

University of Alberta

Robust Background Estimation with GPU Speed Up

by

Xida Chen

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

©Xida Chen

Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential

users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Yee-Hong Yang, Computing Science

Mario A. Nascimento, Computing Science

Arie Croitoru, Earth & Atmospheric Sciences

Abstract

Given a set of images from the same viewpoint, in which occlusions are present,

background estimation is to output an image with stationary objects in the scene

only. Background estimation is an important step in many computer vision prob-

lems such as object detection and recognition. With the growing interest in more

sophisticated video surveillance systems, the requirement for the accuracy of back-

ground estimation increases as well.

In this thesis, we present two novel methods whose fundamental objectives are

the same, namely, to estimate the background of a set of related images. In order to

make our methods more general, we assume that the input images can be taken ei-

ther from the same viewpoint or from different viewpoints. Both methods combine

information from multiple input images by selecting the appropriate pixels to con-

struct the background. Our first method is a scanline energy optimization method,

and our second method is based on graph cuts optimization. We apply these two

methods to datasets with different feature and the results are encouraging. Fur-

thermore, we use the CUDA (Compute Unified Device Architecture) programming

language to make full use of the GPU processing power. GPU stands for Graph-

ics Processing Unit, which employs parallel processing and is more powerful than

the CPU. In particular, we implement an efficient graph-based image segmentation

algorithm as well as a linear blending method using the CUDA programming lan-

guage for acceleration, both of which are used in our first method. The speedup of

our GPU implementation can be 20 times faster.

Acknowledgements

First of all, I would like to thank Dr. Herb Yang sincerely for taking me as his

student and allowing me to pursue my research interests. Throughout the past two

years, he has been constantly sharing his considerable wisdom in this field, and pro-

viding invaluable guidance in the supervision of this thesis work. He is absolutely

the most enjoyable person I could imagine as a research advisor.

I am very grateful to the committee members: Dr. Mario Nascimento and Dr.

Arie Croitoru, for their time on reading and commenting on this work. I am sure

that their suggestions are greatly valuable to improve my thesis.

I must also thank my current and former group members in Computer Graphics

Lab at University of Alberta, Cheng Lei, Daniel Neilson, Yilei Zhang, Gopinath

Sankar, Omar Rodriguez-Arenas, Jason Gedge and Yufeng Shen, for many illumi-

nating discussions. In particular, I would like to thanks Cheng Lei and Yilei Zhang,

their help has been greatly appreciated. I had the good fortune of investigating top-

ics that overlap with the work of Cheng Lei, and his advice is always useful to my

research.

Last but not least, I wish to thank my parents, for encouraging me in the pursuit

of my dreams. They have set an example of hard work and patience that I strive to

live up to. I couldn’t have done it without their support and encouragement.

Contents

1 Introduction 1

2 Related Works 6

2.1 Image Stitching . 6

2.2 Background Estimation . 11

3 Robust Background Estimation 29

3.1 Segmentation-Based Background Estimation 29

3.1.1 Cost Function . 31

3.1.2 Smoothness Measure . 32

3.1.3 Stationary Coefficient . 35

3.1.4 Cost Minimization . 36

3.1.5 Implementation . 37

3.1.6 Parameter tH . 37

3.1.7 Experimental Results . 40

3.1.8 Application . 46

3.2 Sampling-Based Background Estimation 48

3.2.1 Motivation . 48

3.2.2 Energy Function . 49

3.2.3 Data Term . 51

3.2.4 Smoothness Term . 54

3.2.5 Implementation . 56

3.2.6 Experimental Results . 57

3.2.7 Application to High Dynamic Range Images 63

3.3 Conclusion . 66

4 GPU Speed Up 68

4.1 Overview . 68

4.1.1 GPU Architecture . 69

4.1.2 CUDA . 70

4.2 GPU Image Segmentation . 71

4.3 GPU Linear Blending . 75

5 Conclusions and Future Work 81

5.1 Contributions . 81

5.2 Future Work . 83

Bibliography 84

A Homography 91

B GPU Segmentation 93

B.1 Building the graph . 93

B.2 Segmentation . 95

C Sampling-based Method with Various Window Size 97

List of Tables

4.1 Comparison between the running time for image segmentation on

the CPU and the GPU. 75

4.2 Comparison between the running time on the CPU and on the GPU

for linear blending. 78

List of Figures

1.1 An image with a fence as the foreground object. 2

1.2 Two regions from two different images of the same scene. Although

these regions are at the same position, the illumination changes sig-

nificantly between them. 4

2.1 Panoramic image created by the automatic image stitching system.

(from http://www.cs.ubc.ca/∼mbrown/panogallery/panogallery.html) 7

2.2 Panoramic image created by the automatic image stitching system

with moving objects in the scene. 8

2.3 Detection of RODs for each input image and the graph representa-

tion. (from [56]) . 10

2.4 Left: Result when applying a typical image stitching system. Right:

Result by applying some method for ghost elimination. (from [56]) . 10

2.5 The flow chart of the road modeling stage (from [26]) 13

2.6 Result by median filtering (from [13]). Error exists in the circled

region. 14

2.7 Block diagram of background update procedure in the system for

multiple car tracking. (from [35]) 15

2.8 Constructed background by the defined cost function and graph cuts

optimization. (from [1]) . 19

2.9 Overlapping windows. (from [14]) 21

2.10 Background estimation results. (from [58]) 22

2.11 Background estimation result by applying the method proposed in

[58]. 23

2.12 Background estimation results (from [13]). Left: result by median

filtering. Right: result by [13]. 25

2.13 Background estimation by applying the method in [13]. 26

3.1 Image alignment. Left column: two input images taken from dif-

ferent viewpoints. Right column: aligned results for the two input

images. 30

3.2 Flow chart of our method. 32

3.3 Left: Input image. Right: Segmentation result by applying the

method proposed in [23] . 35

3.4 Cost assignment. 36

3.5 Linear blending. 38

3.6 Flow chart of our alternative method. 39

3.7 An example to illustrate how linear blending lower the probability

of the background pixels. Top row: the input images. Bottom row:

the linear blending results. 40

3.8 Background estimation from different datasets with various features. 41

3.9 (a) Four input images from different viewpoints, with transient ob-

jects. (b) Estimated background by our proposed method. (c) Esti-

mated background by the alternative method. (d) Result produced

by the image stitching system [11]. (e) Result by applying [1]. . . . 42

3.10 (a) Multiple view images with window frames as foreground ob-

jects. (b) Estimated background by our method. (c) Estimated

background by our alternative method to eliminate the threshold.

(d) Estimated background by applying [1]. (e) Result when using

the smoothness measure without segmentation information. (f) Re-

sult with smoothness measure along y-direction only. 43

3.11 Multiple image de-fencing. (a) Six input images with a fence as

foreground object. (b-f) Results with different number of input im-

ages. (g) The central part of (f). (h) Applying [11] to the six images.

(i) Applying [1] to the six images. 44

3.12 (a) Five input images from Cathedral scene. (b) Estimated back-

ground by our method. (c) Estimated background by [1]. 45

3.13 Result by applying our alternative method to the dataset shown in

Figure 3.12(a). 45

3.14 (a) A subset of 21 images from [3]. (b) Estimated background by

our method. (c) Estimated background by [1]. 46

3.15 (a) A color image and its corresponding depth map. (b) Estimated

background by our method. (c) The background image used in [37] 47

3.16 Top row: A color image and its corresponding depth map. The

viewpoint is different from the ones in Figure 3.15. Bottom row:

Estimated background. 48

3.17 Apply our method to the “Ballet” sequence. (a) The color images

with their corresponding depth maps. (b) Estimated background by

our method. 48

3.18 The flow chart of this method. 50

3.19 An image inpainting example. 52

3.20 The stable image IST for the input image sequence shown in Figure

3.12. 53

3.21 Result when the unstable regions in Figure 3.20 are filled in by

predicted values. 56

3.22 (a) A natural image sequence with six input images. (b) Estimated

background by applying our method. (c) Estimated background by

applying the method proposed in [1]. 58

3.23 (a) Result with the stationary term and the smoothness term. (b) Re-

sult with the stationary term, the smoothness term and the predicted

term only by local color sampling. (c) Result with the stationary

term, the smoothness term and the predicted term only by global

color sampling. (d) Result with the stationary term, the smoothness

term and the predicted term by both local and global color sampling. 58

3.24 (a) Eight input images of the Market scene. (b) Estimated back-

ground by applying our method. (c) Estimated background by ap-

plying the method proposed in [1]. 59

3.25 Comparison of the results with and without our histogram acceler-

ation. 60

3.26 Applying our method to Cathedral scene. (a) Five input images.

(b) Estimated background by applying our method. (c) Estimated

background by [1]. 60

3.27 Applying our method to the Brandenburg gate scene. (a) 6 of 21

input images. (b) Estimated background by applying our method.

(c) Estimated background by [1]. 61

3.28 Applying our method to images taken by a traffic surveillance cam-

era. (a) 4 of 25 input images. (b) Estimated background by applying

our method. (c) Estimated background by a median filter (from[13]). 62

3.29 (a) Four images with a window frame as the foreground object. (b)

Estimated background by applying our method. (c) Estimated back-

ground by [1]. 62

3.30 (a) Four images with large illumination changes. (b) Estimated

background by applying our method. (c) Estimated background by

[1]. 63

3.31 Input images with different exposure times. 64

3.32 Corresponding tone mapped input images. Top row: original input

images. Bottom row: tone mapped images. 65

3.33 (a) Estimated background by our method. (b) The result produced

by applying the “dodging-and-burning” method. 66

4.1 Floating-point operations per second for the CPU and the GPU.

(from [46]) . 68

4.2 A simplified diagram of a programmable graphics pipeline. 69

4.3 Thread-batching model of GPU. (from [46]) 71

4.4 A graph: the representation of an image. 72

4.5 (a) An input image to the image segmentation algorithm. (b) The

segmentation result produced by [23]. (c) The result by our GPU

implementation. 75

4.6 Comparison of the background estimation results with the image

segmentation results by both the GPU and the CPU implementa-

tion. (a) The estimated background of the dataset on the first row

in Figure 3.8. (b) The estimated background of the dataset shown

in Figure 3.9. Left column: with GPU image segmentation results.

Right column: with CPU image segmentation results. 76

4.7 Running time of the image segmentation algorithm on the CPU and

the GPU. 77

4.8 Linear blending on the CPU and on the GPU. (a) The input images

for linear blending. (b) Result by GPU linear blending. (c) Linear

blending result on the CPU. 79

4.9 Comparison of the background estimation results with linear blend-

ing on the CPU and on the GPU. Left column: with linear blending

on the CPU. Right column: with linear blending on the CPU. 80

4.10 Running time of linear blending on the CPU and on the GPU. 80

A.1 Projective transformation . 91

C.1 Comparison of the results by the sampling-based method with dif-

ferent window size. 97

Chapter 1

Introduction

Background estimation is to construct the background without occluding foreground

objects from an image sequence that includes occluding foreground objects in the

scene. In some traditional methods, such as [42] [17] [35] [30], the camera is

assumed to be static, and the background objects are defined to be the stationary

objects throughout the input sequence. In this thesis work, the definition of the

background is the same as traditional methods if the camera is static. However, if

the camera is moving, the background is defined to be the objects that are in the

same position among the input images after the images are aligned to each other.

Background estimation is an important task and has found many applications in

the area of computer vision because knowing the background image of a sequence

simplifies many computer vision problems. For example, background estimation is

normally the first step in a background subtraction algorithm [21] [17] [29]. The

estimated background is used as a mask for each input frame. In video segmenta-

tion, the background of a scene provides a lot of information to extract foreground

objects. Several effective algorithms have been proposed [16] [53] for real-time

foreground/background segmentation. In video surveillance, traffic monitoring and

object tracking, the background of a scene provides useful information to the seg-

mentation of moving objects.

With the fast advancement of hardware, digital cameras are so popular nowa-

days that they appear in many different forms from low cost web cameras to high

end single lens reflex cameras. Despite the proliferation of cameras, their views

are still limited by the field of view in the design of the cameras. For people who

1

are not satisfied with images from a single view, they can stitch images from mul-

tiple views taken by one camera to form a panorama with a larger field of view.

As a matter of fact, many cameras come with software that can do image stitching.

Some newer ones can even do it in the camera. Hence, the field of view is not an

issue any more. As well, Brown et al. [11] develop an automatic image stitching

system, which creates nice-looking panoramas from multiple view images. The

main limitation of this method is that the final image may have undesirable objects

in the scene. For example, when someone is in a room and wants to take images

of the beautiful natural scenery outside of the window, the scene may be occluded

by the window frames, which will remain in the final panorama when the auto-

matic stitching system is used. A more challenging example is to get rid of a fence

which happens to be in the foreground of the images (Figure 1.1). Not only will the

fence prevent the automatic stitching system from creating a correct panorama, it

will also remain in the final panorama. Recently, Liu et al. [40] propose a method

for image de-fencing using an image inpainting technique, which is to synthesize

the background that is occluded and is different from estimating the background.

Therefore, a method to estimate background from multiple images with undesirable

foreground objects removed has many practical applications.

Figure 1.1: An image with a fence as the foreground object.

Humans have an amazing ability to interpret the scenes from their images. Even

from a single image, humans can obtain a lot of information of the scene such as

ground orientation, relative positions of major landmarks, and so on. A typical

2

explanation for such an ability is that our perception of a scene is based on both the

immediate sensory evidence and our visual experience and interactions with the real

world. In fact, humans take advantage of geometry, shapes of objects that are shown

in an image, and determine the relationship among them. In particular, given a set of

images taken from the same viewpoint, a person can identify the background objects

as well as foreground objects easily. The reason is because we can infer the depth

information from the image sequence. However, for a computer, to obtain the depth

information from an image sequence could be even more difficult than to estimate

the background. Therefore, the depth information of an image is normally assumed

to be unknown when tackling the problem of background estimation. There are

several factors such as camera motion, scene brightness and moving objects, that

make the background estimation problem challenging. Even when the factors listed

above do not exist, the problem is still difficult because the background in some

areas might be visible for only a small amount of time in the input image sequence.

In this thesis, we propose two novel algorithms to estimate the background using

a set of related images. We assume that the cameras can be either static or moving

freely, which means that the images can be from the same viewpoint or different

viewpoints. As a result, the illumination conditions among input images could vary

significantly. Given an input image sequence, the output of our algorithms is an

image with only background objects. There is an important assumption for both of

our proposed methods, namely, each background pixel has to be disclosed at least

once throughout the entire image sequence. This is an essential assumption for all

the background estimation methods that have been developed so far. Some algo-

rithms even make an assumption that every background pixel is exposed for more

than 50% of the whole sequence [45]. Under this assumption [45], the background

can be removed by a simple median filter. Furthermore, a natural image sequence

can be complex and such an assumption rarely holds. As a result, the constraint of

our algorithm that requires every background pixel to appear at least once is more

general and practical. A unique feature of our first algorithm is to integrate segmen-

tation information into the objective function, the optimization of which gives the

estimated background. Our second method incorporates an image inpainting tech-

3

nique to define a new predicted term, which has never been done before. Because

of the integrated image inpainting technique, our second method has an additional

constraint, which requires some background regions never be occluded in the im-

age sequence. We observe that this is also an essential assumption for most of the

previous methods [58] [13] [28]. Our algorithms utilize multiple input images of a

scene and select the appropriate pixels to construct the background. In the output

image, the transient foreground objects will be removed.

The proposed algorithms address several problems which are normally present

in background estimation.

â Illumination difference among input images. Because we assume that the in-

put images can be taken from different viewpoints, or at different times, the illumi-

nation change can be significant among them. Figure 1.2 shows that the appearance

of the ground is quite different when the same scene is taken at different times of

the day. As a result, the pixel value that corresponds to the same physical point can

be different in different images.

Figure 1.2: Two regions from two different images of the same scene. Although
these regions are at the same position, the illumination changes significantly be-
tween them.

â Artifacts when fusing images. Seams could exist in the output image due to

varying illumination conditions.

â Robustness of the algorithm. A robust algorithm should have minimal as-

sumptions of the foreground or the background.

Besides the high quality results, the processing time of an algorithm is also

important in real world applications. Sometimes a particular task may require a

real-time solution. To address this issue, parts of the proposed algorithm are im-

4

plemented using the GPU (Graphics Processing Unit). The GPU is specifically de-

signed for compute-intensive, highly parallel graphics computation [46]. More re-

cently, it has been applied to general purpose computation [2]. It is a multithreaded,

many core processor with tremendous computational horsepower and very high in-

ternal memory bandwidth. For example, the Floating-Point Operations per Second

(FLOP/s) for Geforce GTX 295 is about 1800 Gflops/s, while it is only about 100

Gflops/s for a 3.2GHz Intel Harpertown. The memory bandwidth is 223.8 GB/s

for GTX 295 and about 14 GB/s for 3.2GHz Harpertown. The GPU is very effi-

cient at computer graphics, and its highly parallel structure makes it more effective

in some forms of computation than the general purpose CPU. In particular, the

GPU is the best choice to address problems that require data-parallel computations,

that is, the same program is executed on many processing elements in parallel. Re-

cently, NVIDIA has developed a programming model for multithreaded processors.

CUDA, short for Compute Unified Device Architecture, which is known as a par-

allel computing architecture, is a C-style programming language that is well suited

to expose the parallel capabilities of the GPU to applications.

In this thesis, we implement an efficient graph-based image segmentation al-

gorithm and a linear blending method using the CUDA programming language for

acceleration purpose. Both of these methods are used in our first background esti-

mation method.

The remaining part of this thesis is organized as follows. The second chapter

discusses some related works. In Chapter 3, we present two novel algorithms for

background estimation. Then in Chapter 4, we give more details of the implemen-

tation of an image segmentation algorithm and a blending algorithm on the GPU.

Finally we conclude and introduce future work in Chapter 5.

5

Chapter 2

Related Works

Driven by the increasing popularity of panoramic photography, many software pro-

grams for creating panoramic images have been developed, e.g. Adobe Photoshop

and Corel PhotoImpact. Most of the methods for image stitching developed so far

are completely automatic [11]. A drawback of some typical image stitching systems

is that ghosts maybe present in the final panorama. As a result, methods to elimi-

nate ghosting effect in panoramic images are proposed. The methods proposed for

ghost elimination normally select the regions from the input frames to composite a

panorama. However, the regions that are selected by these methods may not always

be the background regions.

On the other hand, background estimation, as well as background modeling,

is a common problem in many areas of computer vision. Researchers have been

working on this topic for more than a decade. In this chapter, we discuss some

related works in both the image stitching and the background estimation areas.

2.1 Image Stitching

Brown et al. [11] develop an automatic image stitching system to create panoramic

views from image datasets. The objective of this system is to operate on a database

of images and find all the matching images. Then the subsets of matching images

can be combined into nice-looking panoramas. A unique feature of this system is

that there is no need to order the input images and the images can be taken from any

viewpoints. The system utilizes Lowe’s Scale Invariant Feature Transform (SIFT)

6

[43] [44] to detect local features in images. The SIFT features are based on the

appearance of the object at particular interest points. They are geometrically invari-

ant under similarity transforms and under affine changes in intensity. Therefore,

SIFT features are suitable for matching different images of an object or a scene.

For example, given two images with overlapping regions, the image stitching sys-

tem detects SIFT features in both images and finds the matching features. After

that, the matching features are used for image registration, which is to compute a

homography between two images. A homography is a projective transform that

maps points from one projective plane to another projective plane. The details of

homography is discussed in the Appendix A.

Since the input images could be taken from different viewpoints, the illumina-

tion conditions might change significantly among them. However, the panoramic

image created by this system is smooth overall (Figure 2.1). When the system

performs multi-band blending [12] to render the panorama, it uses all the source

images that project into a given destination pixel and computes a weighted blend of

the source images. As a result, if there are transient objects in the scene, they will

remain and appear blurred in the panorama (Figure 2.2). Some applications may

accept blurred regions, however, many applications may prefer a single focused

image.

Figure 2.1: Panoramic image created by the automatic image stitching system.
(from http://www.cs.ubc.ca/∼mbrown/panogallery/panogallery.html)

7

Figure 2.2: Panoramic image created by the automatic image stitching system with
moving objects in the scene.

Because of the existing blurred regions in the results produced by a typical im-

age stitching system, several algorithms have been proposed to eliminate the ghosts

in the panoramic images. Davis [19] proposes a method that cuts the images be-

tween regions with moving objects and finds the best cut using Dijkstra’s algorithm.

In particular, this method considers the overlapping regions in a pair of registered

images at a time. The relative difference between two input images are calculated

and provided as a measure of similarity. If two images have identical pixels in the

overlapping regions, then the difference is zero. However, if the pixels are from

different objects, the intensity difference can be large. Then this method uses Di-

jkstra’s algorithm to find a path dividing the overlapping section. The path avoids

areas where the source pair is inconsistent due to the moving objects. This method

is extended to a sequence of input images. It first compute the mosaic of two in-

put images, then the mosaic and another input image is used as input to the above

described process. The process is iterated for each input image.

8

Uyttendaele et al. [56] propose a method to eliminate the ghosts in image mo-

saic. The method determines which objects to keep and which ones to remove in

the final composite. The first step is to detect the unstable regions, which are re-

gions that differ across images. The method only searches for regions of difference

(ROD) in the overlap areas of the input images. For each input image, pixels that

differ by more than a pre-defined threshold from pixels in the overlap regions are

flagged as unstable pixels. Figure 2.3 shows how the RODs are detected for each

input image. There are three images in the figure with a smiling face as the moving

object. The shadow regions that are shown in Figure 2.3(b) are the RODs. Then the

algorithm uses the RODs as a mask and determines which image should be selected

to fill in each ROD. It gives each ROD a weight that is proportional to its size and

proximity to the center of its image. In other words, the larger and more central

RODs are assigned higher weights. The computation of the weight is described

in [50]. For a certain ROD, an image with the minimum weight in that region is

selcted. As a result, only one image is used to fill in each ROD. The comparison

between the result without ghost elimination and the result with it is given in Figure

2.4. In the image, we can see that there is no blurred region with the ghost elimina-

tion method. However, the method cannot guarantee that all the regions in the final

panorama are background regions.

Levin et al. [39] propose a method for image stitching in the gradient domain.

The goal of their method is to make the seams between input images invisible. The

method presents a cost function to measure the stitching quality in the intersection

regions in the gradient domain and the minimization of that cost function computes

the mosaic image. In particular, the cost function is a dissimilarity measure between

the derivatives of the mosaic image and the derivatives of the input images.

In the system described in [11], multi-band blending [12] is applied at the last

step to create a smooth panorama. Besides this blending method, linear blending

is another straightforward strategy. The basic idea of linear blending is simple. In

order to combine the information from multiple input images for a certain pixel

in the mosaic image, each input image is assigned a weight W (x, y) = w(x)w(y).

The weight is computed based on the location of that pixel. w(x) is set to be 1 at the

9

Figure 2.3: Detection of RODs for each input image and the graph representation.
(from [56])

Figure 2.4: Left: Result when applying a typical image stitching system. Right:
Result by applying some method for ghost elimination. (from [56])

center of the image and it varies linearly to 0 at the edge. Combining watersheds and

graph cuts methods [27] is another approach for image blending. This method only

focuses on the overlap regions . It first applies the watershed approach to divide

the overlap regions into disjoint segments. Then a cost based on the photometric

difference along the seams is assigned to each segment and graph cuts is applied

to minimize the cost. The method has several advantages. For example, graph cuts

guarantees the globally optimal solution for the overlap regions. Also, each overlap

region are independent of each other, which means that the algorithm is suitable for

10

parallel implementation.

2.2 Background Estimation

The first background estimation algorithm could be traced back 19 years ago to the

work of Long and Yang [42] for detecting moving objects in a scene. The funda-

mental assumption for the proposed methods is that for each pixel, the background

value is always stable and always stays the longest through the image sequence. The

first proposed method is called the “Smoothness Detector Method.” It only searches

for stable regions through the image sequence and ignores the unstable areas. The

method defines a threshold, and uses a window (in time) to detect stable values.

That is, the window is moving along the temporal trace of the values of a pixel. If

the values inside that window all fall within the range of a pre-defined threshold,

then the average value of those pixels inside the window is calculated. When the

size of the window is increased, the average value needs to be updated. The final

background value is the average value of the pixels in the maximum window.

The second method proposed in [42], called the “Adaptive Smoothness Detector

Method,” is an improvement to the first method described above. Instead of using

a fixed threshold for the whole process, both the threshold and the length of the

window are adaptive. The method starts with a very small threshold and a very

large window length (half of the number of images in the sequence). Although the

chance of finding a stable region that fits inside such a long window is small, such

region is assumed to be the background if one is found. And the average value of

the pixels inside that window is used as the background value. If the regions inside

the window is not stable, the length of the window is decreased and the above

process is repeated. The length of the window keeps decreasing until it reaches a

minimum value. After that, the threshold increases and the length of the window is

set to be half of the number of images in the sequence again. The whole process

is terminated when all the background pixels are determined or the length of the

window reaches a minimum.

Both methods described above make the assumption that a background value

11

stays longest. Similar to that, median filtering assumes that the pixel stays in the

background for at least half of the total number of frames throughout the entire

image sequence. Suppose we have N input frames, then the median filter operates

as follows. For a certain pixel at location (x, y), it computes the median value in

the temporal direction over N frames, and then the median value is set to be the

background value for this pixel. This process is repeated for all the pixels in the

image. Since the underlying idea of median filtering is simple, it is one of the most

commonly-used background estimation techniques. It has been applied to many

applications. For example, Cutler et al. [18] use it to construct background for

detecting periodic motion. Cucchiara et al. [17] extend the median filtering to color,

and use it to detect not only moving objects, but also shadows and ghosts in video

streams. In their experiments, they prove that median filtering is effective and has

less computational cost than Gaussian filtering or other complex statistical methods.

Median filtering has also been applied to track moving objects in a video [60], in

monitoring [41] and in traffic surveillance [26]. Traffic control is very important in

real-world applications. Figure 2.5 shows the flow chart of a particular stage in the

monitoring system used in [26].

Driven by the success of the simple median filtering method, McFarlane and

Schofield [45] propose a recursive filter to estimate the background, which is re-

ferred to as the “approximated median filter.” The estimate of the median is in-

creased by one if the corresponding pixel in the current input image is larger in

value, and decreased by one if smaller. Finally, the estimate converges to a value

for which half of the input values are larger and half are smaller, which is the me-

dian. This method has been applied to traffic monitoring [49].

Although it has been applied to many areas, median filtering has its own lim-

itation. It has an essential assumption that for every pixel, the background has to

appear in more than half of the number of the images. If this assumption were false,

the result produced by a median filter would be wrong. In background estimation,

it is likely that in some particular regions, the foreground objects appear more often

than the background objects. Figure 2.6 shows a result by applying the median filter.

The top row are three out of 25 images that are extracted from a traffic monitoring

12

Figure 2.5: The flow chart of the road modeling stage (from [26])

sequence, and the bottom row shows the result. The error region are indicated by

a red circle where the foreground shows up more than half of the total number of

input images.

Kalman filter is a recursive technique that has been widely used for tracking

linear dynamical system under Gaussian noise. For example, Koller et al. [35] use

Kalman filter for multiple car tracking. The method uses an adaptive background

model which is updated by a Kalman filter formalism, which allows dynamics in

the model as lighting conditions change. The Kalman filter formalism is given in as

follows.

Bt+1 = Bt + (α1(1−Mt) + α2Mt)Dt (2.1)

13

Figure 2.6: Result by median filtering (from [13]). Error exists in the circled region.

In the above equation,Bt is the background model at time t. The background model

is updated recursively, and Dt is the difference between the current frame and the

background model. The value of α1 and α2 are obtained based on an estimate of the

rate of change of the background in the original implementation. However, Koller

et al. [35] use small constant values α1 = 0.1 and α2 = 0.01. Mt is a binary

hypothesis mask and is for identifying moving objects in the current frame. The

mask is calculated by applying a threshold to the difference imageDt. In particular,

for a certain image position p,

Mt(p) =

{
1 if |Dt(p)| > Tt
0 else (2.2)

where Tt is the threshold. The block diagram of this method is provided in Figure

2.7.

Besides the implementation described above, there are many other versions of

Kalman filter proposed for background modeling, the difference is mainly in the

14

Figure 2.7: Block diagram of background update procedure in the system for mul-
tiple car tracking. (from [35])

state spaces used for tracking. For example, there are some simple implementations

using luminance intensity only [57] [32] [31] [8]. A more sophisticated implemen-

tation uses both intensity and its temporal derivatives [34].

While Kalman filter tracks the evolution of a single Gaussian, the Mixture of

Gaussians method tracks multiple Gaussian distributions at the same time. It is

first proposed for background modeling in [24] and then in [51] [52], a different

implementation is presented. This method models a pixel distribution as a mixture

of K Gaussians. In particular:

P (It) =
K∑
i=1

wi,t · η(It, µi,t, ci,t) (2.3)

where P is the probability distribution. K is the number of distributions and it

normally ranges from three to five. wi,t is the portion of the data accounted for

by the ith Gaussian. It is an input pixel at time t, µi,t the intensity mean and ci,t

the covariance matrix. Here η is a Gaussian probability density function defined as

follows.

η(It, µ, c) =
1

(2π)n/2|c|1/2
e−

1
2
(It−µt)

T c−1(It−µt) (2.4)

For each input pixel It, the method needs to find the closest Gaussian distri-

bution among K of them. If the pixel value is with 2.5 standard deviation of a

distribution, then it is defined to be a match with this Gaussian distribution. If there

15

is a match for this pixel, then the parameters of the matched Gaussian distribution

are updated as follows.

wk,t = (1− α)wk,t−1 + α (2.5)

µk,t = (1− ρ)µk,t−1 + ρIt (2.6)

σ2
t = (1− ρ)σ2

t−1 + ρ(It − µk,t)T (It − µk,t) (2.7)

In the above equations, α is a pre-defined learning rate and 0 ≤ α ≤ 1. ρ is the

learning factor for adapting current distribution and is approximated to be:

ρ ≈ α

wk,t
(2.8)

If there is no match for the given pixel, then the least probable distribution is re-

placed with another distribution with mean It, a high initial variance σ and a low

prior weight w.

After the parameters are updated, the sum of weights is normalized to one.

Finally, the method determines whether or not It is a background pixel. The Gaus-

sians are sorted by the value of wi,t/σi,t. If a distribution has a high rank, which

means with high probability and low variance, then it has a high probability to be

the background. Suppose i1, i2, ..., iK are the ordered Gaussian distributions, then

the first M distributions satisfying the following criteria are declared as the back-

ground distributions:
iM∑
k=i1

wk,t > T (2.9)

where T is the weight threshold. Then It is labeled as a foreground pixel if its

value is within 2.5 standard deviation from the mean of any of the background

distributions.

There are some recent improvements to the original version of the mixture of

Gaussians method, such as a sensitivity analysis of parameters [25], and improve-

ments on complexity and adaptation [33] [47] [38].

Gutchess et al. [30] apply optical flow analysis to background modeling. This

method generates hypotheses by locating intervals of relatively constant intensity,

then the likelihood of each hypothesis is evaluated using optical flow information

from the neighborhood around the pixel and the most likely one is set to represent

16

the background. Suppose the intensity of a pixel through the entire sequence is

represented as < a0, a1, ..., an >, the method first finds all sub-intervals that satisfy

the following two conditions:

w ≤ j − i (2.10)

∀(s, t)|as − at| ≤ δmax (2.11)

In their implementation, the value δmax = 10 and w = 6 were used. The sub-

sequence < ai, ..., aj > is a set of candidate hypotheses and one of them will be

selected to represent the background. The method then computes the input flow and

output flow of each pixel from the local neighborhood N .

f+(x, y) =
∑
i∈N

1

2πσ2
e−

1
2
[(x−xi,1/σ)2+(y−yi,1/σ)2] (2.12)

f−(x, y) =
∑
i∈N

1

2πσ2
e−

1
2
[(x−xi,2/σ)2+(y−yi,2/σ)2] (2.13)

where f+(x, y) denotes the input flow and f−(x, y) the output flow for the pixel

located at (x, y). Denote F+
t to be the input flow and F−t the output flow for the

entire image frames. Then the “net flow” is obtained by subtracting the output flow

from the input flow, that is,

Nt = F+
t − F−t (2.14)

After that, the accumulated net flow St is served as an estimate of the total amount

of the input and output flow up to time t.

St =
t∑
i=0

Ni (2.15)

This measure is updated for each frame in the sequence. The background likelihood

is defined asLt = −St. Finally the candidate hypotheses at each pixel are computed

by the following equations.

L[t1,t2] =

t2∑
i=t1

li

t2 − t1
(2.16)

where L[t1,t2] is the average likelihood and [t1, t2] is the stable interval. The in-

terval [α, β] which has the largest average likelihood is selected to represent the

background. Algorithm 1 is a step-by-step description of the optical flow analysis.

17

Algorithm 1 Local Image Flow Algorithm
â For each pixel, find all intervals of stable intensity.

â Initialize accumulated net flow and likelihood to be zero.

â Compute the optical flow for each pair of consecutive image frames It and

It+1.

â Calculate the net flow Nt+1 between the two frames by applying Equation

2.14.

â Compute the accumulated net flow for time t+ 1 using Equation 2.15.

â The likelihood for this pixel to be background is computed by Lt+1 = −Nt+1.

â For each pixel, compute the average likelihood for each stable interval and

select the interval with maximum likelihood.

â The mean and variance of intensity over the selected interval are used as pa-

rameters for the background model.

In computer graphics, Agarwala et al. [1] develop a general, and powerful

framework for combining a set of images into a single composite image. This

framework has been used for a wide variety of applications. For example, to create

an image with all the best elements from the input images, to extend the depth of

field, to create panoramic mosaic from multiple images, and so on. A typical in-

teraction process is described as follows. Suppose we have a set of input images,

then the first image in the sequence is the initial composite image. The user selects

the objective such as “Max Luminance”, and the system defines the cost function

according to the objective. After the cost function is defined, the method uses graph

cuts to minimize the cost and chooses the labels for the composite. The user can

manually select the labels for refinement purpose. Finally gradient-domain fusion

[22] is applied to remove any visible seams that exist in the composite image.

Besides the above described applications, this framework can be used for back-

ground reconstruction. It defines a cost function which includes a data penalty and

an interaction penalty. The cost function is given in Equation 2.17.

C(L) =
∑
p

Cd(p, L(p)) +
∑
p,q

Ci(p, q, L(p), L(q)) (2.17)

where L is a label, p and q are two neighboring pixels. Cd is the data penalty and

18

Ci is the interaction penalty. The data penalty is defined according to the objective

selected by the user. For background estimation, the maximum likelihood should be

used as the objective. Then the data term is the probability of the color at IL(p)(p),

given the probability distribution function from the color histogram of all pixels.

Here Ii(p) denotes pixel p in input image i. The interaction penalty gives a higher

cost to visible seams. Then the method uses graph cuts to minimize the cost and

select corresponding labels to construct the background. However, using graph cuts

with the defined cost function cannot always provide good results. It still requires

user interactions for refinement. Figure 2.8 shows a result with the defined cost

function and graph cuts optimization. Some of the foreground objects still show up

in the rectangle region. To remove them, the user can select the eraser objective to

replace the rectangle region with a region where the background is visible.

Figure 2.8: Constructed background by the defined cost function and graph cuts
optimization. (from [1])

More recently, Colombari et al. [14] propose a patch-based background ini-

tialization technique to construct background in cluttered image sequences. The

method can be divided into two main stages. First, the method finds a seed patch to

represent the stable background region. The method divides the images into mul-

19

tiple windows with window size N × N , and the windows overlap by half of their

size in both dimensions as shown in Figure 2.9. In their experiments, they set the

size of the window N = 17 for images with size 200×260. Let v(W,f1) be the patch

at the window W in frame f1. Since this method uses patches to construct the final

background, a clustering method is applied to reduce temporal redundancy. That

is, the clustering method is applied to patches at the same location but in differ-

ent frames. It measures the distance between two image patches by calculating the

Sum of Squared Distances (SSD) between them. Specifically, the distance between

v(W,f1) and v(W,f2) is obtained by the following formula

SSD(W, f1, f2) =
1

2σ2
m

∑
x,y∈W

||vx,y,f1 − vx,y,f2||
2 (2.18)

where vx,y,f1 is the pixel value of (x, y) in frame f1 and σ2
m the deviation of the

Gaussian noise used in the pre-processing stage. This method uses a threshold,

called cutoff distance to measure if two image patches should be in the same cluster

or not. If the SSD is smaller than the threshold, then the two patches are in the

same cluster. After clustering, the seed patches which are the representative of the

background are selected. That means, if a certain cluster contains most of the image

patches and because the patches belong to this cluster are similar to each other,

which means that a patch in this cluster stays the longest time, then the patches in

this cluster are the representative of the background.

After the seed patches have been selected, the method starts region growing

from these patches. Let us consider the patch vW0 in Figure 2.9 to be the seed patch

that is selected as the representative of the background. The next step is to select

the patches for the neighbor of W0. For example, the method needs to choose one

of the patches from different frames at W1 in order to construct the background.

The selected patch has to fulfill the following two requirements:

(1) It has to depict the same scene points as the background patch that over-

laps with W0.

(2) It has to be the “best continuation” of the background in the non-overlapping

part with W0.

In order to determine if the patch depicts the same scene points with W0 in

20

Figure 2.9: Overlapping windows. (from [14])

the overlap part, the SSD in the overlap region between W0 and W1 is computed.

Suppose v(W0,f0) is the seed patch that represents the background and v(W1,f1) is the

candidate patch, the SSD in the overlap part is computed by:

SSD(W0 ∩W1, f0, f1) =
1

σ2
f0

+ σ2
f1

∑
x,y∈W0∩W1

|vx,y,f0 − vx,y,f1|
2 (2.19)

Similar to the clustering method, if the SSD is below a certain threshold, then this

patch can be used to represent the background. Finally, the method selects the

patch that has the “best continuation” of the background patch. Because the most

important assumption in the method is that the background is cluttered, the visual

cuts are more likely to appear in the background. Therefore, when considering two

candidate patches, if the visual cuts appear in one of them only, then this patch is

considered more likely to be a background patch than the other ones. As a result,

when the region growing stage is finished, the background is recovered by the se-

lected patches. Although this method provides some promising results, it assumes

that the background is cluttered, which is not always true in the real world.

Xu and Huang [58] propose a simple, yet robust approach for background esti-

mation. The assumption made in this method is that the background objects are sta-

tionary in all the input frames and the background is disclosed at least once at each

pixel, which is the minimal assumption for background estimation. This method

21

defines a cost function that is based on visual smoothness only, in particular,

Es =
∑

(p,q)∈N

||ILp(p)− ILq(q)|| (2.20)

where Es is the energy. Suppose L is the labeling space, then ILp(p) is the value of

a pixel p in the input frame Lp and Lp ∈ L. N is the set of all neighboring pixels

and || ∗ || refers to the l1 norm.

In the above equation, we can see that the cost function is a measure of visual

smoothness, which is simple and waives the need to tune parameters. This method

performs energy minimization using Loopy Belief Propagation [59]. When mini-

mizing the cost function, the method selects labels and copy the pixels from input

images to composite the background. The final step of this method is to apply

gradient-domain fusion when constructing the background image.

However, this approach seems to work on images with smooth background only.

Figure 2.10 shows two background images shown in [58]. We can see that the

background is relatively smooth but not complex.

Figure 2.10: Background estimation results. (from [58])

Compare to the images used in [58], the scenes in the real world can be much

more complicated. As a matter of fact, the method proposed in [58] fails when the

background is complex. Since the energy function is simple, we use the framework

[54] that is publicly available to re-implement this method. The details of this

framework is introduced in Chapter 3. This framework contains several energy

minimization methods, we use the belief propagation software developed by Tappen

22

et al. [55] and apply this method to a dataset used in [1]. Figure 2.11 shows that

there are still many error regions in the image and the result clearly shows that a

cost function measuring visual smoothness only is not enough.

Figure 2.11: Background estimation result by applying the method proposed in
[58].

Cohen [13] introduces a background estimation method which casts the problem

into a labeling problem. It defines an energy function based on MRF formulation

and uses graph cuts for energy minimization. Let {I1, I2, ..., IN} denote the given

N input frames, P the set of pixels in an input image, and Im(p) the color value at

pixel p in image m. F denotes the label space with F = {1, 2, ..., N}, which are

the indices of the input frames, and let fp be a label of pixel p with fp ∈ F . Then

this method constructs the background by copying the color at pixel p from input

image I∗p , where I∗p is a minimum cost labeling.

The energy function E(F) includes a data term and a smoothness term.

E(F) =
∑
p∈P

Dp(fp) +
∑
p,q∈N

Vp,q(fp, fq) (2.21)

where N is the set of pair of neighboring pixels. Dp(fp) is the cost of assigning

23

label fp to pixel p, and accounts for color stationariness and motion boundary con-

sistency. In particular,

Dp(fp) = DS
p (fp) + βDC

p (fp) (2.22)

The color stationariness cost is calculated based on the variance of the color If (p)

over several frames close to frame fp. We use V arf1∼f2(p) to denote the average of

the variances of color If (p) from image f1 to image f2. Then,

DS
p (fp) = min{V arfp−r∼fp(p), V arfp∼fp+r(p)} (2.23)

where r is a constant number. This stationary cost assigns high penalty to transient

objects, which is consistent with the assumption that background objects are likely

to appear more often than foreground objects in most but not all regions. The motion

boundary consistency cost is defined as follows,

DC
p (fp) =

N∑
f=1

||∇Mfpf (p)||
2

2

||∇If (p)||22 + ε2
(2.24)

where ∇If (p) is the intensity gradient and ε is a small constant number in case

∇If (p) is zero. The term ∇Mfpf measures the motion gradient. Assume that fp is

the background image, then a difference image ∇Mfpf = ||Ifp − If ||2 has a large

gradient magnitude if Ifp matches If poorly. The motion boundary consistency

penalizes locations with large motion gradients but small intensity gradients.

In addition to the data term, a smoothness term is defined to assign a high cost

to an area that contains a highly textured moving object, and a low cost to an untex-

tured and still object. Specifically,

Vp,q(fp, fq) = λ

[
||Ifp(p)− Ifq(p)||22 + ||Ifp(q)− Ifp(q)||22

2× # of color planes

]
(2.25)

From the smoothness term, we can see that the cost is small if Ifp and Ifq match

with each other well. The constants β in Equation 2.22 and λ in Equation 2.25 are

used to trade off the importance of enforcing stationariness, consistency of motion

boundaries and seamless cutting.

The experimental results provided in [13] show that their method performs bet-

ter than median filtering. This method can produce correct background in some

24

Figure 2.12: Background estimation results (from [13]). Left: result by median
filtering. Right: result by [13].

critical regions where error exists with median filtering. We show a sample com-

parison of results provided by [13] and median filtering in Figure 2.12.

The figure shows that the method in [13] provides a clean and smooth back-

ground. However, the foreground objects do not occupy a large portion of the input

frames in the dataset that are used, and the background is also relatively smooth.

For comparison purposes, we re-implement this method by using the framework

provided by [54]. Since this method uses graph cuts optimization for energy min-

imization, we use the graph cuts software of [10] [36] [9]. The details of both the

framework and the graph cuts optimization method are discussed in Chapter 3. Fig-

ure 2.13 shows the result when applying this method to the dataset provided in [1].

In the figure, the error region is indicated by the red rectangle. In that region, the

background only shows up once and the color of the foreground objects is uniform.

Therefore, this method can still be improved to get better results.

Similar to [13], Granados et al. [28] propose a method to estimate background

from non-time sequence images. The method defines a similar energy function and

uses graph cuts for energy optimization. The energy function contains a data term

Dp(fp), a smoothness term Vp,q(fp, fq), and a hard constraint Hp,q(fp, fq). That is,

E(fp) =
∑
p∈(P)

Dp +
∑

(p,q)∈N

Vp,q(fp, fq) +
∑

(p,q)∈N

Hp,q(fp, fq) (2.26)

25

Figure 2.13: Background estimation by applying the method in [13].

The data term includes a likelihood term DL and a stationariness term DS .

Dp(fp) = (1− β(p))DL
p (fp) + β(p)DS

p (fp) (2.27)

The parameter β controls the relative importance of the likelihood term and station-

ariness term. The stationariness term defined in this method is similar to the motion

boundary consistency term in [13] (Equation 2.24). This term penalizes locations

with large motion gradient but small intensity gradient because the boundary of

moving objects occur at these locations. In particular, the stationariness term is

defined as follows.

DS
p (fp) =

{
||∇Mfp(p)||2 − ||∇I(p)||2 if ||∇Mfp(p)||2 > ||∇I(p)||2
0 otherwise

(2.28)

where Mfp = Ifp(p)− I is the difference with the average image of all input frames

(I). Compared to the original motion boundary consistency term, using the station-

ariness term has two benefits. First, the runtime complexity is lower. Second, it

reduces the possibility of the occurrence of false motion boundaries caused by flat,

textureless occluders.

26

Besides the stationariness term, the data term also includes a likelihood term.

DL
p (fp) = 1−

3∏
c=1

∫ Ic
fp

(p)+3λc

Ic
fp

(p)−3λc

d̂cp(x)dx (2.29)

where d̂cp is the estimated probability density function based on histogram with fixed

intervals. c is the color channel and λc the expected variation on each color channel.

This method applies Gaussian density estimators to compute d̂cp, and λc is obtained

experimentally from datasets with known ground truth.

The smoothness term is similar to the one used in [13]. Specifically,

Vp,q(fp, fq) =
γ

2
(||Ifp(p)− Ifq(p)||2 + ||Ifp(q)− Ifq(q)||2) (2.30)

where γ is a parameter which determines the weight of this term. Different from

[13], this method proposes a hard constraint in order to make sure that a transient

object can be completely included in or removed from the background. Hence, a

transient object in the scene cannot be split into two parts, which makes the back-

ground more realistic. The hard constraint is defined as follows:

Hp,q(fp, fq) =

{
0 if minl∈L(||Ifp(p)− Il(p)||+ ||Ifq(q)− Il(q)||) < tH
∞ otherwise

(2.31)

where tH is a threshold and it is set to be 5% of the intensity range in their exper-

iments. The condition when Hp,q(fp, fq) is assigned to be 0 is true when its color

distance to the closest image l falls below the threshold tH , in which case fp and fq

are consistent with each other in color.

The method applies gradient domain fusion to composite the final background.

The experimental results by applying this method are really promising. However,

when defining the likelihood term, this method uses a parameter that is obtained

experimentally from datasets with known ground truth, which makes it difficult to

be re-implemented.

Motivated by the work in [1] and [13], we develop two novel methods for back-

ground estimation. Both methods cast this problem into a labeling problem. In our

first method, we propose a cost function and apply a dynamic programming frame-

work to minimize the cost. This method incorporates segmentation information in

27

the cost function, which improves the quality of the final results. In our second

method, we define an energy function based on MRF formulation and apply graph

cuts optimization. The novelty of our second method lies in integrating image in-

painting, which has never been done by any other researcher.

28

Chapter 3

Robust Background Estimation

In this chapter, two novel background estimation methods are presented. Then the

experimental results follow. We also compare our results to the ones produced by

[1] and by the automatic image stitching system [11].

3.1 Segmentation-Based Background Estimation

The input to our algorithm is a set of related images, which can be taken from

the same viewpoint or from different viewpoints with overlapping regions among

them. Our goal is to estimate the background from the image sequence. There are

two basic assumptions for this algorithm:

(i) The background objects are stationary throughout the entire image se-

quence and each background pixel has to be exposed at least once.

(ii) The background objects are likely to appear more often than the transient

ones.

These assumptions are commonly used in many background estimation algo-

rithms [3] [28]. The first assumption implies that pixels of the same background

object are always in the same position and every background pixel is visible in the

input images. The second assumption provides a constraint that background objects

should appear more frequently in most regions.

Suppose that the given image set has N input images. Since we assume that

the images can be taken from different viewpoints, the pixels in every input image

must be transformed to a global coordinate system at the beginning. We estimate the

29

warping function for such transformation by the method proposed in [11], which is

to compute a homography for each image with respect to the reference image. The

left column in Figure 3.1 shows two input images taken from different viewpoints,

and the right column the results after they are aligned to each other.

Figure 3.1: Image alignment. Left column: two input images taken from different
viewpoints. Right column: aligned results for the two input images.

In the rest of this section, we assume that all the images have been projected into

a global coordinate system. After the transformation, we denote the color value of

a pixel in the mth image at coordinates (x, y) as Im(x, y) where 1 ≤ m ≤ N . The

color of a pixel in the output background image is denoted as O(x, y). Then the

background estimation problem can be formulated as

O(x, y) =
N∑
m=1

αm(x, y)Im(x, y) (3.1)

30

In the above equation, αm(x, y) is a binary selection function which is defined as

αm(x, y) =

{
1 if m is selected
0 otherwise (3.2)

That means, if αm(x, y) is set properly for each pixel, then the background is recov-

ered using Equations 3.1 and 3.2. The candidate pixels are selected from the input

images to composite the background.

We observe that an output image without any foreground object achieves global

visual smoothness. In other words, there exist significant differences when compar-

ing an image with only the background and an image with both the foreground and

the background. The former is visually smoother than the latter one. Therefore, if

we have an appropriate cost function to measure smoothness, then the final result

with only the background has the minimum cost.

The following is an overview of our method.

(1) Assign a cost to each pair of adjacent pixels according to the proposed cost

function (Section 3.1.1), which includes a smoothness measure (Section 3.1.2) and

a stationary coefficient (Section 3.1.3).

(2) Apply dynamic programming (DP) to minimize the total cost of each scan-

line (Section 3.1.4), and determine αm for each pixel.

(3) Apply linear blending to reduce the seams in the estimated background (Sec-

tion 3.1.5).

Figure 3.2 shows the flow chart corresponding to the above described overview.

3.1.1 Cost Function
The proposed cost function is shown in the following.

Cij(x, Y) =
(
Sx

(
Ii(x, Y), Ij(x−1, Y)

)
+γ ·Sy

(
Ii(x, Y)

))
·ρ
(
Ii(x, Y), Ij(x−1, Y)

)
(3.3)

where Cij(x, Y) is the cost assigned to a pair of adjacent pixels along one scan-

line Ii(x, Y) and Ij(x − 1, Y), 1 ≤ i, j ≤ N . Sx
(
Ii(x, Y), Ij(x − 1, Y)

)
is the

smoothness measure along the x-direction, Sy
(
Ii(x, Y)

)
along the y-direction, γ

is a coefficient assigned to balance the weight of the smoothness measure along

two dimensions, and ρ
(
Ii(x, Y), Ij(x − 1, Y)

)
the stationary coefficient. In this

method, γ is set to be 1 for most datasets.

31

Figure 3.2: Flow chart of our method.

3.1.2 Smoothness Measure

The smoothness measure is defined to measure how well a pair of adjacent pix-

els satisfy the visual smoothness constraint. We measure the smoothness in two

directions. In this section, we first introduce the smoothness measure along the x-

direction and then the y-direction. The definition of our smoothness measure along

the x-direction is given as follows.

Sx

(
Ii(x, Y), Ij(x−1, Y)

)
=

β ·
∑
k=r,g,b

|Iki (x, Y)− Ikj (x− 1, Y)|

if Ii(x, Y) ∈ R and Ij(x− 1, Y) ∈ R∑
k=r,g,b

|Iki (x, Y)− Ikj (x− 1, Y)| otherwise

(3.4)

32

where R denotes a segment, and r, g, b represent the red, green and blue channels,

respectively. It measures the similarity between two neighboring pixels Ii(x, Y)

and Ij(x − 1, Y) along the same scanline. The parameter β is set to be 0.01 for

all the datasets, and the reason of setting it with this particular value is discussed

below.

In order to assign a more reasonable cost to each pair of adjacent pixels, the

information of image segmentation is integrated into the smoothness measure. Al-

though any segmentation algorithm could be used, we apply a graph-based image

segmentation algorithm [23] in this method. The segmentation algorithm can pre-

serve detail in smooth regions while ignore detail in cluttered regions. The algo-

rithm is briefly described as follows. Suppose the input image for this algorithm

is I . First, I is represented by a graph G = (V,E) with vertices v ∈ V , and the

weight of each edge e ∈ E is

w(vp, vq) =
∑
i=r,g,b

|I i(p)− I i(q)|, vp, vq ∈ V (3.5)

where I(p) denotes the intensity value of a certain pixel in the image, and vp, vq

are the two adjacent nodes connected by the edge e. Suppose that vp and vq belong

to two separated segment R1 and R2, that is, vp ∈ R1 and vq ∈ R2. In order to

determine whether or not R1 and R2 should be merged, the algorithm assigns a

pairwise comparison predicate P (R1, R2).

P (R1, R2) =

{
true if Dif(R1, R2) > MInt(R1, R2)
false otherwise (3.6)

Dif(R1, R2) = min
vp∈R1,vq∈R2,(vp,vq)∈E

w(vp, vq) (3.7)

MInt(R1, R2) = min
(
Int(R1) + τ(R1), Int(R2) + τ(R2)

)
(3.8)

Int(R) = max
e∈MST (R,E)

w(e) (3.9)

τ(R) =
k

|R|
(3.10)

where |R| is the size of segmentR and k is defined by the user. If P (R1, R2) is true,

then R1, R2 should be separated, otherwise they are merged into a bigger segment.

Algorithm 2 describes this image segmentation algorithm step-by-step. The input

33

to this algorithm is a graph G = (V,E) with n vertices and m edges, and the output

of this algorithm is a partition of V into regions R = (R1, R2, ..., Rk).

Algorithm 2 Image Segmentation Algorithm
â Sort E into π = (e1, e2, ..., em) by non-decreasing edge weight.

â Repeat the next step for q = 1, ...,m.

â Construct Rq given Rq−1 as follows. Let eq = (vi, vj) be the qth edge con-

necting the vertices vi and vj , R
q−1
i be the region of Rq−1 containing vi and Rq−1

j

be the region containing vj . If Rq−1
i 6= Rq−1

j and w(eq) ≤ MInt(Rq−1
i , Rq−1

j),

then Rq is obtained by merging Rq−1
i and Rq−1

j , otherwise Rq = Rq−1.

â Return R = Rm.

In Equation 3.4, the penalty is relatively small if two adjacent pixels belong to

the same segment R. There are two reasons to take advantage of the segmentation

result. First, by construction, a segment is a group of adjacent pixels with similar

colors. Figure 3.3 shows an image with its segmentation result. The pixels which

belong to the white board are now in the same segment after applying image seg-

mentation. Second, integrating information from the result of image segmentation

can prevent frequent switching among the input images when compositing the final

background. According to Equation 3.1, each pixel in the background image is se-

lected from one of the input images. When image segmentation is applied, pixels

in the same segment from the same image will be selected more favorably. Without

this bias, adjacent pixels could be selected from different images, which will create

undesirable seams. Additionally, using segmentation results makes the estimated

background less sensitive to illumination change that appears among input images

by biasing to select pixels from the same segment. Hence, in Equation 3.4, we set

β to be 0.01 to reflect a low penalty when a pair of adjacent pixels are in the same

segment.

The measurement described above encourages the result to be visually smooth

along the x-direction. Along the y-direction, we use the information from the pre-

vious scanline to measure the smoothness. In particular, it is defined as follows.

Sy

(
Ii(xi, Y)

)
=
∑
k=r,g,b

|Iki (x, Y)− Ikf (x, Y − 1)| (3.11)

34

Figure 3.3: Left: Input image. Right: Segmentation result by applying the method
proposed in [23]

where i denotes the ith input image. It is defined based on the information from the

previous scanline that has just been processed, which is the (Y − 1)th scanline in

Equation 3.11. For the first scanline of the image, the smoothness term is initialized

to 0 since there is no previous scanline to it. On the (Y −1)th scanline, f is selected

to minimize the aggregated cost. The cost minimization is discussed in Section

3.1.4.

3.1.3 Stationary Coefficient

We propose a stationary coefficient to satisfy the second assumption, that is, back-

ground objects are more likely to appear than transient ones. The coefficient ρ is

defined to be:

ρ
(
Ii(x, Y), Ij(x−1, Y)

)
=
(
1−NUM(Ii(x, Y))

N

)
·
(
1−NUM(Ij(x− 1, Y))

N

)
(3.12)

where N is the number of input images and 1 ≤ i, j ≤ N . NUM(Ii(x, Y)) de-

notes the number of pixels from {I1(x, Y), ..., Ii(x, Y), ..., IN(x, Y)} that are sim-

ilar to Ii(x, Y). In our experiments, Im(x, y) is defined to be similar to Ii(x, y) if

|Im(x, y)−Ii(x, y)| < 0.1 ·Ii(x, y) for all three color channels, where 1 ≤ m ≤ N .

The stationary coefficient implies that if two adjacent pixels appear frequently, then

the corresponding assigned cost is small.

35

Figure 3.4: Cost assignment.

3.1.4 Cost Minimization

Figure 3.4 shows how the cost is assigned to two neighboring pixels. To simplify

illustrations, only two input images are shown. To extend to more images is straight-

forward. The figure shows only the Y th scanline. In this figure, I1 represents image

1, C1m(x+ 1, Y) is the proposed cost for selecting I1(x, Y) and Im(x+ 1, Y).

After a cost is assigned to every pair of adjacent pixels on a scanline, DP is ap-

plied to minimize the aggregated cost for each scanline. The formulation is similar

to the one introduced in [15] and is defined as follows.

EY = min
m

(
EY (L,m)

)
(3.13)

EY (x,m) =

0 if x = 1

min

(
EY (x− 1, 1) + C1m(x, Y), ...,

EY (x− 1,m) + Cmm(x, Y), ...,

EY (x− 1, N) + CNm(x, Y)

)
if x > 1

(3.14)

where 1 ≤ m ≤ N . L is the length of a scanline and 1 ≤ x ≤ L. DP is applied

to one scanline at a time. In Equation 3.13, EY is the minimum cost of the Y th

scanline. In Equation 3.14, EY (x,m) denotes the aggregated cost of the mth row,

the xth column on the Y th scanline. C1m denotes the cost assigned to the adjacent

pixels I1(x, Y) and Im(x − 1, Y), which is the same as that shown in Figure 3.4.

The minimum cost is calculated after going through the whole scanline. During

36

backtracking, a pixel at each x coordinate along a scanline is selected from one of

the input images. The selected input image is indexed as f , which is the same as

the one used in Equation 3.11, and then the corresponding αf is set to be 1.

3.1.5 Implementation

In this method, obvious seams could exist in the output image because different

regions are selected from different input images. The difference in illumination

among input images is the main cause of the artifact. Therefore, blending is needed

to suppress this problem.

Linear blending is applied to removed the artifact in the result. In order to

combine information from multiple input images, a weighting function θ(x, y) =

w(x)w(y) is assigned to each image, wherew(x) varies linearly from 1 at the center

of the image to 0 at the edge. Then a weighted sum of the image intensities is

computed using:

Olinear(x, y) =

N∑
m=1

Im(x, y)θm(x, y)

N∑
m=1

θm(x, y)

(3.15)

where 1 ≤ m ≤ N and |Im(x, y)− If (x, y)| < tH , If (x, y) is introduced in Equa-

tion 3.11 and tH is a threshold specified by the user according to the illumination

condition. Typically tH is set to be 0.2 · If (x, y) for all three color channels. It

should be larger when the illumination change is large among input images.

3.1.6 Parameter tH

We notice that there is a parameter tH in the first method when linear blending is

applied to the datasets taken from different viewpoints. Therefore, the following is

an alternative method to eliminate this parameter.

After each input image is transformed to a global coordinate system, all the

possible combination of images are calculated using linear blending. For example,

if there are three input images {I1, I2, I3}, then there are seven possible combination

of the images when applying linear blending, which are {I1}, {I2}, {I3}, {I1, I2},

37

{I1, I3}, {I2, I3}, {I1, I2, I3}. As a result, there are 23−1 = 7 blended images. The

Equation 3.15 is applied for linear blending and there is no constraint on Im(x, y).

Figure 3.5 shows the linear blending result. The top row are two input images and

the bottom row is the blended image.

Figure 3.5: Linear blending.

When all the blended images are calculated, they are used as the input images,

then the cost is assigned to each pair of adjacent pixels and DP is applied for cost

minimization. Figure 3.6 is the flow chart of this alternative method. Compared

to the flow chart shown in Figure 3.2, the difference is that linear blending is per-

formed in the first step of this alternative method. As a result, the parameter tH can

be eliminated.

38

Figure 3.6: Flow chart of our alternative method.

In Figures 3.9 and 3.10, we demonstrate that this alternative method can get

results similar to our original method for some datasets. However, there are differ-

ences between these two methods. The advantage of this alternative method is that

it has no parameter for linear blending. One of its drawback is that it is slower. Sup-

pose we haveN input images, then our original method takes them as input images.

But the alternative method applies linear blending to all of them, which produces

2N − 1 images, which are used as input images. Generally, the alternative method

is not suitable for generating background from a large number of input images. The

second drawback is that it is not practical when there are many transient objects in

the input images. The reason is that applying linear blending lowers the probability

39

of the background pixels to be visible. The problem is illustrated in Figure 3.7. The

top row in Figure 3.7 are three synthesized input images. Assume that the white

part is the background and the color blocks are the foreground objects. In the center

of each input image, there is a black dot, and it indicates that the background pixel

shows up twice in that location among these three input images. The result of linear

blending is shown in the bottom row. We can see that the background pixel at the

same location shows up three times, which is in the second, fourth and sixth image

if indexing from left to right. In other words, linear blending lowers the probability

of this particular background pixel from 2/3 to 3/7.

Figure 3.7: An example to illustrate how linear blending lower the probability of
the background pixels. Top row: the input images. Bottom row: the linear blending
results.

3.1.7 Experimental Results

In our experiments, we generate several datasets and they are divided into different

categories. Most of the input images are captured using a digital camera on a tripod.

Some datasets generated by other researchers are also used for comparison.

Figure 3.8 shows some results when we apply our method to four datasets with

different features, the comparison between our results and the ones produced by

[1] is also given. The input images in the first row have a smooth background and

smooth foreground. In this dataset, there is a region where the background appears

40

Figure 3.8: Background estimation from different datasets with various features.

only once. Our method can estimate the background correctly. However, there are

error regions in the result using the method in [1]. The background of the input in

the second row is smooth, but the foreground is not. The background regions in the

input images of the third row and the bottom row are the same. But one has a smooth

foreground and the other has a complex foreground. In this figure, we demonstrate

that our method can produce good results under various background/foreground

conditions.

Figure 3.9 shows the results when applying our method to four input images

which are taken from different viewpoints, with cars and people as foreground ob-

jects. The background and foreground are both complex in this dataset. Figure

3.9(b) shows our result and Figure 3.9(c) the result after applying the alternative

method. In this dataset, we show that our method can provide correct results even

if the illumination changes significantly among input images. Figure 3.9(d) shows

the panoramic image generated by using the automatic image stitching system [11].

The red arrow and the blue arrow each point at the error regions. There are artifacts

because there is no background estimation in [11]. Figure 3.9(e) shows the result

using the background estimation method proposed in [1]. We can see that there are

still some transient objects in this image which are indicated by the arrows.

41

Figure 3.9: (a) Four input images from different viewpoints, with transient objects.
(b) Estimated background by our proposed method. (c) Estimated background by
the alternative method. (d) Result produced by the image stitching system [11]. (e)
Result by applying [1].

We demonstrate the importance of integrating segmentation information in Fig-

ure 3.10. There are four input images taken by a moving camera. The window

frames are considered to be the foreground objects because they are moving relative

to the camera, and the far away buildings are the background since their movements

relatively to the camera can be ignored. Figure 3.10(b-c) are the results by applying

our method and the alternative method. For comparison, we give the result pro-

duced by [1]. We also demonstrate the importance of incorporating segmentation

information in this dataset. Figure 3.10(e) is the result by changing our smoothness

measure along the x-direction to be without using any segmentation information.

42

Figure 3.10: (a) Multiple view images with window frames as foreground objects.
(b) Estimated background by our method. (c) Estimated background by our alterna-
tive method to eliminate the threshold. (d) Estimated background by applying [1].
(e) Result when using the smoothness measure without segmentation information.
(f) Result with smoothness measure along y-direction only.

That is, the cost between two neighboring pixels is simply the sum of the absolute

differences of their colors. Figure 3.10(f) shows the result with the smoothness

measure along the y-dimension only. The red arrows in Figures 3.10(e) and 3.10(f)

point to the regions that are wrong. Figure 3.10 shows that our algorithm can create

a large field of view with transient foreground objects removed.

In Figure 3.11, several images with a fence as the foreground object are given

as the input images to our method. Figure 3.11(b-f) show the results with different

number of input images. We can see that with the number of input images increases,

43

the fence gradually disappears in the result. Figure 3.11(g) shows the central part of

the result by using the whole image sequence. We can see that the fence is removed

in the central part of the composite image. We compare our result with the result

by applying the methods proposed in [1] and [11].

Figure 3.11: Multiple image de-fencing. (a) Six input images with a fence as fore-
ground object. (b-f) Results with different number of input images. (g) The central
part of (f). (h) Applying [11] to the six images. (i) Applying [1] to the six images.

Next, we apply our method to some datasets that are generated by other re-

searchers. Figure 3.12(a) is the input image sequence from the Cathedral scene

which is originally used in [1]. Figure 3.12(b) is the estimated background by ap-

plying our method. The red arrow points at the error region in our result. Figure

3.12(c) shows the result produced by [1]. The yellow rectangle region encloses

undesirable foreground objects.

Figure 3.13 shows the result of our alternative method. As we discussed in Sec-

tion 3.1.6, when the scene has many foreground objects such as the one shown in

Figure 3.12(a), linear blending makes the background being covered more times,

and that is the reason why there are error regions in Figure 3.13. Hence, this alter-

native method is not practical when the input images have many transient objects in

the scene.

44

Figure 3.12: (a) Five input images from Cathedral scene. (b) Estimated background
by our method. (c) Estimated background by [1].

Figure 3.13: Result by applying our alternative method to the dataset shown in
Figure 3.12(a).

Figure 3.14(a) shows a subset of 21 images which are originally used in [3].

Figure 3.14(b) is the estimated background by our method, and Figure 3.14(c) is

the result by applying the method in [1]. Since the scene is complex, we can see

that there are error regions in both our result and the result produced by [1].

45

Figure 3.14: (a) A subset of 21 images from [3]. (b) Estimated background by our
method. (c) Estimated background by [1].

3.1.8 Application

In this final experiment, we apply our background estimation method to some high-

quality video sequences with their depth maps provided by the Microsoft Research

Group [61]. There are two video sequences provided online, the “Breakdancing”

sequence and the “Ballet” sequence. There are eight different views for each se-

quence, and each sequence contains 100 color images with 100 corresponding depth

maps.

We apply our method to the depth maps and their corresponding color images

simultaneously. For each sequence, we only show results of images from two view-

points. Figure 3.15(a) shows a color image and its corresponding depth map. The

whole image sequence contains 100 color images and 100 depth maps. Figure

3.15(b) shows the estimated background by applying our method. In this video se-

quence, the four people standing in the far end have slight movements. Therefore,

the result is blurred in those regions due to linear blending. Figure 3.15(c) shows

the background image which is used in [37]. Figures 3.15(b) and (c) clearly show

that our result is smoother, and has less noise, especially on the floor. We believe

46

that there could be significant improvements to the results in [37] if our background

estimation results were used. Figure 3.16 shows the result by applying our method

to another image sequence from a different viewpoint. The top row shows a color

image and its corresponding depth map, and the bottom row the estimated back-

ground for both color images and depth maps. The input images shown in Figures

3.15 and 3.16 are taken from the “Breakdancing” sequence. In Figure 3.17, the

images on the top row and the bottom row are from different viewpoints, and they

are all from the “Ballet” sequence. The two columns on the left side show the input

images and the other two columns on the right side show the estimated background

by applying our method. In this dataset, the people standing on the right-hand side

is moving slightly. Therefore, the result is blurred in that particular region.

Figure 3.15: (a) A color image and its corresponding depth map. (b) Estimated
background by our method. (c) The background image used in [37]

47

Figure 3.16: Top row: A color image and its corresponding depth map. The view-
point is different from the ones in Figure 3.15. Bottom row: Estimated background.

Figure 3.17: Apply our method to the “Ballet” sequence. (a) The color images with
their corresponding depth maps. (b) Estimated background by our method.

3.2 Sampling-Based Background Estimation

3.2.1 Motivation

The background estimation results produced by the method described above are

promising. However, errors still exist in some particular datasets such as the one48

shown in Figure 3.12. Also, our alternative method in Section 3.1.6 is not applicable

when the scene has many transient objects (Figure 3.13).

As pointed out by Cohen [13], background estimation can be regarded as a

labeling problem. That is, each pixel in the background image is copied from one

of the input images. The pixel-labeling problem is represented in terms of energy

minimization. Szeliski et al. [54] compare the solution quality and runtime of

several commonly used energy minimization algorithms: graph cuts, loopy belief

propagation and tree-reweighted message passing, in addition to an older iterated

condition mode algorithm.

There are two graph cuts algorithms introduced in [10], namely, the swap move

algorithm and the expansion move algorithm. Both algorithms repeatedly compute

the global minimum of a binary labeling problem in their inner loop. This process

converges quickly and results in a strong local minimum. According to the results

provided in [54], the expansion algorithm produces better results than the other

energy optimization methods in general.

Motivated by the work in [58] [13] [1] [28], we consider background estimation

as a labeling problem as well. The information from multiple input images is com-

bined to form an output image. In this method, we propose a cost function and use

graph cuts to minimize the cost. The novelty of this method lies in a new predicted

term which is used to predict the color value in the regions where the background

is not visible. Our method incorporates a simple image inpainting technique and

assigns higher costs to the labels that are more different from the predicated result.

Figure 3.18 is the flow chart of this method. In the final step, gradient domain fu-

sion is applied to remove any visible seam only if there are significant illumination

changes among input images.

3.2.2 Energy Function

Similar to our previous methods, we assume that the input images have been trans-

formed to a global coordinate if they are taken from different viewpoints, and our

goal is to estimate the background. That is, for each pixel, we need to find an input

image in which the background is visible so that we can copy this pixel to construct

49

Figure 3.18: The flow chart of this method.

the background. Each pixel is assigned a label with a frame number and a cost is

assigned to each possible labeling. Our method obtains a labeling for all the pixels

which can minimize the cost.

Formally, suppose we are given a set of N input images {I1, I2, ... , IN}, and

let P be the set of pixels in an image. Let Im(p) be the color value at position p of

the mth image. We denote L as the label space with L = {1, 2, ..., N}, representing

the image index. Let fp be a label of pixel p and fp ∈ L. A labeling f is to

assign a particular label fp to pixel p ∈ P , and a corresponding cost is assigned

to this labeling based on the energy function that is defined below. With the above

definitions, our problem is to find a labeling f ∗ to construct the background IB =

If∗ , such that the labeling f ∗ has the minimum cost.

We define our energy function based on the MRF (Markov Random Field) for-

mulation:

E(fp) =
∑
p∈P

Dp(fp) +
∑
{p,q}∈N

Vp,q(fp, fq) (3.16)

50

where Dp(fp) denotes the data term which defines the cost of assigning label fp to

pixel p. Vp,q(fp, fq) denotes the smoothness term that defines the cost of assigning

labels fp and fq to the pair of neighboring pixels p and q. In the above equation, N

is the set of neighboring pixels in P . The details of both terms are discussed in the

following sections.

3.2.3 Data Term

Our data term consists of two parts which are the stationary term DS and the pre-

dicted term DPR. It is defined as follows.

Dp(fp) = DS
p (fp) +DPR

p (fp) (3.17)

The stationary term is defined based on the observation that in most part of

the image, the background shows up more times than the foreground, although the

background may appear only once in some particular region in the whole image

sequence. As a result, our stationary cost is defined based on the color similarity at

p of all the input frames. In particular,

DS
p (fp) =

N∑
i=1

|Ifp(p)− Ii(p)| (3.18)

In the following sections, we use the term |Ii(p)− Ij(p)| to represent the sum of

the absolute color differences between Ii(p) and Ij(p) of the R, G and B channels.

As an example of the stationary cost, if the same background pixel p appears N

times in the input images, then the cost is zero.

There is a predicted term in our energy function which applies an image inpaint-

ing technique. Image inpainting is to recover the lost or corrupted part of the image

data. Figure 3.19 is an example of image inpainting. The left is an image with

scratch, and the middle is a mask. The mask indicates that the red regions should

be filled in. In order to fill in the corrupted part, a typical image inpainting method

[6] uses neighborhood information of the red regions. Then the image on the right

side is the result.

We apply a simple image inpainting technique which is described as follows.

If a certain region is stable, which means that the background pixels show up N

51

Figure 3.19: An image inpainting example.

times in that region, then the region is retained in the final image. In other words,

the predicted cost is assigned to the regions that contain occlusions (unstable re-

gions). Therefore, the stable regions in the input image sequence is detected first.

Since some of the background regions are never occluded, there always exists use-

ful information from stable regions. To detect stable regions, we set a threshold and

examine the color value for p ∈ P to get the stable vector S. Specifically,

S(p) =

{
k if |Ii(p)− Ik(p)| < tH , for all i = 1, ..., N but i 6= k
0 otherwise (3.19)

where k ∈ [1, N] and tH is a threshold. For each color channel, the threshold is

set to be either 15 if Ik(p) = 0 or 0.2 · Ik(p) otherwise. Once we obtain the stable

vector, we can construct the stable image IST for the entire image sequence. That

is,

IST (p) =

{
IS(p)(p) if S(p) > 0

0 otherwise
(3.20)

Figure 3.20 shows the stable image of the input images which are used in Figure

3.12. The black regions in IST represent the unstable regions. As described above,

the stationary term takes advantage of temporal information. The predicted term

which is discussed below uses spatial information from the stable regions. Our

predicted cost is defined for the unstable pixels only. That is,

DPR
p (fp) =

{
0 if S(p) > 0
|Ifp(p)− IPR(p)| otherwise

(3.21)

where IPR(p) is the predicted color value for the unstable pixel p in IST by applying

an image inpainting technique. By defining the predicted term in this way, it means

that if the color of the candidate pixel Ifp is close to the predicted value IPR(p),

then the predicted cost is low.

52

Figure 3.20: The stable image IST for the input image sequence shown in Figure
3.12.

The image inpainting technique that is applied is based on local and global color

sampling. The neighborhood information is used for local color sampling. For each

unstable pixel p in IST , we define a window centered at p and apply bilinear inter-

polation inside the window to compute the predicted color value based on stable

pixels. Therefore, the predicted value by local color sampling is the same for all

labels fp ∈ L. Only the stable pixels inside the window are used because they are

reliable background pixels. However, the unstable regions could be huge some-

times, which reduces the number of stable pixels inside the window. In this case,

we apply global color sampling as follows. For the candidate pixel Ifp(p), bilinear

interpolation is applied to all the pixels in IST that have similar color values with

Ifp(p). Since the color value Ifp(p) varies for different input images, the predicted

color value for p by global sampling varies as well. The global sampling relies

on the observation that a background pixel is likely to appear more than once at

53

different locations. Formally, the predicted color value is defined as follows:

IPR(p) =

∑
p′∈S

IST (p
′
) ·
(

1− |p− p
′ |

|WI|

)
∑
p′∈S

(
1− |p− p

′|
|WI|

) (3.22)

where S denotes the set of sampled pixels defined below. The definition of |WI|

and S are given in the following equations.

|WI| =
{
|W | if # of stable pixels in W

of pixels in W > 0.5%

|IST | otherwise
(3.23)

S =

{
{p′ |p′ ∈ W,S(p

′
) > 0} if |WI| = |W |

{p′′ |p′′ ∈ IST , S(p
′′
) > 0, IST (p

′′
) ' Ifp(p)} otherwise

(3.24)

In the above equations,W is the window centered at pwith the default size of 100×

100 pixels and |W | denotes the window size. The experimental results that justify

this particular window size is shown in the Appendix C. |IST | is the size of image

IST and |p − p′| denotes the distance between p and p′ . IST (p
′′
) ' Ifp(p) means

that |IST (p
′′
)− Ifp(p)| < tH for each of the R, G and B channels.

The pseudocode shown in Algorithm 3 illustrates the steps to calculate the pre-

dicted value for an unstable pixel p. And in Figure 3.21, we show the image after

all the unstable regions in Figure 3.20 are filled in by our proposed local and global

sampling method.

3.2.4 Smoothness Term

In order to achieve visual smoothness in the final output image, we adopt the

smoothness term which is proposed in [13]. That is,

Vp,q(fp, fq) =
||Ifp(p)− Ifq(p)||2 + ||Ifp(q)− Ifq(q)||2

2
(3.25)

The smoothness term gives a high cost if fp and fq are not matched with each

other well. However, if background regions are available in both fp and fq, then

they are ideal locations to switch copying from one frame to the other. As illustrated

in [13], the smoothness cost can be high in an area containing a moving textured

54

Algorithm 3 Predicted term computation for an unstable pixel p
S = ∅

Examine the window W centered at p

if # of stable pixels in W
of pixels in W > 0.5% then

|WI| = |W |

for each pixel p′ ∈ W do

if S(p
′
) > 0 then

S = S ∪ {p′}

end if

end for

else

|WI| = |IST |

for each pixel p′′ ∈ IST do

if S(p
′′
) > 0 and IST (p

′′
) ' Ifp(p) then

S = S ∪ {p′′}

end if

end for

end if

Apply Equation 3.22 to compute IPR(p)

55

Figure 3.21: Result when the unstable regions in Figure 3.20 are filled in by pre-
dicted values.

object. By incorporating such a smoothness term, gradient domain fusion is ap-

plied after the energy minimization only when the images are taken from different

viewpoints.

3.2.5 Implementation

We minimize the energyE using the framework that is publicly available [54]. This

framework is developed under Windows XP using C++ programming language.

In particular, we apply the expansion move algorithm because it produces better

results than other energy minimization methods in general. The implementation

of this algorithm uses the max-flow algorithm which is originally implemented by

Boykov et al. [9]. The expansion move algorithm is specially designed for the

graphs in vision applications. Shown in [9], this algorithm performs particularly

well for those graphs.

When applying the global color sampling in the image inpainting technique, our

method searches the entire stable image IST in order to find similar pixels for bilin-

56

ear interpolation. However, this process can be extremely time-consuming. When

the size of the input images is big such as 1024× 768, and if the unstable regions are

large in IST , then there will be many pixels inside the unstable regions that require

global color sampling. In order to reduce the processing time, we use histogram

for acceleration. The histogram of the color of stable image IST is constructed first.

Then we search the pixels which are similar to the candidate pixel Ifp(p) in the

histogram. Since we only search for the similar pixels in the histogram, the infor-

mation of the distance between the candidate pixel and its similar pixels is lost. As

a result, averaging instead of bilinear interpolation is applied to similar pixels. And

finally the average value is used as the predicted color value by global color sam-

pling. Formally, the equations to compute the predicted value by using histogram

is shown below.

IPR(p) =

∑
p′′∈S

IST (p
′′
)

of pixels in S
(3.26)

S = {p′′ |p′′ ∈ IST , S(p
′′
) > 0, IST (p

′′
) ' Ifp(p)} (3.27)

Specifically, instead of searching pixels p′′ that have similar value to Ifp in IST ,

p
′′ are obtained from the histogram of IST . Although the process is slightly different

from bilinear interpolation, we found that the results produced by both methods

are very similar to each other. However, using histogram acceleration reduces the

processing time significantly. The results produced by both approaches and the

improvement in speed is discussed in the following section.

3.2.6 Experimental Results

In our experiments, we apply the proposed method to many datasets to demonstrate

that our method is robust. The program is running on a desktop with 2 dual-core

2.2GHz AMD Opteron Processors with 4GB of memory.

We first apply the method to two datasets with natural scenes used in [28]. The

first dataset is the Toscana scene shown in Figure 3.22(a). It has six input images

each with size 800 × 600 pixels. There are many background regions occluded

in the input sequence. It takes around 300 seconds to compute the background

for this dataset by using histogram for acceleration. However, it takes more than

57

15 minutes without this acceleration approach. Figure 3.22(b) shows the result of

our method. We can see that all the occluders have been removed from the scene,

leaving only the background objects in the final result. For comparison, we apply

the background reconstruction method proposed in [1], and the result is shown in

Figure 3.22(c). The red rectangle in the image highlights the error region.

Figure 3.22: (a) A natural image sequence with six input images. (b) Estimated
background by applying our method. (c) Estimated background by applying the
method proposed in [1].

Figure 3.23: (a) Result with the stationary term and the smoothness term. (b) Result
with the stationary term, the smoothness term and the predicted term only by local
color sampling. (c) Result with the stationary term, the smoothness term and the
predicted term only by global color sampling. (d) Result with the stationary term,
the smoothness term and the predicted term by both local and global color sampling.

58

In order to show the importance of our predicted term, the results of apply-

ing different combinations of terms to this dataset are shown Figure 3.23. Figure

3.23(a) shows the result without the predicted term. Figures 3.23(b) and (c) show

the results with the predicted term computed by local color sampling or global color

sampling, respectively. And finally we show the result with our proposed predicted

term in Figure 3.23(d). We demonstrate that the result is significantly improved

with our predicted term.

Figure 3.24(a) shows another natural scene with eight input images which is

named the Market scene. Figure 3.24(b) is the result by applying our method and

Figure 3.24(c) is the result by applying the background reconstruction method pro-

posed in [1]. The foreground object inside the red rectangle region shown in Figure

3.24(c) should not exist. Also, the sky region in our result appears more realistic

than the one by [1].

Figure 3.24: (a) Eight input images of the Market scene. (b) Estimated background
by applying our method. (c) Estimated background by applying the method pro-
posed in [1].

In our implementation of this method, we use histogram in order to reduce the

processing time. Specifically, we perform averaging instead of linear interpolation

on the pixels which are similar to the candidate pixel. Figure 3.25(a) shows the

59

result without the acceleration approach and Figure 3.25(b) the result with it. The

comparison indicates that the result without acceleration is slightly better. However,

applying histogram acceleration can significantly reduce the processing time.

Figure 3.25: Comparison of the results with and without our histogram acceleration.

Figure 3.26: Applying our method to Cathedral scene. (a) Five input images. (b)
Estimated background by applying our method. (c) Estimated background by [1].

We also apply our method to the Cathedral scene, which is originally used in

[1]. There are five input images in the sequence, as shown in Figure 3.26(a). Then

our result is shown in Figure 3.26(b). Again, errors exist in the red rectangle region

in Figure 3.26, which is the result by applying [1]. By comparing our result to the

60

result produced by the method in [1], we show that our method is better than theirs.

Next, our method is applied to a complex scene which is originally used in [3].

Figure 3.27(a) shows a subset of this image sequence which contains 21 images.

Figure 3.27(b) is our result and Figure 3.27(c) the result using the method in [1].

Because this scene is extremely complicated, some of the transient objects remain

in the results that are produced by both our method and the one in [1].

Figure 3.27: Applying our method to the Brandenburg gate scene. (a) 6 of 21
input images. (b) Estimated background by applying our method. (c) Estimated
background by [1].

As we know, traffic surveillance is an important practical problem. An im-

portant first step is to estimate the background. In order to demonstrate that our

method is practical in the real world, we apply it to a dataset that is captured by a

traffic surveillance camera. The dataset is taken from [13], which has 25 images in

total. To conserve space, we show only four of them. Figure 3.28(b) is our result

and Figure 3.28(c) is the result produced using a median filter. This dataset shows

that our method is much better than median filtering.

In the following experiment, we apply our sampling-based method to images

taken from different viewpoints. The input images in Figure 3.29 are taken by a

61

Figure 3.28: Applying our method to images taken by a traffic surveillance camera.
(a) 4 of 25 input images. (b) Estimated background by applying our method. (c)
Estimated background by a median filter (from[13]).

Figure 3.29: (a) Four images with a window frame as the foreground object. (b)
Estimated background by applying our method. (c) Estimated background by [1].

62

moving camera and with window frames as the foreground objects. This dataset

shows that our method can get correct result, which means that the window frames

are removed in the background image. However, the result by applying [1] still has

the window frame.

Figure 3.30(a) are four images taken from different viewpoints and with signif-

icant illumination changes. In Figure 3.30(b) and (c) the results by our method and

by [1] are shown. The arrows in Figure 3.30(c) point out the error regions. In this

dataset, gradient domain fusion is applied to remove some visual seams. However,

we can see that there are some small foreground objects exist in our result. The

result indicates that our sampling-based method cannot work perfectly on datasets

with significant illumination changes.

Figure 3.30: (a) Four images with large illumination changes. (b) Estimated back-
ground by applying our method. (c) Estimated background by [1].

3.2.7 Application to High Dynamic Range Images

In the final experiment, we apply our sampling-based method to a high dynamic

range image sequence. The input images are captured under different exposure

settings. The dataset is taken from [28], which is shown in Figure 3.31. The corre-

63

sponding exposure times are also given in the figure. It is clear that the pixel values

vary significantly in the same location among different images. Therefore, some

pre-processing is required before we can apply our algorithm.

Figure 3.31: Input images with different exposure times.

In order to combine the input images, we use the algorithm proposed in [20] to

recover the camera response function, and then we construct the radiance map for

each image. Immediately after that, the “dodging-and-burning” method, which is

proposed in [48], is applied to obtain the tone mapped image. A tone map or tone

reproduction refers to the process of mapping a high dynamic range image back

to low dynamic range. In our implementation, we use the global operators when

applying the method in [48]. This is because the results provided by global oper-

64

ators are smoother in general. Moreover, the processing time can be significantly

reduced by applying global operators than local operators. Figure 3.32 shows two

tone-mapped input images. We can see that the illumination change is less signifi-

cant than the original images in the input sequence.

Figure 3.32: Corresponding tone mapped input images. Top row: original input
images. Bottom row: tone mapped images.

Our method is applied directly to the tone-mapped images. When calculating

the stable image IST for this dataset, we change the threshold tH which is defined

in Equation 3.19. This is because the illumination change is larger than a normal

dataset such as that shown in Figure 3.26. tH is changed to 25 for each channel if

I1(p) = 0 or 0.3 · I1(p) otherwise. Figure 3.33(a) shows the result of our method.

65

For comparison, the result by the “dodging-and-burning” method is shown in Figure

3.33(b). In particular, a weighting function [20] is applied when constructing the

high dynamic range radiance map. Hence, artifacts are present in the result shown

in Figure 3.33(b). In particular, all the transient objects from the input images can

be seen in this image. However, these artifacts are completely removed using our

method.

Figure 3.33: (a) Estimated background by our method. (b) The result produced by
applying the “dodging-and-burning” method.

3.3 Conclusion

We have presented two novel methods for background estimation. Comparing the

quality of the results, our sampling-based method is better than segmentation-based

method in general. It can be indicated by the comparison between Figure 3.12(b)

and Figure 3.26(b). However, the segmentation-based method performs much bet-

ter in terms of processing time. When both methods are applied to the image se-

quence shown in Figure 3.12(a), it takes only 10 seconds for the segmentation-based

66

method but about 100 seconds for the other one. The main reason is that we apply

local and global color sampling for the predicted term. And this process can be

time-consuming even with histogram acceleration. In real world applications, our

segmentation-based method is suitable when the background is not too complicated

such as the one shown in Figure 3.9. However, if the background is extremely com-

plex and the foreground objects occupy a large portion of the scene (Figure 3.24(a)),

then our sampling-based method is a more reasonable choice.

67

Chapter 4

GPU Speed Up

In our segmentation-based method, we apply an image segmentation algorithm first

and linear blending last. In this chapter, we give a GPU implementation of both

methods for speedup.

4.1 Overview

Figure 4.1: Floating-point operations per second for the CPU and the GPU. (from
[46])

GPU, which stands for graphics processing unit, has successfully evolved into

an indispensable resource in a computing system during the last few years driven

by demands in the 3D computer game industry. Figure 4.1 shows the comparison of

improvements in computational power between the CPU and the GPU. It shows that

the GPU increases in performance at a rate much faster than the CPU. As a matter

of fact, the most recent GPU chips have the computational power with nearly 1800

68

Gflops. Nowadays, GPUs offer incredible computing resources for both graphics

and non-graphics processing as powerful parallel processors. Therefore, users are

focusing on general-purpose computation using the GPU (GPGPU) during the last

few years. As a matter of fact, image processing has become a popular topic for

acceleration on the GPU as well. This is because many image processing methods

have sections that consist of a common computation over many pixels. Ahn et al.

[2] develop an image processing toolkit on the GPU which contains several tech-

niques such as image segmentation and image enhancement. The image segmenta-

tion algorithms that implemented are isoperimetric graph partition, normalized cut

and active contour. However, the method proposed in [23] and linear blending has

not been implemented on the GPU before.

4.1.1 GPU Architecture

Figure 4.2: A simplified diagram of a programmable graphics pipeline.

The diagram of a typical programmable graphics pipeline is shown in Figure

4.2. The main function of the GPU is to use the geometrical information of a 3D

scene, which is normally represented as vertices, which are then transformed to a

2D image composed of colored pixels. The graphics pipeline can be divided into

several stages as follows.

69

â Application: This stage usually resides on the CPU rather than the GPU. It

handles high-level operations. For example, sending the 3D geometry data in the

form of vertex coordinates and the necessary commands to be performed.

â Vertex Transformation: The vertex processor is responsible for transforma-

tion and lighting. In transformation, it transforms 3D triangle vertices to 2D coordi-

nates on an image plane according to a given camera model. In lighting, the vertex

processor takes information such as the position and intensity of the light sources

to compute the color of the vertex.

â Raster Operations: The primary function of this stage is to map a triangle

into a set of screen pixels. It can be divided into two main stages. The first stage is

to determine which pixels are part of the triangle. The second is the interpolation

of vertex attributes such as color.

â Fragment Processing: This stage is to process the information from the ras-

terizer and to compute the final color of each pixel. The output of this stage is the

2D image buffer that is displayed on screen.

4.1.2 CUDA

GPGPU programming using a graphics API such as OpenGL or DirectX can sim-

plify the use of the GPU. However, it has limitations as pointed out in [46]. For

example, graphics APIs impose a high-learning curve for non-graphics users, and

also incur overhead when the application is wrapped with graphics API calls.

CUDA, which is short for Compute Unified Device Architecture, is introduced

by NVIDIA [46] to address the above mentioned limitations of GPGPU program-

ming. The syntax of CUDA programming is similar to the C programming lan-

guage. For example, the programmer can use cudaMalloc for allocating memory

on the GPU which is very close to malloc in the C programming.

When programming using CUDA, the GPU is viewed as a compute device

which could execute a high number of threads in parallel. Figure 4.3 illustrates

the thread batching model of CUDA. In this figure, a grid includes all the kernels

on the GPU for running a CUDA program. A block contains the kernels that run

concurrently on one GPU multiprocessor. The threads in a block cooperate with

70

each other through a shared memory.

Figure 4.3: Thread-batching model of GPU. (from [46])

4.2 GPU Image Segmentation

Algorithm 2 in Section 3.1.2 is a step-by-step description of the image segmentation

algorithm that we apply in our segmentation-based background estimation method.

There are two parts in this algorithm that can be executed in parallel.

Given an image, the first step is to transform it into a graph which is then served

as input to Algorithm 2. Figure 4.4 shows a graph which represents an image. In

this graph, each node such as v corresponds to a pixel in the image. The weight

of the edge e connecting a pair of adjacent pixels is computed by Equation 3.5.

In the CPU implementation, the weight of each edge in the graph is computed

sequentially. This process is parallelized in our GPU implementation. Because the

threads on the GPU are executed in parallel, we assign each thread on the GPU to

71

Figure 4.4: A graph: the representation of an image.

be in charge of an edge in the graph. Assigning one thread for one edge does not

effect the result because when computing the weight for an edge, it only requires the

intensity information of the adjacent pixels connected by this edge, which is stored

in a shared memory. The pseudocode for building a graph is given in Algorithm 4.

The CUDA code for each part that is ported to the GPU is provided in the Appendix

B.

The second part that can be ported to the GPU is the third step of Algorithm

2, which is the main step to construct the segments. In this step, the algorithm

processes each edge sequentially, and determines whether or not the two adjacent

vertices that are connected by this edge should be merged. In our GPU implemen-

tation, we also assign one thread to process one edge. However, the results by our

implementation can be different from the CPU version. A minimum spanning tree

(MST) is maintained for each segment in the CPU version of this algorithm. When

an edge is processed, the MST is updated. That is, whether two nodes connected by

an edge should be merged or not is determined by Equation 3.6, which is defined

based on the MSTs. When we port this part to the GPU, the MST is still maintained

for each segment. However, since the edges are processed in parallel, the MST for

each segment is different from the one on the CPU. A simple example is given as

follows. Suppose the program is currently processing edge e on the CPU. Let vi,

72

Algorithm 4 Building a graph for an image on GPU
// define the structure of an edge

struct {

float w; //the weight of the edge

int a, b; // the indices of two adjacent nodes connected by this edge

} edge;

Input: An array containing the color information of each pixel in the image

for each thread on the GPU do

assign the indices of two adjacent nodes to edge.a and edge.b

calculate the weight using the color information and assign it to edge.w

end for

synchronize all the threads

Output: A group of edges

vj be the two adjacent pixels connected by e and vi ∈ Ri, vj ∈ Rj , where Ri and

Rj are two separate segments. To determine whether or not vi and vj should be

merged, the program uses the information of the MSTs from both Ri and Rj , as

well as the information of the size of each segment. In the CPU version, when e is

processed, both segments may already have some nodes in them, which means that

their size can be large. However, when the threads are running in parallel on the

GPU, the segments Ri and Rj may have only one node in each segment, that is, vi

in Ri and vj in Rj . Since the size and the MST of each segment differ between the

GPU and the CPU, the value of P (R1, R2) could be different, and hence, different

results are produced. We give the pseudocode of this part in Algorithm 5.

We compare the results produced by our GPU implementation and the result by

the CPU version and then evaluate the performance.

Comparison: We conduct two experiments in order to show that our imple-

mentation can obtain results similar to the CPU implementation. First, we process

an input image on both the CPU and the GPU and then compare the results, which

should be similar to each other. The input image for this experiment is shown in

Figure 4.5(a). We apply the image segmentation algorithm proposed in [23] and our

73

Algorithm 5 Segment a graph
Input: A group of edges representing a graph

for each thread on the GPU do

compute P (R1, R2) in Equation 3.6 for each edge e connecting two segments

R1 and R2

if P (R1, R2) = true then

merge R1 and R2

else

do nothing

end if

end for

synchronize all the threads

Output: A group of separate segments

GPU implementation to this image. The image in Figure 4.5(b) is the segmentation

result produced by [23] and Figure 4.5(c) is the result by our GPU implementation.

The comparison indicates that our GPU implementation is able to produce result

which is similar to the one by the original author.

In our second experiment, we use the segmentation results produced by our

GPU implementation and redo the experiments of applying segmentation-based

method. The images on the left column in Figure 4.6 shows the background es-

timation results by using our GPU segmentation results, and images on the right

column are CPU image segmentation results. The input images for Figure 4.6(a)

are from the same viewpoint and Figure 4.6(b) are from different viewpoints. The

images on the left column and the right column demonstrates the similarity.

Performance: After the correctness is verified, the performance of our GPU

implementation is evaluated. We apply our implementation to seven sets of images

with different sizes and compare the running time on the GPU to the CPU. Table

4.1 shows the comparison of the running time and the speedup. Figure 4.7 shows

that the curve of running time versus image size for the GPU stays much lower than

that of the CPU. This means that the GPU can be used to process much larger size

74

Figure 4.5: (a) An input image to the image segmentation algorithm. (b) The seg-
mentation result produced by [23]. (c) The result by our GPU implementation.

images.

Image Resolution CPU GPU Speedup
1200 × 900 30.13s 1.49s 20
1632 × 1224 57.49s 2.98s 19
2308 × 1732 118.68s 5.57s 21
3264 × 2448 247.42s 11.71s 21

Table 4.1: Comparison between the running time for image segmentation on the
CPU and the GPU.

4.3 GPU Linear Blending

As mentioned above, linear blending is the last step in our segmentation-based

method. We also give a parallel implementation on the GPU for linear blending.

75

Figure 4.6: Comparison of the background estimation results with the image seg-
mentation results by both the GPU and the CPU implementation. (a) The estimated
background of the dataset on the first row in Figure 3.8. (b) The estimated back-
ground of the dataset shown in Figure 3.9. Left column: with GPU image segmen-
tation results. Right column: with CPU image segmentation results.

The description of linear blending is given in Section 3.1.5. The following is a

simple example for linear blending. Given two images f1 and f2 from the same

viewpoint with different illumination conditions. The algorithm processes pixels

in one coordinate (x, y) at a time. In particular, it computes the weight w1 for

pixel p1 in f1, and w2 for p2 at the same coordinate in f2, then outputs the result as
p1×w1+p2×w2

w1+w2
. Hence, to process the pixel at (x, y) does not require any information

from other pixels. Therefore, it can be easily parallelized by assigning a thread on

the GPU to compute the value of one pixel in the result, and the threads on GPU

can execute concurrently. The pseudocode for GPU linear blending is given below

as well.

In our experiments, we compare the results by GPU and CPU linear blending,

and also evaluate the performance of our GPU implementation.

76

Figure 4.7: Running time of the image segmentation algorithm on the CPU and the
GPU.

Comparison: We use two images shown in Figure 4.8(a), which are taken from

the same viewpoint but with illumination changes between them. Then Figure

4.8(b) and (c) show the results of linear blending on the GPU and on the CPU,

respectively.

We use Equation 4.1 to measure the similarity between Figure 4.8(b) and (c).

That is, we compute the sum of the absolute difference on three color channels

and then take the average as the measure. In this equation, N is the total number

of pixels in an image, and Ikn,f1 is the value of color channel k for pixel n in im-

age f1. We apply this equation to the images shown in Figure 4.8(b) and (c), and

Diff = 2.836705. That is, the average difference for each pixel in the image is

less than 3, and that is the sum of differences on the three color channels. This

experimental result of measure indicates that the difference of two implementation

results is sufficiently small so that there is no visual difference.

Diff =

N∑
n=1

∑
k=R,G,B

|Ikn,f1 − I
k
n,f2
|

N
(4.1)

Besides the above comparison, we also compare the background estimation re-

77

Algorithm 6 GPU linear blending
Input: Two arrays p1, p2 with the same size, holding the color value for two input

images and

An array r with the same size as p1, and all elements in it are initialized

to be 0.

for each thread t on the GPU do

compute the weight w1[t] for pixel p1[t] and w2[t] for p2[t]

r[t] = p1[t]∗w1[t]+p2[t]∗w2[t]
w1[t]+w2[t]

end for

synchronize all the threads

Output: The array r

sult by linear blending on the CPU and on the GPU. The results are shown in Figure

4.9. The input datasets used in this experiment are the same as those used in Figure

4.6. The comparison indicates that our GPU linear blending results are comparable

to the ones by the CPU version.

Performance: To evaluate the performance of our GPU linear blending, we

apply it to images with different resolutions. Table 4.2 shows the running time and

the speedup. Similar to Figure 4.7, the curves of the running time for the CPU

and for the GPU are shown in Figure 4.10. The figure demonstrates that our GPU

implementation has significant improvement on the processing speed.

Image Resolution CPU GPU Speedup
1200 × 900 0.52s 90ms 6
1632 × 1224 0.94s 105ms 9
2308 × 1732 1.81s 140ms 13
3264 × 2448 3.80s 203ms 19
4032 × 3024 5.89s 266ms 22

Table 4.2: Comparison between the running time on the CPU and on the GPU for
linear blending.

78

Figure 4.8: Linear blending on the CPU and on the GPU. (a) The input images for
linear blending. (b) Result by GPU linear blending. (c) Linear blending result on
the CPU.

79

Figure 4.9: Comparison of the background estimation results with linear blending
on the CPU and on the GPU. Left column: with linear blending on the CPU. Right
column: with linear blending on the CPU.

Figure 4.10: Running time of linear blending on the CPU and on the GPU.

80

Chapter 5

Conclusions and Future Work

5.1 Contributions

In this thesis, we present two novel methods for background estimation and also

provide GPU speedup.

Segmentation-based method
The novelty of this method is to integrate the information of image segmenta-

tion. The cost function defined in this method includes a smoothness measure and a

stationary coefficient. When defining the smoothness measure, we take advantage

of the image segmentation results to make it more reasonable. A dynamic program-

ming framework is applied to choose the candidate pixels which could minimize

the aggregate cost along each scanline. Since significant illumination variation may

be present among input images, linear blending is applied to remove any visible

seams after candidate pixels are selected on each scanline. We use this method to

process several datasets including images with similar illumination condition and

with significantly illumination changes, and the results are promising.

In order to eliminate the parameter used in linear blending, we propose an al-

ternative method, which is to apply linear blending first with the blended results

served as input images. After that, the cost function is defined based on the blended

results and the candidate pixels selected by the DP framework are the final results.

During our experiments, we also discover the limitations of the blending-fist

method. Since the number of input images increases, the method is much slower

than the blending-last method. When the scene has many transient objects such as

81

Figure 3.14(a), there will be error regions in the result (Figure 3.14(b)). Although

the blending-fist method is able to eliminate one parameter, it actually decreases the

probability of background pixels in the input sequence. As a result, the stationary

coefficient makes the background pixels less likely to be selected.

Sampling-based method
In this method, the background estimation is cast into a labeling problem. We

define an energy function based on the MRF formulation and use graph cuts to

minimize it. The energy function includes a data term and a smoothness term.

When the data term is defined, we integrate an image inpainting technique which

has never been used in background estimation. In particular, we detect the stable

regions among the input images, and then apply image inpainting to fill in the unsta-

ble regions. A predicted term is defined based on the filled-in regions by the image

inpainting technique. Finally, a smoothness term is defined to make sure that the re-

sults are visually smooth. Therefore, gradient-domain fusion is applied only when

the images are taken with different illumination conditions. We apply this method

to datasets from the same viewpoint and from different viewpoints as well. The

comparison indicates that our method is able to produce better results than other

methods [1] [13] [58]. In our experiments, we demonstrate the importance of the

integrated image inpainting method. In the final experiment, we also show that the

sampling-based method can be applied to high dynamic range images.

The limitation of this method is on processing time. First of all, the graph cuts

minimization technique is slower than DP in general. The second reason is due to

the sampling used in the image inpainting technique. The global color sampling

(Section 3.2.3) can be time consuming if the image resolution is high and the image

set has huge unstable regions. Even with our histogram acceleration, the processing

time is still much longer than our segmentation-based method.

GPU speedup
Besides the two novel background estimation methods that described above,

we port the image segmentation algorithm and linear blending from the CPU to

the GPU. We take advantage of the features of the GPU. In particular, the CUDA

programming facility and the parallel execution of threads on the GPU. By porting

82

the methods into the GPU, the speedup can be as high as 20 times.

5.2 Future Work

In our segmentation-based method, we set a threshold when performing linear

blending and the threshold needs to be changed based on the illumination of the

input images. We propose an alternative method to eliminate the threshold, which

results in another constraint. That is, the alternative method cannot be applied to

images with many transient objects in the scene. An interesting research topic is

to eliminate the parameters that we have, and to make the method completely auto-

matic.

In our sampling-based method, we integrate a simple image inpainting tech-

nique. As is known to all, there are many methods proposed in this area [6] [4] [5]

[7]. In our method, we use only color information for sampling. It is possible to ap-

ply different image inpainting techniques for comparison. For example, we can use

structure and texture information for inpainting [7], in addition to color informa-

tion. However, it may take more time for processing if we apply more sophisticated

inpainting methods.

Another possible research direction is to reduce the processing time in the

sampling-based method. The global color sampling can be time consuming if the

resolution of the input images is high and the unstable regions are large. Therefore,

a faster image inpainting technique that can produce results with the same quality is

worthy for further investigation. One avenue along this direction is to exploit using

the GPU.

83

Bibliography

[1] A. Agarwala, M. Dontcheva, M. Agrawala, S. M. Drucker, A. Colburn,

B. Curless, D. Salesin, and M. F. Cohen. Interactive digital photomontage.

volume 23, pages 292–300, 2004.

[2] I. Ahn, M. Lehr, and P. Turner. Image processing on the gpu. White paper,

University of Pennsylvania, February 2005. Available online.

[3] M. Alexa. Extracting the essence from sets of images. In Proceedings of the

Eurographics Workshop on Computational Aesthetics, pages 113–120, 2007.

[4] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera. Filling-in

by joint interpolation of vector fields and gray levels. IEEE Transactions On

Image Processing, 10(8):1200–1211, 2001.

[5] M. Bertalmio, A. Bertozzi, and G. Sapiro. Navier-stokes, fluid-dynamics and

image and video inpainting. In Proceedings of the Eighth IEEE International

Conference on Computer Vision, pages 355–362, 2001.

[6] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In

Proceedings of ACM SIGGRAPH 2000, pages 417–424, 2000.

[7] M. Bertalmo, L. Vese, G. Sapiro, and S. Osher. Simultaneous structure

and texture image inpainting. IEEE Transactions On Image Processing,

12(8):882–889, 2003.

[8] T. Boult, R. Micheals, X. Gao, P. Lewis, C. Power, W. Yin, and A. Erkan.

Frame-rate omnidirectional surveillance and tracking of camouflaged and oc-

cluded targets. In Proceedings of Second IEEE Workshop on Visual Surveil-

lance, pages 48–55, Fort Collins, Colorado.

84

[9] Y. Boykov and Vladimir Kolmogorov. An experimental comparison of min-

cut/max-flow algorithms for energy minimization in vision. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,, 26(9):1124–1137,

September 2004.

[10] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization

via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence,, 23(11):1222–1239, November 2001.

[11] M. Brown and D. G. Lowe. Recognising panorama. In Proceedings of the

9th International Conference on Computer Vision (ICCV 2003), pages 1218–

1225, Nice, France, 2003.

[12] P. J. Burt and R. J. Kolczynski. A multiresolution spline with applications to

image mosaics. ACM Transactions on Graphics, 2(4):217–36, 1983.

[13] S. Cohen. Background estimation as a labeling problem. In Proceedings of the

10th IEEE International Conference on Computer Vision (ICCV 2005), pages

1034–1041. IEEE Computer Society, 2005.

[14] A. Colombari, A. Fusiello, and V. Murino. Background initialization in clut-

tered sequences. In Proceedings of the 2006 Conference on Computer Vision

and Pattern Recognition Workshop (CVPRW’06), pages 197–202, 2006.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms (Second Edition). The MIT Press, Massachusetts, 1990.

[16] A. Criminisi, G. Cross, A.Blake, and V. Kolmogorov. Billayer segmentation

of live video. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR 2006), pages 53–60, New York City, NY, 2006.

[17] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati. Detecting moving objects,

ghosts and shadows in video streams. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 25(10):1337–1342, 2003.

85

[18] R. Cutler and L. Davis. View-based detection and analysis of periodic mo-

tion. In Proceedings of the Fourteenth International Conference on Pattern

Recognition, pages 495–500, Brisbane, Australia, 1998.

[19] J. Davis. Mosaics of scenes with moving objects. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’98), pages

354–360, Santa Barbara, 1998.

[20] P. E. Debevec and J. Malik. Recovering high dynamic range radiance maps

from photographs. In SIGGRAPH 97 Conference Proceedings, pages 369–

378, August 1997.

[21] A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for back-

ground subtraction. In Proceedings of the Sixth European Conference on

Computer Vision, volume 2, pages 751–767, London, UK, 2000.

[22] R. Fattal, D. Lischinski, and M. Werman. Gradient domain high dynamic

range compression. ACM Transactions on Graphics, 21(3):249–256, 2002.

[23] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image seg-

mentation. International Journal of Computer Vision, 59(2):167–181, 2004.

[24] N. Friedman and S. Russell. Image segmentation in video sequences: A prob-

abilistic approach. In Proceedings of the Thirteenth Annual Conference on

Uncertainty in Artificial Intelligence (UAI-97), pages 175–181, San Francisco,

CA, 1997.

[25] X. Gao, T. Boult, F. Coetzee, and V. Ramesh. Error analysis of background

adaption. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 503–510, Hilton Head Isand, SC, 2000.

[26] B. Gloyer, H. K. Aghajan, K.-Y. Siu, and T. Kailath. Video-based freeway

monitoring system using recursive vehicle tracking. In Proceedings of SPIE,

pages 173–180, 1995.

86

[27] N. Gracias, A. Gleason, S. Negahdaripour, and M. Mahoor. Fast image blend-

ing using watershed and graph cuts. In Proceedings of British Machine Vision

Conference, pages 469–478, 2006.

[28] M. Granados, H. Seidel, and H. P. A. Lensch. Background estimiation from

non-time sequence images. In Graphics Interface, pages 33–40, 2008.

[29] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee. Using adaptive track-

ing to classify and monitor activities in a site. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pages 22–29, 1998.

[30] D. Gutchess, M. Trajkovic, E. Cohen-Solal, D. Lyons, and A. K. Jain. A

background model initialization algorithm for video surveillance. In Proceed-

ings of the International Conference on Computer Vision (ICCV 2001), pages

733–740, 2001.

[31] G. Halevi and D. Weinshall. Motion of disturbances: Detection and tracking

of multi-body non-rigid motion. In Machine Vision and Applications, pages

122–137, 1999.

[32] J. Heikkila and O. Silven. A real-time system for monitoring of cyclists and

pedestrians. In Proceedings of Second IEEE Workshop on Visual Surveillance,

pages 246–252, Fort Collins, Colorado.

[33] P. KaewTraKulPong and R. Bowden. An improved adaptive background mix-

ture model for real-time tracking with shadow detection. In Proceedings of the

second European Workshop on Advanced Video Based Surveillance Systems,

2001.

[34] K.-P. Karmann and A. Brandt. Moving object recognition using an adaptive

background memory. In Time-Varying Image Processing and Moving Object

Recognition, pages 289–307, 1990.

[35] D. Koller, J. Weber, and J. Malik. Robust multiple car tracking with occlusion

reasoning. Technical report, EECS Department, University of California at

Berkeley, 1994.

87

[36] V. Kolmogorov and R. Zabih. What energy functions can be minimized via

graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelli-

gence,, 26(2):147–159, February 2004.

[37] E. S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs. Temporally consistent

reconstruction from multiple video streams using enhanced belief propaga-

tion. In Proceedings of the International Conference on Computer Vision,

pages 1–8, Rio de Janeiro, Brazil, 2007.

[38] D.-S. Lee, J. Hull, and B. Erol. A bayesian framework for gaussian mixture

background modeling. In Proceedings of IEEE International Conference on

Image Processing, Barcelona, Spain.

[39] A. Levin, A. Zomet, S. Peleg, and Y. Weiss. Seamless image stitching in the

gradient domain. In Eighth European Conference on Computer Vision (ECCV

2004), pages 377–389, 2004.

[40] Y. Liu, T. Belkina, J. H. Hays, and R. Lublinerman. Image de-fencing. In IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

pages 1–8, 2008.

[41] B. P. L. Lo and S. A. Velastin. Automatic congestion detection system for

underground platforms. In Proceedings of 2001 International symposium on

intelligent multimedia, video, and speech processing, pages 158–161, Hong

Kong, 2001.

[42] W. Long and Y.-H. Yang. Stationary background generation: An alternative

to the difference of two images. Pattern Recognition,, 23:1351–1359, 1990.

[43] D. G. Lowe. Object recognition from local scale-invariant features. In Pro-

ceedings of the 7th International Conference on Computer Vision (ICCV’99),

pages 1150–1157, Corfu, Greece, 1999.

[44] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision, 60(2):91–110, 2004.

88

[45] N. McFarlane and C. Schofield. Segmentation and tracking of piglets in im-

ages. Machine Vision and Applications,, 8(3):187–193, 1995.

[46] NVIDIA. Nvidia programming guide. Technical report, NVIDIA, 2008.

[47] P. W. Power and J. A. Schooness. Understanding background mixture models

for foreground segmentation. In Proceedings Image and Vision Computing

New Zealand, pages 267–271, Auckland, New Zealand.

[48] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic tone repro-

duction for digital images. In Proceedings of ACM SIGGRAPH 2002, pages

267–276, 2002.

[49] P. Remagnino, A. Baumberg, T. Grove, D. Hogg, T. Tan, A. Worrall, and

K. Baker. An integrated traffic and pedestrian model-based vision system. In

Proceedings of the Eighth British Machine Vision Conference, pages 380–389,

1997.

[50] H.-Y. Shum and R. Szeliski. Construction of panoramic mosaics with global

and local alignment. International Journal of Computer Vision, 36(2):101–30,

2000.

[51] C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for

real-time tracking. In Proceedings of the 1999 Conference on Computer Vision

and Pattern Recognition (CVPR 1999), pages 2246–2252, 1999.

[52] C. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time

tracking. pages 747–757, 2000.

[53] J. Sun, W. Zhang, X. Tang, and H.-Y. Shum. Background cut. In Proceedings

of European Conference on Computer Vision, pages 628–641, 2006.

[54] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agar-

wala, M. Tappen, and C. Rother. A comparative study of energy minimization

89

method for markov random fields with smoothness-based priors. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,, pages 1068–1080,

2008.

[55] M. F. Tappen and W. T. Freeman. Comparison of graph cuts with belief prop-

agation for stereo, using identical mrf parameters. In Proceedings of the Ninth

IEEE International Conference on Computer Vision (ICCV 2003), pages 900–

907, 2003.

[56] M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating ghosting and exposure

artifacts in image mosaics. In IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR 2001), pages 509–516, Kauai,

Hawaii, 2001.

[57] C. Wren, A. Azabayejani, T. Darrell, and A. Pentland. Pfinder: Real-time

tracking of the human body. In IEEE Transactions on Pattern Analysis and

Machine Intelligence, pages 780–785, 1997.

[58] Xun Xu and Thomas S. Huang. A loopy belief propagation approach for

robust background estimation. In 2008 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, Alaska,

June 24-26 2008. IEEE Computer Society.

[59] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propaga-

tion and its generalizations. Technical report, Mitsubishi Electric Research

Laboratories, January 2002.

[60] Q. Zhou and J. Aggarwal. Tracking and classifying moving objects from

videos. In Proceedings of IEEE Workshop on Performance Evaluation of

Tracking and Surveillance, 2000.

[61] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-

quality video view interpolation using a layered representation. ACM Trans-

actions on Graphics, 23(3):600–608, 2004.

90

Appendix A

Homography

In computer vision, two images are related by a homography only if:

â They are viewing the same plane from different angles.

â They are taken by the same camera but from different angles.

Figure A.1: Projective transformation

Figure A.1 illustrates the geometry of an homography transform. x = (u, v, 1)

and x′ = (u
′
, v
′
, w
′
) are two matching points in different images, and their coordi-

nates are related by a 3 × 3 homography matrix. In particular, x′ = Hx, where H

is the 3 × 3 matrix. It leads to the following equation.uv
1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

u′v′
w
′

 (A.1)

91

where H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 is the homography matrix. When solving the above

equation, h33 is normally scaled to be 1. As a result, there are 8 unknowns in total.

Therefore, we need 4 pairs of corresponding points to obtained the 8 unknown

elements in H .

92

Appendix B

GPU Segmentation

B.1 Building the graph

//

// parameter list:

// ed d: an array of edges. The structure of an edge is given in Algorithm 5.

// img d: an array containing color information of pixels.

// width: the width of the input image.

// height: the height of the input image.

// Channels: number of color channels of the input images.

// num edges: the total number of edges in the graph.

//

global void build(edge* ed d, uchar* img d, int width, int height, int Channels,

int num edges)

{

// we operate on each edge try to set a, b and w for each edge

int idx = blockIdx.x*blockDim.x + threadIdx.x;

if (idx < num edges) {

int row, col;

int tempa, tempb, tempc, index1, index2;

// if the edge is on the last row of the image

if (idx >= (2*width-1)*(height-1)) {

row = height-1; col = idx-row*(2*width-1);

93

tempa = row*width+col;

index1 = tempa*Channels;

ed d[idx].a = tempa; ed d[idx].b = tempa+1;

tempa = img d[index1]-img d[index1+3];

tempb = img d[index1+1]-img d[index1+4];

tempc = img d[index1+2]-img d[index1+5];

ed d[idx].w = sqrt((float)(tempa*tempa + tempb*tempb + tempc*tempc));

}

//if the edge is on the last column of the image

else if ((idx+1)%(2*width-1) == 0) {

row = (int)idx/(2*width-1); col = width-1;

tempa = row*width+col; tempb = (row+1)*width+col;

index1 = tempa*Channels; index2 = tempb*Channels;

ed d[idx].a = tempa; ed d[idx].b = tempb;

tempa = img d[index1]-img d[index2];

tempb = img d[index1+1]-img d[index2+1];

tempc = img d[index1+2]-img d[index2+2];

ed d[idx].w = sqrt((float)(tempa*tempa + tempb*tempb + tempc*tempc));

}

else {

// if the edge is in the middle of the image

row = (int)idx/(2*width-1); col = (int)(idx-row*(2*width-1))/2;

if ((idx-row*(2*width-1))%2 == 0) {

tempa = row*width+col;

index1 = tempa*Channels;

ed d[idx].a = tempa; ed d[idx].b = tempa+1;

tempa = img d[index1]-img d[index1+3];

tempb = img d[index1+1]-img d[index1+4];

tempc = img d[index1+2]-img d[index1+5];

ed d[idx].w = sqrt((float)(tempa*tempa + tempb*tempb + tempc*tempc));

}

94

else {

tempa = row*width+col; tempb = (row+1)*width+col;

index1 = tempa*Channels; index2 = tempb*Channels;

ed d[idx].a = tempa; ed d[idx].b = tempb;

tempa = img d[index1]-img d[index2];

tempb = img d[index1+1]-img d[index2+1];

tempc = img d[index1+2]-img d[index2+2];

ed d[idx].w = sqrt((float)(tempa*tempa + tempb*tempb + tempc*tempc));

}

}

}

syncthreads();

}

B.2 Segmentation

//

// parameter list:

// ed d: an array of edges.

// m d: an array with the same size of ed d, representing whether two adjacent

// nodes connected by a certain edge should be merged or not.

// size d: the size of each segment.

// th d: an array stores the information of Int(R) + τ(R), which is

// shown in equation 3.8.

// num edges: the total number of edges in the graph.

// c: the same as the parameter k in equation 3.10.

//

global void segment(edge* ed d, uchar* m d, int* size d, float* th d, int num edges,

float c)

{

// we operate on each edge, that is, each element in the array ed d[].

95

int idx = blockIdx.x*blockDim.x + threadIdx.x;

if (idx < num edges) {

int a = ed d[idx].a;

int b = ed d[idx].b;

float w = ed d[idx].w;

if (a ! = b) {

//if the predicate in equation 3.6 is false, which indicates the two nodes

//should be merged.

if ((w <= th d[a]) && (w <= th d[b])) {

//set the flag to be 1.

m d[idx] = 1;

//change the size of the segment

size d[a] = size d[a]+size d[b];

size d[b] = size d[a];

// use the th d to maintain a MST.

// refer to the sequential code

th d[a] = w + (c/size d[a]);

th d[b] = th d[a];

}

}

}

syncthreads();

}

96

Appendix C

Sampling-based Method with
Various Window Size

In the sampling-based method, we define a window with default size of 100 ×

100 pixels. In this experiment, we compare the results with different window size.

In particular, the sampling-based method is applied to the input dataset shown in

Figure 3.14(a). However, when the method is applied, the size of the window is

changed to get different results for comparison. In this experiment, the size of

window varies from 10 × 10 pixels to 200 × 200 pixels. The results are shown in

the following figure. In the figure, we can see that when the window size is around

100 × 100 pixels, the results are similar. However, the results are worse if the size

is either much smaller or much larger.

Figure C.1: Comparison of the results by the sampling-based method with different
window size.

97

	titlewithout
	examcommittee
	submit
	thesis.pdf

