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Abstract

Through a specific example of two-body color-favored charm decay, D} —
¢nt, we illustrate how an effective and complex (unitarized) a,, denoted by af“f !
may be defined such that it includes nonfactorized, annihilation and inelastic final
state interaction (fsi) effects. The procedure can be generalized to color-suppressed
processes to define an effective, and complex a¥*//. We determine |aY*//| and, where
relevant, |ab*//| for D — K=, Kp, R*x, D} — nxt, ofz*, np*,17/p*, and for B® —

D=t and D~ p* from the hadronic and semileptonic decay data.

After discussing how our view of the phenomenological constants a; and a3
have evolved, we have concluded that , treating the phenomenological parameters
a; and a, as process independent is untenable. It does not explain the experimental
data. For the processes which involve only one Lorentz structure, it is always possible
to define an effective and complex (unitarized) a?*// and a)**// that include nonfac-
torized, annihilation and inelastic final state interaction effects. A corollary of our
point of view is that the purported test of factorization that compares the hadronic
rate to the semileptonic should be used instead as a tool to determine the modulus

of these effective parameters.
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Chapter 1

Introduction

Historically weak decays have always been a rich source of information about the
form and symmetry of the basic interactions as well as about the structure of the
constituents of matter. Weak decays are essential for testing the Standard Model,
specially its SU(2) ® U(1) electroweak sector, theory of electromagnetic and weak
interactions. This model has been very successful for the last thirty years, although
all features of this theory have not been verified. The heavy quark sector, for example,
is still far from being well established since many important parameters are not or

only poorly known, like the charged current couplings of heavy quarks.

Therefore the physics of heavy quarks, charm and beauty (they are heavy
relative to the QCD mass scale Agcp), presents a great environment for testing and
studying the Standard Model. The study of heavy quarks involves examining the
weak interaction under the influence of strong interaction, as the heavy quarks are
not free but are necessarily confined inside hadronic bound states. As a result of this,
obtaining any new information about the standard model, from the weak decays of

heavy quarks is not straight forward.

Strong interaction which is responsible for the binding of quarks and gluons in
hadronic states is described by Quantum Chromodynamics (QCD). The confinement
mechanism is still not understood completely; weak decays of heavy quarks thus also

offer a chance for achieving a deeper insight into strong interaction dynamics.



It is assumed that the short distance nature of weak decays allows one to sep-
arate the possible corrections from strong interactions into short and long distance
contributions. The asymptotic-freedom property of QCD allows a perturbative calcu-
lation of the short distance corrections. They arise from the exchange of hard gluons
and modify the structure of the weak interaction hamiltonian. The light quarks pro-
duced in the decay of a charm or beauty quark necessarily have to combine with the
spectator quark to form color singlets i.e. hadrons. This is a non-perturbative process
and, so far cannot be calculated from first principles . We therefore have to rely on

phenomenological approaches. In other words,we assume

(1) the short distance corrections are associated with the effective weak Hamiltonian

Hg,, and (2) all long distance effects are absorbed in the initial and final states.

The interplay between weak and strong interactions at short and long dis-
tances has been studied for a long time in strange quark decays. Many features of
strange quark decays, e.g.- the AT = % rule, have never been fully understood and
the disagreement between theoretical predictions and experimental findings has been
attributed to the unknown long distance corrections. The situation is more encour-
aging in charm and beauty decays where the mass of the decaying quark may be
large enough that long distance corrections become unimportant for the understand-
ing of the decay dynamics. This has turned out to be essentially the case although
hadronization still plays a more important role in charm decays than anticipated.
The best known example of it is the life time difference between the various charmed
mesons, namely D% D* and D}. Beauty decays seem to be dominated by short dis-
tance dynamics and they are therefore a very important laboratory for testing the

standard model and looking for new physics.

In the next chapter we briefly review the standard model, including the electro-
weak and strong interactions and, also detail what are the reasons and motivations

for studying heavy flavors.



In chapter 3 the effective low energy weak Hamiltonian, with the inclusion of
short distance QCD effects (Hard gluon effects), is examined. Using this effective
Hamiltonian in the context of " Valence Quark Approximation” model, we study the
inclusive, semileptonic and nonleptonic weak decays of charmed mesons. As a first
approximation inclusive weak decays allow us, to ignore non-perturbative effects such
as the hadronization of the produced quarks and final state interactions between
produced hadrons. By treating the light quark in the initial meson as inert quark,

that is it does not participate in the decay, the calculations can be done at essentially

free quark level.

In chapter 4, by using the factorization model and by introducing the phe-
nomenological form factors and constants a; and a; we study the exclusive weak
decays of charmed mesons. Comparison with experiments shows that overall, the fac-
torization model works well and its predictions for the decay rates of many channels
are in good agreement with experiment, but there are some channels where it’s pre-
dictions fail badly . The possible remedies are to consider the inal state interactions

or to consider non-factorized effects.

In chapter 5, we introduce the non-factorized phenomenological form factors in
close analogy with the introduction of their counterparts in the factorization model.
We also introduce the effective phenomenological constants af/ ! and a5/, and show
how non-factorized and annihilation effects can be absorbed in the phenomenological
factors a3f/ and af! . Through a specific example, D} — ¢x , we examine the effect
of final state interactions on the effective constants a{// and a3//. We conclude that
by a moderate change in the phenomenological constants a; and az, which can be due
to the effects of annihilation, non-factorization and final state interactions, we can
restore the consistency between the theoretical predictions and experiments in the
exclusive decays where the factorization model fails to predict results in agreement

with experiment. In chapter 6 we give summary and conclusion.



Chapter 2

A Brief Introduction to the Standard Model

2.1 Imntroduction

The Standard Model ties the theory of electroweak interactions of Glashow-Weinberg-
Salam [1, 2] and Quantum chromodynamics (QCD), the theory of strong interactions
[3] in a unified non-abelian gauge theory based on SU(3) ® SU(2) ® U(1) group. (For

a detailed review see [4]).

The basic constituents of matter are quarks and leptons (both fermions)and
the fundamental interactions are mediated by the gauge particles (bosons). See Tables
(2.1) and (2.2) (There are also corresponding antiparticles for each quark and lepton
which are not shown in Table (2.1)).

In the Standard Model three of the four known interactions, namely, the strong,
electromagnetic and weak are described in a common framework. They have yet to be
pulled together into a grand unified theory incorporating the gravitational interaction.
The quarks interact via a.ll the four interactions, the charged leptons feel all except
the strong interactions while the neutrinos, which by construction are massless in the

standard model, are only sensitive to the weak interactions.



Table 2.1: Gauge Particles

Interaction Mediator Mass Spin
Strong | gluons, g 0 1
Electromagnetic photon v 0 1
Weak W*,2° ~80,91GeV 1
Gravitational graviton, G 0 2

Table 2.2: Quarks and Leptons

Generation
Particle 1 2 3 Charge Spin
. c t +2e 1
Quks (3) (5) (5) i i
. Ve vy Vr 0 1
e (1) (2) () %}




2.2 Electromagnetic and Weak interactions

The electromagnetic and weak interactions are described by a unified gauge theory [1]
based on the group SU(2)® U(1) . The left handed fermion fields form doublets with
respect to the SU(2) of weak isospin, whereas the right handed components are kept
as singlets. Left and right-handed field components are defined by yz = A F 1),

where 1 is the four component Dirac spinor of the fermion.

Corresponding to the four generators of the group SU(2) ® U(1) four gauge
bosons exist, which are the quanta of electroweak interaction. Renormalizability of
the theory requires the vector bosons to be massless [5], a theoretical necessity which
is at variance with the observation of only one long-range force in nature (disregarding
gravity) namely electromagnetism. Thus the problem is to give mass to the gauge
fields without destroying the renormalizability of the theory. The only mechanism
known is spontaneous symmetry breaking. Without going into detail we remark that
in the standard model spontaneous symmetry breaking is achiezed via the Higgs
mechanism (2, 5]. One adds a complex scalar doublet ¢ = tpo , to the theory
with gauge invariant couplings to the vector bosons and fermions, and a potential of
the form V = p2ptp + A(ptp)?. For y? < 0, V acquires its minimum for a nonzero
vacuum expectation value of ¢. In order not to violate charge conservation one must
choose < 0|p|0 >= -‘}2- [3] . Thus the SU(2) ® U(1) symmetry is spontaneously
broken by the vacuum, however in such away that a (new) U(1l) symmetry remains
intact. ! The latter is identified with the gauge symmetry of electromagnetism. As a
consequence three of the four gauge fields, the W* and Z? bosons, became massive

through their couplings to the scalar field, whereas one gauge boson, the photon stays

massless.

1The generator of this new U(1l) symmetry is a mixture of the two neutral generators of the
original SU(2) ® U(1). The parameter which describes this mixing is the Weinberg angle fw.




The masses of W* and Z° bosons in terms of 8y (Weinberg angle) are :

mw = T
v V2Grsindy?
W

mz = Cos 0W
where a is the fine structure constant [6]
é — 137.035963(15) 2.1)

G is the Fermi constant, which is known to a high precision through measurements
of the u lifetime [6]
Gr = 1.16639920 x 10~3GeV 2 (2:2)

Mz and My are experimentally measured to be [6}:

My = 80.22 £ 0.26GeV
Mz =91.187 £ 0.007GeV

which are in good agreement with the theoretical predictions.

The Feynman rules for tree-level vertices of the SU(2) ® U(1) gauge structure
are depicted in Fig. (2.1). The electromagnetic interaction occurs through vector
currents. The weak charged current interaction has a (V - A) (V for vector and A for
axial vector) structure. The weak neutral current is part vector, part axial vector,
where the couplings C§; and C£ are analogous to a 'weak-charge’ and are predicted
within the context of the standard model in terms of the charge of the fermion Q;
and the third component of weak isospin, TJ as specified in Fig. (2.1).

In this work we are concerned with the flavor changing weak decays which
proceed via charged current interactions, that is to say via exchange or radiation of

W#* bosons. The relevant term of the fundamental Lagrangian is [2]:

Loc = :WW [(Jecy Wi + (TEc) W] (23)



QED —te Q7 v* \%
f
g, !
w =i, 1 5
EW - CC 2y (1 =) V-A
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EW - NC 3 by T 2 (CV €AY ) part A
f
Figure 2.1: Feynman rules for tree-level vertices in electroweak interactions
where ¢ = pemy and ¢y and c4 are the vector and axial-vector couplings,

o, = Tf — 2Q;sin? 6Oy and ¢, = T, where T{ = weak isospin, } or —1.

where the charged currents (JZ;)* are given by

d e
(JC-'C)” = (ﬂv 57 E)'y“(l _75)VCKM S +(D¢1'7#7’77)7”(1 e 75) ﬂ- (24)
b T
and
(J&c) = (Uge)! (2.5)

where Vi is the Cabibbo-Kobayashi-Maskawa quark-mixing matrix:

V:ld Vus Vub
Vexw=|Va Vi Vs (2.6)
Via Vis Vi

WE's are vector fields (similar to A* the vector field for photon) representing the

vector bosons W*.

Vckm is inserted in the charged current, because the weak eigenstates and fla-

vor ( mass) eigenstates are not the same. The quark weak eigenstates are related to



the mass eigenstates by a generalized rotation, specified by the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix [7], which in the standard model is necessarily uni-

tary. The elements of this matrix act as coupling constants for the relevant pair of
quarks.

By convention, the Q@ = +§ quarks are unmixed i.e. the weak and flavor
eigenstates are the same, while the mixing in the Q = —% sector is specified by the

matrix Vogar that is :

d Via Vs Vs d
sl = Vcd Vc, Vd, s (2.7)
4 Via Vo W b

where (d',s’,¥) are the weak eigenstates and (d, s,b) are the flavor eigenstates. In

other words weak isospin doublets are:

B0, .00 0.0, -

The unitary Voxar matrix is usually parametrised by three real angles and one
complex phase (CP-violating phase) [6, 8].
Unfortunately no theory exists to predict the values of the CKM matrix el-

ements. They may however be measured and constrained experimentally. At 90%
confidence limit the magnitude of the CKM matrix elements are [6]:

Vid Ve Vb 0.9747t00.9759 0.218t00.224  0.002¢00.005
Vau Vo Va| =] 0218t00.224 0.9738t00.9752 0.032¢00.048 (2.9)
Va Vo W 0.004t00.015  0.030t00.048 0.9988t00.9995

At present the CKM matrix elements are as fundamental as quark masses
in the standard model. A better understanding of the matrix elements is essential

and could give us a sneak preview to new physics beyond the standard model. For



example, the measurements suggest a pattern as noted by Wolfenstein [9]:

1 AN
-2 1 X (2.10)
L I |

(ignoring CP violation) with A ~ sinf, ~ 0.22. This striking pattern hints at perhaps
a hierarchy of the couplings between quark generations, perhaps a new symmetry
beyond standard model.

2.3 Strong Interactions

Quantum Chromodynamics (QCD), the gauge theory of strong interactions [10}, is
based on the group SU(3). Each quark flavor exists in three colors which form a SU(3)
triplet, ¢ = (¢1,92,¢3)- The leptons, of course, are color-neutral. Corresponding
to the eight generators of SU(3) one has a color-octet of gauge bosons, the gluons
G%(a = 1,2,---8). The latter are flavor-neutral. In contrast to the spontaneously
broken electroweak gauge symmetry, the SU(3)-color symmetry is assumed to be
unbroken. This means that the gluons are massless [11]. Apart from its non-abelian

nature, the QCD Lagrangian resembles the familiar Lagrangian of QED. Explicitly,

1 .
Locp = —gFa,F** + 3 & [inuDf — m — 8] ; , (2.11)
]
where the field strength F};, is defined by
F,, =0,G;, -9,G, — g, f‘“Gf‘Gf, (2.12)

and the covariant derivative D; is given by
AS.
D:-; = 6"6.’,' + ig,—29-G°" . (2.13)
In the above A® (a = 1,2,---8) are the usual SU(3) matrices (generators) with the

commutation relations
[A2, A%) = 2ifabere (2.14)

10



and the normalization

Tr(A®Ab) = 26% . (2.15)
fo% denote the SU(3) structure constants. The essential new feature is the self-
interaction of the gluons which reflects the non-abelian structure of QCD. m is a

diagonal 3 x 3 mass matrix.

QCD is believed to show completely different behavior at short and long dis-
tances. It is shown by using renormalization group analysis [12] that QCD is an
asymptotically free theory. This means at small distances or equivalently, at large
momentum transfers, quarks and gluons interact relatively weakly. The effective
strong coupling g, (%, g,) ( g, is the renormalized coupling constant of QCD defined
at the scale y, that is §,(1,9,) = g, ) or equivalently a,(Q?) defined as
#(2.0)

2 (2.16)

a,(Q*) =
changes with the scale Q at which it is probed according to the following equation

2\ as(ﬂ'z)
a,(Q°) = EPAFEAN 2 (2.17)

or equivalently
a:(Qz) = 4_1(2 (2.18)
bin £
QCD
where b =11 — -§»N r and Np is the number of the 'open” flavors. Both of the above
expressions for the running coupling constant are commonly used. The value of a,(u?)
or, equivalently, the scale Agcp must be determined from experiment. One typically
finds (3]
Agep = (100 — 500)MeV (2.19)

The essential point of Eqs. (2.17) and (2.18), is the logarithmic decrease of
the effective strong coupling constant as one goes to higher momenta. This is simply

the statement of asymptotic freedom. An important technical consequence is the

11



applicability of perturbation theory to strong interaction phenomena at sufficiently

short distances.

Conversely, as the momentum scale is lowered the effective strong coupling
increases. It is conjectured that at large separations the interactions between colored
fields eventually become so strong that it would require infinite energy to separate
color charges. If this is ti'ue, quarks and gluons are permanently confined within
color neutral bound states, the hadrons. Since confinement [11] is an entirely non-
perturbative phenomenon (large coupling region), no real quantitative technique to
calculate confinement aspects of QCD exists at present apart from the lattice ap-
proach [13]. Hence, for phenomenological applications of QCD it is important to
know roughly at which scale the transition from confinement to the asymptotically
free regime takes place. From the early onset of approximate scaling in deep inelastic
scattering, a typical consequence of asymptotic freedom [3], one expects the transi-
tion to occur at Q2 ~ few GeV2. On the other hand characterizing the confinement
region by the distance R = g, at which a,(@?) = 1, one finds from Eqs. (2.17) and
(2.19), R = (0.2 — 1)fermi, that is the typical size of hadrons.

2.4 Why Study Heavy Flavors?

The fundamental parameters of the standard model are the electromagnetic coupling
constant or the fine structure constant a, the fermi coupling constant Gr, the strong
coupling constant of QCD, as. Two parameters are necessary to describe the weak
coupling constant and now that mz has been measured to better precision than

sin? @y, mz and Gp are usually chosen as the weak coupling fundamental parameters

of the standard model.

12



There are also at least 16 more parameters of the standard model which hope-
fully are not fundamental. These include the mass of 6 quarks and 3 leptons (neutrinos
are considered massless), the Higgs mass, the quarks mixing (specified by three angles
plus a phase), the strong CP phase angle and a classical gravitational constant.

In the study of heavy quarks, many of these parameters are experimentally
accessible in particular: a,, Vea, Vs, Vap, Vus, Vad, Visy Me, ms, m, and & which in order
are strong interaction coupling constant, CKM matrix elements , quark mass and
C P-phase angle.

Returning to the question: Why Study Heavy Flavors? we list the following
reasons and and motivations for studying the flavor changing weak decays of heavy

quarks:

e Through these decays the V-A structure of the charged current ( JEC)* may
be tested.

e Heavy quarks ha.\{e large mass, therefore a perturbative expansion in A?n—f—‘l

makes possible some QCD calculations.

e B°® — B°® mixings are observed to be large, suggesting that CP-violation and

CP asymmetries in the B system may likewise be relatively large.

o Measurements of heavy quark decays will help improve errors on many of

the CKM matrix elements. See Table (2.3).

13



Table 2.3: The relation between some measurable decay parameters of heavy quark
decays and CKM matrix elements. Where 7 is used for lifetime and Br for branching
ratio.

Measurement CKM Matrix Element
Tes TD Ved, Ves
s, TB |2
Br(B — X (X)) Vi, Vab
Br(D — X4(X4)lv) Vesy Ve
B — B° Mixing Vid, Vis
Penguin B decays Vid, Vis

14



Chapter 3

Effective Weak Hamiltonian and Inclusive Charm

Meson Decays

3.1 Introduction

We saw in the previous chapter that flavor changing weak decays proceed via charged
current interactions, i.e. through exchange (emission or absorbtion) of W* bosons

where the corresponding térm of the fundamental Lagrangian is :
Lee = 22 [(Jac Wit + (Jéc) Wy (3.1)
2\/5 B »

where the charged currents are,

d e
(JC-'C)“ = (ﬁv G, t-) 7“(1 - 75)VCKM s |+ (ﬁe’ ﬁ;n ﬁr)""(l - 75) I (3.2)
b -

and (JEo)* = (J5o)*' and Veky is the Cabibbo-Kobayashi-Maskawa matrix Eq.
(2.6).

Since all the quarks (except the top quark) and leptons are much lighter than
the W boson, the momentum transfer involved in the weak decays of strange, charm
and beauty hadrons is considerably smaller than the W mass. Hence we can neglect
the ¢* dependence of the W propagator -il”—;',%&. Therefore, in the absence of
QCD effects the effective low energy Hamiltonian for the charged weak interaction of
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quarks and leptons has the current xcurrent form:
e!! = f{ Cc,.(o)-’c-'c“(o) + h-c-} 3.3)

where £ = 8—,{,3.‘,; and Gr = (1.16639 £ 0.0002) x 10~5GEV -2 is the Fermi coupling
constant[6]. The charm lowering part of the Hamiltonian is obtained from Egs. (3.2)
and (3.3) as

HYy(Ac=-1)= % [V”(EC)L + Vd(d.c)L] [Via(ad), + Vi, (is), + (Pee)s + (Fups)s]
(3.4)

where in the above we have used the following notation,

(Ra)e =X &7 (1 - )i, (35)
where ¢ is the color index and summation over i implies that the charged currents
(@2@)c in HY;; are color singlets. The nonleptonic part may be explicitly written as:

HY(Ac=-1)= \/- = [VasVou(50) (), + Vea V5, (5¢) 1 (35),,
+VeaVi(de) (ad), + VeaVi5, (de) (85), ] - (3.6)
The term with V_,V;, which is the product of two diagonal elements of Voxpr matrix
and is of order unity, is called Cabibbo-favored; the terms V,, V), and V4V, which

are products of a diagonal and off-diagonal elements of Vo matrix and the term

VedVy, which is the product of two off diagonal matrix elements are called Cabibbo-
suppressed and doubly-Cabibbo-suppressed terms, respectively.

For the semileptoni;: part we have,
HY (8o = —1) = ZE[V(50) B + Vald) (Fut
+Vea(dc) (Pe€)r, + Vea(de) (Bups)] (3.7)

The corresponding nonleptonic and semileptonic effective Hamiltonian for beauty
decays (Ab = —1) can be derived similarly [8]. We will concentrate on charm lowering

decays, but the generalization to b decays is clear and straightforward.
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MY TIITTTT w ANV M

g M

Figure 3.1: The Weak decays involve both electroweak and QCD effects. The short
range weak interaction occurs in the small inner circle, with the W intermediate vector
boson, while the QCD confinement region is the larger outer circle. Intial and final
state mesons are denoted by M , and some of the soft gluons are denoted by g.

3.2 Strong Interaction Effects

Because, the decaying heavy quarks are necessarily confined inside hadronic bound
states, the interaction responsible for binding (confining) the quarks and gluons in
the hadronic states, namely the strong interaction will necessarily be involved in the
weak decays of hadrons. In other words the theory of weak processes is inextricably
linked to the theory of strong interactions. Fig. (3.1) shows, qualitatively, how weak

and strong processes might come into play in the decay of a heavy meson.

The dynamics can qualitatively be described as follows:
(2) Hadrons are complicated superposition of an infinite number of short lived quark
and gluon configurations. The simplest of such fluctuations for a meson M is the
valence quark state (Qg) ! depicted in Fig. (3.1).
1Q will be used for the heavy quark, g and § for light quark and antiquark respectively.
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(b) The weak interaction time-scale, given by 7 & -‘7‘;, is considerably shorter than
the typical lifetime of the above fluctuations, because of the large mass of the W.
Therefore in one of the configurations mentioned above, the heavy quark will trans-
form into lighter quarks and leptons via a charged current interaction and thus initiate
the decay of the hadron.

(c) The left over (spectator quarks, sea quarks and gluons) or newly created quarks
and gluons move telativel}; freely within the confinement radius. However, after the
much longer time-scale 7 = % (A = 250MeV is the scale parameter of QCD [14]), the
confining forces become important and cause the stored energy to materialize as the

final state hadrons.

Now the crucial assumption [15] usually made is that, due to the differing time
scale one can separate long and short distance contributions of the strong interaction
in spite of complexity of their interplay illustrated in Fig. (3.1). The following picture
then emerges
(1) All the long distance effects including bound state wave functions, soft gluon
radiation and final state interactions are absorbed into the initial and final state
hadronic wave functions.

(2) The short distance effects originating in hard gluon interactions are calculated
perturbatively (due to the asymptotic freedom property of strong interactions) and
included in the effective weak Hamiltonian.

(3)The weak amplitudes are given by matrix elements of H,.ss between asymptotic
initial and final states (leptons and hadrons):

A(la = b+c+...) = (bc...|H.syla), (3.8)

where H.z; include the hard gluon (short range strong interaction effects) corrections.

For example the amplitude of D? —» K~xnt decay is

A(D® — K~7*) = (K~n*|H.y|D°) . (3.9)
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It should be realized that in the presence of strong interactions Eq. (3.8) is a highly

non-trivial approximation.

It is then, natural to attack the problem of weak decays in two steps. First, one
derives the effective weak Hamiltonian including all hard gluon corrections. This can
basically be done in perturbation theory because of the asymptotic freedom property
of QCD. The second, and a much more difficult step, is to evaluate the matrix element
of H.sy. Since the long distance aspects of QCD cannot yet be calculated from first
principles, one must rely on various approximations and physically motivated models
to obtain reasonable estimates. This is the weakest point of the whole procedure
and therefore will be the subject of our later attention, but for now we consider the

effective weak Hamiltonian which includes the hard gluon corrections.

3.3 Hard Gluon Effects

In the absence of strong interaction effects, the hadronic part of the weak Hamiltonian
has the following form (we only consider the leading term, the Cabibbo-favored part),
1, = CEv, Ve (@a) (@ 3.10
eff — -‘/‘_2- a2 ug (qqu) (q4Q3) . ( . )
Diagrammatically, the operator Hg, , Eq. (3.10), can be represented as shown in Fig.
(3.2).

To O(a,(#)), where a, is the strong coupling constant and u is the probing
scale, the correction to the bare 4-quark operator given in Eq. (3.10) arises from the

one loop diagrams depicted in Fig. (3.3).

The diagrams of Fig. (3.3a) contribute to the vertex and self-energy correc-
tions which are absorbed in the physical coupling constant, Gr. The gluon exchange
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q, q,
Figure 3.2: Diagram representing the 4-quark operator (%q1).(daq3)z -

< X o

(b)

QPN
PGS
24 ¢
XX

Figure 3.3: One loop gluon corrections to the 4-quark operator.
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diagrams in Fig. (3.3b) result in the following corrected Hamiltonian at scale p [16]:

Gr 3a M2
1 W e
Hp = Hoypp - —ﬁqu Vaers —81; In 2 (@22°q1); (7)), (3.11)

where \q, @ =1, ...,8 are SU(3) color group generators and,

(@\a)e = X Bl ~ 1°)Aidl (3.12)

i

We see that hard gluon exchange induces an additional local 4-quark operator which
has the same chiral and flavor structure as the original operator Hf,,, but instead
of being composed of product of color-singlet currents, the induced operator involves
product of color-octet currents. Qualitatively, this result could have been antici-
pated from the fact that gluon exchange conserves helicity and flavor, but, of course,
transfers color and therefore changes the color structure. It is also clear that similar

corrections do not occur for semi-leptonic operators since leptons do not interact with

gluons.

Combining the Fierz-identity [17],

e (=) b (=) == [0 0 =) [ (-7, B29)
and the SU(3) algebra relation,
zs: A5 0 = —%6},’6&1 + 26365 (3.14)

a=1

one has the following important relation between product of color-octet current and

product of color-singlet currents:

(®22°q), (@), = ‘§(®41)L(§493)L + 2(¢293)(qaq1)z - (3.15)

Using Eq. (3.14) wé can rewrite the Hamiltonian H),, in the following form:

G . a,, M), _
HYp = VooV, {[1+4—1rln—”;1] (%291){%as)L

‘/5 N2 g
3a,, M} =
-2 10 2 o)) (3.16)
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This way of writing the He‘” shows that hard gluon exchanges renormalize the original

charged current interactions and, as a new feature, induce an additional effective

neutral current interaction.

The four quark interaction has the color structure 3 x 3 = 3+6. The operators

corresponding to the sextet (symmetric) and antitriplet (antisymmetric) are :
| R - - —
O: =3 {(%291)(@aga)r £ (%293)c(Taq)c} - (3.17)

The Hamiltonian without QCD corrections, Eq. (3.10), can then be written in the

form,

G .
HY, = _\/%v,u,,,vqm [ch0, +c?0.] (3.18)

where C§ = C? = 1. The first order corrected Hamiltonian may be similarly decom-

posed,

G .
HY = -‘/-’2"_-1/,,,,,,1/,‘,, [cio, +clo.] (3.19)
where,
1o Qe My 114+ 2 Me
C.=1 2ﬂ_ln 2 and C__—1+1rln”2 . (3.20)

The strong interaction effects modify the coefficients C; and C_, but do not mix

the operators O, and O_, which are even and odd under interchange of color indices

respectively. Note that QCD corrections, increase C_ but decrease C,.

The hard gluons can be summed up to all orders in a, using the techniques of
operator product expansion [16, 18] and renormalization group [16, 19]. The result

is: . =12
C. = (M) T o = (.‘M).) wnE (3.21)
TN\ () S WP 7 '
where Np is the number of the so called ’open’ flavor and
2y in
al(”’ ) - (33-2NE) In 2 (3°22)
3 AQ‘ gy
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Notice, C2 = C-!.We define
1 1
Ci=3(Ci+C),  Cr=3(Cr=C). (3.23)

Choosing Agcp =~ 250MeV typical numerical values for the coefficients C; and C,

are :
At p=m.=15GeV C, =121 Cy=-042
At p=my =5.0GeV C, =110 C;=-0.24 (3.24)
In terms of the coefficients C; and C; our effective Hamiltonian becomes:
Gr = v ~ =
Hepy = 7-2-";,a"¢,2,, [CL(1)(@291)(Gag3) + C2(p)(T295)(Ganr)] (3.25)
Note that , the case with no QCD corrections is simply C; = 1 and C; = 0.

Specifically the corrected Cabibbo-favored charm lowering Hamiltonian may now be
written as

Hyi(AC = -1) = “EVLVL [Cu(#) (), + Co(ae) (5] (329

3.4 Valence Quark Approximation

In the previous section the effective weak Hamiltonian for weak interactions in which
hard gluon effects (short range QCD corrections) were included, was found. Now
to determine the amplitude for any weak decay one needs to calculate the matrix
element of this effective weak Hamiltonian. But, as we have said, we have to deal
with non-perturbative phenomena like bound state effects. However because there are
no known methods for calculating these non-perturbative effects we have to resort to
approximate models. for the following discussion we distinguish between two types of

decays: 1) Inclusive weak decays, and 2) exclusive weak decays. In inclusive decays we
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are not interested in a specific decay channel (final state), but we are interested in all
(or a collection of) channels together. For example when we calculate the time life of
D®(ci) , that is when we are considering the following amplitude A(D® — anything),
we are interested in all decay channels together and the above amplitude is equal
to the sum of the amplitudes of all decay channels. In the total rate each channel
contributes incoherently. Another type of inclusive decays of interest is the total

hadronic decay modes of a charmed meson that is, for example:
D> X (3.27)

where X stands for hadrons. The corresponding amplitude A(D? — X)) is the sum
of the amplitude of all non-leptonic decay modes. Again, each channel contributes
incoherently to the rate. Also of interest are the semi-inclusive decays with a specific

lepton in the final state, for example,
D° - Xetv (3.28)

where the corresponding amplitude is the sum of the decay amplitudes of the channels

where etv occur in the final state. The rate is the incoherent sum of the individual

rates. In exclusive decays, we examine a specific decay channel, for example,
D - K—=xt*. (3.29)

Here we have to deal with the bound state structure of final state particles , K~ and
n+, and the process of their hadronization. Inclusive decays, both experimentally
and theoretically, are simpler to study than the exclusive decays. In the rest of this
chapter we will consider the inclusive decays ( time life, total nonleptonic and total
specific semileptonic branching ratios) of the charmed mesons D+, D? and D}. As
we will see later in calculating inclusive decay rates, with some approximations, we
need worry about the details of the process of hadronization or bound state effects of

the final state particles.
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The simplest approach [16] to the inclusive decays is that of the ” Valence
Quark Approximation” (VQA). In this approximation,
(a) Calculations are done at quark level .
(b) The initial hadron is represented by its valence configuration; more complex bound
state fluctuations, often addressed as the sea of quarks and gluons are disregarded.
(c) Soft gluon interactions accompanying the weak process are neglected.
(d) The inclusive sum of hadronic final states is replaced by the final state of free

quarks emitted in the decay. 2

The above approximations reduce heavy flavor inclusive decays to a few simple
processes. In the Fig. (3.4) the hadronic decay modes for the case of a meson P (Qg)
are shown.. The diagram in Fig. (3.4a) represents flavor decay while Figs. (3.4b) and
(3.4c) are flavor annijhilation via W-exchange and W-annihilation respectively 3

In flavor decay mechanism (also referred to as the spectator diagram), the
spectator quark remains passive. The Feynman diagram of both semileptonic @ —
qivl and nonleptonic Q@ — ¢1(g2d3) decays of the heavy (free) quark Q is similar to

the corresponding one of p~ — y,e~ 7, as shown in Fig. (3.5).

2This means that at the Cabibbo-favored level we effectively take A(D — hadronic) = A(c —
sud) . Because at the Cabibbo-favored level c can only decay to s and the resulting W gauge boson
can decay to a (ud) pair in hadronic decays or to a (I7) pair in semi-leptonic decays. The produced
quarks, hadronize with the light antiquark of the heavy meson ( @ in D%(cf), d in D*(cd) and #
in D} (c3)), into hadrons with 100% efficiency. That is the probability of that the charmed meson
decay to a hadronic mode is equal to the probability of the charm quark decay to sud. Similarly for
the semileptonic decays, for example, A(D — Xe*v) s A(D(cq) — gsetv) .

3To be more accurate, corresponding to each of the two 4-quark operator terms of the corrected
effective Hamiltonian

G . _ PR
Hegr = ZEVonVas Gl @Q)L(@)i + ColW)(@Q)u@iaa):] (3.30)
a set of diagrams in Fig. (3.4) exist. The diagrams in the Fig. (3.4) correspond to the 4-quark

operator term (§1Q)z(2g2)z. The corresponding diagrams for the 4-quark operator (§3Q)z(f1492)c
can be drived from diagrams of Fig. (3.4) by changing §, «* ¢s in the diagrams of Fig. (3.4) .
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Figure 3.4: Decay mechanisms in valence quark approximation: (a) flavor decay,
(b) flavor annihilation via W-exchange and (c) flavor annihilation via W-annihilation
mechanism .
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Figure 3.5: Feynman diagrams for y decay and for free quark decay.
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The decay rate for u~ — v,e” 7, (ignoring electron mass) is [20]:

Gim’
= — M7 = L&
IN(T3 e~ 7,) 993" (3.31)
Now ignoring the correction from the hard gluon interactions and using HS, )
G
HYyy = Z5Van [Vao @Qu@e)s + @Q):ln)] (3:32)

the semileptonic I's; and nonleptonic decay rates in the valence quark approximation

for meson P(Qq) are:
- - G2
Psi (P —IuX) =T (Q —~ alu) = T3 |Vq.,, *F (3.33)

and

G2
Cui (P = Xa) 2 T(Q — 060) = 3502 Vo PV PF (334)

where F is the phase space factor which is unity for massless final particles [21], and
the color factor 3 in Eq. (3.29) accounts for the fact that the quark pair ¢2¢3 can be

produced in three different color states 4.

Although it is clear from the above results, but we emphasize that the flavor
decay mechanism (spectator diagram) does not refer to the bound state nature of
the initial hadron at all, in particular, the light constituents have no influence on the

decay rates.

Just the opposite is the case for the flavor annihilation mechanism shown in

Figs. (3.4b) and (3.4c), ;vhere the light quark plays an active role. Since weak

*More accurately, consider the corresponding amplitude

(Xul(@s42)(2:Q) | P(QQ)) == (qqlfzqal(qwz)l.('llQ)LlP(Qq»
‘/— (0122931(3392) L (01 Q)LIQ)

= \/3.(&,,‘7“ (1 =7°) Vas) (U7 (1 - °) Uq)

where U and V are the usual Dirac spinors. Apart from the color factor v/3 the last expression is
formally identical to the x decay amplitude [20].

27



interactions are point-like the heavy quark and the light antiquark state functions
have to overlap for the annihilation process to occur. Therefore the decay probability
depends on the bound state wave function. An explicit calculation omitting mixing

angles and hard gluon corrections, yields [16}:
2

G2 m{ mj
Cann (P — Xg) = Cgfngp [mf + m%] Lpnn (m—%, m—zp) (3.35)
where Mp and m; (i = 1,2) denote the mass of the initial meson and the mass of the
final state quarks respectivbely. The function I4na(z,y) in Eq. (3.30) describes the

mass corrections to the two body phase space [16]:

IAnn(zy y) = [1 - (xT:%z'] A%(L r, y) (3'36)
with
Mz,z,y) = (z —z —y)® —4zy. (3.37)

The parameter fp is the meson decay constant, which characterizes the overlap of

the constituent quarks in the intial meson P(Q§) and is defined by
(0[(2Q), |P) = ifpP*, (3.38)

where P* is the four momentum of P. fp can be measured experimentally from
purely leptonic meson decays, P — liy, shown in Fig. (3.5). C is the color factor

where for W-exchange C = } and for W-annihilation C = 3 [16].

The proportionality of the weak annihilation to the final state fermion masses is
known as helicity suppression and reflects the fact that a pseudoscalar meson can not
decay into a massless fermion-antifermion pair if only left handed fermions participate
in weak interactions. The classical example is the suppression of r, K — e~ &, versus
7, K — uv,.

Both the dependence on the decay constant fp and helicity suppression make
the annihilation rates of heavy mesons into two mesons less favorable than the flavor

decay mechanism rates.
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Figure 3.6: Spectator decay of charmed mesons.

3.5 Spectator Model

In the so called spectator model {22], the light constituents of the decaying heavy
meson are assumed to be inert. The annihilation process is neglected, as implied
above, and the decay is assumed to occur only via the spectator diagram. Thus in
this model the lifetimes of b*(ci), D%cii) and D(c5) mesons should all be the same

and essentially determined by the lifetime 7. of the charm quark:

r(D*) =7(D°) x7(D§) = rc. (3.39)
In the charm quark decay, at the Cabibbo-allowed level, only two leptonic modes
(¢ — setv, and ¢ — sp*y,) and one hadronic mode (¢ — sud) is possible (See Fig.

(3.6))-

If we ignore quark mixing, namely if we take |V, 4] = |[V,s] =~ 1 and if we also
neglect the mass of final state particles or equivalently if we take F = 1, then using
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Egs. (3.26),(3.28) and (3.29) we have :

S
~ % Tﬁ) 7, 27 x 10713, (3.40)

for m. = 1.5GeV.

The experimental values of the life times of D% D* and D} are [6]:

7(D%) = (4.15+0.04) x 1073,
(D*) = (10.57£0.15) x 1073, (3.41)
r(D}) = (467£0.17) x 107%.

Notice,

r(D%) > r(DF) > 7 (D°). (3.42)

The naive prediction of the spectator model is quite close to the experimen-
tal values, specifically its prediction is very close to the average of the three D
mesons life times, namely 7p = (6.46 + 0.07) x 10~!3s. Thus the spectator model
does provide a very useful-qualita.tive basis for calculating the weak decay of heavy
quarks. However, one notes that the lifetimes of D+ and D? are significantly different,
T(D%) & 2.57 (D°). The simple spectator model, thus, fails to describe the lifetimes

of the charmed mesons.

In the spectator model, the semileptonic branching ratios of all weakly decay-
ing states with the same heavy flavor, will be the same (considering the leptons are
massless). For charm quark decays, one out of five decays lead to a particular lepton

in the final state, therefore
B(c - IuX) = % =20% . (3.43)
But this result is at variance with the observed semileptonic branching ratios [6]:

B(D* - ety X% =172+ 1.9)% (3.44)
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and
B(D® - ety X")=(7.7+£1.2)% (3.45)

Since the electroweak sector is well understood, it may be expected that the
reason for the lifetime difference must be hidden in the purely hadronic sector. By
definition we have

B(D* — ety X% (Dt > e*v.X%) 7(D*)

B(D°® — etv . X-)  [(D° — etv.X~) (D) (3.46)
As we saw the spectator model states that
[(D* = et v X" =I(D° = etv.X7) . (3.47)

These semi-leptonic widths should be nearly the same, because dominant (i.e. Cabibbo-
favored) semi-leptonic Hamiltonian, Hg; ~ (#l)(5¢) is an isoscalar and is invariant
under an arbitrary rotation in the isospin space. Therefore the ratio of the semilep-
tonic branching ratios should be equal to the lifetime ratios, which experimentally

indeed is the case. That is

B(D* — etv.X?) _ 7(D¥) _
B i) = 2BE042 and T =254£004 (3.48)

Note that the short distance QCD corrections were ignored in the above. How-
ever, within the framework of spectator model, their inclusion still results in equal
lifetimes and equal semileptonic branching ratios for three D+, D? and D}, charmed
mesons. The nonleptonic rate which includes the hard gluon corrections is [16, 23|:

5
GEme

19273 (3.49)

Tni(c — sdu) = (2C2 + C?)

where we have neglected quark mixing and have considered the final-state particles
as massless. Using C; ~ 1.21 and C; ~ —0.42 at 4 = m. =~ 1.5GeV, we have
2C2 + C? ~ 3.9. Therefore the hard gluon corrections enhance the nonleptonic rate

by a factor of 1(2C% +C?) = 4! = 1.3 with respect to the rate obtained using
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the uncorrected Hamiltonian. The nonleptonic QCD enhancement would lead to the
following branching ratio for each mode of the semileptonic part

1
2+2C2 +C2

B (c— sly) = ~ 16% (3.50)

instead of 20% using the uncorrected Hamiltonian.

In the preceding estimates we neglected the quarks mixing and we also con-
sidered that all the final state particles are massless, which effectively means we took
the phase space factor F =~ 1 for all the different decay modes. Although the con-
sideration of quark mixing and the final state particle masses will not improve our
basic understading of the problem, that is the equal life time prediction for the three
charmed D% D* and D} mesons, but for a better understanding and appreciation of
the standard model and also for the sake of completeness we will give the decay rates

that includes these effects. The results can be summarized as follows :
Foq=Tst+Tne (3.51)

where o
2 2
_ 2r [ Mg mz FMQ
Tsc =) [Val I( it o) 093 (3.52)

lLe

and

2

a G%m}
Tve= ) VoulVaal’T (m 2% ) (202 +c?)2£7e (3.53)
o0 my’ mj 19273

where I(z,y, z) is the three-body phase space integral [24]:
I(z,9,2) =12 f ety —f-(s -2t =)+ 2 - W (£6,2°,0°) W(1,2,6)  (3.59)

and
1 1
Wi(a,b,c) = ( - (VB+ JE)’)’ ( - (V- JE)’)’ (3.55)
Note that in the Eqgs. (3.48) and (3.49) the Cabibbo-suppressed and Cabibbo-doubly-
suppressed decay modes of the heavy quark Q have also been included.

32



The effect of including quark mixings and the final state particles, masses is
not more than 20% and as a general trend the semi-leptonic branching ratios increase

if one includes the quark masses [16].

Thus the spectator model, which takes the light quark (of the heavy meson)
as inert , and only incorporates the short -distance structure of heavy flavor decays,
is not able to reproduce the detailed pattern of charmed mesons inclusive decays.
This indicates that charmed meson decays are not solely determined by the decay
properties of the charmed quark , but are also influenced by the light constituents
(light quark and gluons) present in the bound state of the decaying charmed meson.
To improve the theoretica.l predictions of charmed meson inclusive decays in the
context of the valence quark approximation , some non-spectator effects such as quark
interference ( final state interaction and Pauli interference) and flavor annihilation
have been considered . Reference [16] discusses in detail. But consideration of these
effects doesn’t change the overall picture very much,namely, that the reason for the
lifetime difference must be hidden in the non-leptonic sector. In the next chapter,
by taking a phenomenological approach and by introducing suitable form factors, we

will examine the exclusive decays of charmed mesons.
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Chapter 4

Factorization Model

4.1 Introduction

In the previous chapter we considered the inclusive charmed mesons (D% D* and
D7) decays and we did a free quark calculation for the decay rates (3.33) and (3.34).
But, although the free quark calculation is very simple and straightforward it suffers
from various weak features. The total rates as well as the shapes of the lepton spectra
(in the semileptonic decays) depend strongly on unknown quark masses which occur
in the amplitudes and, thus determine the phase space. In Table (4.1) the phase
space factor F of the various charm quark decay channels is given for current and

constituent quark masses. These corrections are quite sizable and - especially for

charm quark, ¢, decay - very uncertain .

An alternative approach is to study specific exclusive channels (both in semilep-
tonic and nonleptonic decays) and doing the calculations on thg hadronic level, by
introducing suitable phenomenological formfactors, which enables us to avoid uncer-
tainties connected with quark masses, quark phase space and various confinement
effects inherent in a pure quark decay picture and also let us to consider the bound

state structure of the intial(decaying) and final (produced) mesons.

Since the discovery of charmed mesons, many exclusive decay channels of these

particles have been observed and their branching ratios measured {25;-26]-by various
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Table 4.1: Phase space factor, F, of various charm quark decay channels for current
(first row) and constituent (second row) quark masses.

Masses ¢c— Cc— €C— ¢c— C¢c— ¢c— ¢c— c—
[GeV] sev, suv, dev, duv, sud sus dud dus
m. =135

m, =0.15 091 0.86 100 095 091 0.82 1.00 091
mu,¢=0.006

m.=1.70

m, = 0.51 052 050 074 0.72 0.19 0.09 033 0.19
myq = 0.34

collaborations. Two-body and quasi two-body modes seem to dominate the non-
leptonic D decays [25]. Due to a larger phase space, two-body decays of B mesons
are not expected to be as dominant as in the case of D decays. In this chapter we
will mainly consider different exclusive two-body Cabibbo-favored decay modes of

charmed mesons in the context of the factorization model.

4.2 The valence quark approximation and the fac-

torization ansatz

Adapting the inclusive Valence quark approximation (VQA) -Spectator picture to the
exclusive non-leptonic two-body decays, one obtains the prototype of a phenomeno-

logical model [27, 28] which can be characterized as follows:

(2) The weak amplitude is given by the matrix element of the short distance
corrected weak Hamiltonian, va!,{ , between the initial and final state hadrons, which

requires separability of long and short distance processes as discussed in Section (3.2).

(b) Hadronic bound states are represented by their simplest valence quark
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Figure 4.1: Soft gluon interactions in exclusive decays. Circles represent hard gluon
corrections to HE/J.

configuration. The gluon content and the quark sea are disregarded.

(c) Soft gluon interactions such as those illustrated in Fig. (4.1) are neglected.
(d) For two-body final states consisting of different combinations of pseudoscalar (P),

vector (V) and axial vector(A) mesons one employs the factorization ansatz :
< f|J - J|D >~< P,VorAlJ|0 >< P,VorA|J|D > (4.1)

where J and J are (2q1) color-singlet currents. Therefore the matrix element of the
HZ/{ can be written in terms of simpler matrix elements of single weak currents with
the vacuum as an intermediate state and thus are determined in terms of meson decay
constants and hadron current matrix elements. The amplitude of the semileptonic

decays factorizes exactly, hadronic current can only lead to hadrons and the leptonic

current to leptons:
< X1a|(ln)(@Q)ID > = < Xlz|(In)|0 >< X|(§Q)I1D > . (42)

In one sense the factorization ansatz in nonleptonic processes is a natural exten-
sion of the factorization of semileptonic decay amplitudes, asserting that similar to
semileptonic decays that the matrix element is a product of the matrix elements of
one hadronic and one leptt;nic current, in the nonleptonic decays the amplitudes are

also the product of the matrix elements of two hadronic currents.
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4.3 Phenomenological constants a; and a,.

We saw in the chapter 3 that the QCD improved effective weak Hamiltonian for

Cabibbo-favored nonleptonic charm decays is :

Hf(Ac=-1)= %V.,v;d [Ci(d),(5¢),, + Co(3d) (c), ] (4.3)

where C) and C; are the Wilson coefficients for which we adopt the values
C,=126%£0.04, C,=-051+%0.05. (44)

The central values of C; and C; are taken from [29] and the errors are from [30].

According to the above effective Hamiltonian there are two possible decay
mechanisms for D (Charmed- mesons) decay: 1) Flavor (quark) decay Fig. (4.2) and
2) Flavor (quark) annihilation Fig. (4.3). The indices ¢ and j in the Figs. (4.2) and
(4.3) are color indices. As we saw before in the flavor decay mechanism the light
quark doesn’t participate in the decay process and remains a spectator; hence the
name spectator diagrams for the corresponding diagrams of flavor decay mechanism.
However in the flavor annihilation process the light quark is an active participant
- both the heavy and light quarks annihilate and two new quarks are created. In
the flavor decay process the left-over quarks recombine directly to the final state
hadrons, whereas in the annihilation process an additional quark pair (ui, dd, s3)

must be created from the vacuum.

As shown in Fig. (4.2), the final state quarks and anitquarks produced as
a result of flavor-decay can recombine in two different ways to produce color-singlet
hadrons. Therefore, corresponding to each term of the effective Hamiltonian there ex-
ist two flavor-decay diagrams. Diagrams (4.2a) and (4.2c) correspond to the charged-
current (i#d),(5c), (C)-term) and the diagrams (4.2b) and (4.2d) correspond to the
effective neutral current (5d),(iic), (Ca-term). Diagrams (4.2a), ( 4.2b) and (4.2c),
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(4.2d) are also called external and internal spectator diagrams respectively. The inter-
nal spectator diagrams (4.2c) and (4.2d) are, suppressed due to the color mismatch.
In other words, both charged and neutral current receive contributions from a term
where the color indices are automatically matched to form color singlet hadrons and
a second term where the color indices are mismatched. £ is the color mismatch factor
and we expect § = 1—3,: for N_ colors. We know that there are three colors, N, = 3,
but the value £ = % cannot be trusted because of the uncertain contributions of
color-octet current products obtained by the Fierz transformation [31], therefore it is

instructive to keep £ arbitrary for a phenomenological treatment.

Similarly we see that the two flavor annihilation diagrams Fig. (4.3c) and
Fig. (4.3d) which respectively correspond to the Cj-term and Ca-term of the effec-
tive Hamiltonian are suppressed, due to the color mismatch, relative to the flavor

annihilation diagrams Fig. (4.3a) and Fig. (4.3b).

Consider now the following three Cabibbo-favored two-body charmed mesons
decays: 1) D° —» K~n* 2) D® — K°z® and 3) D* — K°z+. The D° — K-xt
decay proceeds via the two flavor decay diagrams Fig. (4.2a) and Fig. (4.2d) and
also via the two flavor annihilation diagrams Fig. (4.3b) and Fig. (4.3c). Similarly
D® — K°x® decay proceeds via the two flavor-decay diagrams Fig. (4.2b) and Fig.
(4.2¢) and also again via the two flavor-annihilation diagrams Fig. (4.3b) and Fig.
(4.3c). D* — K°r* decay can proceed via all the four flavor decay diagrams of Fig.
(4.2). An examination of Fig. (4.3) shows that flavor-annihilation mechanism is not
viable for Cabibbo-favored D+ decays including D+ — K%r+. Therefore none of the
four diagrams of Fig. (4.3) participate in D* — K%+ decay. The two diagrams Fig.
(4.3a) and Fig. (4.3b) correspond to the flavor-annihilation of D}.

Let us consider the amplitude of one of the above decays, for example Dt —

K%zt in more detail. Starting from Eq. (4.3) according to VQA we have,
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A(D* — Kvr%) =< Ror°|HZ!|D* >= Gr {C1 < Kon*|(2d)(5¢) | D >
+ C2 < Kon*|(5d) (ic) | D* >} (4.5)

where Gr = %ch,Vu‘d. Operator d in (#d), and (3d); can operate on the 'd ’
antiquark of both [x* > and |K? > states, therefore we have

AD* ~ Rort) = Sevvz{o < Rt |@ (@ 0t >

v2 '
+C; < If°1r+|(ﬁ d)L(§c)L|D+ >
s ot
+Cp < K n*|(5d)(tic) | D* >
A

+ Cp < Kor*|(3d);(iic) | D* >} (4.6)

We will use the following Fierz identities
= -~ 1 _ = 1 2 z\a ~a
(3¢) (ud), = —(sd) (o), + = Z (8X%d) (@A),
(5d)(@c), = (ud) (3e), + = E (@xd)g(31%)L (4.7)
a—l
to transform the second and fourth terms of Eq. (4.6). Here A® are the Gell-Mann

matrices.That is

A(D* - Bty = CEvuve {cy < Rt |8 d)o(),D* >
f L

+C, < XowﬂNi(sd)L(ac)L +3 Z (3Xd)(@X°c) | D* >
c a=1
+C; < K° 1r+|(§ d)(iic), |D* >

+Cr< K°1r+|—(u d),,(sc) L+ E (@ax*d)L(3)\%)|D* > } (4.8)
R , ¢—l

Rearranging the terms we get

- G = _ -
A(D* — Rox*) = 7—;3’ {(Cx + i) < Kr*|(@ d)r(3c) | D* >
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- 8
+C, < K°1r+|% Y (8X%d) (@A)} D* >

a=1
+(C2 + gl-) < K°x*|(5d).(&c),|D* >
N’ ——
_ 8
+C < K°1r+|% 3 (#x*d)L(5)%c).|D* >} . (4.9)
a=1
We define n;, and 7, as:
_ < Kor*|F T3, (3A%d)(@rc)| Dt >
™= < Kor*|(3d)(ac) |D* >
o e

_< K°w+|liz;3=1 (@xed)g(3A%c) | Dt >
< KO wt|(@d)g(5¢) | D+ >
sy et

(4.10)

In terms of 1; and 7» we have
AD* — Ror*) = G {(Ci + (5 +m)Cs) < RO x*I(@d)u(3e),|D* >
N. A

+ (Cz + (‘1% + Th)Cl) < K°W+I(§d)[,(ﬁc)LID+ >} . (4.11)

We define the phenomenological, color mismatch factors £ and € as

1 1
f: —ﬁc =(—Nc +1’2)
'._.1___.(_1 + 4.12
Ef-ﬁ'-Nc 771) (')

(-4

where N, and N, are "effective” color numbers.The coefficients a; and a; are defined

in terms of the Wilson coefficients Cj, C; and the color mismatch factors §,£ as:
a1 =C1+£C;, a;=Cr+E€Ch. (4.13)
In terms of a; and a; we have

A(D* — Kort) = %VC-'V.Q {01 < K°z*|(id) g(5¢)L,a| D* >

+ az < Kor*|(3d), g (iic) L8| D* >} (4.14)
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The subscript H instructs us to treat the Dirac bilinear (¢2q; ). # as an interpolating
hadron field of a hadron carrying the quantum numbers of the quark currents, that

is, no further Fierz reordering in flavor and color need be done.

Applying the factorization assumption, that is, matrix element of the product
of two hadronic currents is equal to the product of matrix elements of the individual
currents we get:

A(D* — Koxt) = &Vavu.d {a1 < 7*|(3d), 410 >< KO\(5¢) 4| D* >

V2
+a; < K°|(3d);, 4|0 >< x*|(@ic), g|D* >} (4.15)

Similarly the factorized amplitudes for D® — K—x+ and D® — K°7°, respec-
tively, are

G
A(D® - Kty = VeV {a1 < 7*|(3d) 410 >< KI(5¢) D" >

+ ay < K~1*|(3d) 4|0 >< 0(@ic) 4|D° >} , (4.16)

and

A(D® — K°7%) = QVC,V;,, {az < K%|(3d) 410 >< #°|(sic), 4| D° >

V2

+ ay < Ko7°|(5d), 4[0 >< 0|(5c), 4| D° >}.  (417)

The second term in both of the decay amplitudes (4.16) and (4.17) is the
contribution of annihilation to the corresponding decay. But in the factorization
approximation the annihilation amplitudes are small (suppressed) since they involve
the divergence of vector currents formed by the lighter quarks and thus go to zero in

the limit of vanishing light quark masses ! [33, 34] .Furthermore the current divergence

1

< Kx|(3d) |0 >< 0|(iic) /| D® >~ fp < K=|0,(5v*d)|0 >
~ fp(mq4 - m,) < K|(5d|0 >,

where fp is the meson decay constant defined by < 0|(iic)|D° >= —ifpphp
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is to be taken at ¢> = m%, or m},_ i.e. values which are large compared to the quark
masses in the decay products. Since all currents are presumably asymptotically (for
large q2 ) conserved the corresponding contribution is expected to be very small [28].
Therefore we will neglect the annihilation amplitudes. But we notice that due to final
state interactions amplitudes which come out small in factorization approximation
may recieve large contributions via mixing with other channels [35]. This possibility

we will consider later.

After ignoring the annihilation effects we have,

A(D? - K- n%) ~ Voo < w¥|(itd) 4|0 >< K7|(3d), 4|D° > (4.18)

‘/.

and

A(Do — If°1r°) o~ _\/—_V ud®2 < Kol(sd)L HIO >< 1r°|(uc)L HIDO (4.19)

We can distinguish three types of decays: 1) Class I transitions, determined by
a, only, 2) Class II transitions, determined by a3, and 3) Class III transitions, where
the amplitudes are proportional to a superposition of a; and a,, (a; + zas). (Only

D* decays occur in class II1.)
By examining the amplitudes (4.15), (4.18) and (4.19) we see that the non-
leptonic Hamiltonian can be written effectively, for all the three above type of decays

as:
Gr
Heypp = —‘/§Vca

Class III transitions, where @, and a; amplitudes interfere, can be used for

Ve {ai(ad), g(5c), g + ax(3d), g (@) g } - (4.20)

determining the relative sign of a; and a;. In D — PP transitions ( P: pseudoscalar
nonet 7, K, ... ) the relevant combination is of the form ay + zaz with z = +1 in the
SU(3) symmetry limit [35). D*-decay rates immediately show that the amplitudes

interfere destructively with z = +1 this gives az/a; < 0 in agreement with what is
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expected from Eqs. (4.4) and (4.13) that 2 < 0 and if £ and £ are near § then

22 <0 too.
1

Till now we have treated a; and ae; as free parameters and we haven’t yet
given any numerical value for them. Bauer, Stech and Wirbel (BSW) [35]used the
D — RKr decay amplitudes namely D® — K-+, D® — K%1° and D* — K%+ to
fix the parameters a; and ap (or correspondingly € and £'). Note, however, that final
state interactions (FSI) can seriously affect the decay rates [36]. An isospin analysis
gives some information about the effect of final state interaction (elastic scattering).
The three D — K= amplitudes, D® — K—x+, D® — K%2° and D* — K%zt can be
expressed in terms of two isospin amplitudes with isospin % and % in the final state

as

A(D® —» K~xn%) = f(f Ay + A3) (4.21)
A(D® - K%°%) = \/_(—AL +v24;) (4.22)
A(D* - Krt) = V3. 34; (4.23)

where A= |A%|e'-5§ and Ag = IA%Ie“* and the third relation is written by using the

following isospin relation [37] :
A(D® — K~ 7%) + V2A(D® — K°1®) = A(D* — KOrt) (4.24)

Without final state interactions the amplitudes A% and A% would be real. However,
Mark IIT [38] measurements indicate that they need to be complex, and the phase
shift between the two isospin amplitude is §; — &, = 77 £+ 11°.The individual rates,
especially those of Class II transitions, are modified by final state interactions. For
instance ['(D® — K%2°) would decrease by a factor of 3 if we set 6% - 6% = 0 keeping

IA%I and |Ay| fixed. The isospin analysis for D — Kn decays can be used to obtain



values for the coefficients e¢;and a;. Assuming factorization for the bare amplitude

and neglecting scattering into other channels ( inelastic effects) one finds [32]:

g, ~12+0.1, ap~—-05301. (4.25)

Using Egs. (4.13) and (4.25) and the Wilson coefficients C; = 1.26 +0.04 and
C, = —0.51 £ 0.05 we find the following equation for £ :

1.2+0.1 = (1.26 £ 0.04) + £(—0.51 + 0.05) (4.26)

and for £':
(—0.540.1) = (~0.51 £0.05) + £ (1.26 £ 0.04) (4.27)

The solutions for Eqs. (4.26) and (4.27) are, £ ~ 0 and £ = 0 or equivalently we have

a; = Ci(m.), az = Cy(m,). (4.28)

This is different from what we anticipated from the naive color counting that

§ ~ 3= 3 and also § = 3~ = } with the corresponding

al =C, + 933 =11, a=C+ 93‘- = —0.1. (4.29)

a and a3 can be looked at as the first order approximation of the phenomenological
constants a; and ay, that is they are the numerical values of @; and a; in a pure
factorized model with N, = 3. The result £ = 0 and £ = 0 indicates an effective
total color mismatch and in physical terms this means that quarks associated with
different color singlet currents do not easily combine to form a single meson [39] . The
case £ = 1 corresponds to no color suppression which is ruled out by Bauer and Stech
[40]. Although in the naive quark model the parameter £ has the value 1, in presence
of soft gluons i.e. nonperturbative effects, this may not be justified. By retaining the
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matrix element of the color-octet current products in Eq. (4.9) and introducing m
and 7, we have implicitly considered such nonperturbative effects. Thus by retaining
these matrix elements we have done the first level of improvement in our factorization
model by consic.iering a nonfactorized effect. In a purely factorized model these matrix
elements have to be considered negligible [16], that is 7, = 0 and 7, =~ 0. In other
words, a; and a3 in Eq. (4.13) consist of two parts, one of which has the factorized

effects in it and the other which has nonfactorized effects implicitly in it, that is
ay=al+a}/, ay=ad+a} (4.30)

where "n f” stands for ”"non-factorized”.

According to Eq. (4.12), £ ~ 0 and £ = 0 implies that N, — 00 and N. = oo.
Considering the result £ ~ 0 and ¢ =~ 0, Buras et al. [41] have emphasized that
factorization together with £ =~ 0 corresponds to the lowest order in ﬁ: expansion.

This effectively means that we take £ =~ 0 and £ = 0 for all charm meson decays,

a; = Cy(m,), a; = Cy(m,) . (4.31)

Therefore in this model @¢; and a; become process independent phenomenological
coefficients. In the rest of this chapter we will consider the theoretical predictions of

factorization model and compare these predictions with the experimental results.

4.4 Form Factors

We saw in Sec. (4.2)that for two-body final states consisting of pseudoscalar (P),
vector (V), and axial vector (A) mesons, the factorization assumption allows the
matrix element of Hi//to be written in terms of simpler matrix elements of single

currents and are thus determined in terms of meson decay constants and hadron
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current matrix elements. Meson decay constants are defined[29, 35, 42] in terms of
the matrix elements of weak, vector j;' = (§7"q) and axial vector j} = (@757"q1)

currents, between vacuum and pseudoscalar (P), vector(V) and axial vector (A) states

as
(VmelilI0) = emvfy, (4.32)
(Alp,e)lif10) = exmafa, (4.33)
(POIA0) = —ifep,, (4.34)

where m,p, € and f are in order mass, four-momentum, polarization and the decay

constant of the corresponding pseudoscalar, vector and axial vector meson. The other

three possible matrix elements are zero, namely

(Vv e)litio) = o,
(Al,e)liY10) = o,
(P@)ifI0) = o, (4.35)

From Lorentz invariance one finds the most general form factor decompositions
for the transition of a pseudoscalar meson (M) to pseudoscalar(P), vector(V) and axial

vector mesons to be [29, 35, 42

(P M) = {o+ 7, - P TEq, L RNr ()

+ TR R (), (4.30)

(v, o)li¥ - iAMP)) = _i{(mu+mv)e'Af"(q2)
- (P+ )uAlzu V(qz )

mM+m
- omy Sl (V@) - As‘v(q’))}
b V), (43
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and

(AR O3y —FAM®@)) = —i{(mu +ma)e,V*A(eP)
e+ P
- ama e, (WA - WA)
AP, (439)

where g, = (p — p'),.- In addition, the following constraint applies at all ¢?,

2my A}V (¢) = (mp + mv)AMY (@) — (mar — mv) A3 (2%) (4.39)
2m A VM*A(¢?) = (mur + ma)VMAP) — (myr — ma)V3"4(e) (4.40)

The following relations are also needed to cancel the poles at ¢ =0,

F3'P(0) = F**(0), (4.41)
A’V (0) = A}V (0), (4.42)
Vr4(0) = V3¥4(0) . (4.43)

The task is now to estimate the invariant form factors appearing in Eqgs. (4.36),
(4.37) and (4.38). Once they are known the calculation of decay rates and spectra
is straightforward. Different models for the determination of form factors have been
proposed [29, 42, 43, 44, 45]. In the (original) model of Bauer, Stech and Wirbel
(called BSWI here)[42], the values of the form factors are calculated at ¢* = 0 and
extrapolated to finite ¢> using a monopole form for all the form factors , that is all

the form factors are considered to have the following general form

h;
s (4.44)

This ansatz assures asymptotic (¢2 — oo) current conservation. The form factor

decomposition in Egs. (4.36 -4.38) has been done in such away that each form factor
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Table 4.2: Values of pole masses (in GeV)

Current m(0~) m(1~) m(0*) m(1%)
de 1.87 201 247 242
5c 1.97 211 260 2.53

is dominated by one and the nearest pole only: the vector form factors Fy and F,V
by the 0 and 1~ poles and the axial vector form factors A¢ and A;, A2 by the 0~
and 1% poles, respectively. Precise positions of most poles are not known, however,
approximate values are sufficient in most cases. For numerical calculations the mass
values displayed in Table (4.2) have been used. In the BSW approach the problem is
reduced to an estimation of the form factors at g2 = 0, i.e. the constants h;. In the
limit of exact SU(3) symmetry h;’s are unity, therefore h;'s in a sense a measure of
SU(3) breaking. h;’s can be expressed by the overlap of initial and final meson wave
functions. The mesons are described as relativistic bound states of a quark @; and
antiquark g which are modelled as a relativistic harmonic oscillator in BSW model

[42].For numerical calculation we will use the values of h;’s given in Table (4.3).

4.5 M — PP,PV,PA,VP and VA decay amplitudes

We saw that the factorized decay amplitude for a pseudoscalar meson M decaying to
two mesons (pseudoscalar(P), vector(V) or axial vector (A)) can be written in the

following general form
(P, VoralJ#|0) (P,VorA|J*|M) (4.45)

In this section we will examine the factorized decay amplitude for M — PP, PV, PA,VP
and AP decays in more detail.
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Table 4.3: Formfactors at zero momentum transfer for P — P and P — V transitions

Decay hPl = hE‘o hv h’Al hAz h’A: = hAo
D—- K 0.762

Do« 0.692
D19 0.681
D-1n 0.655
D—- K" 1.226 0.880 1.147 0.733
D-p 1.225 0.775 0.923 0.669
D—-w 1.236 0.772 0.920 0.669

D,—n 0.723
D,—-7 0.704
D, - K 0.643
D, - K* 1.250 0.717 0.853 0.634
D,— ¢ . 1.319 0.820 1.076 0.700

451 M — PP

The spectator part of the PP decay amplitudes involve the following type of terms
App(M — PiPy) = (Py(9)|Jul0) (P(p))| J*| M (p)) - (4.46)
Using Eqs. (4.34) and (4.36) we get
App(M — P\P;) = —ifp " {{(p +9)u = Ti;,—"ﬁ’tqp} FM*P (¢)
+ mi, :I;ng g FMP (q’)} . (447)

Since ¢* = P¥ — P' and ¢*> = m}, we have

App(M — PiPy) = —ifp(mly — m}, )F{P (m3,) (4.48)
where
hr
FP() = — 5 (4.49)

and mg+ is the mass of the scalar particle giving the nearest pole singularity for the

vector part of current J¥.
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4.52 M — PV

The spectator part of the PV decay amplitude consist of the following type of term :
Apy(M — PV) =< V(e,9)|J.|0 >< P@)|J*|M(p) > . (4.50)
Using Egs. (4.32) and (4.36), we get
@ miy — m% MP
Apv(M — PV) =my fye* {30+ ) - —q— FMF (g)
2
L and i i (qz)} (4.51)

Since g* = p*—p'* is the four momentum of V' we have ¢g-& = 0 according to definition

of e#. Hence we have
Apy(M — PV) =(p+7) -emyfy FMF(m?)

=2p-emy fy F{*F(m}) , (4.52)

where

(4.53)

FMP(@) = 125

and m,- is the vector pole mass for the appropriate current J*.

453 M- PA

The spectator part of the i’A decay amplitude involve the following type of term
Apa(M — PA) =< A(g, 9)lJ,|0 >< P(p)|J*|M(p) > . (4.54)
Using Eqs. (4.33) and (4.36), we have
Apa(M — PA) = mafac™ {{(P +P)u _‘!;_Tﬁ }FIMP (‘12)
+ ——m" Te g FMP (qz)} (4.55)
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After simplification, similar to PV decays we get
APA(M - PA) = 2p . emAfAFl”P(mzA) (4.56)

where FMP(q?) is defined in Eq. (4.53) and it must be evaluated at ¢* = m%.

454 M—-VP

The spectator part of the M — VP decay amplitudes involves the following type of

term:
Ayp(M — VP) =< P(q)|J 0 >< V(e,p")|J*|M(p) > . (4.57)

Egs. (4.34) and (4.37) imply that

—ifpe* {i {(ma +mv)e; ANV ()

_ £*.q ; MV
‘_mu—_{_ mv(p +p )qu (‘12 )

- omy S, (A (@) —Aow(q’))}
2

+ mewme'"f P VMY (¢ )} . (4.58)

Avp(M — VP)

Noticing, ¢ = p* — p*, therefore (p + p/) - ¢ = m% — m} and also by definition
e*-p=0. Using Eq. (4.39) and after simplification we have

Avp(M — VP) = 2my fp(e" - p)AYY (m2) (4.59)
where
My, 2y _ _ ha
4" (¢") =17 ra (4.60)

mq- is the pseudoscalar particle mass that corresponds to the nearest pole.
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455 M — AP

The spectator part of the M — AP decay amplitude involve the following type of
term

Aap(M — AP) =< P(q)|J,[0 >< A(e,p)|J*[M(p) > . (4.61)

Egs. (4.34) and (4.38) imply that

Asp(M — AP) = —ifpq* {i {(mu +ma)e,VM4()

_ e'.q ’ MA
L 4 )V

~ ama Sy, (@) - %“A(f))}

2 L 174 10 AMA }
—— 0 ¢ A S (0} BN L)

g* = p* — p'* therefore (p+p’) - ¢ = m%, — m% and also by definition &*-p = 0. Using
Eq. (4.40) after simplification we have

Asp(M — AP) =2myfp(e" - p)VMA(m}) . (4.63)

4.6 Branching Ratios

The branching ratio for for M — P, P, decay where P, and P, are pseudoscalar

mesons is given by

B(M - Plpz) = TMF(M — Ple) = Tusrlfl%‘ IA(M g P1P2)I2 ’ (464)

where Ty is the lifetime of M and |p] is the magnitude of the final state mesons

three-momentum in the M rest frame.

For the decays where one or both of final state particles are vector or axial

vector mesons we have a summation over the polarizations. For example for a M —
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PV decay we have

B(M — PV) =1y 87!7’1%{ Y JAM — PV),2. (4.65)
A

In the decays of our interest summation over polarization usually means calculation

of terms like

3
> le-pl? (4.66)

=1

where ¢ is the polarization vector of the vector or axial vector meson and p is the
four-momentum of the pseudoscalar meson M. The calculation is straightforward (See
[46])1 leading to
> 2 _ 1~ (2
> le-pl* = Bval’ =~ (4.67)
A=1 va
where fy 4 is the three-momentum of the vector or axial-vector meson in the rest
frame of M and my,4 its mass. This term is the source of [p]* dependence of the

branching ratios of two-body decays with vector or axial vector mesons in the final

state.

4.7 Two-body Non-leptonic Charm meson Decays

in Factorization Model

After fixing the values of parameters a; and a; from D — K decays, Bauer, Stech
and Wirbel [35] proceeded to calculate many Cabibbo-favored and also some Cabibbo-
suppressed, exclusive two-body D% D* and D} decays. The comparison of the
theoretical branching ratios predicted by the factorization model with experimen-
tal branching ratios shows overall agréement between theoretical and experimental
numbers which is quite remarkable considering the simplicity of the model and the
fact that D decays occur in a resonance region. It can be concluded from the expe-
rience with D decays that factorization together with a; = Cj(m.) and a; = Cy(m.)

gives generally good results at least for energetic two-body decays.
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Table 4.4: Two-body non-leptonic decay widths summed up and compared with the
measured total nonleptonic widths for D% D* and D} transitions. The Units are

10103-—1

Meson T'**(D — XY) TI'**?(D — nonleptonic)
D° 153 £+ 22 194 +48
Dt 56 £ 15 71+14
D? 126 + 15 —

Encouraged by their results BSW computed [35] many more two-body decays
and summed them up in order to estimate their contribution to the nonleptonic
decays widths. In their calculation they included all particles which belong to SU(3)
pseudoscalar or vector nonets. They also consider a;(J¥ = 1*) and K;(J? = 1%)

particles but only as far as they can be produced directly from the corresponding

currents.

Using for the parameters aj, @3 the values 1.340.1 and ~0.55+0.1 respectively,
it turns out that about 70-80 % of the total nonleptonic transition rates D and D*
are accounted for by two-body decays (Table (4.4)). More important, the calculated
ratio ['(D® — XY)/T(D* — XY) for these nonleptonic two-body decays turned out
to be a 2.7 (Table (4.4)). Thus a sizable part of the lifetime difference between D°
and D arises from two-body decays due to the destructive interference (a2 /a; < 0) in
several important D* decays [39]. They didn’t consider any annihilation contribution

in their calculations.
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4.8 Test of Factorization by Comparison of Semilep-
tonic to Nonleptonic Decay Rates

As we saw in Sec. (4.4), to calculate the theoretical branching ratios with the factor-
ized amplitude we have to use different form factors such as Fy(q?), Fi(g?), ....As we
have remarked earlier different models have been proposed for the evaluation of the
form factors at ¢ = 0, h;’s. Further, a q2 dependence of the form factors has to be
assumed. Thus the theoretical branching ratios, and as a result the tests of factoriza-
tion, become much dependent on the theoretical model for the form factors at g2 =0
and their assumed ¢* depex_1dence. the determination of h;’s and ¢> dependence of the

form factors.

One way of avoiding this problem [47] is to test the factorization assumption
by comparing two-body hadronic decay rates , for example ['(D? — K~x*) with the
differential rate of a suitable semileptonic decay for which in this case the suitable
choice is ﬁ,—F(D" — K-etv). The reason is that they both involve one and the same
form factor which drops out by taking the ratio of the hadronic decay rate to the
differential semileptonic decaty rate evaluated at a suitable fixed value of ¢2.

But, unfortunately, this needs very good data of % at the required g2 which in
most cases of interest is lacking. The alternative is to compare the nonleptonic two-
body decay rates with the semileptonic decay rate, that is, comparing I'(D® — K~7t)
with ['(D® — K~e*v) instead of ;f:,—l‘(Do — K-etv). In this way h;’s cancel in the
ratio and the uncertainty comes from the assumed ¢> behavior of the form factor, in
this case, Fy(q?), in performing the g2 integration in the derivation of ['(D® — K~e*v)
from ;;',‘—l‘(D0 - K-etv).

In the following we will consider the test of factorization by comparing

1) B(D® — K-x*), B(D* — K~p*) and B(D® — K—a}) with B ( D —» K~etv).
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2)B(D° — r~nt) with B(D® — n~etv).
3) B(D} — nat), B(D} — np*) with B(D} — ne*v) and B(DJ — 7/7%),
B(D} — 1/p*) with B(D} — netv).

4.8.1 Comparison of B(D?* — K-=*),B(D* — K~ p*) and
B(D® — K~—a}) with B(D® — K~e*v).

The mesons 7+, p* and af are pseudoscalar, vector and axial vector respectively.

Therefore, the decays D® — K~x*,D® — K-p* and D° — K~a} are of type

D — PP,D — PV and D — PA respectively . Also all the three decays belong to
Class I type .

Using Eqgs. (4.20) and (4.48) we have

AD® - K %) = %V”Wdal < 7*|(a@d); 40 >< K~|(5¢) 4|D° >

= SRV Vi fulmh — mi)FPK(m2) . (4.58)
Therefore using Eqs. (4.64) and (4.68) and Gr = %CV,,V;‘ we get
B° — K-r) = or Sl PRI k) (a09)
For two-body decays (a — bc), || is:
|51 = '\(ms-é:f ,me) (4.70)

where A(z,y, z) = (22 + y? + 2% — 27y — 27z — 2yz)'/2. By substituting for |5] in Eq.
(4.69) from Eq. (4.70) we get

_ G2 m2 — m%)?
BD® = K1) = ron gslonf* 22 QK (m2 PA ey, m m) (4.71)

Similarly, using Eqs. (4.20), (4.52) and (4.56) we have

AD® - K~ p*) = ‘/fVc.V‘ a1(2m,) f,FPX(m2)e" - p (4.72)
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A(D® — K~af) = TEVaVim(2me,) fu FO¥(mE,)e" - p (4.73)

where p is the four-momentum of D°. Using Eqs. (4.72), (4.73), (4.65), (4.67) and
(4.70) we get

i} G2 Va2V,
B(D° = K=p*) = 1pe 32“' “D"" a2 FAFPX (m2) PN} (mD, mE, m2) (4.74)
) Gl [Vaul2IVadl?
BD® ~ K=a}) = ron ot (Ll 22 DK (i, )N, i, ) (475)

The differential decay rate for the semileptonic decay D® — K~etv is given
by [48]

d 0 -+ N _ G%‘; 2'\3('"20""%("12) DK 2
ST(D° — Ke*v) = pobalVo fm e D RpK(g2) (4.76)

Comparing B(D? — K~n*) with J5I(D° — K~e*v) at ¢> = m} and using
FPX(m2) =~ FP¥(0) = FX(0), one finds that in the absence of FSI's the factoriza-
tion model implies the following local relation:

(m) — mk)?
A2(m%, m%,m2)

I‘(D° — K~e*v)|g=m (4.77)

F(Do - K—1l’+),.° FSI = 61rzaff3|V.,¢|2

g
Similarly comparing B(D® — K~x*) with zzT['(D° = K~e*v) at ¢ = m} and also
comparing B(D® — K~af) with d—qy[‘(Do — K-e*v) at ¢ = m2 one finds that
in the absence of final state interactions (FSI) the factorization model requires the

following local relations:
[(D® - K~ p*)no rs1 ~ 67°a® f“|v.‘,,|2 I‘(D° — K~e*v)|gpoms (4.78)

(D° = K~a})no rs1 = 67%a}f2 |V.,.,,|2 I‘(D° — K~etv)|p=ms, (4.79)

As we have said before, testing the local relations (4.77), (4.78) and (4.79)
requires very good data of f,— at the required ¢2. In the absence of high precision
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data an alternative test of factorization assumption is to compare the calculated ratios

O(D°—K=x%) [(D°—K~=p*) O(D°—K=-a}) _ . .
T(D9—=K-c¥0)® T(DI=K-e¥p)* and DO =K=ect3) with the experimental ones.

For calculating ['(D? — K~e*v) we have to assume a specific ¢> dependence

for FPX(q?). We use the one suggested in the BSWI model namely

DK
FPK() = F‘ © (4.80)
-3
with A} = 2.11 GeV (D: mass). The semileptonic rate is evaluated to be
DK (()|2
P(D° — K-etv) = CEp L OFA o A, (4.81)
192 mp
where
_ [emo-mx’ A (m), mk, &%)
I(mDv Mg, Al) = /0 (q2 _ A%)g dqz . (482)

which can be determined both numerically and analytically [47].

Comparing Eqs. (4.69), (4.74) and (4.75) with Eq. (4.81) we find that the
factorization hypotheses requires:

D(D® = K~ 1)ao pst , Gralfe(mp — mi P |Vua’A(mb, mi, mz) 4 o3
[‘(DO —_— K-e"'y) - A%I(mD, mg, Al) .
=1.63+0.33

P(Do — K-P+)no FSI Wzallevudlz,\s(mp’ m%(, 2)
(D% = K-etv) = (Az - mg)zf(mp, mi, A1) =3.0+0.6 (4.84)

F(Do — K‘a{’),., FSI 61!‘20% |VMI2A3(mD, m%(, 2
N o Kors) = (A —md Flimpm A = 432005 (485)

where we have used f, = 131 MeV, f, = f,, = 220 MeV and a; = 1.2.The errors

come from assigning 10% uncertainty to a, .

The experimental ratios are :

I(D° - K~nt)
(D% — K-etv)

=1.104+011 [6], (4.86)

expt

59



(D — K=p*) |

(D% — K-etv) Imt
(D° —» K~af) |
[(D° —» K-etv) Ialpt

=2204+038 [6], (4.87)

=224+044 [6], (4.88)

Although Eqgs. (4.83) and (4.86) appear to be in disagreement, but after
the theoretical prediction of factorization model is corrected for FSI's, a very good

agreement between theory and experiment is found [47].

Within errors factorization model prediction for the ratio in Eq. (4.84) agreess
with the experimental ratio Eq. (4.87), therefore it seems the "raw” test (uncorrected
for FSI effects) of factorization for DY — K~p* is satisfactory. If the effects of FSI and
mass smearing over the p width are taken into consideration, the agreement between
theory and experiment improves [47]. The theoretical prediction of factorization
model in Eq. (4.85) is in strong disagreement with the experimental ratio Eq. (4.88).
The ratio in Eq. (4.85) is not very sensitive to mass smearing [47] and FSI does not
seem to solve the problem. Perhaps factorization ought not to be expected to work

well for decays involving small energy release such as D% —» K-af.

4.8.2 Comparison of B(D? — rm~n%) to B(D® — n~e*v).

Contrary to the cases discussed so far D° — 7~7* and D° — x~e*v decays are
Cabibbo-suppressed processes, which their decay amplitude involve the CKM ma-
trix element V.4 appears instead of V,,. However, V¢4 cancels in the ratio. Exactly

similar to the D® — K—x* case one can derive the following predicted ratio of the

factorization model:

F(Do — “-7"+)no FsI _, Gﬁa%fs(m% - mf,)’qudPA(sz,mi, mi) (4 89)
[(D® — m—etv) A$I(mp,mx, A2) .
=1.02+£0.20
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where Ay = 2.01GeV(D* mass) has been used and the errors in Eq. (4.89) result

from a 10%uncertainty assigned to a;. The experimental ratio is
L(D° — =~x*) |
(D% — x—etv) | expt

The disagreement between theory, Eq. (4.89), and experiment, Eq. (4.90), is largely
due to the FSI's. It is shown in Ref. [49] that the BSWI model for the form factors

=0.4283%  [g], (4.90)

does a fair job of reproducing D — xx data with § — &, = 90° [50], where & and &,
are the phase of I =0 and 2 decay amplitudes. The suppression of D® — 7~7* rate
in the BSW model with 8 — 8, =~ 90° is by a factor of 0.68. Thus the effect of FSI's
would be to lower the ratio in Eq. (4.89) to 0.69 + 0.14 which would be in agreement

with experiment Eq. (4.90).

4.8.3 Comparison of B(D} — nn*), B(D} — np*) with B(D} —
ne*v) and B(Df — n'n*),B(D} — n'p*) with B(D} —

netv).

In some ways two-body Cabibbo-favored decays of D® and D} involving 1 or 7 in
the final state are cleaner systems as the final state only involves one isospin (7 and
7’ are isospinless states), yet these decays have proven to be problematic for the

theory[49, 51].

Factorization model relates the nonleptonic processes D} — nrt, D} — npt
and Df — gn'7*,D} — 7pt to the semileptonic D} — netv and D} — getv
respectively. A comparison between the theoretical predictions and experimental
results of the ratio of the above nonleptonic and semileptonic decays would further

test the validity or otherwise of the factorization assumption.

In describing the n and 1/ system we use the conventional mixing

[n >= [8 > cosb, — |0 > sinb,,
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ln >=|8 > sinf, + [0 > cosb, , (4.91)
where the flavor-singlet and -octet are defined as
[0>= \/..luu+dd+ss>
8>=— uu +dd — 255>, 4.92

and the mixing angle 8, is taken to be =~ —19° [6].

D} — nrt and D} — np* decays are repectively M — PP and M — PV,
therefore using Eqs. (4.32), (4.34) and (4.36) the factorized decay amplitudes are

G
AD} — 1) = —EVaViCom fo(mb, —my)Fy"(m]) (4.93)
Gr .
A(D: - 'IP+) = _ﬁvcavudcnal(2mpfp)e ’PD.Flp."(m:) ’ (4.94)
where
C—‘/g(cosﬂ +-1—sin0) (4.95)
7 3 P ﬂ P . .

The resulting decay rates, using Eqs. (4.64) and (4.65) are

~ 2\2
(D} - m*) = G2 Loy ("'"-m M)\, ms, mE)FPTQO)R,  (4.96)
D

¢ CZf2A3(mD ’m m )IFID."(O)FA%

W R (4.97)

O(D} — np*) = =

where in Eq. (4.96) we have used Fg*"(m2) = Fy*"(0) = F*"(0) and in Eq. (4.97)
A, is taken to be 2.11 GeV,, the D; mass.

The differential and the total rates for the semileptonic decay D} — ne*v are

given by

G} IVal’CY

19273 M3, LAY (m],, m3, @) F*(¢)? (4.98)

d
Eq—zl‘(Df — netv) =

62



and

G} _IVal’C]
192 M3,

(D} — netv) = [FP*"(0)[2ALI(mp,, my, Ay) - (4.99)

where I(mp,,m,, Ay) is defined as in Eq. (4.82) .

From Eqs. (4.96), (4.97) and (4.98) we obtain the following local relations

(mp, — my)®
A(m},, m, m2)

T(D} — gat) = 67%a? f2|Vudl?

d
)(Zq—z']:‘(D;lb - qe+u) (4.100)
q*=m}
(D} — np*) = 6x%a? fflV.,dlzz:;I‘(Df — netv) (4.101)
¢?=m}
and from Eqs. (4.96), (4.97) and (4.99) we get

[(D} — nrt) _ 6x%a}fi(m} — m?)?|Vua|*M(mB, m3, m2) (4.102)

L(D} — netv) — A{I(mp,my, Ay) )

=1.47+0.14

I(D} — np*) _ 67%a} L2 Vud|?A3(m}), m2, m2)
F(D;" - '73+V) - (A% - m%)zI(mDi my, Al)

=2.85+0.28 (4.103)

An analogous treatment of the decays involving 7/ with using

C,,' = ‘/g (— sin0p + %COSOP) (4.104)

instead of C,,, results in the following predictions of the factorization model

(mp, — my)?
A%(m},, m3,, m2)

I(D} — n'x*) = 6n°a} f7|Vudl?

(4.105)

b
@?=m}

d '
X d—qu‘(Df - netv)

[(D} — 7 p*) = 6n%aif] IVmilziz'I‘(D.+ — netv) , (4.106)

q?=mj}
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and
B(DF = fixt) _ S5 FA(m = Vi A(my, m,, m2)
(D —» netv) — AtI(mp,m, A1)
=3.07+£0.30

O(D} - 7p*) _ 67°atf7IVidl*Xo(mb, m%,, m})

F(DF Sres) = (A - mPl(mp,my, Ay) 200+ 028

CLEO collaboration has measured [52] the following ratios,

(D} — netv)

T(DF o gory) = L24E012£015,

[(D} — retv)

T(DF — gery) = V43011007

If we combine this with the following measured ratios,

If((g’f = :; :)) =0.54+005+£004 [6],

{: Egi: = Z’;g =0.54+£009+006 [53],
I;*((g;;‘ = Z;‘:)) =124015+£011  [53],
D(Dy = 10%) _ 98640364038  [54],

(D} — ¢nt)
and

(D} — 7p*)

— 0.44
(D o gr) = 3.44 0624044 [5q].

We obtain the following experimental ratios:

(D} — nn*)
(D} — netv)

=0.81+0.23,
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(4.109)

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

(4.115)



(D} — npt)

ND3 o pory) = 27113, (4.116)
(D} - of7*) _
N(D3 = pets) = F17£ 136, (4.117)
and
+ +
DOy ~7e") _ 14814581, (4.118)

L(D} — netv)
The errors here are probably overestimated as we propagated all errors as if they
were independent while some systematic errors in the products of ratios would cancel.
Comparing the theoretical predictions with the experimental resuls (Table (4.5), for
the decays involving 1 and 17/, we see the theoretical and experimental results hardly
match. Factorization model predictions for {%%_%5%, [E; g. +:ne :v) and %

ratios, although not exactly inside the range allowed by the experiments, but are close

to the experimental results. However factorizartion fails badly in the prediction of

DD} —n'pt)
L(D} —n'etv)

ratio.

It seems that although the factorization model is successful in predicting the
decay rates of some exclusive charm meson decay channels, it ought not to be expected
to work well for decays involving small energy release such as D° — K~—af and

D} — 1/ p* (rows 4 and 8 in Table (4.5)).

In the next chapter we proceed to show that by inclusion of nonfactorized
amplitudes, it is possible to restore the mutual agreement between experiment and

theoretical prediction.
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Table 4.5: The theoretical predictions of the factorization model and the experimental
results for the ratio of hadronic decay rates and the corresponding semtileptonic decay

rates

Row Ratio Theoretical | Experiment
(D’ K—n%)
1| R DI=K=e%2) 1.63 +0.33| 1.10 £ 0.11
(DK~ p™)
2 | foaly | 30+£06 | 220£0.38
g | LB'=K7al) |43 4 0.05| 2.24 +0.44
I‘(Doo—bK‘e':u) :
(DY—>r"x
4 F{Do_,;_e: L (1.02+0.20| 042733
5 | D2l 11.4740.14 0814023
(D —npt)
6 T D{_,i?a 2 2.85+0.28 | 4.27 +1.13
NDy—n'~n
7 | ) (Di" 75 3.07+0.30 | 5.17+1.86
(D —np
8 | il |2.83+0.28|14.81+5.81
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Chapter 5

Nonfactorization

5.1 Introduction

As we saw in the previous chapter factorization scheme with the choice a;2 = C)2
worked as a reasonable approximation for charmed decays. The most successful ex-
ample of this was the decay D — K [35, 65]. This led to the belief that N, — oo was
a good approximation in charmed decays. This idea, when carried over to hadronic
B decays failed as theory wanted a; to be negative [29] while experiments [74] left
no doubt that in B decays a3 was positive. In other words, the observed destructive

interference pattern in D* — K%*, K%*, K"0z* cannot be extrapolated to B

decays.

Also, recently, it was shown [56] that in the factorization hypothesis all com-
monly used models of hadronic form factors had difficulty in explaining the polariza-
tion data [74, 57, 58] in B — ¥ K" decay. It was subsequently shown in [59] that even

a modest amount (~ 10%) of nonfactorized contribution made all form factor models

consistent with the polarization data.

As a result of the above, the view that the phenomenological parameters a,
and aj are effective and process dependant, was proposed and pursued in Refs. [59]
- [63]. In these studies it is suggested that a; and a,, be evaluated with N, = 3,

however the nonfactorization contributions be included.

Motivated by the works in B decays in considering nonfactorization effects,
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and having in mind that factorization model fails badly in predicting the decay rates
of some of the exclusive charm decays, such as D® — K~a}f and D} — 1/p* which
involve small energy release, in this chapter we will investigate nonfactorization in
hadronic two-body Cabibbo-favored decays of D meson, phenomenologically. This
will be done in two steps; in the first step we will ignore the nonfactorized annihilation
and inelastic final state interaction effects, in the second step we will introduce these

ignored aspects through an illustrative example.

The material presented in this chapter, which contains the contributions of the
author of this thesis to the subject is mostly based on the work done in the following

two papers [30, 64].

5.2 Nonfactorization in hadronic two-body Cabibbo-

favored decays of D? and D* mesons

We saw in Sec. (4.3) that the effective Hamiltonian for the Cabibbo-favored charm
decays is (Eq. (4.20))

H.f = %VQV;‘ {al(ﬁd)L,H(.?c)L'H + a2(§d)L,H(ﬁc)L,K} , (5.1)

where in the factorization model the phenomenological constants a; and a;, were

considered to be process independent and
a; =C, +£Co = Ci(m.), a3 =Cy+ECy = Co(m,.). (5.2)

That is, the color mismatch factors £ and & defined in Eq. (4.12) were taken to be
€~ 0and & ~ 0. As we discussed in Sec. (4.3), we anticipate that £ = 3~ = }
and € = #- =}, N. = 3 is the number of colors. By taking £ ~ 0 and {' ~ 0 in the

factorization model one has implicitly allowed some new effects. Explicitly a; and
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a, consist of two parts, one which has the factorized effects in it and the other the

nonfactorized effects , that is

a=ad+da’, a=d+d’ (5.3)
and
a‘{=C1+-C§3, ag=C2+—C3-1, (5.4)

where "n f” stands for ”non-factorized”. In this chapter, whose main aim is to consider

the non-factorized effects, we prefer to separate factorized and non-factorized parts.
Defining
H® = %Z (5)%)(aX%d) , a® = %2 (5)d)(@r%) . (5.5)

and using Eqs. (4.10)-(4.13) we rewrite the effective Hamiltonian Eq. (5.1) as

Gr

Hepr = eVeVia {[02(3D)1,5(50) 1.5 + CaHE) + [03(5) 1 p(80) . + CuBD]}-

(5.6)

We drop the superscript "0’ from a and a3 as a matter of notation such that

a=C + 93—2- = 1.09+0.04, a=0C+ % = ~0.09 £0.05. (5.7)

where
C: =126+£0.04, Cy =-0.51+0.05 (5.8)

are used in determining the numerical values of a; and a;. The central values of C
and C, are taken from [29] and the errors are from [30]. The effective Hamiltonian

then becomes

Gr

Hepy = 75VaVia {[a1(@d), g(5c), g + C2HD)] + [a2(5d) g (Tc) 5 + CLAD] }.

(5.9)
We will be concerned with Class I (Color-favored) and Class II (Color-suppressed)

decays. The effective Hamiltonians for these decays are

HSF = Gp{a (ad)(5c) + CHE} | (5.10)
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and

HSS = Gr{a(ac)(3d) + AL} , (5.11)

where (CF) and (CS) refer to "color-favored” and " color-suppressed”, respectively.
The matrix elements of the first terms in Eqs. (5.10) and (5.11) are expected
to be dominated by factorized contributions; any nonfactorized contributions aris-
ing from them are parametrized as we will see later . The second terms, H®(=
L ¥ (@x2d)(5X%c)) and H®(= L T (@r°c)(3A*d)), involving color-octet currents (as
we stressed before) generate only nonfactorized contributions. It should be clear
from Egs. (5.10), (5.11) and (5.7) that nonfactorized effects are more likely to man-
ifest themselves in color-suppressed decays than in color-favored decays due to the

fact that C) is much larger than a; in magnitude.

In the following sections we will study some exclusive charm meson decays.
Our aim is to extract the size and the sign of the nonfactorized terms in each decay.
The introduction and description of nonfactorized terms is purely phenomenological,
as it is in the Refs. {59]-[63]. No attempt is made to calculate the nonfactorized terms

but, rather, the emphasis is to glean some systematic behavior of these terms.

The decays we study are:
1) D — K, that is the three decays D® —» K—xt, D° — K°z° and D* — K%+
which are D — P, P, type of decays.
2)D — K*r, that is the three decays D® —» K*~x*, D® — K*%1° and D* — K"+
which are D — V P type of decays.
3)D — Kp, that is the three decays D° — K~-p*, D° — K%? and D* — K%*
which are D — PV type of decays.

These decays are all two-body Cabibbo-favored decays of D® and D* mesons

that involve two isospins in the final state. We will see, for decays involving a single
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Lorentz scalar structure (one form factor, see Sec. (4.4)), such as D — K=, K*«

and Kp , one can extract an "effective” a; and e, which it is shown to be process-

dependent.

5.3 D — Kr Decays
Using Eq. (5.10), for the effective Hamiltonian, the decay amplitude of D% - K—=nt
is,

A(D® —» K~1*) = Gr {a (K-7*|(3c)(@d)|D°) + C; (K-n*[HO|D®)} . (512)
We write the first term as a sum of a factorized and a nonfactorized part,

(K-7*|(5c)(ad)|D°) = (=*|(ad)|0) (K-|(§c)|u°)+(1r+x-|(§c)(ad)|u°)"’
= —ify(mh — m)(EP*(m3) + F§), (5.13)

where the nonfactorized matrix element of the product of the color-singlet currents

is defined as (5c)(id) as
(K-n*|(3c)(@d)| D) = —ifu(m} — mE)F{ . (5.14)
For the second term in Eq. (5.12) we write,
(K7 HO|D) = —ife(mp — mi) ™™ . (5.15)

Both Fél)"f and Fés)"! (as also all nonfactorized contributions to follow) are functions
of the Mandelstam variables, s = m%, t = m% and u = mZ. We have chosen to
suppress these variables in writing the last three and all ensuing equations. The

decay amplitude of Eq. (5.12) is then written in the form,

A(D® — K~1%) = —iGp(af! ke fr (mp — mk) FP¥(m3), (5.16)
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where,

(5.17)

(a:!f) Krx =h

This defines a process-dependent effective a;. We shall see that it is possible to

Fél)ﬂf C Fés)ﬂf
FPK(m?) © @) FPR(m?)

do so for all decays involving a single Lorentz structure. We notice also that as
the coefficient Cy/a; (= —0.47) is smaller than unity, the effect of the nonfactorized

amplitude arising from H(® is suppressed relative to the factorized amplitude in color-

favored decays. For the same reason, the nonfactorized term proportional to Fél)"f

could compete favorably with F{o™/.

The decay amplitude for the color-suppressed decay D® — K%z? by following

an analogous procedure is given by,

~

A(D°—»I?°1r°)——17..— a5/ ke fic (mh — m2) FP*(m¥) (5.18)

where,

(5.19)

=(ns Z(®ns
(&), =a 1+ Ky + 8 K
o) + o PP

In writing Eq. (5.18) we have used,
(K°n%((ac)(3d)|D°) = (f<°|(§d)|o) (2%(ac)|D°) + (I?°1r°|(ﬁc)(§d)|D°)"f

= —zT(mD m2) (FP*(m¥) + F{"™) | (5.20)

and
<K°1r°[(uc)(sd)|D°> - '%(mf, — m2)F
(K°1r°|H(8)|D°> - 13;_("1% _ mf)i'és)"! ) (5.21)

Now, as % in Eq. (5.19) is large (= —14), the nonfactorized contribution
F‘és)"! , arising from H(®), is greatly enhanced in comparison to f‘él)"’ . Nevertheless,

it is not possible to separate the individual contributions from F‘és)"f and f‘él)"! .

72



The amplitude for D+ — K%z* decay is obtained from Egs. (5.16) and Egs.

(5.18) via the isospin sum rule

A(D* = K%*) = A(D® —» K~7*) + V2A(D® — K°°) . (5.22)

In terms of isospin amplitudes A;/, and Asz/2 and the final-state interaction
(fsi) phases,
- 1 . .
AD? - K~ %) = 7 (As/zezp(l63/g) + V2A, pezp(iy /2))

A(D* - K% = ‘/Lg (\/§A3/2€1‘P(¢'53/2) - Al/zexp(i51/2))
A(D* = K°t*) = V3Asppexp(ibsy) (5.23)

The relative phase is known [65] to be
K= = 685 — 6K5 = (86 £8)°, (5.24)

with the relative sign of A;;2 and A/, positive. There would be another solution

where the relative sign of A;/2 and Ag/, is odd and § — (7 — §) [66].

Aj/2 and Agjp are determined by equating Eqs. (5.16) and (5.18) to Eq. (5.23)
with the phases §;/; and 83/, set equal to zero; and then reinstating the phases to
calculate the branching ratios from Eq. (4.64). This procedure is equivalent to
assuming that the effect of fsi in this mode is simply to rotate the isospin amplitudes
without effecting their magnitudes. For the form factors the following normalizations

at ¢%> = 0 were used ,
FPX(0) = 077+£0.04, [67]

FP*(0) = 0.83+0.08. [65, 68, 69] (5.25)

FPK(q%) and FP*(q%) are extrapolated as monopoles with 0* pole masses of
2.01 and 2.47 GeV respectively as in [35, 42] and our examples in the previous chapter.
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As these form factors are needed at a relatively small ¢> (=m2 or m%), the results

are not very sensitive to the manner of extrapolation.

Ay and Ajzjp are ﬁrst determined from Eqs. (5.16), (5.18) and (5.23) with
65 and 8§35 set equal to zero. Next the allowed ranges of (@) ke, (a5 )kx are
searched, that fit the branching ratio data [6] as 55 — 633 are allowed to vary in the
range indicated in Eq. (5.24) for A3;2/A;/2 > 0. The resultmg ranges were,

111 < (@ )k <117,  —0.46 < (a5 )r < —0.39 (5.26)

Equivalently, we define the following two parameters (which are measures of nonfac-

torization effects )

FO 4 RO FO g, BONS
x = " d =52
= D)t GRS R R

such that

e C. C
(@ ke = a1 (1 + ;13)(1(:) , and (@5 )ke=a(1+ ;ifxr) - (5.28)
The allowed ranges of these two parameters are
—0.22< xk« <0, =032 < €kxr £ —-0.21 (5.29)

In calculating the ranges of xx» and £k, the errors in C) and Cp,Eq. (5.8), and also

the errors in a; and ay, Eq. (5.7), were considered .

There is another allowed solution where :—:IL: is negative and 6%~ is replaced

by (= — 6%*) [66]. This solution requires,
0.76 < (@ )kr <084, and  —0.92 < (af)kr < —0.87 (5.30)

However, this solution requires x k= and £k, which are measures of nonfactorization

effects, to be larger and of opposite sign. That is,

041 < xkr <0.76, and . —0.71 < €xr < —0.58 (5.31)
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Of the two solutions, the solution shown in Eq. (5.26) and (5.29), which yields

:—:’i > 0 has (@) kx and (a5/)kx closer to the values that have been in vogue over

the past decade and it also requires a smaller nonfactorized contribution. In principle,
there is a sign ambiguity in ¢/ and a5/: One could reverse the signs of both af//
and agf ! which only serves to change the sign of the decay amplitudes. This is a very
unlikely solution as a sign reversal of af// can only be accomplished at the expense of
a very large nonfactorized term (> (3 — 4) times the factorized term) in Class I [35]

decays.

5.4 D — K*m decays

Using the definitions introciuced in Sections (4.4) and (4.5) and the method of calcu-

lation detailed for D — K= decays in the previous section , the amplitudes for the
decays D% — K*"r are given by
AD® —» K%)= 2Gpfemg-ADK (m2)(e .po)(ai)kx ,
A(D® - K1) = V2Grfx-mi-FP"(m%.)(e".pp) (a5 ) ko ,
A(Dt = K1) = A(D® - K*n%) + V2A(D° — K*°x%) . (5.32)

where

(a") .. APK(m2) ¥ 5 APK (m2

FOnS o pEnS
eff - 1 G K
(@) = (“' et aedy) - O

(I)nf B)nsf
ay (1 + Ao C2 A0 ) ’

In Egs. (5.32) and (5.33), in addition to Eqs. (4.36) and (4.37) the following defini-

tions have been used

(K n* |5 @)D°)” = 26 fume- 40" (e" p0)
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(K‘“w*lH,(f)lD“) = 2Grfimy- AP (e* pp) ,
(K oﬁol(ﬁc)(ﬁ)wo)"! = V2Gefi-mu-F" (e".pp)
and (I-(.o‘ll’olﬁs,s)lDo) = ﬁépfxomxoi‘l(s)n!(é".pp) . (5.34)

It is known [65] from an analysis of 1994 listed data [6] that fsi phases in this
decay are large, 65 = 6§, — 650" = (103 % 17)° for %ﬁ > 0. To take the fsi phases
into account a procedure similar to that for D — K decays has been used ; the
isospin amplitudes are calculated by equating the amplitudes in Eq. (5.32) to those
in Eq. (5.23) with phases set equal to zero. Determining A;/2 and Ajz/ in this way,
then the phases are reinstated. For the form factors the following normalizations at

g% =0 are used,

D"‘(O) = 0.70£0.09, [65, 67
FP*(0) = 0.83+0.08. [65, 68] (5.35)

Besides using the normalization of the form factors given in Eq. (5.35),
monopole (Bauer-Stech-Wirbel I (BSWI) model ) forms for the q> extrapolation of
the form factors APKX"(g?) and FP*(¢%) with pole masses 2.11 and 1.87 GeV, respec-
tively, have been assumed . Allowing §%° to vary in the range (103 + 17)°, the
allowed ranges of (at//)x-, and (a5 ") kex for —‘1-’- > 0 and 222 A’ 2 < 0, which fit the
branching ratio data [6], were determined. The rwults were,

T
Ay

1.74 < (6 )kee <196,  —0.53 < (a5 )x-r < -0.43, (5.36)

Avysz <0
A2

129 < (af)ker <151,  —0.90 < (a5 )xer < 081, (5.37)
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From Eq. (5.33) the parameters xx-» and £x-,, analogous to xx» and &k«
defined through Eqs. (5.27) and (5.28), are estimated to be

Ay >0
A1z

—-1.91 < xkx < —-1.14, —0.38 < €koxr £ —0.25, (5.38)

s <0
Ay

=093 < xkx < —0.34, —0.68 < €k+x < —0.53, (5.39)

Simply by fitting the three branching ratios for (D° D*) — K", it is not
possible to favor one solution or the other. Here, the solutions obtained with the con-
straint %/L: > 0 require large nonfactorization contributions to (a{f f ) k== as evidenced
by xx-x in Eq. (5.38). On the contrary, the solutions corresponding to f—*‘l < 0 (with

§K°* — (1 — 6X°7)) require larger nonfactorization contributions to (a; f f ) Kex aS seen

by comparing £k-,’s of Eq. (5.39) with those of Eq. (5.38).

55 D— Kp

Using the definitions given in Sections (4.4) and (4.5), the amplitudes for the decays
D° — K)p are given by
A(D® —» K=p*) = 2Grfymy(e".pp)FP*(m})(ai )k,
A(D® = K%") = V2Grfxmy(e"-pp)Ag*(mk)(as' )k, ,
and A(D* - K%*%) = A(D®— K-pt)+ V2A(D® = K%°), (5.40)

where

(@), = a1+ R e RO
L ke FPK(m2) * a; F{ K(rnz)

AnS A8nS
@0, -l BT

AgP(mk) ~ o2 AgP(m)
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In addition to Egs. (4.36) and (4.37), the following definitions have been used

(K-p*|e)@d)|D°)" = 2Gefom ("™ (" .p0).
(K-p*|H®|D®) = 2Grfm,F{"(e"pp),

(RO (a)GIDY) = V2Grfxm,A™ (e"pp),
(R'PIAPID®) = V2Grfrxm A" (€ pp) - (542)

Fits [65 70] to D — Kp data admit a solution with —43-’-’- > 0 and a relative fsi
phase 657 = §{5 — 655 = (0 £30)°. F°%(0) is given in Eq. (5 25) and the value of
AP?(0) = 0.67 is taken form the BSW [35, 42| . In this decay too, monopole (BSWI)
extrapolations of the form factors F2X(q?) and Ag®(g?) with 1~ pole at 2.11 GeV
and 0~ pole at 1.87 GeV, respectively[35, 42], have been assumed. To search for the
allowed ranges of (a$//) Ko and (a3 effy Kp, the same procedure which was outlined in
the analysis of D — K7 and K*r decays was followed, that is by varying §K¢ in the
domain (0 £ 30)° and searching for allowed values of a /7 and oS!/ that fit the data
[6]). The following allowed ranges for (a$/!)k, and (a5 1)k, were found:

Ay
Ay

117 < (6 Nk, <132, -1.00 < (a§)x, < —0.75, (5.43)
P. =

Ayz <0
Ay

0.71 < (a/)k, <085, —2.53 < (a§)k, < -219, (5.44)

These ranges translate into the following limits on xx, and £k, defined in
analogy with xx» and €k, of Eq. (5.27),

Az >0:
Ay

—0.52 < xk, £ —0.11, ~0.75 < €kp < —0.50, (5.45)
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A2
Ay

—041 < xk, < —0.85, —2.00< £k, <160, . (5.46)

Note that the solutions with %:/L: < 0 require much larger nonfactorized contributions.

The results for af” , a§”, x and &, for D -+ Kn, D - K*xr and D — Kp
decays are tabulated in Table (5.1).

5.6 Summary of the consideration of the nonfac-
torized effects in D —» Kn, D - K*r and D —

Kp decays.

We saw that an analysis of those Cabibbo-favored two-body decays of D® and D*
which involve two isospins in the final state in a formalism that uses N. = 3 and
includes nonfactorized amplitudes, was carried out. The decays considered were:
D —» Kz, D - K*r and D — Kp decays. The measured phases of the (elastic)
final state interactions (FSI) were also included, but only in so far as they rotate the
isospin amplitudes without affecting their magnitudes. The annihilation terms and

inelastic final state interactions were ignored.

The rationale for ignoring the annihilation terms in D — K= decays is that
these terms are proportional to a(m% — m2) while the terms that are kept are

proportional to a;(m2, — m%) or ay(m? — m2).

Justifying the neglect of annihilation terms in D — K*x or Kp is harder as
they involve the divergence of the axial current. If, however, the annihilation form fac-
tors AX**(m3) and AZ¥(m2)) would be much smaller than the form factors AX"(m2)

or AP?(m%), the annihilation term would be smaller than the terms retained. The
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neglect of the inelastic FSI is largely due to ignorance of the parameters to be used

in implementing a believable calculation.

Despite the statement above regarding the size of the annihilation terms, per-

haps it is fair to say that at our present situation we do not understand the role of

the nonfactorization effects fully.

From the data, one only determines (a;)// and (a2)*// which, as it is shown
here and in Refs. {30] and [63] are process-dependent. The next question is: What
effects contribute to (a;)%// and (a2)*// in a scheme that uses N, = 3? It is tacitly
assumed in Refs. [59] - [63] that these effects arise from the following sources: the
nonfactorized matrix elements of H®) = 1 3, (s)%c)(@)*d), H®) = } &, (5A*d)(@A*c)
and parts of the effective Hamiltonian made up of color-singlet currents (5c)(id) and
(“c)(5d). With these assumptions, the relative size of the nonfactorized contribution

in each specific channel was extracted.

We saw that in the decays that involve a single Lorentz structure, we can
absorb the factorized and nonfactorized effects in af! f and aﬁf . We left the phases
of the final state interactions (elastic) out of af// and a§’ !, that is by definition we
take them to be real. That is after the elastic final state interactions (rotation of the

isospin amplitudes) we have:

AD® = K1t) = —iGr(a)kefx (mzo - mg() FPK(m2)expig,—

= 71-5 (Aa/ze-‘tp(i5s/2) + \/§A1/2€3P(i51/2)) , (5.47)
A(D® —» R = —i-i-—;(a;’ Nefr (mh — m2) FP™(m) exp iduo
= —‘/l-g (\/§A3/2exp(i63/g) - Al/zexp(i6l/2)) ’ (5'48)

A(D* = K%%*) = A(D® — K~r*) + V2A(D" — K°1°)
= \/§A3/2e.1:p(i63/2) . (5.49)
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The phases ¢, and ¢y are a result of the final state interactions (here elastic rotation

of the isospin amplitudes under the influence of strong interaction).

In the next section by doing a specific example we attempt to include the
effects of inelastic final state interactions and annihilation terms. We will slightly
generalize our definitions of af! I and a§’ ! to include the phases produced by the final

state interactions, that is, by definition we allow them to be complex.

5.7 Annihilation and inelastic Final State Interac-

tions Effects

In this section we will examine the effect of annihilation terms and final state in-
teractions (inelastic) on the phenomenological constants a// and a5// through an
illustrative example. We will consider the charm decay: D} — ¢x* . The reason for
choosing this Cabibbo-favored decay is that it has only one isospin which makes the
fsi calculation somewhat simpler ( ¢(s3) is an isoscalar ). D} — ¢t isa D - VP
and Class I type of decay (see Sec. (4.5.4)) . Using Eq. (5.10) , the decay amplitude
(before fsi effects are brought into play) for D} — ¢nt is given by,

A(D} — ¢1*) = Gr {a1 (¢n*|(3c)(@d)|D} ) + Co (¢n*|HO|DF)} . (5.50)

While the matrix element of H® is completely nonfactorized, the first term in Eq.
(5.50) includes a (i) factorized (spectator) term, (ii) any nonfactorized contributions
in addition to the factorized (spectator) term and (iii) a W-annihilation term which
in turn has a factorized and a nonfactorized part. These individual contributions to

the decay amplitude are parametrized as follows:

(¢n*1(5e)@d)|DF Y™ = fu(2my)e.po, ADH(m?) (5.51)
(¢|(5e)(ad)|DF)™ = fr(2my)epn, A (5.52)
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(¢n*1(5c)@d)|DF )™ = fo,(2m4)e.po, AT , (5.53)
(¢nt|HO\DY) = fo(2my)epo, AT . (5.54)

The superscript ‘ann’ stands for annihilation and ¢ is the polarization four-vector for
the ¢. the Egs. (5.51), (5.52) and (5.53), respectively, are the factorized (spectator),
non-factorized and annihilation contributions of the 4-quark operator (3c)(id) to the
decay amplitude (Eq. (5.50)) , and Eq. (5.54) is the contribution of H$). Putting it

all together, one can define an effective a,; as follows,

A(D} — ¢nt) = Gra! f(2my)e.pp, Ag**(m?) (5.55)
where
ns (8B)nf ann
eff Ag Ca Ap fo. A}
= 1+ —F2—— 4+ =2 . 5.56
“ { APt w APod) + fe ATH (D) (559)

Up to this stage, all quantities are taken to be real, including A§"*. Complex ampli-
tudes will emerge as the result of fsi at the hadronic level.

Consider now the final state interactions. For illustrative purposes we consider
a two-channel model which is adequate to illustrate our ideas. Consider an inelastic
coupling of ¢7 channel with G-parity even, to the G-parity even eigenstate of KK+
and KK+ (See Fig. (5.1)). Channel ¢z will couple, among others, to np and 7/p
channels also. Our intention is not to calculate numerically the effect of these channels
but to illustrate how fsi enter the description. Both of these decays, D} — K°K*+
and D} — K*K*, are cqlor-supprwsed. Following an analogous procedure to the

one that led us to Eq. (5.55), we find,
A(D} — R°K™*) = Gray! fx(2mk-)e.pp, ADX" (mk) , (5.57)

where

()nf (8)nf ann
o = a1+t + B afo. BT 1. (5.58)
Ap** (m%) a2 Ay (m%) a2 frk Ag*" (mk)
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K"’ b, 4 K K.*
c) d)

Figure 5.1: Inelastic coupling of ¢7 channel with G-parity even, to the G-parity even
eigenstate of K°K*+ and K*°K*

Here B{U™/, B/ and Bg™ are the analogues of AP AP™ and Ag™ of Egs.
(5.51) to (5.54) . Similarly,

A(D? — K°K*) = Grag!! fx-(2mk-)e.pp, FL* K (mk.) (5.59)

where

(1)n (8)n, Hann
~eff _ {1 + B(()) d Cl B& d ay fD. BO } . (560)

BTN PR ) @ FPN(mke) 02 fr FDR(me)
The hatted quantities here refer to the decay channel KK+,
Now the eigenstates of G-parity are [71],
_1 S e + =0
K K)sa = = {IK*R) £ KK} (561)
where the symmetric (antisymmetric) combination has G-parity even (odd). Thus it
is only [K*K)s that couples to ¢m.

Next we set up a coupled channel fsi between the decays D} — ¢r* and
D} — (K*K)s following the formalism described in [72]. Though the method of
unitarization, the K-matrix method, which amounts to retaining only the on-shell
contribution from re-scattering loops, is not unique, it serves adequately to describe

the effects of final state interactions.



We simplify our notations further by using the following short-hand notations

for the thus far real amplitudes,

A(D} — ¢x*) =e.pp,A*, (5.62)
with
A*" = Grall fo(2my) A H(m?) (5.63)
and
A(D} — (K"K)s) = e.pp, AXK, (5.64)
where
A = Gp ) (et o AP () 4 a5 e FOM(mk)} . (5:69)

V2

The two amplitudes, Eqs. (5.62) and (5.64), couple via fsi and get unitarized.
The unitarized decay amplitudes, AY, are given by [72],

A" =(1-iFK)" A, (5.66)

where A is a column with entries A** and AX"X k3 is a diagonal matrix with entries
k} and k3, k; and k, being the center of mass momenta in the channels ¢7 and K*K

respectively and K is the symmetric, real (2x2) K-matrix,

a b
K= ( ) , (5.67)
b ¢

where a, b and c are assumed to be constants with dimensions GeV 3.

The parameters of the K-matrix can be evaluated from the knowledge of the
coupled channel scattering problem. In absence of this information, they remain

undetermined in our case, which wasn’t our aim from the beginning .

85



Carrying out the unitarization of the decay amplitude as indicated in Eq.

(5.66), we obtain a unitarized A”¥* which is complex and given by,
AY(D} — ¢x*) = Gral"™!! fre.pp,(2mg) A5**(m3) , (5.68)

where

oy !! o K*
) fx
a'lj = a—k’{ -1kgc+'\/-m¢kg ( 7 fe A‘:"D'é((mn;)

‘e!! . FD:K .
+ eff {;( AD.¢(("1::2‘)))} (5.69)

with A = det(1 — ik3K).

If the fsi were elastic, b = ¢ = 0 and A = 1 — ikja, we would have obtained
eff
Ueff a is
a = —mmcomenme® | (5.70)
' v1+Kfa?

where § = tan~!(ak}) is the elastic P-wave ¢m scattering phase.

A similar expression to Eq. (5.69) can be written down for D} — K*tK?°
(and for D — K*+K*°) which would define a§**// and a3//.

One should view Eq. (5.68) as the defining equation for ai"*// which includes
the important physics, and which is process-dependent and complex. If we view a{’"! !
and a3**// in the manner we are proposing, then the comparison of two body hadronic
decays of D and B mesons with semileptonic decays which in past has been claimed
[73, 74, 75, 76] to be tests of factorization, becomes merely determinations of |a, el1|
and |a¥*//|. In the next section we will use the defining equations like Eq. (5.68) for

determining |aY**//| and |a3*//| for different charm decay processes.

86



5.8 Estimates of |¢"*//| and |ad*//| from charm

decay data .

The same procedure that we took for defining a*/! in D} — ¢r* decay in the last
section can be used in defining a; Vetf and a, Uet! in, say, D® — K= decays. There is an
added complication here, that of two isospins in the final state . The fsi unitarization
has to be carried out in each of the two isospin states separately. Nevertheless, one

can define, following the same procedure as we have used for the simpler case of

D} — ¢n*,

A(D® ~ K~1%) = Grla™!| fe(m} — mE)FP¥ (m7)e™+-
A(D® - K°1°%) = \/‘la‘z"ﬂlfx(mo — m2)FP™(m} )ei (5.71)

A(D* - K%)= A(D® —» K~n*) + V2A(D" — K'°) .

|a¥//| can be determined by relating ['(D? — K~7*) to [(D® — K~*v) and |ay’ Sefl|
by relating ['(D° — K°x°) to [I'(D® — =~ 1*v) ( Similar to the ones we did in Sec.
( 4.8)) . Finally, ¢, — ¢go is obtainable from ['(D* — K%r*).We determined the
products |a¥*//|FP K(m?) and |a§*/|FP*(m%) and the relative phase (¢+_ — ¢oo)
from the branching ratios B(D® — K~7+),B ( D°* — K° z°)and B(D* — K°r+)
[6] with the result:

D—Rr:  |aP|FPK(m2) = 0.767+0.014
la¥<//|FP*(m%) = 0.593 £ 0.038 (5.72)
cos(¢py— — ¢oo) = —0.867 % 0.089.

If we use the experimental determinations [6] of FP¥(0) and F*(0) from

semileptonic decays (assuming monopole extrapolation),

FPK(0)= 0.75+£0.02+0.02  [6]
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FPr(0)/FPX(0)= 1.0333+0.04 [77] (5.73)
= 13+£02+0.1 [78]

we obtain,

[a¥/f| = 1.02+0.04
lad*7| = (0.76%33%), (0.58+0.08) (5.74)

In a2/ above, the two values correspond to the two values of the form factor
ratio FP*(0)/FPX(0) given in Eq. (5.73) respectively. We have used a monopole
extrapolation with pole mass 2.47 GeV [35, 42| in calculating FP*(m¥%).

We define a*/f and a2*// for D — Kp and K*x decays as

A(D® — K=p*) = 2lai*|m, foFP ¥ (m)e" - pe™®+-,
A(D® — R°p°) = 2|a3*!! le—;foé"’(m%()e' - pe'te (5.75)
A(D* — R%*) = A(D® — K~p*) + V2A(D" - K°") .

and

A(D® = K™ 1%) = 2|6/ |mg-- f ATK" (m3)e" - pe™®+—,
A(D® - K*7%) = 2|a¥'°”lm7"§fx- FPx(mk.)e" - pe® (5.76)

A(D* = R*0x%) = A(D® — K™~ 7%) + V2A(D" - K1) .

A similar analysis, similar to the one we did for D — K~ decays, of the branching
ratios in D — Kp and K*rleads to:

D—Kp: la/!|FPK(m2) = 1.097 4 0.069
|3/ | ADP(m%) = 0.67240.055 (5.77)
cos(py— — doo) = —1.046 £0.205



and

D— K'r: VT |APK" (m2) = 1.138 £0.070
[aY< | FP*(m%.) = 0.747 £0.061 (5.78)
cos(¢s— — Po) = —0.926£0.166

From the form factors at ¢ = 0 listed in [6] we can calculate all the form

p

factors needed by using monopole extrapolation for all of them except AQ?(m%) for

which we adopt the theoretical value given in (35, 42] . The resulting a”*ff and a2</f
are :
D—Kp: eV = 1.274+0.09
[a¥ff] = 0.93 +0.08 (5.79)
and
D— K=n: la?/| = 1.76 +£0.23
lad/f| = (0.8%%), (0.61+0.09) (5.80)

The two values of a5*// correspond to the two values of the ratio F’*(0)/F2¥(0)
respectively, given in Eq. (5.73).

We end with a determination of the process-dependent |a{’“f /| in DF - e+,

’=t, npt and 7/p* from hadronic and semileptonic data.

The defining equation for a>*// in D} — gt and np* decay amplitudes is
obtained by simply replacing a; in the expression for the factorized amplitude, Egs.
(4.93) and (4.94), by a?**/ as in Eq. (5.68). Thus

A(Df - +) = éFCn(alU'e!!)nﬁft(m%, - m,z,)FoD",(mi) ’ (5.81)
and
A(D} — 1p*) = GeCy(aV!!) e (2m, f,)e" pp, F"(m2) (5.82)
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where C, is defined in Eq. (4.95).

Now using Eqs. (4.102) and (4.103) the ratios of the nonleptonic to semilep-

tonic decay rates in terms of |(aY**//)| are

P(D: - m+) ~ I(au‘e!!)r’rflz 6“2f3(m20 - m?))zIV“IzA(mD' m2 mz) (5-83)

D(D} — netv) — AfI(mp, my, Ar)
I‘(D.: — np+) Ueff 2 szzl‘,udlzx’(mbv m2)
=~ [(a; et I° 75 (5.84)
F(D:. - ’7‘—’+V) (A m2)2[(mD’ My, Al)

where I(mp,my, A,) is defined in Eq. (4.82) and J; is taken to be 2.11 GeV, the Dj

mass.

A similar treatment for 7 using Eqs. (4.107) and (4.108) will result in the

following ratios of the nonleptonic and semileptonic decay rates in terms of |(a; Uelfyi
+ o't 6n2f2(m% — m2 )|V, 2,\m,m., m2
F(D, — T!W ) ~ l(ai"cff)nlrplz .f ( D " n ) I dl ( D ) (5.85)
[(Df — ne*w) AI(mp,m,, A7)
L(D} - 1'pt) 67 [ 1Vual®Xo(m, m, ) (5.86)

Ueff 2
- ~ l(a
(D o ety = O el e Tt m )

By equating the theoretical ratios, Eqs. (5.83) - (5.86), to the experimental ones,
Egs. (4.115) - (4.118), we have evaluated the following (we have used V.4 = 0.975,
fr =130.7 MeV and f, = 216.0 MeV):

I(a¥/7),ee] = 0.89+0.13, (5.87)
[(aV*/)pee] = 1.564+0.28, (5.88)
@V ), 4] = 1.4940.20, (5.89)
l(af*/ )] = 2.77£0.55. (5.90)
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5.9 Summary

We defined effective, and unitarized a; and a; by the following prescription: In decays
where the decay amplitudes involve only one form factor, the true decay amplitude is
given by replacing a, and a3 by a?/! and aZ<!7 repectively in the factorized ampli-
tude. Defined in this manner, we saw how these effective parameters get contributions
from annihilation and nonfactorizable processes as well as the final state interactions.
As these effective parameters are process-dependent, the purported test of factoriza-
tion that compares the hadronic rate to the semileptonic should be used instead as a

tool to determine the modulus of these effective parameters.

We determined |a¥*//| and |ad**//| in D —» K=, Kp and K*7 decays using
experimental input on formfactors ( with monopole extrapolation) as much as possible
(See Table (5.2)). The values of these parameters, particularly |a¥</!|, imply large
departures from the factorization expectation when compared with a; and a; given

by Eq. (5.7)) with N, = 3.

For D} — /=%, np* and 7/p*, aV*/f was found to be significantly differ-
ent from a; of Eq. (5.7) (N. = 3 scheme) signifying that the simple factorization
prescription would not apply to these cases (see Table (5.2)).

We reemphasize that effective a; and a; can be defined only for those decays
whose amplitudes involve a single Lorentz scalar structure. Thus they can not be
defined for decays of D and B mesons involving two vector particles in the final state.
Consequently, our analysis applies only to those cases where the decay amplitudes

involve a single Lorentz scalar structure.
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Chapter 6

Summary and Conclusion

Due to confinement, the decaying heavy quarks are necessarily bound in hadronic
bound states (mesons or baryons). Thus the study of heavy quarks involves examining
the weak interaction under the influence of strong interaction . It is assumed that
the short distance nature of weak decays allows one to separate possible corrections
from strong interactions into short and long distance contributions. The asymptotic-
freedom property of QCD allows a perturbative calculation of the short distance
corrections. They arise from the exchange of hard gluons and modify the structure
of the weak interaction Hamiltonian. The light quarks produced in the decay of a
charm or beauty quark necessarily have to combine with the spectator quark to form
color singlets i.e. hadrons. This is a non-perturbative process and, so far cannot be
calculated from first principles. Therefore a phenomenological approach has to be
adopted with model form factors. The overall picture is the following

(1) Some long distance effects are included in the bound state wave functions. Other
long distance effects such as final state interactions among the produced hadrons are
added separately.

(2) The short distance effects originating in hard gluon interactions are calculated
perturbatively (due to the asymptotic freedom property of strong interactions) and
included in the effective weak Hamiltonian.

(3) The weak amplitudes are given by matrix elements of H.ss; between asymptotic
initial and final states (leptons and hadrons):

A(a — b+c+...) = {be...|Hosfla) , (6.1)
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where H, sy includes the hard gluon (short range strong interaction effects) corrections.

We started with the charm lowering part of the effective low energy weak
Hamiltonian, Eq. (3.4), where the nonleptonic Cabibbo-favored part of it is given by

Gp
V3

Hard gluonic effects were calculated perturbatively and included in the weak Hamil-

Hy(AC =-1)= Via(3¢c) (ad) - (6.2)

tonian. The nonleptonic part of the resulting effective weak Hamiltonian once QCD

corrections have been included is given by

Hy (AC=-1)= %Vu"& [Ci(m.)(5¢)(ud), + Co(m.)(ac)(5d),] . (6.3)

The Wilson Coefficients, C; and C,, are given by
Ci(m.) =126+ 0.04, Co(m.) = —-0.51 £0.05. (6.4)

That is, hard gluon exchanges renormalize the original charged current interaction

(first term) and, as a new feature, induce an additional effective neutral current

interaction (second term).

We distinguished between inclusive and exclusive decay of charm mesons. In
the context of the valence quark approximation model we examined the inclusive
decays of charm mesons, D%(ci), D*(cd) and D}(c5). We saw that although the
valence quark approximation model gives correct order of magnitude for the lifetimes

of charm mesons, it could not explain the observed pattern of these lifetimes, that is,
T (D*) >T (D;") >T (Do) . (6.5)

In particular the significant lifetime difference of D+ and D° ( 7(D%) = 2.57(D"))
remains a puzzle for the valence quark approximation model which predicts nearly

equal lifetimes for the three D mesons.

In chapter 4 we studied the exclusive decays of charm mesons. We adapted

the valence quark approximation model used in inclusive decays for exclusive decays
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(Sec. (4.2)) and calculated the decay amplitudes in the factorization ansatz, which
states that the matrix element of a product of two currents can be approximated by

a product of matrix elements of cu-rents,
< My, My|J - J|D >=< My|J[0 >< M,|J|D >, (6.6)

where J and J are (¢2q,)r color-singlet currents. Therefore the matrix element of
the HS/{ can be written in terms of simpler matrix elements of single weak currents
with the vacuum as an intermediate state and thus are determined in terms of meson
decay constants and hadron form factors. The amplitude of the semileptonic decays

factorizes exactly as the hadronic current can only lead to hadrons and the leptonic

current to leptons:

< X|(In)(@Q)ID > = < la|(Iw)]0 >< X|(gQ)ID > . (6.7)

For calculating the decay rates of the exclusive decay, we have to introduce
different phenomenological formfactors which we discussed in chapter 4. We also
introduced phenomenological constants a; and a3, and as a result the nonleptonic

Cabibbo-favored part of the effective Hamiltonian takes the following form

Hesp = % esVid {al(ﬁd)z,n(gc)z,n + “2(5‘1)5,3('70)5,5} . (6.8)

Now the question is what is the nature of the a; and a; or what effects are included
in it? We can summarize the development of our understanding of the phenomeno-
logical constants a; and a; in three steps:

1) In the pure factorized model with N, = 3 and without considering any nonfactor-
ized effects, a; and as are considered to be process independent constants which are

given by

a,=C) + % =1.09+004, a=Cp+ % =-009+005. (6.9)
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We have not discussed the predictions of this model in this dissertation because from
the beginning it has been known that it does not accomodate experimental results
due to the smallness of a;. In particular it fails badly in predicting the observed decay
rates of D — K= decays. For details see Refs. [16, 32].

By contrast, in the so called factorization model with N, — oo, (which we discussed

in chapter 4) a; and a; are considered to be process independent and their values are

taken to be
a ~ Cy(m.) =126+004, ap=Cy(m.) =—0.51£0.05. (6.10)

These values of a; and a; lead to successful predictions of some of the exclusive
charm decay rates, most notably D — Kr decays. This is a procedure that finds
some theoretical justification in 1/N, expansion arguments [41]. Factorization model,
however, fails badly in predicting the decay rates of some of the exclusive charm
decays, such as D — K~af and D} — 1/p* which involve small energy release.

2) In the second step (which we discussed in chapter 5) we took a; and a; to be process-
dependent effective phenomenological constants. By a redefinition some nonfactorized
effects were includecd in a; and a; thereby generating effective a; and a; (real at this
stage) which come close to Eq. (6.10) for D — K= decays. We emphasize that
effective @; and a, can be defined only for those decays whose amplitudes involve a
single Lorentz scalar structure. Thus they can not be defined for decays of D and B
mesons involving two vector particles in the final state. In this step we ignored the
annihilation terms and inelastic final state interactions.

3) We generalized our definition of @, and a3 and replaced them by complex unitarized
aV*/f and a2*// . We defined effective, and unitarized a; and ap by the following
prescription: In decays where the decay amplitudes involve only one form factor, the
true decay amplitude is given by replacing a; and a; by a'{"f ! and ag /1 respectively
in the factorized amplitude. Defined in this manner, we saw how these effective

parameters get contributions from annihilation and nonfactorizable processes as well
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as the final state interactions.

In conclusion, we assert that, treating the phenomenological parameters a; and
a as process independent is untenable. It does not explain the experimental data. For
the processes which involve only one Lorentz structure, it is always possible to define
an effective and complex (unitarized) a{*// and a>/! that include nonfactorized,
annihilation and inelastic final state interaction effects. A corollary of our point of
view is that the purported test of factorization that compares the hadronic rate to
the semileptonic should be used instead as a tool to determine the modulus of these

effective parameters.
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