pR

L∗
pLp)

−1.

Due to the absence of the trainings ofG and f , performing the direct training

scheme takes 2Np symbol intervals. Since there are MRN unknown variables

in H, to reliably estimate H, the number of independent training equations

in (3.25) should be no less than MRN . In other words, the lower bound on

Np is MR, and the lower bound on training time to estimate H using direct

training is 2MR.

The optimal pilot signal design, which includes the designs of Bp and Ai,p’s,

is obtained by minimizing the trace of R
∆
−→
H,dir

. In other words, the optimiza-

tion problem is formulated as

min
Ai,p,Bp

tr(R
∆
−→
H,dir

) s.t. tr (B∗
pBp) = M and A∗

i,pAi,p = INp. (3.28)

The following theorem on the optimal pilot design is derived.

Theorem 3.4. If Np ≥ MR, tr(R
∆
−→
H,dir

) is minimized when S∗
pSp = IMR.

Proof. See Appendix 3.8.3.

To generate Bp and Ai,p’s with the constraint S∗
pSp = IMR, Algorithm 1 in

Subection 3.3.1 can be used.
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3.5.3 Comparison on Separate Training and Direct Training

To estimate H, we provided separate training and direct training in Subsec-

tion 3.5.1 and Subsection 3.5.2, respectively. In direct training, the LMMSE

estimation of H is derived by treating the entries of H as if independent. This

is appropriate for networks with single transmit and single receive antenna.

For networks with multiple transmit and receive antennas, i.e., for M > 1 and

N > 1, however, due to the special structure of H as shown in (1.7), entries

of H are related. The number of unknowns in H is actually R(M + N − 1),

which is less than MNR. Treating them as if independent can result in longer

training time than necessary and suboptimal performance. In contrast, in sep-

arate training, the estimation of H is derived from the estimations of f and

G, where the structure property of H is exploited. Hence, for large networks,

separate training is preferred.

In the following, we show heuristically why the separate training is pre-

ferred by comparing the lower bounds on the training time for both schemes.

From the previous investigations, we know that for separate training, the lower

bound on the training time is

R + 2Np,l = R + 2max(⌈MR/N⌉,M), (3.29)

while for direct training, the corresponding lower bound is 2MR. Define the

difference between these two as ∆l , 2MR − (R + 2Np,l). We have

∆l







≈ R(2MN−N−2M)
N

, R ≥ N

= 2MR − R− 2M, R < N
. (3.30)

It is plain to see that, as the network size gets larger, ∆l gets bigger.

Therefore, in this work, we employ separate training to estimate H, while

the direct training is used as a benchmark.
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3.6 Discussions

3.6.1 Discussion on Channel Correlation

In the previous discussions, we focused on the investigation of the channel

training and estimation problems in networks with independent channels. In

some network applications, channel correlation may exist due to, for example,

lack of enough spacing between antennas. One common model for correlated

channel is the Kronecker MIMO channel model [64], using which the relay-

receiver channel matrix G and the transmitter-relay channel vector f can be

written as

G = R
1/2
RelayGw

(

R
1/2
Rx

)t

(3.31)

and

f =
[

R
1/2
Relay ⊗R

1/2
Tx

]

fw, (3.32)

where RTx, RRelay, and RRx are the correlation matrices of the transmitter,

relays, and receiver respectively, and entries of Gw and fw are i.i.d following

CN (0, 1). If the correlation matrices are known at the receiver, to estimate G

and f is equivalent to estimate Gw and fw. The proposed training scheme in

Sections 3.2, 3.3, and 3.4 can be applied directly. The training equations for

Gw and fw under the correlation channel model can be written as:

Y′
p = Yp

(

R
−1/2
Rx

)t

=
√

RP1R
1/2
RelayGw +Wg

(

R
−1/2
Rx

)t

, (3.33)

and
−→
Xp = βp[(G

t ⊗ INp)S̃p]Kfw +
−→
Wp, (3.34)

where K = R
1/2
Relay ⊗ R

1/2
Rx . The LMMSE estimations of Gw and fw can be

derived straightforwardly using our proposed scheme by treating R
1/2
Relay and

[(Gt ⊗ INp)S̃p]K as pilots. However, for the training code design, and training

time investigation, more involved investigation are needed.

If the channel correlation matrices are unknown at the receiver, the chan-

40



nel estimation problem includes the estimation of the correlation matrices in

addition to the estimation of Gw and fw. Design and results in the previous

discussion cannot be applied directly, further investigation are required.

3.6.2 Discussion on Applications

In the training scheme we proposed, all channels, including the transmitter-

relay channels, the relay-receiver channels, and the end-to-end channels, are

estimated at the receiver. In many non-regenerative cooperative schemes such

as AF [17], DSTC [25], and beamforming [21], such global CSI information is

required at the receiver, and our proposed training design can be applied. It

is noteworthy that the proposed scheme requires neither feedback nor commu-

nication of channel coefficients among network nodes.

3.7 Summary

In this chapter, for the MIMO relay network with M antennas at the trans-

mitter, N antennas at the receiver, and R(R ≥ 2) relays each with a single

antenna, a training scheme was proposed to estimate the transmitter-relay

channel vector f , the relay-receiver channel matrix G, and the end-to-end

channel matrix H at the receiver. To estimate G, the training results in the

point-to-point multiple-antenna system can be employed directly. To estimate

f , the DSTC scheme was used. Since the equivalent pilot signal in estimating f

needs the information of G, the training of f was first discussed for the MIMO

relay network by assuming the estimated G as perfect. Then, considering the

estimation error of G, the training of f was revisited for the specific network

with M = 1, R = N ≥ 2. To estimate H, two training schemes, called sep-

arate training and direct training, were provided and compared. In addition,

the application of our proposed training scheme, and generalization of it to

the network with correlated channel models were also discussed.
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3.8 Appendixes

3.8.1 Proof of Theorem 3.1

Denote the (i, j)th element of (IN + α2
pG

tG)−1 as g̃ij, after some algebra,

IMR + β2
pZ

∗
pR

−1−→
Wp

Zp

=IMR + β2
p

N∑

i=1

N∑

j=1

g̃ji
(
diag{g1j , · · · , gRj} ⊗ IM

)
S∗
pSp (diag{g1j, · · · , gRj} ⊗ IM) .

(3.35)

Recall that Cov(∆f) = (IMR + β2
pZ

∗
pR

−1−→
Wp

Zp)
−1. Using (3.35), we can lower

bound tr (Cov(∆f)) as:

tr (Cov(∆f))≥
MR∑

i=1

[

( IMR + β2
pZ

∗
pR

−1−→
Wp

Zp )ii

]−1

(3.36)

=
R∑

k=1

M∑

i=1

1

1 + β2
p lkdi

≥
R∑

k=1

M

1 + β2
p lk

, (3.37)

where lk =
∑N

i=1

∑N
j=1 g̃jigkjgki, and di ≥ 0 is the ith diagonal element of

B∗
pBp satisfying

∑M
i=1 di = M . For (3.36) to become an equality, IMR +

β2
pZ

∗
pR

−1−→
Wp

Zp should be diagonal, which means S∗
pSp should be diagonal. For

(3.37) to be an equality, we need B∗
pBp = IM . Thus, when Np ≥ MR, the

optimal design is to have S∗
pSp = IMR, which implies B∗

pBp = IM from the

unitarity of A′
i,ps.

3.8.2 Proof of Theorem 3.3

Recall that from Theorem 3.2, with the imperfect estimation Ĝ, R∆f =
(

IR + β2
pẐ

∗
pR

−1−→
We,p

Ẑp

)−1

, where Ẑp , (Ĝt ⊗ INp)S̃p and R−→
We,p

=
β2
p

1+P
(IR ⊗

SpS
∗
p) +

Rα2
p

1+P
IRNp + (IR + α2

pĜ
tĜ)⊗ INp.

We first consider the case of Np = 1. Using the proposed training code,
42



Ẑp = Ĝt and R−→
We,p

= kIR + α2
pĜ

tĜ where k , 1 +
R(α2

p+β2
p)

1+P
= 2 + O

(
1
P

)
.

Thus

R∆f =

[

IR + β2
pĜ
(

kIR + α2
pĜ

tĜ
)−1

Ĝt

]−1

. (3.38)

Using the fact that Ĝ
(

kIR + α2
pĜ

tĜ
)−1

Ĝt and
(

kIR + α2
pĜ

tĜ
)−1

ĜtĜ have

the same eigenvalues, from (3.38), the eigenvalues of R∆f are
k+α2

pλ̂un,i

k+(α2
p+β2

p)λ̂un,i
for

i = 1, · · · , R with λ̂un,i’s the unordered eigenvalues of ĜĜ∗. Thus,

MSE(f̂) = E λ̂un,i

[
R∑

i=1

k + α2
pλ̂un,i

k + (α2
p + β2

p)λ̂un,i

]

. (3.39)

Since entries of Ĝ are i.i.d. complex Gaussian, the unordered eigenvalues of

the Wishart matrix ĜĜ∗ have the same PDF, which was derived in [65] to be

pλ̂un,i
(x) =

1

R

(

1 +
1

P

)

e−(x+
x
P )

[
R−1∑

i=0

L2
i

(

x+
x

P

)
]

,

where Li(x) is the Laguerre polynomial of order i defined as

Li(x) =
i∑

k=0

(−1)k
(

i

i− k

)
xk

k!
.

After some straightforward transformation, when P ≫ 1, pλ̂un,i
(x) can be

rewritten as

pλ̂un,i
(x) = e−x +

1

R
e−x

2(R−1)
∑

j=1

rjx
j + lower order terms in P, (3.40)

where rj’s are constants irrelative of P .

Let f(x) ,
k+α2

px

k+(α2
p+β2

p)x
. From (3.39), we have

MSE(f̂) = RE λ̂un,i
f(λ̂un,i)
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= R

∫ ∞

0

f(x)e−xdx+

2(R−1)
∑

j=1

rj

∫ ∞

0

f(x)xje−xdx+ lower order terms in P.

(3.41)

First we calculate the second integral in (3.41). For j ≥ 1,

∫ ∞

0

f(x)xje−xdx =
e

k

α2
p+β2

p

[

kE1+j

(
k

α2
p+β2

p

)

Γ(1 + j) + α2
pE2+j

(
k

α2
p+β2

p

)

Γ(2 + j)
]

α2
p + β2

p

,

(3.42)

where En(x) is the exponential integral defined as En(x) =
∫∞
1

e−xt/tn dt,

and Γ(x) is the Gamma function defined as Γ(x) =
∫∞
0

tx−1e−t dt. Since

α2
p = 1/R + O(1/P ) and β2

p = P/R + O(1) (notice that Np = 1), it can

be shown that when P ≫ 1 and j ≥ 1, E1+j

(
k/(α2

p + β2
p)
)
= 1/j + O(1/P )

and E2+j

(
k/(α2

p + β2
p)
)
= 1/(1 + j) +O(1/P ). So, when P ≫ 1,

∫ ∞

0

f(x)xje−xdx =
(j − 1)!(2R + j)

P
+O

(
1

P 2

)

.

Now we calculate the first integral in (3.41).

∫ ∞

0

f(x)e−xdx =
α2
p(α

2
p + β2

p) + kβ2
pe

k

α2
p+β2

pE1

(
k

α2
p+β2

p

)

(α2
p + β2

p)
2

. (3.43)

When P ≫ 1, E1

(
k

α2
p+β2

p

)

= logP +O(1). So,

∫ ∞

0

f(x)e−xdx = 2R
logP

P
+O

(
1

P

)

.

Applying the results in (3.42) and (3.43) to (3.40), MSE(f̂) = 2R2 logP/P +

O(1/P ).

Next we consider the case of Np ≥ R. We have for P ≫ 1, β2
p = Np

R
P +O(1).

To prove MSE(f̂) = O(1/P ), we will find a lower bound and an upper bound

on MSE(f̂) both of order 1/P .
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We start by bounding R−→
We,p

. It is obvious that R−→
We,p

≻ IRNp. Applying

the lower bound on R−→
We,p

in R∆f given in (3.18), R∆f can be lower bounded

as

R∆f≻(IR + β2
pẐ

∗
pẐp)

−1

=diag
{
(1 + β2

p‖ĝ1‖2)−1, · · · , (1 + β2
p‖ĝR‖2)−1

}
. (3.44)

The equality is derived by using the facts that Ẑp can be rewritten as Ẑp =

(IR ⊗ Sp)
(

[Ĝt
1, · · · , Ĝt

R]
t
)

with Ĝi , diag{ĝ1i, · · · , ĝRi}, and S∗
pSp = IR.

Since MSE(f̂) = E Ĝ (tr(R∆f)), using (3.44), MSE(f̂) can be lower bounded

as follows.

MSE(f̂) > E Ĝ

R∑

i=1

(
1 + β2

p‖ĝi‖2
)−1

= E G

R∑

i=1

(

1 +
β2
pP

P + 1
‖gi‖2

)−1

=
R2

Np(R− 1)

1

P
+ lower order terms in P , (3.45)

where (3.45) is derived since x = ‖gi‖2 has Gamma distribution with degree

R (R ≥ 2). Its PDF is p‖gi‖2(x) =
1

Γ(R)
xR−1e−x. Thus, we conclude that the

lower bound on MSE(f̂) scales as 1/P .

Now, we upper bound R−→
We,p

. Since S∗
pSp = IR, we have SpS

∗
p � INp and

thus IR ⊗ (SpS
∗
p) � IRNp . Combined with the inequality ĜtĜ � ‖Ĝ‖2F IR,

R−→
We,p

can be upper bounded as

R−→
We,p

� β2
p

1 + P
IRNp +

Rα2
p

1 + P
IRNp + IRNp + α2

p‖Ĝ‖2F IRNp

= (k1 + α2
p‖Ĝ‖2F )IRNp ,

where k1 , 1 +
β2
p+Rα2

p

1+P
= Np+R

R
+ O

(
1
P

)
. Applying the upper bound to R∆f

given in (3.18), we have

R∆f � diag







(

1 +
β2
p

k1 + α2
p‖Ĝ‖2F

‖ĝ1‖2
)−1

, · · · ,
(

1 +
β2
p

k1 + α2
p‖Ĝ‖2F

‖ĝR‖2
)−1






.
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MSE(f̂) can thus be upper bounded as

MSE(f̂)≤E Ĝ





R∑

i=1

(

1 +
β2
p

k1 + α2
p‖Ĝ‖2F

‖ĝi‖2
)−1





=E G

{
R∑

i=1

[

1 +
β2
pP/(P + 1)

k1 + α2
pP/(P + 1)‖G‖2F

‖gi‖2
]−1
}

This has the same form as the pairwise-error-probability (PEP) upper bound

formula (30) in [25]. Following the technique in [25], we can show that it scales

as 1/P when P ≫ 1. Thus, we conclude that the upper bound on MSE(f̂)

also scales as 1/P , which completes the proof.

The derivation of the scaling performance of MSE(f̂) with perfect G goes

the similar lines as above. Since G is perfectly known, the estimation error

∆G = 0, and the covariance matrix of the equivalent noise becomes R−→
We,p

=

(IR+α2
pG

tG)⊗INp. Following the derivations above, it can be shown that when

Np = 1, MSE(f̂) = R2 logP/P +O(1/P ), when Np ≥ R, MSE(f̂) = O(1/P ).

3.8.3 Proof of Theorem 3.4

Denote di as the ith diagonal element ofB∗
pBp. With the constraint tr(B∗

pBp) =

M , there is d1 + · · ·+ dM = M . Lower bound tr(R
∆
−→
H,dir

) as follows.

tr

[

IMNR +
β2
p

1 + α2
pR

(IN ⊗ S∗
pSp)

]−1

≥
MNR∑

i=1

{[

IMNR +
β2
p

1 + α2
pR

(IN ⊗ S∗
pSp)

]

ii

}−1

=NR

M∑

j=1

1

1 + [β2
p/(1 + α2

pR)]dj

≥ MNR

1 + β2
p/(1 + α2

pR)
.

For the first inequality to become an equality, we need IMNR+
β2
p

1+α2
pR

(IN⊗S∗
pSp)

to be a diagonal matrix. This is satisfied when S∗
pSp = IMR, i.e., Np ≥ MR
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and Sp is unitary. For the second inequality to become an equality, we need

B∗
pBp = IM , i.e. Bp is unitary. Thus, when Np ≥ MR, one optimal design is

to have S∗
pSp = IMR.
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4 Training-Based Mismatched Decoding and

Diversity Analysis

In this chapter, diversity, which is one of the most important indices in wireless

communications, of the training-based mismatched decoding is investigated for

DSTC network. In Section 4.1, the mismatched decoding DEC1 is proposed as

well as its two benchmarks. In Section 4.2, we first analyze diversity of DEC1

considering the estimated G as error-free. Then, in Section 4.3, we take the

estimation error of G into account, and analyze the performance of DEC1 for

the specific network with M = 1, and R = N ≥ 2.

4.1 System Model

The notation below follow those in Section 1.4. Consider the two-step DSTC

with Td ≥ MR symbol intervals for each step. Denote the Td×M information

signal sent from the transmitter as Bd, which satisfies E (tr(B∗
dBd)) = M .

Define the distributed space-time codeword as Sd , [A1,dBd · · · AR,dBd]. The

orthogonal design of Sd is adopted, so we have S∗
dSd = IMR [11]. Define

αd ,

√
P

R(P+1)
and βd ,

√
P 2Td

MR(P+1)
, where P is the transmit power of the

transmitter and also the total transmit power of the relays. Following the

derivation of system equation in (1.9), the signal received at the receiver can

be written as

Xd = βdSdH+Wd, (4.1)

where Wd is the equivalent noise at the receiver during the data transmission,

defined as Wd , αd [A1,dv1,d · · · AR,dvR,d]G + Wr,d with vi,d the noise at

the i-th relay, i = 1, · · · , R, and Wr,d the noise at the receiver. Stacking the

columns of Xd into one column vector, from (4.1), we have

−→
Xd = βd(G

t ⊗ ITd
)S̃df +

−→
Wd = βdZdf +

−→
Wd, (4.2)
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where S̃d , diag{A1,dBd, · · · , AR,dBd}, and Zd , (Gt ⊗ ITd
)S̃d.

In Section 1.4, with the perfect knowledge of CSI, the coherent ML decod-

ing and its simplified version are derived as DEC0 and DEC0,simp, respectively.

When only the channel estimations are available at the receiver, however, the

most straightforward decoding is to ignore the estimation errors and replace

the channels with their estimations in DEC0 or DEC0,simp. We call it mis-

matched decoding since it does not match the training-based system equation

due to the neglect of the estimation errors.

Since we adopt separate training scheme, where G and f are estimated suc-

cessively, given the estimations of f̂ and Ĝ, we have the mismatched decoding

DEC1 : arg min
Bd

(−→
Xd − βdẐdf̂

)∗
R̂−1−→

Wd

(−→
Xd − βdẐdf̂

)

, (4.3)

where Ẑd , (Ĝt ⊗ ITd
)S̃d and R̂−→

Wd
, R̂Wd

⊗ ITd
with R̂Wd

the estimated

covariance matrix of Wd defined as R̂Wd
, IN + α2

dĜ
∗Ĝ.

As a benchmark, if G and H are estimated in the training phase, where the

estimation of H is obtained throught direct training, the mismatched decoding

is derived as

DEC1,h : arg min
Bd

tr

((

Xd − βdSdĤ
)

R̂
−1

Wd

(

X− βdSdĤ
)∗
)

, (4.4)

Note that, DEC1,h and DEC1 are not equivalent, since in DEC1,h, Ĥ is

obtained through direct training, not equal to [(f̂1ĝ1)
t · · · (f̂RĝR)

t]t, where f̂

and Ĝ are obtained through separate training.

Similar to the perfect CSI case, by approximating ĜtĜ with its expectation

RP
1+P

IN in R̂Wd
, a simplified mismatched decoding DEC1,simp is obtained:

DEC1,simp : argmax
Bd

ℜtr(ĤX∗
dSd). (4.5)
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For the network with M = 1, and R = N , (4.5) is equivalent to

DEC1,simp : arg max
sd,j

ℜ sd,j

(
R∑

i=1

T̂b,ii

)

j

, j = 1, · · · , Td, (4.6)

where analogous to the definitions in perfect CSI case, T̂b,ij is the ij-th 1×Td

block element of T̂ defined as T̂ , ĤX∗
d[A1,d · · · AR,d].

In this chapter, we will discuss in detail about the diversity performance

of mismatched decoding DEC1. Two benchmarks are used to evaluate our

proposed training scheme. The first one is DEC0 with perfect CSI. This ideal

case thus provides a lower bound on the error rate. The second one is DEC1,h,

in which instead of f , the end-to-end channel matrix H is estimated by direct

training. As discussed in Subsection 3.5.3, by direct training, the entries of H

are treated as if independent and the structure property of H is not exploited,

which may result in longer training interval and performance loss.

4.2 Mismatched Decoding with Perfect G

In this section, we consider that in the mismatched decoding DEC1, Ĝ is error-

free, and f̂ is given in (3.7). In Subsection 4.2.1, we show that with Np = Np,l,

the lower bound on the training time Np in estimating f , full diversity cannot

be always guaranteed. An upper bound on the minimum training time that

guarantees full diversity is thus provided. In Subection 4.2.2, to further shorten

the training time while ensure the full diversity performance with DEC1, an

adaptive training design is suggested.

4.2.1 Diversity Analysis

We first provide a lemma. Let λn be the minimum eigenvalue of Wishart ma-

trix WG (The background on Wishart matrix is referred to Appendix 4.5.1.).

Lemma 4.1. When R ≤ N , Np = Np,l, and P ≫ 1, given λn ≤ 1/P , we have

R∆f ≻ CR∆f
, where CR∆f

is a constant positive semi-definite matrix. The
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PEP of the network given λn ≤ 1/P is no smaller than a positive constant

cPEP .

Proof. See Appendix 4.5.2.

Some comments on Lemma 4.1: Recall that the lower bound Np,l is based

on the assumption that G is full rank. In the relay network, G is random.

Although the probability that it is full rank is 1, G can be arbitrarily close to a

singular matrix, i.e., λn ≤ 1/P (P ≫ 1). In this case, some training equations

in (3.5) will become dependent of others and there are not enough number of

independent equations to estimate the channel coefficients. Then as Lemma

4.1 indicates, the estimation error is lower bounded by a constant regardless

of the training power, and no diversity can be achieved.

Theorem 4.1. When R ≤ N and Np = Np,l, the achievable diversity of the

proposed training-based MIMO relay network is upper bounded by N − R + 1.

Proof. From Lemma 4.3 in Appendix 4.5.1, when P ≫ 1,

P(λn ≤ 1/P ) = cλnP
−(N−R+1) + o(P−(N−R+1)).

From Lemma 4.1, we have (PEP |λn ≤ 1/P ) ≥ cPEP . Therefore,

PEP=(PEP |λn ≤ 1/P ) · P(λn ≤ 1/P ) + (PEP |λn > 1/P ) · P(λn > 1/P )

≥(PEP |λn ≤ 1/P ) · P(λn ≤ 1/P )

≥cPEP cλnP
−(N−R+1) + o(P−(N−R+1)).

This means that the diversity is upper bounded by N − R + 1.

Based on Theorem 4.1, a sufficient condition for diversity loss whenNp = Np,l

is found.

Corollary 4.1. When Np = Np,l, there is diversity loss if R > max(1, N+1
M+1

).
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Proof. The full diversity of the relay networks is min(M,N)R [25]. Note that

N − R + 1 < NR is always true for R > 1. So, N − R + 1 < min(M,N)R

is equivalent to N < (M + 1)R − 1 and R > 1, which can be written as

R > max(1, N+1
M+1

).

It is noteworthy that Corollary 4.1 provides a sufficient condition on diversity

loss when Np is set to be its lower bound. Thus, the lower bound on the

minimum training time, Np,l, in some cases, is insufficient for full diversity.

Some examples are the relay networks with M = R = 2, N = 2, 3, and 4. For

these cases, the diversity upper bound N − R + 1 is shown to be achieved by

simulation.

Next we provide an upper bound on the minimum training time that guar-

antees full diversity. The following theorem is proved.

Theorem 4.2. When Np ≥ MR, the proposed training scheme achieves full

diversity.

Proof. See Appendix 4.5.3.

Intuitively, when Np ≥ MR, there are always enough number of independent

equations in (3.5) regardless of the quality of the relay-receiver channels. Thus

full diversity can be achieved.

Corollary 4.2. When N = 1 or R = 1, the minimum requirement on Np that

guarantees full diversity is MR.

Proof. Since Np,l = max(M, ⌈MR/N⌉) = MR ⇐⇒ N = 1 or R = 1, this can

be obtained directly from Theorem 4.2.

Intuitively, for full diversity, Np should be large enough to render enough

independent training equations for solving the unknown channels. Theorems

4.1 and 4.2 comply with this intuition. Note that for the direct training scheme,

MR is a lower bound on Np. We have shown in Theorem 4.2 that it is an upper

bound for the proposed scheme. For networks with a single receive antenna
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Algorithm 3 An adaptive-Np design.

1: Choose a positive threshold ǫ.
2: Let the index i be the number of eigenvalues of WG that are no less than

ǫ. If i = 0, let i = 1.
3: Let Np = Np,i , ⌈MR/i⌉.

or single relay, the proposed scheme does not have advantage on training time

over the direct training scheme. For other network settings, however, the

proposed scheme may have a lower requirement on the training length as will

be shown in the simulation section.

4.2.2 Adaptive Training Time Design

From the previous subsection we know that, full diversity in data transmission

cannot always be obtained with Np,l, and to guarantee full diversity, one solu-

tion is to increase Np to MR. Nevertheless, except for R = 1 or N = 1, MR is

always larger than Np,l. For large networks, it can be undesirable in practice to

have Np = MR, especially for networks with a fast fading environment. Also,

it is always desirable to reduce Np to save resource for the data transmission.

In this section, we provide an adaptive-Np design which ensures full diversity

with a shorter training time than MR.

The idea of the adaptive-Np design is as follows. When the rank of G

is i, i = 1, · · · , n, with the optimal training code design, the rank of Zp is

min(iNp,MR), which is also the number of independent equations in (3.5).

Thus a reliable estimation of f requires Np ≥ ⌈MR/i⌉. Note that the rank

of G equals the number of non-zero eigenvalues of WG. Thus, our strategy

is when some eigenvalues of WG are not large enough, we treat them as zero

and increase the training time correspondingly.

The proposed adaptive training time design is presented in Algorithm 3.

To perform the design, the receiver needs to feed back the index i, which

is the number of eigenvalues of WG that are no less than a threshold, to

the transmitter and the relays. The number of bits needed to represent the

53



index information is log2 n. The feedback is thus low rate. For example, for

networks with 10 relays and 2 receive antennas, only 1 bit feedback is needed.

For networks where feedback links do not exist or are too expensive, we can

resort to the fixed design and let Np = MR to guarantee full diversity. Also,

when R = 1 or N = 1, from Algorithm 3, Np is always MR, and the adaptive

design reduces to the fixed training time design.

In general, Np is a random variable whose value depends on the quality of

G. The average training time E (Np) is calculated as follows.

Lemma 4.2. With the adaptive-Np training scheme in Algorithm 3,

E (Np) =







MR, n = 1

Fλ2(ǫ)MR + (1− Fλ2(ǫ))Np,2, n = 2

Fλ2(ǫ)MR +
∑n−1

i=2 Fiλ(ǫ)Np,i + (1− Fλn(ǫ))Np,n,n ≥ 3

. (4.7)

Fλ2(ǫ) and Fλn(ǫ) are given in (4.14) and (4.15) respectively, and Fiλ(ǫ) =

Fλi+1
(ǫ)− Fλi

(ǫ).

Proof. The proof is straightforward using the CDF of the eigenvalues of WG.

For n ≥ 2, E (Np) < MR for any finite ǫ. Using this adaptive-Np design,

one can control the balance between the training time interval and the esti-

mation quality through the design of ǫ. With a higher ǫ, more reliable channel

estimation can be obtained, but more time is dedicated to training and less

time is dedicated to the data transmission, and vice versa. Simulation shows

that with the adaptive-Np design, full diversity is always achieved even with

a training time slightly larger than Np,l.

As straightforward results from Lemma 4.2, when M = 1, R = N = 2,

we have E (Np) = 2 − e−2ǫ; when M = R = 2, N = 3, we have E (Np) =

e−2ǫǫ2(2− ǫ). Performance of these two networks is simulated in Section 4.2.3.

54



10 12 14 16 18 20 22 24 26 28 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average Power (dB)

B
lo

c
k
 E

rr
o

r 
R

a
te

 

 

Network 1, Design 1
Network 1, Design 2
Network 1, Design 3
Network 2, Design 1
Network 2, Design 2
Network 2, Design 3

Figure 4.1: Comparison of training code designs. Network 1: M = 1, R =
N = 2; Network 2: M = 2, N = R = 2.

4.2.3 Simulation Results

In this section, applying the mismatched decoding DEC1, we show the simu-

lated BLERs of the proposed training-based network as a function of P , the

average power in the network. For all simulations, the estimated G is used

in DEC1 for decoding. Orthogonal distributed space-time code with BPSK

modulated information symbols is applied for the data transmission [11], e.g.,

when R = 2, Alamouti code is used.

In Fig. 4.1, we verify the optimality of the proposed training code design

when the mismatched decoding DEC1 is used. Two networks are considered:

Network 1 in which M = 1, N = R = 2; and Network 2 in which M =

N = R = 2. Np is set to be MR. We compare the proposed optimal pilot

design, denoted as Design 3, with Design 1, in which Bp is designed only

with the trace constraint (Particularly, for Network 1, Bp =
√
2/2[1 1]t; for
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Network 1, Perfect CSI
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Figure 4.2: Comparison of direct training, separate training, and the perfect
CSI case. Network 1: M = N = 1, R = 2; Network 2: M = 1, R = N = 2;
Network 3: M = R = N = 2.

Network 2, Bp = 1/2




1 1 1 1

1 1 1 1





t

.) and Ai,p’s are randomly generated unitary

matrices, and Design 2, in which Bp is generated optimally as [IM 0M,MR−M ]t

and Ai,p’s are random unitary matrices. Fig. 4.1 shows that in both networks,

our design outperforms the other two and achieves full diversity, while both

Designs 1 and 2 result in diversity loss. This shows that optimal training code

design is important for full diversity.

In Fig. 4.2, we compare the performance of the proposed separate training,

direct training, and the perfect CSI case. The decoding metrics employed are

DEC1, DEC1,h, and DEC0, respectively. For the two training schemes, we

have Np = MR, as it is required for the direct training. Three networks are

considered: Network 1 in which M = N = 1, R = 2, Network 2 in which

M = 1, R = N = 2, and Network 3 in which M = R = N = 2. For Network 1,
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Figure 4.3: BLER performance of the training-based scheme with R ≤ N and
Np = Np,l.

since M = N = 1, all the elements in H are independent. The direct training

and the proposed training have about the same performance with the latter

slightly better in the low to mediate SNR region. For Networks 2 and 3, since

the elements in H are correlated, the direct training, in which entries of H are

treated as independent, is not optimal. Fig. 4.2 shows that it is inferior to the

proposed training by about 1dB. The proposed training is about 3dB, 2dB,

and 2.5dB worse than the perfect CSI case in Network 1, 2, and 3, respectively

due to the estimation error.

In Fig. 4.3, we show the diversity performance of mismatched decoding

DEC1 with Np = Np,l. We consider networks in which M = R = 2 and N

changes from 2 to 5. Thus, Np,l = 2 for all the cases. Fig. 4.3 shows that

the achieved diversities of the proposed scheme are about 1, 2, 3, and 4 for

N = 2, 3, 4, and 5, respectively. This confirms the conclusion in Theorem 4.1
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Figure 4.4: Adaptive-Np design for network with M = 1, N = R = 2.

that when R ≤ N and Np = Np,l, the diversity is upper bounded by N−R+1.

It also shows that this upper bound is tight for the simulated networks. Since

the full diversity of all the networks is 4, for N = 2, 3, and 4, there is diversity

loss. This observation is also consistent with our result in Corollary 4.1 that

a sufficient condition for diversity loss is R > max(1, N+1
M+1

).

Figs. 4.4 and 4.5 show the performance of the adaptive training design. Fig.

4.4 is on the network in which M = 1, R = N = 2. The full diversity is 2.

As shown in Fig. 4.4, when Np = Np,l = 1, the achieved diversity is only

1. By employing the adaptive training design, even with teh average training

time E (Np) = 1.2, the diversity becomes 2, which shows the effectiveness of

this design. When E (Np) = 1.5, the adaptive design is superior to the direct

training design with Np = 2 by 0.8dB, and close to the proposed fixed training

time design with Np = 2 in the high SNR region.

Fig. 4.5 is on the network in which M = R = 2, N = 3. Similar observations

can be seen. The full diversity of this network is 4. With Np = Np,l =
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Figure 4.5: Adaptive-Np design for network with M = R = 2, N = 3.

2, the achievable diversity is 2. When the adaptive training design is used,

full diversity is obtained for all used ǫ values. Especially, when ǫ = 0.1 and

E(Np) = 2.0269, full diversity is achieved at the cost of only 1% increase in

training time. It is worth mentioning that with E (Np) = 2.3105, the adaptive

training design outperforms the direct training design with Np = 4 in the high

SNR region. When E (Np) = 2.6955, the performance of the adaptive design

is within 1dB of that of our proposed fixed training time design with Np = 4.

This improvement comes from the feedback information explained in Section

4.2.2. To use the adaptive training design, for both networks, 1 bit needs to

be fed back from the receiver to both the relays and the transmitter.

4.3 Mismatched Decoding with Imperfect G

In this section, we consider the transmitter-relay channel vector f is estimated

with the help of the estimated G, as discussed in Section 3.4. In other words,

to perform DEC1, Ĝ and f̂ given in (3.2) and (3.16) respectively are used. To
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use the analytical results in Section 3.4, here, we restrict our attention to the

network with M = 1, and R = N ≥ 2, and only the fixed training time design

is considered.

4.3.1 Diversity Analysis

We know from Theorem 4.1 that, when the estimated Ĝ is error-free, with

Np = Np,l = 1, the achieved diversity order is no larger than 1, and from The-

orem 4.2 that, with Np = R, full diversity can be achieved. In the following,

we show that, by considering the estimation error of G, the same diversity

results can be obtained.

In analyzing the performance of decoding DEC1, we replace G and f in the

transmission equation (4.2) by Ĝ + ∆G and f̂ + ∆f , respectively, to obtain

the following training-based transmission equation:

−→
Xd = βdẐdf̂ +

−→
We,d, (4.8)

where
−→
We,d is the noise plus estimation error term defined as

−→
We,d,βd

[
Ẑd∆f + (∆Gt ⊗ ITd

)S̃df̂ + (∆Gt ⊗ ITd
)S̃d∆f

]

+
−→
Wg1,d +

−→
Wg2,d +

−→
Wr,d, (4.9)

with

Wg1,d , αd [A1,dv1,d · · · AR,dvR,d] Ĝ (4.10)

and

Wg2,d , αd [A1,dv1,d · · · AR,dvR,d] ∆G. (4.11)

From the definition of
−→
We,d we can see that it is not Gaussian, which makes

further analysis intractable. In what follows, we study the performance of
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DEC1 using the MSE results in Theorem 3.3. We consider the behaviour of
−→
We,d for different values of Np, corresponding to different lengths for training.

The first to consider is the case of Np = Np,l = 1, corresponding to the

shortest training length R + 2. Theorem 3.3 shows that when Np = 1, in

the high transmit power range, i.e, P ≫ 1, MSE(f̂) scales as logP/P . From

Section 3.2 we know that MSE(Ĝ) scales as 1/P . As β2
d = Td

R
P + O(1) and

α2
d = 1/R + O(1/P ), the highest order of the average power in

−→
We,d is logP ,

which is contributed by the term βdẐd∆f . The second highest order term

in
−→
We,d scales as 1. It is then reasonable to ignore some of the lower order

terms in P and approximate
−→
We,d as

−→
W′

e,d , βdẐd∆f+
−→
Wr,d. An approximate

system model is derived as

−→
Xd = βdẐdf̂ +

−→
W′

e,d. (4.12)

It can be shown straightforwardly that
−→
W′

e,d has zero-mean. Its covariance

matrix is calculated to be

R−→
W′

e,d
= β2

dẐdR∆f Ẑ
∗
d + ITdR. (4.13)

By further treating ∆f as if Gaussian for tractable analysis, the following

diversity result is proved.

Theorem 4.3. With the approximate system model in (4.12), when Np = 1,

the achieved diversity of DEC1 is no larger than 1.

Proof. See Appendix 4.5.4.

Although the diversity result in Theorem 4.3 is derived with an approximate

system equation, its validity is shown by simulation. Thus, with the minimum

training period R+2, i.e., Np = 1, mismatched decoding DEC1 loses diversity.

This can be explained via the behaviour of the MSE of the channel estimations.

Through the derivation of the system model (4.12), we know when Np = 1, the

equivalent noise
−→
We,d in data transmission is dominated by the term related to
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the estimation error on f , ∆f , which scales as logP . Notice that the remaining

noise power scales as 1 and the signal power scales as P . Treating f̂ as if perfect

ignores the ∆f term, hence induces diversity loss.

Now we consider the case of Np ≥ R. The total training length is thus

no shorter than 3R. In this case, from Theorem 3.3, all estimation error

related terms in
−→
We,d have the average power in the order of 1 or lower.

Thus, ignoring the estimation error in decoding will not degrade the network

diversity. Our simulation shows that in this case, full diversity can be achieved

with mismatched decoding.

For the case of 1 < Np < R, the MSE and diversity analysis is even more

challenging due to the concatenation of channel matrices and DSTC matrix.

Our simulation on limited network scenarios shows that the mismatched de-

coding DEC1 cannot achieve full diversity. Hence, with DEC1, at least 3R

symbol intervals are needed for training to ensure full diversity.

4.3.2 Simulation Results

In this subsection, simulation results are exhibited. BPSK is used for data

transmission for all simulated networks. For two-relay networks, i.e., R = 2,

Alamouti code is used, while for three-relay networks, i.e., R = 3, a generalized

rate-1 real orthogonal code is used [1].

In Fig. 4.6, the performance of mismatched decoding DEC1 and perfect CSI

decoding DEC0 are shown for the network with R = 2. We observe that when

Np = 1, DEC1 achieves diversity 1 only, which conforms with our analytical

result in Theorem 4.3. When Np = 2, it achieves full diversity 2. Compared

with the perfect CSI decoding at the BLER of 10−4, when Np = 1, DEC1 is

about 17dB worse; when Np = 2, DEC1 is about 2.5dB worse.

In Fig. 4.7, the performance of mismatched decoding DEC1 and perfect CSI

decoding DEC0 are shown for the network with R = 3. It can be observed

that when Np = 1, the diversity of DEC1 is only 1, which is consistent with

Theorem 4.3. When Np = 2, DEC1,simp achieves diversity 2. When Np = 3, it
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Figure 4.6: DEC1 for the network with M = 1, R = N = 2.
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Figure 4.7: DEC1 for the network with M = 1, R = N = 3.
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achieves the full diversity, which is 3. Thus, for network with R = 3, at least 9

symbol intervals are required for full diversity if mismatched decoding DEC1

is applied. The perfect CSI decoding DEC0 is shown as a benchmark. Due to

the imperfect training, when Np = 3, the degradation of DEC1 is about 2.5dB.

4.4 Summary

In this chapter, for the training-based DSTC network, we analyzed the di-

versity performance of mismatched decoding DEC1 where the relay-receiver

channel matrix G and the transmitter-relay channel vector f are estimated in

the training phase with the total training time R + 2Np.

In Section 4.1, the mismatched decoding DEC1 was proposed as well as its

two benchmarks. In Section 4.2, under the assumption that the estimation of

G is error-free, the diversity performance of DEC1 was analyzed. It was shown

in Theorem 4.1 that, with Np = Np,l, the lower bound on Np in estimating

f , full diversity cannot always be achieved in data transmission. A sufficient

condition which can result in diversity loss with Np = Np,l was provided in

Corollary 4.1. To achieve full diversity, an upper bound on the minimum

Np was given in Theorem 4.2 as MR. To shorten the training time while

maintain the full diversity, an adaptive training was provided whose training

time length is adaptive to the relay-receiver channel matrix G. In Section

4.3, by considering the estimation error of G, the diversity performance of

DEC1 was analyzed for the specific network with M = 1 and R = N ≥ 2.

It was shown that, with the shortest training length R + 2 symbol intervals,

the diversity order is no larger than 1, and at least 3R symbol intervals are

required in training to achieve full diversity.
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4.5 Appendices

4.5.1 Useful Results on Wishart Matrix

In this subsection, background on Wishart matrix is reviewed and a result on

the smallest eigenvalue of Wishart matrix is derived, which is useful for the

diversity analysis in this chapter.

Consider the R×N matrix G whose entries are i.i.d. CN (0, 1). Let

WG =

{

G∗Gif R ≥ N

GG∗if R < N
.

WG is a Wishart matrix. Let n , min(R,N) and m , max(R,N). Order

the eigenvalues of WG as λ1 ≥ · · · ≥ λn ≥ 0. The cumulative distribution

function (CDF) of λk is [53]:

Fλk
(ǫ) = K

k∑

i=1

∑

µ∈P(i)

det (F(µ, i; ǫ)) , (4.14)

where K =
∏n

i=1
1

(m−i)!(n−i)!
, P(i) is the set of all permutations (µ1, · · · , µn) of

(1, · · · , n) that satisfy µ1 < · · · < µi−1 and µi < · · · < µn, and F(µ, i; ǫ) is an

n× n matrix whose (u, v)th entry is defined as

[F(µ, i; ǫ)]u,v ,







∫∞
ǫ

e−λλm−n+u+v−2dλif 1 ≤ µv < i
∫ ǫ

0
e−λλm−n+u+v−2dλ if i ≤ µv ≤ n

.

The CDF of the smallest eigenvalue λn can be further simplified to [53]:

Fλn(ǫ) = 1−K det (F(ǫ)) , (4.15)

where F(ǫ) is an n × n matrix with
∫∞
ǫ

e−λλm−n+u+v−2dλ being its (u, v)th

entry. The probability density function (PDF) of λn is also derived in [54] as:

fλn(λ) = cm,nλ
m−ne−λn(b0 + · · ·+ b(m−n)(n−1)λ

(m−n)(n−1)), (4.16)
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where cm,n, b0, b1, · · · , b(m−n)(n−1) are constants and b0 > 0. We derive in the

following lemma the behaviour of the PDF of λn for small ǫ, which will be

used in our diversity analysis.

Lemma 4.3. For small ǫ > 0, P(λn ≤ ǫ) = cλnǫ
m−n+1+ o (ǫm−n+1), where cλn

is a positive constant independent of ǫ.

Proof. Using (4.16), we have

P(λn ≤ ǫ) =

∫ ǫ

0

cm,nλ
m−ne−λn(b0 + · · ·+ b(m−n)(n−1)λ

(m−n)(n−1))dλ

=cm,n

(∫ ǫ

0

b0λ
m−ne−λndλ+ · · ·+

∫ ǫ

0

b(m−n)(n−1)λ
m−n+(m−n)(n−1)e−λndλ

)

=cm,n

(

b0n
−1+n−mγ(1 + (m− n), nǫ) + . . .

+b(m−n)(n−1)n
−1−mn+n2

γ(1 + (m− n)n, nǫ)
)

, (4.17)

where γ(., .) is the lower incomplete gamma function defined as γ(s, x) ,
∫ x

0
ts−1e−tdt. Using the fact that γ(s, x) → 1

s
xs as x → 0, we have γ(i+m −

n, nǫ) → ni+m−n

i+m−n
ǫi+m−n as ǫ → 0. Therefore, for small ǫ > 0, the first summand

of (4.17) dominates, and finally P(λn ≤ ǫ) = cλnǫ
m−n+1 + o(ǫm−n+1), where

cλn = cm,nb0/(1 +m− n).

4.5.2 Proof of Lemma 4.1

First we prove that Cov(∆f) ≻ CCov(∆f). As R ≤ N,Np,l = M ≤ MR. When

Np = Np,l, we use Algorithm 2 for the pilot design so Bp = IM , which leads

to S̃pS̃
∗
p = S̃∗

pS̃p = IMR. Take the singular value decomposition (SVD) of

Gt as Gt = UΣV = Udiag{λ1/2
1 , · · · , λ1/2

R , 0N−R,R}V, where U and V are

square unitary matrices and λi is the ith largest eigenvalue of WG. After some

algebra,

Cov(∆f)=
[

IMR + β2
p S̃

∗
p(G⊗ INp)

(
(IN + α2

pG
tG)−1 ⊗ INp

)
(Gt ⊗ INp)S̃p

]−1

=
[

S̃∗
p

((
IR + β2

pV
∗DV

)
⊗ INp

)
S̃p

]−1
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=S̃∗
p

[(

V∗ (
IR + β2

pD
)−1

V
)

⊗ INp

]

S̃p,

where D , Σ∗(IN + α2
pΣΣ∗)−1Σ. Note that

(IR + β2
pD)−1 = diag

{
1 + α2

pλ1

1 + (α2
p + β2

p)λ1

, · · · , 1 + α2
pλn

1 + (α2
p + β2

p)λn

}

.

Since
1+α2

px

1+(α2
p+β2

p)x
is a decreasing function of x, given λn ≤ 1/P , we have

1 + α2
pλn

1 + (α2
p + β2

p)λn

≥ 1 + α2
p
1
P

1 + (α2
p + β2

p)
1
P

=
RP + 1 +R

RP +R + 1 + P
=

R

1 +R
+O(

1

P
).

Therefore, when P ≫ 1, (IR + β2
pD)−1 ≻ diag{0, · · · , 0, R

1+R
}, which means

that Cov(∆f) is lower bounded by

CCov(∆f) , S̃∗
p

[

(V∗diag{0, · · · , 0, R

1 +R
}V)⊗ INp

]

S̃p,

a positive semi-definite matrix.

With the above conclusion, we now prove that PEP ≥ cPEP . Assume the

estimated Ĝ as error-free, i.e., Ĝ = G. Let B1,d and B2,d be two information

matrices. Define Z1,d , (Gt ⊗ ITd
)S̃1,d, and Z2,d , (Gt ⊗ ITd

)S̃2,d. Let b ,

(Z1,d − Z2,d)f̂ , ∆Zdf̂ and a , βdZ1,d∆f +
−→
Wd. Since ∆f and

−→
Wd are

uncorrelated, a is a Gaussian random variable with the distribution CN (0,Ra),

where Ra is the associated covariance matrix. Using Cov(∆f) ≻ CCov(∆f), Ra

can be lower bounded as

Ra=E (aa∗)

=β2
dZ1,dCov(∆f)Z∗

1,d +R−→
Wd

(4.18)

≻β2
dZ1,dCCov(∆f)Z

∗
1,d. (4.19)
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With the mismatched decoding DEC1, we have

PEP (B1,d → B2,d|G, f̂)

=P

(

−β2
db

∗R−1−→
Wd

b ≥ βdb
∗R−1−→

Wd

a+ βda
∗R−1−→

Wd

b|G, f̂
)

(4.20)

=P

(

− β2
db

∗R−1−→
Wd

b ≥ tr
(

βd(R
−1/2
a a)∗R1/2

a R−1−→
Wd

b+ βdR
−1/2
a a(R1/2

a R−1−→
Wd

b)∗
)

∣
∣
∣G, f̂

)

=Q




β2
db

∗R−1−→
Wd

b
√
2‖βdR

1/2
a R−1−→

Wd

b‖F

∣
∣
∣G, f̂



 (4.21)

≥Q







f̂∗∆Z∗
dR

−1−→
Wd

∆Zdf̂
√

2tr
(

R−1−→
Wd

∆Zdf̂ f̂∗∆Z∗
dR

−1−→
Wd

Z1,dCCov(∆f)Z
∗
1,d

)

∣
∣
∣
∣
∣
G, f̂







, (4.22)

where in (4.21) Q(·) is the Q-function defined as Q(x) = 1√
2π

∫∞
x

e−t2/2dt, and

the equality comes from the fact that R
−1/2
a a ∼ CN (0, INTd

) and the property

that if N ∼ CN (0, I), tr(CN∗ +C∗N) ∼ N (0, 2‖C‖2F ) [1]. (4.22) follows from
(4.19) and the fact that Q(.) is a decreasing function. Since αd =

1√
R
+O( 1

P
),

when P ≫ 1, we can treat αd and hence R−→
Wd

as constants. Therefore, the

right hand side of (4.22) is a positive constant independent of the power, which

means that the PEP given G and f̂ is lower bounded by a positive constant.

Note that the distributions of G and f̂ are irrelative of P , so after averaging

over G and f̂ , the PEP lower bound is still a positive constant, denoted as

cPEP , which completes the proof.

4.5.3 Proof of Theorem 4.2

Under the pre-designed power allocation, let αp = αd , α. From the PEP in

(4.20), using the Chernoff bound, we have for λ > 0

P(B1,d → B2,d|G, f̂)
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=P

(

−β2
db

∗R−1−→
Wd

b− βdb
∗R−1−→

Wd

a− βda
∗R−1−→

Wd

b > 0|G, f̂
)

≤E a|G,f̂

(

e
−λ

(

β2
db

∗R
−1
−→
Wd

b+βdb
∗R

−1
−→
Wd

a+βda
∗R

−1
−→
Wd

b

)
)

=

∫

e
−λ

(

β2
db

∗R
−1
−→
Wd

b+βdb
∗R

−1
−→
Wd

a+βda
∗R

−1
−→
Wd

b

)

e−a∗R
−1
a a

πNTd detRa

da

=

(
∫

1

πNTd detRa

e
−
(

a+λβdRaR
−1
−→
Wd

b

)∗

R
−1
a

(

a+λβdRaR
−1
−→
Wd

b

)

da

)

e
−λβ2

db
∗

(

R
−1
−→
Wd

−λR−1
−→
Wd

RaR
−1
−→
Wd

)

b

=e
−λβ2

db
∗R

−1/2
−→
Wd

(

INTd
−λR

−1/2
−→
Wd

RaR
−1/2
−→
Wd

)

R
−1/2
−→
Wd

b

<e
−λ

1−λ(Td/Np+1)(N+α2‖G‖2F )

N+α2‖G‖2
F

β2
db

∗b
, (4.23)

where the last inequality is obtained using the following claim whose proof is

provided later:

R
−1/2
−→
Wd

(

INTd
− λR

−1/2
−→
Wd

RaR
−1/2
−→
Wd

)

R
−1/2
−→
Wd

≻1− λ(Td/Np + 1)(N + α2‖G‖2F )
N + α2‖G‖2F

INTd
. (4.24)

Let λ = 1
2(Td/Np+1)(N+α2‖G‖2F )

. We have from (4.23),

P(B1,d → B2,d|G, f̂) < e
− 1

4(Td/Np+1)(N+α2‖G‖2
F

)2
β2
db

∗b
. (4.25)

Next we take the expectation over f̂ to get the conditional PEP on G. Note

that f̂ ∼ CN (0,Rf̂), where Rf̂ = IMR − Cov(∆f). Recall that b = ∆Zdf̂ and

let q = 1
4(Td/Np+1)(N+α2‖G‖2F )2

. From (4.25),

P(B1,d → B2,d|G)

<

∫
1

πMR detR
f̂

e−f̂∗R
−1

f̂
f̂e−qβ2

d f̂
∗∆Z∗

d∆Zd f̂df̂

=det
(

R−1

f̂
+ qβ2

d∆Z∗
d∆Zd

)−1

detR−1

f̂

=det
(
INTd

+ qβ2
d∆ZdRf̂∆Z∗

d

)−1
. (4.26)
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Rewrite Zd as Zd = (IN ⊗ Sd) ([G
t
1, · · · ,Gt

N ]
t ⊗ IM), where

Gi , diag{g1i, · · · , gRi}.

Thus ∆Zd = (IN ⊗∆Sd) ([G
t
1, · · · ,Gt

N ]
t ⊗ IM), where ∆Sd , S1,d −S2,d, and

the diagonal matrix

∆Z∗
d∆Zd=

(

[Gt
1, · · · ,Gt

N ]⊗ IM

)

(IN ⊗∆S∗
d)(IN ⊗∆Sd)

(
[Gt

1, · · · ,Gt
N ]

t ⊗ IM

)

�σ2
min

(
N∑

i=1

G∗
iGi

)

⊗ IM , (4.27)

where σ2
min is the smallest eigenvalue of ∆S∗

d∆Sd. Since fully diverse orthogo-

nal deign is used in the data transmission, σ2
min > 0. We now provide an upper

bound on Cov(∆f), which is proved later, for further derivation:

Cov(∆f) � diag







(

1 +
β2
p‖g1‖2F

N + α2‖G‖2F

)−1

, · · · ,
(

1 +
β2
p‖gR‖2F

N + α2‖G‖2F

)−1





⊗ IM .

(4.28)

From (4.28),

R
f̂
=IMR − Cov(∆f)

�diag

{
β2
p‖g1‖2F

N + α2‖G‖2F + β2
p‖g1‖2F

, · · · , β2
p‖gR‖2F

N + α2‖G‖2F + β2
p‖gR‖2F

}

⊗ IM .

(4.29)

From (4.26), (4.27) and (4.29), we can show that

P(B1,d → B2,d|G)

<det

(

IMR

+qβ2
dσ

2
mindiag

{

β2
p‖g1‖2F ‖g1‖2F

N + α2‖G‖2F + β2
p‖g1‖2F

, · · · ,
β2
p‖gR‖2F ‖gR‖2F

N + α2‖G‖2F + β2
p‖gR‖2F

}

⊗ IM

)−1
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=
R∏

i=1

(

1 +
β2
d‖gi‖2Fσ2

min

4(Td/Np + 1)(N + α2‖G‖2F )2
β2
p‖gi‖2F

N + α2‖G‖2F + β2
p‖gi‖2F

)−M

.

Since

β2
p‖gi‖2F

N + α2‖G‖2F + β2
p‖gi‖2F

=

(

1 +
N + α2‖G‖2F

β2
p‖gi‖2F

)−1

> 1− N + α2‖G‖2F
β2
p‖gi‖2F

and β2
d/β

2
p = Td/Np, we have

P(B1,d → B2,d|G)

<
R∏

i=1

(

1 +
β2
d‖gi‖2Fσ2

min

4(Td/Np + 1)(N + α2‖G‖2F )2
− σ2

minTd

4(Td +Np)(N + α2‖G‖2F )

)−M

<

R∏

i=1

[(

1− σ2
minTd

4N(Td +Np)

)

+
β2
d‖gi‖2Fσ2

min

4(Td/Np + 1)(N + α2‖G‖2F )2
]−M

=γ−MR

R∏

i=1

(

1 +
β2
d‖gi‖2Fσ2

min

4γ(Td/Np + 1)(N + α2‖G‖2F )2
)−M

, (4.30)

where γ , 1− σ2
minTd

4N(Td+Np)
. Notice that γ > 0 since σ2

min ≤ 4 for any code design.

(4.30) is the same as the PEP upper bound formula (30) in [25] except for the

square in the denominator. Notice that when P ≫ 1, α ∼ 1 and β2
d ∼ P .

Following the techniques in [25], we can show that the square does not affect

the diversity result and full diversity can be obtained.

Now we prove (4.28). With perfect knowledge of G, we have R−→
Wp

= (IN +

α2
pG

∗G)⊗ INp and R−→
Wd

= (IN + α2
pG

∗G)⊗ ITd
. They can be bounded as

INNp � R−→
Wp

� (N + α2‖G‖2F )INNp,

INTd
� R−→

Wd
� (N + α2‖G‖2F )INTd

. (4.31)

Using the upper bound of R−→
Wp

,

Cov(∆f)�
(
IMR + β2

p(N + α2‖G‖2F )−1Z∗
pZp

)−1

=
(

IMR + β2
p(N + α2‖G‖2F )−1([Gt

1, · · · ,Gt
N ]⊗ IM )
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(IN ⊗ S∗
pSp)

(
[Gt

1, · · · ,Gt
N ]t ⊗ IM

) )−1
,

which can be simplified as the right hand side of (4.28). The second equality

holds since (IN ⊗ S∗
pSp) = INMR, which is derived from S∗

pSp = IMR when

Np ≥ MR.

Finally we prove (4.24). Using (4.28),

β2
dZ1,dCov(∆f)Z∗

1,d

�(IN ⊗ S1,d)

X
︷ ︸︸ ︷









[Gt
1 · · ·Gt

N ]t diag







β2
d

1 +
β2
p‖g1‖2F

N+α2‖G‖2F

, · · · , β2
d

1 +
β2
p‖gR‖2F

N+α2‖G‖2F







︸ ︷︷ ︸

Λ

([Gt
1 · · · Gt

N ]t)∗











⊗IM

(IN ⊗ S1,d)
∗

�(IN ⊗ S1,d) diag

{
N∑

i=1

GiG
∗
iΛ, · · · ,

N∑

i=1

GiG
∗
iΛ

}

︸ ︷︷ ︸

Y

⊗IM (IN ⊗ S1,d)
∗ (4.32)

=(IN ⊗ S1,d)




IN ⊗ diag







β2
d‖g1‖2F

1 +
β2
p‖g1‖2F

N+α2‖G‖2F

, · · · , β2
d‖gR‖2F

1 +
β2
p‖gR‖2F

N+α2‖G‖2F







⊗ IM




 (IN ⊗ S1,d)

∗

≺
(
(N + α2‖G‖2F )Td/Np

)
(IN ⊗ S1,d)(IN ⊗ S1,d)

∗ (4.33)

=
(
(N + α2‖G‖2F )Td/Np

)
(IN ⊗ S1,dS

∗
1,d)

≺
(
(N + α2‖G‖2F )Td/Np

)
INTd

. (4.34)

(4.32) holds since it can be shown that X � Y. To derive the inequality in

(4.33), the fact β2
d/β

2
p = Td/Np is used. (4.34) holds since S1,dS

∗
1,d � ITd

can be

obtained from S∗
1,dS1,d = IMR when Td ≥ MR. Recall the expression of Ra in

(4.18). Using the upper bound of β2
dZ1,dCov(∆f)Z∗

1,d in (4.34) together with

the bounds of R−→
Wd

in (4.31), R
−1/2
−→
Wd

RaR
−1/2
−→
Wd

≺ (Td/Np+1)(N+α2‖G‖2F )INTd
,

hence R
−1/2
−→
Wd

(

INTd
− λR

−1/2
−→
Wd

RaR
−1/2
−→
Wd

)

R
−1/2
−→
Wd

≻ 1−λ(Td/Np+1)(N+α2‖G‖2F )

N+α2‖G‖2F
INTd

.
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4.5.4 Proof of Theorem 4.3

Take the SVD of Ĝt as Ĝt = UΣ̂V whereU andV are R×R unitary matrices,

and Σ̂ = diag{λ̂1/2
1 , · · · , λ̂1/2

R } with λ̂1 ≥ · · · ≥ λ̂R. We first prove two lemmas

to help the diversity analysis.

Lemma 4.4. When P ≫ 1, given that λ̂R ≤ 1/P , we have R∆f ≻ CR∆f
,

where

CR∆f
= V∗diag

{

0, · · · , 0, 2R

2R + 1

}

V.

Proof. Replace Ĝt with its SVD in (3.38),

R∆f = V∗diag

{

k + α2
pλ̂1

k + (α2
p + β2

p)λ̂1

, · · · , k + α2
pλ̂R

k + (α2
p + β2

p)λ̂R

}

V. (4.35)

When λ̂R ≤ 1/P , we have
k+α2

pλ̂R

k+(α2
p+β2

p)λ̂R
≥ k+α2

p/P

k+(α2
p+β2

p)/P
= 2R

2R+1
+O

(
1
P

)
, where the

first inequality follows from the fact that
k+α2

px

k+(α2
p+β2

p)x
is a decreasing function.

Thus, we have R∆f ≻ CR∆f
.

Lemma 4.5. The PEP of the network given λ̂R ≤ 1/P is no smaller than a

positive constant cPEP .

Proof. Now we calculate the PEP of mistaking the codeword S1,d with S2,d.

Under the pre-designed power allocation, let αp = αd , α. The two codewords

correspond to the information vectors s1,d and s2,d respectively. Given that S1,d

is sent, from the approximate training-based system equation (4.12), we have

−→
X1,d = βdẐ1,df̂ +

−→
W′

e1,d,

where Ẑ1,d , (Ĝt⊗ITd
)S̃1,d, and the equivalent noise term

−→
W′

e1,d , βdẐ1,d∆f+
−→
Wr,d which follows CN (0,R−→

W′
e1,d

). Using the result in Lemma 4.4 that R∆f ≻
CR∆f

, the covariance matrix of
−→
W′

e1,d can be bounded as

R−→
W′

e1,d
= β2

dẐ1,dR∆f Ẑ
∗
1,d + ITdR ≻ β2

dẐ1,dCR∆f
Ẑ∗

1,d. (4.36)
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Let b , (Ẑ1,d − Ẑ2,d)f̂ , ∆Ẑd f̂ , where Ẑ2,d , (Ĝt ⊗ ITd
)S̃2,d. Using the

mismatched decoding DEC1, the conditional PEP can be calculated as follows.

PEP(S1,d → S2,d|Ĝ, f̂)

=P

(
(−→
X1,d − βdẐ1,df̂

)∗
R̂−1−→

Wd

(−→
X1,d − βdẐ1,df̂

)

≥
(−→
X1,d − βdẐ2,df̂

)∗
R̂−1−→

Wd

(−→
X1,d − βdẐ2,df̂

)

|Ĝ, f̂

)

=P

(

− β2
db

∗R̂−1−→
Wd

b ≥ tr
(

βd(R
−1/2
−→
W′

e1,d

−→
W′

e1,d)
∗R1/2

−→
W′

e1,d

R̂−1−→
Wd

b+

βdR
−1/2
−→
W′

e1,d

−→
W′

e1,d(R
1/2
−→
W′

e1,d

R̂−1−→
Wd

b)∗
)∣
∣
∣Ĝ, f̂

)

=Q






β2
db

∗R̂−1−→
Wd

b

√
2‖βdR1/2

−→
W′

e1,d

R̂−1−→
Wd

b‖F

∣
∣
∣Ĝ, f̂




 (4.37)

≥Q







f̂∗∆Ẑ∗
dR̂

−1−→
Wd

∆Ẑdf̂
√

2tr
(

Ẑ∗
1,dR̂

−1−→
Wd

∆Ẑdf̂ f̂
∗∆Ẑ∗

dR̂
−1−→
Wd

Ẑ1,dCR∆f

)

∣
∣
∣
∣
∣
Ĝ, f̂







, (4.38)

where in (4.37) Q(·) is the Q-function defined as Q(x) = 1√
2π

∫∞
x

e−t2/2dt,

and the equality comes from the fact that R
−1/2
−→
W′

e1,d

−→
W′

e1,d ∼ CN (0, ITdR) and the

property that if N ∼ CN (0, I), tr(CN∗ + C∗N) ∼ N (0, 2‖C‖2F ) [1]. (4.38)

follows from (4.36) and the fact that Q-function is a decreasing function. For

the tractability of analysis, we make another approximation ĜĜ∗ ≈ α2R2
IR

for large P . That is, we replace ĜĜ∗ with its average. This approximation

is expected to be tight especially for large R, since ĜĜ∗ → α2R2
IR as R →

∞. With this approximation, we have R̂−→
Wd

≈ (1 + α4R2)ITdR, ∆Ẑ∗
d∆Ẑd ≈

α2R2‖s1,d − s2,d‖2F , and

∆Ẑ∗
dẐ1,d ≈ α2R2

(

S̃1,d − S̃2,d

)∗
S̃1,d = α2R2(s1,d − s2,d)

∗s1,dIR.
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Thus, from (4.38), given λ̂R ≤ 1/P , we have

PEP(S1,d → S2,d|Ĝ, f̂) ≥ Q







‖s1,d − s2,d‖2F f̂∗f̂
√
2|(s1,d − s2,d)∗s1,d|

√

tr
(

f̂ f̂∗CR∆f

)







. (4.39)

The argument of the Q-function in (4.39) is irrelative of P and the denominator

of the argument is non-zero. The value of Q-function in (4.39) is a positive

number independent of P . Note that it is also independent of Ĝ other than the

condition λ̂R ≤ 1/P . Thus, after performing the expectation over f̂ , the PEP

given λ̂R ≤ 1/P is no less than a positive number, which we call cPEP .

With the result in Lemma 4.5, we can lower bound the overall PEP. When

P ≫ 1, P(λ̂R ≤ 1/P ) = 1 − e−R(1+P )/P 2 ≈ RP−1 + O(P−2). Together with

Lemma 4.5, we have

PEP=(PEP|λ̂R ≤ 1/P )P(λ̂R ≤ 1/P ) + (PEP|λ̂R > 1/P )P(λ̂R > 1/P )

>(PEP|λ̂R ≤ 1/P )P(λ̂R ≤ 1/P ) > cPEPRP−1 +O(P−2),

which means that the diversity order is upper bounded by 1.
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5 Training-Based Matched Decoding and Di-

versity Analysis

In the previous chapter, for the training-based DSTC network, we discussed

mismatched decoding where the estimation error is ignored for simplicity of

implementation. In this chapter, we study a decoding strategy where the

estimation error is taken into account and treated as one part of the noises.

Since it matches the training-based transmission equation, we call it matched

decoding. For the tractability of the analysis, all investigations in this chapter

are based on the network with M = 1, and R = N ≥ 2. The channel

estimations Ĝ and f̂ given in (3.2) and (3.16) are employed, respectively.

In Section 5.1, the matched decoding DEC2 is derived and its diversity per-

formance is analyzed. We will see that, in contrast to mismatched decoding,

matched decoding DEC2 can achieve full diversity with Np = Np,l. How-

ever, its implementation is computationally prohibitive, which could make it

impractical in reality. Thus in Section 5.2, a modified matched decoding, adap-

tive decoding, is introduced to balance the performance and complexity. For

comparison, the complexity analysis of mismatched decoding, matched decod-

ing, and adaptive decoding is provided in Section 5.3. Simulation results are

exhibited in Section 5.4.

5.1 Matched Decoding

Having shown in Section 4.3 that mismatched decoding DEC1 loses diversity

when Np = Np,l = 1 due to the neglect of the estimation error in decoding,

our particular interest is: Can full diversity be achieved when Np = 1, i.e., the

shortest training time is used? For this consideration, we further investigate

the approximate training-based system equation in (4.12).

To derive the ML decoding metric matching with (4.12), we need the condi-

tional PDF of
−→
Xd given Ĝ and f̂ , denoted as P(

−→
Xd|Ĝ, f̂). However, since

−→
W′

e,d
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is not Gaussian for ∆f is not Gaussian, it’s complicated to derive such condi-

tional PDF. For the tractability of the analysis, we treat ∆f as if Gaussian,

as we did in Section 4.3. Thus, there is

P(
−→
Xd|Ĝ, f̂) =

1

πTdR detR−→
W′

e,d

e
−(

−→
Xd−βdẐdf̂)

∗
R

−1
−→
W′

e,d
(
−→
Xd−βdẐdf̂)

. (5.1)

By maximizing this PDF, the following decoding rule is obtained:

DEC2 : arg min
sd

(

ln det(R−→
W′

e,d
) +

(−→
Xd − βdẐdf̂

)∗
R−1−→

W′
e,d

(−→
Xd − βdẐdf̂

))

.

(5.2)

Compared with DEC1 in (4.3), in DEC2, the covariance matrix of the estima-

tion error term βdẐd∆f is incorporated through R−→
W′

e,d
. We call it matched

decoding, because as opposed to DEC1, it takes into account the estimation er-

ror and matches the approximate training-based transmission equation. Note

that, since the true ∆f is non-Gaussian, this decoding is not the optimal ML

decoding of the approximate training-based transmission equation, but a sub-

optimal decoding. Simulation shows that DEC2 achieves full diversity even

when Np = 1. Thus, with the proposed matched decoding DEC2, the short-

est training time R + 2 symbol intervals are enough for the training phase to

achieve full diversity in data transmission, while with mismatched decoding

DEC1, the minimum training length for full diversity is 3R symbol intervals.

However, this reduction in training time or improvement in diversity comes

with a price on computational complexity. It is noteworthy that R−→
W′

e,d
in

(4.13) depends on the transmitted signal through Ẑd. DEC2 thus cannot be

reduced to decoupled symbol-by-symbol decoding. The update of R−1−→
W′

e,d

dur-

ing decoding further aggravates the computational load.
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Algorithm 4 Adaptive decoding (A-DEC)

1: Choose the positive threshold ǫ.
2: Let λ̂R be the smallest eigenvalue of ĜĜ∗. If λ̂R < ǫ, employ DEC2;

otherwise, employ DEC1,simp.

5.2 Adaptive Decoding

In a training-based communication system, it is desirable to achieve reliable

communication with both a short training period and low decoding complexity.

From Section 4.1, we know that DEC1,simp can be performed symbol-wise; in

addition, from simulation, DEC1,simp is observed to have almost the same per-

formance as DEC1. Therefore, although DEC1,simp possesses a low complexity,

it cannot achieve full diversity with the minimum training length, R+2 symbol

intervals. We also know that, DEC2 can achieve full diversity with the mini-

mum training length, but it requires joint decoding of all information symbols.

In this subsection, we propose an adaptive decoding (A-DEC) by switching be-

tween DEC1,simp and DEC2 based on the quality of Ĝ to achieve a balance

between performance and complexity with the shortest training length.

The idea of A-DEC is to use the more complicated but reliable matched

decoding DEC2 only when necessary. Since we target at the shortest training,

only the Np = 1 case is considered in this part. As discussed before, when

Ĝ is close to singular, the equations in the training model (3.19) are close

to dependent, thus large estimation error occurs. Let λ̂1 ≥ · · · ≥ λ̂R be the

ordered eigenvalues of ĜĜ∗. We thus use λ̂R, the smallest eigenvalue of ĜĜ∗,

to indicate the quality of Ĝ. When λ̂R is less than a pre-designed threshold ǫ,

we consider Ĝ as ill-conditioned (close to singular) and adopt DEC2; otherwise,

the low-complexity decoding DEC1,simp is used. A-DEC is also described in

Algorithm 4.

With A-DEC, the balance between performance and complexity can be con-

trolled by adjusting the value of ǫ. When ǫ = 0, A-DEC reduces to DEC1,simp;

when ǫ approaches infinity, it becomes DEC2. With a smaller ǫ, A-DEC has

lower complexity but achieves less reliability, and vice versa. Simulation shows
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that for any positive ǫ, full diversity can be obtained when Np = 1.

5.3 Complexity Analysis

We now study the complexity of the proposed decoding schemes, including the

mismatched decodings (DEC1 and DEC1,simp), the matched decoding (DEC2),

and the adaptive decoding (A-DEC).

To measure complexity, the unit of flop is employed, which is defined as the

amount of the calculation associated with one elementary operation (addition

or multiplication) [66,67]. The followings are the rules we adopt in calculating

the number of flops. To calculate AB + C where A, B, and C are m × n,

n× p, and m× p matrices respectively, 2mnp flops are needed. To save flops,

the calculation of the inverse of an n × n non-singular matrix is performed

by solving linear equations, where 2n3/3 flops are required. To calculate the

determinant of an n× n matrix, 2n3/3 flops are required.

Let C be the modulation for the information symbols sd,i’s and |C| the car-

dinality of C. Assume that a rate-1 (with respect to each step) orthogonal

DSTC is used in data transmission, e.g., Alamouti code. Orthogonal DSTC

with other rates can be treated similarly. By the aforementioned rules, the

number of flops needed for performing DEC1, DEC1,simp, and DEC2 can be

calculated to be:

Comp(DEC1)

= R3

[(
2

3
Td + 2

)

T 2
d |C|T + 2

]

+ 2R2Td|C|T + 2RTd|C|T , (5.3)

Comp(DEC1,simp)

= R2(2T 2
d + 2Td + 1) +RTd + Td(|C| − 1), (5.4)

Comp(DEC2)

= R3

[(
4

3
T 2
d + 4Td + 2

)

Td|C|T + 10

]

+ 2R2Td|C|T + 2RTd|C|T + |C|T ,(5.5)

respectively, where we have used Comp(·) to indicate the complexity of a de-
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coding. It is plain to see that, for DEC1 and DEC2, the associated complexities

are cubical in the network size R and exponential in Td due to the joint symbol

decoding; for DEC1,simp, the associated complexity is quadratical in R and Td

due to symbol-wise decoding.

For A-DEC, the average number of flops can be derived approximately as

follows:

E [Comp(A-DEC)]

= P(λ̂R < ǫ)Comp(DEC2) + P(λ̂R ≥ ǫ)Comp(DEC1,simp). (5.6)

Since ĜĜ∗ is a Wishart matrix [54], it can be shown that λ̂R is exponentially

distributed with mean P/ (R(P + 1)). Thus P(λ̂R < ǫ) = 1−e−Rǫ(1+P )/P ≈ Rǫ

for small ǫ, which means that DEC2 will be adopted with an approximate

probability of Rǫ.

In Table 5.1 and 5.2, we list the required numbers of flops for DEC1, DEC1,simp,

DEC2, and A-DEC with several common constellations when R = 2 and 3 re-

spectively. Td, the length of each step in data transmission, is set to be 2 when

R = 2 and 4 when R = 3.
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Table 5.1: Numbers of flops in coherent decodings with R = 2

DEC1 DEC1,simp DEC2 A-DEC
ǫ = 0.1

A-DEC
ǫ = 0.01

A-DEC
ǫ = 0.001

BPSK 539 58 1162 279 81 61

4QAM 2107 62 4406 931 149 71

16QAM 33467 86 69285 13926 1470 225

Table 5.2: Numbers of flops in coherent decodings with R = 3

DEC1 DEC1,simp DEC2 A-DEC
ǫ = 0.1

A-DEC
ǫ = 0.01

A-DEC
ǫ = 0.001

BPSK 3.38×
104

385 6.98×
104

2.12 ×
104

2.47 ×
103

594

4QAM 5.41×
105

393 1.11×
106

3.34 ×
105

3.38 ×
104

3.73×103

16QAM 1.38×
108

441 2.84×
108

8.54 ×
107

8.54 ×
106

8.55×105
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Figure 5.1: Mismatched decoding, matched decoding, and perfect CSI decod-
ing for the network with M = 1, R = N = 2.

5.4 Simulation Results

In this section, simulation results are exhibited. BPSK is used for data trans-

mission for all simulated networks. For two-relay networks, i.e., R = 2, Alam-

outi code is used, while for three-relay networks, i.e., R = 3, a generalized

rate-1 real orthogonal code is used [1].

In Fig. 5.1, the performance of mismatched decodings (DEC1and DEC1,simp),

matched decoding (DEC2), and perfect CSI decodings (DEC0 and DEC0,simp)

are shown for the network with R = 2. First, we observe that the differences

between DEC1 and DEC1,simp, and between DEC0 and DEC0,simp are negligi-

ble. But note that, from Table 5.1, the complexity of the simplified decodings

in terms of the number of flops is only 1/10 that of the original ones. Second,

for DEC2, full diversity is achieved even for Np = 1, and the performance is

about 11dB better than that of DEC1 at the BLER of 10−4. When Np = 2,

DEC2 is only slightly better than DEC1. But the complexity of DEC2 is about
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Figure 5.2: Mismatched decoding, matched decoding, and perfect CSI decod-
ing for the network with M = 1, R = N = 3.

twice that of DEC1 and 20 times that of DEC1,simp. Compared with the per-

fect CSI decoding, when Np = 1, DEC2 is about 6dB worse; when Np = 2, it

is about 2.5dB worse.

In Fig. 5.2, the performance of the mismatched decoding DEC1,simp, matched

decoding DEC2, and perfect CSI decoding DEC0 are shown for the network

with R = 3. For the matched decoding DEC2, full diversity is achieved when

Np = 1. When Np increases from 1 to 2, the performance of DEC2 is improved

by about 0.5dB. Very little improvement can be obtained with further increase

in Np. For Np = 1, the advantage of DEC2 over DEC1,simp is about 22.5dB at

the BLER level of 2× 10−5, while the difference reduces to 3dB when Np = 2,

and is negligible when Np = 3. From Table 5.2, the complexity of DEC2 is

181 times that of DEC1,simp. The perfect CSI decoding DEC0 is shown as a

benchmark. Due to imperfect training, for DEC2, when Np = 1 (5 symbol

intervals for training), the degradation is about 3dB; when Np = 2 and 3, the
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Figure 5.3: Adaptive decoding for the network with R = 2.

degradation is about 2dB.

In Fig. 5.3, the performance of adaptive decoding is shown for the network

with R = 2. Np is set to be 1, thus the minimum training length, 4 symbol

intervals, is applied. ǫ is chosen as 0.001, 0.01, and 0.1. It is observed that all

three A-DECs achieve full diversity. As ǫ increases, BLER decreases. BLERs

of the mismatched and matched decodings are also shown for comparison. A-

DEC has about the same performance as the mismatched decoding DEC1,simp

in the low power region. But as the power increases, its BLER decreases

much faster due to its full diversity. It is about 3dB better at the BLER of

10−4 even when ǫ is as small as 0.001. From Table 5.1, we can see that this

improvement is gained with only 3 extra flops in each block decoding. When

ǫ = 0.01, A-DEC is about 2.5dB worse than the matched decoding DEC2 with

a complexity only 1/14 of DEC2. When ǫ = 0.1, A-DEC performs almost the

same as DEC2, but its complexity is less than 1/4 of DEC2. Therefore, the

proposed adaptive decoding is an efficient decoding scheme. By choosing a
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Figure 5.4: Adaptive decoding for the network with R = 3.

proper ǫ, we can balance reliability and complexity.

In Fig. 5.4, the performance of A-DEC is shown for the network with R =

3. Np is set to be 1, i.e., the minimum training length, 5 symbol intervals,

is applied. Similar observations to those in Fig. 5.3 can be seen. All A-

DECs achieve the full diversity, which is 3. In contrast with DEC1,simp at the

BLER of 2 × 10−5, A-DEC with ǫ = 0.001 has about 7dB advantage and 1.5

times complexity; A-DEC with ǫ = 0.01 has about 12.5dB advantage and 6.4

times complexity; A-DEC with ǫ = 0.1 has about 18.5dB advantage and 55

times complexity. In contrast with DEC2 at the BLER of 10−5, A-DEC with

ǫ = 0.001 has about 15.5dB disadvantage and 1/118 complexity; A-DEC with

ǫ = 0.01 has about 10dB disadvantage and 1/28 complexity; A-DEC with

ǫ = 0.1 has about 4dB disadvantage and 1/3 complexity.
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5.5 Summary

For the network with M = 1, R = N ≥ 2, we considered the matched decoding

based on the approximated training-based system equation. It was shown

that as opposed to the mismatched decoding, which only achieves diversity

one when Np = Np,l = 1, matched decoding can achieve full diversity when

Np = 1. However, its complexity is prohibitively high. A modified matched

decoding, adaptive decoding, was hence introduced by switching between the

simplified mismatched decoding DEC1,simp and matched decoding DEC2 to

balance the performance and complexity. The complexity analysis with respect

to mismatched decoding, matched decoding, and adaptive decoding was also

given. Simulation results were exhibited to demonstrate our conclusions.
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6 Summary and Future Work

Cooperative relay network is very popular these days since it can exploit pos-

sible cooperation among the relay nodes in the networks to provide spatial

diversity. A lot of cooperative schemes have been proposed, such as AF re-

laying, DF relaying, and DSTC etc. For most of the proposed cooperative

schemes, accurate CSI is required at the receiver to achieve the desired perfor-

mance. In practice, to get such CSI information, channel training is employed

where known pilot signal is sent to track the channels.

In this thesis project, we considered channel training (Chapter 3) and de-

coding (Chapter 4 and Chapter 5) for MIMO relay network with multiple

single-antenna relays, and multiple transmit and receive antennas. Compared

with the previous work on channel training and performance study with sin-

gle relay or transmit/receive antenna, design and analysis for MIMO relay

network is more challenging. For one thing, the existence of multiple trans-

mit and receive antennas can largely complicate the training design and the

corresponding performance analysis; for another, due to the multiple commu-

nication stages, channel training for one stage could be coupled with channel

trainings for other stages, which leads to a non-Gaussian estimation model

making analysis even more involved.

In Chapter 3, channel training was investigated for MIMO relay networks.

The objective of channel training is to estimate the transmitter-relay channel

vector f , the relay-receiver channel matrix G, and the end-to-end channel ma-

trix H at the receiver, where the LMMSE estimator is empoyed. Note that,

with our training scheme, the relays are not required to be equipped with

estimators. The associated training design, which includes training scheme

design, training code design, training time design, and power allocation, were

discussed respectively. We showed that, since the relay-receiver link is a virtual

multiple-antenna system, the training design results in [2] are used. For the

training of f , DSTC scheme was employed. Since the equivalent pilot signal
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in estimating f needs the information of G, the training of f was first dis-

cussed for the MIMO relay network by assuming the estimated G as perfect.

Then, considering the estimation error of G, the training of f was revisited

for the specific network with M = 1, R = N ≥ 2. To estimate H, two train-

ing schemes, called separate training and direct training, were provided and

compared.

Employing the channel estimations provided in Chapter 3, we investigated

decoding strategies for the training-based DSTC network. Two coherent de-

codings were considered: mismatched decoding (Chapter 4) in which channel

estimations are treated as if perfect, and matched decoding (Chapter 5) in

which estimation error is taken into account.

For mismatched decoding DEC1, diversity performance was first discussed

for the MIMO relay network neglecting the estimation error ofG. It was shown

that, with Np = Np,l, the shortest training time in estimating f , full diversity

cannot always be achieved in data transmission. To achieve full diversity, an

upper bound on the minimum Np was given as MR. To shorten the training

time while maintain the full diversity, an adaptive training was provided whose

training time length is adaptive to the relay-receiver channel matrix G. Then,

by considering the estimation error of G, diversity of DEC1 was analyzed for

the specific network with M = 1 and R = N ≥ 2. It was shown that, with the

shortest training length R+2 symbol intervals, the diversity order is no larger

than 1, and at least 3R symbol intervals are required in training to achieve

full diversity.

The matched decoding DEC2 was considered for the specific network with

M = 1, R = N ≥ 2. We showed that, matched decoding can achieve full

diversity when Np = Np,l = 1. However, its complexity is prohibitively high.

A modified matched decoding, adaptive decoding, was hence introduced by

switching between the simplified mismatched decoding DEC1,simp and matched

decoding DEC2 to balance the performance and complexity.

In the following, we list and summarize some future works related to this
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thesis project.

• Extension of channel training to correlated channel model: In this work,

we only considered the i.i.d. channel model. As discussed in Subsection

3.6.1, when channel correlation is considered, our training scheme cannot

be fully applied even when the correlation matrices are known at the

receiver. Further investigation on training design such as training code

design and training time design is needed. When the channel correlation

matrices are unknown at the receiver, the channel estimation problem

should also include the estimation of correlation matrices, where the

associated training design is needed.

• Extension of training of f with estimated G to general network: When

the estimation error of G is considered in estimating f , our analysis is

focused on for the specific network with M = 1, R = N ≥ 2. In Subsec-

tion 3.4.4, we discussed the extension to the general network, where the

main difficulty lies in the analysis of training properties such as MSE(f̂).

To perform further analysis, more involved computation is needed.
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