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Abstract

We present an analysis of the superposed incremental deformations of lipid membranes in contact with a circular

substrate. A complete analytical solution describing the morphological transitions of lipid membranes is obtained via

Monge parametric representation and admissible linearization. The corresponding solution demonstrates smooth and

bounded behavior within the finite domain of interest (annular) and, more importantly, shows excellent stability as it

approaches the boundary of the circular substrate with the radius of convergence compatible with a few nanometers.

Under the prescription of the superposed incremental deformations, a complete analysis of the necessary boundary

conditions, the anchoring condition of the lipid molecules on an edge, and other geometrical quantities of the membrane

is illustrated for the case of the circular substrate–membrane system.
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1. Introduction

In materials perspective, lipid membranes are not ‘simple’ in the sense of Noll [1] due to their distinct lipid
molecule configuration (phospholipids). The orientation of lipid molecules is, in general, accounted for by
introducing a director field ‘d’ in the constitutive modeling level (see, for example, [2]) further requiring the
computation of the strain gradient at each material point. This, together with the complex nature of lipid mem-
brane systems, results in highly non-linear coupled partial differential equations (PDEs), often referred to as
membrane shape equations. Despite their inherent complexity, unlike other non-linear PDE systems, membrane
shape equations enjoy a wide variety of numerical solutions with ensuing ‘smooth/stable’ behavior regard-
less of the choice of boundary conditions (Neumann, Dirichlet and/or mixed). This is mainly attributed to the
positive definiteness of the Helfrich energy potential [3] through the virtual work statement of liquid crystals
dictated by Ericksen [4, 5] and the elastic stability of the membranes with respect to uniqueness theorems
[6]. The aforementioned results further promote theoretical study of the mechanics of lipid membranes and
the resulting numerical models successfully predict various important cellular functions/phenomena such as
substrate–membrane interactions [7], thickness distensions [8] and vesicle formations [9, 10]. However, little
work has been devoted to the analytical aspects, since, in most cases, it is extremely difficult to determine analyt-
ical potentials of the corresponding PDE system satisfying the desired boundary conditions. A limited number
of analytical solutions are reported within the prescription of superposed incremental deformations [11] and
the Monge parametric surface representations (see, for example, [7, 10]), yet their practical implications may
be limited, since the solutions are defined on an unbounded infinite domain. This is due to the imposition of
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an asymptotic decay condition on a ‘remote’ boundary (physically infinite) in an effort to obtain smooth and
bounded solutions within the domain of interest (on the neighborhood of a substrate).

In this manuscript, we demonstrate a rigorous analysis of the superposed incremental deformations of lipid
membranes subjected to substrate interactions. Monge parameterization of a surface is adopted through which
a coupled PDE system is reduced to a single PDE solving the surface elevation of the membrane. In particular,
we adopt physically more deterministic boundary conditions, rather than imposing asymptotic decay conditions
on an external boundary, and obtain a complete analytic solution covering the finite domain of interest. The
resulting solution is smooth and bounded within a finite annular domain and demonstrates excellent stability
even when the radius of the inner boundary (substrate) converges to an order compatible with the nanoscale,
further indicating its ensuing practical applicability (e.g. membrane tethering experiments). In addition, a com-
plete analysis of the necessary boundary conditions is presented (including lipid anchoring conditions on an
edge) under the description of superposed incremental deformations in order to give clarity when applied to
similar kinds of problem. Lastly, we show that under a ‘small’ deformation regime there are no clear dis-
tinctions between the membrane surface (current/deformed configuration) and the projected plane (reference
configuration).

2. Preliminary: Surface geometry of lipid membranes

Let r(θα) define the parametric position vector in three-dimensional space of a point on the membrane surface
with coordinates θα. The local surface orientation is then given by n(θα) = 1

2
εαβaα × aβ , where n is a unit

vector field and aα and aβ are the tangent vectors on the deformed surface ω defined by r, α = ∂r/∂θα = aα;

and εαβ = eαβ/
√

a is the permutation tensor with a = det |aαβ |. Together, they consists local curvilinear
coordinate of a point on the membrane surface. Here, Greek indices take values of 1 and 2. Thus, for example,
we evaluate eαβ as e11 = e22 = 0, e12 = −e21 = 1. Einstein summation is applied for repeated indices. The
surface matric aαβ is defined by aαβ = aα ·aβ , where the dot stands for the conventional Euclidean inner product
on the enveloping three-dimensional surface. If a = det(aαβ) 6= 0, the inverse of the matrix surface matric aαβ

exists (i.e. aαβ = (aαβ)−1) and is referred to as the dual matrix components of aαβ . In addition, a semi-colon
denotes surface covariant differentiation. For example, aα;β is defined by [12]

aα;β = aα;β = aα,β − 0λ
αβaλ, (1)

where 0λ
αβ are the Christoffel symbols induced by the surface coordinate on ω defined as

0λ
αβ = aα,β · aλ. (2)

Here aλ is the dual basis on the deformed surface ω and is defined as aα = aαβaβ . These furnish the well-known
Gauss and Weingarten equations:

aα,β = (aα,β · aλ)aγ +(aα,β · n)n =0λ
αβaγ + bαβn;bαβ ≡ aα,β · n (Gauss), (3)

n, α = (n, α · aβ)aβ+(n, α · n)n = − bαβaβ ; bαβ ≡ −n, α · aβ (Weingarten). (4)

From equations (1) to (3), we obtain
aα;β = bαβn. (5)

Further, equation (4) can be rewritten by using the dual matrix aαβ (e.g. aαaαβ = aβ) as

n, α = −bαβaβ = −bαγ aγβaβ = −bβ
αaβ , (6)

where bαβ are the coefficients of the second fundamental form and bβ
α are the mixed components of the curvature

(covariant and contravariant). For symmetric curvature tensors, we find that

b β
α = bβ

α ≡ bβ
α for b = bT, (7)

and, from the identity (n · aβ), α = 0, the symmetric property of the second fundamental form (bαβ) can be

bαβ = −n, α · aβ = n · aβ,α = n · r, βα = bβα, (8)
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given sufficient smoothness of the parametric position vector r(θα) up to the second-order derivative (i.e r ∈ C).
Consequently, the mean and Gaussian curvatures are given by [12]

H = 1
2
aαβbαβ and K = 1

2
εαβελµbαλbβµ, (9)

where the contravariant cofactor of the curvature can be expressed as

b̃αβ = εαλεβγ bλγ , (10)

and satisfies
bβ

µb̃µα = Kaβα. (11)

3. Formulations in polar coordinates

Much of the literature simply adopts the following results when linearizing the corresponding shape equations
(under Monge representation):

r(θα) = θ+zk,

1

2
k1p(1pz) − λ1pz = P, H = 1

2
1pz, K = 0 and

a ∼= 1, n ∼= k−∇pz, aα ∼= eα + z, αk and b ∼= ∇2
p z (up to leading order), (12)

where z represents the elevation above the membrane, and 1p and ∇p are the projected Laplacian and gradient
on the working coordinate. However, the application of the above results directly in various membrane prob-
lems and may produce incorrect results, since equation (12) is sensitive to the working coordinate system. For
example, the determinant of a is not det |aαβ | = a ∼= 1; in fact, a is evaluated as a ∼= r2 in the polar coordinate
system. In addition, the surface Laplacian is often misunderstood as a conventional Laplace operator (1), espe-
cially when using the linearized formula (we will address this in detail in a later section). This further leads to
the incorrect imposition of the necessary boundary conditions. In this section, we present the rigorous derivation
of formulae regarding the superposed incremental deformations of lipid membranes in polar coordinates, which
are most often adopted in these kinds of problems for their guaranteed smoothness on boundaries.

Using polar coordinates r(θα) can be expressed as

r(θα) = rer(θ) + z(r, θ)k, er(θ) = cos θe1 + sin θe2. (13)

Accordingly, we evaluate

a1 =
∂r

∂r
= er(θ) + z, r(r, θ)k, a2 =

∂r

∂θ
= reθ (θ) + z, θ (r, θ)k, (14)

and
a11 = a1 · a1 = r2 + z2

, r, a22 = a2 · a2 = 1 + z2
, θ , a12 = a2 · a1 = a1 · a2 = z, rz, θ . (15)

Thus, the determinant of the surface matrix can be obtained:

det |aαβ | = a = r2(1 + z2
, r) + z2

, θ , (16)

and the components of the inverse matrix (aαβ = (aαβ)−1) are then

a11 =
r2 + z2

, θ

a
, a22 =

1 + z2
, r

a
, a12 = a21 = −

z, rz, θ

a
. (17)

Since aα = aαβaβ , we also find a dual basis (from equations (14 and 17))

a1 = a11a1 + a12a2 =
1

a
[(r2 + z2

, θ )er − rz, rz, θeθ + r2z, rk],

a2 =
1

a
[−rz, rz, θer + r(1 + z2

, r)eθ + z, θk]. (18)
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In addition, from equation (14), the local surface orientation can be found:

n =
a1 × a2

√
a

=
1

√
a

(−z, θeθ − rz, rer + rk). (19)

3.1. Curvature tensor, mean and Gaussian curvatures, and Laplace–Beltrami operator

Utilizing the dual basis, the curvature tensor b can be expressed as

b =bαβaα ⊗ aβ ; bαβ = aβ,α · n. (20)

Thus, for example, we evaluate

b11 = n · a1,1 =
1

√
a

rz, rr; a1,1 =
∂(er(θ) + z, r(r, θ)k)

∂r
= z, rrk, (21)

and similarly for

b12 = b21 =
1

√
a

(rz, rθ − z, θ ), b22 =
1

√
a

(r2z, r + rz, θθ ). (22)

Therefore, from equations (18) and (20) to (22), the expression of b is given by

b =
rz, rr

a2
√

a
[(r2 + z2

, θ )er − rz, rz, θeθ + r2z2
, rk] ⊗ [(r2 + z2

, θ )er − rz, rz, θeθ + r2z2
, rk]

+
rz, rθ − z, θ

a2
√

a
[(r2 + z2

, θ )er − rz, rz, θeθ + r2z2
, rk] ⊗ [−rz, rz, θer + r(1 + z2

, r)eθ + z, θk]

+
rz, rθ − z, θ

a2
√

a
[−rz, rz, θer + r(1 + z2

, r)eθ + z, θk] ⊗ [(r2 + z2
, θ )er − rz, rz, θeθ + r2z2

, rk]

+
r2z, r − rz, θθ

a2
√

a
[−rz, rz, θer + r(1 + z2

, r)eθ + z, θk] ⊗ [−rz, rz, θer + r(1 + z2
, r)eθ + z, θk]. (23)

Lastly, for H and K, we obtain from equations (9), (17), (21) and (22) that

H =
1

2a3/2
[r3z, rr + r2z, r + r2z3

, r + rz, rrz
2
, θ − 2rz, rθz, rz, θ + rz, θθ + rz, θθz2

, r + 2z, rz
2
, θ ], (24)

K =
1

a2
[r3z, rz, rr + r2z, rrz, θθ − r2z2

, rθ + 2rz, rθ − z2
, θ ]. (25)

In the case of Helfrich energy potential, W (H , K; θα = kH2 + kK) [3], the corresponding shape equation is
given by [7]

k[1H + 2H(H2 − K) − 2λH] = P, (26)

where k is an empirical constant, and λ and P are the local Lagrange multiplier and internal pressure, respec-
tively. The delta operator 1 in equation (26) reads as the Laplace–Beltrami operator. Confusion often arises
between the conventional Laplacian and the Laplace–Beltrami operator, especially when dealing with linearized
formulae. In the present local curvilinear coordinates, the Laplace–Beltrami operator can be evaluated as

1ϕ = div(gradϕ) = tr((∇ϕ), α ⊗ aα) = tr(ϕα;βaβ ⊗ aα) = ϕα;βaαβ , (27)

for any scalar-valued function ϕ, and (∇ϕ), α is given by

(∇ϕ), α = (ϕ, βaβ), a = ϕ, αβaβ + ϕ, λ(aλ
, α · aβ)aβ = (ϕ, αβ − ϕ, λ0

λ
αβ)aβ = ϕα;βaβ . (28)

Thus, 1H can be computed from the above as

1H = Hα;βaαβ = aαβ(H, αβ − H, λ0
λ
αβ)

= a11H, 11 + 2a12H, 12 + a22H, 22 − a11(H, 10
1
11 + H, 20

2
11)

−2a12(H, 10
1
12 + H, 20

2
12) − a22(H, 10

1
22 + H, 20

2
22), (29)
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where

01
12 = 01

21 = a1,2 · a1 = (eθ + z, rθ )k ·
1

a
[(r2 + z2

, θ )er − rz, rz, θeθ + r2z2
, rk]

=
rz, r

a
(−z, θ + rz, rθ ), (30)

and similarly, we have

02
12 = 02

21 =
1

a
[r(1 + z2

, r) + z, rz, θ ], 01
11 =

1

a
r2z, rz, rr, 01

22 =
1

a
[−r(r2 + z2

, r) + r2z, rz, θθ ],

02
11 =

1

a
z, rrz, θ , 02

22 =
1

a
[rz, rz, θ + z, θz, θθ ]. (31)

Lastly, from equation (18), the tangential surface gradient of a scalar-valued function is given by

∇ϕ = ϕ, αaα = ϕ, 1a1 + ϕ, 2a2 = ϕ, r

1

a
[(r2 + z2

, θ )er − rz, rz, θ + r2z, rk]

+ϕ, θ

1

a
[−rz, rz, θer + r(1 + z2

, r)eθ + z, θk]. (32)

3.2. Superposed incremental deformations in the lipid membrane theory: Polar coordinates

The formulae presented in Sections 1 and 2 can be reduced to more tractable forms under the assumption of
superposed incremental deformations (i.e. the product of derivatives can be neglected, e.g. z, rz, θ

∼= 0, provided
that the induced deformations are reasonably ‘small’). Typically, attempts are made to obtained a complete
analytic solution. Within this setting, the linearized forms of the covariant and contravariant components of the
surface matrix and the induced determinant (det |aαβ | = a ∼= 1) can be obtained as

a11 = r2 + z2
, r

∼= r2, a22 = 1 + z2
, θ

∼= 1, a12 = a21z, rz, θ
∼= 0, (33)

det |aαβ | = a = r2(1 + z2
, r) + z2

, θ
∼= r2. (34)

Thus, equations (17) and (34) yield

a11 =
r2 + z2

, θ

a
∼= 1, a22 =

1 + z2
, r

a
∼=

1

r2
, a12 = a21 = −

z, rz, θ

a
∼= 0. (35)

From equations (18) and (35), the linearized form of the dual basis is then given by

a1 ∼= er + z, rk, a2 ∼=
1

r
eθ +

1

r2
k. (36)

In addition, from equations (19) and (34), the local surface orientation can be approximated as

n ∼= k−
1

r
z, θeθ − z, rer = k−∇pz. (37)

Utilizing the results in equations (33) to (37), the components of the curvature now take the following reduced
forms:

b11 = z, rr, b12 = b21 =
1

r
(rz, rθ − z, θ ), b22 =

1

r
(r2z, r + rz, θθ ). (38)

Thus, we obtain the linearized expression of b as

b ∼=z, rr(er ⊗ er) +
rz, rθ − z, θ

r2
[(er ⊗ eθ ) + (eθ ⊗ er)] +

rz, r + z, θθ

r2
(eθ ⊗ eθ ) = ∇2

p z, (39)
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where ∇2
p z is the second gradient on the projected plane (�) and the trace of ∇2

p z is the Laplacian on � (i.e.

tr(∇2
p z) = 1pz).

Also, from equations (24), (25) and (34), the mean and Gaussian curvatures reduce to

H =
1

2a3/2
[r3z, rr + r2z, r + r2z3

, r + rz, rrz
2
, θ − 2rz, rθz, rz, θ + rz, θθ + rz, θθz2

, r + 2z, rz
2
, θ ]

∼=
1

2
[z, rr +

1

r
z, r +

1

r2
z, θθ ] =

1

2
1pz, (40)

K =
1

a2
[r3z, rz, rr + r2z, rrz, θθ − r2z2

, rθ + 2rz, rθ − z2
, θ ]∼= 0. (41)

Consequently, from equations (40) and (41) the corresponding shape equation in equation (26) becomes

k[1H + 2H(H2 − K) − 2λH] ∼=
1

2
k1pz(1pz − λ1pz) = P. (42)

Now consider the Laplace–Beltrami operator under the assumption of superposed incremental deformations.
From equations (30), (31), (35) and (36), the Christoffel symbols reduce to

01
12 = 01

21 =
rz, r

a
(−z, θ + rz, rθ )∼= 0, (43)

and similarly, we have

02
12 = 02

21 =
1

a
[r(1 + z2

, r) + z, rz, θ ]∼=
1

r
,

01
11 =

1

a
r2z, rz, rr

∼= 0, 01
22 =

1

a
[−r(r2 + z2

, r) + r2z, rz, θθ ]∼= −r,

02
11 =

1

a
z, rrz, θ

∼= 0, 02
22 =

1

a
[rz, rz, θ + z, θz, θθ ]∼= 0. (44)

Therefore, from equation (35) and the above, the leading order form of 1H is obtained as

1H = Hα;βaαβ = a11H, 11 + 2a12H, 12 + a22H, 22 − a11(H, 10
1
11 + H, 20

2
11) − 2a12(H, 10

1
12 + H, 20

2
12)

−a22(H, 10
1
22 + H, 20

2
22)

∼= H, 11 +
1

r2
H, 22 +

1

r
H, 1 = H, rr +

1

r
H, r +

1

r2
H, θθ = 1pH . (45)

Finally, from equation (32), the surface gradient of a scalar-valued function can be linearized as

∇ϕ = ϕ, αaα = ϕ, r

1

a
[(r2 + z2

, θ )er − rz, rz, θ + r2z, rk] + ϕ, θ

1

a
[−rz, rz, θer + r(1 + z2

, r)eθ + z, θk]

∼= ϕ, rer + ϕ, θ

1

r
eθ = ∇pϕ. (46)

The results presented above are clearly different from those obtained in the Cartesian coordinate system
(equation (12)).

Under the prescription of superposed incremental deformations, the corresponding surface Laplacian
(Laplace–Beltrami) and gradient reduce to their conventional counterparts on the projected plane (wp). In addi-
tion, the curvature tensor b reduces to the second gradient of z(r, θ) and its trace is the Laplacian on wp on which
the conventional plate bending theory (the Kirchhoff plate model) is built. The results further suggest that, in
the ‘small’ deformation regime, there is no clear distinction between the surface and the projected plane (similar
to the case where the Piola stress and Cauchy stress collapse in linear elasticity). In other words, the linearized
model possesses inherent limitations in the deformation analysis of lipid membranes often experiencing ‘large’
morphological transitions. On the other hand, the analytical expressions obtained from linearized theory can
still be an effective means of analysis particularly in field applications and/or experimental environments, since
they provide instant feedback of the system (e.g. correlations between parameters, visualizing dominant factors,
etc.).
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4. Membrane–substrate interaction problems with a circular substrate

Based on the formulae derived in the previous section, we consider a membrane–substrate interaction problem
in an annular domain. Utilizing Monge parameterization and under the assumption of superposed incremental
deformations, we have

1

2
k1p(1pz) − λ1pz = P, H = 1

2
1pz, K = 0 and

a = r2, n = k−∇pz, a1 = er + z, rk, a2 =
1

r
eθ +

1

r2
z, rk,

and b = ∇2
p z (up to leading order), (47)

where z(r, θ) represents the elevation of the membrane, 1p and ∇p are the Laplacian and gradient on the
projected field, and H and K are the linearized mean and Gaussian curvatures, respectively.

4.1. Edge conditions for an annular domain

The natural boundary condition for the membrane–substrate interaction is given by [7]

Fv cos γ + Fn sin γ − Mt · (∇0γ − Bt) = σ , Fτ − Mτ · (∇0γ − Bt) = 0, (48)

where 0 is the boundaries of the substrate (0i) and the surrounding bounded domain (0o), B is the curvature
tensor of 0 and σ is a wetting constant between the walls and the bulk liquid. Fv, Fn and M are the boundary
force components and moment, respectively, on ∂ω (see Figure 1). The expression of Fn is given by [7]

Fn = (τWK)
′ − (

1

2
WH ), v − (WK), β b̃αβvα. (49)

In addition, for the Helfrich-type membrane (e.g. WK = k etc.), equation (48) reduces to

Fn = kτ
′
(s) − kH, v. (50)

A membrane–substrate interaction is in general energetically unfavorable since the electrically charged Phos-
pholipids are deviated from the orientation of the substrate referenced by the unit normal N to 0 at a point on
∂ω. The corresponding anchoring condition is defined by [13]

n · N = cos γ (51)

in which γ is assigned and n is parallel to the director field (d: orientation of phospholipids) of the lipid
membranes (i.e. n · d = 1). In addition, n is the local orientation of the membrane surface (ω) and is normal to
both the tangential (τ ) and normal (v) vectors at a point on the parametric curve r(s) of the membrane. Together,
they form a local basis n = v × τ ; their projected counterparts on the coordinate plane ωp are k = vp×τ p (see
for example Figure 2 for τ and τp). In the present case, γ = π/2 (i.e. n = k = d at the interacting boundary
∂ω) indicating that the hydrophobic tail groups of the bilayer are in contact with the substrate (circular) and,
therefore, effectively shielded from the surrounding aqueous phase (see [7]). We also note here that, in the
present study, the possibility of lipid tilt is excluded (i.e. in general n · d 6= 1 in the case of a tilted lipid
membrane).

The arc length derivative of r(S) (under the Monge representation) on the projected curve can be evaluated
as (see Figure 2)

r(S)′ =
dr

dS
=

d(θ + z(θ)k)

dS
=

dθ

dS
+

(

z(θ)

dθ
·

dθ

dS

)

k = τ p + (∇pz · τp)k;
dθ

dS
≡ τp. (52)

Equation (52) is also equivalent to

r(S)′ =
dr(s)

ds

ds

dS
= τ |r(s)′|,

dr(s)

ds
≡ τ ,

ds

dS
≡ |r(s)′|. (53)
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Thus, from equations (52) and (53) we obtain

r(S)′ = τ |r(s)′|, τp + (∇pz · τp)k, and (54)

|r(s)′| = |τp + (∇pz · τp)k| =
√

1 + (∇pz · τp)2∼=1. (55)

Comparing the right-hand sides of equations (54) and (55) yields

τ ∼= τ p + (∇pz · τp)k. (56)

Utilizing the results in (47), the above further gives

v = τ × n ∼= [τ p + (∇pz · τp)k] × (k−∇pz) = v
p
+ ∇pz × τp. (57)

Now, H, v can be rewritten as

H, v =
(

∂H

∂θα

) (

∂θα

∂r

)

·
∂r

∂v
= aαH, α ·

(

∂r

∂θα

) (

∂θα

∂v

)

= aαH, α · aβvβ = v · aαH, α. (58)

By substituting equations (47) and (57) into equation (58), the leading-order expression of H, α can be evaluated
on the projected plane as

H, v = v · aαH, α = [vp + ∇pz × τp + . . . ] · [eα + z, αk + . . .]H, α

∼= vp · (eαH, α) = vp · ∇pH . (59)

Also, the arc length derivative of τ (S) on the projected curve is defined by

τ ′(S) =
dτ

dS
=

dτ

dθ
·

dθ

dS
= ∇pτ · τp. (60)

In view of equations (59) and (60), equation (50) becomes

Fn
∼=k∇pτ · τp − kvp · ∇pH . (61)

Here the expression of τ can be obtained via the curvature tensor b as

bv · τ =ττ · τ =τ , (62)

and
b =kv(v ⊗ v) + kτ (τ ⊗ τ ) + τ (τ ⊗ v+v ⊗ τ ), (63)

where b is expressed in local coordinates (n = v × τ ), kv and kτ are the normal curvatures of ω in the directions
of v and τ , respectively, and τ is the twist of the surface ω. Consequently, from equations (47), (56), and (57),
together with equation (62), we find that

τ = bv · τ ∼= [∇2
p z(vp+∇pz×τp)] · [τp + (∇pz · τp)k] ∼= τp · (∇2

p z)vp. (64)

Finally, the curvatures of the inner and outer boundaries of an annular domain are found to be

Bi = −r−1
i eθ ⊗ eθ (inner boundary: ∂ωi), Bi = −r−1

o eθ ⊗ eθ (outer boundary: ∂ωo), (65)

where ri and ro are the radii of the inner and outer boundaries of the annular domain, respectively. Hence, by
noticing the lipid anchoring condition (γ = π/2) and t = n = k at the boundaries, we find from equation (48)
that

Fv cos
π

2
+ Fn sin

π

2
− Mt ·

(

∇0

(π

2

)

− (−r−1
i eθ ⊗ eθ )t

)

= Fn = σ ,

Fτ − Mτ ·
(

∇0

(π

2

)

− (−r−1
i eθ ⊗ eθ )t

)

= Fτ = 0 (on ∂ωi), (66)

and similarly for the outer boundary:
Fn = σ , Fτ = 0 (on ∂ωo). (67)
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Figure 1. Schematic of the substrate–membrane structure.

Figure 2. Schematic of projected vector of 0: Example(τ ).

Figure 3. Schematic of the substrate–membrane interaction problem.

Figure 4. Anchoring and edge conditions on the inner and outer boundaries.
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4.2. Substrate–membrane interaction problem on an annular domain

We now consider a substrate–membrane problem under the prescription of a superposed incremental deforma-
tion and Monge representation as illustrated in Figure 3. From equation (47), we have that

2H = 1pz. (68)

Here, we further limit our analysis to the axisymmetric case considering the uniformity of the lipid distribution
over the domain of interest and geometrical characteristics of an annular membrane. From the result in equation
(68), the membrane shape equation in equation (47) becomes

1pH − µ2H = 0; µ2 = 2λ/k. (69)

Hence, from equations (68) and (69), z(r, θ) = z(r) now takes the form

z =
(

2

µ2

)

H + ϕ; 1pz = 2H =
(

2

µ2

)

1pH and

(

1

µ2

)

1pH = H , (70)

where ϕ is a harmonic function satisfying 1ϕ = 0. In the case of axisymmetry, equation (69) further reduces to

rH, rr + H, r − rµ2H = 0; µ2 = 2λ/k. (71)

Accordingly, the general solution of H(r) is then given by

H(r) = C1Jo((−i)µ3r) + C2Yo((−i)µ3r), (72)

where Jo and Yo are the Bessel functions of the first and second kind, respectively. Thus, from equations (70)
and (72), the complete analytical solution of z(r) is given by

z(r) =
(

2

µ2

)

[C1Jo((−i)µ3r) + C2Yo((−i)µ3r)] + C3Io((−i)µ3r) + C4Ko((−i)µ3r), (73)

where ϕ is the solution of the Laplace equations (i.e. 1pp = 0) expressed in terms of Bessel functions as

ϕ = C3Io((−i)µ3r) + C4Ko((−i)µ3r). (74)

Here, Io and Ko are the modified Bessel functions of the first and second kind. We note here that, again,
the emphasis is placed on seeking an analytical solution valid on a ‘finite’ domain rather than an ‘infinite’
unbounded domain. The latter case is the consequence of utilizing asymptotic decay conditions on the remote
boundary which is physically ‘less’ significant and therefore may not be suitable for direct field applications
and/or experiments.

From equations (61) and (66), on ∂�i (ri = a, τp = −eθ , vp = −er; see Figure 3), we require

Fn = k

(

∂τ

∂r
er +

1

r

∂τ

∂θ
eθ

)

· (−eθ ) − k(−er) ·
(

∂H

∂r
er +

1

r

∂H

∂θ
eθ

)

(75)

Since τ∼= τp · (∇2
p z)vp = − eθ · (−er)∇2

p z = 0 (equation (64)) and eθ · eθ = 1, the above further reduces to

Fn =
∂H

∂r
=

σi

k
on ∂�i (ri = a), (76)

and similarly on ∂�o (ro = b, τp = −eθ , vp = −er; see Figure 3) we obtain

Fn =
∂H

∂r
=

σo

k
on ∂�o (ro = a). (77)
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Figure 5. Membrane–substrate interaction z(r) with respect to σi/k when σ0/k = 0.12.

Accordingly, from equations (72), (76), and (77), the unknown constants C1 and C2 can be determined to be

C1 =
(σi

k
)Y1((−i)µ3a) − (σo

k
)Y1((−i)µ3b)

(−i)µ3[J1((−i)µ3a)Y1((−i)µ3b) − Y1((−i)µ3a)J1((−i)µ3b)]
and

C2 =
(σi

k
)J1((−i)µ3a) − (σo

k
)J1((−i)µ3b)

(−i)µ3[J1((−i)µ3a)Y1((−i)µ3b) − Y1((−i)µ3a)J1((−i)µ3b)]
. (78)

Since n = k on the boundaries (see Figure 4), equation (47) yields

n = k−∇pz → ∇pz(r) =
∂z

∂r
er +

1

r

∂z

∂θ
eθ =

∂z

∂r
er =0 on both ∂�i and ∂�o. (79)

Therefore, C3 and C4 can be found from equations (73) and (79):

C3 = −
2[(σi

k
)K1((−i)µ3a) − (σo

k
)K1((−i)µ3b)]

(−i)µ5[I1((−i)µ3a)K1((−i)µ3b) − K1((−i)µ3a)J1((−i)µ3b)]
and

C4 = −
2[(σi

k
)I1((−i)µ3a) − (σo

k
)I1((−i)µ3b)]

(−i)µ5[I1((−i)µ3a)K1((−i)µ3b) − K1((−i)µ3a)J1((−i)µ3b)]
. (80)

Consequently, the solution of z(r) is given by

z(r) =
(

2

µ2

)

[C1Jo((−i)µ3r) + C2Yo((−i)µ3r)] + C3Io((−i)µ3r) + C4Ko((−i)µ3r), (81)

where the unknown constants C1, C2, C3 and C4 are completely determined in equations (78) and (80). The
corresponding results are presented in Figures 5 to 10. We also note here that parameters (e.g. λ, k and σ ) in the
simulations are normalized unless otherwise mentioned and the adopted material properties of a membrane are
consistent with the experimental results given in [14, 15] for a lipid membrane of thickness 10 nm in a relaxed

state (i.e. k = 82 × 10−9 N·mm, k = 0). Figures 5 to 8 demonstrate that solutions for both z(r) and H(r) are
bounded and smooth within a finite domain of interest (annulus). In particular, the results in Figures 9 and 10
illustrate that the solution is smooth and stable as ri converges to a few nanometers which further indicates that
the proposed solution can be employed in membrane tethering experiments knowing the typical length scale of
a phospholipid (see, for example, [16]).

5. Conclusions

In this manuscript, we consider the superposed incremental deformations of lipid membranes interacting with a
circular substrate. Instead of employing asymptotic decay conditions on a ‘remote’ boundary, we imposed physi-
cally more realistic conditions (i.e. traction and lipid orientations) on the deterministic boundary (outer rim of an
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Figure 6. Solution of H(r) with respect to σi/k when σ0/k = 0.12.

Figure 7. Membrane–substrate interaction with respect to ro when σ0/k = 0.12, σi/k = 0.61.

Figure 8. Membrane–substrate interaction when σ0/k = 0.12, σi/k = 0.61.

annular domain) and obtained a complete analytical solution via the superposed incremental deformations and
Monge surface parameterization. The resulting solution is smooth/stable within the finite annular domain and,
more importantly, demonstrates excellent stability as the radius of the inner boundary (substrate) approaches
a few nanometers. This further promotes practical implications of the model in various field exercises such
as membrane tethering tests and bending experiments. Within the description of the superposed incremental
deformations, we conduct a complete examination of the necessary boundary conditions and other geometrical
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Figure 9. Deformations of a lipid membrane with respect to ri when ro = 0.01 m, σ0/k = 0.12, σi/k = 0.61.

Figure 10. Simulation result of tethered lipid membrane when σ0/k = 0.12, σi/k = 0.61.

quantities of membranes and illustrate that the surface deformed configuration and the projected plane (refer-
ence frame) collapses in the ‘small’ deformation regime. As such, the surface Laplacian (Laplace–Beltrami)
and gradient reduce to their conventional counterparts on the projected plane (ωp) and the corresponding cur-
vature tensor b deduces into the second gradient of z(r, θ). Its trace is found to be the Laplacian on ωp (i.e.

1pz = tr(∇2
p z)). In addition, the final deformed configuration is energetically favorable/stable within the adopted

energy functional (Helfrich) and unique by virtue of the virtual work statement [6]. A complete analysis of the
membrane anchoring condition on the boundaries (including lipid orientations) is also presented in an effort to
enhance the applicability of the presented model.
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