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Abstract

In opportunistic relaying systems, only the relay with bestchannel condition among

K relays is selected to take part in cooperation. This setup efficiently achieves di-

versity gain. However, the high switching rate of such systems may be undesir-

able due to practical implementation issues, for example, the corruption of the data

signal by receiver switching transients, or channel estimation and synchronization

failures due to excessive switching, as well as network control switching overheads

which increase with increased switching. Recently, switch-and-examine relaying

whose main advantage is its low switching rate, was proposedas a low complexity

suboptimal alternative to opportunistic relaying. Meanwhile, comparisons of the

switching rates of opportunistic and switch-and-examine schemes have been un-

dertaken only for the case of Rayleigh fading. In this thesis, the switching rates of

opportunistic relaying and switch-and-examine relaying systems with two or more

relays operating under Rician and Nakagami-m fading are obtained in closed-form

or single integral expressions. Results for independent and identically distributed

fading links are obtained for the case of multiple relays andadditionally for inde-

pendent but not identically distributed fading links for the two relays case. The

closed-form solutions explicitly depend on the Doppler frequency of the fading.
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Chapter 1

Introduction

The first decade of the 21st century witnessed an unprecedented rapid growth in

wireless communication technologies. One of the main technological advance-

ments that enables such dramatic growth is the deployment ofmultiple-input multiple-

output (MIMO) technology. In MIMO systems, both the transmitter and the re-

ceiver employ multiple antennas in order to obtain higher data rates and/or to alle-

viate channel impairments (such as noise, fading and shadowing effects). However,

while MIMO technology has been tremendously successful, itmay not be an ideal

solution for many practical wireless networks due to cost, complexity and hard-

ware constraints. One of the most promising alternatives toMIMO technology is

cooperative relaying.

1.1 Cooperative Relaying

Cooperative relaying has received great attention in recent years as an alternative

and improvement to MIMO technology because it can also enhance the reliability

of data transmission, provide broader and cheaper coverageand mitigate severe

shadowing and fading effects [1]. In conventional communication systems, the

source (transmitter) and the destination (receiver) communicate directly without

any outside help. However, in cooperative relaying systems, the source and the

destination communicate with each other with the help of oneor more relays.

A single-hop relaying scheme is illustrated in Fig. 1.1. Theprotocol in [1]

divided data transmission into two phases. In the first phase, the source transmits
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Figure 1.1. A cooperative relaying system with one relay.

some data to the destination as in conventional communication systems. Due to the

broadcast nature of wireless communication, the relay alsoreceives a copy of the

data. In the second phase, the relay processes the received data then forwards it to

the destination. The destination will then decode the data using the two replicas it

received (one from the source and the other from the relay). Since the destination

node utilizes signals from both source and destination, diversity can be achieved.

Evidently, how the relay processes the data will have a majorimpact on the system

performance metrics, especially bit error rate (BER) and outage probability (OP). In

the literature, there are currently two popular methods, amplify-and-forward (AF)

and decode-and-forward (DF). In AF, the relay will simply amplify the received

signal (by a fixed factor or by a variable factor to normalizedthe energy) and then

transmit it. In DF, the relay will decode the received signaland then re-encode and

transmit it.

1.2 Opportunistic Relaying and Switch-and-Examine
Relaying

In [1], only one relay is available for cooperation, while inpractice multiple relays

may be employed to further improve performance. One way to exploit the diver-

sity gain in such systems is to use distributed space-time coding at the relays [2].

However, the code design for such system is difficult becausethe number of nodes

participating in cooperation may not been knowna priori. The authors in [3] pro-

posed opportunistic relaying (OR) as a scheme for multiple relay systems, in which

only the relay with the best channel condition participatesin cooperation actively,
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while all the other relays cooperate ”passively” by not transmitting information.

OR has been shown to achieve full diversity with relatively low complexity [3],

[4]. Despite the benefits offered by OR, one of the issues thatmust be addressed in

practice is its high switching rate, i.e. the number of timesper second the system

has to switch from one relay node to another, especially whenthe number of relays

is large or the channel conditions change frequently. In conventional receiver di-

versity combining systems, switched diversity has been implemented as a low com-

plexity suboptimal alternative to selection diversity to reduce the antenna switching

rate [5]. Applying this idea to relaying systems, the authors in [6] proposed and

studied switch-and-stay relaying systems with two relays.In switch-and-stay relay-

ing, the systems dwells on one relay as long as its channel condition is better than

a predetermined threshold. Once its channel condition crosses below the threshold,

the system switches to the other relay. An important insightuncovered in [6] is that

switch-and-stay relaying achieves the same diversity order as opportunistic relay-

ing while reducing the switching rate. Note that switch-and-stay relaying refers to

systems with only two relays. In this thesis, we intend to investigate systems with

more than two relays, thus we use the term “switch-and-examine relaying” to refer

to such systems.

1.3 Thesis Motivation and Contributions

This thesis is devoted to investigating the switching rate in opportunistic relaying

and switch-and-examine relaying.

It is desirable to keep the switching rates in relaying networks as low as possi-

ble for several reasons, both from the node perspective and from the network per-

spective. The switching rates are critically important at the node receiver for two

reasons. First, in order to coherently decode the received message, the relay node

and the destination require accurate channel estimation which is impossible unless

the system dwells on a specific relay node for a long enough time [7]. Excessive

switching will undermine the accuracy of channel estimation, which in turn will

degrade the system performance. Secondly, relay nodes are implemented by ordi-
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nary electrical circuits which have certain transient responses. Whenever the system

switches to a new relay, it is equivalent to applying a step function input to the new

relay node receiver. The triggered receiver transient response will corrupt any sig-

nal received and cause an ”internal outage” [8], [9]. Note that highpass responses

in any receiver elements (RF amplifiers and filters, IF amplifiers and filters, demod-

ulator circuits) may cause transients lasting thousands ofsymbol durations [10]. In

order to evaluate the impacts of such internal outage, one would have to consider a

particular receiver. Then one needs to obtain the impulse response of the underlying

circuits and the dwell time of a specific relay (how long the system communicates

with a specific relay before switching). We focus on the more fundamental issue of

switching rate in this thesis and do not address receiver-specific questions. Future

research could investigate this issue in more detail. From the network perspective,

excessive switching may cause network synchronization failures or delays due to

the distributed nature of cooperative relaying systems [11]. Every switch from one

relay to another requires a new time synchronization in thatthe time delay associ-

ated with one relay can be dramatically different from that associated with another

relay.

While the switching rate is of paramount importance to practical implemen-

tation of opportunistic relaying and switch-and-examine relaying systems, current

literature does not address it adequately. The majority of the literature concerning

multiple relay systems has investigated the bit error rate and outage probability of

such systems without considering the detrimental effect ofswitching rate. To fully

understand the impact of switching rate in cooperative communication systems, one

has to first investigate what is the value of switching rate invarious scenarios.

The switching rates for these two systems in Rayleigh fadingchannels have

been investigated in [11]. However, Rayleigh fading may be an inadequate model

for practical channels, for example channels with a line-of-sight (LOS) component

or channels suffering from more severe fading or less severefading than Rayleigh

fading. Therefore, it is essential to investigate switching rates in more flexible fad-

ing models, such as Rician fading and Nakagami-m fading. To the best of the
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author’s knowledge, no such results are available in the literature. In this thesis,

the switching rates for dual-branch and multi-branch1 opportunistic relaying and

switch-and-examine relaying undergoing both Rician and Nakagami-m fading are

derived. Note that the switching rate discussed here is driven by and explicitly de-

pends on the maximum Doppler shift. This is different from what is termed the

switching rate in [12], where the maximum Doppler shift is effectively zero.

1.4 Thesis Outline

The remainder of this thesis is organized as follow. Chapter2 introduces the sys-

tem models under consideration. Fading channels and the transmission protocols

used by opportunistic relaying and switch-and-examine relaying are discussed. In

Chapter 3, we derive the switching rate for both dual-branchand multi-branch sys-

tems analytically. For Rician fading, the results are presented in single-integral

form, while for Nakagami-m fading, closed-form results are available in addition to

single-integral form. Chapter 4 gives the switching rates of the switch-and-examine

relaying. The results are presented in closed-form. Then, Chapter 5 gives numeri-

cal examples to illustrate the theoretical results. Numerical examples demonstrate

how different parameters affect the switching rate. Finally, Chapter 6 concludes the

thesis and discusses possible future research in this field.

1In the literature, dual-branch and multi-branch systems are sometimes referred to as two-relay
and multi-relay systems, respectively. Both nomenclatures are used in this thesis.
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Chapter 2

System Models

In this chapter, the models used in this thesis are presented. Specifically, fading

channels are discussed and the models used by opportunisticrelaying and switch-

and-examine relaying are presented.

We consider a dual-hop multi-branch cooperative relaying system in which a

source terminal,S, communicates with a destination terminal,D, with the help of

L relaying terminals denoted byTi, i ∈ 1, ..., L. The system model is illustrated in

Fig. 2.1.

2.1 Fading Channels

In wireless communication systems, one major characteristic is that there are many

signal paths from the transmitter to the receiver due to refractions, reflections and

scattering of the transmitted signal in the local environment. Therefore the received

signal will appear as a pulse train and different replicas ofthe received signal will

add constructively and destructively. This process is further complicated by the rel-

ative motion between transmitter and receiver. The end result is random fluctuations

of amplitude, phase and power of the received signal in time,frequency and space.

This communication channel is referred to as a multipath fading channel [13] [14].

Two important parameters in multipath fading are coherencebandwidth and

coherence time. Coherence bandwidth is the frequency rangeover which the fading

process is considered highly correlated. The coherence bandwidth can be defined as

the inverse of the time delay spread, which is the time difference between the first
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Figure 2.1. A cooperative relaying system withL multiple relays.

replica of received signal and the last replica of received signal. If the bandwidth of

transmitted signal is much smaller than the coherence bandwidth, we can consider

the fading process to be flat in the frequency domain. Such a fading process is

called flat fading. If the bandwidth of transmitted signal ismuch larger than the

coherence bandwidth, the fading process has significant variation in the frequency

domain, and we call such a fading process frequency selective fading.

On the other hand, coherence time is the time period over which the fading

process is considered highly correlated. The coherence time of a fading channel

is usually defined as the inverse of the Doppler spread. The relative motion be-

tween transmitter and receiver introduces frequency shift, called Doppler shift, in

the received signal along each signal path, which is known asthe Doppler effect.

Signals along different paths can have different Doppler shifts, and the difference

between the maximum Doppler shift and the minimum Doppler shift is defined as

the Doppler spread. If the symbol duration is smaller than the coherence time, we

can consider the amplitude and phase of the fading process tobe constant over the

period of use. Such a fading process is called slow fading. Ifthe symbol duration

is greater than the coherence time, the amplitude and phase of the fading process

varies considerably over the period of use.
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In this thesis, we assume the fading process to be both flat andfast. In these

cases, it is common to use statistical models to capture the random nature of the

received signal amplitude. Note that coherent detection assumes that the receiver

fully compensates for the received signal phase; thus, its distribution is not rele-

vant in this thesis. Three most widely used models for received signal amplitude

include Rayleigh fading, Rician fading and Nakagami-m fading. Rayleigh fading

is often used to model the channel amplitude in a wireless system with no direct

LOS path between the transmitter and the receiver and only scattering components.

Meanwhile, Rician fading is often used to model systems where a LOS component

is present in addition to scattering components. Unfortunately, some experimental

data does not fit well into either of these distributions. Thus Nakagami-m fading

has been proposed to fit empirical measurements. Note that the Rayleigh model is

a special case of both Rician and Nakagami-m fading.

We assume that the channel between terminalsA andB (A or B can be the

source, the destination or the relayTi) undergoes fast fading with channel gain

RAB and maximum Doppler frequencyfAB; the fadings on different channels are

assumed to be independent but not identically distributed (i.n.i.d.). LetRSi and

fSi denote the channel amplitude and the maximum Doppler frequency between

the source and relaying terminalTi, respectively. We assume thatRAB experiences

Rician or Nakagami-m fading. For Rician fading, the probability density function

(PDF), fRAB
(r), and cumulative distribution function (CDF),FRAB

(r), are given

by [15]

fRAB
(r) =

r

σ2
AB

exp

(

− r2

2σ2
AB

−KAB

)

I0

(
√

2KAB

r

σAB

)

(2.1)

FRAB
(r) = 1−Q1

(
√

2KAB,
r

σAB

)

(2.2)

whereI0(x) is the modified Bessel function of the first kind of order zero as defined

in [16, eq. (8.406.1)] andQ1(a, b) is the Marcum Q function as defined in [17, eq.

(2.20)]. Also,KAB and2σ2
AB are the Rice factor and average power in the scatter

component, respectively. Note thatKAB is a indicator of the severity of the fading

and can be any value between0 to ∞. A smallKAB implies severe fading, while
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a largeKAB indicates mild fading. WhenKAB = 0, Rician fading reduces to

Rayleigh fading and whenKAB = ∞, we have no fading (a channel with only LOS

component).

Similarly, for Nakagami-m fading, the PDF and CDF are given by [15]

fRAB
(r) =

2r2mAB−1

Γ(mAB)

(
mAB

ΩAB

)mAB

exp

(

−mABr
2

ΩAB

)

(2.3)

FRAB
(r) =

γ
(

mAB,
mAB

ΩAB
r2
)

Γ(mAB)
(2.4)

whereΓ(x) is the Gamma function as defined in [16, eq. (8.310.1)] andγ(a, b) is

the lower incomplete gamma function as defined in [16, eq. (8.350.1)]. Note that

mAB andΩAB are the Nakagami parameter and the average power of the fading, re-

spectively. Similar to Rician fading,mAB is a indicator of the severity of the fading,

with smallmAB implying severe fading and largemAB implying mild fading. In

addition,mAB can take any value between0.5 to∞. WhenmAB = 1, Nakagami-m

fading reduces to Rayleigh fading and whenmAB = ∞, we have no fading. When

mAB = 0.5, the fading will be more severe than Rayleigh fading [18] [19].

Note that the mathematical expression for Rician distribution contains a Bessel

function while the Nakagami-m distribution contains a gamma function, which is

easier to manipulate mathematically. Thus, the Nakagami-m distribution often leads

to closed-form analytical expressions that are not possible for the Rician distribu-

tion. The switching rate obtained in this thesis is one such example. Also, in the

literature, the Nakagami-m distribution is sometimes used to approximate the Ri-

cian distribution. However, in this thesis we find that such approximation is not

appropriate for switching rate, especially in switch-and-examine relaying.

2.2 Transmission Protocols

In this thesis, the terminals are assumed to be half-duplex,i.e., the terminals can

receive and transmit information but are not capable of receiving and transmitting

at the same time, and may operate in either the AF or the DF mode.
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Two different transmission protocols are investigated. The first is opportunistic

relaying, in which only the relay with the highest performance metric ofL avail-

able relays is activated. In order to achieve full diversity, the performance metric

must account for the channel quality of both hops. As suggested in [3], we use the

minimum of the channel gains as the performance metric,

Ri = min(RSi, RiD). (2.5)

Therefore, the node with highestRi is activated. This is the optimal choice for sys-

tems operating in DF mode since the weakest link explicitly determines the outage

capacity. This is also an appropriate choice for systems operating in AF mode since

the weakest link usually dominates the overall performance. Moreover, it is a tight

upper bound of a popular performance metric, the harmonic-mean metric proposed

in [20], while it is more mathematically tractable comparedto the harmonic-mean

metric. Note that this performance metric has been proved toachieve full diversity

in opportunistic relaying systems [3], [4] and switch-and-examine systems [6].

The second scheme is switch-and-examine relaying, which isa direct extension

of the switch-and-stay relaying scheme in [11] to multiple relays. Unlike oppor-

tunistic relaying, the currently active relay stays activeas long as its performance

metric stays above some specific level. Evidently, such a performance metric has

to account for the channel quality of both hops, just like that in opportunistic relay-

ing. Therefore,Ri is used for switch-and-examine relaying too. A switch occurs

whenever the performance metricRi of the active relaying terminal experiences a

negative-going crossing of the predetermined switching thresholdRth, regardless

of the channel conditions of other relays. This scheme avoids excessive switch-

ing when channel conditions are weak. This switching schemeis different from

that adopted in [6] in which a switch occurs whenever the channel condition of the

active terminal is belowRth. Returning to the switching scheme examined in the

present thesis, note that the operation after switching depends on the value ofL. If

L equals 2, the destination simply communicates with the other relay until another

switch occurs. IfL is larger than 2, the system examines each relay in a predeter-

mined order to activate the first relay havingRi above the switching threshold. If all
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the other relays are below the switching threshold, either the best relay is selected

or the system selects a relay randomly. Note that while thesetwo schemes give

different error rate performances, both yield the same switching rate in i.i.d. fading.

Finally, it is assumed that the destination selects the appropriate node after per-

forming channel estimation of all links. For simplicity, itis assumed that the des-

tination can obtain accurate channel state information (CSI) of all links. Methods

for achieving accurate channel estimation in conventionalpoint-to-point commu-

nication systems are well known [15, Ch. 5]. In DF, the channel estimation for

the overall system is simply two point-to-point channel estimations at the relay and

the destination. Methods for utilizing various training sequences to obtain channel

estimation in AF can be found in [21] and [22] and the references therein. Note that

in OR, the destination needs to keep track of the CSI of all links at any given time,

while in switch-and-examine relaying, the destination needs only the CSI of the

active link if no switch occurs. When a switch does occur, thedestination needs the

CSI of other links, which still alleviates the burden of channel estimation compared

to OR.
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Chapter 3

Switching Rate of Opportunistic
Relaying

In this chapter1, we find the switching rate of opportunistic relaying systems. In

order to do so, we first find the statistics of the performance metricRi, in particular,

the PDF and CDF ofRi, fRi
(r) andFRi

(r). SinceRi is the minimum of two

independent random variables,RSi andRiD, according to order statistics [25], the

PDF and CDF ofRi can be expressed as

fRi
(r) = fRSi

(r) [1− FRiD
(r)] + fRiD

(r) [1− FRSi
(r)] (3.1)

FRi
(r) = 1− [1− FRSi

(r)] [1− FRiD
(r)] (3.2)

wherefRAB
(r) andFRAB

(r) denote the PDF and CDF of the channel amplitude of

link AB. If the system undergoes i.n.i.d Rician fading, using (2.1)and (2.2), we get

fRi
(r) =

r

σ2
Si

exp

(

− r2

2σ2
Si

−KSi

)

I0

(
√

2KSi

r

σSi

)

Q1

(
√

2KiD,
r

σiD

)

+
r

σ2
iD

exp

(

− r2

2σ2
iD

−KiD

)

I0

(
√

2KiD

r

σiD

)

Q1

(
√

2KSi,
r

σSi

)

(3.3)

FRi
(r) = 1−Q1

(
√

2KSi,
r

σSi

)

Q1

(
√

2KiD,
r

σiD

)

. (3.4)

Similarly, if the system undergoes i.n.i.d Nakagami-m fadings, using (2.3) and

1The results in this chapter have been presented in part at theIEEE Global Communications
Conference (GLOBECOM) 2011, held in Houston, Texas, USA [23] and in part in theIEEE Trans-
actions on Communications [24].
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(2.4), we get

fRi
(r) =

2r2mSi−1

Γ(mSi)

(
mSi

ΩSi

)mSi

exp

(

−mSir
2

ΩSi

) Γ
(

miD,
miD

ΩiD

r2
)

Γ(miD)

+
2r2miD−1

Γ(miD)

(
miD

ΩiD

)miD

exp

(

−miDr
2

ΩiD

) Γ
(

mSi,
mSi

ΩSi
r2
)

Γ(mSi)
(3.5)

FRi
(r) = 1−

Γ
(

mSi,
mSi

ΩSi
r2
)

Γ(mSi)

Γ
(

miD,
miD

ΩiD
r2
)

Γ(miD)
(3.6)

whereΓ(a, b) is the upper incomplete gamma function as defined in [16, eq. (8.350.2)].

If the system undergoes i.i.d. Rician fadings with parameters Ki andσi, (3.3)

and (3.4) will respectively reduce to

fRi
(r) =

2r

σ2
i

exp

(

− r2

2σ2
i

−Ki

)

I0

(
√

2Ki

r

σi

)

Q1

(
√

2Ki,
r

σi

)

(3.7)

FR1
(r) = 1−Q2

1

(
√

2Ki,
r

σi

)

. (3.8)

Similarly, for i.i.d. Nakagami-m fadings with parametersmi andΩi, (3.5) and (3.6)

will respectively reduce to

fRi
(r) =

4mmi

i r2mi−1

Γ(mi)Ω
mi

i

exp

(

−mir
2

Ωi

) Γ
(

mi,
mi

Ωi
r2
)

Γ(mi)
(3.9)

FR1
(r) = 1−

Γ2(mi,
mi

Ωi
r2)

Γ2(mi)
. (3.10)

In the sequel,K, σ, m andΩ will be used to designate values ofKi, σi, mi and

Ωi when reference to the channel index is not needed.

3.1 Switching Rate of Dual-Branch i.n.i.d. Oppor-
tunistic Relaying

Now we define a random processZ(t) as [8], [9]

Z(t) = R1(t)−R2(t). (3.11)

Clearly, a positive-going zero-crossing ofZ(t) indicates the system switches from

relay 2 to relay 1, and a negative-going zero-crossing ofZ(t) indicates the system

13



switches from relay 1 to relay 2. Therefore, the total switching rate of the system

equals the sum of the positive-going and negative-going zero-crossing rates ofZ(t),

which can be expressed as [14, Ch. 2]

SROR =

∫ 0

−∞
|ż|f(0, ż) dż +

∫ ∞

0

żf(0, ż) dż (3.12)

wheref(z, ż) denotes the joint PDF ofZ(t) and its time-derivative,̇Z(t). In many

important practical cases, such as Rician and Nakagami-m fading under conditions

detailed in [8], [14],RSi andṘSi are independent (as are alsoRiD andṘiD). We as-

sume that the required conditions are satisfied here. We alsoassume independence

betweenRSi andRiD. Thus, we ensure the independence betweenRi andṘi, which

leads to independence betweenZ(t) and Ż(t). Thereforef(z, ż) = fZ(z)fŻ(ż)

wherefZ(z) andfŻ(ż) denote the PDFs ofZ(t) andŻ(t) respectively. Then, (3.12)

becomes

SROR = fZ(0)

[∫ 0

−∞
|ż|fŻ(ż) dż +

∫ ∞

0

żfŻ(ż) dż

]

. (3.13)

We first find the value offZ(0) for Rician and Nakagami-m fading. Note that

fZ(0) can be evaluated as

fZ(0) =

∫ ∞

0

fR1
(r)fR2

(r) dr. (3.14)

By inserting (3.7) into (3.14), we obtainfZ(0) in i.i.d. Rician fading as

fZ(0) =
4

σ4
i

∫ ∞

0

r2 exp

(

− r2

σ2
i

− 2Ki

)

I20

(
√

2Ki

r

σi

)

Q2
1

(
√

2Ki,
r

σi

)

dr.

(3.15)

Similarly, by inserting (3.9) into (3.14), we obtainfZ(0) in i.i.d. Nakagami-m fad-

ing as

fZ(0) =
16

Γ4(mi)Ω
2mi

i

∫ ∞

0

r4mi−1 exp

(

−2mir

Ωi

)

Γ2

(

mi,
mi

Ωi

r2
)

dr. (3.16)

Finally, fZ(0) in i.n.i.d. Rician and Nakagami-m fadings can be obtained by insert-

ing (3.3) and (3.5) into (3.14), respectively. However, thefull expressions in both

cases is tedious and give little insight, thus they are omitted here. The expressions

for fZ(0) in i.n.i.d. fading are just more complicated versions offZ(0) in i.i.d.

fading.
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The single integrals infZ(0) can be efficiently evaluated using popular math-

ematics packages such as MATLAB and Mathematica. Note that the integrals in

i.n.i.d. cases are very similar to those in i.i.d. cases. To the author’s best knowl-

edge, no closed-form solution to an integral similar to thatin (3.15) is available.

However, for Nakagami-m fading, we find a compact closed-form solution for an

integral similar to that in (3.16) whenm is an integer. Moreover, a closed-form so-

lution expressed in terms of the hypergeometric function isavailable whenm is not

an integer. These closed-form solutions are derived in Appendix A.1 and Appendix

A.2.

Now we turn our attention to the two integrals in (3.13). Observe thatŻ(t)

equals the difference of the time derivativesṘ1(t) andṘ2(t). To derive the PDF of

Ż(t), fŻ(ż), we need to obtain the PDF ofṘi(t), fṘi
(x), which can be expressed as

fṘi
(x) = pifṘSi

(x) + (1− pi)fṘiD
(x) (3.17)

wherepi denotes the probability thatRSi 6 RiD and wherefṘSi
(x) andfṘiD

(x)

denote the PDF of the time derivatives ofRSi andRiD, respectively. First of allpi

can be expressed as

pi =

∫ ∞

0

fRSi
(x) [1− FRiD

(x)] dx. (3.18)

For Rician fading, by substituting (2.1) and (2.2) into (3.18), we obtain

pi = Q1

( √
2KiDσiD

√

σ2
Si + σ2

iD

,

√
2KSiσSi

√

σ2
Si + σ2

iD

)

− σ2
Si

σ2
Si + σ2

iD

exp

[

−KSiσ
2
Si +KiDσ

2
iD

σ2
Si + σ2

iD

]

I0

(
2
√
KSiKiDσSiσiD

σ2
Si + σ2

iD

)

(3.19)

where [17, eq. (B.32)] is used. It is easy to see that (3.19) depends only on the

ratio betweenσSi andσiD, i.e., if σSi

σiD
= α, pi only depends onα. Note that if

KSi = KiD = 0, Rician fading reduces to Rayleigh fading and (3.19) reduces to

pi =
σ2

iD

σ2

Si
+σ2

iD

(note thatQ1(0, 0) = 1 andI0(0) = 1), which agrees with the results

given in [11, eq. (52)]. Also, if the channel experiences i.i.d. Rician fadings, i.e.,

KSi = KiD = Ki andσSi = σiD = σi, by inserting these into (3.19), we have

pi = Q1

(√

Ki,
√

Ki

)

− 1

2
exp (−Ki) I0 (Ki) (3.20)
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while according to [26, eq. A-3-2],Q1(a, a) =
1
2
[1 + exp(−a2)I0(a

2)]. Therefore,

we havepi = 1
2

when the channel experiences i.i.d. Rician fadings as expected.

Similarly, if the channels experience Nakagami-m fading, by substituting (2.3)

and (2.4) into (3.18), we have

pi = 1−
(
mSi

ΩSi

)mSi
(
miD

ΩiD

)miD Γ(mSi +miD)

Γ(mSi)Γ(miD)

·
2F1

(

1, mSi +miD;miD + 1; ΩSimiD

ΩSimiD+ΩiDmSi

)

miD

(
mSi

ΩSi
+ miD

ΩiD

)mSi+miD
(3.21)

where2F1(a, b; c; d) denotes the Gaussian hypergeometric function defined at [16,

eq. (9.100)]. We employ [16, eq. (6.455.2)] to obtain (3.21). Similar topi in Rician

fading, one can see that (3.21) depends only on the ratio betweenΩSi andΩiD, i.e.

if ΩSi

ΩiD
= α, pi only depends onα. Note that ifmSi = miD = 1, Nakagami-m

fading reduces to Rayleigh fading. In this case, we have

pi = 1− 1

ΩSi

1

ΩiD

2F1

(

1, 2; 2; ΩSi

ΩSi+ΩiD

)

(
1

ΩSi
+ 1

ΩiD

)2 . (3.22)

According to [16, eq. (9.121.1)], we have2F1(−n, β; β;−z) = (1 + z)n. Using

this identity and some simple manipulation, we will havepi = ΩiD

ΩSi+ΩiD
, which

again agrees with [11, eq. (52)]. Also, if the channel experiences i.i.d. Nakagami-

m fadings, i.e.,mSi = miD = mi andΩSi = ΩiD = Ωi, it can be shown thatpi = 1
2
.

The detailed proof is the following. Applying the i.i.d. assumption, we can simplify

(3.21) as

pi = 1− Γ(2mi)

Γ2(mi)
2F1(1, 2mi;mi + 1; 0.5)

mi22mi

(3.23)

= 1− Γ(2mi)

Γ2(mi)
2F1(0.5, mi;mi + 1; 1)

mi22mi

(3.24)

= 1− Γ(2mi)

Γ2(mi)

Γ(mi + 1)Γ(0.5)

Γ(mi + 0.5)mi22mi

(3.25)

= 1− 22mi−1Γ(mi)Γ(mi + 0.5)

Γ2(mi)

miΓ(mi)

miΓ(mi + 0.5)22mi

(3.26)

=
1

2
. (3.27)
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Note that we obtain (3.24) by using [16, eq. (9.133)], obtain(3.25) by using [16, eq.

(9.122.1)], obtain (3.26) by using [16, eq. (8.335.1)] together with some well known

identities involving the Gamma function, such asΓ(0.5) =
√
π andΓ(m + 1) =

mΓ(m).

Secondly,fṘAB
(x) can be expressed as

fṘAB
(x) =

1√
2πσ̇AB

exp(− x2

2σ̇2
AB

). (3.28)

For Rician fading [14, Ch. 2],

σ̇AB =
√
2πfABσAB (3.29)

and for Nakagami-m fading [27],

σ̇AB = πfAB

√

ΩAB

mAB

. (3.30)

Note thatfṘSi
(x) andfṘiD

(x) are both zero-mean Gaussian PDFs with standard

deviationsσ̇Si andσ̇iD, respectively. SincėZ(t) = Ṙ1(t)− Ṙ1(t), the PDF ofŻ(t),

fŻ(x) is

fŻ(x) =

∫ ∞

−∞
fṘ1

(y + x)fṘ2
(y) dy (3.31)

=
p1p2

√

2π(σ̇2
S1 + σ̇2

S2)
exp

(

− x2

2(σ̇2
S1 + σ̇2

S2)

)

+
p1(1− p2)

√

2π(σ̇2
S1 + σ̇2

2D)
exp

(

− x2

2(σ̇2
S1 + σ̇2

2D)

)

+
(1− p1)p2

√

2π(σ̇2
1D + σ̇2

S2)
exp

(

− x2

2(σ̇2
1D + σ̇2

S2)

)

+
(1− p1)(1− p2)
√

2π(σ̇2
1D + σ̇2

2D)
exp

(

− x2

2(σ̇2
1D + σ̇2

2D)

)

. (3.32)

After some straightforward integration it can be shown that
∫ ∞

0

żfŻ(ż) dż =

∫ 0

−∞
|ż|fŻ(ż) dż

=
1√
2π

p1p2

√

σ̇2
S1 + σ̇2

S2 +
1√
2π

(1− p1)(1− p2)
√

σ̇2
1D + σ̇2

2D

+
1√
2π

p1(1− p2)
√

σ̇2
S1 + σ̇2

2D +
1√
2π

(1− p1)p2

√

σ̇2
1D + σ̇2

S2. (3.33)
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For a network experiencing i.i.d. fadings with the same Doppler shift, p1 = p2 =

0.5 andσ̇S1 = σ̇S2 = σ̇1D = σ̇2D = σ̇, (3.33) reduces to
∫ ∞

0

żfŻ(ż) dż =

∫ 0

−∞
|ż|fŻ(ż) dż =

σ̇√
π
. (3.34)

In summary, the switching rate is

SROR = 2fZ(0)

∫ ∞

0

żfŻ(ż) dż. (3.35)

For i.n.i.d. Rician fading, we have

fZ(0) =

∫ ∞

0

fR1
(r)fR2

(r) dr (3.36a)

wherefRi
(r) is given by

fRi
(r) =

r

σ2
Si

exp

(

− r2

2σ2
Si

−KSi

)

I0

(
√

2KSi

r

σSi

)

Q1

(
√

2KiD,
r

σiD

)

+
r

σ2
iD

exp

(

− r2

2σ2
iD

−KiD

)

I0

(
√

2KiD

r

σiD

)

Q1

(
√

2KSi,
r

σSi

)

.

(3.36b)

In addition,
∫∞
0
żfŻ(ż) dż are given in (3.33) with

pi = Q1

( √
2KiDσiD

√

σ2
Si + σ2

iD

,

√
2KSiσSi

√

σ2
Si + σ2

iD

)

− σ2
Si

σ2
Si + σ2

iD

exp

[

−KSiσ
2
Si +KiDσ

2
iD

σ2
Si + σ2

iD

]

I0

(
2
√
KSiKiDσSiσiD

σ2
Si + σ2

iD

)

(3.37a)

σ̇AB =
√
2πfABσAB. (3.37b)

For i.n.i.d. Nakagami-m fading,fRi
(r), pi andσ̇AB are given by

fRi
(r) =

2r2mSi−1

Γ(mSi)

(
mSi

ΩSi

)mSi

exp

(

−mSir
2

ΩSi

) Γ
(

miD,
miD

ΩiD
r2
)

Γ(miD)

+
2r2miD−1

Γ(miD)

(
miD

ΩiD

)miD

exp

(

−miDr
2

ΩiD

) Γ
(

mSi,
mSi

ΩSi
r2
)

Γ(mSi)
(3.38a)

pi = 1−
(
mSi

ΩSi

)mSi
(
miD

ΩiD

)miD Γ(mSi +miD)

Γ(mSi)Γ(miD)

·
2F1

(

1, mSi +miD;miD + 1; ΩSimiD

ΩSimiD+ΩiDmSi

)

miD

(
mSi

ΩSi
+ miD

ΩiD

)mSi+miD
(3.38b)
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σ̇AB = πfAB

√

ΩAB

mAB

. (3.38c)

Thus, by inserting (3.37) into (3.33), we have the full expression of
∫∞
0
żfŻ(ż) dż.

At the same time, we obtain full expression offZ(0) by using (3.36). Inserting these

two results into (3.35), we obtain the switching rate for dual-branch OR with i.n.i.d.

Rician fading. Following the same procedure, but using equations in (3.38) instead,

we obtain the switching rate for dual-branch OR with i.n.i.d. Nakagami-m fading.

The exact expressions are unwieldy and gives little insight, thus they are omitted.

For i.i.d cases, the expression is much more compact. For i.i.d. Rician fadings with

identical maximum Doppler shift,fm, the switching rate is

SROR =
8
√
2πfm
σ3

∫ ∞

0

r2 exp

(

− r2

σ2
− 2K

)

I20

(√
2K

r

σ

)

Q2
1

(√
2K,

r

σ

)

dr.

(3.39)

Close inspection reveals thatSROR does not depend onσ alone. To see this, one

could replacer with rσ andσ will be canceled out. In fact, this is not limited

to i.i.d. fading. In i.n.i.d. fading, the switching rate depends only on the relative

relationships betweenσS1, σ1D, σS2, andσ2D. Specifically, ifσS1 = σ, σ1D = ασ,

σS2 = βσ andσ2D = γσ the switching rate depends only onα, β andγ but notσ.

Therefore,SROR can be rewritten as

SROR = 8
√
2πfm

∫ ∞

0

r2 exp
(
−r2 − 2K

)
I20

(√
2Kr

)

Q2
1

(√
2K, r

)

dr. (3.40)

Note that the switching rate grows linearly withfm.

For system experiencing i.i.d. Nakagami-m fadings with identical maximum

Doppler shiftsfm, the switching rate is

SROR =
32
√
πfm

Γ4(m)

(m

Ω

)2m− 1

2

∫ ∞

0

r4m−2 exp

(

−2mr2

Ω

)

Γ2
(

m,
m

Ω
r2
)

dr.

(3.41)

Similar to Rician fading, the switching rate does not dependon Ω alone. To see

this, one could replacer with r
√
Ω and thenΩ will be canceled out. The switching

rate in the i.n.i.d. case also depends only on the relative relationships betweenΩS1,

Ω1D, ΩS2 andΩ2D. Therefore,SROR can be rewritten as

SROR =
32
√
πfm

Γ4(m)
m2m− 1

2

∫ ∞

0

r4m−2 exp
(
−2mr2

)
Γ2
(
m,mr2

)
dr. (3.42)
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The switching rate again grows linearly withfm.

For Nakagami-m fading, the integral in (3.42) has closed-form solutions. If m

is an integer, by using (A.5), the switching rate reduces to

SROR =
2fm

√
π

42m−2Γ2(m)

m−1∑

i=0

m−1∑

j=0

Γ(i+ j + 2m− 0.5)

i!j!4i+j
. (3.43)

If m is not an integer, by using (A.8) the switching rate is

SROR =
32
√
πfm

Γ4(m)

[
Γ(4m− 1

2
)

44m− 1

2m2
F2(4m− 1

2
, 1, 1, 1 +m, 1 +m;

1

4
,
1

4
)

−2Γ(m)
Γ(3m− 1

2
)

33m− 1

2m
2F1(1, 3m− 1

2
;m+ 1;

1

3
) + Γ2(m)

Γ(2m− 1
2
)

22m− 1

2

]

. (3.44)

whereF2(α, β, β
′, γ, γ′; x, y) is the hypergeometric function of two variables and is

given in (A.9).

In the next section, we derive the switching rate of multi-branch OR with i.i.d.

fadings.

3.2 Switching Rate of Multi-Branch i.i.d. Case

For multi-branch systems, the switching rate can be expressed as

SROR =
L∑

i=1

SROR,i (3.45)

whereSROR,i is the rate at which the system switches toRi from any other relays.

Similar to the development in the previous section, we definea new random process

Zi(t) = Ri(t)− max
j∈{1,...,L}

j 6=i

Rj(t). (3.46)

Obviously,SROR,i equals the positive-going zero-crossing rate ofZi(t). Employ-

ing the same approach as in the previous section, we can evaluateSROR,i for ev-

ery i, and then obtainSROR. However, the expression for an i.n.i.d multi-branch

system with an arbitrary number of relays is very cumbersome, therefore we only

consider the i.i.d. case. Specifically, we consider a systemwith identical maximum
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Doppler shiftsfm experiencing either Rician fading (with parametersK andσ) or

Nakagami-m fading (with parametersm andΩ). Due to symmetry, we have

SROR = L·SROR,i, ∀i ∈ {1, ..., L}. (3.47)

Without loss of generality, we evaluateSROR,1 using the random process

Z1(t) = R1(t)− max
j∈{2,...,L}

Rj(t). (3.48)

Similar to the dual-branch case,SROR,1 can be expressed as

SROR,1 = fZ1
(0)

∫ ∞

0

żfŻ1
(ż) dż (3.49)

wherefZ1
(z) and fŻ1

(z) denote the PDF ofZ1(t) and its time-derivativeŻ1(t),

respectively. Using the same logic as in dual branch cases, and again assuming that

the conditions required in [8], [14] are satisfied,Z1(t) andŻ1(t) are independent

random processes.

Now we evaluate the integral in (3.49). First, letfṘ1
(r) andfṘmax

(r) denote the

PDFs of the time-derivative ofR1(t) andmaxj∈{2,...,L}Rj(t), respectively. Due to

the i.i.d. assumption,

fṘ1
(r) =

1

2
fṘS1

(x) +
1

2
fṘ1D

(x) =
1√
2πσ̇

exp(− x2

2σ̇2
) (3.50)

whereσ̇ is defined in (3.29) or (3.30). Also,fṘmax
(r) is obtained as

fṘmax
(r) =

L∑

k=2

1

L− 1
fṘk

(r) =
1√
2πσ̇

exp(− x2

2σ̇2
). (3.51)

Note thatfṘ1
(r) andfṘmax

(r) are identical Gaussian PDFs with varianceσ̇2. Since

Ż1(t) is the difference of two i.i.d. Gaussian random variables,Ż1(t) is also a

Gaussian random variable with variance2σ̇2, and its PDF is given by

fŻ1
(r) =

1

2
√
πσ̇

exp(− x2

4σ̇2
). (3.52)

Therefore
∫ ∞

0

żfŻ1
(ż) dż =

σ̇√
π
. (3.53)

21



Now we turn our attention tofZ1
(0), which is given by

fZ1
(0) =

∫ ∞

0

fR1
(r)fRmax(r) dr (3.54)

wherefR1
(r) andfRmax(r) are the PDFs ofR1(t) andmaxj∈{2,...,L}Rj(t), respec-

tively. According to order statistics,fRmax(r) can be expressed in terms offR1
(r)

as

fRmax(r) = (L− 1)fR1
(r)[FR1

(r)]L−2. (3.55)

After some algebra manipulation, the final expression for the switching rate in Ri-

cian fading is given by

SROR = 4L(L− 1)
√
2πfm

∫ ∞

0

r2 exp
(
−r2 − 2K

)

· I20
(√

2Kr
)

Q2
1

(√
2K, r

)[

1−Q2
1(
√
2K, r)

]L−2

dr. (3.56)

Unfortunately, no closed-form solution is available for the integral in (3.56). Simi-

larly, the switching rate in Nakagami-m fading is given by

SROR =
√
πfm

16L(L− 1)

Γ2(m)
m2m− 1

2

∫ ∞

0

r4m−2 exp
(
−2mr2

)

· Γ
2 (m,mr2)

Γ2(m)

[

1− Γ2(m,mr2)

Γ2(m)

]L−2

dr. (3.57)

A closed-form solution for the integral in (3.57) is derivedin Appendix B. If m

is an integer, with the help of Appendix B.1, an exact expression for the switching

rate is found as

SROR =
√
πfm

8L(L− 1)

Γ2(m)

L−2∑

i=0

(
L− 2

i

)

(−1)i

·
∑

k0,k1,...,km−1

k0+...+km−1=2i+2

Γ(µ)

(4 + 2i)µ

(
2i+ 2

k0, k1, ..., km−1

)m−1∏

l=0

(
1

l!

)kl

(3.58a)

with
(

n

k0, k1, ..., km−1

)

=
n!

k0!k1! · · · km−1!
(3.58b)

µ =

m−1∑

i=0

iki + 2m− 0.5. (3.58c)
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Note that in Appendix B.1, we prove that this result reduces to our previous results

for the dual-branch cases whenL = 2.

If m is not an integer, a closed-form solution is also derived as

SROR =
√
πfm

8L(L− 1)

Γ2L(m)

[

Γ2(m)

L−2∑

i=0

cig(m,L− 2 + i)

−2Γ(m)
L−2∑

i=0

cig(m,L− 1 + i) +
L−2∑

i=0

cig(m,L+ i)

]

(3.59a)

with

ci =

(
L− 2

i

)

[2Γ(m)]L−2−i(−1)i. (3.59b)

g(m, s) =
(m)msΓ(2m+ sm− 1

2
)

ms[2m+ sm]2m+sm− 1

2

· FA






2m+ sm− 1

2
; 1, . . . , 1
︸ ︷︷ ︸

s terms

; 1 +m, . . . , 1 +m
︸ ︷︷ ︸

s terms

;
1

2 + s
, . . . ,

1

2 + s
︸ ︷︷ ︸

s terms







(3.59c)

whereFA(·; ·; ·; ·) is Lauricella’s hypergeometric function of several variables and

is given in Appendix B.2. As previously, whenL = 2, the expressions reduce to

the dual-branch cases. Also, as in the dual-branch cases, the switching rates grow

linearly with the maximum Doppler shiftfm.
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Chapter 4

Switching Rate of
Switch-and-Examine Relaying

Building on the results in previous chapters, we consider the switching rate of

switch-and-examine relaying in this chapter1. Specifically, we will derive the switch-

ing rate in closed-form.

For a switch-and-examine system withL relays, the overall switching rateSRswi

is

SRswi =
L∑

i=1

ρiSRswi,i (4.1)

whereρi denotes the steady-state probability thatTi is active, andSRswi,i is the

switching rate ofTi. For dual-branch (i.e.,L = 2) systems with i.n.i.d. channel

conditions,ρi can be derived with the help of [12, eq. (21)]. In particular,such

systems have six Markov states. State 1 represents the scenario whereT1 is active

andR1 experiences a negative-going crossing ofRth. State 2 represents the scenario

whereT1 is active andR1 is belowRth for two time samples. State 3 represents the

scenario whereT1 is active andR1 is greater thanRth for two time samples. States

4, 5, 6 are defined in a similar fashion as states 1, 2, 3 with allindices changed to 2.

The stationary probabilities,πj, j ∈ {1, ..., 6}, are given in [12, eq. (21)] as2

π1 =
(1− q1)q1(1− q2)q2

(q1 + q2)(1 + 2q1q2)− (q1 + q2)2 − 2q21q
2
2

(4.2a)

1The results in this chapter have been presented in part at theEuropean Wireless Conference
2011, held in Vienna, Austria [28] and in part in theIEEE Transactions on Communications [24].

2Note that there is a typographical error in the last term of [12, eq. (21)].
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π2 =
q21q2(1− q2)

(q1 + q2)(1 + 2q1q2)− (q1 + q2)2 − 2q21q
2
2

(4.2b)

π3 =
(1− q1)

2(1− q2)q2
(q1 + q2)(1 + 2q1q2)− (q1 + q2)2 − 2q21q

2
2

(4.2c)

π4 =
(1− q1)q1(1− q2)q2

(q1 + q2)(1 + 2q1q2)− (q1 + q2)2 − 2q21q
2
2

(4.2d)

π5 =
q1q

2
2(1− q1)

(q1 + q2)(1 + 2q1q2)− (q1 + q2)2 − 2q21q
2
2

(4.2e)

π6 =
q1(1− q1)(1− q2)

2

(q1 + q2)(1 + 2q1q2)− (q1 + q2)2 − 2q21q
2
2

(4.2f)

whereq1 = FR1
(Rth) andq2 = FR2

(Rth). SinceT1 is active in states 1, 2, 3, while

T2 is active in states 4, 5, 6,ρ1 andρ2 are given by

ρ1 =
3∑

i=1

πi =
(1− q1 + q21)(1− q2)q2

(q1 + q2)(1 + 2q1q2)− (q1 + q2)2 − 2q21q
2
2

(4.3)

ρ2 =

6∑

i=4

πi =
(1− q2 + q22)(1− q1)q1

(q1 + q2)(1 + 2q1q2)− (q1 + q2)2 − 2q21q
2
2

. (4.4)

Note that if the system experiences i.i.d. fading,q1 = q2 = q, and we have

ρ1 = ρ2 =
(1− q + q2)(1− q)q

(2q)(1 + 2q2)− (2q)2 − 2q4
=

1

2
. (4.5)

Due to symmetry, this result is expected.

If the system has more than two branches, the expressions forρi in the i.n.i.d.

case with an arbitrary number of relays will be very complicated. Therefore, we

only consider systems with i.i.d. fadings, whereρi =
1
L

due to symmetry.

For relayTi, its switching rateSRswi,i is the rate at which the channel condition

Ri will have a negative-going crossing of switching thresholdRth. According to

the theory of level-crossing rates [14, Ch. 2],SRswi,i, is given by

SRswi,i =

∫ 0

−∞
|r|fRi,Ṙi

(Rth, r) dr (4.6)

wherefRi,Ṙi
(a, b) is the joint PDF ofRi and its time-derivative,Ṙi. As in the

previous section, the fading process and the time-derivative process are considered
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independent, which guarantees the independence ofRi and Ṙi. Therefore (4.6)

reduces to

SRswi,i = fRi
(Rth)

∫ 0

−∞
|r|fṘi

(r) dr (4.7)

wherefRi
(r) is given in (3.3) or (3.5), depending on the fading model. Also,fṘi

(r)

was found in the previous section; after some straightforward manipulations, it can

be shown that
∫ 0

−∞
|r|fṘi

(r) dr = pi
σ̇Si√
2π

+ (1− pi)
σ̇iD√
2π

. (4.8)

We can now write the expression for the switching rate of dual-branch i.n.i.d

switch-and-stay relaying as

SRswi =

2∑

i=1

ρi√
2π

fRi
(Rth) [piσ̇Si + (1− pi)σ̇iD] (4.9)

whereρi is given in (4.3) and (4.4), andfRi
(r) is given in (3.3) or (3.5).

For multi-branch i.i.d. cases, the switching rate of networks withL relays is

SRswi =
σ̇√
2π

fRi
(Rth). (4.10)

Specifically, for systems experiencing i.i.d. Rician fadings with parametersK and

σ and maximum Doppler shiftfm, we have

SRswi = fm
2
√
πRth

σ
exp

(

−R2
th

2σ2
−K

)

I0

(√
2K

Rth

σ

)

Q1

(√
2K,

Rth

σ

)

(4.11)

and for systems experiencing i.i.d. Nakagami-m fadings with parametersm andΩ

and maximum Doppler shiftfm, we have

SRswi = fm
4
√
πR2m−1

th

Γ(m)

(m

Ω

)m− 1

2

exp

(

−mR2
th

Ω

)
Γ
(
m, m

Ω
R2

th

)

Γ(m)
. (4.12)

If Ki = 0 ormi = 1, Rician fading and Nakagami-m fading both reduce to Rayleigh

fading, and (4.11) and (4.12) will coincide with the expression given in [11, eq.

(42)]. Note that the switching rates in both fadings grow linearly with the maximum

Doppler shift. Moreover, they depend strongly on the switching threshold,Rth. It is

also pointed out in [6] that the choice ofRth affects the bit error rate (BER) strongly.

While a complete treatment of the exact relation between switching rate and BER is
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beyond the scope of this thesis, a numerical example is provided to illuminate this

relation.

Finally, note importantly that the switching rates do not depend onL. Also note

that in contrast the switching rate of multi-branch opportunistic relaying depends

on L (see (3.56) and (3.57)). It is shown in Chapter 5 that the switching rate of

opportunistic relaying increases withL. This is not surprising, since the more relays

a system has, the more frequently that the system will switchto utilize the best

relay. This finding means that as a system has more relays, it is more attractive to

use switch-and-examine relaying from a switching rate standpoint.
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Chapter 5

Numerical Examples and Discussion

In this chapter1, numerical examples are presented to illustrate the theoretical re-

sults. Specifically, we compare the switching rates of opportunistic relaying and

switch-and-examine relaying in i.i.d. fadings. Then, we use a simulation to inves-

tigate the relation between bit error rate and switching rate. Finally, the switching

rates in multi-branch systems and unbalanced systems (i.n.i.d. fading) are also in-

vestigated.

5.1 Switching Rate Comparison in i.i.d. Fading

Fig. 5.1 shows the switching rates normalized by the maximumDoppler shift,fm,

vs the threshold levelsRth of dual-branch opportunistic relaying and switch-and-

stay relaying in i.i.d. Rician fading for different values of K with σ = 1. Fig. 5.2

shows similar results for the case of Nakagami fading withΩ = 2. As expected, OR

switches more frequently than does switch-and-stay relaying. The former switches

2.07, 2.10, 2.03, 2.05 and2.01 times as frequently as the maximum rate of the latter

for K = 0, 1, 3, 7 and10, respectively in Rician fading. In Nakagami-m fading, the

switching rate of OR is1.74, 2.07, 2.03, 2.08 and2.00 times that of the maximum

switching rate of switch-and-examine relaying. Note that by changing the switching

threshold of switch-and-examine relaying, the ratio of thetwo switching rates can

1The results in this chapter have been presented in part at theIEEE Global Communications Con-
ference (GLOBECOM) 2011, held in Houston, Texas, USA [23], in part at the European Wireless
Conference 2011, held in Vienna, Austra [28] and in part in the IEEE Transactions on Communica-
tions [24].
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Figure 5.1. The normalized switching rates of opportunistic relaying and switch-and-
examine relaying in i.i.d. Rician fading channels for different values ofK with σ = 1.
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Figure 5.2. The normalized switching rates of opportunistic relaying and switch-and-
examine relaying in i.i.d. Nakagami-m fading channels for different values ofm with
Ω = 2.
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Figure 5.3. The normalized switching rates of opportunistic relaying in i.i.d. Rician fading
channels for different values ofσ.

be dramatically increased. Observe that asK andm become larger, the maximum

switching rates of switch-and-examine relaying become smaller with diminishing

increases. Also the switching rate curves compress and tendto an impulse. In the

case of Rician fading, this is because asK becomes larger, the line-of-sight com-

ponent of the fading process becomes more significant, and the channel amplitudes

fluctuate less. In the case of Nakagami fading, asm increases, the fading becomes

more shallow and again the channel amplitudes vary less.

5.2 Switching Rate of Opportunistic Relaying

Fig. 5.3 and Fig. 5.4 show the switching rates of OR in i.i.d. Rician and Nakagami-

m fadings, respectively. Note that the switching rate in Rician fading depends only

onK, while in Nakagami-m fading it only depends onm, as proved in the previous

section. In addition, whenK = 0 orm = 1, Rician or Nakagami-m fading reduces
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to Rayleigh fading, and the switching rates have the same value (π), in agreement

with the results presented in [11]. One could then compare the switching rate in

Rayleigh fading to that in Rician and Nakagami fading. Finally, as expected, as

K or m becomes larger, the switching rates become smaller with diminishing in-

creases. This is because asK andm become larger, the severity of the fading

process becomes less significant, and the channel amplitudes fluctuate less.

5.3 The Contrasting Behaviors in Rician and
Nakagami-m Fading of Switching Rate of Switch-
and-Examine Relaying

Comparing the results in Fig. 5.1 and with the results in Fig.5.2, one can ob-

serve that the switching rates of switch-and-examine relaying in Rician fading and

Nakagami-m fading behave quite differently. The shapes of the switching rate

curves in Rician fading shift toward higher threshold. Thisis due to the fact that

even though Rician random variables can sometimes approximate Nakagami-m ran-

dom variables [14], the PDF and CDF of the minimum of two Rician random vari-

ables is very different from that of the Nakagami-m random variables. The under-

lying reason is that the tails of the PDFs of these random variables are not similar.

See (4.7) which shows explicitly the dependence of the switching rate on the PDF

of Ri. Further insight into the issue of why the Nakagami-m distribution is not a

good approximation for the Rician distribution is obtainedgraphically from Fig. 5.5

and Fig. 5.6. The PDFs of the minimum of two Rician random variables and two

Nakagami-m random variables for different values ofν andm are plotted in Fig.

5.5. Note thatσ = 1 andΩ = 2 for all PDFs. One can see that gross differences

exist between the two distributions. To examine carefully the behaviors of the tails

of the two distributions, Fig. 5.6 shows the PDFs on a logarithmic scale. One can

see that the tails of the PDF in the Rician cases have the same slopes regardless of

the values ofνi. In contrast, the slopes of the tails of the PDFs in the Nakagami-m

cases vary with the values ofmi. This dramatically different behavior of the Rician

and Nakagami-m tails has been noted before in the context of receiver diversity
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systems.

5.4 Bit Error Rate and Switching Rate in Switch-and-
Examine Relaying

The choice of switching threshold (Rth) will affect both the switching rate and the

BER of the system. Since a complete treatment of the bit errorrate of switch-and-

examine relaying in Rician and Nakagami-m fading is beyond the scope of this

thesis, we use simulation to illustrate the interrelationship between switching rate,

BER andRth. Efficient procedures for generating Nakagami-m and Rician random

variates are found in [29] and [30]. In the simulation2, we assume the unfaded SNR

to be 0 db for Rician fading and 5 db for Nakagami-m fading. Binary phase-shift

2In this simulation, we assume channel conditions are independent in time. Future research could
investigate scenarios where channel conditions are correlated in time
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Figure 5.9. The normalized switching rates of i.i.d. multi-branch opportunistic relaying
and switch-and-examine relaying in Rician fading channelsfor different values ofK.

keying (BPSK) is used for modulation. Also no direct signal path between source

and destination is available. We further assume that the system has no receiver

outage, perfect channel estimation and perfect synchronization. For simplicity, only

the BER of DF is plotted. Fig. 5.7 and Fig. 5.8 show the switching rate and BER

vsRth in Rician fading and Nakagami-m fading for different values ofK andm.

Examination reveals that for allK andm, the value ofRth that yields small BER

simultaneously leads to relatively high switching rate. However, the value ofRth

that minimizes the BER does not yield the maximum switching rate. Depending on

the system’s requirements on BER and switching rate, one canuse the results and

methods of this thesis to chooseRth to meet the design objectives.
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Figure 5.10. The normalized switching rates of i.i.d. multi-branch opportunistic relaying
and switch-and-examine relaying in Nakagami-m fading channels for different values ofm.
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5.5 Switching Rate in Multi-Branch Systems

Next we investigate switching rate in multi-branch systems. Fig. 5.9 shows the nor-

malized switching rates of multi-branch opportunistic relaying and the maximum

switching rate of switch-and-examine relaying in i.i.d. Rician fading withσ = 2

for different values ofK. Fig. 5.10 shows similar results for i.i.d. Nakagami fad-

ing with Ω = 2 andm = 3. In both cases, the switching rate of OR increases

nonlinearly with the number of relays while that of switch-and-stay relaying is in-

dependent of the number of relays. In this regard, as the number of relays becomes

larger, switch-and-stay relaying becomes more and more attractive for practical im-

plementations where the switching rate is a concern.

5.6 Switching Rate in Unbalanced Systems

We now consider switching rates in dual-branch i.n.i.d. fadings. For simplicity,

we assume every link has the same maximum Doppler shift,fm. Furthermore,

we assume thatRSi andRiD have the same distributions whileRS1 andRS2 have

different distributions. Specifically, for Rician fading,let σS1 = σ1D = 1, σS2 =

σ2D = 2, KS1 = K1D = K andKS2 = K2D = 1.5K. For Nakagami-m fading, let

ΩS1 = Ω1D = 2, ΩS2 = Ω2D = 6, mS1 = m1D = m andmS2 = m2D = 2m. The

switching rates in Rician and Nakagami-m fading with these parameters are plotted

in Fig. 5.11 and Fig. 5.12 for different values ofK andm. As seen in the figure,

the switching rate of opportunistic relaying is comparableto that of switch-and-

examine relaying. The reason is that if the channels are highly unbalanced, both

systems will likely dwell on the superior node. Similar behavior has been noted

in [8] for switching rates in conventional selection combining and switch-and-stay

combining. It is also worth noticing that asK or m becomes larger, the maximum

switching rates in unbalanced scenarios reduce faster compared to those in i.i.d.

cases.
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Figure 5.11. The normalized switching rates of opportunistic relaying and switch-and-
examine relaying in unbalanced Rician fading channels for different values ofK. The
details of the specific configuration are given in Section 5.
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Figure 5.12. The normalized switching rates of opportunistic relaying and switch-and-
examine relaying in unbalanced Nakagami-m fading channels for different values ofm.
The details of the specific configuration are given in Section5.
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Chapter 6

Conclusion and Suggestions for
Future Work

In this chapter, we present the conclusion and provide some future research direc-

tions.

6.1 Conclusions

In this thesis, we investigated the switching rates, that is, how frequently the sys-

tem switches from one relay to another, of opportunistic relaying and switch-and-

examine relaying in Rician and Nakagami-m fading.

• We derived the switching rate for opportunistic relaying inChapter 3. Specif-

ically, under Rician fading, the switching rate for opportunistic relaying was

expressed as a single integral, which can easily be evaluated numerically.

In addition, we derived closed-form solutions for the switching rate under

Nakagami-m fading for both dual-branch and multi-branch relaying. Such

solutions can further facilitate the evaluation of switching rate.

• In Chapter 4, building on the previous results, we derived the switching rate

for switch-and-examine relaying systems. Exact closed-form solutions are

available for Rician and Nakagami-m fading. We find that the switching rate

of multi-branch switch-and-examine relaying systems doesnot depend on

the number of relays,L. This fact can be used to bring about significant

advantage compared to opportunistic relaying in multi-branch settings.
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• We presented numerical results in Chapter 5. The results foropportunis-

tic relaying and switch-and-examine relaying were compared. The tradeoff

between switching rate and bit error rate was also explored.We also demon-

strated the effect of different parameters on the switchingrates.

6.2 Suggestions for Future Research Directions

Based on this thesis, some possible future research directions are given below.

• In the system model of this thesis, only one relay is selectedat a given time.

One can consider systems where more than one relay is selected at a given

time, for example relay systems similar to those in [7].

• One could derive the switching rates for opportunistic relaying and switch-

and-examine relaying under other fading models by applyingthe methodol-

ogy used in this thesis. For example, one could consider fading models in

non-homogeneous scattering environment, such asκ-µ fading andη-µ fad-

ing [31].

• In this thesis, it is assumed that the fading process and its time-derivative

process are independent. It could be interesting to explorethe switching rate

in the case where they are correlated.

• In this thesis, the tradeoff between switching rate and bit error rate is demon-

strated in the numerical results. For practical implementation, one may need

a better understanding of this tradeoff. Thus, it will be interesting to investi-

gate quantitatively how the the switching threshold impacts switching rate, bit

error rate and outage probability and how such impact translates to practical

implementation.

• One could investigate more thoroughly the performance of switch-and-examine

relaying systems in that its simplicity and low switching rate make it a suit-

able candidate for practical implementation.
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• It would be highly desirable to propose and analyze some hybrid protocols

that take advantage the low bit error rate of opportunistic relaying and low

switching rate of switch-and-examine relaying. Such protocols, if carefully

designed and calibrated, could be used widely in the telecommunication in-

dustry.

• When evaluating conventional diversity systems and cooperative communica-

tion systems, researchers usually focus on bit error rate and outage probability

performance without considering the detrimental effect ofswitching rate in

such systems. In order to address a host of practical implementation issues,

researchers must consider switching rate. It would be interesting to revisit

the overall performance of selection combining and opportunistic relaying in

realistic settings while considering switching rate.
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Appendix A

Dual-Branch System

A.1 Derivation of fZ(0) for Integer m

In this appendix, we derive the closed-form solution forfZ(0) in Nakagami-m fad-

ing with integerm. For notational simplicity, we denoteα = m
Ω

throughout this

appendix. Ifm is an integer, by using [16, eq.(8.352.2)] one has

Γ(m, r) = Γ(m) exp(−r)
m−1∑

k=0

rk

k!
(A.1)

and we can write (3.9) as

fRi
(r) =

4αm

Γ(m)
exp(−2αr2)

m−1∑

k=0

αk r
2(k+m)−1

k!
. (A.2)

Therefore, (3.14) can be written as

fZ(0) =
16α2m

Γ2(m)

∫ ∞

0

exp(−4αr2)

m−1∑

i=0

αir
2(i+m)−1

i!

m−1∑

j=0

αj r
2(j+m)−1

j!
dr (A.3)

=
16α2m

Γ2(m)

m−1∑

i=0

m−1∑

j=0

αi+j

i!j!

∫ ∞

0

exp(−4αr2)r2(i+j+2m)−2 dr. (A.4)

The integral in (A.4) is simply a combination of exponentialfunctions and power

functions, its closed-form solution is readily available in [16, eq. (3.381.4)]. After

applying [16, eq. (3.381.4)] and some manipulation, we obtain the closed-form

solution forfZ(0)

fZ(0) =

√
m
Ω

42m−2Γ2(m)

m−1∑

i=0

m−1∑

j=0

Γ(i+ j + 2m− 0.5)

i!j!4i+j
. (A.5)
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One can obtainfZ(0) in i.n.i.d. cases by giving appropriate indices toα, m andΩ

and following the procedures above.

A.2 Derivation of fZ(0) for Non-Integer m

In this appendix, we derive the closed-form solution forfZ(0) in Nakagami-m fad-

ing with non-integerm. By usingΓ(a, b) = Γ(a) − γ(a, b) and the substitution

x = r2, fZ(0) can be expressed as

fZ(0) =
16α2m

Γ4(m)

∫ ∞

0

x2m− 3

2 exp (−2αx) [Γ(m)− γ (m,αx)]2 dx. (A.6)

LettingC = 16α2m

Γ4(m)
and expanding[Γ(m)− γ (m,αx)]2, we have

fZ(0) =CΓ2(m)

∫ ∞

0

x2m− 3

2 exp (−2αx) dx

− 2CΓ(m)

∫ ∞

0

x2m− 3

2 exp (−2αx) γ(m,αx) dx

+ C

∫ ∞

0

x2m− 3

2 exp (−2αx) γ2(m,αx) dx. (A.7)

The first two integrals in (A.7) can be evaluated using [16, eq. (3.381.4)] and [16,

eq. (6.455.2)], while the last integral can be evaluated with the help of [32, eq.

(10)]. Now we have the closed-form forfZ(0),

fZ(0) = C
α2mΓ(4m− 1

2
)

m2(4α)4m− 1

2

F2(4m− 1

2
, 1, 1, 1 +m, 1 +m;

1

4
,
1

4
)

+ CΓ2(m)
Γ(2m− 1

2
)

(2α)2m− 1

2

− 2CΓ(m)
αmΓ(3m− 1

2
)

m(3α)3m− 1

2

2F1(1, 3m− 1

2
;m+ 1;

1

3
)

(A.8)

whereF2(α, β, β
′, γ, γ′; x, y) is the hypergeometric function of two variables de-

fined in [16, eq. (9.180.2)] as

F2(α, β, β
′,γ, γ′; x, y) =

∞∑

m=0

∞∑

n=0

(α)m+n(β)m(β
′)n

(γ)m(γ′)nm!n!
xmyn (A.9)

and the notation(a)n = Γ(a + n)/Γ(a) denotes the Pochhammer symbol defined

at [16, xliii]. It should be pointed out that despite its seemingly simplicity, this

closed-form solution may not be computationally efficient since (A.9) involves two
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infinite summations and is not implemented in popular mathematics packages such

as MATLAB and Mathematica. In addition, one can obtainfZ(0) in i.n.i.d. cases

by giving appropriate indices toα,m,Ω andC and following the procedures above.
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Appendix B

Multi-Branch System

B.1 Derivation of the Integral in (3.57) for Integer m

In this appendix, we derive the closed-form solution for theintegral in (3.57) (de-

noted asI) for multi-branch systems experiencing Nakagami-m fading with integer

m. If we use the substitutionx = r2 and (A.1),I can be written as

I =
1

2

∫ ∞

0

x2m− 3

2 exp (−4mx)

(
m−1∑

l=0

ml

l!
xl

)2

·



1− exp (−2mx)

(
m−1∑

l=0

ml

l!
xl

)2




L−2

dx. (B.1)

By employing binomial and multinomial theorems,I can be converted into the

summation of a series of simple integrals as follows,

I =
1

2

L−2∑

i=0

(
L− 2

i

)

(−1)i
∫ ∞

0

x2m− 3

2 exp [−(4 + 2i)mx]

[
m−1∑

l=0

ml

l!
xl

]2i+2

dx

(B.2)

=
1

2

L−2∑

i=0

(
L− 2

i

)

(−1)i
∫ ∞

0

x2m− 3

2 exp [−(4 + 2i)mx]

·
∑

k0,k1,...,km−1

k0+...+km−1=2i+2

(
2i+ 2

k0, k1, ..., km−1

)m−1∏

l=0

[
ml

l!
xl

]kl

dx (B.3)

=
1

2

L−2∑

i=0

(
L− 2

i

)

(−1)i
∑

k0,k1,...,km−1

k0+...+km−1=2i+2

(
2i+ 2

k0, k1, ..., km−1

)m−1∏

l=0

(
ml

l!

)kl
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·
∫ ∞

0

exp [−(4 + 2i)mx] xµ−1 dx (B.4a)

where we use
(

n

k0, k1, ..., km−1

)

=
n!

k0!k1! · · · km−1!
(B.4b)

µ =

m−1∑

i=0

iki + 2m− 0.5. (B.4c)

In (B.2), we use the well known binomial theorem,(1 − a)n =
∑n

i=0

(
n

i

)
(−1)iai.

In (B.3), we use the multinomial theorem, namely

(x0 + x1 + ... + xm−1)
n =

∑

k0,k1,...,km−1

k0+...+km−1=n

(
n

k0, k1, ..., km−1

)m−1∏

l=0

xkl
l . (B.5)

In (B.4a), we simply take the integral inside the summation.Now the integral in

(B.4a) is simply a combination of exponentials and powers and can be solved by

using [16, eq. (3.381.4)]. After some manipulation, we obtain the closed-form

solution forI.

I =
m0.5−2m

2

L−2∑

i=0

(
L− 2

i

)

(−1)i
∑

k0,k1,...,km−1

k0+...+km−1=2i+2

Γ(µ)

(4 + 2i)µ

·
(

2i+ 2

k0, k1, ..., km−1

)m−1∏

l=0

(
1

l!

)kl

. (B.6)

Note that ifL = 2, the switching rate will reduce to that of dual-branch cases. The

proof is the following. SinceL = 2, (B.6) reduces to,

I =
m0.5−2m

2

∑

k0,k1,...,km−1

k0+...+km−1=2

Γ(µ)

4µ

(
2

k0, k1, ..., km−1

)m−1∏

l=0

(
1

l!

)kl

. (B.7)

Sinceki can only be integer, there are two different scenarios, either ki = 2, (0 ≤
i ≤ m− 1) or ki = 1, kj = 1, (i 6= j, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ m− 1). Therefore,

I becomes

I =
m0.5−2m

42m

[
m−1∑

i=0

Γ(2i+ 2m− 0.5)

(i!)242i
+

m−1∑

i=0

m−1∑

j=0,j 6=i

Γ(i+ j + 2m− 0.5)

i!j!4i+j

]

(B.8)

=
m0.5−2m

42m

m−1∑

i=0

m−1∑

j=0

Γ(i+ j + 2m− 0.5)

i!j!4i+j
. (B.9)
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WhenL = 2, the constant before the integral in (3.57) is32
√
πfm

Γ2(m)
m2m− 1

2 . The

switching rate thus becomes identical to (3.43)

SROR =
2fm

√
π

42m−2Γ2(m)

m−1∑

i=0

m−1∑

j=0

Γ(i+ j + 2m− 0.5)

i!j!4i+j
. (B.10)

B.2 Derivation of the Integral in (3.57) for Non-Integer
m

If m is not an integer, the substitutionx = r2 andΓ(a, b) = Γ(a) − γ(a, b) are

made. After some manipulation,I becomes

I =
1

2Γ2L−2(m)

∫ ∞

0

x2m− 3

2 exp (−2mx) [Γ(m)− γ(m,mx)]2

· γL−2(m,mx) [2Γ(m)− γ(m,mx)]L−2 dx. (B.11)

LetP = 1
2Γ2L−2(m)

andf(x) = x2m− 3

2 exp (−2mx). Using the binomial theorem to

expand[2Γ(m)− γ(m,mx)]L−2, the integral becomes

I =P

∫ ∞

0

f(x)[Γ2(m)− 2Γ(m)γ(m,mx) + γ2(m,mx)]
L−2∑

i=0

ciγ
L−2+i(m,mx) dx

(B.12a)

where

ci =

(
L− 2

i

)

[2Γ(m)]L−2−i(−1)i. (B.12b)

Eq. (B.12a) can be reorganized as

I = PΓ2(m)
L−2∑

i=0

ci

∫ ∞

0

f(x)γL−2+i(m,mx) dx

− 2PΓ(m)

L−2∑

i=0

ci

∫ ∞

0

f(x)γL−1+i(m,mx) dx

+ P

L−2∑

i=0

ci

∫ ∞

0

f(x)γL+i(m,mx) dx. (B.13)
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With the help of [32, eq. (10)], we define a new functiong(m, s) as

g(m, s) =

∫ ∞

0

f(x)γs(m,mx) dx =
(m)msΓ(2m+ sm− 1

2
)

ms[2m+ sm]2m+sm− 1

2

· FA






2m+ sm− 1

2
; 1, . . . , 1
︸ ︷︷ ︸

s terms

; 1 +m, . . . , 1 +m
︸ ︷︷ ︸

s terms

;
1

2 + s
, . . . ,

1

2 + s
︸ ︷︷ ︸

s terms







(B.14)

whereFA(·; ·; ·; ·) is Lauricella’s hypergeometric function of several variables and

is defined as [16, eq. (9.19)]

FA(α; β1, . . . , βs; γ1, . . . , γs; z1, . . . , zs; )

=
∞∑

m1=0

· · ·
∞∑

ms=0

(α)m1+···+ms
(β1)m1

. . . (βs)ms

(γ1)m1
. . . (γs)ms

m1! . . .ms!
zm1

1 . . . zms

s . (B.15)

Therefore, by substituting (B.14) into (B.13), one can obtain a closed-form expres-

sion forI as

I = PΓ2(m)
L−2∑

i=0

cig(m,L− 2 + i)− 2PΓ(m)
L−2∑

i=0

cig(m,L− 1 + i)

+ P

L−2∑

i=0

cig(m,L+ i) (B.16)

with ci andg(m, s) defined in (B.12b) and (B.14), respectively. Note that the com-

putational complexity of (B.16) may well exceed that of the single integral in (3.57)

since it involves multiple infinite summations, especiallywhenL is large. In addi-

tion, the Lauricella’s hypergeometric function is not implemented in popular math-

ematics packages such as MATLAB and Mathematica. WhenL = 2, the expression

for the switching rate will reduce to the expression for the dual-branch case in (A.8).
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