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Abstract

In opportunistic relaying systems, only the relay with lstnnel condition among
K relays is selected to take part in cooperation. This setiupesftly achieves di-
versity gain. However, the high switching rate of such systenay be undesir-
able due to practical implementation issues, for examp&corruption of the data
signal by receiver switching transients, or channel egtonaand synchronization
failures due to excessive switching, as well as networkrobetitching overheads
which increase with increased switching. Recently, swéold-examine relaying
whose main advantage is its low switching rate, was propasedlow complexity
suboptimal alternative to opportunistic relaying. Mean@hcomparisons of the
switching rates of opportunistic and switch-and-examicieesnes have been un-
dertaken only for the case of Rayleigh fading. In this thesis switching rates of
opportunistic relaying and switch-and-examine relayipgtesms with two or more
relays operating under Rician and Nakaganfading are obtained in closed-form
or single integral expressions. Results for independedtidentically distributed
fading links are obtained for the case of multiple relays additionally for inde-
pendent but not identically distributed fading links foettwo relays case. The

closed-form solutions explicitly depend on the Dopplegtrency of the fading.
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Chapter 1

Introduction

The first decade of the 21st century witnessed an unpreastiesypid growth in
wireless communication technologies. One of the main teldgical advance-
ments that enables such dramatic growth is the deploymemaliple-input multiple-
output (MIMO) technology. In MIMO systems, both the trantter and the re-
ceiver employ multiple antennas in order to obtain highéa dates and/or to alle-
viate channel impairments (such as noise, fading and shagd@#fects). However,
while MIMO technology has been tremendously successfalay not be an ideal
solution for many practical wireless networks due to costnpglexity and hard-
ware constraints. One of the most promising alternativeditdO technology is

cooperative relaying.

1.1 Cooperative Relaying

Cooperative relaying has received great attention in tegesrs as an alternative
and improvement to MIMO technology because it can also eréhéme reliability
of data transmission, provide broader and cheaper covenagenitigate severe
shadowing and fading effects [1]. In conventional commatan systems, the
source (transmitter) and the destination (receiver) comaoate directly without
any outside help. However, in cooperative relaying systehes source and the
destination communicate with each other with the help ofamaore relays.

A single-hop relaying scheme is illustrated in Fig. 1.1. Tmetocol in [1]

divided data transmission into two phases. In the first phtagesource transmits

1
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Figure 1.1. A cooperative relaying system with one relay.

some data to the destination as in conventional commuaitatistems. Due to the
broadcast nature of wireless communication, the relay r@seives a copy of the
data. In the second phase, the relay processes the receitgethdn forwards it to
the destination. The destination will then decode the dsitaguthe two replicas it
received (one from the source and the other from the relapceShe destination
node utilizes signals from both source and destinatiorerdity can be achieved.
Evidently, how the relay processes the data will have a majpact on the system
performance metrics, especially bit error rate (BER) artdgeiprobability (OP). In
the literature, there are currently two popular methodgleyrand-forward (AF)
and decode-and-forward (DF). In AF, the relay will simply @ify the received
signal (by a fixed factor or by a variable factor to normaligeel energy) and then
transmit it. In DF, the relay will decode the received sigaradl then re-encode and

transmit it.

1.2 Opportunistic Relaying and Switch-and-Examine
Relaying

In [1], only one relay is available for cooperation, whilegractice multiple relays
may be employed to further improve performance. One way phogxthe diver-

sity gain in such systems is to use distributed space-tindengcat the relays [2].
However, the code design for such system is difficult becthusaumber of nodes
participating in cooperation may not been knosvpriori. The authors in [3] pro-
posed opportunistic relaying (OR) as a scheme for multgdkgyrsystems, in which

only the relay with the best channel condition participatesooperation actively,



while all the other relays cooperate "passively” by not sraitting information.

OR has been shown to achieve full diversity with relatively complexity [3],
[4]. Despite the benefits offered by OR, one of the issuesthat be addressed in
practice is its high switching rate, i.e. the number of tirpes second the system
has to switch from one relay node to another, especially vithemumber of relays
is large or the channel conditions change frequently. Irventional receiver di-
versity combining systems, switched diversity has beeriempnted as a low com-
plexity suboptimal alternative to selection diversity éauce the antenna switching
rate [5]. Applying this idea to relaying systems, the aushior [6] proposed and
studied switch-and-stay relaying systems with two rel&tyswitch-and-stay relay-
ing, the systems dwells on one relay as long as its channeitcamis better than
a predetermined threshold. Once its channel conditiorsesoBelow the threshold,
the system switches to the other relay. An important ingigicbvered in [6] is that
switch-and-stay relaying achieves the same diversityraadepportunistic relay-
ing while reducing the switching rate. Note that switch-ataly relaying refers to
systems with only two relays. In this thesis, we intend testigate systems with
more than two relays, thus we use the term “switch-and-examglaying” to refer

to such systems.

1.3 Thesis Motivation and Contributions

This thesis is devoted to investigating the switching ratepportunistic relaying
and switch-and-examine relaying.

It is desirable to keep the switching rates in relaying neks@s low as possi-
ble for several reasons, both from the node perspectiverandthe network per-
spective. The switching rates are critically importantreg hode receiver for two
reasons. First, in order to coherently decode the receivesbage, the relay node
and the destination require accurate channel estimatiachvidimpossible unless
the system dwells on a specific relay node for a long enougé [ith Excessive
switching will undermine the accuracy of channel estingtivhich in turn will

degrade the system performance. Secondly, relay nodesmpltemented by ordi-



nary electrical circuits which have certain transient cesges. Whenever the system
switches to a new relay, it is equivalent to applying a stegfion input to the new
relay node receiver. The triggered receiver transientoresp will corrupt any sig-
nal received and cause an "internal outage” [8], [9]. Not thighpass responses
in any receiver elements (RF amplifiers and filters, IF angyifand filters, demod-
ulator circuits) may cause transients lasting thousandgmbol durations [10]. In
order to evaluate the impacts of such internal outage, ongddwve to consider a
particular receiver. Then one needs to obtain the imputgeorese of the underlying
circuits and the dwell time of a specific relay (how long theteyn communicates
with a specific relay before switching). We focus on the maredimental issue of
switching rate in this thesis and do not address receiveriBp questions. Future
research could investigate this issue in more detail. Ffeemetwork perspective,
excessive switching may cause network synchronizatidarés or delays due to
the distributed nature of cooperative relaying systemg [Etery switch from one
relay to another requires a new time synchronization inttatime delay associ-
ated with one relay can be dramatically different from trsstaiated with another
relay.

While the switching rate is of paramount importance to pcattimplemen-
tation of opportunistic relaying and switch-and-examiekaying systems, current
literature does not address it adequately. The majorithefiterature concerning
multiple relay systems has investigated the bit error ratt@utage probability of
such systems without considering the detrimental effesinofching rate. To fully
understand the impact of switching rate in cooperative camipation systems, one
has to first investigate what is the value of switching rateanous scenarios.

The switching rates for these two systems in Rayleigh fadimgnnels have
been investigated in [11]. However, Rayleigh fading may hhénadequate model
for practical channels, for example channels with a linsight (LOS) component
or channels suffering from more severe fading or less sdaeing than Rayleigh
fading. Therefore, it is essential to investigate switghiates in more flexible fad-

ing models, such as Rician fading and Nakagamfading. To the best of the



author’s knowledge, no such results are available in tieeditire. In this thesis,
the switching rates for dual-branch and multi-brahopportunistic relaying and
switch-and-examine relaying undergoing both Rician andagamim fading are

derived. Note that the switching rate discussed here i®diy and explicitly de-
pends on the maximum Doppler shift. This is different fromaivis termed the

switching rate in [12], where the maximum Doppler shift ikeefively zero.

1.4 Thesis Outline

The remainder of this thesis is organized as follow. Chapteatroduces the sys-
tem models under consideration. Fading channels and theniasion protocols
used by opportunistic relaying and switch-and-examinayreh are discussed. In
Chapter 3, we derive the switching rate for both dual-braarah multi-branch sys-
tems analytically. For Rician fading, the results are pnese in single-integral
form, while for Nakagamim fading, closed-form results are available in addition to
single-integral form. Chapter 4 gives the switching ratafe switch-and-examine
relaying. The results are presented in closed-form. Thaap@r 5 gives numeri-
cal examples to illustrate the theoretical results. Nuoaexamples demonstrate
how different parameters affect the switching rate. Fin&hapter 6 concludes the

thesis and discusses possible future research in this field.

1in the literature, dual-branch and multi-branch systeressametimes referred to as two-relay
and multi-relay systems, respectively. Both nomenclatare used in this thesis.
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Chapter 2
System Models

In this chapter, the models used in this thesis are preser@pdcifically, fading
channels are discussed and the models used by opportusistfing and switch-
and-examine relaying are presented.

We consider a dual-hop multi-branch cooperative relayysjesn in which a
source terminals, communicates with a destination termingl, with the help of
L relaying terminals denoted 3, : € 1, ..., L. The system model is illustrated in
Fig. 2.1.

2.1 Fading Channels

In wireless communication systems, one major charadterissthat there are many
signal paths from the transmitter to the receiver due t@mo#ions, reflections and
scattering of the transmitted signal in the local environtn&herefore the received
signal will appear as a pulse train and different replicathefreceived signal will
add constructively and destructively. This process ihertomplicated by the rel-
ative motion between transmitter and receiver. The endtriesandom fluctuations
of amplitude, phase and power of the received signal in tireguency and space.
This communication channel is referred to as a multipatintadhannel [13] [14].
Two important parameters in multipath fading are coherdvaedwidth and
coherence time. Coherence bandwidth is the frequency @regavhich the fading
process is considered highly correlated. The coherenabMdth can be defined as

the inverse of the time delay spread, which is the time difiee between the first
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Figure 2.1. A cooperative relaying system with multiple relays.

replica of received signal and the last replica of receivgdad. If the bandwidth of
transmitted signal is much smaller than the coherence btilvwve can consider
the fading process to be flat in the frequency domain. Suclldiaggprocess is
called flat fading. If the bandwidth of transmitted signahisich larger than the
coherence bandwidth, the fading process has significaratiar in the frequency
domain, and we call such a fading process frequency seddetiiing.

On the other hand, coherence time is the time period overhwte fading
process is considered highly correlated. The coherence ¢ina fading channel
is usually defined as the inverse of the Doppler spread. Tlaévwe motion be-
tween transmitter and receiver introduces frequency,stafted Doppler shift, in
the received signal along each signal path, which is knowha®oppler effect.
Signals along different paths can have different Doppldtsstand the difference
between the maximum Doppler shift and the minimum Doppldt ehdefined as
the Doppler spread. If the symbol duration is smaller thacbherence time, we
can consider the amplitude and phase of the fading procdss ¢onstant over the
period of use. Such a fading process is called slow fadinthelfsymbol duration
is greater than the coherence time, the amplitude and plidke tading process

varies considerably over the period of use.



In this thesis, we assume the fading process to be both flatashdIn these
cases, it is common to use statistical models to captureatimdom nature of the
received signal amplitude. Note that coherent detectisnrass that the receiver
fully compensates for the received signal phase; thus,istsilstion is not rele-
vant in this thesis. Three most widely used models for reszksignal amplitude
include Rayleigh fading, Rician fading and Nakagamfading. Rayleigh fading
is often used to model the channel amplitude in a wireleskesysvith no direct
LOS path between the transmitter and the receiver and oatyestng components.
Meanwhile, Rician fading is often used to model systems wladrOS component
is present in addition to scattering components. Unfotelgasome experimental
data does not fit well into either of these distributions. §IiNakagamm fading
has been proposed to fit empirical measurements. Note @a&akleigh model is
a special case of both Rician and Nakaganfading.

We assume that the channel between termidatnd B (A or B can be the
source, the destination or the reldj)) undergoes fast fading with channel gain
R4 and maximum Doppler frequendy, s; the fadings on different channels are
assumed to be independent but not identically distributed.f.). Let Rg; and
fs; denote the channel amplitude and the maximum Doppler frexyubetween
the source and relaying termiriBl respectively. We assume thayf z experiences
Rician or Nakagamin fading. For Rician fading, the probability density functio
(PDF), fr,5(r), and cumulative distribution function (CDF}g,,(r), are given
by [15]

2
fRAB (T) = % €xp (_ Tg - KAB) [O (\/ 2KAB$) (21)

0AB 2055

-
Fra,(r)=1-01 (\/2KAB, @) (2.2)

wherel,(z) is the modified Bessel function of the first kind of order zesalafined

in [16, eq. (8.406.1)] an@), (a, b) is the Marcum Q function as defined in [17, eq.

(2.20)]. Also,K 45 and20? 5 are the Rice factor and average power in the scatter

component, respectively. Note th&t, s is a indicator of the severity of the fading

and can be any value betweemno cc. A small K 45 implies severe fading, while
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a large K 45 indicates mild fading. Wherk 4z = 0, Rician fading reduces to
Rayleigh fading and wheR 4,5 = oo, we have no fading (a channel with only LOS
component).
Similarly, for Nakagamim fading, the PDF and CDF are given by [15]
2r2mas—l [y mAB mapr?
Fran ) = (52) e (-7 ) @3)

F(map) \Qap Qup

r Y <mA37 %7‘2)
RaB (T) - F(mAB)
whereI'(z) is the Gamma function as defined in [16, eq. (8.310.1)]afdb) is

the lower incomplete gamma function as defined in [16, ed35®1)]. Note that

(2.4)

mapg and(),p are the Nakagami parameter and the average power of thgfadin
spectively. Similar to Rician fadingy 45 is a indicator of the severity of the fading,
with smallm 45 implying severe fading and large 5 implying mild fading. In
addition,m 45 can take any value betweeérd to co. Whenm 45 = 1, Nakagamim
fading reduces to Rayleigh fading and whengz = oo, we have no fading. When
map = 0.5, the fading will be more severe than Rayleigh fading [18]{19

Note that the mathematical expression for Rician distrdoutontains a Bessel
function while the Nakaganm distribution contains a gamma function, which is
easier to manipulate mathematically. Thus, the Nakaganfistribution often leads
to closed-form analytical expressions that are not pasddyl the Rician distribu-
tion. The switching rate obtained in this thesis is one su@nple. Also, in the
literature, the Nakagamm distribution is sometimes used to approximate the Ri-
cian distribution. However, in this thesis we find that suppraximation is not

appropriate for switching rate, especially in switch-an@mine relaying.

2.2 Transmission Protocols

In this thesis, the terminals are assumed to be half-dupkex.the terminals can
receive and transmit information but are not capable ofivetg and transmitting

at the same time, and may operate in either the AF or the DF mode



Two different transmission protocols are investigatede fitst is opportunistic
relaying, in which only the relay with the highest performarmmetric of. avail-
able relays is activated. In order to achieve full diverditye performance metric
must account for the channel quality of both hops. As suggeist[3], we use the

minimum of the channel gains as the performance metric,
RZ' = IIliIl(RSZ‘, RzD) (25)

Therefore, the node with higheBt is activated. This is the optimal choice for sys-
tems operating in DF mode since the weakest link explicidiednines the outage
capacity. This is also an appropriate choice for systemsatipg in AF mode since
the weakest link usually dominates the overall performaiereover, it is a tight
upper bound of a popular performance metric, the harmomarmmetric proposed
in [20], while it is more mathematically tractable compatedhe harmonic-mean
metric. Note that this performance metric has been provedieeve full diversity
in opportunistic relaying systems [3], [4] and switch-agdxmine systems [6].

The second scheme is switch-and-examine relaying, whigllisect extension
of the switch-and-stay relaying scheme in [11] to multipdéays. Unlike oppor-
tunistic relaying, the currently active relay stays actgelong as its performance
metric stays above some specific level. Evidently, such toprance metric has
to account for the channel quality of both hops, just like thapportunistic relay-
ing. Therefore,R; is used for switch-and-examine relaying too. A switch oscur
whenever the performance metii; of the active relaying terminal experiences a
negative-going crossing of the predetermined switchimgsiiold R, regardless
of the channel conditions of other relays. This scheme aveitessive switch-
ing when channel conditions are weak. This switching schenwifferent from
that adopted in [6] in which a switch occurs whenever the nkhoondition of the
active terminal is belowR,,. Returning to the switching scheme examined in the
present thesis, note that the operation after switchingniépon the value af. If
L equals 2, the destination simply communicates with theratay until another
switch occurs. IfL is larger than 2, the system examines each relay in a predeter

mined order to activate the first relay haviRgabove the switching threshold. If all

10



the other relays are below the switching threshold, eitherbest relay is selected
or the system selects a relay randomly. Note that while th@seschemes give
different error rate performances, both yield the samechuvig rate in i.i.d. fading.

Finally, it is assumed that the destination selects theqpjate node after per-
forming channel estimation of all links. For simplicity,i# assumed that the des-
tination can obtain accurate channel state informatior)(6f&all links. Methods
for achieving accurate channel estimation in conventigaaht-to-point commu-
nication systems are well known [15, Ch. 5]. In DF, the chamséimation for
the overall system is simply two point-to-point channelreations at the relay and
the destination. Methods for utilizing various trainingjgences to obtain channel
estimation in AF can be found in [21] and [22] and the refeesnibierein. Note that
in OR, the destination needs to keep track of the CSI of dikliat any given time,
while in switch-and-examine relaying, the destinationdseenly the CSI of the
active link if no switch occurs. When a switch does occur,déstination needs the
CSI of other links, which still alleviates the burden of chahestimation compared
to OR.

11



Chapter 3

Switching Rate of Opportunistic
Relaying

In this chaptef, we find the switching rate of opportunistic relaying syssenmn
order to do so, we first find the statistics of the performane&imR;, in particular,
the PDF and CDF of?;, fg,(r) and Fg,(r). SinceR; is the minimum of two
independent random variable3g; and R;p, according to order statistics [25], the

PDF and CDF ofR; can be expressed as
fRi (T) = fRSi (T) [1 - FRiD (T>] + fRiD (T) [1 - FRSi (T)] (31)

FRi(T) =1- [1 - FRSZ‘(T)] [1 - FRiD(T)] (32)

wherefr,,(r) andFg,, (r) denote the PDF and CDF of the channel amplitude of
link AB. If the system undergoes i.n.i.d Rician fading, using (arid (2.2), we get

2
fr(r) = 7; exp <—;7 - KSi) I <‘/2Ksz' r ) O, (‘/2KZ.D’ r )

03 Si 0si 0D
r r? r r
+ 2 OXP\ 53 T Kip | Io | v 2KiDa‘ Q| V2Ksi, — (3.3)
iD iD iD 05

Fr(=1-0 (VoRa =)@ (VIRn ) e

S iD
Similarly, if the system undergoes i.n.i.d Nakagamfadings, using (2.3) and

1The results in this chapter have been presented in part dE&E Global Communications
Conference (GLOBECOM) 2011, held in Houston, Texas, USA §1l in part in thd EEE Trans-
actions on Communications [24].

12



(2.4), we get

. . MiD 4.2
2r2msit (g \ ™ mgir®\ <sz, o )
exp | —

fRi(r) = F(

mSi) Qg; Qg; F(miD)
2mip—1 N\ ™MiD oo\ I <m5i, m—S’?T2)
N 2r (m,D) exp (_mzpr ) Qs: (3.5)
F(miD) Qb Qip F(mSi)

r <m5i7 ?)1—:2;712) I <miD7 %7‘2)
['(ms;) ['(mip)
wherel'(a, b) is the upper incomplete gamma function as defined in [16,8850.2)].

Fr(r) =1 - (36)

If the system undergoes i.i.d. Rician fadings with paramsef& ando;, (3.3)
and (3.4) will respectively reduce to

2r r? r r
fr.(r) = 2 exp <—T‘2 - Ki) Iy <\/ QKi;) 1 <\/ 2K, ;) (3.7)

i %

Fr,(r) =1— Q2 (\/2&, Uﬁ) . (3.8)

Similarly, for i.i.d. Nakagamimfadings with parametens,; ands?;, (3.5) and (3.6)

will respectively reduce to

()= exp (- : 3.9
o) = i o (~"5) —ro 29

Fr,(r)=1- (3.10)

In the sequelkK, o, m and(2 will be used to designate values &%, o;, m; and
), when reference to the channel index is not needed.

3.1 Switching Rate of Dual-Branch i.n.i.d. Oppor-
tunistic Relaying
Now we define a random procegst) as [8], [9]
Z(t) = Ry(t) — Ry(t). (3.11)

Clearly, a positive-going zero-crossing 4ft) indicates the system switches from

relay 2 to relay 1, and a negative-going zero-crossing @} indicates the system

13



switches from relay 1 to relay 2. Therefore, the total switglrate of the system
equals the sum of the positive-going and negative-goingrzessing rates of (¢),
which can be expressed as [14, Ch. 2]

SRORz/O 121£(0, ) dz + /Oozf(o,z)dz (3.12)
— 0

[e.o]

wheref(z, #) denotes the joint PDF of (¢) and its time-derivativeZ(t). In many
important practical cases, such as Rician and Nakagafading under conditions
detailed in [8], [14],Rs; and Rg; are independent (as are alBg, andR; ). We as-
sume that the required conditions are satisfied here. Weaalsame independence
betweenRks; andR; . Thus, we ensure the independence betweendR;, which
leads to independence betweg() and Z(t). Thereforef(z, ) = fz(2)f;(2)
wheref,(z) andf, (%) denote the PDFs &f (t) andZ(t) respectively. Then, (3.12)

becomes
0

SRor = [z(0) [/

—00

12| f5(2) d,é+/ 2f,(2) dz} : (3.13)
0
We first find the value off;(0) for Rician and Nakagammn fading. Note that

fz(0) can be evaluated as

F20) = [ ) (r) (3.14)
0
By inserting (3.7) into (3.14), we obtaify,(0) in i.i.d. Rician fading as
f(@)-i/”ﬂex 5 o) (vaml) o (var, L ar
Z ot ), P o? v)o ‘o ! Yo '
(3.15)

Similarly, by inserting (3.9) into (3.14), we obtayfi3(0) in i.i.d. Nakagamim fad-

ing as

_ 16 > 4m;—1 2myr 2 m; o

Finally, fz(0) ini.n.i.d. Rician and Nakaganmifadings can be obtained by insert-

ing (3.3) and (3.5) into (3.14), respectively. However, thk expressions in both
cases is tedious and give little insight, thus they are eahitiere. The expressions
for f(0) in i.n.i.d. fading are just more complicated versionsfgf0) in i.i.d.

fading.
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The single integrals irf;(0) can be efficiently evaluated using popular math-
ematics packages such as MATLAB and Mathematica. Note kgaintegrals in
i.n.i.d. cases are very similar to those in i.i.d. cases. hBoauthor’s best knowl-
edge, no closed-form solution to an integral similar to that3.15) is available.
However, for Nakagamin fading, we find a compact closed-form solution for an
integral similar to that in (3.16) whem is an integer. Moreover, a closed-form so-
lution expressed in terms of the hypergeometric functi@véalable whemn is not
an integer. These closed-form solutions are derived in AgpeA.1 and Appendix
A2

Now we turn our attention to the two integrals in (3.13). QbeethatZ(t)
equals the difference of the time derivatiiegt) and R,(t). To derive the PDF of
Z(t), f5(%), we need to obtain the PDF & (t), f5 (), which can be expressed as

fo, (@) =pifp,, (@) + (1 = pi) fp, (2) (3.17)

wherep; denotes the probability thats; < R;p and wherefRSi(x) andfp ()
denote the PDF of the time derivatives®f; and R;p, respectively. First of alp;

can be expressed as

pi = / fre;(x) [l — Fg,,(2)] dx. (3.18)
0
For Rician fading, by substituting (2.1) and (2.2) into @,lwe obtain
— ( V2Kipoip V2Kgi0s; )
i = 1

2 2’ 2 2
VOo% 0k, ok + ol

. a exp  Ksi0% + Kipoip I 2V KsiKiposioip (3.19)
0%+ 0ip 0% +0olp ’ 0% +0lp .

where [17, eq. (B.32)] is used. It is easy to see that (3.1pgxés only on the

ratio betweervg; ando;p, i.e., if 22 = q, p; only depends omv. Note that if

0iD

Kgs; = K;p = 0, Rician fading reduces to Rayleigh fading and (3.19) reduoe
%ip (note that);(0,0) = 1 and,(0) = 1), which agrees with the results

Pi = —= 2
5 T%p

given in [11, eq. (52)]. Also, if the channel experiencesli.iRician fadings, i.e.,

Kg; = K;p = K; andog; = 0,p = 03, by inserting these into (3.19), we have
1
pi= Q1 (VEL VE) = S exp (—K0) o (K) (3.20)
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while according to [26, eq. A-3-2]);(a, a) = 3 [1 + exp(—a?)Io(a?)]. Therefore,
we havep; = % when the channel experiences i.i.d. Rician fadings as ¢éggec
Similarly, if the channels experience Nakagamfading, by substituting (2.3)
and (2.4) into (3.18), we have
=1 <m5i)m5i <miD)miD ['(mg; +mip)
' Qg; Qip [(mgi)T'(mip)

21 (1’ msi +mip;Mip + 1; QSimigl""éiDDmSi)

(3.21)

. ms; m;p mg;+m;p
mip (QSZ‘ + Q’iD)

where, Fi(a, b; ¢; d) denotes the Gaussian hypergeometric function defined at [16
eq. (9.100)]. We employ [16, eq. (6.455.2)] to obtain (3. &inilar top; in Rician
fading, one can see that (3.21) depends only on the ratiogeetids; and€;p, i.e.

if g—sD = «, p; only depends om. Note that ifmg; = m;p = 1, Nakagamim
fading reduces to Rayleigh fading. In this case, we have

o1 ek (122

Qg; Qip (QL&+$)2

pi=1 (3.22)

According to [16, eq. (9.121.1)], we hayé'(—n, 5;5;—=2) = (1 + 2)". Using

this identity and some simple manipulation, we will hgye= 42

Qs;+Qip
again agrees with [11, eq. (52)]. Also, if the channel exp®ses i.i.d. Nakagami-

, which

mfadings, i.e.mg; = m;p = m; andQg; = Q;p = ;, it can be shown that; = %
The detailed proof is the following. Applying the i.i.d. assption, we can simplify
(3.21) as

i =1— 3.23
bi T2(m;) m,22m: (3.23)
['(2m;) o F1(0.5,mg;m; + 15 1)
=1- .24
I'2(m;) m;22mi (3.24)
| ['(2m;) T'(m; + 1)I'(0.5) | (3.25)
FQ(m,) F(mz + 0.5)m,»22m1
22mi= 1T (m )T (m; ) I (m;
4 m;)I'(m; + 0.5) m; T (m;) | (3.26)
1
= —. 3.27
. (3.27)
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Note that we obtain (3.24) by using [16, eq. (9.133)], ob(8i25) by using [16, eq.
(9.122.1)], obtain (3.26) by using [16, eq. (8.335.1)] tige with some well known
identities involving the Gamma function, suchd®.5) = /7 andI'(m + 1) =
mI'(m).
Secondly,fj, . (r) can be expressed as
2

Fianl®) = bl 5o

For Rician fading [14, Ch. 2],

). (3.28)

Gap = V21 fapoap (3.29)

and for Nakagamm fading [27],

. Q
0AB = TfaAB mj]; (3.30)

Note thatf_(z) and f; (x) are both zero-mean Gaussian PDFs with standard
deviationsys; anda; p, respectively. Sinc&(t) = Ry (t) — R, (t), the PDF ofZ(t),
fz(x)is

wwz/'ﬁﬁy+wﬁgwdy (3.31)
_ P1P2 ( )
- .2 .2 Xp
2m (051 + 05s) 2(65: + 032
1 _
+ pl(.z p2?2 ox p( )
V2m (63 + 63p) 2(68, + U2D
(1 —p1)p2 o ( )
\/27T(d%D +6%) 2(61p + 050)

=p)l=ps) (——) 3.32
T e 1ot T\ ety og)) (3:32)

After some straightforward integration it can be shown that

00 0

| erdi= [ e e

0 —0o0
1 1

= —= 52, + 02y + ——(1 — p1)(1 — p2)\/ 63 + 63
\/%Z)IPQ 051 T 059 \/%( p1)( P2)\/Oip + G5p

1 1 . )
+ \/%Pl(l —p2)\/ % +5p + \/2_(1 — p1)par/ iy + 02y (3.33)
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For a network experiencing i.i.d. fadings with the same Depghift,p; = p, =

0.5andog; = ds9 = 01p = d9p = 7, (3.33) reduces to

e’} 0 &
/0 21,(5) d?;«:/ A1) d = = (3.34)

In summary, the switching rate is
SRon = 2£4(0) /0 Tip () da (3.35)
For i.n.i.d. Rician fading, we have
20 = [ () fms(r) (3.362)

wherefg, (r) is given by

2

T T T T
fr,(r) = 5 €Xp (— 5 KSZ') I (\/ 2Ks; ) Q1 (\/ 2Kp, )
Isi 20, Isi JiD
r r? r r
+—exp|—s5 —Kip ) o | V2Kip— | Q1 | V2K5i, — | .
0D 207 0iD 08
(3.36b)
In addition, [,z f, () dz are given in (3.33) with
0 V2Kipoip V2Kgi0s;
pi = )
Vool ok ok
- I5i —exp {_ Sagz‘f‘ QDUZD} I()( \% 52 DC;SUD) (3.37a)
05+ 0ip 05t 0ip 05t 0ip
Gap = V2T fapoap. (3.37b)
Fori.n.i.d. Nakagamin fading, f,(r), p; andé 45 are given by
2r2m5i71 ms; msi mSi,r,Z I <m,»D, ng 7‘2)
A\T) = €X —
falr) I'(ms;) (QS) P ( Qsi ) I'(mip)
2 2m;p—1 ; mip ; 2 F <mSZ‘, ms; T2>
+ 2 (mD) exp (—mDT ) s (3.38a)
F(m,D) Qip Qip F(mSz)
_ 1 (mSz’)mSi (mip)mm ['(mg; +mip)
b Qs Qip ['(mg;)I'(mip)
. 2 F (1, msi + mip;mip + 1; QSimig+Q?DmSi> (3.38b)

) mg; m;p \MSi+mMiD
mip (QSi + Q’iD)
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. 0
Gap = Tfap\/ m’;‘é . (3.38¢)

Thus, by inserting (3.37) into (3.33), we have the full exgsien of [°2 f, (%) dz.
At the same time, we obtain full expressionfgf 0) by using (3.36). Inserting these
two results into (3.35), we obtain the switching rate forler@nch OR with i.n.i.d.
Rician fading. Following the same procedure, but using Bgns.in (3.38) instead,
we obtain the switching rate for dual-branch OR with i.n.iNbkagamim fading.
The exact expressions are unwieldy and gives little insighis they are omitted.
For i.i.d cases, the expression is much more compact. FabrRician fadings with

identical maximum Doppler shift},,, the switching rate is

2 0 2
SRor = 8V ;Tfm/ r2exp <—r—2—2K) ]g (\/QKE) Q% (\/2}(7 1) dr.
o 0 o o o
(3.39)
Close inspection reveals théi,r does not depend am alone. To see this, one

could replacer with ro and o will be canceled out. In fact, this is not limited
to i.i.d. fading. Ini.n.i.d. fading, the switching rate deqas only on the relative
relationships betweets, o1p, 052, andosp. Specifically, ifos; = o, o1p = ao,
os2 = o andoyp = ~yo the switching rate depends only an 5 and~ but noto.
Therefore,SRor can be rewritten as

SRor = 8V 27Tfm/ r? exp (—r2 — QK) I <\/ QKT) Q3 (\/ 2K, 7") dr. (3.40)

0
Note that the switching rate grows linearly with .
For system experiencing i.i.d. Nakagamifadings with identical maximum

Doppler shiftsf,,, the switching rate is

32T NI [ 2mr?\ m o,
SRor = T (m) <Q) /0 r exp 0 r <m, q’ ) dr.
(3.41)

Similar to Rician fading, the switching rate does not depend? alone. To see

this, one could replacewith /Q and ther2 will be canceled out. The switching
rate in the i.n.i.d. case also depends only on the relatlatioaships betweefis;,

Qip, Qg0 and)yp. Therefore,SRor can be rewritten as

32ﬁfm 2m—1 /oo 4m—2 2\ 12 2
m—gy m -2 I . 42
T4 (m) m i r exp( mr ) (m,mr ) dr (3.42)

SRor =
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The switching rate again grows linearly with,.
For Nakagamm fading, the integral in (3.42) has closed-form solutiorisxl

is an integer, by using (A.5), the switching rate reduces to

m—1m—1 .
_ 2fmVT ['(i+j+2m—0.5)
SRor = A42m—2T2(m) 2F2 Z Z iljlaiti ' (3.43)

=0 75=0

If m is not an integer, by using (A.8) the switching rate is

32\/T fom (4m——) 1 el
SRop = Fy(4m L1,1+m1 -

I'(3m — 1 1 1 rem-—41
—QF(m)%QE(L 3m — Sim+1i3) + FQ(m)(anT_f) (3.44)

whereF;(«, 8, 8',v,7'; z, y) is the hypergeometric function of two variables and is
givenin (A.9).
In the next section, we derive the switching rate of muladmh OR with i.i.d.

fadings.

3.2 Switching Rate of Multi-Branch i.i.d. Case

For multi-branch systems, the switching rate can be expdeas

L
SRor =Y _SRor, (3.45)

=1
whereS Ror; is the rate at which the system switchegtofrom any other relays.
Similar to the development in the previous section, we definew random process

je{lonL}
JF#i

Obviously,SRor; equals the positive-going zero-crossing rateZgf). Employ-
ing the same approach as in the previous section, we cana@al&,p, for ev-
ery ¢, and then obtairb Ror. However, the expression for an i.n.i.d multi-branch
system with an arbitrary number of relays is very cumbersdaherefore we only

consider the i.i.d. case. Specifically, we consider a systgmidentical maximum
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Doppler shiftsf,, experiencing either Rician fading (with parameté&rando) or

Nakagamim fading (with parameters: and(?). Due to symmetry, we have
SRor = L- SRog., Vi€ {1,....L}. (3.47)
Without loss of generality, we evaluaté?o 1 using the random process
Zy(t) = Ri(t) — max R;(?). (3.48)
Similar to the dual-branch casg€Ror 1 can be expressed as
SRory = [2/(0) /0”2f21(2) dz (3.49)

where fz,(z) and f; (z) denote the PDF of,(t) and its time-derivativeZ, (t),
respectively. Using the same logic as in dual branch casdsagain assuming that
the conditions required in [8], [14] are satisfied,(¢) and Zl(t) are independent
random processes.

Now we evaluate the integral in (3.49). First, gt (r) and f; _ () denote the

.....

the i.i.d. assumption,

i () = 5 i () 3 Fip (1) = o exp(— ) (350)

1
V2mo 20
whereg is defined in (3.29) or (3.30). Alsg; _(r) is obtained as

L 2

1 1 x

Note thatf, (r) andf, (r) are identical Gaussian PDFs with variarice Since
Z,(t) is the difference of two i.i.d. Gaussian random variablggt) is also a

Gaussian random variable with varianze’, and its PDF is given by

1 x?
F2 (1) = 5= o= 53) (352)
Therefore '
/0 15 (2) ds = % (3.53)
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Now we turn our attention tg, (0), which is given by

F2u(0) = / " () frondr) dr (3.54)

where fg, () and fg, . (r) are the PDFs of?, (t) andmax;ca, . 1y R;(t), respec-

7777

tively. According to order statistics;z,. () can be expressed in terms ff, (r)

as
Srmax(1) = (L = 1) fg, (r)[FR, (r)]" 2. (3.55)

After some algebra manipulation, the final expression feralitching rate in Ri-

cian fading is given by
SRor = AL(L — 1)V27 f,, /Oor2 exp (—r% — 2K)
0
I3 (ﬂr) Q3 <\/ﬁ, 7") [1 — Q%(\/ﬁ, T)] o dr. (3.56)

Unfortunately, no closed-form solution is available foe thtegral in (3.56). Simi-

larly, the switching rate in Nakagamifading is given by

SRor = \/_fmwm2mé /oor4m2 exp (—2mr2)
m 0
2 (m, mr? 2(m, mr?) ]2
T F(72(’m) ) {1_ D, mi”) (r2 = )] dr (3.57)

A closed-form solution for the integral in (3.57) is deriviedAppendix B. Ifm
is an integer, with the help of Appendix B.1, an exact expogstr the switching
rate is found as

L 2
SROR \/_fm ( )
=0
r(m ( % + 2 )m 1( )
'/ (3.58a)
ko,k1§m1 (4 + 27,)'“‘ k’o, kl; m 1 1—0
ko+...+km—1=2i+2
with
n n!
— 3.58b
(kzo,kzl,...,km_1> kolky! - kp_q! ( )
m—1
= tk; +2m — 0.5. (3.58¢)
i=0



Note that in Appendix B.1, we prove that this result reduocssur previous results
for the dual-branch cases whén= 2.

If m is not an integer, a closed-form solution is also derived as

(L - L—2
SROR—\/_fm 2L (m [ Zczg (m,L —2+1)

=0
L—2 L—2
—2I'(m) Y cigm,L—14+1)+ » cig(m,L+1) (3.59a)
i=0 i=0
with
L—2 , ,
¢ = ( , )[QF(m)]LQZ(—l)Z. (3.59b)
1
(m)™T(2m + sm — 1)
g(m’ 8) = ) _1
ms[2m + sm|*™ T2
Fa|2m+ 11 ;14 14 ! (3.59c¢)
. m+sm——=;1,...,1; m,. .. m; .
A 277 )’ S 7Va 7\24—87 ’2—|—3
s terms s terms R
s terms
whereF4(+; -; -; -) is Lauricella’s hypergeometric function of several vakésband

is given in Appendix B.2. As previously, whelh = 2, the expressions reduce to
the dual-branch cases. Also, as in the dual-branch caseswikching rates grow

linearly with the maximum Doppler shift,,.
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Chapter 4

Switching Rate of
Switch-and-Examine Relaying

Building on the results in previous chapters, we consider dWwitching rate of
switch-and-examine relaying in this chagte8pecifically, we will derive the switch-
ing rate in closed-form.

For a switch-and-examine system withielays, the overall switching ratéRg;

L
S Rsyi = Z PiSsti,i (4-1)
=1

wherep; denotes the steady-state probability tihats active, andSRsyi; is the
switching rate off;. For dual-branch (i.el = 2) systems with i.n.i.d. channel
conditions,p; can be derived with the help of [12, eq. (21)]. In particukuch
systems have six Markov states. State 1 represents theriscemareT; is active
andR; experiences a negative-going crossingegf. State 2 represents the scenario
whereT] is active andR; is belowR,, for two time samples. State 3 represents the
scenario wherd} is active andR; is greater tharR;, for two time samples. States
4,5, 6 are defined in a similar fashion as states 1, 2, 3 withdiltes changed to 2.

The stationary probabilities,;, j € {1, ...,6}, are given in [12, eq. (21)] &s

1-— 1-—
o (1 —g)a(l = ¢)e ___ (4.23)
(1 + @2)(1 + 2q1q2) — (@1 + 42) — 267 G5
1The results in this chapter have been presented in part &uhmpean Wireless Conference

2011, held in Vienna, Austria [28] and in part in tHeEE Transactions on Communications[24].
2Note that there is a typographical error in the last term af Eiq. (21)].
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2. (1 _
My = =1 ~ ¢2) (4.2b)

(1 + @)1+ 2¢1¢2) — (1 + ¢2)? — 20705
(1 - 91)2(1 - 6]2)(12
(1 + @)1+ 2¢1¢2) — (1 + ¢2)? — 20705

_— (1-—q)an(l —q)e (4.2d)

(1 + @)1+ 2q1q2) — (1 + 42)? — 24305
031 = q1)
(1 + @)1+ 2q1q2) — (1 + 42)? — 24305
1—q)(1 - gq)?
Mg = Ch( Q1)( Q2) g — (4-20
(1 + @)1 +2¢1g2) — (1 + q2)% — 2¢345
whereq, = Fg, (Ry,) andge = Fg,(Ry,). SinceT) is active in states 1, 2, 3, while

(4.2¢)

Ty =

(4.2e)

Ty =

T, is active in states 4, 5, p; andp, are given by

3

(I—qg+a)(1— @)
p1 = T = 4.3)
! ; (1 + @)1+ 20¢2) — (1 + ¢2)? — 2¢343
6
(1—q+ QS)(l —¢1)q
? 224 (1 + @)1+ 2q1¢2) — (1 + ¢2)® — 2¢7q3

Note that if the system experiences i.i.d. fadigg= ¢ = ¢, and we have

o =g+l -gg¢ 1
P R 2 - GaR -2 2 (45)

Due to symmetry, this result is expected.

If the system has more than two branches, the expressions iiothe i.n.i.d.
case with an arbitrary number of relays will be very compbkca Therefore, we
only consider systems with i.i.d. fadings, whete= % due to symmetry.

For relayT;, its switching rateS R, ; is the rate at which the channel condition
R; will have a negative-going crossing of switching threshalg. According to
the theory of level-crossing rates [14, Ch. 2Rswi;, IS given by

0
S Rswii = / 7| fr, 2, (Ren, ) dr (4.6)

where f, 1. (a,b) is the joint PDF ofR; and its time-derivativeRz;. As in the

previous section, the fading process and the time-devivatiocess are considered
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independent, which guarantees the independende, @ind R;,. Therefore (4.6)
reduces to .

SRaws = f(Ra) [ 11l () @)
wherefg, (r) is givenin (3.3) or (3.5), depe:;ling on the fading model.0A; (r)
was found in the previous section; after some straightfoiw@anipulations, it can

be shown that

0 . .
0S; 0iD
r|fs (r)dr = p; 1—p; ) 4.8
[ Ity e =T+ (1= ) S (4.8
We can now write the expression for the switching rate of dwahch i.n.i.d

switch-and-stay relaying as

SRSWI - Z

wherep; is given in (4.3) and (4.4), anfk, (r) is given in (3.3) or (3.5).

For multi-branch i.i.d. cases, the switching rate of neksawith L relays is

(Run) [pi0si + (1 — p;)oip] (4.9)

o
V2T

Specifically, for systems experiencing i.i.d. Rician faghrwith parameter& and

SRswi = fr,(Rup). (4.10)

o and maximum Doppler shift,,, we have

8 ) ) (2
(4.11)

and for systems experiencing i.i.d. Nakagamiadings with parametens and)

and maximum Doppler shift,,, we have

AR gmyned ( mES\ T (m, BR3)
SRayi = fm(im}s <§) exp (_ 9 h) F(%) ) (4.12)

If K; =0orm; = 1, Rician fading and Nakaganmfading both reduce to Rayleigh

fading, and (4.11) and (4.12) will coincide with the expreasgiven in [11, eq.
(42)]. Note that the switching rates in both fadings grove&irly with the maximum
Doppler shift. Moreover, they depend strongly on the swiitghhreshold R;;,. It is
also pointed out in [6] that the choice Bf;, affects the bit error rate (BER) strongly.

While a complete treatment of the exact relation betweetcking rate and BER is
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beyond the scope of this thesis, a numerical example is gedvio illuminate this
relation.

Finally, note importantly that the switching rates do ngbeled onL. Also note
that in contrast the switching rate of multi-branch oppoigtic relaying depends
on L (see (3.56) and (3.57)). It is shown in Chapter 5 that thechwig rate of
opportunistic relaying increases with This is not surprising, since the more relays
a system has, the more frequently that the system will swichtilize the best
relay. This finding means that as a system has more relagsmbre attractive to

use switch-and-examine relaying from a switching ratedjtamt.
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Chapter 5

Numerical Examples and Discussion

In this chaptet, numerical examples are presented to illustrate the ttiealee-

sults. Specifically, we compare the switching rates of ofypostic relaying and
switch-and-examine relaying in i.i.d. fadings. Then, we assimulation to inves-
tigate the relation between bit error rate and switching.r&inally, the switching
rates in multi-branch systems and unbalanced systemisd(i.fading) are also in-

vestigated.

5.1 Switching Rate Comparisonini.i.d. Fading

Fig. 5.1 shows the switching rates normalized by the maxibappler shift, f,,,,

vs the threshold level®,, of dual-branch opportunistic relaying and switch-and-
stay relaying in i.i.d. Rician fading for different valuek & with o = 1. Fig. 5.2
shows similar results for the case of Nakagami fading Witk 2. As expected, OR
switches more frequently than does switch-and-stay netaylhe former switches
2.07,2.10, 2.03, 2.05 and2.01 times as frequently as the maximum rate of the latter
for K =0, 1, 3,7 and10, respectively in Rician fading. In Nakagamfading, the
switching rate of OR i4.74, 2.07, 2.03, 2.08 and2.00 times that of the maximum
switching rate of switch-and-examine relaying. Note thatlbanging the switching

threshold of switch-and-examine relaying, the ratio oftine switching rates can

1The results in this chapter have been presented in part EEEEeGlobal Communications Con-
ference (GLOBECOM) 2011, held in Houston, Texas, USA [28]part at the European Wireless
Conference 2011, held in Vienna, Austra [28] and in part &l BEE Transactions on Communica-
tions[24].
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Switching rate in dual-branch i.i.d. Rician fading
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Figure 5.1. The normalized switching rates of opportunistic relayimgl awitch-and-
examine relaying in i.i.d. Rician fading channels for diéfet values o with o = 1.
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Switching rate in dual-branch i.i.d. Nakagami fading
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Figure 5.2. The normalized switching rates of opportunistic relayimgl awitch-and-
examine relaying in i.i.d. Nakagamifading channels for different values ot with
Q=2

30



Switching rate in dual-branch i.i.d. Rician fading
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Figure 5.3. The normalized switching rates of opportunistic relayingiid. Rician fading
channels for different values of.

be dramatically increased. Observe thatsaandm become larger, the maximum
switching rates of switch-and-examine relaying becomellemaith diminishing
increases. Also the switching rate curves compress anddegad impulse. In the
case of Rician fading, this is becausefadecomes larger, the line-of-sight com-
ponent of the fading process becomes more significant, anchizinnel amplitudes
fluctuate less. In the case of Nakagami fadingyasicreases, the fading becomes

more shallow and again the channel amplitudes vary less.

5.2 Switching Rate of Opportunistic Relaying

Fig. 5.3 and Fig. 5.4 show the switching rates of OR in i.i.ai& and Nakagami-
m fadings, respectively. Note that the switching rate in &idiading depends only
on K, while in Nakagammfading it only depends om, as proved in the previous

section. In addition, wheik = 0 or m = 1, Rician or Nakagamm fading reduces
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Switching rate in dual-branch i.i.d. Nakagami—-m fading
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to Rayleigh fading, and the switching rates have the samesV@a), in agreement
with the results presented in [11]. One could then compagestitching rate in
Rayleigh fading to that in Rician and Nakagami fading. Hijas expected, as
K or m becomes larger, the switching rates become smaller witlnghing in-
creases. This is because Asand m become larger, the severity of the fading

process becomes less significant, and the channel am@itiudéuate less.

5.3 The Contrasting Behaviors in Rician and
Nakagami-m Fading of Switching Rate of Switch-
and-Examine Relaying

Comparing the results in Fig. 5.1 and with the results in F3g2, one can ob-
serve that the switching rates of switch-and-examine me¢ay Rician fading and
Nakagamim fading behave quite differently. The shapes of the swiiglrizte
curves in Rician fading shift toward higher threshold. Tisislue to the fact that
even though Rician random variables can sometimes appatgiNakagamimran-
dom variables [14], the PDF and CDF of the minimum of two Rigiandom vari-
ables is very different from that of the Nakagamiandom variables. The under-
lying reason is that the tails of the PDFs of these randonakéas are not similar.
See (4.7) which shows explicitly the dependence of the svitcrate on the PDF
of R;. Further insight into the issue of why the Nakagamdistribution is not a
good approximation for the Rician distribution is obtaimggdphically from Fig. 5.5
and Fig. 5.6. The PDFs of the minimum of two Rician randomalalgs and two
Nakagamim random variables for different values efandm are plotted in Fig.
5.5. Note thatr = 1 and(2 = 2 for all PDFs. One can see that gross differences
exist between the two distributions. To examine carefuily behaviors of the tails
of the two distributions, Fig. 5.6 shows the PDFs on a lobarit scale. One can
see that the tails of the PDF in the Rician cases have the dapesgegardless of
the values of;. In contrast, the slopes of the tails of the PDFs in the Nakeaga
cases vary with the values of;. This dramatically different behavior of the Rician

and Nakagamin tails has been noted before in the context of receiver diyers
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Figure 5.5. The PDFs of the minimum of two Rician random variables anda&agami-
m random variables for different values fandm with ¢ = 1 andQ) = 2.

systems.

5.4 Bit Error Rate and Switching Rate in Switch-and-
Examine Relaying

The choice of switching thresholdz(;,) will affect both the switching rate and the
BER of the system. Since a complete treatment of the bit eaterof switch-and-
examine relaying in Rician and Nakagamifading is beyond the scope of this
thesis, we use simulation to illustrate the interrelatiopdetween switching rate,
BER andR,,. Efficient procedures for generating Nakagam&nd Rician random
variates are found in [29] and [30]. In the simulafipwe assume the unfaded SNR

to be 0 db for Rician fading and 5 db for Nakagamfading. Binary phase-shift

2In this simulation, we assume channel conditions are inigget in time. Future research could
investigate scenarios where channel conditions are ebedtin time
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Switching rate and bit error rate in dual-branch i.i.d. Rician fading

10 T T T T
—*— K=0
—Oo— K=1 .
Bit error rate
—8— K=3
1 0
0| —p—K=7 e
%O
o ——K=10 o
® o
- SR R Tk K K R * % % 4
g.‘ 1
S a O o ool 00000l
= 10 ¢ LR S
5 i P 5,5
— Fo e o - B 8 88 8 8890
G e e HHwg
o
Q Q%%‘ r==‘
b~ 1) ==
© 5 o =8
= |
= 10 "F e 2
£ e !
S b B BgRTE S BB R B B B e
= '== >', 7>
%
& e % awitehi X
= 9> Switching rate~<
7 >
1073 e 06 T T 6 % 6 a6 R PR s g
P
B
B
}4’,
P
> gl
N
-4 >
10 </ | 1 1 |
=20 -15 -10 5 10

-5
Threshold Ri (dB)

Figure 5.7. The switching rates (solid line) and bit error rate (dashie€) lof switch-and-
examine relaying in i.i.d. Rician fading channels for diéfet values o’ with o = 1.
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Switching rate and bit error rate in dual-branch i.i.d. Nakagami fading
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Switching rate in multi-branch i.i.d. Rician fading
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Figure 5.9. The normalized switching rates of i.i.d. multi-branch ogpnoistic relaying
and switch-and-examine relaying in Rician fading chanfaislifferent values of’.

keying (BPSK) is used for modulation. Also no direct signallpbetween source
and destination is available. We further assume that theesybas no receiver
outage, perfect channel estimation and perfect synchabaiz For simplicity, only
the BER of DF is plotted. Fig. 5.7 and Fig. 5.8 show the switgliate and BER
vs Ry, in Rician fading and Nakaganmifading for different values of{ andm.
Examination reveals that for al’ andm, the value ofR;, that yields small BER
simultaneously leads to relatively high switching rate.wdwer, the value ofz;,
that minimizes the BER does not yield the maximum switchatg.rDepending on
the system’s requirements on BER and switching rate, onaisarthe results and

methods of this thesis to choosk, to meet the design objectives.
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Switching rate in multi-branch i.i.d. Nakagami fading
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5.5 Switching Rate in Multi-Branch Systems

Next we investigate switching rate in multi-branch systekig. 5.9 shows the nor-
malized switching rates of multi-branch opportunistiasehg and the maximum
switching rate of switch-and-examine relaying in i.i.d.cian fading withc = 2

for different values of. Fig. 5.10 shows similar results for i.i.d. Nakagami fad-
ing with 2 = 2 andm = 3. In both cases, the switching rate of OR increases
nonlinearly with the number of relays while that of switahdastay relaying is in-
dependent of the number of relays. In this regard, as the auoflvelays becomes
larger, switch-and-stay relaying becomes more and maiac#tte for practical im-

plementations where the switching rate is a concern.

5.6 Switching Rate in Unbalanced Systems

We now consider switching rates in dual-branch i.n.i.d.irfgd. For simplicity,
we assume every link has the same maximum Doppler shiit, Furthermore,
we assume thaks; and R;p have the same distributions whify; and Rg, have
different distributions. Specifically, for Rician fadingt 51 = o1p = 1, 052 =
oop = 2, Kg1 = K1p = K andKg, = Kyp = 1.5K. For Nakagamm fading, let
Qg1 = Up =2,05 = Qp =6, mg; = mip = mandmgs = msp = 2m. The
switching rates in Rician and Nakagamifading with these parameters are plotted
in Fig. 5.11 and Fig. 5.12 for different values &f andm. As seen in the figure,
the switching rate of opportunistic relaying is comparaioléhat of switch-and-
examine relaying. The reason is that if the channels areyhigibalanced, both
systems will likely dwell on the superior node. Similar beloa has been noted
in [8] for switching rates in conventional selection combmand switch-and-stay
combining. It is also worth noticing that ds or m becomes larger, the maximum
switching rates in unbalanced scenarios reduce faster a@dgo those in i.i.d.

cases.

40



Switching rate in dual-branch i.n.i.d. Rician fading
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Figure 5.11. The normalized switching rates of opportunistic relayimgl awitch-and-
examine relaying in unbalanced Rician fading channels fiferént values ofK. The
details of the specific configuration are given in Section 5.
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Switching rate in dual-branch i.n.i.d. Nakagami fading
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The details of the specific configuration are given in Sechion
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Chapter 6

Conclusion and Suggestions for
Future Work

In this chapter, we present the conclusion and provide somoee research direc-

tions.

6.1 Conclusions

In this thesis, we investigated the switching rates, thabaesv frequently the sys-
tem switches from one relay to another, of opportunistiayieg and switch-and-

examine relaying in Rician and Nakagamifading.

¢ We derived the switching rate for opportunistic relayin@imapter 3. Specif-
ically, under Rician fading, the switching rate for oppaiistic relaying was
expressed as a single integral, which can easily be evdluatmerically.
In addition, we derived closed-form solutions for the swihg rate under
Nakagamim fading for both dual-branch and multi-branch relaying. suc

solutions can further facilitate the evaluation of switghrate.

¢ In Chapter 4, building on the previous results, we derivedsivitching rate
for switch-and-examine relaying systems. Exact closetifsolutions are
available for Rician and Nakagam{fading. We find that the switching rate
of multi-branch switch-and-examine relaying systems do&sdepend on
the number of relaysl.. This fact can be used to bring about significant

advantage compared to opportunistic relaying in multibhesettings.
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e We presented numerical results in Chapter 5. The resultegportunis-
tic relaying and switch-and-examine relaying were comgharehe tradeoff
between switching rate and bit error rate was also expldiédalso demon-

strated the effect of different parameters on the switchates.

6.2 Suggestions for Future Research Directions

Based on this thesis, some possible future research dinscire given below.

¢ In the system model of this thesis, only one relay is seleatedgiven time.
One can consider systems where more than one relay is sekgctegiven

time, for example relay systems similar to those in [7].

e One could derive the switching rates for opportunisticyiglg and switch-
and-examine relaying under other fading models by appl{hegnethodol-
ogy used in this thesis. For example, one could considendadiodels in
non-homogeneous scattering environment, suck-adading andn-u fad-
ing [31].

e In this thesis, it is assumed that the fading process andnits-derivative
process are independent. It could be interesting to exph@switching rate

in the case where they are correlated.

¢ In this thesis, the tradeoff between switching rate andrbitreate is demon-
strated in the numerical results. For practical implem@maone may need
a better understanding of this tradeoff. Thus, it will beenesting to investi-
gate quantitatively how the the switching threshold impaetitching rate, bit
error rate and outage probability and how such impact teaesito practical

implementation.

e One could investigate more thoroughly the performance datswand-examine
relaying systems in that its simplicity and low switchingeranake it a suit-

able candidate for practical implementation.
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¢ It would be highly desirable to propose and analyze someithydsotocols
that take advantage the low bit error rate of opportunigiaying and low
switching rate of switch-and-examine relaying. Such prols, if carefully
designed and calibrated, could be used widely in the telewanication in-
dustry.

¢ When evaluating conventional diversity systems and caipercommunica-
tion systems, researchers usually focus on bit error rat@atage probability
performance without considering the detrimental effecswitching rate in
such systems. In order to address a host of practical impittien issues,
researchers must consider switching rate. It would beestarg to revisit
the overall performance of selection combining and oppostic relaying in

realistic settings while considering switching rate.
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Appendix A

Dual-Branch System

A.1 Derivation of f(0) for Integer m

In this appendix, we derive the closed-form solution fg(0) in Nakagamim fad-
ing with integerm. For notational simplicity, we denote = % throughout this

appendix. Ifm is an integer, by using [16, eq.(8.352.2)] one has

m—1 L
r
D(m, ) = D(m) exp(—r) Y = (A1)
k=0
and we can write (3.9) as
4™ m—1 k,?" 2(k+m)—
fr(r) = T0m )exp —2ar?) Za (A.2)
k=0
Therefore, (3.14) can be written as
1602m [ m—1 p2(itm)—1 M- L 2 +m)—1
fz(0) = m/o exp(—4ar?) Za ‘ ZoﬂT dr  (A.3)
i=0 j=0
16a2mm 1m—1
ZZ i / exp(—4ar?)r2ttit2m=2 g, (A.4)
=0 j5=0

The integral in (A.4) is simply a combination of exponenfiahctions and power
functions, its closed-form solution is readily availabig16, eq. (3.381.4)]. After
applying [16, eqg. (3.381.4)] and some manipulation, we iobtlae closed-form

solution for f(0)

T'(i+j+2m—0.5)
720) = Fapsin ZO ZO AT a— (A-5)
1= Jj=
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One can obtairfz(0) in i.n.i.d. cases by giving appropriate indicesstom and2

and following the procedures above.

A.2 Derivation of f(0) for Non-Integer m

In this appendix, we derive the closed-form solution fo(0) in Nakagamim fad-
ing with non-integenn. By usingl'(a,b) = I'(a) — 7v(a,b) and the substitution
z =r?% fz(0) can be expressed as

16a2™

f2(0) = T (m)

/OOO:Eng exp (—2az) [['(m) — v (m, ax)]* dz. (A.6)

Letting C' = }ﬁf) and expandingl’(m) — ~ (m, ax)]?, we have

fz(0) :CFQ(m)/ 222 exp (—2ax) dx
0
—2CT(m )/ 2?73 exp (—2ax) y(m, ax) dx
+ C/ 2m—3 exp —2ax) v (m, ax) d. (A.7)

The first two integrals in (A.7) can be evaluated using [16,(@(381.4)] and [16,
eq. (6.455.2)], while the last integral can be evaluatedh wie help of [32, eq.
(10)]. Now we have the closed-form fgg (0),

a®™ T (4m — L 1 11
f2(0) = Q(i )4m_f)F2(4m 5 LLI+m 1 +m; o)
m 0} 2
r'(2m —3) am™l'(3m — 3) 1 1
O (m)— 20 oorm) T T2 p (1 3m - Som 1 s
(m) (200)2m3 (m) m(3a)m3 il 3m = gim e+ 1g)

(A.8)

where Fy(«, 5, 5',v,7; z,y) is the hypergeometric function of two variables de-
fined in [16, eq. (9.180.2)] as

Fy(o, 8,877 s2,9) = Y > s BB (A.9)

In!
m=0 n=0 (PY)m(P)//)nmn

and the notatioria),, = I'(a + n)/T'(a) denotes the Pochhammer symbol defined
at [16, xliii]. It should be pointed out that despite its saeghy simplicity, this

closed-form solution may not be computationally efficiantes (A.9) involves two
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infinite summations and is not implemented in popular matites packages such
as MATLAB and Mathematica. In addition, one can obt#i{0) in i.n.i.d. cases

by giving appropriate indices to, m, {2 andC' and following the procedures above.
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Appendix B

Multi-Branch System

B.1 Derivation of the Integral in (3.57) for Integer m

In this appendix, we derive the closed-form solution for ititegral in (3.57) (de-
noted agd) for multi-branch systems experiencing Nakagamfading with integer

m. If we use the substitution = r2 and (A.1),/ can be written as

m—1 2
1 [ , !
I= —/ 222 exp (—4mz) Ul
2 /o !

2 L—2
: {1 — exp (—2maz) (Z 7—'1:;@1) ] dz. (B.1)

=0
By employing binomial and multinomial theorems,can be converted into the

summation of a series of simple integrals as follows,
L—2 m—1 2i+2
1 L—2 A ' !
I= 3 ( , )(—1)Z/ 223 exp [—(4 4 2i)maz] [Z m—‘xl] dx
- 7 0 —o

(B.2)

; m—1 k
21+ 2 ml l 1
2 (ko,kl,...,km_l) ] {74 dx (B.3)

ko,k1,.... km—1
ko+...+km—1=2i4+2

L—2 . m—1 k
1 L—2 ; 21+ 2 mi\
=2 ) (=1 > e
24 1 k0>k1>"-akmfl I
=0 ko,k1,... . km—1 =0
ko+...+km—1=2i+2

49



. /ooexp [—(4 + 22)mx] s Ldx (B.4a)

where we use
(B.4b)

n B n!
koo kiyooskme1)  Ekolky!e - Kpy!

m—1
p=> iki+2m—0.5. (B.4c)
=0
In (B.2), we use the well known binomial theoreti,— a)” = """ (7)(—1)a".

In (B.3), we use the multinomial theorem, namely

(I0+$1+...+Im_1)n: Z (/{20 /{21 - ) HZL’ . (BS)

ko,k1,-.. . km—1
ko+..4+km—1=n

In (B.4a), we simply take the integral inside the summatibiow the integral in
(B.4a) is simply a combination of exponentials and powers @mn be solved by
using [16, eq. (3.381.4)]. After some manipulation, we obtae closed-form
solution for/.

mos—2m L2 /1 9 i (1)
I=— Z( i )(_1) 2. (4+/;7;)u

1=0 ko,k1,.. s km—1
ko+...+km—1=2i42

(koleQm 1) ZH ( ) ' -

Note that if L. = 2, the switching rate will reduce to that of dual-branch ca3é=

proof is the following. Sincd. = 2, (B.6) reduces to,

0.5—2m

: T(n) 2 T\
== 2 2. ifj (ko,kl,...,kml) 11 <ﬁ) ‘ B.7)

ko,k1,....km—1 =0
k0+---+kmfl:2

Sincek; can only be integer, there are two different scenarioseeith= 2, (0 <
i<m-—1)ork,=1,k;=1,(i# j,0<i<m—1,0<j <m—1). Therefore,

[ becomes

0.5—2m [m—1 S
['(2i + 2 r 2m — 0.

2m l 2421 1 alAt+g
4 — (1!)24 par iy ilgl4vts
om0 = T(i +j 4 2m — 0.5) 5.9
42m Z il314i+3 ’ ( ' )
i=0 j=0 J
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When L = 2, the constant before the integral in (3.57)3 ”fme -3. The

switching rate thus becomes identical to (3.43)

m—1m—1 .
_ 2fmyT T(t+7+2m—0.5)
SRor = A2m—2T2 () 2F2 Zo Z il14i+ : (B.10)

1= ]:

B.2 Derivation of the Integral in (3.57) for Non-Integer
m

If m is not an integer, the substitutian= r? andT'(a,b) = T'(a) — v(a,b) are

made. After some manipulatiohbecomes

1 - om—32 2
I ZQFTQ(W)/O 7" 2 exp (—2mzx) [['(m) — v(m, mz)]

A2 (m, ma) [20(m) — ~v(m, mx)]"? de. (B.11)
Let P = m andf(z) = z2™3 exp (—2ma). Using the binomial theorem to

expand2l(m) — v(m, mz)]" 2, the integral becomes

L-2

I=P /oof(x)[FQ(m) — 2T (m)y(m, mz) + v*(m, mz)] Z ciy" 7 (m, mx) do
0 =
' (B.12a)
where
¢ = (L Z_ 2) 21 (m)]* 27 (=1)". (B.12b)
Eqg. (B.12a) can be reorganized as
L2 ~
I = PT?*(m) Z ci/ @)y 2 (m, mz) do
i=0 0
L2 o
— 2PT'(m) Z ¢ / f(@) Yy (m, ma) da
i=0 V0
L2 .
+ P Z Ci / f(@)y" T (m, mz) da. (B.13)
i=0 V0
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With the help of [32, eq. (10)], we define a new functigin, s) as

ms 1
o(m. s) /f (o, ma) d x:(m) L'(2m + sm 21)

ms[2m + sm]*mrsmT e

1 1
-Fa | 2 —=1,...,1;1 o1 ; B.14
A m+ sm 27 ; ; a\_'_m?va +77/£7\2+$> 72 3/ ( )
s terms s terms NV
s terms
whereF4(+; -; -;-) is Lauricella’s hypergeometric function of several valesband

is defined as [16, eq. (9.19)]

Fala 'Bl,...,Bs;fyl,...,%;zl,... 2s)
Z Z m1+ +ms (ﬁl)ﬂh s (/Bs)ms 211711 o yms (815)

71 mp - - ﬁ)/s)msmll ms! s

m1=0 ms=0

Therefore, by substituting (B.14) into (B.13), one can obgaclosed-form expres-

sion for/ as

L—2 L—2
I = PT?*(m) Z cig(m, L — 2+ 1i) — 2PT'(m) Z ciglm, L — 14 1)
i=0 i=0

L-2

- PZCig(m,IA—i) (B.16)

1=0
with ¢; andg(m, s) defined in (B.12b) and (B.14), respectively. Note that the-co
putational complexity of (B.16) may well exceed that of tiegge integral in (3.57)
since it involves multiple infinite summations, especiallgen L is large. In addi-
tion, the Lauricella’s hypergeometric function is not irpiented in popular math-
ematics packages such as MATLAB and Mathematica. When2, the expression

for the switching rate will reduce to the expression for thalebranch case in (A.8).
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