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C hapter 1 - Introduction

M athematics is the science of patterns. A class of two dimensional visual patterns 
known as tilings has been an im portant element of human existence throughout his
tory. In recent years, the mathem atical study of tilings has been promoted from a 
whimsical curiosity to  a serious inquiry. This transform ation can be largely attributed 
to the successful adoption of tiling models in crystallography and materials science, 
and the discovery of well ordered aperiodic structures in m athem atics and in nature. 
One of the most intriguing aperiodic tilings is the Conway-Radin pinwheel tiling, a 
structure exhibiting infinitely many orientations amongst its 1 : 2 : \/5  right triangular 
tiles.

This thesis is a m athem atical examination of the pinwheel tiling. We begin by 
providing a brief introduction to tilings in general to provide some context for the 
ensuing discussion. For aeons, human beings have been covering their walls and floors 
with ceramic and stone tiles to protect and decorate them. The ultim ate decorative 
tiling is a mosaic, a picture created from hundreds of stone chips of many sizes, 
shapes, and colours. On the other hand, a perfectly functional floor tiling might be 
composed of large uniform square flagstones arranged in a repetitive pattern. Tilings 
of varying levels of complexity play an im portant role in art and architecture. We 
find a similar range of tilings in nature: the simple periodicity found in a honeycomb 
or fish scales contrasts with the disorder present in sea foam or cracked mudflats. 
These examples dem onstrate the variety and ubiquitousness of tilings.

The m athem atical definition of tiling is formulated to correspond to the physical 
patterns bearing the same name. A tiling is a collection of compact subsets of R 2 

th a t is both  a packing and a covering; th a t is, the interiors of any two tiles do not 
intersect, and the union of all tiles is the plane. All m athem atical tilings are assembled 
according to  some kinds of rules. Some of the most significant techniques used to 
create m athem atical tilings are the substitution method, the cut-and-project method, 
and the matching rule method. Historically, most m athem atical tilings and physical 
models involving tilings were constructed according to m atching rules. Basically put, 
this method fits together tiles from finitely many different congruency classes (called 
prototiles) according to a set of matching rules to construct a tiling. Clearly, matching 
rule tilings tend to be well ordered. Until recently, the m ajority of well ordered tilings 
known were periodic.

The advent of group theory revolutionized the m athem atics of tilings. Focus 
shifted from the shapes and configurations of tiles to the rich symmetries present 
in the periodic patterns. This movement culminated in the classification of the 17
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planar sym m etry groups -  as well as the 230 three dimensional space groups -  in 
the late nineteenth century [6 ]. An im portant part of this classification theorem is 
the Crystallographic Restriction which states th a t the only rotational symmetries 
compatible w ith periodicity have order 2 ,3 ,4 , or 6 . Since the long range order of any 
periodic tiling is completely determined by its symmetry group, the study of periodic 
tilings was reduced to the study of local configurations. W hile a few dedicated souls 
toiled on creating new tilings and proving results concerning local configurations, it 
would take the discovery of a new kind of long range order to revive the study of 
tilings to more than  a hobby.

In the early tw entieth century, Harald Bohr developed the theory of almost peri
odic functions, thereby introducing the concept of aperiodic order [15]. However, it 
was 1961 when Hao Wang finally posed the question “Is it possible to have a finite 
set of prototiles th a t only tile aperiodically?” [13]. Wang’s motivation came from 
decidability problems in m athem atical logic, and he conjectured th a t the answer to 
his question was “no.” However, Wang’s student Robert Berger proved the existence 
of a set of 20,426 prototiles th a t cannot tile periodically [8 ]. W hile several other 
aperiodic examples w ith significantly fewer prototiles were discovered shortly there
after, the most celebrated aperiodic tiling was conceived in 1974: the Penrose kite 
and dart tiling. This tiling consists of only two prototiles th a t must tile aperiodically 
[8 ]. It remains an open question whether an aperiodic tiling of the plane by a single 
prototile exists.

In 1984, the first physical substance demonstrating long-range aperiodic order was 
discovered by Shechtman et al. [17]. The material in question, an alloy of aluminum 
and manganese, was bestowed with the epithet “quasicrystal” due to its crystal
like (that is, pure point) diffraction pattern  th a t simultaneously revealed icosahedral 
symmetries proven to be incompatible with a periodic lattice structure. This m ate
rial displayed some physical characteristics like those of periodic crystals and others 
similar to those of amorphous glasses. By chance, the diffraction pattern  of this qua
sicrystal resembled the diffraction of the Penrose tiling. This fortuitous coincidence 
brought new life to the m athem atical study of tilings.

The past two decades have witnessed the development of a remarkable collection 
of m athem atical tools designed to help explain this new form of order: a new theory of 
diffraction based on measures, the application of dynamical systems, a wealth of new 
ideas concerning substitution systems, the introduction of non-commutative geometry 
into crystallography, and so on. However, despite a lack of overall translational 
symmetry, almost all of this theory depends on the premise th a t the underlying

2
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symmetries are fundamentally translational in nature. In particular, this implies 
tha t the orientational order observed must be finite. It is somewhat astonishing tha t 
in physical quasicrystals and objects like Penrose tilings alike, there are only finitely 
many orientations of local clusters of atoms or tiles.

Ten years after the discovery of quasicrystals, the tiling research explosion resulted 
in the discovery of a new aperiodic tiling. Unlike some previous aperiodic tilings 
th a t dem onstrated forbidden rotations of finite order in their orientational symmetry, 
the Conway-Radin pinwheel tiling was constructed specifically to possess infinitely 
many tile orientations [13]. In his original paper, Charles Radin formulated the 
matching rules for the pinwheel tiling. Assuming th a t we are perm itted to reorient 
prototiles, approximately 1 0 0 , 0 0 0  are required to construct the pinwheel (as estimated 
by Penrose in [10]; no exact computation could be found in the literature). There is 
a much easier way to arrive at the pinwheel tiling than by using R adin’s matching 
rules, and th a t is by considering it as a substitution tiling.

1.1 S u b stitu tio n  T ilin gs

dryi ryi ryi r -U  a ryi ryi r  dryi ryi ryi ryifi a ryi ryi r  dry* ryi ryi ryili ri ryi ryi r; Lr  *u d rrT j d ryvj l j  riii dr. du dryiu dryiu uu riu d r  du d ryi u dryiu l*u riu d r  du p r.d ryi ryi u ,-i r. tru ri r. du .t r  dryi ryiu p r. yu p r  d-j p r, d  ryi ryiu ,-i r. l-u n r. d-j p 
•u du dryiu yu du cu  du iru d"j dryiu iHj du ljj  du ljj  du i; y v j l-u d"j iru du i_Jj  yi ryi r, dryi ryi ryi ryi ryi ryi ryi ryiu.-i ryi ryi ryi ryi ryi ryi r, dryi ryi ryi ryi ryi ryi 
u drLdu d ryiu d  ryiu dryiu dryvj dujiu  dryiu dryiu d rLdu  d  ryiu dryiu dryiu 
r.d-j ljj  du Lr y ih  l jj  du ifryih ljj  &u c3  53 £tQ K i £rr  Su ljj  du  J ry f j  ljj  du dr. d-j _ r  _ r  _ _ j y  _ r  _ „  r  yij ryi ryi r. ljj  ,-i ryi ryi r. du a ryi ryi r; dryi ryi ryi ryi1 

*u l*u riu dh du dryiu dryiu l u  rill dr. du  irj rill d r  du l  J  iiu d r  du dryiu dryiu 
a r  ir j  p  r. du n r, dryi ryia p r, u-u p r. du a  r  l-u p r. du p r.irj p r  du  p r  dryi ryiu p -u du l-*u du lHj du dryiU L-ti du lHj du ljj  du l-u du  ljj  du iHj d u ljj  du dryi U ljj  

yi ryi ryi ryi ryi ryi ryiu p ryi ryi ryi ryi ryi ryi ryi ryi ryi ryi ryi ryi ryi ryi r  dryi ryi u dryiu dryiu dryiu u-u ,-iu tT-yiu dryiu ur •yiu dryiu dryiu dryiu dr. du  dryiu yi ryi up r.dryi ryi up r.uu p  ryvj p r. d  ryi ryiu p r, dryi ryi up r.d  ryi r. du  p r. dryi 'ryiu tru du dryili ljj  du L-upu ljj  du d-yili ljj  du dryiu ljj  du dryly l.jj  du  drr

(a) (b)

Figure 1: The chair substitution and chair tiling

The substitution m ethod for constructing a tiling is basically an algorithm for 
decomposing an inflated version of each prototile into tiles. To create a tiling, one 
starts w ith one prototile and applies the inflation-decomposition algorithm iteratively. 
Figure 1(a) illustrates such an algorithm while (b) is a patch of the tiling created using 
th a t algorithm; this aperiodic tiling is usually called the chair tiling. In this tiling, 
there are four types of prototile up to translation: the ‘chair’ in its four orientations.

3
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There is an extensive canon of literature on substitution systems available th a t applies 
to substitution tilings.

We are only interested in fixed point substitutions; this condition ensures th a t the 
limit of our successive iterates exists if we start with the correct prototile, and that 
the resulting tiling of space is invariant under the substitution. Generally, we should 
start with a prototile th a t contains a copy of itself in its interior after finitely many 
iterations.

One cannot m ention substitution tilings without referring to Chaim Goodman- 
Strauss’ paper relating substitution tilings and matching rules [7].

1.2 T h e P in w h ee l T ilin g  as a S u b stitu tio n

The pinwheel tiling was first conceived as a substitution tiling by John H. Conway. 
Charles Radin later developed the matching rules th a t determine the same structure 
[13]. It is an aperiodic tiling of the plane by 1 : 2 : \/5  right triangles and may be 
constructed by iterating the following substitution rule:

inflate
and

subdivide reorient

Figure 2: The pinwheel substitution

As you can see, this substitution consists of the standard inflation and subdivision 
but also requires a second step: a rotation th a t aligns the new central triangle with 
the original tile. This extra step is necessary as we require the pinwheel substitution 
to have a fixed point. The rotation step turns out to be indicative of the unique 
features of the pinwheel tiling th a t make it an exceptional object, as will become 
apparent in the subsequent chapters.

4
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1.3 O u tlin e

In Chapter 2, we provide a mathem atical introduction to the pinwheel tiling and 
lay the foundation for the rest of the thesis. This primarily involves establishing an 
equivalence between tiles and control points th a t will facilitate our computations. 
We also show th a t the pinwheel tiles occur in infinitely many orientations within the 
tiling. A new theorem demonstrating th a t the subsets of the pinwheel tiling defined 
by chirality are m utually locally derivable is presented. Chapter 3 is dedicated to 
showing th a t this sequence of orientations is uniformly distributed, a result th a t was 
previously established by Radin. All subsequent calculations rely heavily on this 
result.

The remainder of the thesis focuses on calculating the diffraction of the pinwheel 
tiling. Diffraction is a fundamental and widely used technique utilized by scientists 
and m athem aticians to probe the order properties of a structure. The diffraction of 
a structure, by definition, is the Fourier transform of its autocorrelation. Chapter 
4 calculates the autocorrelation measure of the pinwheel tiling, which is interesting 
in its own right as well as being an intermediary in the process of obtaining the 
diffraction. Chapter 5 summarizes what we know about the diffraction, and indicates 
some possible avenues of continued inquiry. While we do not completely solve the 
mystery of the pinwheel in the following pages, we do make some significant progress 
in tha t direction and provide a solid staging point for those who follow.

5
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Figure 3: A patch of pinwheel, seven iterations
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C hapter 2 - P inw heel Prelim inaries

2.1 C on ven tion s and D efin ition s

When dealing w ith an object as complicated as the pinwheel tiling, it is essential 
to be extremely careful and explicit in the setup phase of the investigation. We 
initiate this process w ith an im portant convention: for convenience of calculation, 
we will consider all points as elements of the complex plane C for the remainder of 
the thesis. However, at all times, we must bear in mind th a t the pinwheel tiling is 
actually an object residing in M2.

D efin itio n  2.1 By a p in w h ee l tile , we mean a 2 : 4 :  2 \/5  right triangle (we double 
the lengths o f the sides fo r  convenience in coordinatization). We will use the terms 
sh o r t leg , lo n g  leg , a n d  h y p o te n u se  in the obvious manner to refer to the various 
sides o f the triangle.

D efin itio n  2 . 2  A n object is said to be ch ira l i f  its reflected image cannot be exactly 
superimposed over the original. Equivalently, an object is chiral i f  it possesses no 
planes of mirror symmetry.

Note th a t the 2 : 4 :  2 \/5  right triangle is chiral.

D e fin itio n  2.3 Let To be the 2 : 4 :  2^/5 right triangle with vertices — I — i, 1 — i, and 
— 1 +  3i. We will say that a triangle congruent to To has p o s itiv e  c h ira lity  (or is 
a white triangle, or is type 1 fo r matrix indexing purposes) i f  it can be superimposed 
on To by a Euclidean motion (a series o f translations and rotations, conceptually 
equivalent to freely sliding the triangle around in the plane). Any triangle congruent 
to To that cannot be superimposed over To by a Euclidean motion is said to have 
n e g a tiv e  c h ira lity  (or is a gray triangle, or is type 2  fo r m atrix indexing purposes).

D efin itio n  2 .4  The p in w h ee l t i l in g  is obtained by iteratively applying the substitu
tion seen in Figure 2 to To infinitely many times. We shall denote the pinwheel tiling 
by T. r n denotes the set o f 5n tiles obtained by iterating the substitution n times; we 
shall refer to all such sets of tiles as i te r a te s  of the pinwheel tiling. <9r„ will be used 
to refer to the triangular outer perimeter o f each iterate.

We will arrive at a coordinatized version of the pinwheel substitution later. At tha t 
time, it will be clear why we begin with this specific positive chiral triangle.

7
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D efin itio n  2.5 U(l)  := { x  | x  E C, |x| =  1} is the group o f rotations around 0 in 
the plane.

D efin itio n  2 .6  u) :=  — a rc ta n ( |) .  9^ :=  £ U( 1) is the rotation through u . In
general, 9a em is the rotation through the angle a.

D efin itio n  2 .7  Let 7  be any tile in T. Let x  be the vertex at the right angle of 7  and 
let y be the other terminal vertex of the short leg. Let 9 be I (y — x ) . We define the 
o r ie n ta t io n  o f 7  to be 9 £ U( 1).

2.2 T ile  - C ontrol P o in t E quivalence

Generally speaking, it is more convenient to work with points than  with triangles. 
Rather than  using the vertices of the tiles, we instead follow R adin’s work to a more 
efficient set of distinguished points.

P ro p o s it io n  2 .8 The point 0 +  Di has the same relative position within each iterate 
of the pinwheel tiling.

Proof: Suppose th a t the point x  +  iy  has the same relative position within each 
iterate of the pinwheel tiling. Because the rotation component of the substitution 
must occur about this point, we will henceforth call it the h u b  of the pinwheel tiling. 
The location of the hub is found using the fact th a t <9r0 and cdG are coordinatized 
similar triangles.

From the similar triangles in Figure 4, we get the following system of equations:

5((x +  I ) 2 + (y + I )2) =  (x + 3) 2 +  {y +  l ) 2

5((x + l ) 2 + ( y - 3 ) 2) = (x — l ) 2 + (y — 7) 2

5 ( ( x - l ) 2 +  (y +  l ) 2) =  (x -  l ) 2 +  (y + 3) 2 ,

which simplifies to

4x2 +  Ay2 — — 4x — 8 y 

4x2 +  4 y1 =  —12a: +  16 y 
4x2 +  4y2 =  8 a; — 4y .

Solving this system gives the desired result. □
Note th a t we coordinatized To with the intent of making the hub and the origin 
coincide.

8
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Figure 4: Locating the hub

D e fin itio n  2 .9  Let 7  be any tile in T. The c o n tro l p o in t of 7  is a triple (x ,6a,x)  
consisting o f the location of the analogue of hub inside 7 , the orientation of'y, and the 
chirality o f 7  respectively. The set o f all control points in T is denoted by A and the 
set of the control points o f T n is An. By  A+ , A-  we mean the subsets o f A comprised 
of the control points o f positive and negative chirality, respectively.

For convenience, we will frequently relax this definition slightly and refer to the 
location component alone as a control point. However, we must always remember tha t 
control points m ust consist of three pieces of information for the following essential 
result to hold true:

P ro p o s it io n  2 .10 T and A are mutually locally derivable.

Proof: This is equivalent to saying that, given any pinwheel tile we can find its control 
point and given any control point (including orientation and chirality), we can find 
the locations of the vertices of its associated tile using only local information. Let 
x , y , z  £ C be the vertices at the right, large, and small angles of a pinwheel tile 
respectively. Then the location of the control point is x+2f +z; the orientation is 
\ ( y  — x ), and the chirality is obvious by inspection. Conversely, suppose a control

9
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point is given by (w,6a ,x)-  Then the vertices of its associated tile are given by 
w  +  (da + Oa_xz),  w  +  (9a+„ +  Oa-xji), and w +  (6a+n +  39a+^ ) . □
Thanks to this result, we will now work almost exclusively with the control points.

Our next goal is to  use the equivalence between T and A to translate our geometric 
representation of the pinwheel substitution into a formula.

D e fin itio n  2 . 1 1  The E u c lid e a n  M o tio n  G ro u p  E { 2) =  U(l)  x R 2 is the group of 
all planar transformations that consist o f translations and rotations. We will consider 
the following representation:

So we can consider each element of A to be a pair consisting of an element of E ( 2 ) and 
±1, representing chirality. We can now write a formula for the pinwheel substitution 
on the control points.

D e fin itio n  2 .12 The p in w h ee l s u b s t i tu t io n  is given by:

a+uj-xu>+

CI+W—XU+7T

a+cj—xw

1

4$a-|-a;—xu+*f- d~ ^  
1

V

a+u;—xw+7r a+uj—xw+7T

a + u —x ^ ot+cj—xu>

Figure 5 shows how we arrived at this substitution:

10
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Figure 5: Pinwheel substitution on tiles and points

By superimposing the control points on our geometric interpretation of the sub
stitution, it is easy to see how we derived the substitution formula. We have broken 
the substitution into two steps: an inflation and subdivision step, and a rotation step. 
Clearly, the subdivision depends on the chirality of the original triangle. However, 
and this is a crucial point, the rotation step applies 9u to every point independent 
of its chirality. The reason for the rotation step is to  ensure the existence of a fixed 
point by correcting for the rotating effect implicit in the subdivision, and hence the 
direction of the corrective rotation depends entirely on the chirality of the starting 
point Aq.

11
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By infinitely iterating the above substitution on the set starting with the single 
element

* • = ( « :
we generate A. Note th a t we arbitrarily started with a tile of positive chirality; 
we could just as easily have used a negative chirality tile. If we repeated the above 
arguments for this case, we would obtain a tiling th a t is a mirror image of the pinwheel 
tiling. This process would also involve the creation of a mirror substitution. We will 
use the iterates of this mirror tiling in Chapter 4.

D e fin itio n  2 .13 Vn :=  An is the nth iterate o f the mirror pinwheel tiling.

2.3 T w o C h ira lities , In fin ite O rien tation s  

P ro p o s it io n  2 .14 u  is irrational with respect to n.

Proof (by contradiction): Let A denote the ring of algebraic integers (the set of all 
roots of monic polynomials in Z[X]).  Suppose u> is rational w ith respect to tt. Then 
3 a , n  e  Z such th a t u> — ^ 7r, i.e. nuo = an. Hence, emw =  eM7r =  ±1. Let a  = eluJ. 
Then a "  =  i l  so a , « e A  since they are roots of the polynomial X n =F 1. It follows 
th a t a + a  = 2cosw G A, so (2cosa ; ) 2 G A. But (2 cos a; ) 2 =  (2( ^ ) ) 2 =  |  6  Q. 
Therefore y  =  (2 cos a; ) 2 G A fl Q = Z, which is a contradiction. The desired result 
follows. □
W hen combined with the pinwheel substitution, Proposition 2.14 shows us th a t the 
pinwheel tiles occur in infinitely many orientations, and this is arguably the most 
significant property of the tiling. We shall examine the orientations in greater detail 
in Chapter 3.

We are finally in a position to provide a straightforward proof of the aperiodicity 
of A, and therefore T:

P ro p o s it io n  2 .15 A is an aperiodic tiling.

Proof (by contradiction): First, we observe th a t if A is periodic in one direction, then 
it is periodic (that is, th a t there exists two independent translations mapping A onto 
itself). To see this, suppose th a t t +  A =  A for some t G C. Then, because any 
pattern  observed among the individual points is echoed in the arrangement of the 
copies of Ai, we have th a t \ /5 9ut +  A =  A.

12
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Now, assume for a contradiction th a t A is periodic. Then, by definition, there 
exist s, t G C independent such th a t s +  A =  A and t +  A =  A. Hence, there exists 
a finite fundam ental region T  with m s  +  n t +  T  = A. But then, every point

m ,n € Z
in A must have the same orientation as some point in T. Since we know A exhibits 
infinitely many orientations, this is a contradiction. Therefore, A is aperiodic. □  

Putting  orientations aside for the moment, we now prove a preliminary result 
about the chiralities.

g f e i /  - j \ f c  g fc  /

P ro p o s it io n  2 .16 mk :=  — 2— > n k ■= — 2— are the number o f chirality 1, -1 
points in A k respectively.

Proof (by induction):

k~0' „ _ 5 ° + ( - l ) ° _  1 +  1 5° -  ( - I ) 0 1 - 1 _ „
m o -  2  -  2  _ 1 , n o -  2  ~  2 ~

Induction step:

m k+1 = 2m k + 3nk = ^(2 • 5fc +  2 ( - l ) fc +  3 • 5fc -  3 ( - l ) fc)

=  t ( 5 - 5 l - i ( - i ) ‘ ) =  A A t l z A d ;

n k+1 = 3m k +  2nk =  ^(3  • 5fc +  3(—l) fc +  2 • 5fc — 2(—l ) fc)

1 Kfc+l _  / 1 \/c+l

=  2 ( 5 - 5 fc- ( - l ) ( - l ) fe) =  ^--------- i - L .

□
From Proposition 2.16, we can see th a t A consists of tiles of positive and negative 
chirality in equal proportion. This result helps motivate the next section.

2.4 M u tu a l L ocal D erivab ility  o f  C h ira lities  

T h e o re m  2 .17  A+ and A~ are mutually locally derivable.

Proof: This is equivalent to saying th a t given A+ , all of A-  is uniquely forced by local 
rules and vice versa. We will s tart with A+, but the argument in the other direction 
is identical. First, we move from A+ to T+ using Proposition 2.10. So we start off 
with the plane filled w ith tiles of positive chirality with gaps between them. Our task 
then is to show th a t the gaps are uniquely tillable by tiles of negative chirality. The 
introduction of some terminology will prove beneficial at this point. We say th a t two 
tiles a b u t  if they meet along an edge (as opposed to only at a vertex or not at all).

13
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Figure 6 : Abutm ent atlas for the pinwheel tiling

14
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An edge is v a le n t if it does not abut any other edge. An edge is fu ll if it abuts 
other edges for its entire length.
The first step in this proof is to describe every way in which two tiles may abut legally 
in the pinwheel tiling. The easiest way to do this is to apply the substitution to a 
single tile of positive chirality, record every type of abutm ent th a t occurs in the result, 
then apply the substitution to each pair of abutting tiles. Continue this process until 
no new abutm ent types result. Repeat, this time starting w ith a tile of negative 
chirality. By following this process to its conclusion, I have arrived at the ‘abutm ent 
atlas’ seen in Figure 6 . It is a comprehensive diagram of all legal abutm ents in the 
pinwheel tiling. The x 2 situated by certain arrows in the atlas signify th a t two copies 
of the resultant configuration arise from applying the pinwheel substitution to the 
antecedent configuration.
W ith the abutm ent atlas to  guide us, we obtain a very nice algorithm for filling the 
gaps uniquely. Note th a t the algorithm itself is not unique; the uniqueness of tile 
placement comes directly from the valences observed in T+ :

(i) Abut the long edge of a gray tile to every valent long edge in T+ , resulting in 
a new set of extant tiles F'. Note th a t there is one and only one way to fully 
abut the long edges of a white tile and a gray tile, and th a t there is no other 
way to legally fill a valent long white edge with only gray edge abutments.

(ii) Abut the hypotenuse of a gray tile to every valent hypotenuse in T', thereby 
creating T". The abutm ent atlas shows th a t a hypotenuse may only fully abut 
another hypotenuse, and there is a simple reason why this is the case: the 
hypotenuse of a pinwheel tile has irrational length, and the other two legs have 
integer lengths! Since all white tiles are already placed, it immediately follows 
th a t these abutm ents are unique and are required to complete our task of filling 
the gaps.

(iii) Consider the remaining gaps. We know there must be at least one way to fill 
them, namely T \  T". Let A be an arbitrary set of tiles th a t fill the remain
ing gaps. W hat remains to be shown is th a t A is unique. It is an easy -  if 
somewhat tedious -  process to accomplish this by considering the restrictions 
imposed by the abutm ent atlas on the configurations of gray tiles allowed in A. 
First, consider th a t every S e  A must abut hypotenuses with another tile in A 
because no valent hypotenuses remain in F" following step (ii). Hence, A must 
be composed entirely of rectangles consisting of two gray tiles. Furthermore, by 
step (i), we know th a t none of these rectangles may fully abut long edges with

15
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a white tile. From the abutm ent atlas, we see there are exactly three configura
tions th a t give rise to a gray rectangle. However, there is only one configuration 
of tiles th a t yields a gray rectangle th a t can be in A: Configuration IV (in Fig
ure 7). In each of Configurations I, II, and III, the gray rectangle abuts long 
edges w ith a white tile. It is significant to note at this point th a t Configuration 
IV is observed to occur in the third iterate of the pinwheel tiling and hence A 
consists of infinitely many gray rectangles. We now examine how the rectangles 
of A may abut each other; we are still concerned about finding a configuration 
th a t does not fill a gap uniquely (for example, a square gap filled with two 
vertical gray rectangles could also potentially be filled w ith two horizontal gray 
rectangles). Given th a t each gray rectangle in A must be accompanied by the 
entirety of Configuration IV, the interaction possibilities are severely limited. 
First, we note th a t tile A of Configuration IV is in T" because it abuts long 
edges w ith a white tile.

I II III IV

Figure 7: Local Configurations 1

B and C are in A, while D could be in either T" or A with the given information. 
We note th a t the abutm ents seen in Figure 8  do not occur in the abutm ent atlas 
and hence are illegal:

We now see there are three possible abutm ent scenarios given:

(a) Tile D is in T" and the tile th a t abuts the short side of tile C is also in T"; 
hence, the underlying gap consists of an isolated rectangle.

(b) Either tile D is in A (Configuration V in Figure 9) or the tile th a t abuts the 
short side of tile C is in A (Configuration VI) but not both. Configuration 
V and VI are equivalent: they both consist of two overlapping copies of

16
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Figure 8 : Three illegal abutm ents

Configuration IV, and can be seen to vary only by a rotation through 90 
degrees and their labeling. Note tha t, in both Configuration V and VI, 
one lettered tile belongs to both copies of Configuration IV and hence ends 
up with two labels. Configuration V comes immediately because D is in A 
and hence must be surrounded by Configuration IV. The abutm ent to the 
short leg of C observed in Configuration VI is the only legal possibility. 
If D' e  A or the tile abutting C* is in A, then part (c) below shows tha t 
we arrive at a contradiction. Therefore, the underlying gap in both cases 
consists of an isolated L shape.

Figure 9: Local Configurations 2

(c) Both tile D and the tile abutting the short side of tile C are in A. As we see 
from Configuration VII in Figure 10, this creates a situation which forces 
Configuration V III (this follows from the fact th a t tiles may not overlap, 
and from the severe restrictions on hypotenuse abutm ent). Hence, a gap 
consisting of exactly three rectangles is impossible.

17
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VII VIII

Figure 10: Local Configurations 3

In each of the three above cases, we have no remaining valences th a t allow 
for more A rectangle abutm ents, and hence the list is complete. Hence, we 
have shown th a t the gaps remaining in T" may occur in one of three finite, 
isolated configurations (we have made no claims th a t all of these gap types 
must occur, only th a t they are possible according to the abutm ent atlas). But 
it is immediate th a t each of these three different gaps can be tiled by gray tiles 
in one and only one way. Hence, A is unique. □

This result, while new and interesting, is not used in the following analysis. It 
may be of particular interest to anyone attem pting to calculate the noncommutative 
autocorrelation of the pinwheel tiling, as suggested in Chapter 5. As we draw our 
preliminary findings to a close and begin on said analysis, a final remark about A 
is appropriate. The sequence {An}n exhibits exponential growth in the number of 
control points observed, but only linear growth in the number of orientations. This 
proves to be an interesting computational obstacle.

18
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C hapter 3 - O rientations

The infinite tile orientations exhibited in the pinwheel tiling comprise its salient 
feature. We therefore begin our analysis of the tiling by examining this property. 
We first develop a recursive algorithm th a t allows us to observe how the orientations 
accumulate.

L em m a  3.1 Let v be a vector that makes the angle a  with the positive x-axis. Let A 
be a line through the origin which makes the angle (3 with the positive x-axis. Suppose 
v' is the reflection o fv  in  A. Then v' makes the angle 2/3 — a  with the positive x-axis.

Proof: The following diagram illustrates the situation when (3 > a  (the picture when 
(3 < a  is very similar):

2(3- a

Figure 11: Illustration of Lemma 3.1 for (3 > a

By symmetry, the angle between v and A is congruent with the angle between v' and 
A and both have measure f3 — a. The desired result follows by angle addition. □  

Suppose A G An has orientation and chirality (9a , y). After applying the substitu
tion to An, we obtain An+i, and A spawns five points. The question at hand is, what 
are the orientation and chirality of those five points? One of the points is obvious: 
one branch of the substitution is the identity map and hence we obtain (9a,x)-  If 
also immediately follows from the substitution th a t one of the points will lie in a 
copy of An th a t has simply been rotated through 7r; this point has orientation and 
chirality (6»Q+7r, x).

From the substitution, it is clear th a t the th ird  and fourth points are identical up 
to translation. As seen in Figure 5, the third point will be a reflection of A in the

19
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line coincident w ith the long leg of Fn. Since the orientation of Tn is nu>, this line 
makes the angle |  +  n u  with the positive x-axis. Applying Lemma 3.1, we get that 
the orientation and chirality of points three and four is (97r+2noj--ai ~x) -  The fifth 
point differs from the previous two only in a rotation through | ,  and hence we get

(^ y + 2«ij—a) X)-
It immediately follows from the substitution th a t every orientation observed in 

the pinwheel tiling can be w ritten in the form a |  +  2m u , where a € {0,1, 2, 3} and 
m e N .  Furthermore, we can say th a t if a point A is found in A„ then its orientation 
has 0 <  m  < n  — 1. We have essentially proven the following:

P ro p o s it io n  3.2 Let h : Z + x Z + x Z / 4 Z x { —1,1} be defined recursively by: 
h(0 , 0 , 0 , 1 ) =  1 ;
h(0 , m, a, e) — 0  fo r  all (m, a, e) (0 , 0 , 1 ); 
h(n  +  1 , m,  a, e) =

h(n, m , a, e) +  h(n,  m,  a +  2, e) +  2h(n, n  — m, 2 — a, —e) +  h( n , n  — m, 3 — a, —e).

Then h{n , m, a, e) is the number of points with orientation and chirality ( a |  +  2ma;, e) 
inside An.

It is useful to note th a t because 0 < m < n - l ,  a £  Z /4Z , and e £ {—1,1}, the 
number of different orientation and chirality pairs observed in An will be between n 
and 8 n.

Figure 12 plots o ,| +  2mui vs e • h n̂’̂ a<e'> for select n. These graphs suggest tha t 
the orientations observed in A are uniformly distributed. Proving this is the focus of 
our next section.

20
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n=5 n=25

n=100 n=500

Figure 12: Angle distributions in four pinwheel iterates
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3.1 U n iform  D istr ib u tio n  o f  O rien tation s

Radin has previously dem onstrated in [12] th a t the orientations of the pinwheel tiles 
are uniformly distributed. We supply a similar proof with more details. The following 
definition depends on the fact th a t there is an exact copy of A*. in A^+i:

D e fin itio n  3 .3 Let C [0, 27t) be two sequences o f angles such that for
any k, 9a i , . . . ,  9amk are the orientations of the y  =  1 points in A k and 9 ^ , . ,  9^nk 
are the orientations o f the y  =  — 1 points.

D efin itio n  3 .4  {zn}^Lx C 17(1) is u n ifo rm ly  d is t r ib u te d  o n  17(1) if

fo r all f  : 17(1) —> C continuous (Xu ^l  is defined in Definition f .9).

D efin itio n  3 .5 C [0, 27t) is u n ifo rm ly  d is t r ib u te d  m o d u lo  27T i/{e*7j}°71

is uniformly distributed on 17(1).

Some preliminary m aterial must be established before we prove the desired result:

T h e o re m  3.6  (W eyl C r ite r io n )  {zn}%L 1 C 17(1) is uniformly distributed i f  and 
only i f V t  € Z \  {0} we have

n —1

Proof: (< =) Suppose th a t lim
iV—>00 N non-zero integers t. Let

n = 1
/  : 17(1) — > C, and suppose at first th a t it is representable (that is, it is uniformly 
represented by its Fourier series):

f { z )  = Y 2  at , where at

Choose any e >  0 and then M  > 0 so th a t

f ( z )  -  ^ 2  atzt < e
\t\<M
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for all 2  e. U( 1). Then for all Af >  0,

E â E 2»
n ~  1

N  ^  "n
\t\< M  n = 1

1 N  

* E / <
N

n = 1
iV E E

n = l  | t | < M

(It^r < e .

In view of our assumption on the sequence {zn}n, the averages inside the sum of the 
left side of this equality are going to 0 with large N,  except possibly when t = 0. 
Thus for all AT > >  0,

N

- « 0
n =  1

<  2 e.

Since e was arbitrary  and do = f ( z ) d \ u 1̂\ z ) ,  we are done.
Now, in general /  need not be representable. However, for all e > 0 there exist 

representable functions g =  g£ w ith ||g — / ||oo <  e ([18], Chapter 1, Theorem 3.5). 
For such a g we have

/  g d \ v w -  /  f d \ u{l) 
'£7(1) Ju( 1)

1 N 1 N
v E * w - v E / ( *

n = 1 n = l
iV

< e

< e

These give us

as required.

f  9dXu w - j j Y , g (  
M i )  ™ ^

J  7 1 = 1

< e, if AT > >  0 .

< 3e ,

(=>) In the reverse direction, assuming th a t the averaged sums converge to the 
integrals for continuous functions, we may use the functions f t : z  (->• z l to obtain

N

lim ^ ~ y ^ z tn = [  z tdXUW(z),
M i )N

which is 0  if t ^  0 .

D e fin itio n  3 .7  For any t G h , we define
gito  _|_ gii7T 2 e i t (2^-7T) _|_ g « i(2 u ;+ |)

2eu(n) +  ea(2uj) _p e*i(2t2'- 7r)

□

M(t )
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Remarks:

(i) This m atrix encapsulates the orientational component of the pinwheel substitu
tion. T hat is, (M(l ) ) jk  is the sum of the orientations of the type j  tiles obtained 
after applying the pinwheel substitution to a single type k tile with orientation 
1 ; (M{t))jk  simply raises each orientation in the sum to  the exponent t, setting 
us up to use the Weyl Criterion.

(ii) We write ezt0, rather than  simplifying this expression to  1, because it makes the 
arguments easier to follow.

(iii) This m atrix is similar to the m atrix used by Charles Radin in his proof. The 
prim ary difference comes from the fact th a t Radin rotates An at every step so 
tha t, considered as one big triangle, it has orientation Oq. We must use the 
above m atrix  in place of R adin’s because of our requirement th a t we work with 
a fixed point substitution. Also, R adin’s type 1 tile corresponds to what we 
have chosen to be our type 2  tile and vise versa.

L em m a  3.8 (R a d in )

m k nkE g i t ( 2 k i O —/3j )

j=l j = 1
n k m k2̂ eitpi E g it(2 fc u > —a . j )

\  j=l j = 1

Proof: Imm ediate from Definitions 3.7 and 2.12. □

Since lim —^ =  lim — =  - ,  to prove tha t {a n\ n and \ 0 n}n are uniformly
h—>oo 5  /c—>oo 5  2

distributed, it is enough to prove tha t, \ f t  ^  0 , 1  <  i , j  < 2

k—>oo 5

by Theorem 3.6.
Any consideration of matrices associated with substitution tilings will almost in

variably utilize the powerful Perron Frobenius theorem, and this thesis is no excep
tion. We state  the theorem below; for a proof and further details, see [16].

D e fin itio n  3 .9  A square non-negative matrix T  is p r im itiv e  i f  there exists k £ N
such that T k > 0.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T h e o re m  3.10 (P e r ro n -F ro b e n iu s  T h e o re m ) SupposeT is a n n x n  non-negative 
primitive matrix. Then there exists an eigenvalue X such that:

(i) A E M, A >  0;

(ii) A can be associated with strictly positive left and right eigenvectors. Moreover, 
these eigenvectors are unique up to constant multiplication.

(Hi) A >  |k| fo r any eigenvalue k ^  A;

(iv) I f  0 <  B  < T  and (3 is an eigenvalue of B , then \j3\ < A. Moreover, \(3\ = A 
implies B  = T .

(v) X is a simple root o f the characteristic equation of T.

L em m a 3.11 Let A  >  0 be a non-negative primitive matrix and let A be its Perron-
Frobenius (PF) eigenvalue. Then, 3 constant c > 0 such that Vn >  0, ÂXJ1J < c.

Proof: Let x  be a right P F  eigenvector, and hence Xi >  0 Vi. A nx  = \ nx  implies tha t
m

V i , ^ 2 ( A n)ikx k =  Xnx i, which yields (A n)ikx k < XnXi (because (A n)ik > 0). Since
k= 1

Xi > 0 V i, we can find a constant c >  1 <  i, j  < m . Then — < c Vn , i , k .  □

P ro p o s it io n  3.12 For any t ^  0 and 1 <  i , j  < 2, we have

l i m ( W k  =  0

k —>00

Proof: Let t ^  0 be arbitrary but fixed. Let A  be the m atrix defined by
/  2  3 A

Aij — \(M(t))ij\.  Then 0 < A <  ( ^ I in an entrywise sense, with the additional

restriction A  ^  ^ jj ^ Also l((Af(£))fc)p| ^  (Afc)p Let A be the PF eigen-

/  2 3 A
value of A.  Then A <  5, since 5 is the PF  eigenvalue of f ^ ^ J (Theorem 3.10, 

part (iv)). Let c be the constant obtained by Lemma 3.11. Then

m ( t ) ) %  /  (Akh  ( A %  ( X \ k ( X \ k k^o
~  5k Xk ' V 5 J “  ° ' I  5 j  ° ’5k

since f  < 1. Hence, the desired result follows. □
While the uniform distribution of orientations in the pinwheel tiling may have 

many interesting consequences, we are only concerned with the effects of this result 
on its autocorrelation.
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C hapter 4 - A utocorrelation  o f th e  P inw heel T iling

4.1 In tro d u ctio n  to  th e  A u tocorre la tion

Physical diffraction is a fundamental tool used by materials scientists. It is the 
most common way of obtaining knowledge about the internal atomic structure of a 
macroscopic sample. Physical diffraction has a m athem atical analogue, and we plan 
to use m athem atical diffraction techniques to probe the structure of the pinwheel 
tiling. On the path  to m athem atical diffraction lies an interm ediary known as the 
autocorrelation. As the autocorrelation is a measure, the remainder of the thesis 
will assume the reader has some background in measure theory; we recommend [4] 
as a good supplem entary measure theory resource. By thoroughly examining the 
autocorrelation of the pinwheel tiling, we take a significant step towards our goal of 
understanding this puzzling object.

Throughout this chapter, we will almost exclusively understand A to represent 
only the locations of the control points.

D e fin itio n  4.1 rjn ’■= ^  d x - y , the av e rag e d  a u to c o r re la t io n  of An . Here,
x , y e A n

Sz is the delta measure supported at z e R 2.

We note th a t the volume averaged autocorrelation is the usual object of interest, and 
th a t this may be obtained by multiplying the above autocorrelation by | .  Since this 
multiple has no qualitative impact and serves to clutter our calculations, we prefer 
to work with r}n.

D efin itio n  4 .2  The vague limit (see Definition f .8 )  rj :=  -  lim r)n is the averaged
4  TI—XQQ

autocorrelation of A (if it exists).

One of our prim ary goals for this chapter will be to prove th a t the autocorrelation 
does indeed exist.

In defining autocorrelation, one is faced with choosing an averaging sequence, a 
sequence of compact sets (on which the sums involved are finite) and then taking 
limits, just as we have done here. In our approach , we are  using th e  sets {Pn}n for 
our averaging sequence. For technical reasons, such sequences are chosen to satisfy 
the van Hove property:
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D efinition 4.3

(i) For any A c t 2  and K  c t 2  compact, the K -b o u n d a ry  of A is

d K (A) :=  ( (K  + A )\A °)  U {{—K  +  R 2 \A ) n  A), 

where ° and denote interior and closure, respectively.

(ii) A  v a n  H ove  seq u e n c e  is a sequence of compact subsets {An}n C Rd such that

A w r „
aE2 ^  -̂-------- ► °> v i f  compact.

P ro p o s it io n  4 .4  { T n } ^  is a van Hove sequence.

Proof. Let K  C I 2 be compact, and therefore bounded. Hence, 3 r  > 0 so tha t 
K  C B r(0) and — K  C B r(0), where J3r (0) is a closed ball of radius r. Then d K{Tn) 
is contained in the set of points of distance < r  from the boundary of Tn. We know 
th a t AR2 ( r n) =  5nAE2 (ro) =  4-5n and the perim eter of Tn =  ( 6  +  2 \ / 5 )5 2 . Therefore,

AR2{dK(Tn)) ^  2r(6 +  2x/5)5f ™
AK2(rn) -  4 • 5n '

□
A brief review of a few key measure theoretical concepts will facilitate the argu

ments in this chapter:

D e fin itio n  4 .5 u is a t r a n s la t io n  b o u n d e d  measure on (0, oo) i f  for  all
K  C (0, oo) compact, 3 c  >  0 such that \u(a +  K)\ < c Va (E (0, oo).

D e fin itio n  4 .6  A4(R2) is the space of all regular Borel measures onMf. A4°°((0, oo)) 
is the space of translation bounded regular Borel measures on (0, oo).

D e fin itio n  4 .7  /C(R2) :=  j /  : R 2 —> R /  continuous, supp(f)  compact j .

The Riesz-Markov representation theorem (Theorem 7.2.8 in [4]) establishes a bi- 
jection between positive regular Borel measures on R 2 (such as r/„) and continuous 
linear functionals on /C(R2). This map is given by /r i—>• I^  where I^ { f)  := /  fd/i. 
This theorem allows us to define vague convergence, a concept which appeared in the 
definition of the autocorrelation:
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D efin itio n  4 .8  A sequence of measures {p.n}n C .A/f(M2) co n v erg es  v ag u ely  to 
H G A4(K2) if, fo r  all f  G JC(R2), {ian( f ) } n n ( f ) .

We adopt the following notation:

D efin itio n  4 .9  We will use Ar 2  to stand for Lebesgue measure on M2; and Xu ^  to 
stand for normalized Haar measure on U( 1) (we use the superscripts to keep them 
unequivocally distinct from the various other X seen throughout this thesis).

4.2  O b jectiv es

In the remainder of this chapter, we are going to examine the autocorrelation of 
the pinwheel tiling in as much detail as we can. First, we will build a pinwheel 
substitution formalism for measures. The pinwheel substitution of Definition 2.12 
involves complication causing reflections tha t we would prefer to avoid. To th a t end, 
our formalism will work w ith measures on both An and Vn, the mirror pinwheel 
of Definition 2.13. In this case, it will be sufficient to reflect the mirror measures 
only once at the very end to get them  into the correct place. Figure 13 illustrates 
the formalism in action and will be an extremely valuable reference throughout this 
chapter. Once we have established our formalism, we will use it to generate the rjn. 
By letting n —> oo, we dem onstrate th a t the autocorrelation rj does exist. In addition 
to verifying the existence of the autocorrelation, our formalism does give us some 
structural information. The prim ary objective of this chapter is to verify tha t t] is 
circularly symmetric, a fact which depends directly on the uniform distribution result 
of Chapter 3.

4.3  S u b stitu tio n  F orm ulation  for M easu res  

D efin itio n  4 .10  V  :=  C \  {0}; the punctured complex plane.

D efin itio n  4 .11 For any a  G [0,2 -7r), we can define a map R ( a ) : V  —> V  (rotation 
through angle a )  by:

R (a)(z) := eiaz .

D efin itio n  4 .12  M pp(V) := { Y^k=l ck$ak \ Ck G E, n > 0, a*, G V } ,  the span of all 
real finitely supported measures on V .

So, R(a)  acts naturally on M * p(V ) : R(a){Y^k=i ck$ak) '■= Y l= l  CkdR(a)(ak)-
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Definition 4.13 Let Ll, $  : (M * ( V ))2 —> ( M * ( P ) ) 2 be linear maps defined by:

n

$

R (—u>) 0 \  /  pi
0 R(u) J  \  v

1 (  R{0) +  R ( tt) 2 R ( tv) + R ( - f )  \  /  n
5 V 2i?(—7r) +  R ( f )  R ( - 0) +  R ( - tt) v

The maps Cl and $  compose the core of our desired formalism.

D efin itio n  4 .14  For any k > h > 1, define the linear map : (M * p(V )) 
by:

h^n,h I L 
v

If we define to be the identity map, then we have ) =  T fT for,il I )  = 1 ( t  ,
k > I > h > 1. This decomposition of will feature in several induction arguments.

P ro p o s it io n  4 .15  For any k > h > 1,

1

gfc—(/i—i)

/  ™ k - ( h - l )  n k - ( h - 1) \

E R(ai) E rw*>+Pi)
j =l  3=1

n k - ( h - 1) m k - ( h - 1)

E R(-2kd -  3j )  E R(~a>)
V j=i j=i /

Proof (by induction on &): Fix an arbitrary h >  1 for the remainder of this proof. 
k — h:

-ft^oft / F= n - nm
V

I f  R(0) + R(n) 2R(2hca + n) + R(2hcu -  f )  \  /  p,
5 \  2R (—2huj — 7r) +  R ( —2huj +  | )  d!(—0) +  ^ ( —7r) /  \  u

Induction step: T ^ + 1  ^  ^  ^  ~  ^fc+i^ft ^  ^  ^  • We know what looks like from 

our base case above, and we have by the induction hypothesis. To continue this
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argument in m atrix form becomes too wide for a single page, and hence we will start 
considering componentwise and cease carrying the pair of measures along. Also, 
we note th a t |  • 5k-(h-i) — 5(fc+i)-(h-i)' and we will therefore suppress m atrix coefficients 
for the tim e being. Because of the symmetry of the matrices, we need only consider 
(* J+1)n  and

(A— 1)

=  (fl(0) +
3=1

n k - ( h - l )

(2R(2(k  H~ l)tu 4 - 7r) -|- R(2{k -\- l)to — —) ^  '  i?(—2huj — 0j)
2 3 =1

m k - ( h - 1) m k - ( h - 1) n f c - ( f i - l )

X  -R (« i)  +  J ]  +  7T) +  X  2 R ( 2 ( k  ~ ( h ~  1 ) V  -  03 +  7r)
j= i i = i  i = i

n k - ( h - 1)

+  £  -  (ft -  ! ) ) "  -  f t  -  | )  ■
i = i

We need to show ('F^+1)n  =  X  R (a j)- We know th a t {oj}™^+1)-(,1_1) is the
i = i

list of the angles of the orientations of the control points of positive chirality in 
A(fc+i)_(/j_i), and hence is composed of two rotated copies of {o!j}^1_(h_1) as well 
as three reflected and rotated copies of We know th a t the a,- terms
of (d/^+1)ii are correct. Now, {—0 j}Tj= i(h~1) is the list of all angles of orientations 
of control points of positive chirality in Vfc—(/i—i) 5 the reflection of Ak-^n-i) in the 
real axis (see Definition 2.13) . We need only to  rotate this list into the proper 
orientations. Since Ak-(h-i) has orientation (k—(h—l))ui and Vk-(h-i) has orientation 
— (k —(h — 1 )V , rotating Vk-(h-i) through 2(k—(h —l))oj gives it the same orientation 
as Ak-(h-i)- A  final rotation through n  or —|  drops the copy {—/5 j} ^ f (h_1) into 
the correct orientation to help make up {«y}j=i+1)_(,1_1) (For help visualizing this

m ( f c + l ) - ( h - l )

argument, see Figure 13). Hence, ('F£+1)n  =  R (a j)-
j =i
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By a very similar argument, we get

n k - ( h - l )

« * ) 12 =  ( f l (0 )  +  B (tt ) )  £ R ( 2  hw +  f3,)
3 =1

m k - ( h - 1)

+  (2R(2(k  +  l)(n +  7r) +  R(2(k  +  l)cn — —) ^  ' R ( —oij)
j=i

n k - ( h - 1) n k ~ ( h - l )

=  ^   ̂R(2hu> +  Pf) -F ^  '  R(2huj -f- Pj +  7r)
j= i i= i

™ k - ( h - l )  ™ k - ( h - l )

+  ^   ̂ 2R(2(k  +  l)(n — ttj +  7r) +  ^  '  R(2{k  +  l)tn — oq — —)
j= i i= i

n k - ( h - 1) m k ~ ( h ~  1)

=  R(2hu)  (  E«(A)+ E 2R(2(k -  {h- l ) ) u> -  olj +  tt)
i= i j= i

n k - ( h - i )  ^ - ( h - i )

+ E  R(/3j +  tt) +  E  -R(2 (/c -  ( h -  l))o; — aj —
j=i i= i

«(fc+i)-(h-i)
= fl(2W)( E

i= i

J ]  R(2hu  +  p j ) .
3 = i

□
From the above argument, we can see th a t (M( t ) ) k and 'Ff are somewhat related, 
but handle reflections in very different ways! Now tha t we understand in terms 
of our sequences of angles, we can put the uniform distribution result to good use.

P ro p o s it io n  4 .16  For any u G V  and uniformly distributed sequence {zn}™=1 C 17(1) 

we have:
1 N

lim T7 E  R (z^)su =  Ac/(1) <g> 5h  ,/V— /V *
n —1

where the limit is in the vague topology.

Proof. Note th a t the product of measures above refers to the product decomposition 
P  =  17(1) x R>o-
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Let /  be any continuous compactly supported C-valued function on V.  We are 
required to show th a t

3im ( v  E  )  = (A[,<1> ® s n  > f )A/-—>00 . _ ,
n = l

We have

Nn = 1 /  n = l
jv  .  1 V

v S  /  f M d 5 u(x) = - ^ f ( z nu)
n = 1 n = l

V —>00 / f ( z u ) dz  = / / ( z  |u |)dz
7(7(1) 7(7(1)

=  f  f ( z r )  d \ u{1) (z) <g> 5|U| (r) =  (A*7^  <8 > 5|u|, / )  
7 ( 7 ( 1 ) x R > o

where, when calculating the limit, we have applied Definition 3.4 to the continuous 
function /( ( .)« ) . □

It is im portant here to  note th a t measures of the form A < S >  Hk -, where f iK is a 
positive measure on K  C  (0, 00), are not what one may intuitively think from the per
spective of usual Lebesgue measure on R 2. For example, consider th a t || A17̂  ® fiK || =  
Xu (1)(^U(1))i i k ( K )  =  h k ( K ) .  This is independent of where K  lies in (0, 00). Since 
the Lebesgue measure of B k  (see Definition 4.20) should be its area, it must depend 
on where K is located. Hopefully this comment will avert some confusion.

Proposition 4.16 can be extended by linearity to finitely supported discrete mea
sures on P ,  but we require some new notation before implementing this result.

D e fin itio n  4 .17  Let P  : V  —> (0, 00) be defined by P(z)  := \z\. Then P  determines 
a linear map (also denoted by P) from M.pv(fP) to A4°°((0, 00)) by

n n

P ( ^ 2 ckSak) ■= Y Ĉ P{ak) •
k —1 k= l

Let //, v  <G M * p(P) be finitely supported discrete measures. Then we have:

f-i „  A t Q  iT.k f  k->oo 1 f  \ U{1) ® (P(fJL + U)) \  .C o ro lla ry  4 .18  T* I 1 — -  ( ^ (1) ^  +  j  %n the vague topology.

3 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof: The combination of Propositions 4.15 and 4.16 yields

j  k  (  A  k ^ ° °  1  (  ®  < 5 |o :| +  0  5 | y | \

h V S y  )  2 V x U { 1 )  ®  5 hl +  x U { 1 )  ®  5 |y| /

_ I f  ^C/(1) ® ( îxi +  îj/i) A
2  v ;

for any h >  1 .
As per the note following Proposition 4.16, the desired result follows by linearity.

□

4.4  T h e A u to co rre la tio n  on  th e  n th  Itera te

We recall th a t An consists of 5 isometrical copies of An_i. This leads to the following 
definition:

D e fin itio n  4 .19  Let n  > 1. Then

Dn { (x, y) £  A x A | x, y £ An and are in  d ifferent copies o f  An_ i} ,

Cn := { ( x , y )  £ A x  A \ x , y  E An, x  ^  y, and are in the same copy o f  An_ i} .

Remarks:

(i) i  i
Vn — S o + —  Sx-y +  — ^ 2  fix-V '

x,y&C„ x,y&Dn

(ii) From the abutm ent atlas seen in Figure 6 , we can see th a t the minimum distance 
between control points in the pinwheel tiling is and results when their cor
responding tiles abut hypotenuses and are of opposite chiralities. Then, there 
exists 2ji >  r  >  0 such th a t pn\Br(0) — 5o- For such an r, lim pn \Br{0) =  5 0 -

D e fin itio n  4 .20  For any K  bounded in  (0, oo); we define

B K : = { a e V  | M e K }  = P ~ \ K ), 

the co ro n a  around 0  whose intersection with the positive x axis is K .

Remark: For any p, v  G A4*p('P), we have:
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(i) p ( B K) = P( v ) ( K) ,

M V r  t =  1 (  m k-(h- i ) r i B K) + n k- {h-i)v(BK )
W  h V v J  K 5k-(h~V \  n k- {h-i)P{BK) + m k- {h-i)i>{BK)

L em m a 4.21 For all v, v' >  0, we have

& (  v \ m  ■ , < (  H s K) + r ( B K) \
U  )  { K) ~  I  < B K) + W( BK) )  ' 

Proof (by induction on k):
k — 0: We have defined 'L ° to be the identity map previously.

Induction step: Let y ' ) ~  \  

Then

v \  (  v"

1 ( 2 i/ ' ( B k ) + 3i/ " { B k ) \
5 V 3v " ( B k ) +  2 i/"{B k ) J

I f  2 {u{Bk ) +  u\ B k )) +  3 (u{Bk ) + i / ( B k )) \
~  5 V 3(u(Bk ) +  i/ ( B k )) +  2(u( Bk ) + v’( BK)) J

-  (;::>■>
by Definition 4.14, Remark (ii) above, the induction hypothesis, and simplification, 
respectively. □

We have successfully created our substitution formalism for measures. Since we 
wish to use it to compute the autocorrelation, we are going to need to feed it some 
measures.

(i) pn : ^ 2  ^x-y

D efin itio n  4 .22
J  

5
x , y e D n

(ii) PniVn are defined recursively as follows:
V? =  P i  := ° >

Pn \  . _  ^ n -1  (  Pn- 1 +  Pn- 1 ^

34
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R(-n>
R ( . X )  
R(tc/2)

R(2w)

Figure 13: 'Fj and vFg in action
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L em m a 4 .23  (  ^  )  =  (  V  )  Vn “  2 '

Proof (by induction on n):

Induction step:

P ro p o s it io n  4 .24  For any n > 1 we have

Vn = So + r\l +  77-  +  pn . (4.2)

Proof: To see th a t equation (4.2) holds, by (4.1) we must prove th a t

Vn+ 1 + Vn+ 1 = '̂ 2  ^x~y ’
( x , y) eCn+i

We prove this by induction. Figure 13 may help clarify the following argument (note 
th a t the gray represents p2 rather than  the tiles of negative chirality). 
n = 0 : Ci =  0 ; v t  =  0 , 77̂  =  0 , which gives us our desired equality.
Induction step: An+i consists of the union of the five disjoint copies of An resulting 
from the application of the mappings f i , . . . , f s  upon An. Here / n / 2  are direct 
isometries of C, while / 3, /*, /s  are opposite (i.e., chirality reversing) isometries of C 
(note th a t the translation and reflection components of these isometries depend on 
n, while the rotation components are independent of n).
Then

Cn+i =  { ( : r , y ) € A x A | 3 1 < z < 5  and (a, b) G An x An w ith  a ^  b 

such that (x, y)  = (f i (a) , f i (b))}
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5

i+i ^ 2  ^x~y ~  c; 122 Kn ^ 2■ • gn+i x ~ y  5  z ^  5
( x , y ) e c n+1 *=1 x,yeA'

x+y
The translation part of / ;  cancels when we take differences:

y  **-» =  g ( w ° ) + E **-»>
( x , y) eCn+i x,y£A„

x+y

'5" x,?/€ An x^y

Now, by the induction hypothesis:

1 V " '  c ,  (3 .i)
5 n Y 1  S x ~ y  =  rl n - $ 0 =  V n + P n + V n  ■

x,yeAnx^y

Therefore,

1 J 2  5 x ~y  =  +  Pn +  V n )5n + 1 Z ^  * - «  5
(x,y)GCn+1

^ R (uuj){2R(tt) +  JR ( - ^ ) ) JR(-ncu)(?7+ +  pn +  r)n )

^((i?(0) +  R(ir))(r]n + P n  +  V n )  

+  2R(2nu  +  tt) +  R(2rw -  | ) ) ( t 7+ +  pn +  r}~)

^ [{R{ 0) +  R{Ti)){rjt +  Pn) +  ( R ( ~  0) +  R (-n))rin  

+  (2 R ( - 2 m o  -  7r) +  R ( - 2 n to  +  ^))(r?+  +  pn )

+  (2R(2nu> +  7r) +  R(2nui -  ^))r?~

=  P n + l + P n + l

by Definition 4.22. □

4.5  C onvergence and C ircular S ym m etry

D efin itio n  4 .25 :=  P(r7n|B ) e  -Ad°°((0, oo)) for  some K  C (0, oo) bounded.
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P ro p o s it io n  4 .26  Let K  C (0, oo) be any bounded set. Then {pn,K}™=i converges 
in the total variation norm topology to a pure point measure.

Proof: By Definition 4.25 and Proposition 4.24, we get

Pn+1,K — P{Vn+l\B ) — P{Vn+l\BK) P(Vn+l \b k  ) d" P(pn+l | sK)'

Note th a t P{j]n+l) =  P(i]n+1).
By a rem ark following Definition 4 . 2 0 ,  if K '  C K  is any set we have

/  V n + l ( B K ' )  \  =  1  (  2 V n ( B K ' )  +  2 p n { B K , )  +  3 T I ~ ( B K ' )

v hn+ 1  (Bk>) J 5 V 3?l n ( BK’) + 3Pn(BK’) + 2f]T{BK’)

whence

f ( i l ) ( ^ )  +  % ) ( ^ )  =  Vn+l(BK') + Vn+l(BK')
= Vn (B K') +  Vn(BK')  + pn(BK>)

= Vti( Bk ')
= B(rjn) ( K ' ) .

Thus, for all K '  C K  we have P{r]^+l){K') +  P{r)~+l){K ')  =  P(r]n)(K ').
Hence,

B{Vu+i \bk ) + B(V~+1\Bk) = P(Vn+l)\K + B{Vn+l)\K

=  P ( V n ) \ K 

=  P ( Vn \ B K ) 

l-^n,K ■

So we get
Pn+1,K — Pn,K T  P{Pn+l ) • (d-3)

Therefore, p n+x)K > p,U)K and

\\Pn+i,K-Pn,K\\ = \P(pn+i\Bl<)\ = pn+i(B K) =  ^ y c a r d j  (x, y) G  D n+1 I \ x -y \  G  K } .

Because x , y  m ust be in different copies of A„, x  must be in the B ^-boundary of 
one of those copies and y G x  +  B k ■ Let c :=  max(card{A D (o +  B #■)}), a finiteaGC
quantity because the minimum distance between control points is^=. Then,

5

card{(x, y) G  Dn+X | \x — y\ G  K ]  < c • ^  ca rd jx  G  A fl d BK(f jVn)} .
j=i
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W hen we inflate Fn we have A®2 (<9BKFn+i) ~  v/5A®2 (9BKFn), where A®2 is Lebesgue 
measure on M2, since the linear scaling is by a/5.

Therefore, 3 a constant d  depending only on K  such th a t

p n + i ( B K )  < d  ( ^ j  ■ (4-4)

Then ||pm^  — Pn,K|| <  L„+i( ^ ) ' 7 shows th a t {pn,K}n is Cauchy in the total
variation norm. By a comment following Proposition 3 of [1], {p n,K}n converges in 
the total variation norm topology to a pure point measure. □

D efin itio n  4 .2 7  p k  '■= hm p n,K is a pure point measure on (0, oo).
n—*oo ’

P ro p o s it io n  4 .28  rjn \B — ► ® p x  in the vague topology.

Proof: Let t}k  — Af/(b ® p K . Let U be any neighbourhood of 0 in the vague topology. 
Then 3 P , a neighbourhood of 0, such th a t V  + V  + V  + V  + V  + V  C U. Also, we 
may assume th a t V  — — V. Since the total variation topology is stronger than the 
vague topology, 3e >  0 such th a t whenever \\u\\ <  e, u € V.

Because p Utx  Pk , there exists N  such th a t for all n > N ,  we have 
\[Pn,K — Pk || <  e. This gives us HA*7^  ® pn,K ~ Xu(D <8 > P k  || <  e, and hence,
A^C) 0  p n K -  t)k  E V V n >  N.

(4.4) says th a t pn( B x ) <  d  ^ , so 3 M  > N  + 1 such th a t

p k { B K ) <  e Vra >  M .

k = M

We know by Lemma 4.23 th a t

n —1

= EVn \ b k

Vn I B]<

Splitting the above sum yields

[  Vn+M \ b k  \  ,Tfn + M —1 | (  V m  I

k= 1

P n —k \ Bk  

0

w+mIbk J  ~ M \  V m L

and using the triangle inequality gets us

f  Vn+M I b k  

\  Vu+ m \b k

y n + M - 1

= E*'n + M —1 
n + M —k

k = 1

^ E
k = 1

q , n + M - 1 
n + M —k

P n + M —k \ g K 

0

P n + M —k 

0

(4.5)

( B k )
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V

E , j , n + M —1 (  P n + M —k ^  / p  \
^ n + M - k  1 q  J \ B K )  ,

fc=l '  '

:=  ^ |^ j|| ^ and || • || is the to tal variation norm.where
V v  /  \  I F  II J

Thus, by Lemma 4.21 and (4.5)

P n + M  \  _  j u n + M - 1  f  P m  \  

P n + M  J  M  \ P M  J
( B k ) < (4.6)

We also know th a t A ^ 1) <g> P m - i  — V k  

M  is fixed, we know
€ V. From Corollary 4.18 and the fact tha t

^n+M 
^  M

-1 f  P m \ b k  ^  I  (  ^ U{1) ® P ( P m \ b k  +  P m \ b k  )

PMI

and so , by (4.3), we get th a t

vrfn + M —1 
^  M

P m \b k  

P m \b k

\ U{1) ® P ( v h \BK Jt PM\bk )

n —>oo 1 /  A ^ 1) ®  P M  — 1

” '  2 V \ U { l ) ® P M - l

Therefore, 3 N'  such th a t

P m \.T .n + M - i  I P m \b k  \  _  i f  xU{1)  ®  m ~ i  \  c

M 1 A a b 1' > « » J £ U( v )  V n ~ N ' '

and by (4.6), we have

(  Pn+M\BK 
I  P u+ m \b k

jU n+M-  
M

- i  (  P m \b k  \  a  (  V

P m \bk V
V n  >  0 .

Combining the above, we get

_ 1 /  A*7^  <g> p m - i  
2  \  Aa(1) ® p m - i

P n + M  \b k  

y  P u+ m \b k

So, by Proposition 4.24

Pu+ m \b k  -  p k  =  ( P n + M Ib k  -  21;A i7(1) ®  P M - 1) +  ( P n + M \ BK -  \ xU{1)  ®  P 'M—l)

<S> P m - i  -  Aa(1) <g> p K ) ~f~ P n + M  \ b k
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Also, (4.5) gives us
\\Pn+M\b k  II <  6 Pn+M\Bj< G V  .

Thus
Vn+M\B K - V K e v - v  + v - v  + v + v c u ,

a n d  th e r e fo r e  Vn\BK — t]k  G U  V n  >  N '  +  M . □

4.6  A u to co rre la tio n  C onclusions

It is easy to see th a t if K  C K '  then Pk '\k = Pk - This allows the following definition:

D e fin itio n  4 .29  [i is the pure point measure on (0, oo) defined by n\K =  fin  V K  
bounded in (0 , oo).

From Proposition 4.28 and the fact th a t lim rjn L , , =  50 for some sufficiently
n —>oo '

small r  >  0, we get th a t rjn |{0}UBk — ► 5o +  A77̂  ® fi\K V K  C (0, oo) bounded. This 
final remark sets us up for the ultim ate theorem of this chapter.

T h e o re m  4 .30  The autocorrelation of A, v, exists with respect to {A™ }^ and
V == +  Au ( - <g> fT).

Proof. Suppose th a t f is an arbitrary real valued continuous function of compact 
support. Then, su p p (/) C {0} U B k  for some bounded K  C (0, oo).

From Proposition 4.28 we have

Vn\[0}UBK — +50 + \ u{1)® P k ,

which means
Vn\{0}uBl<( f )  (do +  Ar/(1) ® P k ) U ) -  

Because su p p (/) C {0} U B k , this gives us

Vn( f )  — ► (<5o +  AU{1) ® / / ) ( / ) ,

and finally, by the definition of vague convergence,

Vn — > do +  A*7^  ® ju.

□

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In this section, we have defined the autocorrelation and have calculated it to be 
the product of normalized Haar measure on U( 1) and a pure point measure on (0 , oo), 
plus So- This measure has pure point part consisting of the one delta peak at the 
origin, many singular continuous circles, and no absolutely continuous part; the first 
48 circles are illustrated in Figure 14. Our understanding of the autocorrelation of 
the pinwheel tiling only lacks knowledge about the pure point measure jn, and hence 
about the radii and heights of the circles. In [11], Charles Radin suggests th a t the 
support of /i has a self-similar structure. While we were not able to exploit this 
observation, it may prove useful to future pinwheel enthusiasts.
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Figure 14: P art of the support of the pinwheel autocorrelation measure 77
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C hapter 5 - D iffraction and O utlook

We have worked hard to learn as much about the autocorrelation of the pinwheel 
tiling as possible, and have met with some success. To some extent, th a t work was a 
precursor to  this section. Ultimately, we would like to compute the diffraction of the 
pinwheel tiling in order to learn more about its structure. The diffraction is helpful 
in this respect because it extracts information about the long range order from a 
tiling, information th a t is often shrouded in the tiling by local order. Unfortunately, 
calculating the diffraction of the pinwheel tiling in its full splendor is beyond the 
scope of this thesis. Even if we had a complete understanding of the autocorrelation 
-  which we do not -  the calculation of the diffraction is far from a straightforward 
process. In this chapter, we have two goals. First, we will provide the definition of 
the diffraction, and illuminate as much of its structure as we can. We will then finish 
with a summary of possible directions th a t pinwheel research could continue from 
here.

5.1 D iffraction

The diffraction of an object is the Fourier transform of its autocorrelation measure. 
To make any sense of this statem ent, we will require at least a cursory understanding 
of Fourier analysis on locally compact abelian groups. [3] is a thorough reference 
for this subject, and should be considered as the resource for all of the following 
material unless otherwise noted. Prior to starting with the definitions, we note tha t 
Proposition 7 of [2] tells us tha t 77^,77 are all translation bounded, positive-definite, 
and positive measures; the positive-definiteness proves to be particularly important.

D e fin itio n  5.1 For f  € /C(R2), the F o u r ie r  t ra n s fo rm  of f  is defined as

f ( k ) :=  f  e~27tik-xf ( x )d x  V k  € R 2 .
J  M2

In the general definition, k belongs to the dual group of the group th a t /  is defined 
on. In our case, both groups are R2. This is convenient, bu t one should be careful to 
remember th a t there are actually two groups involved to avoid confusion.

D e fin itio n  5.2 For a finite measure v  on R2, the F o u r ie r  t r a n s fo rm  of v is defined 
by the function

v{k)  :=  [  e - 2nik'xdu{x) V k e  R 2 .
2
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P ro p o s it io n  5 .3  For f  €  /C(R2) and n >  1, (rfn, f )  =  (rjn , f ). 

Proof.

( VnJ)  = [  f(k)dr]n(k)

e -27Tik-xf ( X) d \m2( x ) dT]n(k)

= ^  E  /  e~2ni(y~z)'x f ( x ) d \M\ x )
y,z£ An

= f  [  f ( x )( E  e - ^ ^ 1 ) d > f \ X )
y,zeAn 

f (x)rjn(x)dXR2 (x)

f(x)drfn{x)

=  (VnJ) -

□
From Theorem 4.16 in [3], we know th a t Fourier transform ation is a homeomor- 

phism on the set of all positive and positive-definite measures on R 2 equipped with 
the vague topology. Hence, because we know {qn}n r/ in the vague topology, we 
know th a t {'ifn}n also converges vaguely as n  oo.

D e fin itio n  5 .4  The d iff ra c tio n  of the pinwheel tiling is the Fourier transform of 

its autocorrelation, rj :=  -  lim ffn (where this is a vague limit).
4 71—̂ OO

By Proposition 7 of [2], we know th a t rf is a positive, transform  bounded measure 
on R2. W ith minimal effort, we can make a few more deductions regarding the nature 
of rj.

L em m a  5.5 For R ( a ) e  U( 1), /  € /C(R2) we have:

(R(a) f ) ( k)  = R { a ) f ( k ) .
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Proof:

(R(a) f ) ( k)  = f ( R ( - a ) k )
J  e - 2 n i R { - * ) k - x f ^ d x

J  e- 2mk-R(a)x rotational invariance of dot product)

e 2mh'y f ( R ( —a)y)dy  (by rot. invariance of Lebesgue measure)

P ro p o s it io n  5.6 Let a  be a Fourier transformable measure. I f  R (a )a  — a then

a ( R( a ) f )  = a ( R ( a ) f )

= a ( R ( a ) f )

= (R(—a)<j)(f)

=  <r(f)

=  ^ ( / ) -

Proposition 5.6 shows th a t any rotational symmetry possessed by the autocorre
lation will also appear in the diffraction. Since the pinwheel autocorrelation is fully 
circularly symmetric, so is the diffraction. From this, we can see th a t the diffraction 
may only have a pure point part at the origin. We show th a t this is indeed the case.

P ro p o s it io n  5 .7  ffpp = (dens(A))2So.

Proof: This result follows from Theorem 2.2 in [9]. We have

R ( a ) f ( k ) .

□

Proof. Suppose R (a )a  =  a. Then

□

n —>oo V0l(rn) 
dens(A ).
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Then, by the result mentioned above, ?7({0 }) =  (dens(A))2. □
For finite point sets, such as our An, there is an equivalent definition of diffraction 

th a t is more amenable to  calculations. This definition is the one most often used by 
physicists, who always work w ith finite structures. The two paths to diffraction are 
often represented by a figure known as the Wiener diagram.

D efin itio n  5.8 The diffraction of A n is alternately defined as

We can compute this in a straightforward fashion by inputting values for k  (though 
our value choices could certainly produce artifacting, or miss peaks altogether if our 
mesh size is too great). As was noted at the end of Chapter 1, the exponential 
growth in the number of control points puts a severe limit on our choice of n. Since 
the number of orientations grows linearly with n, the diffraction images we obtain 
via such computations will not be very good approximations of rj at all. Nonetheless, 
bearing these remarks in mind, such images may provide some insight. The code 
used to generate Figures 15 and 16 may be found in the Appendix.

X&hn
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Figure 15: The diffraction of A5
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1000

Figure 16: The diffraction of A6
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5.2 O u tlook

As is perhaps most evident in the previous section on diffraction, there is yet much to 
learn about the pinwheel tiling. Recall th a t our analysis of the pinwheel autocorrela
tion rj =  |(<50 +  \ u ^  <S) ji) in Chapter 4 was incomplete. A continuing goal is to fully 
compute the pure point measure /i. Starting with a fully computed autocorrelation 
measure would increase the possibility of being able to  obtain the diffraction measure 
of the pinwheel. In particular, another major goal is to compute the Lebesgue de
composition of the diffraction measure along a single ray em anating from the origin. 
By circular symmetry, we would then know the entire diffraction pattern.

The approach used in this thesis has been quite successful, but there are other 
possibilities. Many other aperiodic substitution tilings have been explained excep
tionally fruitfully using a cut-and-project formalism. Unfortunately, we cannot use 
the same approach on the pinwheel tiling because it fails to exhibit finite local com
plexity due to  its infinite tile orientations. If one considered patches of tiles to  be 
equivalent up to translation and rotation, they might be able to  obtain a finite local 
complexity result. We m et the noncommutative group E ( 2) — U( 1) K R 2 in Chapter 
2, and this is a much more natural setting for pinwheel considerations. In addition 
to the possibility of implementing a cut-and-project formalism, Chapter IV in [18] 
develops the Fourier transform  on E ( 2) and, based on this work, one should be able to 
calculate the noncommutative diffraction of the pinwheel tiling. This approach does 
have a few significant difficulties however. Because m athem atical diffraction in R 2 is 
directly related to physical diffraction phenomena, there is an extremely natural way 
to graphically interpret real diffraction patterns. There seems to be no such natural 
way to interpret noncommutative diffraction patterns, nor is any kind of physical 
analogue known. Moreover, in the real case, there is a vast canon of results available 
to aid in the diffraction analysis. While noncommutative analysis of the pinwheel 
would likely prove extremely fruitful, it is unfortunately well beyond the scope of a 
m aster’s thesis, have been explained exceptionally fruitfully using a cut-and-project 
formalism. Unfortunately, we cannot use the same approach on the pinwheel tiling 
because it fails to exhibit finite local complexity due to its infinite tile orientations. 
If one considered patches of tiles to be equivalent up to  translation and rotation, 
they might be able to  obtain a finite local complexity result. We m et the noncom
m utative group E {2) =  17(1) k R 2 in Chapter 2, and this is a much more natural 
setting for pinwheel considerations. In addition to the possibility of implementing 
a cut-and-project formalism, Chapter IV in [18] develops the Fourier transform on 
E {2) and, based on this work, one should be able to calculate the noncommutative
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diffraction of the pinwheel tiling. This approach does have a few significant difficul
ties however. Because m athem atical diffraction in R 2 is directly related to physical 
diffraction phenomena, there is an extremely natural way to graphically interpret real 
diffraction patterns. There seems to be no such natural way to interpret noncommu
tative diffraction patterns, nor is any kind of physical analogue known. Moreover, in 
the real case, there is a vast canon of results available to aid in the diffraction anal
ysis. While noncommutative analysis of the pinwheel would likely prove extremely 
fruitful, it is unfortunately well beyond the scope of a m aster’s thesis.

In [14], Sadun develops some generalizations of the pinwheel tiling. Whereas the 
canonical pinwheel tiling exhibits only one triangular tile up to reflection and rotation, 
Sadun creates pinwheel like tilings consisting of multiple similar right triangles. As 
he notes, this suggests an extension of the theory from the translation group to the 
conformal group, and not just to the Euclidean motion group as I have proposed 
above.

Sadun’s generalized pinwheels are not the only other tilings exhibiting infinite 
tile orientations. In [10], Penrose presents a substitution tiling based on an isosceles 
triangle th a t manifests this property. It would be interesting to analyze this tiling 
and compare it to what we have learned of the pinwheel tiling. Specifically, it would 
be valuable to generalize the formalism we developed in Chapter 4 to other infinite 
orientation tilings such as Penrose’s. It would also be valuable to  compile a list of 
infinite orientation tilings, with the ultim ate goal of classifying them.

Several tilings of space involving infinite orientations have been discovered, such 
as the quaquaversal tiling seen in [5]. Any developments in the two dimensional case 
would inevitably beg to be generalized to three or more dimensions.

Finally, it would be of incredible value if a physical substance w ith infinite orien
tation properties (like a glass) and long range order (like a crystal) were discovered 
or synthesized. Not only would such a substance lend resources and credibility to  the 
examination of infinite orientation tilings, it might prove to have interesting phys
ical characteristics. W hat we have learned of the pinwheel tiling suggests tha t it 
exhibits a type of order somewhere between th a t found in quasiperiodic tilings and 
th a t found in amorphous random tilings. Perhaps a physical analogue would likewise 
demonstrate a blend of the characteristics of quasicrystals and amorphous glasses.
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A pp en d ix

The following is some of the M athem atica 5.0 code used to create the images seen 
throughout the thesis. There are certainly more efficient methods for performing the 
same calculations available to individuals with a more comprehensive understanding 
of computer programming.

The following code is derived from Proposition 3.2 and was used to create Figure 
12. Different index ranges th a t are more M athem atica compatible are used below; 
notably, 1 denotes points of negative chirality and 2  denotes points of positive chirality 
for the fourth input argument. First, use the following to initialize the file oritable:

Zero[w_, x_, y_, z_] :=  (0)
init =  Array [Zero, {2, 1, 4, 2}];
in it[[1 , 1 , 1 , 2 ]] =  1 ;
in it[[2 , 1 , 1 , 2 ]] =  1 ;
init[[2, 1, 3, 2]] =  1;
in it[[2, 1, 3, 1]] =  2;
in it[[2, 1, 4, 1]] =  1;
init > >  oritable

The function OrientExpress returns a list of pairs consisting of an orientation and 
the number of times it occurs in the nth iterate:

Zero[w_, x_, y_, z_] :=  (0)
Opposite [chi.] :=  (

If [chi = =  1, 2, 1]

)
OneStep[n_] :=  (

workingin =  <<oritable;
workingout =  Array[Zero, {n, n - 1, 4, 2}];
Do[workingout[[i, j, k, 1]] =  workingin[[i, j, k, 1]], {i, 1, n - 1},

{j, 1, n - 2 } ,  {k, 1, 4}, {1, 1,2}];
Do [workingout [[n, j, k, 1]] =  (workingout [[n - 1, j, k, 1]]

+  workingout[[n - 1, j, Mod[k - 1 +  2, 4] 4- 1, 1]]
+  2*workingout[[n - 1, n - j, Mod[2 - (k - 1), 4] +  1, Opposite[1]]]
+  workingout[[n - 1 , n - j, Mod[3 - (k - 1 ), 4] +  1 , Opposite[1]]]),
{j, 1, n - 1}, {k, 1, 4}, (1, 1, 2}]; 

workingout > >  oritable
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)
TableTake[n_, tab_] :=  ( 

outlist =  {};
Do[outlist =  Append [outlist, {{Mod[((a - l)*P i/2)

- 2*(m - l)*ArcTan[.5], 2*Pi], (-1)" e}, tab[[n, m, a, e]]}],
{m, 1, n - 1}, {a, 1, 4}, {e, 1, 2}];

outlist

)
TableMake[n_, tabsize_] :=  (

Do[OneStep[i], {i, tabsize +  1, n}]; 
new =  < <  oritable; 
outlist =  {};
Do[outlist =  Append [outlist, {{Mod[((a - l)*P i/2)

- 2*(m - l)*ArcTan[.5], 2*Pi], ( - l ) 'e } ,  new[[n, m, a, e]]}],
{m, 1, n - 1}, {a, 1, 4}, {e, 1, 2}];

outlist

)
OrientExpress[n_] :=  ( 

old =  <<oritable; 
oldsize =  Dimensions[old][[l]];
Iffoldsize >  n, TableTakefn, old], TableMake[n, oldsize]]

)

The following code follows the pinwheel substitution and generates the control 
points of the n th  iterate. Proposition 2.10 can then be applied to convert the control 
points to  tiles for the purpose of creating tiling images, as in TileSubstitutionPlot 
below:

startpoint :=  {{1 , 0 }, {0 , 0 }, 1 }; 
rotloc :=  {{2 , 1 }, {-1 , 2 }};
oria :=  {{2 /S qrt[5], 1 / Sqrt[5]}, {-1 /S q r t[5], 2 /S q rt[5]}}; 
orib :=  {{2 /S qrt[5], -1 / Sqrt[5]}, {1/Sqrt[5], 2/Sqrt[5]}}; 
oric :=  { { 1  /S q r t[5], -2 /S q rt[5]}, {2 /S qrt[5], 1/Sqrt[5]}}; 
orid :=  {{1/Sqrt[5], 2 /S q rt[5]}, {-2/Sqrt[5], 1/S q r t[5]}}; 
ninety :=  {{0 , -1 }, {1 , 0 }};

translate[{a_, b_, 1 }] :=  ( 
v =  {orib.a, b, 1 };
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w =  {-orib.a, -2 orid.a +  b, 1 }; 
x =  {-orib.a, -4orid.a +  b, -1}; 
y =  {-orib.a, -2 orib.a +  b, - 1 }; 
z =  {orid.a, 2 orid.a +  b, -1 };
Chop[{v, w, x, y, z}]

)
translate[{a_, b_, - 1 }] :=  ( 

v =  {oria.a, b, - 1 }; 
w =  {-oria.a, -2 oric.a +  b, - 1 }; 
x =  {-oria.a, -4oric.a +  b, 1}; 
y =  {-oria.a, -2 oria.a +  b, 1 }; 
z — {oric.a, 2 oric.a +  b, 1 };
Chop[{v, w, x, y, z}]

)
translate [list_] :=  (

Flatten[M ap[translate, list], 1]

)
rotexpand[{a_, b_, c_}] :=  ( 

x =  {oria.a, rotloc.b, c}; 
x

)
rotexpand[list_] :=  (

M ap[rotexpand, list]

)
substitution [a_] :=  (

translate [rotexpand [a]]

)
TileSubstitutionPlot[n_] :=  (

pinwheeltiling =  Nest [substitution, startpoint, n] / .  {a_, b_, c_} —»■ 
{{Line[{b +  a - c*ninety.a, b - a - c*ninety.a}],
Line[{b - a - c*ninety.a , b - a +  c*3(ninety.a)}],
Line[{ b - a +  c*3(ninety.a), b +  a - c*ninety.a }]}};

Show [Graphics [pinwheeltiling], AspectRatio —> Automatic, PlotRange 
—> All, Axes —> False]

)
A ttributes [TileSubstitutionPlot] =  Listable
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PinwheelPoints[n_] :=  (
pinwheeltiling =  Nest [substitution, startpoint, n] / .  {a_, b_, c_} —> b

)
PinwheelPoints[5] > >  pinpoints5

The value 5 appears in the final line of code above merely as an example value of 
n. The pinpoint5 file generated by the above code is loaded in the code below and 
its diffraction is calculated and displayed:

z5 — <<pinpoints5;
Diff[lambda., len_, exp_, u_, v_] :=  (

g =  ((Abs[Sum[Exp[2*Pi*I*{u, v}dambda[[i]]], {i, len}]])"2)
/(4*5 ~ (exp))

)
PlotDiff[lambda., len_, exp_, r_, poi_] :=  (

Plot3D[Diff[lambda, len, exp, x, y], {x, -r, r}, {y, -r, r},
PlotPoints —> poi, Mesh —> False, PlotRange —> All]

)

The following line was used to generate Figure 15:

Timing[PlotDiff[z5, Length[z5], 5, 1, 401]]
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