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Abstract 

Equipment cost represents a large expenditure for construction companies. Making economic 

decisions such as when to replace or rebuild is a complicated and difficult task that often relies 

on the experience of an equipment manager. This research analyzed the historical maintenance 

cost of heavy construction equipment to simulate and predict the maintenance cost of different 

types of machines. Based on historical maintenance data of 15 fleets, including 250 heavy 

machinery units from a construction company, regression models were developed for each type 

of machine to compare the relationship between the maintenance cost and machine age. A 

second-order polynomial expression of the Cumulative Cost Model developed by Mitchell 

(1998) was used to identify optimum economic decisions such as replacement and retirement. 

As equipment owning companies often design maintenance policies according to specific 

operating hour intervals, different datasets based on varying service meter reading (SMR) 

intervals were created to provide equipment managers with different equations, thereby 

providing a guideline to help the company revise maintenance policies for each type of machine. 

Statistical analyses were conducted for each dataset and it was found that the best regression 

model performance was obtained at 500 and 1000 SMR intervals. Residual plots indicate that 

the models can be improved by including other variables despite the high R2 values. 

Besides, the residual value of heavy construction equipment is of great significance for 

equipment owning companies. Many factors such as the manufacturer, model, machine age, 

operating hours, and even macroeconomic indicators might have direct or indirect impacts on 
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the price of machines in an auction market. In current practice, machine-owning companies use 

rule-of-thumb opinions or single-linear functions to make predictions, providing a very rough 

estimate to decision makers. This study considers the current state of knowledge on residual 

value estimation for used heavy construction equipment and introduces two effective data 

mining methods, k nearest neighbor (KNN) and random forest (RF) with comparisons to a 

single regression tree. The proposed methods are exemplified based on a dataset of articulated 

trucks. Equipment specifications are considered as predictive features, and a feature selection 

algorithm is implemented to provide a rank of different factors. Distinct models are built after 

multiple runs and cross validation. Compared to the single regression tree method which has 

been studied by other researchers, the KNN and RF methods demonstrated better performances 

in terms of accuracy as well as running time. 
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Chapter 1: Introduction 

Equipment management is a difficult and complex process that influences almost every aspect of 

a company’s operations. For a construction company to be financially healthy and competitive, it 

is important for it to place a priority on equipment acquisition and disposal. Decisions about 

acquisition and disposal not only require knowledgeable and experienced equipment 

management, but also good awareness of the equipment market. In the area of heavy 

construction equipment management, the greatest concerns are maintenance cost and residual 

value.  

1.1 Maintenance Cost 

Equipment management is an important yet difficult task for contractors as well as equipment- 

owning companies, especially for those engaged in extensive equipment use. Maintenance 

commences after equipment is purchased, and maintenance costs account for most of the cost 

over the life span of equipment. Maintenance, as defined by Geraerds (1983), is “all activities 

aimed at keeping an item in, or restoring it to, the physical state considered necessary for the 

fulfillment of its production function.” Maintenance of heavy equipment includes a number of 

activities such as preventive maintenance, running repairs, fuel and tires, etc. Peurifoy (2006) 

pointed out that the cost of repairs normally comprises the largest component of machine cost, 

and it generally accounts for approximately 40% of the machine cost over its life span. Repair 
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costs associated with labor and parts, which are difficult to estimate, make up between 15% to 20% 

of equipment budget (Vorster, 2009). Furthermore, maintenance costs can vary depending on 

work conditions, operator skills, and a company’s maintenance strategies. It is challenging, 

therefore, to estimate the cost of owning and operating equipment. Modeling maintenance costs 

can simulate and reveal the dynamic trend of equipment value, laying a foundation upon which 

economic equipment managing decisions can be made. 

Vorster (1980) proposed the Cumulative Cost Model (CCM), to describe the dynamic behavior 

of equipment maintenance costs. The CCM provides both a numeric and graphical illustration of 

equipment costs, thereby aiding in the planning of economic decisions for equipment managers. 

Based on data consisting of 270 construction machines, Mitchell Jr (1998) evaluated 19 different 

linear and transformed non-linear models, and noted that a second-order polynomial expression 

best described equipment value. The maintenance cost research of this thesis focuses on heavy 

construction and mining machines, including heavy rigid frame trucks (up to 320 T), excavators 

(up to 360T), and shovels (up to 800T). 

1.2 Residual Value 

It is expected that the global construction industry will continue to grow over the next decade. 

The total revenue of the global construction, farm and heavy machinery market expanded on a 

compound annual growth of 6.9% between 2010 and 2014 (Global Construction, Farm & Heavy 

Machinery Industry Profile, 2014). Between 2011 and 2014, the value of construction in United 
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States has been rising at a rate of 7.3% annually, which causes an increase in domestic demand 

of construction machinery (Outlaw & Young, 2014). According to Perspectives and Economics 

(2011), construction in emerging markets is expected to double within a decade, becoming a $6.7 

trillion business by 2020. While construction management is a combined task involving many 

resources, equipment is vital to the success of construction projects. In practice, contractors have 

to spend a large portion of expenditure on owning and operating costs of heavy construction 

equipment. Financially, equipment-intensive projects always present great potential risks in 

terms of routine repairs, major rebuilds, and unexpected accidents. 

Among the financial challenges of owning and operating construction equipment, depreciation is 

one of the most significant, especially when purchasing and selling used machines. Many 

equipment managers, however, circumvent residual market value by being overly conservative 

and assuming a zero residual value of machines when calculating depreciation (Vorster, 2004). 

The residual value of a piece of heavy equipment can be defined as the price that can be achieved 

by “disposing of a used machine in a fair transaction between an equally well informed buyer 

and seller in the overall market with its particular economic situation” (Lucko, Vorster, & 

Anderson-Cook, 2007). Depreciation models in the accounting field such as sum-of-years or 

average annual investment methods (Peurifoy, 2006) can provide an approach for calculating 

residual value, but it is an uncertain number that depends on not only the unique individual 

situation of equipment, but economic environments of the specific markets. Lucko and Mitchell 

Jr (2010) concluded it is not an actual realized dollar amount, but a forecasted value determined 
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by taking into account many independent variables of the machine itself as well as the economic 

environment. 

Although it is almost impossible to develop a completely accurate system to predict the residual 

value of heavy construction equipment, many scholars made great efforts to develop predictive 

models that are competitive and close to reality. The regression model for predicting residual 

value of equipment, which was widely used in the agricultural industry (T. L. Cross & Perry, 

1995; Fairbanks, Larson, & Chung, 1971; McNeill, 1979) was introduced into construction 

industry by Lucko (2003), based on auction records retrieved from an online construction 

equipment database. A spatial hedonic price function, proposed by Ponnaluru, Marsh, and Brady 

(2012), explains the variability in auction price as a function of heavy machines’ characteristics, 

and can be used to amend regression formulas. Fan, AbouRizk, Kim, and Zaïane (2008) 

discussed the feasibility and effectiveness of the regression model and proposed a data mining 

algorithm called AutoRegression Tree. With a set of “if-then” split conditions, a single 

regression tree algorithm could provide a good interpretation of residual value prediction model, 

yet along with discussions about issues such as the overfitting problem. In machine learning, 

overfitting is a phenomenon that the model “memorized” details of training set but is less 

accurate for generalizing new examples for prediction. The model could be too “sensitive” to 

data especially for small datasets.  

As a hybrid of multidisciplinary field, data mining helps people extract information implicitly 

stored in large datasets. In the field of construction equipment management, it is a useful 
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approach to help decision makers predict the residual value of heavy machines. This paper steps 

forward to presents a few other models to calculate residual values of heavy construction 

equipment with the help of different data mining techniques. Regression decision tree, 

instance-based learning and random forest will be used to predict the up-to-date auction records   

from an equipment-owning company, and comparisons will be presented and discussed.  

1.3 Research objectives 

The objective of this research is to develop simulation models for fleet managers or other 

decision makers to track and predict maintenance costs and the residual value for different 

categories of machines, which can help when making decisions about purchases, rebuilding, or 

replacement. This objective will be achieved by accomplishing the following sub-objectives: 

 Find the optimum SMR intervals to build the CCM. Different datasets are created based on 

different SMR intervals. To simulate and predict the maintenance cost of different types of 

machines, cumulative cost models are applied to each dataset and statistical analysis is 

conducted to compare and select the optimum dataset for the model.  

 Predict the market price of heavy construction machines using different methods. Besides a 

traditional regression tree method, k nearest neighbor and random forest are used to train and 

test the market price predictive model. A discussion will be included to compare the three 

algorithms and the best situation to use. 
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1.4 Research Methodology 

The flow of this research is illustrated in Figure 1. In order to accomplish the proposed 

objectives, the following processes are followed: 

 Identify and collect maintenance cost data for different types of machines, with 250 units 

ranging from heavy rigid frame trucks (up to 320T), excavators (up to 360T), and shovels 

(up to 800 T). 

 Import and clean historical maintenance data before analyzing. An adjusted inflation rate is 

applied in order to sum values in different years. 

 Evaluate the performance of CCM on various categories of heavy machines.  

 Evaluate the impact of different SMR-intervals on the CCM models. 

 Collect and process up-to-date auction records for heavy equipment in the North American 

market, and apply alternative data-mining algorithms through Waikato Environment for 

Knowledge Analysis (WEKA). The main purpose of this part of the research is to predict 

residual value of heavy equipment. 

 Identify and rank factors that have a potential influence on the residual market value of 

heavy machines. Original auction data were re-organized categorized to grab corresponding 

information.  

 Evaluate the performance of alternative data-mining methods and recommend the optimum 

method for different situations. 

 Present the results and contributions that this research makes to the body of knowledge. 
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Figure 1: Research Methodology 

1.5 Document Structure 

 This thesis contains five chapters and several appendices. The following are brief 

descriptions of the contents for each chapter and appendix, respectively. 

 Chapter 1 – Introduction introduces concepts and the scope of construction equipment 

research. Research objectives are presented. 
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 Chapter 2 – Literature review provides background about equipment management, data 

mining technologies and current practices of equipment management study. 

 Chapter 3 –Cumulative Cost Modeling of Heavy Equipment Maintenance Data applies the 

CCM to different classes of heavy construction equipment. A detailed discussion is 

provided. 

 Chapter 4 – Residual value prediction models presents different data mining algorithms to 

predict the residual market value of heavy equipment. Detailed discussion and comparisons 

regarding prediction error, running time etc. are provided. Recommendations to combine 

CCM with residual value prediction values are provided. 

 Chapter 5 – Contributions and limitations summarizes contributions and limitations of this 

study. It also provides recommendations for future research.  
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Chapter 2: Literature review 

2.1 Maintenance Cost  

Decisions about heavy equipment should be made based on sound economic principles. Once the 

equipment needed for a particular project is identified, the cost and duration of the equipment 

and other necessary auxiliary instruments are planned (Valli, Jeyasehar, & Saravanan, 2013). 

Economic issues surrounding construction equipment have been discussed extensively in both 

academia and by industry manufacturers. Nunnally (2004) discussed productivity and cost of 

different construction procedures such as loading and hauling. Peurifoy, Schexnayder, and 

Shapira (2006) provided detailed discussion about repair costs and production rates of dozers, 

scrappers, excavators and other construction machines. Douglas (1975) explored construction 

equipment in greater detail from the view of the engineering economy. Vorster (1980) studied the 

age-cost-reliability relationship as well as the organizational aspects of managing construction 

equipment and proposed the cumulative cost model (CCM), which will be implemented in this 

study. Equipment manufacturers have also specified the general cost for hydraulic excavators in 

life-time analysis. 

Several decades ago, these methods were mainly concerned with soil and the machine, 

independent of each other (Drakatos, 1975; E. Manatakis & Drakatos, 1978; Soltynski, 1968). 

Such soil-machine systems suggested using different equipment based on soil conditions, which 

is unrealistic for large scale implementation. Practically speaking, the economics of construction 

equipment relate to ownership and operating costs including purchase price, residual value, 
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economic life, repair and maintenance cost, and availability (Kannan, 2011). E. K. Manatakis 

and Drakatos (1993) presented a new method for the analysis of operating costs of construction 

equipment, specifically covering rear-dump trucks used for earth moving over a period of six 

years. The data collected consisted of operating hours and operating costs, which include 

maintenance, repairs, lubricating oil, fuel, tire repairs and personnel. This model was verified to 

evaluate construction equipment while also considering, as criteria, operating costs and the 

equipment’s life period. 

When considering maintenance costs, age can take the form of calendar years, age in cumulative 

hours of use, or age in units of production. When making a decision about a repair, it should be 

possible to estimate the life earned as a consequence of the repair. Vorster (1980)’s cumulative 

cost model (CCM) provides numerical and graphical solutions to many equipment management 

problems. Mitchell Jr (1998) developed a regression model by using a quadratic function that 

employed field data to represent repair costs based on the number of cumulative hours that a 

machine had been used. This expression can be incorporated into the CCM, where it can be used 

to identify optimum economic decisions. It can also provide construction engineers with a 

valuable tool for better understanding the nature of repair costs as they relate to production fleets. 

Mitchell, Hildreth, and Vorster (2010) attempted to use the CCM by implementing two different 

methodologies for calculating repair cost: life-to-date (LTD) repair costs and the 

period-cost-based (PCB) model. They also pointed out that heavy machines tend to require 

repairs as a result of use rather than simply the passage of time. Thus, tracking operating time is 
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of great significance to estimating repair costs. Bayzid (2014) compared LTD and PCB 

cumulative models when the calculating maintenance cost of equipment. With the help of data 

mining analysis, Bayzid developed different models for each equipment class. 

Previous research in this area commonly employed a regression model by ordinary least squares 

(Duncan, 2015; D. J. Edwards, Holt, & Harris, 1999; Gillespie, 2004; E. K. Manatakis & 

Drakatos, 1993). A time series approach provides further insights into modeling maintenance 

costs of construction equipment. Moore (1976) found that time series has an inherent 

autocorrelation among observed cost series using linear regression analysis. Box and Jenkins 

(1976) established an autoregressive model, the Box-Jenkins method, which has become a 

popular way to model equipment failures based on transformed data. A methodology is presented 

for predicting life cycle maintenance expenditure over the useful life of tracked hydraulic 

excavators (David J Edwards, Holt, & Harris, 2000). The authors utilized a centered moving 

average to analyze the time series of the maintenance cost of construction machines and isolated 

its trend of changes. Besides the time series approach, Yip, Fan, and Chiang (2014) presented a 

comparative study on the applications of general regression neural network (GRNN) models and 

conventional Box–Jenkins time series models to predict the maintenance cost of construction 

equipment. The authors concluded that both the Box-Jenkins models and the GRNN models can 

be used to estimate maintenance cost time series and the forecasting of maintenance cost 

intervals instead of point values. Data mining technology has also been applied in equipment 

economic estimation (Bayzid, Mohamed, & Al-Hussein, 2016; Fan et al., 2008). 
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2.2 Residual value of equipment 

Depreciation values the decrease of assets. There are different methods of depreciation, including 

straight line depreciation, double declining balance method, sum-of-years-digits methods, etc. 

Asset-owning companies make acquisition and disposal policies based on depreciation results. A 

considerable amount of research is focused on the depreciation of agricultural and forestry 

equipment. Bates, Rayner, and Custance (1979) introduced a simulation model to discuss how 

inflation adjustment affects the optimal replacement age of farm tractors. Besides using the 

included age as the only explanatory attribute predicting optimal replacement of farm tractors, 

Reid and Bradford (1983) added new features including horse power, average met farm income, 

manufactures, and technological change time-index. And T. L. Cross and Perry (1995) found that 

macroeconomic variables were significant variables for most types of agricultural machinery.  

A few remaining value functions were developed by T. Cross and Perry (1996) based on auction 

sales data including 12 types of farm equipment, and a double square root functional form was 

found to be the best form for modeling changes in equipment values over time. Furthermore, the 

American Society of Agricultural Engineers (ASCE) recommended a generalized regression 

formula for estimating residual percentage (Fan et al., 2008). Similar research was also 

conducted on logging equipment in the forestry industry by Cubbage, Burgess, and Stokes 

(1991).  

Multi-linear regression analysis was conducted on the residual value of construction equipment. 

Lucko (2003) introduced the residual value of construction equipment studies from forestry and 
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agricultural industries. With statistical considerations for performing residual value analysis, a 

second-order polynomial of equipment calendar age with additive factors (manufacturer, 

condition rating, auction region, and macroeconomic indicators) appears good based on auction 

records of track dozers ranges between 100-199 horsepower (Lucko, Anderson-Cook, & Vorster, 

2006). By examining different types of construction machines (i.e. articulated trucks, medium 

dozers, small excavators, and track loaders), intuitive contour diagrams of the total hourly cost 

were introduced (Lucko et al., 2007).Statistically, the residual value was found to contribute 

significantly to the total hourly cost. Lucko also conducted quantitative research of incongruous 

economic data and changing economic conditions (Lucko, 2010, 2011).  

As an interdisciplinary subfield of computer science, data mining technology benefits data 

analysis by extracting patterns and knowledge from large amounts of data in an accurate and 

effective approach (U. Fayyad, Piatetsky-Shapiro, & Smyth, 1996; U. M. Fayyad, 

Piatetsky-Shapiro, Smyth, & Uthurusamy, 1996; Han, 2006). In the construction research field, 

Fan, AbouRizk, and Kim (2007) developed a general framework for building a construction 

equipment management  decision-support system with integrated data mining, showing 

advantages with rule-based or statistics-based support approach. To predict residual values of 

heavy construction equipment, Fan et al. (2008) exemplified data mining process with 

autoregressive tree (ART) algorithm by selecting auction records of 8,589 wheel loaders. In 

comparison with the results obtained from artificial neural network (ANN) and multivariate 

linear regression (MLR), the authors concluded that ART model performed better. In change 
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management, the “generalized, unbiased, interaction, detection and estimation” (GUIDE) 

regression tree algorithm was introduced by M.-J. Lee, Hanna, and Loh (2004) to quantify the 

cumulative impacts caused by change orders, while a K Nearest Neighbor (KNN) based 

knowledge-sharing model was proposed by Chen (2008) to prevent unnecessary expense and 

loss for severe change order disputes. By constructing a multitude of decision trees, Random 

Forests (RF) algorithms could keep the bias low with a relatively reduced variance, and correct 

for the decision tree’s habit of overfitting to the training set (Friedman, Hastie, & Tibshirani, 

2001; Prasad, Iverson, & Liaw, 2006). While KNN and RF algorithms have been widely used in 

other civil engineering area (Harvey & McBean, 2014; Zhang & Haghani, 2015; Zhou, Li, & 

Mitri, 2016), they have never been used to predict residual value of heavy construction 

equipment. This thesis discusses the performance if these two algorithms in predicting the 

residual value of construction equipment, and detailed comparisons are also presented. 

  



15 

Chapter 3: Cumulative Cost Modeling of Heavy Equipment Maintenance Data  

3.1 Methodology 

In order to find the relationship between the maintenance cost and machine age, a regression 

method was chosen to track the cumulative cost trend as the machine age increases. Equipment 

managers often make decisions based on fixed operating hour intervals. For example, some 

companies perform regular maintenance on equipment every 2000 operating hours. In this study, 

based on several interviews with field engineers and equipment managers, it was learnt that 

operating hours of heavy machines collected as field data, was sometimes roughly estimated by 

operator after the machine had been operated. While the records of operating hours should be 

accurate in the long run, they might have some “noisy” points and fluctuations which could 

conceal the true trend of the maintenance costs. The machine age in cumulative hours of use can 

be likened to the odometer readings in automobiles. In this research, the service meter reading 

(SMR, unit in hours) is used as the master variable in this research. 

Using the field data, Mitchell Jr (1998) applied 19 regression models on 17 fleets of construction 

equipment and found that the cumulative cost model (CCM) was best suited for economic 

decision making within the equipment environment. The CCM, first proposed by Vorster (1980), 

proved itself to be very helpful in making economic decisions. It provides not only a valid 

numerical solution to equipment management issues, but also an intuitive graphical depiction of 

the problem being analyzed. With the help of CCM, it is possible to describe and understand 

changes in total costs, average costs, and marginal costs (Mitchell Jr, 1998). Figure 1 shows a 
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geometric representation of the CCM. 

 

Figure 2: The Cumulative Cost Model (Vorster, 1980; Mitchell Jr, 1998) 

In this model, equipment age is used as the abscissa. The cumulative cost, which is normally 

expressed as sum of all transactions to date, was the ordinate. All owning and operating costs can 

be depicted in the CCM (Mitchell Jr, 1998). As noted earlier, SMR is used to indicate machine 

age. The cumulative cost curve originates at the cumulative cost representing the initial purchase 

price of the machine. A straight line is drawn directly from the origin to the point on the 

cumulative cost curve. The slope of this line, Tt, graphically represents the average cost during a 

given time. The optimum economic life, L*, is defined by a geometric tangent from the origin to 

the cumulative cost curve. T* can be found the slope of this tangent line, representing the 

optimum average cost. (See Figure 2). 

Mitchell Jr (1998) organized cumulative cost data into four data sets, including all but repeated 

points, 500-hour intervals, average of 500-hour intervals, and final data points, leading the author 

to conclude that a 500-hour interval data set is the optimum data set that should be used in CCM. 

Using field data from 15 fleets, nearly 250 heavy machines, this study developed 11 different 
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data sets based on different SMR intervals. Raw data was cumulatively calculated by season, 

semi-annually, annually, and at 500, 1000, 1500, 2000, 2500, 5000, 7500 and 10,000 hour 

interval. Statistical analysis was conducted on every data set and the optimum one was selected 

for specific machine models, as described in the following sections. Equation 3-1 below, 

represents the regression models of maintenance cost of heavy machines developed in the 

aforementioned research (Mitchell Jr, 1998; Mitchell et al., 2010; Vorster, 2009): 

𝑪𝑪 =  𝑨 × 𝑯𝒘 + 𝑩×𝑯𝒘
𝟐
                          [3-1] 

CC – cumulative maintenance cost for the heavy machine  

Hw – life-to-date hours (SMR) worked by the machine  

A – coefficient that measures the rate at which the total cost increases with age  

B – coefficient that measures the curvature as opposed to the slope of the line 

In this thesis, a few assumptions of CCM need to be clarified. To begin with, the weather of 

where the equipment was operated was assumed to be normal and consistent. Secondly, 

historical maintenance data were assumed to be accurate and human errors were excluded. 

Finally, skills of equipment operators were assumed to be average and same. 

3.2 Data Source 

This study consists of records stored in company’s accounting system. The downside of field 

data is that it can contain “noisy” points, which might distort the reliability of records associated 

with a particular machine. It is assumed that the more machines that are included in this study, 
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the less influence that these distortions will have. This research contains 250 heavy machines 

with 19 models for different types of machines. The cumulative cost model was developed for 

each type of machine. 

Mitchell Jr (1998) indicated that data would pass through multiple hands before entering into the 

accounting databases, which might result in inconsistency. The company had its own data 

collection procedures, which have been studied to validate the accuracy of the collected data. 

The company uses the Financial Analysis and Control Tool (FACT) as its accounting report 

software. For this research, all the necessary field data was obtained through FACT inquiries. 

The data extraction process, FACT Finder, has minimal impact on the production accounting 

system, and only reads data from the database. In other words, FACT users cannot write any data 

or make any changes to the database. The data selection is intuitive and powerful, using attribute 

information within the accounting system to organize the data for filtering, ordering and 

pagination. Reports are generated using predefined layouts; for instance, trial balances, balance 

sheets, income statements, job profit reports, equipment cost reports, general and administrative 

cost reports. 

The company tracked SMR increases related to actual hours of usage for an individual machine. 

Maintenance costs were separated and categorized in different accounts. Figure 3 shows a 

breakdown of equipment maintenance costs. In the company’s accounting database, maintenance 

costs can be divided into running repairs, undercarriage, ground engaging tools, preventive 

maintenance (PM) services, and tires. In each of these categories except for tires, there are 
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several sub-accounts which contain parts, labor, sub-contractors, transportation and others. The 

costs associated with equipment maintenance and repairs were separated in this research. The 

component that is most pertinent to maintenance considerations for this study is running repairs. 

Tires, undercarriage components, ground engaging tools, and preventive maintenance share a 

common characteristic in that they do not increase with machine age, and have much shorter 

lives than the equipment with which they are associate (Mitchell Jr, 1998; Vorster, 2009). The 

goal of this research is to determine whether it is economical to buy, sell, or make other 

economic decisions (e.g. rebuild, replacement, etc.) at a certain time. However, most of other 

costs are dependent on not only machine age, but on many other factors. Taking all these 

operation costs into consideration will affect the trend of running repairs as the machine ages. 

Mitchell Jr (1998) points out that “the useful lives of these ‘expendables’ are highly dependent 

upon local conditions and operator skills”. However, this is not true for repair parts and labor 

wherein an increase in machine age is the single most significant factor in determining how long 

a machine should be kept (Vorster, 2009). As a result, this research focuses on the cost of running 

repair accounts for parts and labor as a dependent variable, and SMR as the independent variable. 

Cost of equipment overhauls were excluded in this research. All the needed information was 

obtained from FACT. 
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Figure 3: Breakdown of maintenance cost from company's database 

Caterpillar 785 was selected as an example to demonstrate how the CCM for each type of heavy 

equipment is developed. This fleet contains 26 individual machines; monthly data is available 

from January 2003 to May 2015. All of the data are managed in several spreadsheets in 

Microsoft Office Excel 2010. However, before conducting any data analysis, adjustments to data 

points were required as detailed below. 

3.3 Inflation rate adjustment 

As the available maintenance cost records are from 2003 to 2015, inflation rates must be 

considered before using maintenance data. A computational form of the inflation equation in 

Equation 3-2 below was proposed by Jones (1982): 

𝑷(𝒕𝟐) = 𝑷(𝒕𝟏) ×
𝑰(𝒕𝟐)

𝑰(𝒕𝟏)
                             [3-2] 

Where I(t) represents an inflation index at time t. In the above equation, t1 represents the time a 

transaction occurred, and t2 represents the base time against which the transaction will be 

indexed. In this research, inflation rates were determined from company internal agreements and 

Statistics Canada. These include the labor rates from Overburden Agreements between the 
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company and Union of Operating Engineers and the Equipment & Machine Price Index 

(construction area specified). Labor rates can be used as a measurement of change in the wages 

earned by maintenance providers, while Equipment &Machine Price index (MEPI) provides 

estimates of price changes for machinery and equipment purchased by industry. In “Construction 

Equipment Policy”, the author of this book recommends a composite index that contains 

combinations of indices for machinery price, petroleum, etc.(Douglas, 1975). A similar 

composite index is developed in this research. Labor rates will be applied to labor costs, while 

the MEPI will be applied, as the inflation rate, to the repair part. The sum of these two results is 

obtained on a monthly basis and is used in the CCM. The following equation provides a standard 

process of obtaining indexed points: 

𝑻(𝒕𝟐) = 𝑷(𝒕𝟐) ×
𝑴𝑬𝑷𝑰(𝒕𝟐)

𝑴𝑬𝑷𝑰(𝒕𝟏)
+ 𝑳(𝒕𝟏) ×

𝑳𝒂𝒃𝒐𝒓 𝒓𝒂𝒕𝒆𝒔(𝒕𝟐)

𝑳𝒂𝒃𝒐𝒓 𝒓𝒂𝒕𝒆𝒔(𝒕𝟏)
                 [3-3] 

where T(t) represents the sum of the indexed cost at time t, P(t) stands for the repair parts cost at 

time t, L(t) stands for the repair labor costs at time t, and the base time 𝑡1 is set as January 2003. 

3.4 Data cleaning 

As noted above, raw data needs to be cleaned and transformed prior to being used in the CCM. 

The following section describes three issues that were encountered regularly and how they were 

corrected. 
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3.4.1 Repeated points 

This is a common issue for all heavy construction machinery in this study. When maintenance 

cost data and SMR records were summed up cumulatively, data was often repeated within certain 

ranges of time. There are two main reasons for this. First, it is possible that the machine was kept 

idle for a period of time, resulting in both maintenance cost and SMR remaining the same over 

different time periods. The second reason is that when a machine is at the shop for major repairs, 

the SMR remains constant while the cumulative cost increases. In both cases, the machine is 

counting more than one point for the same cumulative hours; therefore, these repeated points 

could influences the regression model with other machines. An example of repeated points is 

shown in Table 1 (Please note that all the data published in this paper have been processed and 

standardized for the confidentiality purposes). 

Table 1: Repeated points example 

Date 

Machine #1 Machine #2 Machine #3 

Cumulative 

Cost 

SMR 

(1000 hrs) 

Cumulative 

Cost 

SMR 

(1000 hrs) 

Cumulative 

Cost 

SMR 

(1000 hrs) 

29-Feb-08 813.98  0.53  630.76  0.27  0.00  2.03  

31-Mar-08 991.39  0.73  2914.43  0.67  2384.72  2.47  

30-Apr-08 11225.55  1.22  3433.50  1.24  7915.86  3.01  

31-May-08 12769.79  1.22  6017.17  1.24  10283.55  3.01  

The above data illustrate how field data appear in the company’s accounting system. To address 

this issue, all but one of these repeated points are eliminated. In this study, the first set of points 

was kept as the cumulative cost for a machine which should include all maintenance cost up to 

the point when SMR were reached (Mitchell 1998). All costs incurred after are to be added in 

next interval. 
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3.4.2 Peak points 

Another common issue in what is that the repair cost for each piece of machinery was 

occasionally recorded as negative. This could be due to the accounting method used at the 

company. Occasionally repair costs were overcharged earlier in the year, and the accounting 

department used negative points to balance the cost and keep it accurate. As the repair cost and 

SMR data were processed in a cumulative way, these negative points resulted in a few peaks and 

fluctuations when maintenance cost increased with the SMR records. Before developing any 

regression models, these points need to be eliminated (see Table 2). 

Table 2: Peak points example 

Date 

Machine #1 

Cumulative 

Cost 

SMR 

(1000 hrs) 

31-Aug-09 70899.48  15.17  

30-Sep-09 80134.37  15.20  

31-Oct-09 77796.36  15.70  

30-Nov-09 80357.31  16.16  

3.3.3 Intercepts 

For a certain type of machines, not all started working at the same time. Theoretically, when the 

SMR is zero (i.e. the machine is brand new), the cumulative cost should be zero. However, 

within the company’s system, there are a few scenarios where maintenance work has already 

been performed but the SMR remains near the zero level, or maintenance costs is zero while 

SMR increases. As shown in Equation 3-1, the starting point of the regression line begins at the 

origin (0, 0). All points that intercepts elsewhere on the axis have been eliminated. 
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3.5 Model generation 

After the data has been cleaned, the regression generation model is developed based on Mitchell 

Jr (1998). In this study, a few data sets were developed based on the original monthly data. Raw 

data were cumulatively calculated by season, semi-annually, annually, and at 500, 1000, 1500, 

2000, 2500, 5000, 7500, and 10,000 hour intervals. Using the linear interpolation method, data 

points in different SMR intervals are calculated based on the pairs of nearest points. Using 

Equation 3-1, this study developed several equations based on different data sets. Figure 4 plots a 

CCM model based on the original data set. This process (CCM Model) was repeated for each of 

the 18 machine types. 

 

Figure 4: All points data set (Caterpillar 785) 

3.6 Analysis of results 

Regression analysis was conducted for each type of machine using the Microsoft Excel add-on 

“Analysis ToolPak”. Taking a fleet of Caterpillar 785 trucks as an example, Table 3 summarizes 
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the regression analysis results. Results of other categories of machines can be found in Appendix 

A. 

Table 3: Regression Analysis Summary for CAT 785 

CAT 785 – 26 

machines 
Coefficient P-Value R Square 

Adjusted 

R Square 
F MSE(E+10) 

Number of 

points 

All Points 
SMR 5135.54 1.7232E-13 

0.9065 0.9057 7287.41 1.64 1506 
SMR2 650.59 4.296E-100 

Seasonal 
SMR 5802.63 1.3576E-06 

0.9059 0.9037 2421.17 1.60 505 
SMR2 627.33 7.0474E-33 

Semi-annual 
SMR 5688.56 0.00113075 

0.9058 0.9013 1168.44 1.67 245 
SMR2 624.05 2.592E-16 

Annual 
SMR 2414.17 0.26858736 

0.9054 0.8980 708.38 1.56 150 
SMR2 775.08 2.6889E-14 

500 SMR 

Interval 

SMR 3079.45 2.8621E-06 
0.8947 0.8939 5432.17 1.26 1281 

SMR2 728.93 1.016E-116 

1000 SMR 

Interval 

SMR 3247.32 0.00049171 
0.8941 0.8923 2675.15 1.27 636 

SMR2 718.82 5.1487E-58 

1500 SMR 

Interval 

SMR 3297.59 0.00420612 
0.8931 0.8905 1754.85 1.29 422 

SMR2 719.10 2.0212E-38 

2000 SMR 

Interval 

SMR 3100.98 0.01924877 
0.8945 0.8910 1322.81 1.28 314 

SMR2 726.62 7.2682E-30 

2500 SMR 

Interval 

SMR 2749.38 0.0646914 
0.8936 0.8892 1057.95 1.29 254 

SMR2 741.19 7.9035E-25 

5000 SMR 

Interval 

SMR 2495.95 0.26368117 
0.8849 0.8753 445.91 1.42 118 

SMR2 749.66 6.2361E-12 

7500 SMR 

Interval 

SMR 447.27 0.86798787 
0.8924 0.8774 306.86 1.31 76 

SMR2 822.48 1.6846E-09 

These data sets can be divided into two categories. The first, including seasonal points (one data 

pair every three months), semi-annual points (one data pair every six months), annual points (one 

data pair every 12 months) is based on calendar age. It is noted that there are no significant 

improvements between these three data sets and the original monthly data set. In fact, because 

each individual machine has its own schedule, some machines could have been idle for months, 
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and some maintenance information could have been lost if data were processed this way. The 

second category is based on machine age (i.e. SMR intervals). In practice, equipment managers 

usually make maintenance decisions based on fixed SMR intervals. This category provides a 

reference to help the company to design maintenance policies. 

Generally, the R square value provides an indication of the regression model’s performance. The 

measured R2 is interpreted as how closely the data fit the regression line, falling between zero 

and one. If the absolute value of R2 is larger than 0.75, it indicates a good fit of data (Peck & 

Devore, 2011). Instead of using the R2 value, in multiple regression models the adjusted R2 value 

is often used to avoid gaining a goodness-of fit statistic by adding more variables. Statistically, 

the R square value is an important measure, but not the only measure of how closely the data fit 

the regression line. As shown in Table 3, however, there is little difference between different data 

sets when focusing on the R square or adjusted R square value. In this study, regardless of how 

data are organized, good fitness is obtained when using the second-order polynomial equations 

suggested by Mitchell Jr (1998). 

P-value is used to test statistical hypothesis. Assuming the null hypothesis is true, p-value is the 

probability of achieving a result that is “more extreme” than what was actually observed. In this 

study, the null hypothesis refers to a position where there is no relationship between SMR and 

the cumulative maintenance cost of machines. The threshold value, denoted as α, is set to be 1%. 

Significance of the model coefficients are ascertained using the following criteria: 

P - value ≤ 0.01—acceptable; P- value > 0.01—unacceptable 
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This test is performed on all coefficients of models. For CAT 785, since the p value for SMR 

coefficient needs to be under 0.01, data sets with SMR intervals exceeding 2000 hours are 

eliminated.  

Residual mean square error, often abbreviated as MSE, is the ratio of residual sum of squares to 

its degrees of freedom value, which is roughly a mean of the squared errors in using the 

regression trend line to predict explainable variable y. In practice, a lower MSE value indicates 

higher accuracy of regression models. For the CAT 785 rigid frame truck in this model, data sets 

with 500 and 1000 SMR intervals had a better performance than the other data sets. The “F” 

value, which is the mean square for regression divided by MSE, is also chosen to identify the 

model that best fits the population. Other than original data sets, 500 and 1000 SMR intervals 

have a higher F value indicating a better performance than others. 

 

Figure 5: Residual plot for CAT 785 (500 SMR Interval) 

Additionally, the residual plots are also analyzed. Figure 5 shows residual plots of CAT 785 at 

500 SMR intervals. Ideally, the points should fluctuate randomly around 0, and there should be 
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no obvious regular changes in trends as SMR increases. However, as seen in Figure 5, as SMR 

increases from 0 to 20,000 hours, variation of residuals increases. The increasing spread from left 

to right in Figure 5 shows a heteroscedasticity problem. A pattern like this indicates that the 

residual standard deviation of y is not constant – the data are more spread out when SMR is 

around 20k area, suggesting that the variance of y is not the same at each x value but rather 

increases with x. According to Peck and Devore (2011), when the data points are of varying 

quality, it is better to select the best-fit line by using weighted least squares (WLS) than ordinary 

least squares (OLS). Besides, this divergence trend of residual is not uncommon for all 19 

different types of machines. It often indicates that the model can be improved, or that a few 

variables might be missing. In fact, even for the fleet with same type of machines, each 

individual has its own schedule and work conditions, and operator skills could also make a 

difference on maintenance costs. 

3.7 Conclusion 

This study contains 19 different types of heavy machines, including rigid frame trucks, 

excavators and shovels. By using CCM, different data sets were created and analyzed to select 

the optimum data set to represent each type of machine. The main criteria for choosing optimum 

data sets are R2 value, F-value, P-value, and MSE. Generally, 500 SMR intervals and 1000 SMR 

intervals are selected as the optimum data sets for most heavy machines. In most cases, 

construction companies already have established maintenance policies, which are usually based 
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on fixed SMR intervals. Equations and statistical analysis from this study will provide a 

reference for equipment managers to use when creating maintenance cost model and making 

economic decisions. The residual plots for each regression model indicate that factors apart from 

SMR records, such as working conditions, operator skills and other related attributes could have 

a potential influence on maintenance cost considerations. As this type of data are unavailable in 

this research, further information is needed to quantify such influences. Methods of quantifying 

such mentioned attributes and evaluating the method of WLS are recommended to be discussed 

and investigated in future research. 
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Chapter 4: Residual value prediction models  

The owning and operating costs of heavy construction equipment constitute a significant 

expenditure for companies, especially those engaging in earth moving and industrial installation 

projects. Construction equipment management involves managing equipment resources not only 

to satisfy project requirements but to achieve maximum return on disposed assets. Therefore, it is 

useful to develop a reliable model to help decision-makers estimate the residual value of a heavy 

machine before purchasing or disposing of it. 

4.1 Methodologies 

Predicting a numeric value is a common task for data mining, based on the training dataset with 

predictor variables. Fan et al. (2008) indicated that although different data mining algorithms 

used unique methods for model inference, they had a few common features such as intuitive 

visualization, making them superior to traditional regression models. With progress in computer 

hardware, algorithms can be run very fast on personal computers. Data mining software and 

language packages such as Weka (Hall et al., 2009) are widely used and becoming increasingly 

reliable. This section introduces a basic instance-based learning (IBL) method and an 

ensemble-based learning method to predict equipment residual value. 

4.1.1 Instance-based learning 

IBL is a family of learning algorithms that compares target instances with instances seen in 
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training datasets. Derived from the nearest neighbor pattern classifier (Aha, Kibler, & Albert, 

1991), training instances are searched for an instance that is most closely related to a new target 

instance. Since the stored training instances themselves represent the main knowledge, no model 

is learned.  

K nearest neighbor (KNN) is a member of IBL family and is widely used throughout both 

academia and industry (Chen, 2008; Dang, Zhang, Zhang, & Zhao, 2005; B.-H. Lee & Scholz, 

2006; Rosa, Ebecken, & Costa, 2003). KNN is a non-parametric method that can be used for 

both classification and regression. While the output for classification is a class membership voted 

by a majority vote of its k (k is a positive integer) nearest neighbors, the output for regression is a 

numeric value averaged, or weighted averaged by its k nearest neighbors. For simplicity, 

consider a regression problem with response variable Y and two independent variables X1 and X2. 

The numerical value can be predicted using the following generalized form: y = f(x1, x2). The 

expression of “nearest neighbor” indicates that a distance should be inspected from a geometric 

perspective. Euclidean distances are calculated from the query example to training examples as: 

𝒅(𝒕, 𝒑) = √(𝒕𝒙𝟏 − 𝒑𝒙𝟏)
𝟐 + (𝒕𝒙𝟐 − 𝒑𝒙𝟐)

𝟐                  [4-1] 

where d(t, p) is the distance between the target instance (t) and training points (p); tx1 and px1 

represent the value of the X1 attribute of t and p; and tx2 and px2 represent the value of the X1 

attribute of t and p. Next, training points are ordered by distance in an ascendant way. K points 

will be selected from the top of the distance list as the nearest training points for the target. 

Finally, the weighted average Y values of these selected points will be assigned as the predicted 
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value for the target instance. Figure 6 shows a diagram illustrating a dataset of 20 training 

instances (stars in the diagram) and a target instance falling onto the diagram (represented by a 

red triangle). If k is set to be 3, for instance, three nearest “neighbors” (i.e. p1, p2, and p3) are 

found and the weighted average value of y1, y2, and y3 is calculated. 

 
Figure 6: Examples of KNN 

Now we consider a generalized version of the above example: a regression problem with n 

features and one response variable. Provided m observations, each observation consists of (xi1, 

xi2, … , xin, yi) for i = 1, 2, …, m. Distances are calculated as 

𝒅𝒊(𝒕, 𝒑) =  √∑ (𝒕𝒙𝐢𝐣 − 𝒑𝒙𝐢𝐣)
𝟐𝒏

𝒋=𝟏                       [4-2] 

Finally, a weighted average Y value of these selected k “nearest neighbors” is allocated to the 

target instance. A 1/distance is used as the weight for calculating average values of chosen points. 

The reason for using weighted average value instead of average value of selected response 

variables is based on the assumption that a “similar” instance will have a similar value. In other 

words, the closer the neighbor is to the target instance, the more biased predicted value of target 
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will be. 

Problems related to features property need to be considered when calculating distances. For 

numeric features, such as the machine age and operating hours of a machine, data should be 

scaled or normalized before processing. Normalization adjusts independent variables measured 

on different scales, avoiding biased influences on distance value. Meanwhile, for categorical or 

nominal variables such as the machine’s manufacture, the value of  (𝑡𝑥i1 − 𝑝𝑥𝑖1) is set to be 0 if 

the value of the training point is the same as that of the target point while 1 if they are different 

(suppose xi1 is a categorical variable of the i th observation). 

4.1.2 Ensemble method 

As an ensemble-based algorithm, a random forest (RF) is operated by constructing a mass of 

single decision trees in training, combined through majority voting (classification) or averaging 

(regression) the individual trees. Ho (1995) first created an algorithm of “random decision forests” 

introducing random features selection. In 2001, Breiman (2001) developed the “random forest” 

algorithm using a combination of the random features selection methods (Amit & Geman, 1997; 

Ho, 1995, 1998) and Breiman’s “bagging” (also known as bootstrap) idea (Breiman, 1996). 

Detailed instructions of bagging and random features selection are given in the following 

paragraphs. 

A random forest is an ensemble of decision trees. If no modification is made to the trees, each 

tree will be exactly the same and no improvement will be shown in the results. In order to make 

our trees effective, a variation has to be introduced into each individual decision tree model. 
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Each tree will be constructed slightly differently, therefore will make different predictions. The 

word “random” in “random forest” refers to this kind of variation. As mentioned earlier, two 

main methods are used to create variation – bagging and random feature selection. 

In a random forest, each individual tree is trained by the whole dataset. Instead, a random sample 

of the data, or a “bag”, is trained by sampling with replacement from the original data. A recent 

development in ensemble techniques has been the widespread use of bootstrap (or bagging) to 

generate a diverse data subset for training base models (Zhang & Haghani, 2015). When 

sampling with replacements, after a row from the original data is selected, that row will be 

restored. In other words, some observations can be picked up again in other samples while other 

observations might be “left out” of the sample. A few rows from the original data may appear in 

the “bag” multiple times. For example, given a training dataset with a total of m records, n new 

training sets are created by sampling with a replacement from the original dataset. Each new set 

has a sample size of s. The n base trees are trained using the generated n training set and 

combined as the output. Figure 7 provides a pseudo-code for random forest algorithm. 

The hypothesis behind the random forest is the property of instability. The more “diverse” each 

tree is to construct a forest, the stronger the combined prediction will be. Otherwise, if each base 

tree of the forest is similar in how it make predictions, the boost from the ensemble will be 

negligible. In our former example, each bagged tree is grown on data samples randomly drawn 

with replacements from the original dataset. If s is a relatively large number, the learned trees are 

usually similar to each other. An averaging (regression problem) or majority voting 
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(classification) of these base trees does not improve prediction accuracy. 

The random forest is distinguished from other bagged regression trees in that instead of using all 

of the features for each individual tree, it only allows a random subset of features at each 

splitting node of the tree. We then compute the information gain (Kent, 1983) for each feature in 

the random sample and pick the one with the highest value to split on. We repeat the same 

process to select the optimal split for a node, but only evaluate a constrained set of features that 

are selected randomly. This introduces variation into the trees and makes for stronger ensembles. 

# Given a data set with a total number of m observations with F input variables (i.e. features) 

# N bagging samples are randomly drawn with replacement, with a sample size of s  

# Now we are going to construct N individual trees based on bagging samples 

For n = 1 to N, do: 

 # Start with the root node 

 Grow a tree through following loop repeatedly, do until: 

  Randomly select f variables as a subset of F (i.e. f < F); 

  Calculate the information gain for each features in f; 

  Find the best feature (with maximum information gain) in f as a split node; 

   Split the node into two daughter nodes; 

 End; 

Output an individual base tree Tn; 

End; 

# A random forest is constructed containing N individual trees.  

Output for random forest (regression) is: 
1

𝑁
∑ 𝑇𝑛
𝑁
𝑛=1  

Figure 7: Pseudo-code of random forest algorithm 

One of the major advantages of random forests over a single tree is they “overfit” less. Although 

each individual tree in a random forest varies, the average of each tree’s prediction is less 

sensitive to the input data than a single tree is. Generally, a random forest is a powerful algorithm 

for dealing with large datasets, but it also takes a longer creation time and is harder to interpret. A 
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detailed discussions about this will be provided in the “Discussion and limitations” section. 

4.2 Data description and pre-processing 

The residual value prediction of heavy construction equipment is based on available information 

about individual machines and the economic environment. The primary data source for this 

research is from a construction company doing business in North America, whose fleet 

management department gathered resale information for different categories of heavy machines. 

As pointed out by Fan et al. (2008), although it is possible to build a single model for all 

categories of heavy machines, the model of scale would be of poor quality and difficult to 

interpret. In this research, the modeling process is exemplified by selecting the category of 

articulated trucks for model generation and comparison. 

Auctions of articulated trucks throughout North America (including Canada, the United States 

and Mexico) from 2011-2015 are studied. Economic indicators (i.e., Real National GDP and 

GDP Growth) are obtained from Statistics Canada and the U.S. Bureau of Economic Analysis.  

Original auction datasets zipped all the information together into four columns, “Description 

Data”, “Location Data”, “SMR Data”, and “Price Data”. SMR is the abbreviation for “service 

meter hour” which is an expression of how many hours a vehicle really served excluding the idle 

time. As the SMR is available in the dataset of this research, this study differs from previous 

research as it expresses “the usage of equipment” by using only the machines’ calendar age. In 

addition to addressing “how old the machine is”, SMR answers the question of “how many hours 
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has the machine served”. Another concern with the use of the calendar age (i.e., age in years) is 

that as a machine nears the end of its useful life, it might be used less and less (Terborgh, 1949). 

Table 4 gives examples of original auction records. 

Table 4: Examples of original auction records 

Number Description Data Location Data SMR Data Price Data 

1 2007 CATERPILLAR 740 6x6 

Articulated Dump Truck 

Orlando, FL, USA Thursday 

Oct 23, 2014 

Meter 

Reads :10551 Hr 

Sold for: 140000 

USD 

2 2004 JOHN DEERE 400D 6x6 

Articulated Dump Truck 

Chehalis, WA, USA 

Wednesday Oct 22, 2014 

Meter 

Reads :10522 Hr 

Sold for: 80000 

USD 

3 2007 CATERPILLAR 740 6x6 

Articulated Dump Truck 

Verona, KY, USA Thursday 

Oct 16, 2014 

Meter 

Reads :7881 Hr 

Sold for: 165000 

USD 

4 2007 JOHN DEERE 250D 6x6 

Articulated Dump Truck 

Chilliwack, BC, CAN 

Wednesday Oct 15, 2014 

Meter 

Reads :6570 Hr 

Sold for: 105000 

CAD 

… … … … … 

To effectively collect information from original auction records, useful information such as the 

manufacturer and auction location are “sliced” out of “Description Data” to act as separate 

predictor features. Specifications such as rated payload (t), body capacity (cy), and horse power 

(HP) are also collected. For a particular model of articulated trucks, machines can vary based on 

different payload or capacity. To identify an individual machine more accurately, information 

about a few representative specifications is collected from manufacturers’ manuals.  

As a significant macroeconomic indicator of a country, gross domestic product (GDP) is used in 

various models as an independent variable predicting residual values of heavy construction 

machines (Fan et al., 2007; Lucko, 2003, 2011; Lucko et al., 2006; Lucko & Mitchell Jr, 2010). 

Instead of using nominal GDP (also known simply as “GDP”), real GDP is used in this research. 

A major difference between these two macroeconomic indicators is that real GDP is adjusted as 
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per changes in the general price level while nominal GDP is not. In other words, real GDP is 

adjusted for inflation, which means that it shows the actual picture of a country’s economic 

environment. Another issue that should be noted is that either nominal GDP or real GDP is 

represented by an absolute number, usually in US$ billion. As this dataset includes auction 

records through the US, Canada, and Mexico, numbers are much different from each other. For 

example, the real GDP for Mexico in 2014 was around US$1,056 billion while for the US, it was 

US$15,962 billion, indicating a 15 times larger of economy than Mexico. The author of this 

thesis believes that the growth of GDP (in percentage) is a better representation of the economic 

environment, which might have more impact on the heavy construction equipment market.  

Table 5 shows the selected features for predicting the residual value of heavy machines. 

Table 5: Features of datasets 

Machine age Calculated based on the built year and the year of auction 

Brand (Make) Manufacturer of articulated trucks 

Model Model of articulated trucks 

Rated payload(t) Weight that the articulated truck can carry 

Body capacity(cy) Struck-heaped volume of the truck body 

Horse power(HP) Engine horsepower 

Location States where the auction occurs 

Auction year The year when auction occurred 

Real GDP (US$ Billion) Refers to the measure of GDP adjusted according to the general price level 

Real GDP growth Increment of real GDP divided by real GDP of previous year 

SMRs Service meter hours, refers to the usage of equipment 

The author of this thesis interviewed a few professionals from the construction company and 

noted that the residual percentage was often used instead of the equipment resale price in 

constant dollars when the company made decisions about acquisitions or disposal. This is 

verified in research by Lucko (2003) and Lucko et al. (2007). Inflation rates (based on consumer 
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price index), and exchange rates between Canadian Dollars and US Dollars are applied to adjust 

the auction price. Residual value percentage can be obtained by dividing the auction price by the 

initial value of the machine. 

 

Figure 8: Residual value percentage of articulated trucks 

Figure 8 illustrates a general view of the dataset. A total number of 3,044 cases of articulated 

trucks is obtained from data pre-process. Most of machines are auctioned within 0-50% residual 

value percentage. It appears that the residual value of equipment drops quickly in the early years, 

but these declines flatten out after a few years’ usage. Acknowledging this trend, most cases in 

our research fall into the interval where machines are regularly used and sold. In the next 

sections, predictive models are built to simulate the trend of heavy equipment residual value. 
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4.3 Model generation and optimization 

Before a predictive model is built, an attribute selection algorithm called ReliefF (Kononenko, 

1994; Robnik-Šikonja & Kononenko, 1997) is run upon the dataset to identify which feature has 

a dominant impact on equipment residual value. By exploiting local information given by 

different contexts, this algorithm could offer a unified observation on estimating attribute quality 

in regression problem. In addition, a tenfold cross-validation method is utilized to rank features. 

The results are shown in  descending order: machine age, model, real GDP growth, SMRs, 

brand, rated payload (t), body capacity (cy), horsepower (HP), real GDP (US$ Billion), and 

location. Based on the author’s interview with professionals from a construction company, it is 

found that the SMR is always listed as the top place to predict residual value in current practice. 

However, this research provides a different view of the feature selection that machine age might 

have much more power of impacting on residual value, or at least becomes as a dominant factor 

especially during a certain period of usage. Figures 9 and 10 provide comparative scatterplots of 

machine age vs. residual value percentage and SMRs vs. residual value percentage. It could be 

seen that both machine age and SMRs have an obvious negative relationship with residual value 

percentage. Another interesting fact is that the real GDP growth ranks much higher than the 

absolute value of GDP, validating our conjecture that the auction market for articulated trucks is 

more sensitive to the growth of real GDP instead of real GDP itself. After features ranking, data 

mining methods are generated and validated after a tenfold cross-validation method. 
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To validate the prediction of different data mining models, a few measures are selected as criteria 

in this research: 

 Correlation coefficient (CC): this is a value that evaluate how much y (real value) and ŷ 

(predicted value) correlated with each other, falling between 0 and 1. The higher the value is, 

the stronger correlation indicated 

 Mean absolute error (MAE): this is the average distance between the predicted value and 

actual value 

𝑴𝑨𝑬 = 
𝟏

𝑵
∑ |𝒚̂ 

𝒊
− 𝒚̂𝒊|

𝑵
𝒊=𝟏                           [4-3] 

where N is the total number of cases, 𝒚̂ 
𝒊
 is the predicted value of i th case, and 𝒚̂𝒊 is the 

actual value of i th case. 

 Root mean absolute error (RMSE): RMSE provides another way to estimate distances 

between y and ŷ 

Figure 4-3 Machine age vs. Residual value percentage Figure 4-4 SMRs vs. Residual value percentage Figure 9: Machine age vs. residual value percentage Figure 10: SMRs vs. residual value percentage 
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𝑹𝑴𝑺𝑬 = √
𝟏

𝑵
∑ (𝒚̂ 

𝒊
− 𝒚̂𝒊)𝟐

𝑵
𝒊=𝟏                        [4-4] 

 Relative absolute error (RAE) : RAE scales error to the mean, which estimates how much y 

differs from its average value 

𝑹𝑨𝑬 =  
∑ |𝒚̂ 𝒊−𝒚̂𝒊|
𝑵
𝒊=𝟏

∑ |�̅�̂−𝒚̂𝒊|
𝑵
𝒊=𝟏

                            [4-5] 

where �̅�̂ is the mean actual value. 

 Root relative squared error (RRSE): RRSE is similar to RAE, scaling error to the mean 

𝐑𝐑𝐒𝐄 = √
∑ (𝒚̂ 𝒊−𝒚̂𝒊)

𝟐𝑵
𝒊=𝟏

∑ (�̅�̂𝑵
𝒊=𝟏 −𝒚̂𝒊)𝟐

                          [4-6] 

4.3.1 KNN Model 

A k nearest neighbor (KNN) algorithm is implemented into the articulated trucks dataset which 

contains 3,044 auction cases. KNN includes a main parameter to control model structure: the 

number of k, which represents the number of instances taken into account to determine the target 

subset. As there is no strict method to calculate the optimum value of k, different numbers of k 

are tested in this research. Table 6 shows statistical results between different selected k values. 

When k equals 3, the model performs best, with the highest correlation coefficient (CC) and 

lowest error. 
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Table 6: Results of KNN models 

Dataset with 10 features K = 1 K = 2 K = 3 K = 5 K = 7 K = 9 

Correlation coefficient 0.9283 0.9354 0.9379 0.9365 0.9333 0.9311 

Mean absolute error 0.0319 0.0317 0.0319 0.033 0.0341 0.0349 

Root mean squared error 0.0556 0.0523 0.0512 0.0517 0.053 0.0539 

Relative absolute error 37.79% 27.62% 27.78% 28.76% 29.68% 30.35% 

Root relative squared error 37.66% 35.48% 34.73% 35.08% 35.93% 36.54% 

Total number of instances 3044 3044 3044 3044 3044 3044 

Another finding of interest is a demonstration of features ranking obtained during data 

pre-process procedure. The features selection procedure showed that the auction location and real 

GDP (US$ Billion) are the two attributes that contribute least to residual value prediction. Next, 

a new dataset excluding location and real GDP information is created to test, and it turns out that 

a CC increases to 0.9447 while the root relative squared error decreases to 32.84%. In this case, 

given k was equal to 3. Details are shown in Figure 11. With a “shrunk” dataset, the model with 

the best performance was also found when k equaled 3. In this paper, k is set to be 3 and a 

weighted average function is used to obtain the final output 
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Figure 11: Statistical results for different number of feature 

4.3.2 Random forest model 

The RF algorithm includes a few parameters for model structure control. The number of 

iterations indicates how many trees a forest has. Generally, increasing the number of iterations is 

the easiest tweak. The accuracy increase function is logarithmic-like, which means that the 

number going from 10 trees to 100 trees will make a bigger difference than that going from 100 

to 200 trees. Although there is never any harm in constructing more trees, and an appropriate 

increase in trees could provide a better prediction because the model can obtain sufficient 

information from various individuals, a trade-off between tree building and time efficiency exists. 

That is, the more trees there are to be built, the more time will be spent on model construction. 

Usually, the number of iterations will not exceed 200. 

k = 1 k = 2 k = 3 k = 5 k = 7 k = 9

CC(10 features) 0.9283 0.9354 0.9379 0.9365 0.9333 0.9311

CC(8 features) 0.9314 0.9415 0.9447 0.9441 0.9433 0.9414

RRSE(10 features) 37.66% 35.48% 34.73% 35.08% 35.93% 36.54%

RRSE(8 features) 36.93% 33.85% 32.84% 32.96% 33.18% 33.75%
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Another main parameter is the number of tried attributes. This indicates the total number of 

features selected in an individual run. Usually, a square root of the number of features is assigned. 

For example, if the training dataset has 100 predictive features, 10 (√100) attributes are 

randomly selected at each split node of individual trees. Another typical calculation for the 

number of attributes is using(log2𝑁 + 1). 

In this research, the square root of predictive attributes is assigned to the number of tried 

attributes and a random forest with 200 individual trees is built. A ten-fold cross validation is 

implemented to train the model. Table 7 shows a summary of the RF result. Model comparisons 

are discussed in the next section 

Table 7: Result of RF Model 

Correlation coefficient 0.9602 

Mean absolute error 0.0289 

Root mean squared error 0.0417 

Relative absolute error 25.1809% 

Root relative squared error 28.282% 

Total number of instance 3044 

4.4 Model comparison 

A benchmark algorithm in this research is M5P, a single regression decision tree algorithm that 

combines a traditional decision tree with the linear regression functions at each node. See 

Quinlan (1992) and Wang and Witten (1996) for more details. 

To avoid random uncertainty of the algorithms’ performance, besides implementing a ten-fold 

cross validation, each algorithm (KNN, RF, and M5P) is repeated 10 times with different seeds. 
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That means, 100 calls of each classifier with training data and test again test data to get a better 

statistical perspective. The original dataset with 10 features (i.e., machine age, model, real GDP 

growth, SMRs, brand, rated payload (t), body capacity (cy), horsepower (HP), real GDP 

(US$ Billion), and location) of 3,044 cases of articulated trucks’ auction records is used to make 

a comparison. Table 8 shows a general comparison of different criteria. Results are calculated as 

the mean value of overall 10 runs. The table shows that both the KNN and RF models perform 

better than the M5P, which is built on a single regression tree algorithm. The higher predictive 

error of the single regression tree algorithm can be explained by the single regression tree’s high 

sensitivity to small perturbations in data. In other words, a small amount of the changes could 

result in a totally different tree. This feature becomes obvious when a value with a few attributes 

value “out-of-sample.” A single decision tree like M5P might provide a “bad guess,” while 

another ensemble tree algorithm like RF or an instance-based algorithm like KNN can weaken or 

even negate the predictive error  to a certain extent. Discussions about the three algorithms are 

provided in the next section. 

Table 8: Average results for three different models 

Model CC MAE RMSE RAE (%) RRSE (%) 

M5P 0.9240 0.0365 0.0552 31.87 37.56 

KNN 0.9400 0.0313 0.0498 27.29 33.92 

RF 0.9610 0.0286 0.0411 24.96 27.93 

Figure 12 illustrates the result of CC for each run. While all three models have a good 

performance with a CC value above 0.9, RF stands out with an average CC value of 0.96. Table 

9 shows the standard deviation of CC for each run of each model, which indicates that both KNN 
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and RF are much more stable and reliable; unlike a single regression tree algorithm, KNN and 

RF both demonstrate low standard deviations for each run. An illustrative comparison of RRSE 

between different models can be found in figure 13. In terms of RRSE, RF models have a 

relative low value around 28% while M5P models have much higher values than the other two. 

Other criteria including MAE, RMSE, and RAE) also indicate that RF models perform best (See 

Appendix B)  

Table 9: Standard deviation of CC for each run of three models 

Run M5P KNN RF 

Ⅰ 0.04 0.01 0.01 

Ⅱ 0.12 0.01 0.00 

Ⅲ 0.02 0.01 0.01 

Ⅳ 0.08 0.02 0.01 

Ⅴ 0.03 0.01 0.00 

Ⅵ 0.04 0.01 0.00 

Ⅶ 0.04 0.01 0.01 

Ⅷ 0.02 0.01 0.01 

Ⅸ 0.04 0.01 0.00 

Ⅹ 0.01 0.01 0.01 
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Figure 12: Comparisons of CC for each run for M5P, KNN, and RF 

 

Figure 13: Comparisons of RRSE for each run for M5P, KNN, and RF 

In addition, training time is also considered a comparative indicator of these three models. Speed 

differences are not that noticeable in model generation because the dataset being studied is 
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related database to obtain up-to-date information, time efficiency is critical, especially when 

dealing with large datasets.  According to the original dataset, the KNN model performs much 

faster than the other two (Figure 14). This is because the instance-based learner method stores 

training instances to represent the main knowledge, so no model is learned. Therefore, KNN is 

effective when the training set is large. Another finding of interest is that although it takes more 

training time for M5P model than RF model, test time is reverse. M5P, like other single 

regression tree algorithms, will split attribute values at each node until a minimum number of 

instances is achieved (in our case, the number is set by default which is 4). This takes much time 

if the dataset has many attributes and values ranges in a large interval. Once a tree is built, 

however, new tested instances will follow the trunks of the tree and take little time to leaf, as is 

shown in our experiment (Figure 14). As an ensemble tree algorithm, RF is a combination of 

many single trees. It thus seems plausible to expect that building hundreds of trees should take 

longer time than building only one tree. However, as RF randomly chooses a subset of features at 

each split node and only a bagging of data is trained, it depends. Figure 14 shows that regarding 

model training time, RF runs faster than M5P in our case. In terms of tested instance, it will take 

more time for RF model due to its much more complexity than a single tree. See Figure 14 for 

more details. 
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Figure 14: Comparisons of running time for each run for M5P, KNN, and RF 

4.5 Discussions and limitations 

The main objective for residual value of heavy construction equipment research is to capture the 

market trend and provide reliable results. As an ensemble method, the RF model has unique 

features that distinguish it from other data mining algorithms, by enhancing diversity through 

randomly “bagging” data and selecting different predictive features at each splitting node. Based 

on the comparison between selected models, it was found that RF has the highest CCs as well as 

the lowest prediction error. Besides, RF also overcomes the instability of using a single 

regression tree algorithm like M5P. When there is any perturbation in a dataset such as missing 
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values or a portion of outliers, a single tree will change to a different one, which indicates a 

relatively high sensitivity to perturbations in data. Furthermore, even if a cross-validation method 

is used when building a model, overfitting may still happen. Overfitting is a scenario in which 

the model performs well in a training set but not in a testing set. Compared to a single regression 

tree, RF assembles slightly different individual trees and calculates the mean value of them as the 

output. Resistance to overfitting and accurate predictions make RF a reliable method to conduct 

residual value research of heavy machines. 

Complexity and interpretation is always considered as a criteria to evaluate models. A single 

regression tree provides a clear path of directions when a tested instance is given. The instance 

can be “visualized” and “tracked” though decision tree. Besides of single regression tree 

algorithm like M5P in this research, KNN also performs well in model complexity and 

interpretation. Although it is hard to plot data onto a diagram because of difficulties in expressing 

multi-dimensional points, KNN can be done simply in any auto-calculated spreadsheet. In fact, a 

few spreadsheets are developed by the author using Microsoft Excel, to store data and to 

implement KNN algorithms for the equipment owning company. To compare, on the other hand, 

the result of RF is hard to interpret because it is the average results of many unique individual 

trees. Both single decision tree algorithm and KNN can perform as a “white box” for users to 

understand, track, and manipulate. Practically, KNN is a user-friendly as well as low-cost 

algorithm that can be easily developed and maintained, especially for construction companies 

that have only a relative small dataset. 
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There is often a trade-off between model accuracy and speed (Wickelgren, 1977). As mentioned 

earlier, KNN and RF are good examples to explain this. Although KNN takes less time to build, 

it loses prediction accuracy compared to RF. On the other hand, both the RF and KNN models 

outperform the M5P model in terms of both accuracy and speed.   

As only 3,044 records of articulated trucks are studied, one issue of this research is the size of the 

dataset. To test how sensitive the model is to the size of the dataset, two subsets are randomly 

selected from the original dataset, with 1,000 records and 2,000 records respectively. Different 

models are generated and analyzed based on these two new datasets. Results show that as the 

dataset becomes smaller, all the data mining models (M5P, KNN, and RF) perform worse 

according to the result of CC, MAE, RMSE, RAE, and RRSE. However, intra-comparisons 

between the three data mining models are similar to this research in terms of accuracy, predictive 

error, and running time. It is believed that a larger dataset will provide more stable and robust 

models to predict the residual value of articulated trucks. 

4.6 Combination with CCM 

Vorster (1980) provided an approach to combine the cumulative cost model of maintenance cost 

and residual value prediction. Figure 15 illustrates a trend of cumulative cost as machine age 

grows.  
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Figure 15: Combination of maintenance cost and residual value 

Starting from the initial purchase price, the gross expenditure line increases as maintenance 

occurs, while the residual value drops dramatically in the early life of an asset. The net 

expenditure line equals the gross expenditure minus the residual value of the equipment at a 

given time. As the residual value decreases, the net expenditure converges with the gross 

expenditure line. This could be an intuitive explanation of how maintenance cost combines with 

the residual value of heavy equipment. Although the net expenditure keeps increasing, the 

increasing rate changes. Figure 15 shows that the increasing rate of the net expenditure “slows” 

down in the early half of the machine age, while it “speeds” up in the next phase. In Figure 15, 

T1 is the slope of the line originating from the original point to the point on the net expenditure 

curve, which also represents the average expenditure during time t1. The optimum economic life 

of equipment can be achieved when the line becomes a geometric tangent to the net expenditure 
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curve. In other words, that is the best time to sell the machine instead of keeping it because the 

average expenditure reaches its lowest point and it is going to increase as the machine grows old. 

However, in this research, there are limited machine units which have both maintenance cost 

data and residual value information from auction markets. The author of this research 

recommends the following: collect sufficient unit information that overlaps in these two fields, 

and draw the net expenditure line to build decision-making models. 

Another issue to be noticed is that only machine age is used as a predictive variable in Figure 15. 

In this chapter, it is demonstrated that residual value of heavy equipment is impacted by multiple 

factors such as machine age, manufacturer, and even economic environments. Integration of 

multiple factors needs to be addressed.  

4.7 Conclusion 

This research used three kinds of data mining algorithms to build predictive models for the 

articulated trucks residual value. Detailed procedures were explained for data description and 

pre-processing, model generation, and model comparisons. All models in this research were 

validated by repetitive 10-time runs as well as ten-fold cross validation for each individual run. 

CC, MAE, RMSE, RAE, and RRSE were selected as criteria to compare performances for 

different models. Model interpretation and running time were also discussed to provide a 

thorough review of pros and cons for different models.  

There are very few studies that discuss KNN and RF model applications in construction 
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equipment management. To the best knowledge of the author, I did not find any other studies on 

the applications of data mining technology on construction equipment residual value predictions 

other than the regression tree methods developed by Fan et al. (2008). There is also no discussion 

or comparison on the performance of a single regression tree, KNN, and RF in construction 

equipment residual value prediction. Compared to a single regression tree, the proposed KNN 

and RF models could provide more accurate results with less running time. While building a 

KNN model takes little time and is easy to interpret, it is less accurate than RF models. When 

decision makers are considering heavy equipment acquisition or disposal, this research could 

provide detailed instructions regarding model accuracy, interpretability, and speed. In short, the 

RF model offers superior performance in terms of prediction accuracy, and a KNN model is 

helpful for making a quick and simple simulation of residual percentage.  

This study considers only a relative small dataset of articulate trucks in auction market with 

selected 10 features. Further research can incorporate more related features with expanded 

dataset, and it is recommended to try other data mining algorithms to get competitive prediction 

results of residual percentage of heavy equipment. Besides, combination of maintenance cost and 

residual value research is discussed in this chapter. A few recommendations are provided for 

future study based on the result of this research. 
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Chapter 5: Contributions and limitations 

5.1 Research summary 

This research concerns economic issues related to heavy construction equipment in terms of both 

maintenance cost and residual value prediction. Based on historical running repair data from 

January 2003 to July 2015 obtained from a construction company, cumulative cost models were 

applied to each rate group (B25 - B55, D35 - D95). Because running repair expenditures increase 

as machine age grows, models were developed in this research to help decision makers estimate 

maintenance costs. In current practice, equipment-owning companies always develop 

maintenance policies at a certain time interval for the same categories of machines. Therefore, 

different data sets were created and analyzed to select the optimum interval to represent the trend 

of running repairs as machine age grows. Generally, it is found that 500 SMR intervals and 1000 

SMR intervals offer the best statistical performance. However, results of other data sets also 

provide reference points to decision makers when the maintenance policy is established based on 

other SMR intervals. Statistical results for each category of machine can be found in Appendix A. 

The residual plots for each regression model indicates that factors other than SMR records (e.g., 

working conditions, operator skills and other related attributes) could influence maintenance cost 

considerations. 

This research also looked at the residual value prediction of heavy construction equipment. As 

construction equipment expenditures always comprise a significant part of a construction 

company’s budget, this study is necessary and useful in that it can help decision makers to 
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reliably predict market price of heavy machines in auction markets. For this research, original 

auction records from the North American market were collected and processed. Additional 

attributes such as the machine’s specifications and national macroeconomic indicators were also 

collected to devise better predictions. In current practice, a company uses single regression 

models when predicting residual values which turns out to be of low accuracy. Different 

data-mining algorithms, including a single regression tree, k nearest neighbor, and random forest, 

were utilized to build distinct prediction models for this research. The analysis of the output of 

these algorithms shows that the random forest (RF) algorithm has a better residual value 

prediction performance in terms of correlation coefficient and error rate. Regarding running time, 

k nearest neighbor (KNN) has a faster mode than the other two (M5P, RF). Compared to the 

single decision tree algorithm, which is the up-to-date method in residual value prediction, both 

KNN and RF demonstrate advantages of ease of use and better reliability. The models generated 

from this research could be helpful in residual value prediction of heavy construction equipment. 

5.2 Research contribution 

This research has a number of academic contributions in the heavy equipment management area. 

The main contributions are discussed below: 

 This research examined a wide range of heavy construction and mining machines, with 15 

different fleets of 250 units. For each unit, historical maintenance cost data were collected 

and processed. Cumulative cost models were built and validated for each category of 
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equipment. 

 Compared to previous research, more SMR-interval-based datasets were created when 

building cumulative cost model (CCM). Instead of just using 500 SMR intervals, this 

research created three calendar-based datasets (seasonal, semi-annual, and annual), and SMR 

interval-based datasets (500, 1000, 1500, 2000, 2500, 5000, and 7500 SMR intervals, 

respectively). Statistical tests and analysis were provided to identify optimum datasets for 

different categories of machines. These different models can help a company to develop 

maintenance policies and provide a point of reference for fleet managers to estimate 

maintenance costs at certain SMR levels. 

 Residual plots for CCM were included and discussed in maintenance cost research. The 

residual plots for each regression model indicate that factors apart from SMR records such 

as working conditions, operator skills and other related attributes could influence 

maintenance cost considerations. Methods of quantifying such mentioned attributes should 

be discussed and investigated in future research. 

 For residual value prediction of heavy equipment, new attributes were included in this 

research. Equipment specifications, macroeconomic indicators including real GDP value and 

real GDP growth were included as predictive variables. A ranking algorithm of attributes 

regarding correlation with residual value percentage was also provided. 

 In addition to the single decision tree method, an instance-based algorithm KNN and an 

ensemble algorithm RF were implemented to predict the percentage of residual value of 
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equipment. Compared to a single decision tree, both KNN and RF offer better performance 

in terms of correlated coefficient and prediction error. 

 When comparing the performance of different algorithms in residual value prediction, a 

series of criteria were set, and detailed discussions provided regarding the prediction 

accuracy, interpretability, running time, etc. 

5.3 Research limitation 

This research has a few limitations: 

 Due to updates of the construction company’s database, historical maintenance data are only 

available since January 2003. Previous data are not available, which limits the number of 

machines qualified for this study. 

 CCM models were built for only 15 equipment fleets, mainly in rigid frame trucks and 

excavators. Because of an insufficient amount of data, this research did not test for 

maintenance costs for other categories of heavy equipment. 

 The maintenance cost research work was based on historical maintenance cost data from a 

certain construction company; therefore the research output does not represent all 

construction equipment. 

 Regarding residual value prediction, this research exemplified a prediction model only for 

articulated truck categories. A more comprehensive prediction model covering other 

categories of construction equipment could be built based on sufficient data from other 
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categories of equipment. 

 As it is validated that for all three algorithms, residual value prediction model are sensitive 

to data size (see Chapter 4). Because the auction records employed in this thesis were 

limited, it is possible that some results were biased. The data-mining models would be more 

useful and reliable if sufficient instances of auctions records were available. 

5.4 Recommendations for future study. 

There are a few recommendations for future research in the same area: 

 For a maintenance cost study of heavy machines, it is better to obtain historical data with a 

wide-range of records for life-time analysis. Larger data pools with more records of units 

will be helpful to generalize and identify maintenance cost patterns for each category of 

heavy machines. 

 For residual value predictions in this research, the basic auction records were provided from 

the company. These records are stored in MS Excel spreadsheets. In future studies, it will be 

better if an automatic management system can be generated to query as many as auction 

instances as possible with up-to-date auction records. Models built on limited data sources 

might influence prediction accuracy. 

 In the research about residual value prediction, a single decision tree, an instance-based 

method (KNN) and an ensemble method (RF) were compared to obtain an optimum method 

with the best performance. For future studies, many other algorithms such as boosting 
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methods could be tested to find more accurate models. 

 Besides the historical maintenance cost data and predictable features of residual value, other 

related information could be identified and collected for future research. New models of 

heavy equipment in recent years are equipped with telematics systems which help record and 

process data, such as kinematic global positioning system (GPS) and application of radio 

frequency identification (RFID). Such information can be collected and used in heavy 

construction equipment research.  
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Appendix A: Data analysis result for 15 fleets – CCM Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 13345.29957 8.5E-100 

0.882637184 0.882139029 8434.3 0 2.5898 2245 
x2 222.33484 8.76E-26 

Seasonal 
x 12823.78683 6.07E-32 

0.881732708 0.880219491 2754.8 0 2.5303 741 
x2 238.5608039 1.18E-10 

Semi-annual 
x 13589.54984 2E-19 

0.884765423 0.881898496 1493.4 5.69E-183 2.5586 391 
x2 213.7080597 2.69E-05 

Annual 
x 15168.26595 1.18E-10 

0.879741766 0.873967239 709.6 1.10E-89 3.1346 196 
x2 172.04906 0.024728 

500 Interval 
x 9310.977959 1.95E-51 

0.861040947 0.860423625 5716.1 0 2.072 1847 
x2 334.8064865 4.25E-47 

1000 

Interval 

x 9247.01957 3.21E-26 
0.861584917 0.860351531 2872.7 0 2.0729 925 

x2 339.659074 5.96E-25 

1500 

Interval 

x 9584.404406 3.47E-19 
0.859701552 0.857838319 1875.1 1.73E-261 2.0911 614 

x2 321.6253603 9.88E-16 

2000 

Interval 

x 9027.252818 3.14E-13 
0.861077238 0.858590507 1419.4 8.65E-197 2.0875 465 

x2 348.2919331 1.15E-13 

2500 

Interval 

x 8859.550128 1.32E-10 
0.86286235 0.859746904 1148.3 5.96E-158 2.0893 367 

x2 351.6910519 1.41E-11 

5000 

Interval 

x 9227.208775 7.33E-06 
0.859951149 0.853399144 534.21 9.27E-75 2.2306 176 

x2 347.027452 8.91E-06 

7500 

Interval 

x 7229.541452 0.000689 
0.869911843 0.861151469 431.32 1.33E-57 1.9315 131 

x2 375.8743334 2.7E-06 

B25 – CAT 777 Model 
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B30 – CAT 785 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 5135.5417 1.7232E-13 

0.90646082 0.905733735 7287.4121 0 1.6381 1506 
x2 650.58792 4.296E-100 

Seasonal 
x 5802.6343 1.3576E-06 

0.90589919 0.903724044 2421.1657 1.50E-258 1.6046 505 
x2 627.32533 7.0474E-33 

Semi-annual 
x 5688.5583 0.00113075 

0.90580929 0.901306444 1168.4361 4.56E-125 1.6741 245 
x2 624.05009 2.592E-16 

Annual 
x 2414.1674 0.26858736 

0.90541726 0.898021426 708.38372 3.36E-76 1.5625 150 
x2 775.08126 2.6889E-14 

500 Interval 
x 3079.447 2.8621E-06 

0.89474843 0.893883603 5432.1685 0 1.2621 1281 
x2 728.92794 1.016E-116 

1000 

Interval 

x 3247.3173 0.00049171 
0.89405611 0.892311721 2675.15 0 1.2733 636 

x2 718.82087 5.1487E-58 

1500 

Interval 

x 3297.5895 0.00420612 
0.89312185 0.89048643 1754.8544 2.28E-204 1.2857 422 

x2 719.10302 2.0212E-38 

2000 

Interval 

x 3100.9811 0.01924877 
0.8945101 0.89096686 1322.8145 8.23E-153 1.275 314 

x2 726.62008 7.2682E-30 

2500 

Interval 

x 2749.381 0.0646914 
0.89357679 0.889186218 1057.9522 5.00E-123 1.2944 254 

x2 741.1859 7.9035E-25 

5000 

Interval 

x 2495.9534 0.26368117 
0.8849 0.875287071 445.90965 6.61E-55 1.4171 118 

x2 749.6635 6.2361E-12 

7500 

Interval 

x 447.26749 0.86798787 
0.8923974 0.877429794 306.85785 2.94E-36 1.3078 76 

x2 822.48234 1.6846E-09 
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B45 – CAT 930D Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 17494.71121 4.23903E-34 

0.916618275 0.91593259 8684.49815 0 8.3656 1582 
x2 1020.068054 1.32493E-79 

Seasonal 
x 16900.74091 3.98208E-11 

0.913517559 0.9114201 2735.827597 9.95E-276 8.6912 520 
x2 1042.994389 6.6454E-27 

Semi-annual 
x 15645.90427 4.16755E-06 

0.914437007 0.91030939 1405.379388 8.54E-141 7.9038 265 
x2 1078.395559 1.29617E-16 

Annual 
x 19699.05889 6.78657E-05 

0.922408884 0.9143067 790.556881 3.37E-74 9.0366 135 
x2 956.8185785 1.16229E-07 

500 Interval 
x 12150.8062 1.37896E-22 

0.902839686 0.90217231 7638.244406 0 6.817 1646 
x2 1166.103232 3.8468E-116 

1000 

Interval 

x 12503.66105 1.25676E-12 
0.902446371 0.90110462 3783.565709 0 6.8739 820 

x2 1148.80938 1.49452E-57 

1500 

Interval 

x 12125.99296 2.01082E-08 
0.903140277 0.90111655 2526.86057 3.60E-275 6.8784 544 

x2 1167.080635 1.22918E-39 

2000 

Interval 

x 12943.33482 2.07242E-07 
0.903025333 0.90031005 1881.018247 4.13E-205 6.989 406 

x2 1129.544493 5.15357E-29 

2500 

Interval 

x 12815.34452 7.59132E-06 
0.899564973 0.89610449 1424.113036 4.02E-159 7.138 320 

x2 1138.209226 2.42302E-22 

5000 

Interval 

x 10957.939 0.007621079 
0.898144046 0.89079834 661.3339831 7.95E-75 7.2591 152 

x2 1181.19546 4.06484E-12 

7500 

Interval 

x 11490.30201 0.023653836 
0.900102423 0.88864516 432.4921365 1.92E-48 7.386 98 

x2 1162.988014 3.88944E-08 
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B45 – KOM 830E Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 3732.256167 0.027722736 

0.966988437 0.9639855 5038.295515 5.52E-255 1.0426 346 
x2 1749.634496 9.79679E-58 

Seasonal 
x 1565.801133 0.596066816 

0.9693373 0.96013495 1770.323185 6.27E-85 1.0046 114 
x2 1878.512495 1.1444E-21 

Semi-annual 
x 2632.827083 0.558348935 

0.962880701 0.93876165 557.7135237 5.69E-31 0.9827 45 
x2 1812.513945 1.84736E-09 

Annual 
x 7285.951639 0.235625024 

0.963290962 0.92984874 406.7393411 1.84E-22 1.3844 33 
x2 1529.721223 2.14553E-05 

500 Interval 
x 2393.425572 0.138379711 

0.964177402 0.96029792 3593.197834 3.12E-193 0.8377 867 
x2 1809.11454 1.15784E-55 

1000 

Interval 

x 1942.049086 0.393735966 
0.96457332 0.95672918 1797.002666 5.92E-96 0.8244 134 

x2 1837.27949 4.99277E-29 

1500 

Interval 

x 1938.056598 0.50250893 
0.962908403 0.95098781 1129.272352 1.87E-62 0.8803 89 

x2 1843.201192 4.51891E-19 

2000 

Interval 

x 1858.210116 0.579546975 
0.962764965 0.9468075 840.3338747 1.16E-46 0.8923 67 

x2 1857.163106 1.04706E-14 

2500 

Interval 

x 388.5057128 0.91843597 
0.962102167 0.94175123 647.3616935 1.81E-36 0.9069 53 

x2 1930.043198 2.88469E-12 

5000 

Interval 

x 1476.385537 0.82053564 
0.959306078 0.91200181 259.3106351 1.57E-15 1.0864 24 

x2 2143.484846 9.29102E-06 

7500 

Interval 

x 1635.14648 0.777727848 
0.972925597 0.90445397 269.5144201 6.66E-12 0.8698 17 

x2 1779.493206 2.8007E-05 
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B50- HIT EH4500 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x -24185.9961 6.23834E-11 

0.96642 0.961521529 3036.252154 1.07E-155 8.0706 213 
x2 1739.469424 6.17337E-47 

Seasonal 
x -24049.7341 3.39439E-05 

0.9550864 0.943970291 999.4534721 1.35E-63 9.3225 96 
x2 1627.876512 4.18157E-19 

Semi-annual 
x -19493.0806 0.019524812 

0.9498407 0.930393329 511.2852745 2.26E-35 11.362 56 
x2 1492.299614 2.15162E-09 

Annual 
x -23114.3865 0.028032609 

0.9535815 0.91870086 308.1468652 2.91E-20 11.084 32 
x2 1581.057185 7.90085E-07 

500 Interval 
x -28704.5661 1.9095E-12 

0.9592964 0.953904117 2274.295543 2.07E-134 7.9442 195 
x2 1760.39728 2.88648E-41 

1000 

Interval 

x -28750.5591 7.2955E-07 
0.9589516 0.948107332 1121.350901 8.40E-67 8.0579 98 

x2 1759.815172 3.2038E-21 

1500 

Interval 

x -29475.8423 3.07808E-05 
0.9591912 0.942928517 752.1437358 1.08E-44 8.1301 66 

x2 1788.717828 4.67547E-15 

2000 

Interval 

x -25718.1615 0.001513384 
0.9564147 0.934673346 526.6444509 6.59E-33 8.4648 50 

x2 1672.714219 1.08566E-10 

2500 

Interval 

x -29349.4882 0.002199723 
0.9562847 0.928076161 404.6926276 2.12E-25 8.4383 39 

x2 1775.399315 8.107E-09 

5000 

Interval 

x -33543.8616 0.010190802 
0.9682667 0.907576523 259.3575624 6.43E-13 7.1348 19 

x2 1895.983074 1.02968E-05 

7500 

Interval 

x -27910.9549 0.248576683 
0.9514844 0.834982702 88.25373222 3.53E-06 10.002 11 

x2 1756.511649 0.020214526 
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B55 – HIT EH5000 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 48067.194 2.6172E-34 

0.952471451 0.95072557 6011.995779 0 31.401 602 
x2 1067.5912 6.55759E-21 

Seasonal 
x 48854.373 2.11022E-12 

0.950410985 0.94516304 1916.57566 9.66E-131 32.601 202 
x2 1043.6452 2.16731E-07 

Semi-annual 
x 44919.521 2.65388E-06 

0.95289961 0.94263392 1031.793575 6.05E-68 33.0698 104 
x2 1198.2402 1.89546E-05 

Annual 
x 38713.867 0.002524566 

0.962020267 0.940837007 620.5808834 5.04E-35 26.4542 51 
x2 1312.7444 0.000564535 

500 Interval 
x 21831.712 6.33319E-10 

0.972270658 0.970097869 8292.371636 0 18.0899 475 
x2 1944.781 9.3879E-57 

1000 

Interval 

x 20936.165 3.26109E-05 
0.972329907 0.967938155 4111.392054 1.92E-182 18.2784 236 

x2 1978.5373 1.84538E-29 

1500 

Interval 

x 22671.035 0.000160246 
0.973127603 0.96662841 2860.819577 3.09E-124 17.807 160 

x2 1912.596 2.89789E-20 

2000 

Interval 

x 18903.124 0.007801928 
0.972780171 0.963924828 2072.799591 6.25E-91 18.2469 118 

x2 2047.636 2.99005E-16 

2500 

Interval 

x 20003.911 0.011910303 
0.972330354 0.961160032 1616.47157 7.96E-72 17.6993 94 

x2 2009.1485 1.03205E-12 

5000 

Interval 

x 21314.322 0.066179971 
0.97199729 0.948633592 763.6382352 2.55E-34 18.1227 46 

x2 1969.9028 1.49126E-06 

7500 

Interval 

x 16050.483 0.240574666 
0.972156997 0.940036904 558.6506684 4.84E-25 19.1538 34 

x2 2182.8467 1.06899E-05 
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B55 – KOM 930E Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 47428.066 9.74382E-40 

0.894028534 0.892722783 3572.858803 0 24.9581 849 
x2 1547.9493 9.33195E-25 

Seasonal 
x 17425.874 0.000194589 

0.943492419 0.939874242 2437.724118 1.69E-182 13.3993 294 
x2 3032.2085 2.71236E-38 

Semi-annual 
x 54850.818 1.77291E-08 

0.871750616 0.863138025 445.2236989 6.84E-59 27.769 133 
x2 1153.8829 0.005009273 

Annual 
x 62601.769 1.42779E-06 

0.864208723 0.848860192 235.477001 1.46E-32 27.7902 76 
x2 747.24064 0.150553262 

500 Interval 
x 20195.192 3.33202E-13 

0.945023264 0.943773291 7253.974015 0 13.0145 846 
x2 3031.8272 1.0654E-104 

1000 

Interval 

x 20329.207 2.46467E-07 
0.944824889 0.942324474 3613.188065 8.55E-266 13.1437 424 

x2 3022.2458 8.36114E-53 

1500 

Interval 

x 20179.805 2.65817E-05 
0.945131438 0.941377457 2420.164866 2.00E-177 13.0743 283 

x2 3021.4535 4.69292E-36 

2000 

Interval 

x 21259.162 0.000122939 
0.9450042 0.940097243 1847.194726 1.02E-135 13.1574 217 

x2 2971.9144 3.07534E-27 

2500 

Interval 

x 22692.394 0.000272195 
0.943916613 0.937740687 1439.01564 2.80E-107 13.5807 173 

x2 2876.9171 4.34602E-21 

5000 

Interval 

x 23986.327 0.007230825 
0.945648099 0.932631409 704.6441318 1.60E-51 14.2844 83 

x2 2800.663 8.31635E-11 

7500 

Interval 

x 28842.507 0.009342459 
0.945766765 0.925493049 453.4108251 3.31E-33 15.3166 54 

x2 2474.8597 1.1648E-06 
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D35 – EX500 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 
MSE(E+10) Observations 

All Points 
x -5197.984372 7.59088E-12 

0.8819505 0.880797871 3623.446011 0 0.437 972 
x2 1311.89146 5.8354E-116 

Seasonal 
x -5337.282794 4.55727E-08 

0.8753866 0.873177165 1787.816835 1.21E-230 0.3818 511 
x2 1311.438511 1.01928E-66 

Semi-annual 
x -4843.218722 0.00011114 

0.8764999 0.872652302 1036.185325 4.44E-133 0.3667 294 
x2 1262.943925 1.78145E-38 

Annual 
x -4429.522445 0.008013689 

0.87771 0.871222737 620.8348079 2.12E-79 0.4079 175 
x2 1236.74715 7.5768E-23 

500 Interval 
x -1417.663431 0.029048365 

0.87989 0.878289828 2563.995136 0 0.3128 702 
x2 968.280776 5.43411E-86 

1000 

Interval 

x -2520.987457 0.013392752 
0.8804697 0.876811071 1127.00982 1.33E-141 0.3203 308 

x2 1065.995137 2.18876E-41 

1500 

Interval 

x -814.245538 0.46318262 
0.8771069 0.872287584 831.4781161 1.57E-106 0.3185 235 

x2 911.8430432 3.307E-28 

2000 

Interval 

x -1361.004189 0.293268172 
0.8799663 0.873492154 634.1311761 4.26E-80 0.3163 175 

x2 954.8809407 1.25273E-22 

2500 

Interval 

x -925.0097542 0.518111829 
0.879952 0.87206434 520.4301019 8.02E-66 0.3383 144 

x2 922.1807753 1.45725E-18 

5000 

Interval 

x -2450.132613 0.270806372 
0.8783833 0.860579855 227.5104701 2.79E-29 0.3451 65 

x2 1028.31058 1.49727E-09 

7500 

Interval 

x 2324.233434 0.339322892 
0.8894427 0.862355898 164.9241474 4.79E-20 0.3741 43 

x2 659.9174094 4.56941E-05 
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D40 – EX600 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x -3360.54557 0.0004998 

0.9525247 0.938921144 772.44833 3.16E-51 0.077 79 
x2 743.0931 1.073E-22 

Seasonal 
x -3271.30601 0.0332431 

0.9290744 0.903576165 275.08488 1.7457E-24 0.1094 44 
x2 727.9034074 1.444E-10 

Semi-annual 
x -3614.4935 0.2069544 

0.9023144 0.856577469 110.84304 1.5519E-12 0.2173 26 
x2 782.1473865 4.835E-05 

Annual 
x -3654.44137 0.446566 

0.8629608 0.775496222 40.931676 4.36628E-06 0.328 15 
x2 786.3725035 0.010702 

500 Interval 
x -991.515337 0.3591961 

0.9108549 0.894838013 347.40046 4.28E-36 0.0798 70 
x2 528.2549397 8.467E-11 

1000 

Interval 

x -1242.92369 0.4358942 
0.9097057 0.876666488 166.23581 1.25E-17 0.0884 35 

x2 542.3439201 5.1E-06 

1500 

Interval 

x -951.270145 0.6326942 
0.9067301 0.857035964 106.93724 9.76E-12 0.095 24 

x2 518.908108 0.0003516 

2000 

Interval 

x -126.725377 0.9610681 
0.8914023 0.817495796 61.562242 1.16E-07 0.1078 17 

x2 459.5335951 0.0132284 

2500 

Interval 

x -742.633706 0.77444 
0.9065626 0.822452023 63.065286 4.30E-07 0.089 15 

x2 509.9322481 0.0078117 

5000 

Interval 

x -2866.21025 0.3181557 
0.9673398 0.760807774 74.045792 0.000691687 0.051 7 

x2 689.8458537 0.0079011 

7500 

Interval 

x -373.670477 0.9576627 
0.9125036 0.368755397 10.429041 0.213891717 0.1029 4 

x2 473.0408379 0.4041913 
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D50 – EX800 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 2577.72141 0.068024004 

0.916789 0.913938453 2093.35219 1.50E-205 1.2796 382 
x2 963.555461 9.99695E-37 

Seasonal 
x -75.329809 0.967022392 

0.9191501 0.913578676 1102.753625 2.4659E-106 1.1018 196 
x2 1060.82818 1.18598E-24 

Semi-annual 
x 548.174831 0.845968344 

0.9039265 0.893870806 512.7741689 7.33028E-56 1.4012 111 
x2 1035.01545 2.03857E-11 

Annual 
x -977.77282 0.75509964 

0.9176729 0.902640613 401.2802458 2.01266E-39 1.1684 74 
x2 1078.93713 4.03383E-10 

500 Interval 
x -520.61369 0.748505759 

0.8981419 0.894761942 1437.265075 4.02E-162 1.395 328 
x2 1170.52649 4.28222E-35 

1000 

Interval 

x -953.0595 0.679743892 
0.8980064 0.891245743 717.57006 3.16E-81 1.3983 165 

x2 1203.47997 7.90959E-19 

1500 

Interval 

x -1128.7016 0.694363169 
0.8975703 0.887267262 468.8096667 2.28E-53 1.4335 109 

x2 1202.73738 8.75239E-13 

2000 

Interval 

x -2451.0818 0.461148158 
0.9010183 0.887281002 364.1149969 1.35E-40 1.3971 82 

x2 1304.16496 7.08348E-11 

2500 

Interval 

x 1387.28174 0.703784757 
0.9022585 0.884834001 290.7785643 3.15E-32 1.4877 65 

x2 1064.31314 2.18509E-07 

5000 

Interval 

x -1649.5229 0.759492114 
0.8949862 0.860454473 136.3608628 4.34E-16 1.5058 34 

x2 1244.96497 9.08473E-05 

7500 

Interval 

x -2597.6301 0.751145877 
0.9076943 0.843440982 83.58528124 3.39E-09 1.6484 19 

x2 1288.79163 0.006472907 
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D50 – EX850 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 5234.84357 8.7856E-10 

0.9287554 0.927645308 6289.943692 0 0.9306 967 
x2 1188.31642 2.2052E-106 

Seasonal 
x 11110.778 2.27224E-14 

0.9089204 0.906388877 2150.5618 1.1978E-224 1.3494 433 
x2 960.173138 1.94977E-30 

Semi-annual 
x 13953.2388 2.59822E-12 

0.8949738 0.890271539 1001.268225 1.9855E-115 1.5024 237 
x2 774.786887 7.603E-13 

Annual 
x 2625.42682 0.260862441 

0.9278079 0.920659968 963.8950569 5.70989E-86 1.1301 152 
x2 1496.2656 8.88816E-23 

500 Interval 
x 11960.2589 7.51319E-30 

0.8704668 0.86892582 2462.890298 0 1.1507 735 
x2 604.543616 3.20531E-25 

1000 

Interval 

x 11860.6335 2.1406E-15 
0.8728094 0.869695584 1242.060801 1.46E-162 1.1332 364 

x2 612.90701 1.62529E-13 

1500 

Interval 

x 11598.1251 2.91976E-10 
0.8723985 0.867680461 817.0090632 2.56E-107 1.1332 241 

x2 625.506396 1.43017E-09 

2000 

Interval 

x 11076.514 1.595E-07 
0.8768237 0.870583824 640.6599905 2.58E-82 1.1326 182 

x2 670.505623 2.2368E-08 

2500 

Interval 

x 10863.7164 8.80579E-06 
0.8720754 0.863842347 466.9715632 1.21E-61 1.1783 139 

x2 681.257885 9.21541E-07 

5000 

Interval 

x 9489.37329 0.006238604 
0.8805149 0.862162651 224.7618815 1.35E-28 1.0905 63 

x2 755.155062 0.000261895 

7500 

Interval 

x 5312.38728 0.233618392 
0.902791 0.874657486 181.0988114 3.74E-20 1.3161 41 

x2 1093.57164 5.63803E-05 
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D60 – EX1200 Model 

  
Coefficient P-Value 

R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 57734.52502 6.04908E-35 

0.945423563 0.94030426 1784.261339 2.18E-130 9.7226 208 
x2 -100.4245713 0.45377302 

Seasonal 
x 49918.43623 2.42481E-13 

0.937728209 0.927105491 752.9317841 1.3E-60 10.9787 102 
x2 203.6011617 0.335138041 

Semi-annual 
x 46069.06194 2.87303E-06 

0.923714795 0.904145973 332.9892964 4.24E-31 13.5566 57 
x2 320.472908 0.315964278 

Annual 
x 41252.727 0.001985943 

0.905007734 0.87182615 157.1983516 2.81E-17 16.919 35 
x2 474.9972502 0.27597196 

500 Interval 
x 51130.2044 1.14285E-29 

0.946450504 0.940065356 1458.13075 3.57E-105 7.514 167 
x2 61.54794058 0.646608456 

1000 

Interval 

x 49731.01416 8.6595E-15 
0.945419321 0.932558581 710.181569 4.43E-52 7.6569 84 

x2 113.7112862 0.556720117 

1500 

Interval 

x 49286.97538 6.86205E-10 
0.946858478 0.927355857 481.0772765 1.05E-34 7.7975 56 

x2 153.9527847 0.52705091 

2000 

Interval 

x 52649.42817 1.79462E-08 
0.948243993 0.92127589 357.2678602 2.30E-25 7.7106 41 

x2 5.611724633 0.983607328 

2500 

Interval 

x 51605.53788 5.50878E-07 
0.950330414 0.916470105 296.562195 1.73E-20 7.1797 33 

x2 47.53594922 0.876443369 

5000 

Interval 

x 49801.34834 0.001154504 
0.944414994 0.87404266 127.4284731 1.04E-09 7.8199 17 

x2 121.1567315 0.80084445 

7500 

Interval 

x 61325.23498 0.002087415 
0.952562035 0.836180039 90.36073084 3.23E-06 8.5609 11 

x2 -304.9606176 0.558207931 
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D65 – EX1900 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 19410.5633 1.511E-22 

0.9815918 0.9772947 6318.85545 1.14E-205 3.7337 239 
x2 1016.93987 8.916E-52 

Seasonal 
x 13748.0585 2.774E-07 

0.9834474 0.9735779 3059.78491 8.9066E-92 3.2285 105 
x2 1192.97011 5.04E-30 

Semi-annual 
x 14584.0399 4.478E-05 

0.9825264 0.9649837 1630.64199 4.9705E-51 3.2512 60 
x2 1175.09995 5.364E-17 

Annual 
x 12405.5254 0.0147277 

0.9808768 0.9480018 795.033401 1.0323E-26 3.9252 33 
x2 1217.90408 1.069E-09 

500 Interval 
x 17028.3059 1.162E-18 

0.9758669 0.9712949 4528.92773 2.82E-181 3.3948 226 
x2 1086.4579 2.132E-50 

1000 

Interval 

x 16783.7054 9.458E-10 
0.9760037 0.9666947 2237.0218 3.21E-89 3.4572 112 

x2 1091.04905 5.953E-26 

1500 

Interval 

x 15540.3816 3.951E-06 
0.9754965 0.9614622 1453.08532 6.34E-59 3.4383 75 

x2 1133.85701 6.059E-18 

2000 

Interval 

x 16761.065 5.364E-06 
0.9792228 0.9603195 1272.49894 1.60E-45 3.1186 56 

x2 1082.36084 1.02E-14 

2500 

Interval 

x 16971.5988 6.228E-05 
0.9786436 0.9543256 962.310017 3.51E-35 3.1489 44 

x2 1099.58852 1.457E-11 

5000 

Interval 

x 19481.4593 0.0062787 
0.9734599 0.9221329 366.788761 6.62E-16 4.7161 22 

x2 1030.08714 3.878E-05 

7500 

Interval 

x 17372.3322 0.0146498 
0.9839261 0.8992533 367.276702 8.49E-11 2.9776 14 

x2 1084.69605 6.96E-05 
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D70 EX2500 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 29771.9109 1.4218E-29 

0.98727672 0.9811016 6362.8814 2.05E-155 3.1617 166 
x2 1743.53944 3.61143E-55 

Seasonal 
x 37317.8767 2.72383E-13 

0.98288248 0.9677016 1923.5593 3.102E-59 4.7033 69 
x2 1441.77132 4.38379E-16 

Semi-annual 
x 37480.3282 5.38774E-08 

0.9860136 0.9570426 1233.7152 1.845E-32 4.4925 37 
x2 1447.78578 7.41403E-10 

Annual 
x 38982.9278 0.000147545 

0.98081582 0.9271745 485.6996 2.183E-16 6.2499 21 
x2 1418.9391 3.86384E-05 

500 Interval 
x 26584.7875 7.67925E-17 

0.98918703 0.9802418 5168.7085 4.86E-111 4.0637 115 
x2 1861.84098 1.16751E-39 

1000 

Interval 

x 26633.4647 4.86186E-09 
0.98883252 0.970776 2479.2799 1.28E-54 2.9718 58 

x2 1857.47371 4.06743E-20 

1500 

Interval 

x 27179.9107 3.04747E-06 
0.98852457 0.960428 1550.5689 6.83E-35 3.2403 38 

x2 1835.53223 4.12917E-13 

2000 

Interval 

x 24585.8103 0.000227799 
0.98840505 0.9494976 1108.1781 3.92E-25 2.1794 28 

x2 1938.11426 3.49636E-10 

2500 

Interval 

x 24781.9863 0.000966427 
0.99024066 0.9370954 963.92612 4.96E-19 2.8121 21 

x2 1946.61888 3.22479E-08 

5000 

Interval 

x 28576.8529 0.020528342 
0.98918539 0.8628336 365.8699 8.28E-08 3.2389 10 

x2 1820.63964 0.000921761 

7500 

Interval 

x 33098.4733 0.024069768 
0.9934588 0.7921506 379.69293 2.746E-05 3.0287 7 

x2 1646.43232 0.0046337 
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D72 – EX3600 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 19088.423 2.703E-08 

0.992111 0.978112 4527.0689 1.35E-75 0.848 74 
x2 3018.6823 5.499E-28 

Seasonal 
x 33911.661 1.217E-12 

0.995774 0.968632 4358.8066 1.13E-43 0.516 39 
x2 2314.507 2.117E-15 

Semi-annual 
x 32823.552 1.442E-07 

0.996722 0.946558 3040.3423 1.54E-24 0.4724 22 
x2 2299.2851 1.189E-09 

Annual 
x 30941.144 0.0071916 

0.991379 0.899686 632.4541 2.97E-11 1.6103 13 
x2 2600.6214 0.0002443 

500 Interval 
x 21567.644 2.674E-11 

0.990605 0.976965 3901.3695 6.26E-75 0.6892 76 
x2 2871.9044 4.826E-28 

1000 

Interval 

x 21939.749 2.749E-06 
0.990625 0.962587 1902.023 1.98E-36 0.7313 38 

x2 2818.5808 2.991E-14 

1500 

Interval 

x 22853.272 8.86E-05 
0.991077 0.947211 1277.2779 1.76E-23 0.7004 25 

x2 2844.0149 9.083E-10 

2000 

Interval 

x 17815.008 0.0090758 
0.989706 0.930277 817.22057 7.80E-17 0.8007 19 

x2 3052.5767 1.996E-07 

2500 

Interval 

x 21185.316 0.0083138 
0.990005 0.912313 643.80427 6.20E-13 0.8895 15 

x2 2878.5932 6.694E-06 

5000 

Interval 

x 14946.686 0.1017651 
0.996004 0.795205 623.12727 1.02E-05 0.4294 7 

x2 3446.05 0.0007116 

7500 

Interval 

x 17423.579 0.2572458 
0.992879 0.657171 209.13293 0.004759 1.2202 5 

x2 2827.3186 0.0249763 
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D75 – EX5500 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 20106.7617 0.000735925 

0.98093446 0.975304 4656.2852 1.02E-155 44.6242 183 
x2 2118.68321 1.46944E-40 

Seasonal 
x 21894.4605 0.00776996 

0.98284635 0.969637 2205.9208 4.93731E-68 37.4088 79 
x2 1952.68809 6.14871E-19 

Semi-annual 
x 28712.0305 0.019153323 

0.98076071 0.955901 1045.0278 2.97427E-35 45.3456 43 
x2 1835.93403 2.63549E-09 

Annual 
x 20929.91 0.238239741 

0.97878474 0.932366 507.49468 1.66752E-18 53.3175 24 
x2 1963.54861 1.14225E-05 

500 Interval 
x 37891.6219 5.26756E-09 

0.97229206 0.966796 3280.9839 8.95E-146 51.2402 189 
x2 1775.90436 8.00715E-28 

1000 

Interval 

x 38181.4835 4.03422E-05 
0.97208864 0.960916 1602.0743 1.18E-71 52.288 94 

x2 1763.59548 2.88104E-14 

1500 

Interval 

x 37988.1861 0.000914911 
0.97230559 0.955177 1053.2512 6.94E-47 51.2894 62 

x2 1778.53352 7.24202E-10 

2000 

Interval 

x 38427.2143 0.003289229 
0.9739977 0.951198 842.80818 8.34E-36 52.1327 47 

x2 1772.88415 5.11943E-08 

2500 

Interval 

x 41046.6698 0.006334784 
0.9731284 0.943789 633.74513 1.23E-27 52.678 37 

x2 1701.13174 4.11861E-06 

5000 

Interval 

x 39995.92 0.072520326 
0.97466571 0.910582 307.77754 6.65E-13 55.0516 18 

x2 1757.92988 0.001514098 

7500 

Interval 

x 41830.563 0.142099389 
0.97946566 0.866073 214.64505 1.12E-07 48.7642 11 

x2 1772.94888 0.014291949 
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D78 – EX8000 Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 255492.3406 1.28321E-29 

0.9596862 0.951980211 1606.86622 2.28E-94 230.818 137 
x2 1049.945352 0.033102233 

Seasonal 
x 242145.2998 1.04509E-09 

0.9535635 0.933819449 544.17219 1.35878E-35 312.3332 55 
x2 1884.501248 0.044164635 

Semi-annual 
x 229795.7121 4.77022E-06 

0.9501187 0.917309859 304.761174 4.11931E-21 313.7491 34 
x2 2184.189809 0.070057077 

Annual 
x 254401.2672 0.000270232 

0.951565 0.893318606 176.816023 4.19566E-12 356.6971 20 
x2 1786.364719 0.257191115 

500 Interval 
x 256968.0405 2.90052E-35 

0.9556251 0.94944536 1819.72933 1.42E-114 232.046 171 
x2 979.6223407 0.035026513 

1000 

Interval 

x 257147.3833 4.4873E-18 
0.9558556 0.943275501 898.595618 1.71E-56 233.191 85 

x2 978.0928412 0.143749289 

1500 

Interval 

x 257159.7106 1.65957E-12 
0.9542209 0.935546239 583.632365 9.18E-38 240.611 58 

x2 961.1022201 0.241102816 

2000 

Interval 

x 254357.286 7.8753E-10 
0.9568902 0.932054293 466.128665 6.36E-29 233.847 44 

x2 1071.268772 0.247338501 

2500 

Interval 

x 251732.9246 1.53346E-07 
0.953782 0.921087684 330.185442 1.26E-21 250.736 34 

x2 1134.167968 0.297466061 

5000 

Interval 

x 245943.9421 0.000528516 
0.9539156 0.884176683 155.245019 2.78E-10 262.575 17 

x2 1424.424933 0.400961772 

7500 

Interval 

x 249579.2302 0.006195236 
0.9565691 0.840632292 99.1127767 2.26E-06 286.096 11 

x2 1130.403342 0.588988592 
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D95 – 495HF Model 

  
Coefficient P-Value R Square 

Adjusted R 

Square 
F 

F 

Significance 

Residual 

MS(E+10) 
Observations 

All Points 
x 144124.7226 1.36093E-06 

0.9544543 0.94503501 1163.0575 1.019E-74 145.9632 113 
x2 9194.270778 4.8065E-10 

Seasonal 
x 161472.4492 0.000905686 

0.9533704 0.92845069 429.358138 3.183E-28 157.3241 44 
x2 8592.720654 0.000215477 

Semi-annual 
x 185482.5809 0.00406476 

0.9528113 0.90917848 242.298388 3.519E-16 160.1027 26 
x2 7319.371084 0.012464836 

Annual 
x 186010.9753 0.04039358 

0.9583685 0.87824301 149.631826 3.283E-09 168.2573 15 
x2 7233.473816 0.067377214 

500 Interval 
x 173733.8695 1.98299E-07 

0.947509 0.93708833 911.57037 6.302E-65 152.0969 103 
x2 7914.132386 8.95936E-07 

1000 

Interval 

x 168149.3694 0.000347334 
0.948604 0.92757604 461.418817 1.636E-32 152.1235 52 

x2 8260.406057 0.00029692 

1500 

Interval 

x 180749.4351 0.0020667 
0.9488691 0.91701663 306.201059 1.367E-21 161.1922 35 

x2 7522.880136 0.006327387 

2000 

Interval 

x 174768.5177 0.015203389 
0.94428 0.89837915 194.889151 1.012E-14 165.3855 25 

x2 7875.154119 0.025508829 

2500 

Interval 

x 192275.5599 0.02118168 
0.9440414 0.88537706 151.833261 1.437E-11 172.4257 20 

x2 6909.817212 0.082305797 

5000 

Interval 

x 181217.628 0.147710532 
0.9488277 0.81743111 74.1672186 1.943E-05 210.3016 10 

x2 7497.467076 0.199482382 

7500 

Interval 

x 194222.2338 0.354367521 
0.9323333 0.66541667 27.55665 0.0117292 300.4669 6 

x2 6664.780888 0.515435984 
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Appendix B: Performance of different models regarding residual value prediction 

Correlation coefficient (CC) 

 

Root relative squared error (RRSE, %) 

 

 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ

M5P 0.93 0.89 0.94 0.91 0.93 0.91 0.93 0.93 0.93 0.94

KNN 0.94 0.95 0.95 0.93 0.93 0.94 0.93 0.95 0.94 0.94

RF 0.96 0.96 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96
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Relative absolute error (RAE, %) 

 

Root Mean Squared Error (RMSE, %) 

 

 

 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ

M5P 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

KNN 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

RF 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
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Mean absolute error (MAE) 

 

 

  

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ

M5P 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

KNN 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

RF 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
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Training time (millisecond) 

 

M5P KNN RF 

Ⅰ 1573.44 0 1251.6 

Ⅱ 1575 1.56 1226.6 

Ⅲ 1615.63 1.56 1248.4 

Ⅳ 1565.63 0 1229.7 

Ⅴ 1557.81 0 1228.1 

Ⅵ 1551.56 0 1246.9 

Ⅶ 1581.25 1.56 1231.3 

Ⅷ 1626.56 0 1226.6 

Ⅸ 1581.25 0 1231.3 

Ⅹ 1623.44 0 1251.6 

 

 

Testing time (millisecond) 

 

M5P KNN RF 

Ⅰ 0 40.63 35.94 

Ⅱ 0 43.75 37.5 

Ⅲ 1.56 37.5 40.63 

Ⅳ 0 35.94 37.5 

Ⅴ 1.56 42.19 34.38 

Ⅵ 1.56 35.94 32.81 

Ⅶ 0 34.38 34.38 

Ⅷ 1.56 40.63 39.06 

Ⅸ 1.56 40.63 37.5 

Ⅹ 0 35.94 39.06 
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Running time 
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