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Abstract

Reinforcement learning (RL) is a learning paradigm focusing on how agents

interact with an environment to maximize cumulative reward signals emitted

from the environment. Exploration versus exploitation challenge is critical in

RL research: the agent ought to trade off between taking the known reward-

ing sequence of actions and exploring unknown actions that might be more

rewarding. Exploration research in RL often uses algorithms and environ-

ments with many degrees of freedom, which can interfere with the inter-

pretability of results. This thesis presents a systematic, yet simple, study of

exploration methods for value-based control algorithms. We present a novel

suite of small environments that each pose a distinct exploration challenge.

Our environment designs allow us to observe the strengths and weaknesses

of individual exploration methods, as well as trends across implementation

details and conceptual approaches to exploration. We conduct a literature

survey and categorize model-free exploration approaches by their underly-

ing heuristics. We also empirically evaluate the performance of representa-

tive exploration methods on our exploration domains. Despite the simplicity

of our environments, none of the tested exploration methods achieves good

performance in all environments. However, some methods consistently im-

proved upon the Q-learning baseline. Beyond our survey results, our suite of

interpretable environments can be used as a sanity check to ensure that an

exploration method behaves appropriately in simple situations.
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Parts of this thesis are to be submitted as a journal paper. This is a joint work
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Chapter 1

Introduction

Reinforcement learning (RL) is a subarea of machine learning concerned with

how an intelligent agent learns from interactions with an environment to

make optimal decisions (R. S. Sutton et al. 2018). At each discrete time point,

the agent takes an action and sends it to the environment, the environment

correspondingly updates its underlying state and sends an observation and a

numerical reward signal back to the agent. The agent’s learning objective is

to maximize cumulative rewards emitted from the environment. Consider a

maze game as an exemplar RL task. The environment is the game, including

all possible situations, the set of available actions, binary rewards indicating

whether the goal is reached, and underlying situation-switching mechanisms.

The agent is the player of this game. At each time point, the agent interacts

with the game by taking a step towards one direction and observing its new

location as well as a scalar indicating whether the game is solved.

The exploration-exploitation dilemma exists extensively in real-world

decision-making scenarios. The decision-maker needs to balance between

taking the best actions based on its current knowledge of the environment

(i.e., exploitation), and exploring unfamiliar actions to improve its under-

standing that could potentially lead to more rewarding long-term strategies

(i.e., exploration). Efficient exploration is crucial to solving certain RL prob-

lems. In hard exploration tasks, inefficient methodsmay find the near-optimal

policy with learning times exponentially large with respect to the size of the

state space (Osband, Van Roy, et al. 2019). In these tasks, the agent must
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efficiently explore to avoid local optima.

RL has achieved successes in diverse domains, thanks to the applicability

of its learning paradigm and function approximations. Utilizing deep neural

networks, modern Deep RL methods have demonstrated their capability in a

wide variety of tasks, ranging from game playing such as Atari games (Mnih,

Kavukcuoglu, et al. 2015), Go (Silver et al. 2017), and Starcraft (Vinyals

et al. 2019), to real-world applications such as robotics (Kober et al. 2013),

and recommendation systems (Afsar et al. 2021). Many state-of-the-art ap-

proaches such as DQN (Mnih, Kavukcuoglu, et al. 2015), A3C (Mnih, Ba-

dia, et al. 2016), TRPO (Schulman et al. 2017), and IMPALA (Espeholt et

al. 2018) have achieved super-human performance in many Atari games and

continuous control benchmarks. The scale of RL grows every day. It has be-

come commonplace to evaluate deep RL agents with millions of parameters,

on video games for hundreds of millions of frames, in complex, high dimen-

sional simulations, and in robotics.

However, there is still a gap between those successful benchmarking re-

sults and research on exploration. Given imperfect function approximation,

the state-spaces and exploration challenges posed by these problems are vast.

Interestingly, many state-of-the-art agents still rely on fairly primitive ex-

ploration methods such as n-greedy and entropy regularization, despite sig-

nificant efforts to specifically design more efficient mechanisms for neural

network learners (Bellemare et al. 2016; Fortunato et al. 2019; Osband,

Aslanides, et al. 2018; Osband, Van Roy, et al. 2019; Pathak, Agrawal, et

al. 2017). Indeed, large-scale learning systems rely on asynchronous train-

ing, replay, planning, and vast amounts of training data to brute-force the

exploration problem. Given this circumstance, research questions naturally

arise: why do state-of-the-art systems still rely on undirected exploration ap-

proaches like n-greedy? Are gains from directed exploration methods dom-

inated by other design choices? Do recently proposed deep exploration ap-

proaches only make minor improvements over more basic strategies?

To gain traction on these complex, multidimensional issues we turn to em-
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pirical study on exploration for value-based methods. Much has been written

about the efficiency of exploration in bandits, model-free RL with tabular rep-

resentation, and model-based RL. Unfortunately, we are still at the beginning

of our theoretical understanding of deep neural networks, let alone charac-

terizing exploration with non-linear function approximation. The majority of

prior work takes the form of demonstrating new state-of-the-art performance

on large-scale benchmarks, or empirical comparisons of existing systems with

and without new exploration mechanisms. To gain additional insight, exten-

sive experiments are needed.

Yasui (2020) conducts a comprehensive empirical study on exploration

methods for linear agents in the pure exploration setting. In this work, they

provide a categorization of environmental properties that reflect diverse ex-

ploration challenges, as well as a suite of small diagnostic tasks that imple-

ment these challenges. They also present a categorization of common value-

based exploration strategies. It is worthwhile to complement this previous

work and learn insights on neural network learners in a more complicated

setting. In this thesis, we conduct a study on neural network agents in a more

practical exploration-exploitation setting. We adopt most of these categoriza-

tions, and re-calibrated the environments to obtainmore distinct performance

across different approaches.

Taiga et al. (2019) systematically benchmark bonus-based explorationme-

thods on hard exploration games with sparse rewards (Bellemare et al. 2016)

as well as the whole Atari 2600 suite. They empirically show that bonus-

based methods that perform best on the most difficult Montezuma’s Re-

venge game often underperform n-greedy on easy exploration games. Their

results also suggest that improvementmade by bonus-based explorationmeth-

ods may instead be attributed to other confounding factors such as the model

architecture. These findings are interesting, as the lack of efficiency gain

could possibly also occur to other common exploration methods. Further-

more, this work investigates bonus-basedmethods on hard Atari gamesmainly

embodying two exploration difficulties: complex state-action space and sparse

3



rewards. It is interesting to examine other categories of exploration approaches

with more exploration challenges. This thesis thus provides an empirical

study complementary to this prior work on bonus-based methods.

It would be tempting to execute such a study in a popular benchmark,

such as Atari. However, fair and reliable conclusions require (1) testing and

characterizing many hyperparameter combinations, (2) for each algorithm,

(3) across a variety of domains, (4) with different function approximation ar-

chitecture, (5) measuring online and offline performance, and repeating the

whole process many times. In this thesis we consider 13 exploration methods,

6 problems, 2 function approximation approaches, and 11648 hyperparame-

ter settings, resulting in 69888 unique experiments. 1

Our empirical study is designed to tease apart the key characteristics of

exploration methods, while also attempting to isolate and test the character-

istics of exploration problems that make them difficult. We categorize recent

exploration methods by the heuristic that each method employs, and test rep-

resentative methods of each category. This categorization not only simplifies

experiments, but identifies the key approaches promoted in the literature. We

describe six properties of environments that can make them easier or harder

for agents to explore, and provide a suite of minimal hard exploration tasks—

several of which are new to this work. The main idea is that each task should

be difficult due to one property, as opposed to common large-scale bench-

marks that exhibit numerous interacting challenges or exploration tasks. For

instance, DeepSea (Osband, Van Roy, et al. 2019) combines misleading re-

wards and antagonistic dynamics. Our suite of tasks is designed to be as small

as possible to permit extensive experimentation and ensure the domains can

be easily analyzed and understood. In addition, our suite emits a score-card-

like analysis indicating the degree to which each method can handle different

aspects of hard exploration.

Our study results in several novel insights. The main conclusion is, per-
1The number of hyperparameter settings and experiments does not consider extended

hyperparameter sweeps or deep-dive case studies. More details are covered in Chapter 5.
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haps unsurprisingly, no single exploration method performs well in every

environment—our tasks are hard and diverse. The form of the representa-

tion has a large impact on performance. Almost all methods perform signif-

icantly worse with dense network architecture, compared with sparse, high-

dimensional tile coding features; however, methodswith neural networks per-

form more robustly under hyperparameter shifts. Moreover, recent deep RL

exploration methods, such as noisy networks (Fortunato et al. 2019), and

randomized value functions (Osband, Aslanides, et al. 2018), and random

network distillation (Burda et al. 2018) perform particularly poorly with tile

coding.

The main contributions of this thesis are as follows:

1. We provide high-quality implementations of exploration methods for

deep RL. We avoid complex design choices and instead focus on the

core ideas behind the exploration strategies. Our software framework

will assist researchers to benchmark different methods on diverse ex-

ploration challenges.

2. We conduct a systematic empirical study of state-of-the-art model-free

exploration methods on the aforementioned suite of diagnostic tasks.

Moreover, we dive deeply into some particular aspects of thosemethods,

such as the impact of function approximation, and unexpected poor

performance of deep exploration methods in some domains, etc.

3. We obtain empirical insights and learnings through the large compari-

son of exploration methods. We describe environmental properties that

pose the most difficult exploration challenge. We also present several

design choices that have an important impact on the agents’ perfor-

mance.

This thesis consists of seven chapters. In Chapter 2 we introduce back-

ground concepts and notations. In Chapter 3 we identify the key properties

that control the difficulty of exploration challenges, and present our proto-

typical suite of exploration tasks. In Chapter 4 we propose the categorization
5



of model-free exploration methods and discuss their underlying heuristics.

Chapter 5 and Chapter 6 cover the experimental setup and empirical evalu-

ation of exploration approaches in our domains, respectively. We conclude

this thesis with Chapter 7. Furthermore, Appendix A and Appendix B pro-

vide implementation details of our environments and selected algorithms,

respectively. Appendix C discusses the hyperparameter settings for each rep-

resentative method.

6



Chapter 2

Background

This chapter describes the RL problem setting and a model-free value-based

baseline approach. We present mathematical definitions of the environment

and other important concepts such as the value function. We cover the value-

based algorithm with two distinct function approximations, namely tile cod-

ing and neural networks, as well as their key characteristics.

2.1 RL Background

In the standard RL framework, the environment is modelled as a Markov

Decision Process (MDP), defined as " = (S,A, @, %, W), where S is the set of

states, A is the set of actions available to the agent, @ : S × A → R is the

reward function, % : S × A → S is the transition dynamics, and W ∈ [0, 1] is
the discount factor that reduces value of future rewards (R. S. Sutton et al.

2018). If the state space and the action space are finite, then the environment

is called a finite MDP. State transitions and rewards are determined by the

transition dynamics and the reward function, respectively. The agent takes

actions according to its policy, a mapping from states to the distribution of

actions c : S → A.

In this thesis, we consider sequential decision making tasks where an

agent interacts with the environment on discrete time steps, B = 0, 1, 2, . . . . In

addition, we restrict our focus to episodic tasks, where the agent-environment

interaction are split into episodes. At the beginning of each episode, the envi-
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ronment samples the initial state (0 according to an initial state distribution

d : S → [0, 1]. On timestep B, the agent observes the state (B ∈ S and decides

on an action based on its policy �B ∼ c(·|(B). The environment responds by

transitioning to a next state (B+1 ∼ %(·|(B, �B) and emitting a scalar reward

'B+1 = @((B, �B). The episode ends once the agent reaches a terminal state.

The return is defined as the discounted cumulative reward

�B := 'B+1 + W'B+2 + W2'B+3 + · · · + ') =

)∑
9=B+1

W9−B−1'9,

where ') is the reward at the terminal state. In tasks with infinite horizon

) is infinitely large. One reason discounting is used in the definition is to

upper bound the return in case of infinite horizon. Suppose 'max = max @(·, ·)
is the maximum achievable reward in the MDP. Then �B =

∑∞
9=B+1 W

9−B−1'9 ≤∑∞
9=B+1 W

9−B−1 |'max | → |'max |
1−W .

The value function of a state A ∈ S under a policy c, denoted as Dc(A), is
the expected return starting at A and following c thereafter

Dc(A) := Ec [�B | (B = A] = Ec [
)∑

9=B+1
W9−B−1'9 | (B = A], for all A ∈ S.

Similarly, the value function of a state-action pair (A, 0) ∈ S×A under a policy

c, denoted as ?c(A, 0), is the expected return starting at A, taking action 0, and

following c thereafter,

?c(A, 0) :=Ec [�B | (B = A, �B = 0]

=Ec [
)∑

9=B+1
W9−B−1'9 | (B = A, �B = 0], for all A ∈ S, 0 ∈ A.

We call Dc and ?c the state-value function and the action-value function,

respectively. For any A ∈ S, 0 ∈ A, the optimal action-value function is

defined as the maximum action-value at (A, 0) across all policies ?∗(A, 0) :=
maxc ?c(A, 0). An optimal policy is a policy that achieves the optimal action

value, i.e., c∗ := argmax
c

?c(A, 0), for all A ∈ S, 0 ∈ A.

8



2.2 Exploration Background

In this section, we introduce two settings for exploration method evaluation.

Suppose the learning budget is )learn timesteps. In the pure exploration set-

ting, the learning phase (or training phase) and the evaluation phase (or test-

ing phase) are explicitly separated. The agent interacts with the environment

and learns online for )learn timesteps, then it outputs a fixed policy ĉ, with its

exploration and learning components disabled. The agent’s performance is

evaluated by the expected total rewards ĉ accumulates over )eval offline eval-

uation timesteps. An equivalent interpretation of this evaluation metric is

how large )learn should be such that the cumulative reward over )eval is above

some threshold. Here )learn is the sample complexity. The pure exploration

setting is also called the offline setting due to the offline phase evaluation.

The agent’s objective is to obtain a policy ĉ that maximizes the expected cu-

mulative offline rewards.

Since we are only concerned with how good the output policy is after

training, the pure exploration setting does not embody the trade-off between

exploiting the agent’s current knowledge and exploring the environment. In

addition, this learning/evaluation separation may not be applicable to some

scenarios. Hence we are also interested in the other setting, the exploration-

exploitation setting, where the exploration-exploitation dilemma does exist.

The agent needs to learn about the environment to improve its policy while

in the meantime accumulating as much rewards as possible along the way.

In the exploration-exploitation setting, the agent interacts with the envi-

ronment and learns from transitions using the exactly same learning phase

in the pure exploration setting. The agent’s performance is usually evaluated

by the expected total rewards accumulated over the )learn online timesteps.

Without offline evaluation involved, the exploration-exploitation setting is

also called the online setting. The agent’s objective is to maximize the ex-

pected cumulative online rewards.

In this thesis, we restrict our attention to the exploration-exploitation set-
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ting. Moreover, with more focus paid on the final performance, we evaluate

the agent’s performance by the expected total rewards accumulated over the

final 10% of the learning budget. This evaluation metric serves as a com-

promise between the cumulative reward and the quality of the final policy

learned. Hence, in case two agents achieve similar cumulative rewards over

the entire learning budget, the one with a higher final cumulative reward is

considered outperforming the other.

In both exploration settings for exploration method evaluation, the perfor-

mance is based on the cumulative reward, i.e., the result of learning, regard-

less of online or offline. Data coverage — that is, how well the agent explores

the whole state-action space — is not directly reflected in those metrics. Our

evaluation metrics are no different from those that are used for tasks with-

out hard exploration challenges. This is because learning and exploration

depend on each other. In fact the purpose of efficient exploration is to more

accurately learn the action-values, so that the value-based policy becomes

better and collects more rewards.

2.3 Baseline Algorithm

In many tasks there are too many states to store and estimate their values

individually. In these tasks we use function approximation to approximate

the values. In the non-linear setting, a neural network function approximator

directly maps the state-action pairs to the value estimates ?̂NNw : S × A → R,
where w is the parameterization. In our study we use neural networks with

fully connected layers, also named multilayer perceptron (MLP), where the

parameters w are the weights and biases of each layer.

In contrast to neural networks, under linear setting the state-action pairs

are mapped to feature vectors qB := q((B, �B), where q : S × A → R3. This
q function produces vectors as a representation of the state-action pair and

can be computed in numerous ways, including tile-coding (R. S. Sutton et al.

2018), where qB would be binary and sparse. The agent’s value estimate is

10



linear in qB: ?̂TCwB
((B, �B) = q

ᵀ
B wB and q is a fixed mapping. Under both settings

the agent adjusts the parameters wB, to better estimate the values: ?̂c ≈ &c.

Note that in the linear setting the number of modifiable parameters is typically

much smaller than the size of the state-action space: 3 � |S × A|.
The most popular methods for estimating ?̂ and finding near-optimal poli-

cies are based on Temporal Difference (TD) learning, an incremental learning

mechanism. The essential idea behind TD methods is that they alternate on

each step between refining their estimate of ?̂c based on the recent reward,

and updating the agent’s policy to favour actions that maximize ?̂c((B, ·). Here
the exploration-exploitation trade-off can be re-interpreted in terms of ?̂c of

TD methods. If the agent is purely greedy with respect to ?̂c it might choose

the wrong action; particularly if ?̂c is inaccurate in some states. On the other

hand, the agent must sometimes intentionally select actions with lower value

to check if they are better than the action currently favored by c, thus ensur-

ing convergence to accurate estimates.

We restrict our focus to value-based methods, methods that learn the

action-value estimate ?̂ to directly control the agent’s behaviour policy. In

particular, we focus on Q-learning (Watkins 1989) with greedy behaviour

policy. We also discuss another family of algorithms—policy gradient algo-

rithms, whose policy is directly parameterized by a vector \.

Incremental value-basedmethods update their action value estimates from

the most recent transition tuple ((B, �B, 'B+1, (B+1, �B+1). The update rule for Q-
learning is

&((B, �B) ← &((B, �B) + U('B+1 + Wmax
0

&((B+1, 0) − &((B, �B)),

where U ∈ [0, 1] is the learning rate. Note that Q-learning does not learn an

action value of the policy that generates the transition, namely the behaviour

policy; instead it learns the action-value estimate ?∗ for the optimal policy c∗,

which we call the target policy. Algorithms that learn a value function for a

target policy c with data generated from a different behaviour policy 1 are

called off-policy learning algorithms.
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In addition to incremental updates, Q-learning also supports updates with

mini-batches of transition tuples that are not temporally correlated. DQN

(Mnih, Kavukcuoglu, et al. 2015) demonstrates mini-batch updates with an

experience replay buffer: at each timestep the transition data is fed to the

replay, and a mini-batch is randomly sampled from the replay for the batch

update. Let {(A7, 07, @7, A′7, 0′7)} denote the batch sampled from replay, the loss

function of Q-learning on this batch at timestep B is

!B (w) =
∑
7

‖G7 − ?̂w(A7, 07)‖2, (2.1)

where G7 = @7 + Wmax0 ?̂w′ (A′7, 0) is the target value for transition 7. Here in the

target value ?̂ is not parameterized by w; instead it is parameterized by the

fixed target parameter w′ due to the usage of the target networks, which will

be explained in the following paragraph. The gradient of the loss is obtained

by differentiation with respect to the weight parameter w:

∇w!B (w) =
∑
7

[(?̂w(A7, 07) − G7) ∇w?̂w(A7, 07)] . (2.2)

Note that the gradient does not flow through the target value G7

Another key component of DQN is the target networks. If the target value

G7 is also parameterized by the same weights w, when we perform one gradi-

ent descent step according to Equation 2.2, the target value is also updated

correspondingly. To mitigate the issue of moving targets and stabilize up-

dates, the target network is introduced to replace the policy network in the

target value. The target network parameters are synced with the policy net-

work every # timesteps. In our experiments, incremental updates and mini-

batch updates are conducted separately, where one hyperparameter setting

determines the update type.

Our Q-learning baseline takes actions greedily with respect to the action

value estimate at each state. In Chapter 4, all exploration methods are ap-

plied to the same Q-learning baseline. Furthermore, we also include a policy

gradient algorithm baseline — actor critic (R. S. Sutton et al. 2018) — in

our empirical evaluation. Policy gradient methods parameterize their policy

12



directly by a vector \, and they improve their policy by performing gradient

descent steps on the objective !(\) = E(0∼d[Dc\ ((0)].
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Chapter 3

Environments

Exploration can be challenging due to a number of factors. The rewards may

be misleading or even adversarial, ticking the agent into a sub-optimal path.

The dynamics of the world could make it difficult for the agent to highly re-

warding regions of the state-space. Perhaps most realistically, the state-space

might be vast with many reasonable policies possible. Many real-world appli-

cations might exhibit one or more exploration challenges in addition to other

non-exploration challenges such as high-dimensional inputs, continuous ac-

tions, partial observability, non-stationarity, or delayed action effects.

In order to focus our investigation, we consider a suite of small, issue-

oriented diagnostic exploration test problems, each designed to focus on a

particular exploration challenge. We avoid the complexities of complicated

function approximation architectures and optimizations designed to improve

sample efficiency (such as n-step methods or prioritized replay) and instead

focus on simple implementations of core ideas for model-free exploration. In

each of the six problems we describe next, good performance requires solving

the underlying exploration challenge.

All environments have continuous state space, which makes it difficult

for the agent to visit the exact same state multiple times, and simple finite

action sets. In our experiments we use the discount factor W = 0.99. Each

environment is structured so that the value of the optimal policy from the

start state is approximately 1. In some of the environments, agents who do

not explore enough will tend to learn a specific suboptimal policy, which has

14



a value around 0.01 from the start state. Details regarding parameter choices

and implementation are discussed in Appendix A.

3.1 Exploration Properties Related to Reward

First we present three properties of the reward function that make exploration

difficult for value-based RL agents.

3.1.1 High-variance Reward: VarianceWorld

Our first property is simply high variance in the reward function. As this

variance increases, functions of reward from a state-action pair require more

data to estimate accurately. As a result, action values are more difficult to es-

timate when rewards are high-variance, and the agent will expect suboptimal

actions to be optimal a larger proportion of the time. This property is exem-

plified by VarianceWorld, a continuous navigation environment adapted from

White et al. (2010). This environment is a short, one-dimensional corridor

with a small fixed reward on one side and a large in expectation, yet highly

varying reward on the other. The agent begins in the center of the corridor,

and has two actions that move to the left or right; episodes terminate when

the agent moves past either end of the corridor. The agent needs to sample

the high-variance reward sufficiently many times to obtain an accurate value

estimate of the highly rewarding state.
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Figure 3.1: Diagram of VarianceWorld. The environment is a one-dimensional
corridor with two ends as terminal states. The agent starts in themiddle of the
corridor. The terminal reward at the left end is a small fixed value, indicated
by the short green line. The terminal reward at the right end is large in
expectation yet sampled from a discrete uniform distribution, indicated by
the three green lines and two red lines. In this diagram, green lines represent
positive values and red ones represent negative values. Their lengths illustrate
the relative magnitude of values.

3.1.2 Misleading Reward: Antishaping

Reinforcement learning agents explore in state-action space by examining lo-

cal reward signals. If these local signals are misleading, the agent may fail

to make globally optimal decisions. The Antishaping environment, another

one-dimensional corridor environment adapted from Langford (2018), gives

a simple example of this property. The agent begins at the left end of the cor-

ridor and can move left or right. Episodes terminate when the agent reaches

the right end of the corridor and receives a large reward. During the episode,

a small misleading reward is provided to the agent. The reward decreases as

the agent approaches the terminal state on the right. To solve this domain,

the agent needs to ignore misleading reward signals in the vicinity and move

persistently to the right end.
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Figure 3.2: Diagram of Antishaping. The environment is a one-dimensional
corridor whose rightmost edge is the terminal state. The agent starts at the
leftmost edge, and it receives small yet decreasing rewards as it moves right.
The terminal reward at the right end is large. In this diagram, the height of
the green reward curve at one position illustrates the relative magnitude of
the reward in that state.

3.1.3 Sparse Reward: Sparse MountainCar

When the rewards observed by the agent are all equal to zero, there is no

signal in the reward for the agent to optimize. In this case, the agent can

only expect all the state-action pairs it has visited to have a value of zero.

This zero-everywhere value function implies that all policies are equally re-

warding. The Sparse MountainCar (SparseMC) environment is a modified

version of the classic toy problem MountainCar (Moore 1990). The agent is

an underpowered car that uses momentum to drive up a hill to a goal, where

the episode terminates. Driving uphill requires a sequence of mildly coordi-

nated actions, but even an agent that chooses actions randomly can reach the

goal within around 50k time-steps. The reward is typically −1 per time-step,

incentivizing the agent to terminate the episode as quickly as possible. In our

“Sparse MountainCar” implementation, the reward is 0 everywhere, with a

3.34 reward upon reaching the goal.
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Figure 3.3: Diagram of Sparse MountainCar. The environment depicts a sce-
nario where an underpowered car needs to use momentum to drive up a hill.
Specifically, the agent must drive up the left hillside and then drive up the
right hill with the help of momentum. The green dot at the terminal state
indicates the only nonzero reward in this environment.

3.2 Exploration Properties Related to Transition
Dynamics

Next we present three properties of the transition dynamics that make explo-

ration difficult for value-based RL agents. Environments in which it is difficult

to frequently visit all states can be challenging to explore, especially when the

states that are more difficult to visit have high rewards. An environment can

also be challenging to explore if the states that are likely to be visited cause

the agent to believe that suboptimal actions are optimal. Lastly, environments

can be difficult to explore if the state-action space is quite large, even if the

optimal policy only visits a small fraction of state-action pairs.

3.2.1 High-variance Transitions: WindyJump

When transitions are high-variance, the sequence of states visited by an agent

is also high-variance. As a result, it can be difficult to estimate the value

of a state-action pair without a large number of samples. The WindyJump
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environment is similar in spirit to the VarianceWorld environment, while it

creates stochasticity in samples of the return by randomizing the state tran-

sition dynamics rather than the rewards. The agent’s goal is to jump over a

pit on the right side of the environment to reach a large reward. Episodes

terminate whether the agent falls into the pit or jumps over it, or when the

agent reaches the left end of the corridor and receives a small reward. In the

wind-free region of the environment, the agent can move left or right accord-

ing to a low-variance Gaussian distribution. On the windy right half of the

environment, the agent’s movement is more stochastic, moving left or right

according to a nearly symmetric uniform distribution. Due to these stochastic

transitions, the returns under the optimal policy are high-variance.
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Figure 3.4: Diagram of WindyJump. The environment is a one-dimensional
corridor with two ends as terminal states. The agent starts in the middle of
the corridor. The terminal reward at the left end is a small value, indicated by
the green dot. The terminal reward at the right end depends on how far the
agent jumps over the right edge. If the agent falls into the pit, it receives a
negative reward, indicated by the short red line segment; if the agent jumps
over the pit, it receives a large positive reward, indicated by the long green
line segment. In this diagram, the height of the reward line segment at one
position illustrates the relative magnitude of the reward in that state.

3.2.2 Antagonistic Transitions: AlpineSki

When the transition dynamics are antagonistic, some states are much more

difficult to reach than others. We give an example of an environment with an-

tagonistic transitions inspired by the Combination Lock environment (Lang-
19



ford 2018) and a highway commute environment (Russo 2019), called Alpine-

Ski. The agent is an alpine skier at the top of a mountain. At each timestep,

the skier can choose to ski down, terminating the episode, or traverse across

the top of the mountain. Skiing down the slope at the right end of the moun-

tain — which requires a sequence of persistent “traverse” actions first — re-

sults in a high reward, whereas skiing down earlier gives a small reward.

Undirected exploration methods (e.g., methods that learn a stochastic policy

or a policy with noise applied) are less likely to perform well in this environ-

ment.

S0 S1 S2 S3

T

S20...

Figure 3.5: Deterministic illustration of AlpineSki. The environment is a one-
dimensional continuous corridor. For simplicity this diagram shows the de-
terministic version with stochasticity in the action distribution ignored. The
agent starts at the leftmost edge, and at each state it can choose to terminate
the episode by skiing down, or traverse to the right state. Skiing down at the
rightmost state results in a large reward, while skiing down at any other state
results in a small reward.

3.2.3 Large State-action Space: Hypercube

Any environment can be made trivially more difficult to explore by adding

states and actions that are not visited by the optimal policy. Our example en-

vironment for large state-action spaces is symmetric along each dimension of

the state-action space, so all states are relatively close to the path of an opti-

mal policy. The Hypercube environment has a relatively large 3-dimensional

cubic state-space. The agent starts each episode at the origin, and can move

up to around 10 steps away from the origin in either direction along any of

the axes. The objective of the agent is to travel to any vertex of Hypercube,
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where the episode will terminate. Since the state-action space is so large, we

add shaping rewards to help the agent find the vertices. The agent receives

increased reward as it touches more surfaces of Hypercube. The increase in

reward when the agent touches another surface is such that the reward from

one time-step of touching < + 1 surfaces is larger than the discounted return

from touching only < surfaces indefinitely. One optimal policy is to move

persistently along each axis until reaching one more surface.

Figure 3.6: Lower dimensional illustration of Hypercube. The environment
is a three-dimensional cube whose vertices are terminal states. For simplicity
this diagram shows the two-dimensional squared version. The agent starts in
the center, and it can move along any axis. There is no reward signal in the
interior of the environment. The agent receives a large reward upon reach-
ing a terminal state. To help the agent explore, shaping rewards are added
to each surface such that staying in < surfaces forever results in cumulative
reward less than touching <+1 surfaces for one timestep. In this diagram the
width of the green line indicates the relative magnitude of the reward at that
state.
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Chapter 4

Model-Free Exploration Methods

Explorationmethods can be either undirected or directed. Undirectedmethods

inject stochasticity in action selection, typically through the use of soft-greedy

approaches like n-greedy or softmax policies. Directed methods, on the other

hand, attempt to focus exploration to obtain information that could improve

the policy. Most exploration methods are directed (even though most systems

use undirected methods), and most directed exploration methods can be seen

as encoding the principle of optimism in the face of uncertainty.1

Uncertainty estimation can take several forms. Several methods estimate

epistemic uncertainty in the action values based on data from previous inter-

actions with the world. Others use proxy measures for uncertainty in the

estimate for a state, such as counts or model errors, and incorporate that un-

certainty directly into the action-value estimate in the form of reward bonuses.

These reward bonuses affect the return—they propagate through the value

function using bootstrapping—and ensure that the uncertainty in the value

estimate of a state and action reflects the uncertainty in downstream states.

A critical separating factor amongst these methods is whether or not they

explicitly incorporate uncertainty derived from unvisited parts of the state-
1There is a large literature on Bayes adaptive MDPs (Duff 2002; J. J. Martin 1967), which

formulates the exploration problem itself as a control problem. These approaches do not use
optimism, and are typically model-based. There have been a few attempts to make this idea
more practical to use, with model-free methods, both for the tabular setting (Şimşek et al.
2006) and under function approximation using meta-learning (Zintgraf et al. 2020). These
methods, however, remain quite computationally intensive, and so we do not consider them
further here.

22



action space, which we call out-of-sample epistemic uncertainty. In-sample

epistemic uncertainty methods, like the statistical bootstrap, only reflect un-

certainty on the parameters within the data visited. Even if the agent never

visits a part of the space, the epistemic uncertainty can go to zero in the vis-

ited part. Anticipatory methods explicitly model uncertainty from unvisited

parts of the state-action space. For example, an anticipatory method might

assign a high value to an action that has never been taken in a state, reflect-

ing that it could have a high value (e.g., optimistic initialization). A reward

bonus method, on the other hand, without any optimistic initialization, must

take an action in a state before it increases its value; it is not anticipatory, but

rather retroactive.

Finally, the (optimistic) value estimates, and uncertainties, can be used

in different ways for action selection: greedy selection on optimistic values

or Thompson sampling. The classic example of the first is UCB (Lai et al.

1985), where actions with the highest estimated upper confidence bound

can be selected. This upper confidence bound is the optimistic value esti-

mate, with actions selected greedily according to that optimistic estimate.

Other approaches that do not directly estimate uncertainties use a similar

idea. For example, the agent can select greedy actions with respect to the

optimistic values learned under reward bonuses. Alternatively, the agent can

use Thompson sampling (Thompson 1933), where the parameters are sam-

pled from the posterior distribution of parameters. This strategy is limited to

approaches that maintain a posterior. For example, it cannot be used with

reward bonus methods. However, if a posterior can be computed, then ei-

ther an upper confidence bound can be used or Thompson sampling. In fact,

they can both be seen as implementing optimism, with many regret bounds

established for upper-confidence-based approaches extending to Thompson

sampling (Russo and Van Roy 2014).

In this chapter, we categorize and discussmodel-free explorationmethods,

based on these described differences. Later, in our experiments we select a

representative instance of each category.
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4.1 Estimating Value Uncertainty with Count-
based Reward Bonuses

Early work in exploration in RL primarily focused on proxy measures of un-

certainty. In fact, many of the ideas used today were proposed in early work:

preferring less frequently visited state-action pairs based on counts (Barto et

al. 1991); preferring state-actions where there was previously high prediction

error (Moore 1990; Schmidhuber 1991); using errors in model estimates as

a proxy for knowledge gain (Thrun 1992; Thrun and Moller 1991); and us-

ing interval estimation (IE) on rewards to obtain local exploration bonuses

for action selection (Kaelbling 1993). A key insight from this early work is

that local uncertainties, about rewards or state information, need to be prop-

agated to obtain global uncertainties (Meuleau et al. 1999). Many methods

estimate or compute local uncertainties, such as reward uncertainties in IE

directly to select actions (Kaelbling 1993). Instead, this uncertainty needs to

be propagated to account for the fact that an action can lead to a state with

high uncertainty.

The Interval Estimation Q-learning (IEQL+) algorithm (Meuleau et al.

1999) was introduced to extend IE (Kaelbling 1993) to compute global un-

certainty on value estimates, by propagating local uncertainties. Instead of

using local uncertainties to directly select actions, the local uncertainty is in-

corporated into the value update, in the reward. This approach underlies

modern reward bonus strategies, and was the inspiration for a line of model-

based exploration approaches, starting with Model-Based Interval Estimation

with Exploration Bonuses (MBIE-EB) (Strehl et al. 2008). The idea of prop-

agating exploration bonuses actually arose slightly early, in a model-based

algorithm called Dyna-Q+ (R. Sutton 1990), where the Q-learning updates

in the planning loop include a recency bonus. These planning updates prop-

agating these local exploration bonuses, to globally increase action-values for

actions that have not been recently selected or that lead to parts of the state

that have not been recently visited.

24



The idea of incorporating local bonuses into the reward, to obtain globally

optimistic value estimates, has been particularly compelling because it eas-

ily extends to function approximation. Consequently, there have been many

works relying on this idea, focused on different choices for the reward bonus.

The first algorithms relied on estimating counts for continuous state spaces,

called pseudo-counts (Bellemare et al. 2016). Exploration is encouraged by

adding a multiple of 1√
<(A)

to the agent’s reward, where <(A) is the pseudo-

count for state A, estimated using density estimation. This work inspired

a series of papers, improving on the estimation of these counts (Machado,

Bellemare, et al. 2019; J. Martin et al. 2017; Ostrovski et al. 2017; Tang et

al. 2017). One heuristic uses feature activation estimates, and aggregates

those estimates for the active features in a state (J. Martin et al. 2017). State

visitation can also be approximated using the �1 norm of a vector called the

successor representation (Machado, Bellemare, et al. 2019).

Counts provide a distribution-agnostic measure of uncertainty. Under iid

sampling, basic concentration inequalities like Hoeffding’s bound tell us that

uncertainty decays with 1/
√
<. The UCB bandit algorithm employs such con-

fidence estimates, to avoid making strong distributional assumptions (for an

extensive overview, see Lattimore et al. (2020)). Such a choice is relatively

conservative. For example, another option is to use Bayesian methods for the

reward to obtain an estimate of reward uncertainty (namely to maintain a

posterior over the reward), as was used in a model-based method with ex-

ploration bonuses (Hester et al. 2017). The most common option has been to

use proxies for information gain, which we discuss in the next section.

Note that reward bonus approaches, both those discussed in this section

and the next, are retroactive, rather than anticipatory; we discuss this more

in Section4.3.
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4.2 Estimating Value Uncertainty with Learning
Progress Reward Bonuses

Many different reward bonuses have been developed to reflect learning pro-

gress. Here the agent learns an auxiliary function, such as the model, and

incorporates some measure of how much it learned for that auxiliary func-

tion when taking an action in a state. For example, the agent can learn the

transition dynamics for the environment as an auxiliary function, updating

with the experience generated by the agent. For state-action pairs where the

prediction error is high, the agent receives a high reward bonus to revisit that

part of the space (Pathak, Agrawal, et al. 2017; Stadie et al. 2015). Such pre-

diction error reward bonuses are typically inadequate measures of learning

progress, as they may simply reflect noise in the targets (see Linke (2021) for

a thorough overview).

An alternative strategy is to estimate information gained. Bayesian meth-

ods whichmaintain a posterior over themodel facilitate computing the change

in the posterior after an update. This idea—called Bayesian surprise (Itti et al.

2005)—was actually first explored in a pure exploration setup (Storck et al.

1995), rather than as a bonus added to the reward, and since has been more

generally used either for pure exploration (Antos et al. 2008; Linke 2021;

Orseau et al. 2013) or as a bonus (Achiam et al. 2017; Houthooft et al. 2016;

Little et al. 2013; Still et al. 2012). The difficulty in using Bayesian surprise

is that it requires maintaining posteriors and computing KL divergences be-

tween distributions—namely information gain—which can be expensive.

A simple heuristic to approximate information gain is to assess if the agent

has identified the correct function from a realizable function class. Prediction

errors are problematic because zero prediction error is not always possible,

because (a) outcomes may be stochastic and (b) the true model may not be

representable by our function class. In Random Network Distillation (RND)

(Burda et al. 2018), the secondary function 5̂E((B) with weights E predicts

a fixed, randomly initialized target 5 ((B). Since the target function is deter-
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ministic, the agent will not receive large reward bonuses for visiting stochas-

tic areas of the environment. Further, the prediction error will decrease as

the agent observes more samples in each region of the state space. Another

approach has been to use variance across an ensemble of model estimators

(Pathak, Gandhi, et al. 2019), which should also reduce to zero over time as

it effectively measures epistemic uncertainty.

4.3 Directly Estimating Value Uncertainty

Another class ofmethods attempts to directly obtain interval estimates around

action-values, rather than propagating local uncertainty estimates. Let us first

consider why this is difficult, and why it differs from propagating local un-

certainties. Consider the simpler policy evaluation setting, where the goal

is to obtain uncertainty estimates on the action-values for a fixed policy c.

If we use Monte Carlo rollouts, then we can leverage existing methods for

computing uncertainties on our estimates. For example, given a dataset of

state-action pairs and corresponding sampled returns, we can use Bayesian

linear regression—or more advanced approaches like Gaussian processes—

to obtain confidence estimates directly on value estimates. The rate at which

the confidence interval shrinks in Bayesian linear regression depends on the

number of samples, the variance in the returns, and the initial prior variance

over parameters.

This differs from using Bayesian linear regression around rewards, with

reward bonuses, for two key reasons. First, the intervals are likely to be wider,

since local uncertainties accumulate. Namely, summing variance per state in

the trajectory will be larger than the return variance. Second, incorporating

reward bonuses is not anticipatory: it does not promote out-of-sample opti-

mism. Direct estimates of uncertainty on action values should both reflect

in-sample epistemic uncertainty, as well as out-of-sample epistemic uncer-

tainty due to lack of visitation. In Bayesian linear regression for values, for

example, the prior provide out-of-sample optimism. Therefore, though re-
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ward bonuses appear similar to uncertainty estimates around action-values,

they are notably different for these two reasons.

Practically, there is another important difference: directly estimating un-

certainty on action-values is more difficult. For Monte Carlo estimates in pol-

icy evaluation, it is straightforward. Once we include bootstrapping as in TD

learning, however, we can no longer easily apply existing Bayesian methods

because the targets are constantly changing and involve estimates. Further,

once we move to control with Q-learning, the data distribution changes as the

policy changes. These difficulties might explain the focus on model-based ex-

ploration methods, which facilitate computing these uncertainties.

More recently, however, several efficientmodel-free exploration approaches

have been developed for the function approximation setting. Some methods

have relied on least-squares approaches to obtain intervals based on variance

estimates (Jin et al. 2019; Kumaraswamy et al. 2018; O’Donoghue et al. 2018;

Osband, Roy, et al. 2016); others have used statistical bootstrap approaches

(Chen et al. 2017; Osband, Aslanides, et al. 2018; Osband, Blundell, et al.

2016; White et al. 2010); and others have used more explicit Bayesian strate-

gies (Azizzadenesheli et al. 2019; Dearden et al. 1998; Engel et al. 2005; Gal

et al. 2016; Grande et al. 2014).

Least squares approaches facilitate sample-efficient closed-form solutions

for both value estimates and variances. Kumaraswamy et al. (2018) propose

a method called Upper Confidence Bound Least Squares (UCLS), which esti-

mates the variance of the value function using a second set of weights. The

variance estimate is then used to construct an upper confidence bound on

the values. UCLS’s variance estimates can also be combined with Thompson

sampling. This approach resembles RLSVI (Osband, Roy, et al. 2016), which

iteratively applies Bayesian linear regression by statistical bootstrap off of pa-

rameters sampled from a Gaussian posterior. RLSVI is designed for the finite

horizon setting, though practically it could be used in an episodic setting with

cutoffs, and has an upper bound on the expected regret in the finite horizon

setting. Either approach could use upper confidence bounds or Thompson
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sampling, though UCLS originally used upper confidence bounds and RLSVI

used Thompson sampling. Both these methods, however, are restricted to

linear function approximation.

Statistical bootstrapping approaches are an elegant way to extend explo-

ration methods to nonlinear function approximation. The idea is simple: the

experience is resampled # times, with # functions estimated on these differ-

ent subsets. The variability across these functions reflects the variability due

to insufficient samples (epistemic uncertainty); with more and more data,

this variability disappears. Bootstrapped DQN (BootstrapQ) (Osband, Blun-

dell, et al. 2016) uses this idea, learning # neural networks on a subset of

data screened incrementally. The most straightforward implementation in-

volves learning # separate networks; storing separate replay buffers for each

neural network that is a screened subset of all the data; and using the action-

value estimates per step to select actions. Practically, however, this can be

expensive and the authors provide a different final algorithm for BootstrapQ

that uses a multi-headed network and screens updates from a shared mini-

batch. Additionally, Thompson sampling is applied only at the start of the

episode, where one of the # networks is used to select actions for the episode.

Out-of-sample optimism was later incorporated, by adding an initial source

of randomness, called Bootstrapped DQN with Randomized Prior Functions

(BootstrapQ+prior) (Osband, Aslanides, et al. 2018); the original BootstrapQ

without prior algorithm relies solely on differences in value estimates due to

random initialization.

Many methods based on Bayesian updates have issues with the fact that

values change during learning. Bayesian Q-learning approaches (Azizzade-

nesheli et al. 2019; Dearden et al. 1998) rely on Bayesian linear regression—

designed for stationary targets—and others rely on Gaussian process regres-

sion (Chowdhary et al. 2014; Engel et al. 2005). These strategies can result in

exponentially slow convergence, because the GP variance reduces too quickly

(Grande et al. 2014); the variance, however, needs to stay higher to account

for the changing action-values in the target. This was ameliorated in Delayed
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Gaussian Process Q-learning (DGPQ) (Grande et al. 2014), where two values

are learned and the one using the Gaussian process has the variance periodi-

cally reinitialized. Though theoretically appealing, this approach is expensive

and difficult to use (Kumaraswamy et al. 2018).

Finally, a simple heuristic, called optimistic initialization (OptimisticInit),

does not neatly fit into the above categorization. The idea is to initialize

value estimates to be high, with each subsequent update slowly decreasing

this value. OptimisticInit could be seen as a heuristic for obtaining an upper

confidence bound, though it is not explicitly reasoning about uncertainty. In

fact, this approximate upper bound likely decays too quickly, because it de-

cays at the rate that gradient descent changes the values rather than based on

any notion of information of variance. It may be better thought of as a simple

approach to incorporate a prior over the action-values, that encourages out-

of-sample optimism that decays with updates, rather than as a standalone

approach. For example, it provides a simple way to incorporate a prior for

reward bonus approaches.

Note that OptimisticInit is not always straightforward to use. For lin-

ear function, with non-negative features, weights can be simply initialized

to be higher than the maximal possible value. For neural networks it is not as

straightforward. Machado, Srinivasan, et al. (2014) propose a strategy that

is to instead normalize and decrease the rewards so that zero initialization

is optimistic. In the nonlinear setting, optimism decays quickly due to the

generalization of neural networks. Also, the rewards are normalized by the

first non-zero reward seen, which is rarely attained in sparse reward tasks

like SparseMC. Rashid et al. (2020) avoid the issue due to the generalization

of neural networks by augmenting a count-based upper confidence term to

the value function estimate during action selection and bootstrapping. Due

to the explicitly state-dependent uncertainty estimation, this approach does

not fully align with the classic OptimisticInit.

If we ignore the issue of generalization for a moment, the most straight-

forward way to obtain an optimistic initialization with neural networks is to
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initialize the bias of the output layer to a large positive value. As the agent

explores the environment and updates its weights, the action value estimate

will be corrected. This approach is equivalent to adding a large constant to

the value estimates, where the constant serves as an optimistic prior. There-

fore, this approach is also essentially equivalent to a BootstrapQ+prior vari-

ant with ensemble size 1, except the randomized prior function does not out-

put the same constant across all state-action pairs. We examine this special

BootstrapQ variant in Chapter 6. As for our OptimisticInit implementation,

we try a different form without explicitly touching values within the neural

networks.

In our experiments on OptimisticInit, we propose to train the initial net-

work towards a large constant, with a set of state-action pairs that cover the

space. The initial optimism at unseen state-action pair would still fade away

quickly due to the generalization of neural networks. Nonetheless, we evalu-

ate this implementation hoping to gain more empirical insights.

4.4 Undirected Approaches

Undirected methods encourage exploration via random action selection. One

of the oldest soft-greedy approaches is n-greedy, which usually selects the

action with the highest estimated value but with probability n selects a ran-

dom action. Since exploration is independent across time-steps, it is difficult

for the agent to be persistent and reach hard-to-reach parts of the space.

Though n-greedy is sufficient for Q-learning to converge to the optimal pol-

icy in tabular MDPs (Melo 2001; Tsitsiklis 1994), it can take exponentially

many time-steps to explore environments with antagonistic transitions (Os-

band, Van Roy, et al. 2019). Related approaches include using a Boltzmann

distribution on action-values (Duncan 1959), which samples actions propor-

tionally to action-valuemagnitudes, and incorporating entropy regularization

which can be shown to be equivalent to using a Boltzmann policy (Ziebart et

al. 2010).
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A simple extension of these simple soft-greedy operators is to learn the

noise parameter, such as the temperature or n. The most commonly used

approach in this category is Noisy Networks (Fortunato et al. 2019; Plappert

et al. 2018), which samples the noise bE after each optimization step. It is

implemented by learning a vector of noise parameters fE in addition to the

neural network parameters `E. To query a value from the noisy network, the

noise parameters are element-wise multiplied by a sample bE from a fixed,

zero-mean noise distribution and added to the neural network parameters,

to give E = `E + fE � bE. Those noised parameters E are used for that query,

namely in the forward pass. Both the neural network parameters and the

noise parameters are updated using gradient descent.

These undirected approaches provide some amount of exploration, but do

not attempt to assess what actions would provide themost useful information.

They nonetheless continue to be popular, due to their simplicity. A positive

aspect of these soft-greedy approaches is that they encourage some amount

of exploration, which means that they could actually be complementary to di-

rected explorationmethods—perhapsmost useful in continual non-stationary

tasks. In addition, the uncertainty estimates on action values may be inac-

curate and soft-greedy action-selection on these inaccurate upper confidence

bounds might provide an additional level of robustness. Moreover, for sim-

ple environments where minimal exploration is required, they may in fact be

sufficient. For this empirical study, we test them on their own—rather than

paired with other methods—as baseline methods.

4.5 Representative Methods for the Empirical
Study

There are a variety of methods within each category. Our goal is to evaluate

the exploration ideas behind the methods, and so we select representative

methods that are best reflect those ideas and are in common use. We sum-

marize these in the following list. As baselines, we include Q-learning with-
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out any exploration and Softmax Actor-Critic, which only has some initial

exploration due to the initialization of the policy variance. We also include

Optimistic Initialization as a simple anticipatory exploration heuristic.

1. Undirected Methods: n-greedy and noisy networks.

2. Reward Bonus with Counts: Pseudo-counts on states. We use counts

on states, because earlier experiments did not present significant dis-

tinctions between counts on states and counts on state-action pairs on

their performance.

3. Reward Bonuswith Learning Progress: RandomDistillation Networks

(RND). We choose RND, because it is a general-purpose approach, in

that it does not rely on using Bayesian methods or computing informa-

tion gain directly.

4. Value Uncertainty: Bootstrapped DQN with Randomized Priors. We

include Randomized Priors, to ensure the agent has some mechanism

for out-of-sample uncertainty. When sweeping hyperparameters, one

hyperparameter setting allows for the prior to be omitted, reducing to

the original Bootstrapped DQN algorithm. For simplicity, we use the

abbreviation BootstrapQ to refer to both BootstrapQ+prior and Boot-

strapQ without prior agents in the later text, unless there is a need to

explicitly distinguish between the two.

33



Chapter 5

Experimental Setup

In this chapter we present the experimental setup. Results of our empirical

experiments are presented in Chapter 6.

5.1 General Setup

We adapt each representative exploration method introduced in Chapter 4

to work with a Q-learning baseline agent with function approximation and

evaluate their performance in each of the exemplary environments described

in Chapter 3. The function approximation methods include neural networks

for nonlinear approximation and tilecoded representations for linear approxi-

mation. Under nonlinear settings, our scope covers both incremental updates

that merely use the most recent transition data at each timestep, and mini-

batch updates that utilize experience replay and target networks, as men-

tioned in Chapter 2.

We consider the classic exploration-exploitation trade-off setting: given

a certain amount of timesteps, the agent accumulates rewards and at the

same time learns about the environment. The performance measure is not

straightforward since both the cumulative reward and the quality of the final

policy learned are important evaluation metrics. In this thesis, we consider a

compromise between the two: rewards accumulated during the final 10% of

the learning phase. This performancemetric is not only a good approximation

to the quality of the final policy, but it also reflects the algorithm’s ability to
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maximize reward.

Specifically, for each hyperparameter setting, the agent is trained for

500, 000 timesteps, which is sufficient to learn the optimal policy in each

environment. We repeat the training phase 30 times, where each repetition

uses a unique seed that is shared across exploration methods. Episodes are

not cut off by any time-out mechanism unless the budget number of timesteps

is exceeded. The performance of the agent is evaluated by the cumulative

reward obtained with the final 10% of the given budget.

Each hyperparameter is swept over a group of candidates that are chosen

based on reported values from the papers (or accompanying open-sourced

implementations) that originally proposed these exploration methods. Most

methods perform best with different settings on each environment, and rarely

perform best with the most extreme parameter settings, which indicates that

the candidates are appropriately diverse. We choose hyperparameters, in-

cluding tilecoding settings, separately for each environment. Since perfor-

mance tend to be distributed bimodally, we identify the best hyperparameters

by their median cumulative reward. If the best hyperparameter setting is on

the edge of the sweeping range, we expand the hyperparameter sweep and

re-ran experiments until the best setting is within those ranges. We treat the

performance from hyperparameter sweeps as a good representation of the

agent’s capability. We do not fine-tuning the hyperparameters since the com-

putational costs of conducting it often surpass the benefits from exploration.

5.2 Hyperparameter Settings

In order to study the impact of feature representations on agents’ exploration

behaviour, we experiment with both linear and nonlinear function approxima-

tions. For nonlinear approximation, our function approximator is a multilayer

perceptron (MLP) neural network model with rectified linear unit (ReLU) ac-

tivation function applied on the hidden layers. Each layer applies a linear

transformation to the incoming data F: G = F�ᵀ + 1, where �ᵀ and 1 are the
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learnable weights and bias, respectively. The ReLU activation is applied to its

input element-wise: ReLU(F) = max(0, F). Due to the small scale and rela-

tively lower dimensionality of our domains, we use a network model with two

layers and 50 neurons on each layer. Unless otherwise specified we initialize

network weights according to Kaiming uniform initialization (He et al. 2015)

at the beginning of the learning phase. All neural network modules and op-

timization algorithms applied to nonlinear agents are implemented with the

PyTorch framework (Paszke et al. 2019).

For the linear agent, we use three variants of tile coding for each en-

vironment, depending on the number of dimensions in the environment’s

state space. All three variants produce nearly the same number of features,

with different levels of generalization (the ability to generalize over the state

space) and discrimination (the ability to discriminating between nearby states).

The first variant generalizes significantly over the state space but does not dis-

criminate finely between nearby states. The second variant has a better local

function approximation, with decreased generalization across regions of the

state space, whereas the third variant is intermediate in both discrimination

and generalization. All variants include a “bias” feature with a constant value

of 1.

To update value function estimates, we use the Adam optimizer (Kingma

et al. 2017) for nonlinear agents, and sweep both Adam and stochastic gradi-

ent descent (SGD) optimizers for linear agents. For nonlinear algorithms, we

sweep over the learning rate U ∈ {14−2, 14−3, 14−4, 14−5, 14−6, 14−7}. Un-
less otherwise specified we initialize network weights according to Kaiming

uniform initialization (He et al. 2015) at the beginning of the learning phase.

As for linear algorithms, we set the learning rate U =
U0

#tilings , and sweep over

learning rates of U0 ∈ {1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125}. Unless other-
wise specified we initialize all weights to zero at the beginning of the learning

phase. More detailed hyperparameter settings are discussed in Appendix C.
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5.3 Algorithm Details

In this section we describe implementation details of our nonlinear optimistic

initialization (OptimisticInit). More detailed descriptions and pseudocode for

each method are introduced in Chapter B

We obtain an OptimisticInit agent by firstly training a network towards

a large constant, and then letting the Q-learning agent load this pre-trained

network at the beginning of the learning phase. The network is randomly

initialized before pretraining. The offline training has #pretrain = 100k it-

erations. At each iteration, a batch of 256 state-action pairs are randomly

sampled from the environment. Using this minibatch, one gradient descent

step is performed to minimize the mean squared error between the network’s

current predictions and the optimistic value. Given the small scale and low

dimensionality of our domains, this set of state-action pairs should be able to

achieve a good state coverage.

Each optimistically initialized network is trained with a random seed uni-

quely determined by the environment, the optimistic value, and a network

index. Due to the generalization of neural networks, updating predictions at

some data points would also affect outputs of unseen data points. Therefore,

even after training with such a huge amount of data, the resulting network

does not predict the optimistic value everywhere in the state-action space. In

fact, even for the same environment and optimistic value, networks with dif-

ferent indices would produce an ensemble of diverse function approximators.

This property serves as the basis of our BootstrapQ variant, which is discussed

and empirically investigated in Chapter 6.
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Chapter 6

Results

In this chapter we present the results from experiments described in Sec-

tion 5.1. We firstly present overview results of representative nonlinear agents

in Section 6.1. Then we show the performance of the same group of agents

with tilecoding representation in Section 6.2. In Section 6.3 we provide a

meta-analysis on all methods and discuss the robustness of each algorithm

to their hyperparameter settings. In Section 6.4 we present a more in-depth

discussion of the method BootstrapQ. Finally we discuss other lessons the RL

community could learn from our empirical study.

All plots we present in subsequent sections are bar plots made with R

(Team 2013). Unless otherwise specified, the height or length of each rect-

angular bar indicates the median total rewards accumulated by each agent

in one environment during the final 10% of the learning phase (i.e., the fi-

nal 50k timesteps), normalized by the rewards accumulated by the domain-

specific near-optimal policy. All near-optimal policies are deterministic and

they are described in detail in Appendix A. We note that the near-optimal per-

formance for each environment is not obtained by simple calculations based

on the environment’s definition with stochasticity ignored. Instead, we eval-

uate each near-optimal policy by averaging cumulative rewards it collects

in 50k timesteps over 100 random seeds. 1 Since a representative explo-
1For any optimal policy whose expected episode length is not a divisor of 50k, we adjust

the evaluation length and rescale the result accordingly. For instance, the optimal policy in
SparseMC attains an episode length of approximately 105 timesteps, hence in each run we
evaluate its performance with 52.5k timesteps, and divide the cumulative reward by 1.05.
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ration method’s median cumulative reward could potentially exceed the near-

optimal performance, especially in a domain with high variance, the cumula-

tive reward that we use to normalize performance is the highest cumulative

reward achieved by all learning agents and the near-optimal agent.

Bars are coloured according to the agents’ exploration method categoriza-

tion identified in Chapter 4. Q-learning and Actor-Critic baselines have the

same colour despite distinct exploration heuristics, because Actor-Critic —

the only method that is not based on the Q-learning implementation — is

also considered as a baseline. Intrinsic reward methods are also presented

with the same colour.

6.1 Neural Network Results Overview

We present the overall results of representative agents with neural network

approximations. For each agent in any environment, the best hyperparame-

ter setting is determined by the cumulative reward over the final 10% of the

given learning budget. To emphasize various patterns, we show three plots

with different groupings: the performance across all domains is shown in Fig-

ure 6.1, bar plots grouped by agent are shown in Figure 6.2, and bar plots

grouped by environment are shown in Figure 6.3. Only the best hyperparam-

eter settings are shown in these three figures. In Figure 6.1, the performance

of each agent is the average performance across all environments. To high-

light the comparison between whole performance and final performance, we

also present Figure 6.4 to show the performance of the same agents over the

entire learning phase rather than the final 10%.

Figure 6.1 shows that all methods except BoostrapQ are able to improve

upon the greedy Q-learning baseline. Within the same category except for

anticipatory methods, agents also have similar performance. The Actor-Critic

baseline achieves the best performance overall. The count-based method

marginally outperforms the greedy Q-learning baseline. In general many ap-

proaches introduced in papers demonstrating their feasibility perform poorly
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in our study. Four exploration methods including the Actor-Critic baseline

have performance above one-half of optimal cumulative reward, and no agent

is able to reach 75% of optimal cumulative reward. Only two methods re-

cently proposed for deep RL match or slightly outperform n-greedy.

Our results also suggest that BoostrapQ variants, which have been success-

ful in hard exploration games, may potentially have drawbacks that are not

present in other methods. In Section 6.4 we take a deep dive into BootstrapQ

with an effort to mitigate its ineffectiveness.
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Figure 6.1: Median normalized cumulative reward averaged across all envi-
ronments over final 10% learning budget for Q-learning agents with neural
networks. Performance of the same agents with tilecoding is shown in Fig-
ure 6.5.

Figure 6.2 shows that n-greedy exploration is competitive or outperforms

retroactivemethods—CountBonus and RND— in some environments, which

aligns with recent conclusions on bonus-based methods benchmarking (Taiga

et al. 2019). Most methods achieve high median cumulative reward in less

than half of the environments. The Actor-Critic baseline is the only agent to

achieve near-optimal performance in many environments. CountBonus is the
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only method to consistently improve upon the vanilla Q-learning baseline

in every environment, but the improvement in most environments is mini-

mal. This suggests that the previous success of CountBonus methods in other

benchmarking suites such as Atari may critically depend on the strength of

the base agent. One aspect that influences the agent’s strength is the neural

network architecture, including the convolutional net that is usually applied

to visual inputs. Other methods with Q-learning as their base agent fail to

match Q-learning in at least one environment (e.g., n-greedy, NoisyNet, and

RND in Antishaping, OptimisticInit in Hypercube, and BootstrapQ in most

environments except SparseMC and VarianceWorld).

Comparing Figure 6.2 and Figure 6.4, it is evident that most agents have

whole performance similar to their final performance, which suggests that

their policies improve quickly and converge soon in the early learning stage.

The only exceptions are the undirected methods, namely n-greedy and Noisy-

Net, across all domains, and RND in Antishaping. Their whole normalized

performance in much worse than their corresponding final performance. This

gap indicates that these methods improve slowly throughout the entire learn-

ing phase.

Figure 6.3 indicates that Antishaping is the easiest domain, where the

majority of exploration methods reach the near-optimal policy. However,

their performance has high variance: the best runs are near-optimal while

the worst runs have zero cumulative rewards. SparseMC is the most difficult

environment. Only the noisy methods — n-greedy and NoisyNet — are able

to obtain a relatively strong suboptimal performance. Most agents have poor

or virtually zero performance in this domain. Moreover, methods under the

same categorization tend to find similar suboptimal policies in each environ-

ment despite a few exceptions such as RND in SparseMC and BootstrapQ in

most environments. This implies that similar methods often fall into the same

trap in each environment.

Solving any of our environments requires the agent to execute a persistent

sequence of actions. Particularly in AlpineSki and SparseMC, one wrong step

41



┤

┤

┤

┤

┤

┤

├

├

├

├

├

├

┤

┤

┤

┤

┤

┤

├

├

├

├

├

├

┤

┤

┤

┤

┤

┤

├

├

├

├

├

├

┤

┤

┤

┤

┤

┤

├

├

├

├

├

├

┤

┤

┤

┤

┤

┤

├

├

├

├

├

├

┤

┤

┤

┤

┤

┤

├

├

├

├

├

├

┤

┤

┤

┤

┤

┤

├

├

├

├

├

├

┤

┤

┤

┤

┤

┤

├

├

├

├

├

├

CountBonus RND Optimistic Initialization BootstrapQ

Q-learning Actor-Critic ε-greedy NoisyNet

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

windyjump

varianceworld

sparsemc

hypercube

antishaping

alpineski

windyjump

varianceworld

sparsemc

hypercube

antishaping

alpineski

Normalized cumulative reward

Figure 6.2: Median normalized cumulative reward over final 10% learning
budget for Q-learning agents with neural networks. Bars are grouped by
agent. The box drawings " " and " " denote the worst and best runs in each
hyperparameter setting, respectively. Performance of the same agents over
the entire learning budget is shown in Figure 6.4. Performance of the same
agents with tilecoding is shown in Figure 6.6. Performance of the same agents
with neural networks in one single hyperparameter setting is shown in Fig-
ure 6.9.

followed by a sequence of optimal steps will cause all previous efforts wasted.

n-greedy does not conduct temporally extended exploratory actions; however,

it performs surprisingly well in these two environments, which contradicts

our previous hypothesis that undirected exploration methods are less likely

to perform well in those domains. It could be because occasional random

actions due to the noise help the agent to jump out of the pitfalls laid in each

environment.
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Figure 6.3: Median normalized cumulative reward over final 10% learning
budget for Q-learning agents with neural networks. Bars are grouped by
environment. The box drawings " " and " " denote the worst and best runs
in each hyperparameter setting, respectively.
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Figure 6.4: Median normalized cumulative reward over the entire learning
budget for Q-learning agents with neural networks. Bars are grouped by
agent. The box drawings " " and " " denote the worst and best runs in each
hyperparameter setting, respectively. Performance of the same agents over
the final 10% of learning budget is shown in Figure 6.2.
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6.2 Tilecoding Results Overview

Results from Section 6.1 suggest that those representative exploration meth-

ods with neural network approximation perform poorly in general. As a

comparison, we evaluate the performance of the same agents with tilecoding

function approximation. For each agent in any environment, the best hyper-

parameter setting is determined by the cumulative reward over the final 10%

of the given learning budget. Similarly we show figures with different group-

ings: the performance across all domains is shown in Figure 6.5, and bar plots

grouped by agent are shown in Figure 6.6. Only the best hyperparameter set-

tings are shown in these three figures. In Figure 6.1, the performance of each

agent is the average performance across all environments.
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Figure 6.5: Median normalized cumulative reward averaged across all envi-
ronments over final 10% learning budget for Q-learning agents with tilecoded
features. Performance of the same agents with neural networks is shown in
Figure 6.1.

Comparing to agents equipped with neural networks, Figure 6.5 suggests

that with tilecoded features all methods other than NoisyNet outperform their
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nonlinear selves by a significant margin. NoisyNet is also the only agent that is

not able to improve upon the base linear Q-learning agent. This phenomenon

could be attributed to the noisy linear layer, which is originally proposed for

neural networks. The idea is basically random perturbations in weights could

potentially induce highly complex changes in the Q-values, hence it drives

complex exploratory behaviour (Fortunato et al. 2019). In the linear setting,

however, perturbations in the weights end up being random noise in the value

estimates.

In general the representative methods with tilecoding are able to learn

much stronger policies than themselves with neural networks, even though

there are still only two methods outperforming the classic n-greedy explo-

ration. The results also suggest that BootstrapQ, which has been failed in

most environments with neural networks, is now able to marginally outper-

form the Q-learning baseline. The performance gap between OptimisticInit

and BootstrapQ still persists with linear feature representation, hence only

retroactive methods out of all categories have similar performance. Actor-

Critic and OptimisticInit achieve the highest cumulative reward overall.

This comparison between linear and nonlinear agents highlights the sig-

nificance of good feature representations. Tilecoding constructs sparse fea-

tures by thoroughly discretizing the state space. Good tile & tiling settings

can build up representations with strong generalizability and discriminability,

and this feature mapping remains fixed since it is constructed. On the other

hand, weights in neural networks are commonly initialized randomly. De-

spite its potential brought by higher model complexity, an agent with neural

network approximation must learn a good representation while exploring the

environment. This inherent nature might be a big disadvantage for nonlinear

agents, especially at the early learning stage.

The comparison of Figure 6.2 and Figure 6.6 illustrates that Actor-Critic

is the only agent that outperforms itself with neural networks in all domains.

OptimisticInit almost accomplishes this cross-domain improvement except for

a minimal drop in VarianceWorld. OptimisticInit learns a stronger (yet still

45



weak) suboptimal policy in Hypercube, which suggests that the initial op-

timism cannot be retained for long, especially when the agent is guided to

explore a large state-action space. Hypercube’s shaping rewards essentially

break the domain into smaller checkpointed segments that can be solved in-

dividually with n-greedy’s local search.

Most agents with tilecoding attain high median cumulative reward in

more than half of the environments. Interestingly CountBonus cannot man-

age to make any improvement with tilecoding in SparseMC while its base

Q-learning learns a much stronger policy. Intrinsic rewards now harm the

performance rather than incentivizing exploration. The other bonus-based

method RND, however, does not damage Q-learning’s policy. OptimisticInit

and n-greedy are the only two methods to consistently improve upon the

linear Q-learning baseline in every environment. RND and BootstrapQ are

slightly worse than Q-learning in WindyJump.
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Figure 6.6: Median normalized cumulative reward over final 10% learning
budget for Q-learning agents with tilecoded features. Bars are grouped by
agent. The box drawings " " and " " denote the worst and best runs in each
hyperparameter setting, respectively. Performance of the same agents with
neural networks is shown in Figure 6.2. Performance of the same agents with
tilecoding in one single hyperparameter setting is shown in Figure 6.10.

Furthermore, we present the median cumulative reward of two linear

methods, IEQL+ (White et al. 2010) and UCLS (Kumaraswamy et al. 2018),

in Figure 6.7. IEQL+ and UCLS are methods that include explicit optimistic

initial values. These plots provide us with a demonstration that all our toy
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environments are solvable: other than UCLS being suboptimal in Hypercube,

both algorithms are able to achieve near-optimal or good sub-optimal policies

in all domains.

In addition, we conduct experiments on an OptimisticInit variant that is

augmented by count-bonus intrinsic rewards. The results are shown in Fig-

ure 6.8. This agent serves as a nonlinear analogue to IEQL+. The extra

exploration bonus should be able to help create better value estimates after

the initialized optimism decays. Interestingly, this variant achieves a very

similar performance as the standalone OptimisticInit agent. Only small im-

provements have been made in Hypercube and SparseMC.
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Figure 6.7: Median normalized cumulative reward over final 10% learning
budget for IEQL+ and UCLS with tilecoded features. Bars are grouped by
agent. The box drawings " " and " " denote the worst and best runs in each
hyperparameter setting, respectively. Performance of the same agents with
tilecoding in one single hyperparameter setting is shown in Figure 6.10.
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Figure 6.8: Median normalized cumulative reward over final 10% learning
budget for OptimisticInit augmented by CountBonus with neural networks.
This variant serves as the nonlinear analogue to IEQL+. The box drawings
" " and " " denote the worst and best runs in each hyperparameter setting,
respectively. Each black solid diamond denotes the CountBonus agent’s best
performance, which corresponds to the bar plot in Figure 6.2. Performance
of IEQL+ with tilecoding is shown in Figure 6.7.

6.3 Meta Hyperparameter Tuning Results

In this section we evaluate the robustness of exploration methods to hyper-

parameter choices. Specifically, for each agent we pick the hyperparameter

setting with the highest averaged performance across all domains, and report

its performance in this best single hyperparameter setting. The performance

for agents with neural networks and tilecoded features is shown in Figure 6.9

and Figure 6.10, respectively.

Most agents do not suffer from drastic performance drop with one sin-

gle hyperparameter setting. In fact NoisyNet achieves its best performance in

every environment with one hyperparameter, which is consistent with conclu-

sions in the original paper that random perturbations promote robust explo-

ration with less hyperparameter tuning thereby less computational cost. Only

undirected exploration methods reach a good policy in SparseMC. Moreover,

NoisyNet is also the only agent that outperforms or matches Q-learning in ev-

ery domain. Actor-Critic remains strong in all environments except SparseMC.
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One single hyperparameter choice further exacerbates BootstrapQ’s perfor-

mance.
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Figure 6.9: Median normalized cumulative reward over final 10% learning
budget for Q-learning agents with neural networks in one single hyperparam-
eter setting. Bars are grouped by agent. The box drawings " " and " " denote
the worst and best runs in each hyperparameter setting, respectively. Each
black solid diamond denotes the agent’s performance with its independent
best hyperparameter setting in one specific environment, which corresponds
to the bar plot in Figure 6.2.

Hyperparameter choices have a notably more significant impact on linear

agents. All agents have severely declined performance in almost all environ-

ments. The base Q-learning agent could not find a good policy in any environ-

ment, especially in SparseMC Q-learning fails to accumulate any rewards. As

for those previous strongest linear agents Actor-Critic, OptimisticInit, IEQL+,

and UCLS, each of them could merely obtain a high median cumulative re-

ward in at most three environments. n-greedy and OptimisticInit manage to

accumulate non-zero rewards across all domains. Furthermore, Actor-Critic,

OptimisticInit, and BootstrapQ maintain their performance in SparseMC on

a good level.

This section is intended to demonstrate representative exploration meth-

ods’ capability to robustly performing well across all environments of our suite

with one hyperparameter setting. Comparing to previous Section 6.1 and

Section 6.2 where the best hyperparameter setting is found independently

in each environment, agents in this section have declined performance to
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varying degrees. In general agents with neural network approximations are

more robust to hyperparameter choices than themselves with tilecoded rep-

resentation. Undirected exploration approaches benefit from different forms

of stochastic perturbations and therefore they are strongly robust to hyperpa-

rameter choices.
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Figure 6.10: Median normalized cumulative reward over final 10% learning
budget for Q-learning agents with tilecoded features in one single hyperpa-
rameter setting. Bars are grouped by agent. The box drawings " " and " "
denote the worst and best runs in each hyperparameter setting, respectively.
Each black solid diamond denotes the agent’s performance with its indepen-
dent best hyperparameter setting in one specific environment, which corre-
sponds to the bar plot in Figure 6.6 and Figure 6.7.

6.4 Deep Dive into BoostrappedDQN

Our results from Section 6.1 suggest that BootstrapQ’s performance is not as

good as one might expect. It has the worst performance out of all selected

algorithms including the Q-learning baseline. In particular, n-greedy outper-

forms BoostrapQ in almost all domains. Given that BootstrapQ has been suc-

cessful in much more complicated Atari games, there should be much room
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for improvement in our domains. In this section we investigate a few vari-

ants applied to the original implementation individually, hoping to achieve a

better performance.

We first consider two modifications inspired by the original paper that

proposes BootstrapQ (Osband, Blundell, et al. 2016). One is concerned with

the value function sampling frequency. In the vanilla implementation, the

value function is sampled at the beginning of each episode, and the agent’s

behaviour is guided by this sampled value until the episode terminates. This

setting brings up a potential issue: if this specific sample is not sufficiently

exploratory, that is, the agent easily gets stuck in a region of the state spaces

and cannot escape until the learning budget is exceeded, then BootstrapQ

could only accumulate minimal reward or no reward, like in SparseMC. One

idea is to set a time-out mechanism in the agent. If the agent fails to complete

an episode after acting in the environment for a certain number of timesteps

)sample, a flag is triggered, then the agent resamples a value function and

follows it from then on. However, themost sensible value for )sample is domain-

specific, which correspondingly requires domain-specific knowledge to set it

properly.

In our experiment, we use a setting similar to Thompson sampling by set-

ting)sample to domain-independent constants. Two extreme cases are)sample =

1 and )sample = ∞. Note that )sample = 1 is exactly the sampling frequency of

Thompson sampling, in which case BootstrapQ is identical to the Thompson

DQN ablation in the original paper. We also experiment with an intermediate

case )sample = 4, in accordance with the network updating period. Given the

aforementioned scenario of insufficiently exploratory value sample, we ex-

pect a higher value function sampling frequency will help the agent to jump

out of the trap thereby obtaining higher performance. On the other hand, in

environments where there is no obvious traps, sampling the value function

too frequently will be detrimental to persistent exploration.

The other modification explores the influence of data sharing. In the set-

ting described in the BootstrapQ original paper, at each update step all net-
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works are trained with a shared minibatch, and depending on the value of

> for the Bernoulli bootstrap masking distribution Ber(>), the agent deter-

mines which network is trained with which data. Under this circumstance,

even with > = 0.5, it is still highly likely that some networks are trained with

many identical transitions. On the other hand, in the implementation of the

follow-up work on BootstrapQ+prior, BootstrapQ implements an ensemble

buffer that maintains one independent buffer for each network. Therefore, at

each update step each network is trained with a minibatch sampled from its

own replay memory. Clearly all networks are not trained with shared mini-

batches. Even with > = 1, it is much less likely that the networks are trained

with data in common.

We study the effect of data sharing in terms of shared vs. independent

minibatch in our experiment. Our implementation of BootstrapQ only has

a centralized replay buffer, but we can achieve independent minibatches by

resampling a batch for each network update. Results from Osband, Blundell,

et al. (2016) show that BootstrapQwith diverse levels of data sharing in terms

of different values for probability > performed similarly. We expect a similar

phenomenon in our experiments.

Moreover, we consider a variant of BootstrapQ in which randomized prior

functions are replaced by an alternative of ’prior’ mechanism (Osband, Aslanides,

et al. 2018). Inspired by our earlier results (see Section 6.1), we use Opti-

misticInit as the prior effect to incentivize exploration. Despite their good

performance in this domain, undirected methods are not selected since their

exploratory behaviour is due to random perturbations rather than some in-

trinsic motivation. In our BootstrapQ with OptimisticInit variant, each net-

work is given an initial optimism according to our OptimisticInit implemen-

tation. The maximum optimistic initial value is a hyperparameter swept over

�maxOptInit = {1} ∪ {5F | F ∈ {1, . . . , 20}}. For each hyperparameter setting

7 ∈ �maxOptInit. the optimistic value for each network is randomly sampled

from { 7̃ ∈ �maxOptInit | 7̃ ≤ 7}. Note that each network is initialized with differ-

ent initial random weights and data samples, hence networks that happen to
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sample the same optimistic initial value still produce diverse generalization

with smaller variance across them.

To summarize the experimental setup in this section, we consider three

variants of BootstrapQ (shared minibatch, independent minibatch, and Op-

timisticInit prior) as well as three value function sampling frequency (two

extreme settings in which value is sampled every timestep and every episode

respectively, and one intermediate setting in which value is sampled every 4

timesteps), resulting in 9 combinations. The results are shown in Figure 6.11.
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Figure 6.11: Median normalized cumulative reward over final 10% learning
budget for BootstrapQ variants with neural networks. One variant sweeps
over different value sampling frequencies and independent vs. shared mini-
batches, and the other variant has optimistically initialized value functions.
The box drawings " " and " " denote the worst and best runs in each hy-
perparameter setting, respectively. The BoostrapQ variant that shares mini-
batches and samples value function every episode is the vanilla implementa-
tion shown in Figure 6.2.

The BootstrapQ with prior variant that shares minibatches across net-

works and samples the value function every episode is the vanilla implemen-

tation we previously present in Section 6.1. Its performance also conforms to

earlier results although experiments in this section are carried out with ran-
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dom seeds different from seeds used earlier (see Figure 6.2). For each Boost-

rapQ variant, sampling value functions every timestep results in a substantial

difference in performance comparing to sampling every episode, while the

performance of resampling every four timesteps and every one timestep is

similar.

In particular, the Thompson sampling variant surpasses the vanilla Boot-

strapQ drastically in AlpineSki, Antishaping, and SparseMC, while it also per-

forms more poorly in VarianceWorld. In Hypercube andWindyJump, Thomp-

son sampling receives a relatively lower median cumulative reward, yet the

best runs in both environments are better. The results in general coincide

with our previous hypothesis that more frequent value function sampling is

beneficial in environments with traps from which the agent must escape.

Note that one conclusion in Osband, Blundell, et al. (2016) suggests that

that only BoostrapQ with episode-wise sampling drives efficient exploration

whereas Thompson DQN does not. Our findings do not fully contradict it,

since the toy environment DeepSea they experimented on is inherently dif-

ferent from our suite. DeepSea is a deterministic chain environment with a

fixed episode length and finite discrete state space. The value function is thus

sampled periodically, and the agent could not get trapped in a pitfall region

forever like it tends to do in some of our environments.

However, the part of our results that does not align with their conclusion

lies in this comparison: the variant that samples value function every four

timesteps is also capable of jumping out of pitfalls, plus it conducts more tem-

porally extended exploration than Thompson sampling does, but it achieves

very similar performance across almost all environments. One possible hy-

pothesis is that the distinction between sampling every timestep and resam-

pling every four timesteps is insignificant, especially in relatively larger envi-

ronments like Antishaping and SparseMC. In AlpineSki, on the other hand,

after the prior guides the agent to find the most rewarding state, jumping

out of the pitfall sooner becomes much more important than continuing a

temporally extended sequence of actions, hence we observe a better perfor-
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mance from the sampling per timestep variant. More research is needed to

study how value function sampling frequency, either domain-dependent or

not, affects exploration.

It is also evident that data sharing does not play an equivalently crucial

role as value function sampling frequency. Performance of shared minibatch

is almost identical to that of independent minibatch. Although in AlpineSki

BootstrapQ with independent minibatches outperforms the other variant by

a big margin, their max-min ranges are comparable. The results in general

conform our expectation mentioned previously.

As for the BootstrapQ with OptimisticInit variant, it achieves the best per-

formance with episode-wise value sampling. In contrast to the BootstrapQ

with prior agent, this variant has worse performancewithmore frequent value

function sampling. When the agent samples the value function only at the

beginning of each episode, due to the large horizon of each episode, the op-

timistic initialization in each sampled value network dominates the variance

of the ensemble distribution so that it essentially determines the exploratory

behaviour. For this reason, its performance is similar to the OptimisticInit

agent alone (see Figure 6.2).

Results from more frequent value sampling show both similar and differ-

ent patterns found in the BootstrapQ with prior variant. As the value function

is sampled more often, the performance in VarianceWorld and WindyJump

decreases, which demonstrates that both environments require more tem-

porally extended exploration. The prior variant establishes the benefit from

more frequent resampling in AlpineSki and SparseMC, but this case does not

fully apply to the OptimisticInit variant. The OptimisticInit variant obtains

minor improvement in AlpineSki, while its performance in SparseMC remains

the same. The reason could be that given OptimisticInit itself can only play

suboptimally, the small variance across all networks fails to provide the agent

with sufficient diversity to escape the valley region, no matter how often the

agent switches its value function.

As resampling occurs more frequently, all variants are only able to ob-
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tain an improvement in the best runs in Hypercube, while the median per-

formance stays roughly the same. Optimistic initialization usually explores

the entire state space to let the inflated action value to fade away. Since

the OptimisticInit agent in Section 6.1, as well as the BootstrapQ with Opti-

misticInit variant, are only able to achieve suboptimal policies in Hypercube

and SparseMC, it is valid to hypothesize that our implementation of Opti-

misticInit loses its initial optimism too quickly.

A key property of OptimisticInit is that its optimistically initialized values

decrease only at the state-action pairs used for updates. In the linear set-

ting it is easy to index state-action pairs and update values accordingly. In

the nonlinear setting, however, values of unseen state-action pairs will also

be changed after training with seen transitions due to the generalization of

neural networks. Moreover, the changed values could become unpredictably

pessimistic, neutral, or even potentially more optimistic. The value estimate

of a highly rewarding state-action pair may drop very quickly after updating

net weights with seen transitions, thus our OptimisticInit agent could totally

ignore this particular state-action.

A similar argument also applies to our BootstrapQwith OptimisticInit vari-

ant: all optimistic nets will correct their estimates at seen state-action pairs,

while those estimates in unseen state-action space could drop substantially

as well. Due to different initialization and pre-training data as mentioned

above, those networks could have diverse value estimates in unseen state-

action space, but it is much less likely any of them remains optimistic, which

eventually leads to ineffective exploration. Exploration motivated by an ad-

ditive prior as an analogue to OptimisticInit will be examined in Section 6.5.

6.5 More Lessons Learned

In this section, we present additional empirical insights trying to improve the

performance of deep RL methods. We also investigate exploration motivated

by prior functions as a form of optimistic initialization for deep RL agents.
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We hope these experiments will help researchers to examine the drawbacks

and potentials of existing approaches, hence improving the performance of

nonlinear agents.

6.5.1 Neural Network with Tilcoded Inputs

Neural network Sarsa(0) with tile-coded inputs has exhibited better perfor-

mance in the classic MountainCar environment (Ghiassian et al. 2020). Mo-

tivated by this work we empirically investigate this representation with the

SparseMountainCar task, the task where themajority of representative meth-

ods have poor performance. In previous experiments with nonlinear approx-

imation, we input the continuous states (normalized by the range of state

space) directly to the neural network. Tile coding obtains features through

discretization of the state space in a smart way. We expect neural networks to

benefit from estimating action values for simpler, discrete inputs. The results

are shown in Figure 6.12.
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Figure 6.12: Median normalized cumulative reward over final 10% learning
budget for Q-learning agents in Sparse MountainCar with neural networks.
The neural networks take tile-coded features of states as input. The box draw-
ings " " and " " denote the worst and best runs in each hyperparameter set-
ting, respectively. Each black solid diamond denotes the agent’s performance
with its independent best hyperparameter setting and continuous state input
to the neural network, which corresponds to the bar plot in Figure 6.3.

Most agents obtain an improvement in their final performance, especially

Actor-Critic, which has improved from virtually zero median cumulative re-
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wards to around three quarters of the near-optimal performance. The results

are in general consistent with our expectation.

On the other hand, two agents RND and BootstrapQ suffer from perfor-

mance drop. This phenomenon could be interpreted from the perspective of

representation. While it makes the inputs simpler, this tilecoded net architec-

ture also induces less complicated value estimates. As a result, the ensemble

distribution becomes less diverse, hence the less effective uncertainty esti-

mation leads to less effective exploration. A similar argument also applies

to RND. Simpler inputs cause the predictor network and the target network

to produce small prediction errors even in unseen regions of the state-action

space, which creates less effective uncertainty estimation.

Although these results demonstrate the high potential of smaller input

space, one thing to be aware of is that tilecoding is not particularly extendable

to image inputs. As the capability of constructing good representations of

highly complex state space is critical, both in game playing and real-world

applications, more research is needed for reliable state abstraction methods.

6.5.2 Randomized Prior as Optimism

Furthermore, in order to evaluate the impact of the randomized prior function

on exploration alone, we experimented with the extreme case where the size

of the value function ensemble is 1. This additive prior applied to one value

function alone plays the role of optimistic initializations. Common neural

network initialization schemes initialize layer weights and biases with zero-

mean symmetric distributions (common choices are Gaussian distribution and

uniform distribution). Due to the non-negative activation ReLU and the prior

scaling coefficient, the Q-value estimate as a posterior is initializaed to be

optimistic in expectation, i.e., E[max0 ?̂w(A, 0)] = E[max0( 5̂w + V>) (A, 0)] > 0

at states A, where ?̃w is the original Q-value estimate without a prior, V is the

prior scale, and > is the prior function.

By controlling the prior scale this initial optimism could be arbitrarily high.

As the agent is guided to explore the environment and trained with seen
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transitions, the Q-value estimate at those state-action pairs will be corrected,

that is, ?̃w will become pessimistic to counter the positive prior at those state-

action pairs. In addition, it should also encounter the same issue due to the

generalization of neural networks as our OptimisticInit implementation for

the same reason.
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┤
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Figure 6.13: Median normalized cumulative reward over final 10% learning
budget for BootstrapQ with neural networks. The size of the ensemble is 1.
The box drawings " " and " " denote the worst and best runs in each hyperpa-
rameter setting, respectively. Each black solid diamond denotes the agent’s
performance with its independent best hyperparameter setting and ensemble
with size  > 1, which corresponds to the bar plot in Figure 6.2.

The results are shown in Figure 6.13. In general this variant outperforms

the vanilla BootstrapQ with ensemble size  > 1. It achieves the most im-

provement in Antishaping and VarianceWorld. In fact its performance in

many environments is aligned with our OptimisticInit (see Figure 6.2). The

performance in Hypercube remains at the same level, which can be explained

by the quickly diminishing optimism as described in Section 6.4. Surprisingly

its performance in SparseMC and WindyJump is worse. It is likely that some

initial Q-value estimates are not optimistic, since our discussions above only

cover the case that the initialization is optimistic in expectation. Figure 6.14

presents the initial maximum Q-value estimates for all runs in WindyJump.
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It shows that in some runs the initial value estimates are neutral or even pes-

simistic, in spite of the optimism shown in most runs.

Figure 6.14: Initial maximum action value estimates max0 ?̂w(A, 0) for Boot-
strapQ with neural networks across all states A in WindyJump. The prior scale
is 1. The size of ensemble is 1. Each line segment corresponds to one random
seed.

Both the additive prior function and our OptimisticInit implementation

are hindered by the issue caused by the generalization of neural networks.

Rashid et al. (2020) avoids this issue by augmenting a count-bonus as an up-

per confidence bound to the Q-value estimates ?̂+w(A, 0) = ?̂w(A, 0) + �
(# (A,0)+1)" ,

here # (A, 0) is the state-action visitation count, and � and " are hyperparam-

eters. This ?̂+w is used at both action selection and bootstrapping. During ex-

ploration the optimism is captured through the count-bonus as an uncertainty

estimate, hence generalization in the Q-value network does not damage op-

timism in unseen state-action pairs. Ideally any uncertainty estimation could

serve as the optimism at action selection, and one interesting future direction

is to experiment on various choices.
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Chapter 7

Conclusion

In this thesis, we conduct a large empirical study designed to tease apart the

key characteristics of model-free exploration methods in deep reinforcement

learning, as well as to isolate and test the characteristics of exploration prob-

lems that make them difficult. We identify challenges posed by properties of

the reward function (high-variance, sparsity, and misguiding) and the tran-

sition dynamics (high-variance, large state-action space, and adversarial) of

the environment, and introduce a new set of benchmark exploration prob-

lems, each of which embodies one exploration property. Our suite of tasks is

designed to be as small as possible to permit extensive experimentation and

ensure the domains can be easily analyzed and understood.

We introduce a categorization of model-free exploration methods based

on their underlying exploration heuristics. We firstly identify the undirected

exploration methods, methods that inject stochastic perturbations to the pa-

rameters or directly to the policy so that exploratory actions are induced. We

then identify the bonus-based methods, which augment the extrinsic reward

from the environment by an intrinsic reward based on some form of novelty

or uncertainty estimation so that the agent could have more accurate value

estimates. Finally we introduce a group of methods that directly estimate un-

certainty on state-action values. These methods estimate value uncertainty

and use it to guide its exploration behaviour.

We conduct a systematic empirical study of representative model-free ex-

ploration methods on the aforementioned suite of toy tasks. Our study results
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in several practical insights. No single exploration method performs well in

every environment, highlighting the utility of our task suite. Performance

is usually grouped according to methods that use a reward bonus, take ac-

tions according to inflated values, or use randomness to explore. There is

some inconsistency across related methods. For example, some upper con-

fidence estimation methods achieve high robustness across representations,

while others achieve the best performance with one representation, but poor

with others.

Our results also demonstrate the form of the representation has a large

impact on performance. Almost all methods perform significantly worse with

dense neural network representations, compared with sparse, high-dimen-

sional tilecoded features. In particular, recent deep RL exploration methods

perform particularly poorly with tile coding. Furthermore, the choice of hy-

perparameter settings also plays a significant role in affecting performance.

Agents with neural network approximations perform much more robustly

than themselves with tilecoding. Finally we take a deeper dive into meth-

ods that directly estimate value uncertainty. We propose some modifications

resulting in multiple variants of the same algorithm, and conduct experiments

to gain empirical insights that could potentially lead to more effective explo-

ration methods.

7.1 Future Work

There are interesting future research directions beyond the scope of this the-

sis. Methods that directly estimate value uncertainty is more investigated in

the linear setting. Although there are practical concerns about the generaliza-

tion of neural networks, those nonlinear agents have shown great potential

for high performance across exploration domains. For instance, Optimistic

Initialization is critical in linear settings. Our proposed nonlinear analogue

has severe drawbacks but it still managed to achieve promising performance.

It is an interesting research direction to alleviate the generalization of neural
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networks, or bypassing this issue with different forms of uncertainty estima-

tion.

Another future direction could focus on the non-stationary online setting.

A realistic scenario in which the learning/evaluation separation is not appli-

cable is when the environment is non-stationary. In such a case the RL agent

is expected to continuously improve the performance and adapt to changes in

environments. A sensible evaluation metric for a non-stationary setting thus

needs to consider both the cumulative reward and how quickly the agent

adapts to environmental shifts. Each of our tasks exhibits a unique explo-

ration challenge, hence it is interesting to extend this work by applying a

different form of non-stationarity to each individual environment.

One other future research direction is to empirically study exploration

methods in environments with combined exploration challenges. Each of our

tasks embodies one single exploration challenge. Although some properties

are inherently not very compatible, such as sparse rewards and misleading re-

wards, the six exploration properties could result in interesting combinations

that are worth further investigations.
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Appendix A

Environment Hyperparameters

In this appendix, we describe the specific hyperparameters that we chose for

each environment. All environments except SparseMC have stochastic tran-

sition dynamics to make it difficult for the agent to visit the exact same state

multiple times. In SparseMC, a similar effect is achieved by starting in a ran-

dom location near the center of the valley. While the transitions are stochas-

tic, they are very low variance outside of WindyJump, so we usually do not

consider the transition stochasticity to be part of the exploration challenge.

Additionally, environments except Antishaping have sparse rewards in some

regions of the state space. We only consider SparseMC embodies the chal-

lenge of sparse reward, since in other environments the start state is close to

the rewarding states.

We also set the hyperparameters in each environment so that the expected

value of an episode following the optimal policy is close to 1. When there is

an obvious sub-optimal policy that the agent may learn instead, the corre-

sponding value under the sub-optimal policy is close to 0.01 or less.

A.1 Exploration Properties Related to Reward

A.1.1 High-variance Reward: VarianceWorld

VarianceWorld is adopted from the noisy reward navigation environment pro-

posed by White et al. (2010). This environment is a one-dimensional corridor

between 0 and 1. The agent starts uniformly randomly in [0.45, 0.55], and
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can move left or right according to a N(0.05, 0.012) distribution. Either end
of the corridor is 10 steps away from the start point in expectation. Moving

past 0 terminates the episode with a reward of 0.01W−10 ≈ 0.011, while mov-

ing past 1 terminates the episode with a reward of -W−10, where - is drawn

uniformly randomly from {10,−10, 0.5,−0.5, 5}. The ‘always go left’ fixed

policy has a value approximately equal to 0.01, while the ‘always go right’

fixed policy — that is, the near-optimal policy — has a value approximately

equal to 1. VarianceWorld is similar to a two-armed bandit problem, with one

arm producing fixed rewards while the other arm producing noisy rewards.

A.1.2 Misleading Reward: Antishaping

This environment is adapted from the original Antishaping environment pro-

posed by Langford (2018). The goal of Antishaping is to provide an agent

with a local reward structure that does not reflect globally optimal behaviour.

An agent that generalizes aggressively may learn that the reward decreases as

the agent moves further from the start state, failing to explore sufficiently to

confirm its action-value estimates, and failing to identify the optimal policy.

Antishaping is a one-dimensional corridor between 0 and 1. The agent

starts at state 0, and can move left or right according to a N(0.005, 0.0012)
distribution. Reaching the other side of the corridor takes about 200 steps in

expectation. The reward is designed to follow a bell curve centered at state 0.

As the agent moves to the right, it receives less and less reward until it passes

state 1, at which point the episode terminates and it receives a large reward

of 7.452. The non-terminal reward is generated by the following function:

@(A) = 1
7264

√
2c

exp
(
−1
2

( A

0.15

)2)
,

where A ∈ [0, 1]. With a discount factor of 0.99, the optimal policy of always

moving right has a value near 1, while the policy that always moves left to

stay in the state 0 has a value near 0.0055.
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A.1.3 Sparse Reward: Sparse MountainCar

MountainCar (Moore 1990) is a classic continuous environment. The agent

is an underpowered car in a valley, and it must use momentum to drive to

the top of a hill, where the episode terminates. This environment has a two-

dimensional state space, which represents the position and velocity of the

car. The agent starts with 0 velocity, with position drawn uniformly randomly

from [−0.6,−0.4]. The reward is typically −1 per timestep, incentivizing dis-

counted agents to terminate the episode as quickly as possible.

Actions �B ∈ {−1, 0, 1} correspond to reversing, coasting, and accelerating

respectively. Let - denote the position and ¤- denote the velocity, the state

update rule follows the equations as follows (R. S. Sutton et al. 2018):

¤-B+1 = bound
[ ¤-B + 0.001�B − 0.0025 cos(3-B)]

-B+1 = bound
[
-B + ¤-B+1

]
The bound operator keeps the position within [−1.2, 0.5] and the velocity

within [−0.07, 0.07]. If the dynamics update causes the agent’s position -B+1

to go beyond −1.2, the velocity ¤-B+1 is set to 0. In our SparseMC implementa-

tion, rewards are always 0 unless -B+1 is greater than or equal to 0.5, in which

case the episode terminates with a reward of 3.34. This reward is chosen so

that the near-optimal policy has a value close to 1 in the start state distri-

bution. The optimal policy utilizes the momentum, and it is a deterministic

policy (Xiao 2019) described as follows:

c∗(· | -B) =
{
2, lbB ≤ ¤-B ≤ ubB,
0, otherwise,

where lbB = min
(
−0.09(-B + 0.25)2 + 0.03, 0.3(-B + 0.9)4 − 0.008

)
and ubB =

−0.07(-B + 0.38)2 + 0.07.
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A.2 Exploration Properties Related to Transition
Dynamics

A.2.1 High-variance Transitions: WindyJump

This environment follows the familiar [0, 1] corridor model with uniform ran-

dom start states in [0.45, 0.55]. WindyJump has two actions, going left and

going right. When the agent is in the left half of the environment with no

wind, it moves according to a N(0.0116, 0.012) distribution. In the right

half of the environment where there is wind, the agent moves according to

a U(−0.1, 0.125) random variable. Both ends of the corridor are terminal

states, which are about 40 steps away from the start state. The terminal re-

ward at state 0 is 0.01W−40 ≈ 0.015. The agent’s terminal reward on the right

end depends linearly on its final position. The agent’s goal is to jump over a

pit on the right side of the environment to reach a large reward. Writing the

final position of the agent as F > 1, the agent’s terminal reward is given by

@(F) = (281(F − 1) − 10) W−40. Non-terminal rewards are 0. With a discount

factor of 0.99, the optimal policy of always moving right has a value near 1,

while the policy that always moves left has a value near 0.01.

A.2.2 Antagonistic Transitions: AlpineSki

AlpineSki is another [0, 1] corridor, with the start state at 0. There are two

actions, traverse and descend. The traverse action moves the agent to the right

according to aN(0.05, 0.012) random variable. The descend action moves the

agent to the left, and it terminates the episode with a reward of 0.01 if the

agent’s position is less than 0.95, and a reward of W−20 otherwise. Unlike the

other environments, AlpineSki only terminates if the agent takes the descend

action, and does not terminate based on the agent’s position. The optimal

policy is to move to the right end and descend one step back. Like the other

environments, the value of the optimal policy from the start state is roughly

1, and the value of descending immediately is 0.01.
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A.2.3 Large State-action Space: Hypercube

In this thesis the Hypercube environment is a < = 3 dimensional cube with

radius (distance from its center to surface) of 10, i.e., A ∈ [−10, 10]<. For a
more challenging exploration task the number of dimensions or size of the

cube can be increased. The agent starts at the origin and can move in any

direction along any of the axes by aN(1, 0.152) random variable. The agent’s

movement is clipped to stay within the boundaries of Hypercube. One optimal

policy is to move persistently along each axis until reaching one more surface.

Rewards depend on the number of surfaces the agent touches at a given

timestep. The reward is increased as the agent touches more surfaces. They

are designed so that the value of touching 7 surfaces forever is less than

the reward from touching 7 + 1 surfaces for a single timestep, in particular∑∞
9=0 W

9@7 / 0.9@7+1, where @7 is the reward for touching 7 surfaces. The design

choice also satisfies the optimal policy has a value near 1 at the origin. The

reward vector @ used in this thesis is [0, 0.000081, 0.009, 1.245]. When the

agent transitions to a vertex, that is, it touches < surfaces (with < = 3, its

position might be [10, 10,−10]), then the episode terminates with a reward

of @<.
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Appendix B

Algorithm Details

In this appendix we provide the detailed pseudocode for each algorithm. To

avoid redundant repetition of pseudocode, we mainly present the baseline al-

gorithms and describe how each exploration scheme is applied. The function

approximationmethods include neural networks for nonlinear approximation

?̂NNw : S × A → R, and tilecoded representations for linear approximation

?̂TCw ((, �) = w>5((, �), where 5 : S × A → R3 is the tile coding feature

mapping.

B.1 Baselines

The section presents the pseudocode for the baseline agents greedyQ-learning

and Softmax Actor-Critic, with both tilecoding and neural network function

approximations. Algorithms in the following sections are based on the Q-

learning agent.
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Algorithm 1: Q-learning with tilecoding function approximation
Input: arbitrary value function weights w ∈ R3

discount factor W ∈ [0, 1]
Parameters: learning rate U > 0

feature map 5 : ( × �→ R3

while training budget not exhausted do
(← initial state of the episode
�← argmax

0
w>5((, 0)

while episode not terminates do
Take action �, observe ', (′
�′← argmax

0
w>5((′, 0)

w← w + U[' + Wmax0w>5((′, 0) −w>5((, �)]5((, �)

(← (′, �← �′

Exit if training budget exhausted
end
w← w + U[' −w>5((, �)]5((, �)

end
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Algorithm 2: Q-learning with neural network function approxima-
tion
Input: value function ?̂w parameterized by weights w ∈ R3 initialized

with Kaiming uniform initialization
discount factor W ∈ [0, 1]

Parameters: learning rate U > 0
mini-batch size <batch
target network sync period )
replay buffer B with capacity #
number of environment steps per update <env
number of optimization steps per update <opt

Iteration B ← 0
Target network w′← w
while training budget not exhausted do

(← initial state of the episode
�← argmax

0
?̂w((, 0)

while episode not terminates do
Take action �, observe ', (′
�′← argmax

0
?̂w((, 0)

Add transition ((, �, ', (′) to B
Run UpdateWeights-DQN
(← (′, �← �′

B ← B + 1
Exit if training budget exhausted

end
Run UpdateWeights-DQN

end

Algorithm 3: Q-learning update with neural networks
if len(B) > <batch and B mod <env == 0 then

for 7 = 1, . . . , <update do
Sample a minibatch {((7, �7, '7, (′7)}

<batch
7=0 from B

Perform one gradient descent step according to Equation 2.2
end

end
if B mod ) == 0 then

Sync target network w′← w
end
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Algorithm 4: Softmax Actor-Critic with tilecoding function approx-
imation
Input: arbitrary value function weights w ∈ R;

arbitrary policy weights u ∈ R<
discount factor W ∈ [0, 1]

Parameters: value function learning rate U > 0
policy learning rate V > 0
value function feature map 5 : (→ R;
policy feature map 7 : ( × �→ R<

while training budget not exhausted do
(← initial state of the episode
� ∼ softmax(u>7((, ·))
while episode not terminates do

Take action �, observe ', (′
�′ ∼ softmax(u>7((′, ·))
X← ' + Wmax0w>5((′, 0) −w>5((, �)

w← w + UX5((, �)

u← u + VX∇u ln softmax(u>7((, �))
(← (′, �← �′

Exit if training budget exhausted
end
X← ' −w>5((, �)

w← w + UX5((, �)

u← u + VX∇u ln softmax(u>7((, �))
end
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Algorithm 5: Softmax Actor-Critic with neural network approxima-
tion
Input: value function D̂w parameterized by weights w ∈ R;

initialized with Kaiming uniform initialization
policy function 0̂u parameterized by weights u ∈ R< initialized
with Kaiming uniform initialization
discount factor W ∈ [0, 1]

Parameters: value function learning rate U > 0
policy learning rate V > 0

while training budget not exhausted do
(← initial state of the episode
� ∼ softmax(0̂u((, ·))
while episode not terminates do

Take action �, observe ', (′
�′ ∼ softmax(0̂u((′, ·))
X← ' + Wmax0 D̂w((′, 0) − D̂w((, �)
Perform one gradient descent step with gradient −X∇wD̂w((, �)
to update w
Perform one gradient descent step with gradient
−X∇u ln softmax(0̂u((, �))
(← (′, �← �′

Exit if training budget exhausted
end
X← ' − D̂w((, �)
Perform one gradient descent step with gradient −X∇w D̂w((, �) to
update w
Perform one gradient descent step with gradient
−X∇u ln softmax(0̂u((, �))

end
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B.2 Undirected Methods

The n-greedy agent takes actions according to the following policy

�′ =


argmax

0
?̂w((, 0), with probability 1 − n,

random action, otherwise,

and the rest of the algorithm is identical to the greedy Q-learning.

NoisyNet utilizes the noisy linear layer rather than the regular fully con-

nected layer. New parameters of the Q-value network are sampled after

each step of optimization, i.e., each gradient descent step according to Equa-

tion 2.2. The rest of the algorithm is identical to the greedy Q-learning.

B.3 Bonus-Based Methods

Our linear count-bonus implementation estimates pseudocounts in the fea-

ture space (J. Martin et al. 2017), whereas our non-linear implementation

utilizes static hashing (Tang et al. 2017). The agent updates visitation count

estimates #̂ (() at state ( before updating weights of the Q-value network.

Each extrinsic reward signal is augmented by an intrinsic reward proportional

to 1√
# ((

. The rest of the algorithm is identical to the greedy Q-learning.

Random network distillation (Burda et al. 2018) computes the reward

bonus as the prediction error between its secondary prediction network and a

fixed randomly initialized target network. In the linear setting, the ’network’

is realized by the inner product of the feature vector and the weight vector.

Before computing the reward bonus, the secondary network is updated to-

wards the target network at seen transitions. The bonus term is added to the

extrinsic reward similar to what count-bonus method does. The rest of the

algorithm is identical to the greedy Q-learning.

B.4 Directly Estimating Value Uncertainty

Optimistic initialization essentially initializes the value estimates with an op-

timistic value before its interaction with the environment. The rest of the
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algorithm is identical to the greedy Q-learning.

The IEQL+ approach combines optimistic initialization and count-bonus

methods. Given parameters standard deviation of return fmax, confidence in-

terval width 1−\, and the discount factor W, the value estimates are initialized

to &(·, ·) = fmax/\/2
1−W . The rest of the algorithm is identical to the count-bonus

agent.

UCLS (Kumaraswamy et al. 2018) is a linear explorationmethod. Its pseu-

docode is shown in Algorithm 6.

BootstrapQ maintains an ensemble of  > 1 Q-value functions. This en-

semble plays the role of uncertainty estimation. The detailed pseudocode for

nonlinear function approximation setting is shown in Algorithm 8. In the lin-

ear setting, the ’network’ is realized by the inner product of the feature vector

and the weight vector. Note that in our implementation we update the net-

work weights every <env timesteps, as opposed to the setting proposed by the

original paper that updates are only performed at the end of each episode.

Since none of our diagnostic environments has a fixed episode length, more

frequent optimization steps would help guide more efficient behaviour. We

discuss and evaluate more modifications to the original setting in Chapter 6.

81



Algorithm 6: UCLS with tilecoding function approximation
Input: arbitrary value function weights w ∈ R3

discount factor W ∈ [0, 1]
Parameters: value function learning rate U > 0

variance function learning rate Uvar > 0
confidence interval width 1 − \
feature map 5 : ( × �→ R3

Initialize Dinit ← 1, 2← 1, V ← 0.001
Initialize wvar ← 0, wvarInit ← 1
while training budget not exhausted do

(← initial state of the episode
foreach action 0 do

u0 ←
√(

1 − 1
\

) (
(w>5((, 0))2 ‖5((, 0)‖2wvarInit

)
end
�← argmax

0
w>5((, 0) + u0

while episode not terminates do
Take action �, observe ', (′
foreach action 0 do

u0 ←
√(

1 − 1
\

) (
(w>5((′, 0))2 ‖5((′, 0)‖2wvarInit

)
end
�′← argmax

0
w>5((′, 0) + u0

Run UpdateWeights-UCLS
(← (′, �← �′

Exit if training budget exhausted
end
Run UpdateWeights-UCLS

end
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Algorithm 7: UpdateWeights-UCLS
X← ' + Ww>5((′, �′) −w>5((, �)

w← w + UX5((, �)

Xvar ← X + Wwvar
>5((′, �′) −wvar

>5((, �)

wvar ← wvar + UvarXvar5((, �)

temp← Dinit
Dinit ← max(Dinit,wvar

2
1, . . . ,wvar

2
3
)

if temp ≠ Dinit then
wvarInit ← wvarInit + (Dinit − temp)c

end
for 7 such that 5((, �) 7 ≠ 0 do

c7 ← (1 − V)c7
wvarInit ← (1 − V)wvarInit

end
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Algorithm 8: BootstrapQ with neural network function approxima-
tion
Input:  value functions {&9} 9=1, each value function ?̂w9

= 5̂w9
+ V>9

parameterized by weights w9 ∈ R3 initialized with Kaiming
uniform initialization, where >9 is a randomized prior
function
discount factor W ∈ [0, 1]

Parameters: learning rate U > 0
prior scale 14B0
mini-batch size <batch
target network sync period )
replay buffer B with capacity #
number of environment steps per update <env
number of optimization steps per update <opt
Bernoulli masking distribution " = �4@(>) with
probability >

Iteration B ← 0
Target networks w′

8
← w 8, 8 ∈ {1, . . . ,  }

while training budget not exhausted do
(← initial state of the episode
Sample a value function to act with 9 ∼ Uniform(1, . . . ,  )
�← argmax

0
?̂w9
((, 0)

while episode not terminates do
Take action �, observe ', (′
�′← argmax

0
?̂w9
((, 0)

Sample bootstrap mask ; ∼ "
Add transition ((, �, ', (′, ;) to B
Run UpdateWeights-DQN
(← (′, �← �′

B ← B + 1
Exit if training budget exhausted

end
Run UpdateWeights-BootstrapQ

end
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Algorithm 9: BootstrapQ update with neural networks
if len(B) > <batch and B mod <env == 0 then

for 7 = 1, . . . , <update do
Sample a minibatch {((7, �7, '7, (′7, ;7)}<batch7=0 from B
for 8 = 1, . . . ,  do

Perform one gradient descent step to update w 8 according
to Equation 2.2, using only transitions with ;7 == 1 for
this value function sample

end
end

end
if B mod ) == 0 then

Sync target network w′
8
← w 8, 8 ∈ {1, . . . ,  }

end
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Appendix C

Hyperparameter settings of
representative agents

In this appendix we describe the hyperparameter settings of the baselines

and representative exploration methods. Descriptions and pseudocode for

each method are introduced in Chapter B. Unless otherwise specified we set

the replay buffer B’s capacity # = 50000, minibatch size <batch = 128, target

network sync period ) = 128, number of environment steps between suc-

cessive weight updates <env = 4, number of optimization steps per update

<opt = 1, and discount factor W = 0.99. For nonlinear Q-value estimate up-

dates, we use the Adam optimizer (Kingma et al. 2017) with default param-

eters V1 = 0.9, V2 = 0.999, and nAdam = 10−8. As for linear Q-value estimate

updates, both Adam in the default setting and stochastic gradient descent

(SGD) optimizers are swept. We present detailed hyperparameter choices for

each algorithm in subsequent sections. For the same hyperparameter, we typ-

ically sweep over a wider range for nonlinear agents, as they tend to achieve

their best performance with much more diverse values than themselves in

linear settings.

C.1 Baselines

For the Q-learning agent, we sweep its learning rate U as described in Chap-

ter 5. Unless otherwise specified, the learning rate U for any Q-value estimate

updates of a representative exploration method takes the same set of values.
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The Softmax Actor-Critic agent consists of two components: the actor,

which defines the agent’s policy through a preference value function esti-

mate and a softmax distribution over preferences that injects stochasticity

to action selection, and the critic, which reduces the variance in the actor’s

gradient estimates through a value function estimate. The critic updates its

value function estimates with a learning rate U, and the actor updates the

policy with a learning rate V. We note that in the linear setting both the actor

and the critic are parameterized with the same tilecoding features, while in

the nonlinear setting, each component is parameterized with its own neural

network, whose architecture is the same as the one for Q-learning except the

critic net’s output layer. We sweep U and V separately, and each of them takes

values from the same set for Q-learning’s learning rate.

C.2 Undirected Methods

The n-greedy agent is a Q-learning agent that takes n-greedy actions. we

sweep over n ∈ {0.0078125, 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5}.
Only constant n is supported for linear agents, whereas both constant and

linearly decaying n are supported. The linear decaying scheduling starts with

n = 1 — i.e., the policy is purely random at the beginning of the learning

phase — and anneals n linearly during the first 10k timesteps, until n reaches

a pre-specified n0, where n0 takes the same values as the values for constant

n-greedy agents.

NoisyNet utilizes noisy linear layers instead of an ordinary fully connected

layer. At each layer with input F, the output G = EF + 1 is calculated using

E = `E + fE � bE and E = `1 + f1 � b1, where `E, `1, fE, f1 are trainable

parameters, bE and b1 are noise variables sampled from a standard Gaus-

sian distribution after each step of optimization, and � denotes element-wise

multiplication. Exploratory behaviour is induced from those noise in the pa-

rameter space. In our implementation we use factorised Gaussian noise to

sample bE and b1 (Fortunato et al. 2019). Each element of `E or `1 is initial-
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ized by sampling from an uniform distributionU[− 1√
>
, 1√

>
], and each element

of fE or f1 is initialized to a constant f0√
>
, where > is the input dimension to

the corresponding noisy linear layer, and f0 is set to 0.5.

C.3 Bonus-Based Methods

Count-based methods maintain a visitation count estimates #̂ (A) at state A

(or #̂ (A, 0) at state-action pair (A, 0)), and augment the extrinsic reward @4

by a bonus that captures the uncertainty using the count estimate: @ = @4 +
V 1√

#̂ (A)
, where V is the intrinsic reward scaling factor. We sweep over V ∈

{0.005, 0.01, 0.05, 0.1, 0.5} for the linear agent, and V ∈ {0.001, 0.01, 0.1, 1,
10} for the nonlinear agent.

Random network distillation (RND) estimates uncertainty using a predic-

tion network and a target network, both of which are initialized with orthog-

onal matrix initialization (Saxe et al. 2014) and the target network is held

fixed throughout the whole learning phase. In the linear setting, the ’network’

is realized by the inner product of the feature vector and the weight vector. For

simplicity, in the linear setting, we initialize the prediction network with con-

stant 0 and the target network with random normal samples. Each of the pre-

diction network and the target network encodes the state to a 9-dimensional

representation vector. The learning rate Upred for updating the prediction net-

work takes the same values as U for Q-value estimates. We sweep the repre-

sentation dimension 9 ∈ {2, 5, 10, 20}. The intrinsic reward is the L2 norm of

the error between the target network’s output and the prediction network’s

output, normalized by the standard deviation of the intrinsic return, and then

scaled by a constant V. We sweep over V ∈ {0.005, 0.01, 0.05, 0.1, 0.5} for the
linear agent, and V ∈ {0.001, 0.01, 0.1, 1, 10} for the nonlinear agent.

C.4 Directly Estimating Value Uncertainty

The optimistic initialization agent is the same as the greedy Q-learning base

agent, except that its Q-value estimate is initialized to an inflated value. We
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sweep over its initial value E ∈ {−1, 1, 10, 20, 50, 100}.
IEQL+ maintains approximate upper confidence bounds on the Q-value.

The intrinsic reward is constructed with a standard deviation parameter fmax

and a confidence interval size parameter \: @7 =
fmax/\/2√

<
, where /\/2 is the

value at which the cumulative distribution function of the standard normal

distribution has value 1−\2 . We sweep over fmax ∈ {0.001, 0.005, 0.01, 0.015},
and \ ∈ {0.5, 0.75, 0.9, 0.95, 0.99}.

UCLS also maintains upper confidence bounds on the Q-value. The upper

confidence bounds are constructed with a variance estimate. The learning

rate Uvar for updating the variance estimate takes values Uvar ∈ {0.005, 0.01,
0.05, 0.1, 0.5}. The weights associated with the variance estimates are also

scaled by a parameter > =
√
1 − 1

\
, and we sweep over > ∈ {0.05, 0.5, 1, 5, 10}.

BootstrapQ learns an ensemble of  > 1 Q-value functions, each of which

is the sum of a trainable action-value function and a fixed random prior func-

tion scaled by a parameter V. A Bernoulli masking distribution " = �4@(>)
is used to determine whether a transition tuple is used to train each value

function. We sweep the ensemble size  ∈ {2, 5, 10, 20}, the masking prob-

ability > ∈ {0.5, 1}, and the scaling factor V ∈ {0, 0.1, 1, 10}, where V = 0 is

the setting where the randomized prior function is omitted.
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