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Abstract— Ring vibration analysis is more challenging than 

straight beams analysis. In straight beams, the structural 

deformations depend on rotational and translational 

displacements; however, in rings, in addition to these, they also 

depend on the coupled tangential displacement caused by the 

curvature of structures. In this study, the free in-plane vibration 

problem for thin- and thick-walled rings are solved, and the 

explicit relationships between the radial, tangential, and 

rotational displacements are revealed. This paper introduces an 

analytical method for finding exact solutions for the natural 

frequencies and associated mode shapes of a ring under general 

boundary conditions. Both Euler-Bernoulli and Timoshenko 

theories are used in this work, and the corresponding results are 

compared. 

Keywords- Ring Vibration, Mode Shape, Natural Frequency, 

Euler-Bernoulli Beam, Timoshenko Beam 

 

I.  INTRODUCTION 

Rings and curved beams are widely used in many 

engineering applications. The vibration of rings has drawn the 

intensive interest of many researchers since the 19th century. 

Hoppe [1] is known as the pioneer in dealing with thin-walled 

ring vibration. The early theoretical work is summarized in the 

classical theory of Love [2]. Many later research papers in the 

ring and curved-beam analysis [3-6] are based on his curve shell 

theory. The governing differential equations presented in 

Love’s formulae were two coupled equations in the radial and 

the tangential directions. After some mathematical 

simplification, those two coupled differential equations can be 

reduced into a sixth-order ordinary differential equation with 

some constant coefficients in the tangential direction. Many 

researchers have followed this path and therefore, the bending 

theory of thin rings known as Euler-Bernoulli rings has been 

well established. However, the Love’s theory does not work 

well for thick rings known as Timoshenko rings as it does not 

consider the rotatory inertia and shear deformation. [7-11].  

Free vibration of both Euler-Bernoulli and Timoshenko rings 

without any constraints have been investigated by many 

researchers in the past by using different methods [12-16]. One 

suitable method that can also be used for both rings and even 

for the rings with constraints is known as the multiple-scales 

method. The same method has been used in the current work for 

the constrained ring. 

For a ring with different elastic supports, the free vibration is 

inevitably more complicated. Represented works on free 

vibration of constrained rings include [8,17-24]. Similar to free-

ring studies, here also different methods have used to study 

rings on elastic supports such as transfer matrix, Galerkin, 

perturbation, and other finite element methods. 

Due to the large amount of work that has been developed in the 

above categories, the small amount of work previously carried 

out on the response of a ring under general boundary conditions, 

and from the few works in this area, almost all studied only the 

Euler-Bernoulli rings and took advantage of various numerical 

solutions. To the author’s best knowledge, no work has been 

done to express the mode shape of a ring with general boundary 

conditions in a closed-form formulation. It is the aim of this 

paper to bring together the current work on such a case, to 

provide a single point of reference for solution methodology, 

and compare the results in both cases i.e., Euler-Bernoulli and 

Timoshenko theories.  

This paper is organized as below: In section 2, the in-plane 

vibrational equations for both theories are derived, individually. 

Mode shapes and boundary conditions are discussed in sections 

3 and 4, respectively. A case study is investigated in section 5, 

and conclusions are given in section 6. 

II. DYNAMIC MODEL 

Fig. 1 shows a ring that is mounted to its frame, and Fig. 2 

represents that ring by its centerline, which is considered to 
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remain undeformed. To avoid complexity in deriving the 

governing equations, the following assumptions are considered: 

• The rigidity of the ring i.e., 𝐸𝐼 is assumed constant. 

• The ring is being held by 𝑛 bolted supports resulting 

in dividing the ring perimeter into 𝑛 identical, equally 

spaced segments 

        
Figure 1. A ring and the graphical 

location of each support 

Figure 2. Representation of each 

support with three springs 

To derive the governing equations, a typical element of the ring 

at an arbitrary position of 𝜃 is selected (Fig. 3). Fig. 4 represents 

this element. The forces and moments acting on this element 

can be expressed as functions of deformation components. The 

positive directions for normal force 𝑁, shear force 𝑄, and the 

in-plane bending moment 𝑀 are shown in Fig. 4. 

      

            Figure 3. Ring centerline                     Figure 4. Element of a ring 

Neglecting the small quantities of high order terms will result 

in the following equilibrium equations in tangential 𝑤, radial 𝑢, 

and rotational motion 𝜑 around the 𝑤 axis. 

𝜕𝑄

𝜕𝜃
+ 𝑁 = 𝜌𝐴𝑅 �̈�  () 

𝜕𝑁

𝜕𝜃
− 𝑄 = 𝜌𝐴𝑅 �̈�  () 

𝜕𝑀

𝜕𝜃
+ 𝑅. 𝑄 = 𝜌𝐼𝑅 �̈�  () 

where 𝑅  is the radius of ring centerline, 𝜌 is the total mass 

density, 𝐴 is the cross-sectional area, and 𝐼 is the moment of 

inertia of the area 𝐴 about 𝑤 axis. 

 
2.1 Equation derivation for Timoshenko ring  

In Timoshenko beam theory for thick-walled rings, the 
effects of rotary inertia and shear deformation are both 
considered. In this section, the goal is to present a closed-form 
formulation for the system vibrational equation by solving (1-3). 
To do so, the following parameters need to be defined. 

The rotation of a cross-section 𝜑, the moment M and the 
normal force N are represented as below [3,24,26]: 

𝜑 =
1

𝑅
(

𝜕𝑢

𝜕𝜃
+ 𝑤 − 𝑅𝛾)  () 

𝑀 =
𝐸𝐼

𝑅
(

𝜕𝜑

𝜕𝜃
) =

𝐸𝐼

𝑅2 (
𝜕2𝑢

𝜕𝜃2
+

𝜕𝑤

𝜕𝜃
− 𝑅

𝜕𝛾

𝜕𝜃
)  () 

𝑁 =
𝐸𝐴

𝑅
(

𝜕𝑤

𝜕𝜃
− 𝑢) −

𝑀

𝑅
 =  

𝐸𝐴

𝑅
(

𝜕𝑤

𝜕𝜃
− 𝑢) −

𝐸𝐼

𝑅2 (
𝜕𝜑

𝜕𝜃
)  () 

where 𝛾 is the shear deformation. 

Given that the centerline is assumed inextensible, the following 
relation is held [3]: 

𝑢 =
𝜕𝑤

𝜕𝜃
 () 

Equation (7) is called the inextensibility condition. Under this 

condition, the relationship between the shear force and the 

bending moment can be derived as. 

𝑄 = −𝑘′𝐴𝐺𝛾 = −
𝑘′𝐴𝐺

𝑅
(

𝜕𝑢

𝜕𝜃
+ 𝑤 − 𝑅𝜑) () 

By inserting (4-8) into (1-3) and doing some simplifications, (9) 
can be produced as follow: The detailed derivation can be found 
in many publications, such as [3,12,24]; thus, it is not given here 
for the sake of brevity. 

𝜕6𝑤(𝜃,𝑡)

𝜕𝜃6 + 2
𝜕4𝑤(𝜃,𝑡)

𝜕𝜃4 +
𝜕2𝑤(𝜃,𝑡)

𝜕𝜃2 = (
𝑅2𝜌

𝐸
+

𝑅2𝜌

𝑘′𝐺
)

𝜕6𝑤(𝜃,𝑡)

𝜕𝑡2 𝜕𝜃4 −

(
𝑅4𝜌2

𝐸𝑘′𝐺
)

𝜕6𝑤(𝜃,𝑡)

𝜕𝑡4 𝜕𝜃2 + (2
𝑅2𝜌

𝐸
−

𝑅2𝜌

𝑘′𝐺
−

𝑅4𝜌𝐴

𝐸𝐼
)

𝜕4𝑤(𝜃,𝑡)

𝜕𝑡2 𝜕𝜃2 +

(
𝑅4𝜌2

𝐸𝑘′𝐺
)

𝜕4𝑤(𝜃,𝑡)

𝜕𝑡4 + (
𝑅2𝜌

𝐸
+

𝑅4𝜌𝐴

𝐸𝐼
)

𝜕2𝑤(𝜃,𝑡)

𝜕𝑡2   

() 

Equation (9) can be solved with the variables separated by 

assuming the following. 

𝑤(𝜃, 𝑡) = ∑ 𝐶𝑗  Ψ𝑗(𝜃) q𝑗(𝑡)∞
𝑗=1 ≃ Ψ(𝜃) 𝑞(𝑡)  () 

q𝑗(𝑡) = 𝐵𝑗  exp(𝑖𝜔𝑗𝑡)  () 

where Ψ(𝜃)  is the mode shape and 𝑖  is the imaginary unit 

number 𝑖 = √−1. Substituting (10) into (9) gives  

𝜕6Ψ

𝜕𝜃6
+ 𝐻1

𝜕4Ψ

𝜕𝜃4
+ 𝐻2

𝜕2Ψ

𝜕𝜃2
+ 𝐻3Ψ = 0  () 

where: 

𝐻1 = 2 + (
𝑅2𝜌

𝐸
+

𝑅2𝜌

𝑘′𝐺
) 𝜔2 () 

𝐻2 = 1 + (2
𝑅2𝜌

𝐸
−

𝑅2𝜌

𝑘′𝐺
−

𝑅4𝜌𝐴

𝐸𝐼
) 𝜔2 + (

𝑅4𝜌2

𝐸𝑘′𝐺
) 𝜔4 () 

𝐻3 = (
𝑅2𝜌

𝐸
+

𝑅4𝜌𝐴

𝐸𝐼
) 𝜔2 − (

𝑅4𝜌2

𝐸𝑘′𝐺
) 𝜔4 () 

 

2.1 Equation derivation for Timoshenko ring  

In Euler-Bernoulli beam theory for thin-walled rings, the 
effects of rotary inertia and shear deformation are both 
neglected. Thus, some modifications must be applied into the 
equations derived in the previous section. In this scenario, the 
rotation of a cross-section 𝜑, the moment M and the normal 
force N can be represented as below [3,12,24,26]: 



3 

 

𝜑 =
1

𝑅
(

𝜕𝑢

𝜕𝜃
+ 𝑤)  () 

𝑀 =
𝐸𝐼

𝑅
(

𝜕𝜑

𝜕𝜃
)  () 

𝑁 =
𝐸𝐴

𝑅
(

𝜕𝑤

𝜕𝜃
− 𝑢) −

𝑀

𝑅
 =  

𝐸𝐴

𝑅
(

𝜕𝑤

𝜕𝜃
− 𝑢) −

𝐸𝐼

𝑅2 (
𝜕𝜑

𝜕𝜃
)  () 

Furthermore, the relationship between the shear force and the 

bending moment can be derived as: 

𝑄 = −
1

𝑅

𝜕𝑀

𝜕𝜃
= −

𝐸𝐼

𝑅
(

𝜕2𝜑

𝜕𝜃2)  () 

The terms containing 𝜌𝐼 in (9) are due to rotary inertia and they 

must be removed for the Euler-Bernoulli beam. By defining 

𝑟𝑔𝑦 = √𝐼/𝐴 as the radius of gyration of cross-sectional area A 

about the 𝑤 axis, it can be shown that 
𝑅2𝐴

𝐼
= (

𝑅

𝑟𝑔𝑦
)

2

. Thus, the 

influence of rotary inertia is dependent on the thickness ratio 
𝑅

𝑟𝑔𝑦
 . By doing those simplifications, the in-plane vibration 

equation of a Euler-Bernoulli ring can be represented in the 

following form.  
𝜕6𝑤(𝜃,𝑡)

𝜕𝜃6
+ 2

𝜕4𝑤(𝜃,𝑡)

𝜕𝜃4
+

𝜕2𝑤(𝜃,𝑡)

𝜕𝜃2
+

𝑅4𝜌 𝐴

𝐸 𝐼
 

𝜕2

𝜕𝑡2
[

𝜕2𝑤(𝜃,𝑡)

𝜕𝜃2
−

𝑤(𝜃, 𝑡)] = 0  
() 

Substituting (10) into (20) gives  

𝜕6

𝜕𝜃6
Ψ(𝜃)𝑞(𝑡) + 2

𝜕4

𝜕𝜃4
Ψ(𝜃)𝑞(𝑡) +

𝜕2

𝜕𝜃2
Ψ(𝜃)𝑞(𝑡) +

𝑅4𝜌 𝐴

𝐸 𝐼
 [

𝜕2Ψ(𝜃)

𝜕𝜃2
− Ψ(𝜃)] �̈�(𝑡) = 0  

() 

Inserting (11) into above, produces 

[
𝜕6Ψ(𝜃)

𝜕𝜃6 + 2
𝜕4Ψ(𝜃)

𝜕𝜃4 +
𝜕2Ψ(𝜃)

𝜕𝜃2 ] exp(𝑖𝜔𝑡) −

𝑅4𝜌 𝐴 𝜔2

𝐸 𝐼
 [

𝜕2Ψ(𝜃)

𝜕𝜃2 − Ψ(𝜃)] exp(𝑖𝜔𝑡) = 0   
() 

The following must be true if the above holds.  

𝜕6Ψ(𝜃)

𝜕𝜃6
+ 𝑎 

𝜕4Ψ(𝜃)

𝜕𝜃4
+ 𝑏 

𝜕2Ψ(𝜃)

𝜕𝜃2
+ 𝑐 = 0  () 

where: 

𝑎 = 2 () 

𝑏 = 1 − Ω2 () 

𝑐 = Ω2 () 

Ω = 𝑅2√𝜌 𝐴 𝐸 𝐼⁄ 𝜔  () 

 

III. SOLUTION STRATEGY 

Assuming (12) for a Timoshenko ring or (23) for a Euler-

Bernoulli ring has a solution of the following form 

Ψ(𝜃) = 𝐴 𝑒  Υ 𝜃 () 

The procedure for the Euler-Bernoulli ring is explained below. 

Same methodology can be followed for the Timoshenko ring 

that is not given here for the sake of brevity. 

Substituting (27) into (23) gives the following algebraic 

equation.  

Υ6 + 𝑎 Υ4 + 𝑏 Υ2 + 𝑐 = 0 () 

Equation (28) can be simplified by letting 𝜆 = Υ2 

𝜆3 + 𝑎 𝜆2 + 𝑏 𝜆 + 𝑐 = 0 () 

It is straightforward to solve (29). The roots of (29) can be 

expressed as 𝜆𝑟(𝑟=1-3). Once 𝜆𝑟  are obtained, Υ𝑠(𝑠=1-6) can 

be easily calculated by Υ𝑠 = ±√𝜆𝑟 . To solve (29), a 

discriminant parameter Δ is defined as below [26]. 

Δ = 𝑆3 +  �̅�2  () 

where: 

S̅ =
1

9
(3𝑏 −  𝑎2)  () 

R̅ =
1

54
(9𝑎𝑏 − 27𝑐 − 2𝑎3)  () 

Equation (27) now can take the form of 

Ψ(𝜃) = 𝐴1𝑒√𝜆1𝜃 + 𝐴2𝑒−√𝜆1𝜃 + 𝐴3𝑒√𝜆2𝜃 + 𝐴4𝑒−√𝜆2𝜃 +

𝐴5𝑒√𝜆3𝜃 + 𝐴6𝑒−√𝜆3𝜃  
() 

𝜆𝑟  (𝑟 = 1,2,3) takes different forms based on the discriminant 

Δ. This is discussed below: 

•   Δ > 0 : There are one real root and two complex 

roots, which are complex conjugates.  

•  Δ = 0: All three roots are real; however, two of them 

are identical. In other words, there are a set of repeated 

roots in the system. In this case, the corresponding 

terms of (33) associated with the repeated roots will 

take the forms of (𝐴𝑟𝑒𝑝 + 𝐴𝑟𝑒𝑝+1𝜃)𝑒
√𝜆𝑟𝑒𝑝𝜃

.  

•  Δ < 0: All roots are real and distinct. For this case, the 

discriminant is expressed below: 

Δ = −
𝑐3

27
+

71 𝑐2

108
−

2 𝑐

27
 () 

Depending on the three cases above, the mode shape will take 

different forms, which are discussed in the next section. 

 

IV. COMPATIBILITY AND EQUILIBRIUM CONDITIONS 

Assuming the 𝑛 bolts are equally spaced as shown in Fig. 2. 

The angle between any two adjacent supports 𝜁 is as below: 

𝜁 =
2𝜋

𝑛
 () 

The radial displacement 𝑢  and rotational motion 𝜑  can be 

determined once tangential displacement 𝑤 is found. They can 

be expressed as below with the mode shape. 

𝑢(𝜃, 𝑡) = ∑ 𝐷𝑗  𝑈𝑗(𝜃) q𝑗(𝑡)∞
𝑗=1 ≃ 𝑈(𝜃) 𝑞(𝑡)  () 

𝜑(𝜃, 𝑡) = ∑ 𝐸𝑗  Φ𝑗(𝜃) q𝑗(𝑡)∞
𝑗=1 ≃ Φ(𝜃) 𝑞(𝑡)  () 

Then the boundary conditions for a bolt support are represented 

as below:  
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Ψ𝑖(𝜃𝑖) = Ψ𝑖+1(𝜃𝑖) () 

U𝑖(𝜃𝑖) = U𝑖+1(𝜃𝑖) () 

Φ𝑖(𝜃𝑖) = Φ𝑖+1(𝜃𝑖) () 

𝑁𝑖(𝜃𝑖) = 𝑁𝑖+1(𝜃𝑖) − 𝑘𝑡Ψ𝑖(𝜃𝑖) () 

�̅�𝑖(𝜃𝑖) = �̅�𝑖+1(𝜃𝑖) − 𝑘𝑟U𝑖(𝜃𝑖) () 

�̅�𝑖(𝜃𝑖) = �̅�𝑖+1(𝜃𝑖) − 𝑘𝑠Φ𝑖(𝜃𝑖) () 

Equations (36-43) simply state the continuity of the tangential, 

the radial, and the rotational displacements across the support. 

Φ, �̅�, �̅�, and �̅� are the rotation angle, the normal force, the 

shear force, and the bending moment of the cross-section at the 

support. They are calculated according to (4-6,8,16-19) as [12]: 

𝑁 =
𝐸𝐴

𝑅
(

𝜕Ψ

𝜕𝜃
− 𝑈) −

𝐸𝐼

𝑅2 (
𝜕Φ

𝜕𝜃
)             () 

�̅� =
𝐸𝐼

𝑅
(

dΦ

dθ
)          () 

Φ𝐸𝐵 =
1

𝑅
(

𝜕𝑈

𝜕𝜃
+ Ψ)     (−a) 

Φ𝑇 =
1

𝑅
(

d2Ψ

dθ2
+

𝐸𝐼/𝑅2

𝜌𝐴𝑅2𝜔2 − 𝐸𝐴
Ψ) (−b) 

�̅�𝐸𝐵 = −
𝐸𝐼

𝑅2
(

d2Φ

dθ2
) (−a) 

�̅�𝑇 = −
𝑘′𝐴𝐺

𝑅
(

𝜕𝑈

𝜕𝜃
+ Ψ − 𝑅Φ𝑇) (−b) 

where the indices “EB” and “T” represent Euler-Bernoulli and 

Timoshenko, respectively. Same methodology can be used for 

both theories, however, the correct versions of (47,48) need to 

be used for each scenario.  

For an inextensible ring, 𝑢 =
𝜕𝑤

𝜕𝜃
 (45) can then be shortened into 

�̅� = −
𝐸𝐼

𝑅2 (
𝜕𝜑

𝜕𝜃
)  () 

By substituting (34,45-49) into (39-44), the following equations 

can be obtained. 

∑ (𝐴𝑖,𝑘 − 𝐴𝑖+1,𝑘) 𝑒  Υ𝑘 𝛽𝑠6
𝑘=1 = 0                                           () 

∑ (𝐴𝑖,𝑘 − 𝐴𝑖+1,𝑘) Υ𝑘 𝑒  Υ𝑘 𝛽𝑠6
𝑘=1 = 0  () 

∑ (𝐴𝑖,𝑘 − 𝐴𝑖+1,𝑘) (1 + Υ𝑘
2) 𝑒  Υ𝑘 𝛽𝑠6

𝑘=1 = 0  () 

∑ [(−
𝐸𝐼

𝑅3
(Υ𝑘

3 + Υ𝑘) + 𝑘𝑡) 𝐴𝑖,𝑘

6

𝑘=1

+
𝐸𝐼

𝑅3
(Υ𝑘

3 + Υ𝑘) 𝐴𝑖+1,𝑘] 𝑒  Υ𝑘 𝛽𝑠 = 0  

() 

∑ [(−
𝐸𝐼

𝑅3
(Υ𝑘

3 + Υ𝑘) + 𝑘𝑟) 𝐴𝑖,𝑘

6

𝑘=1

+
𝐸𝐼

𝑅3
(Υ𝑘

3 + Υ𝑘) 𝐴𝑖+1,𝑘] Υ𝑘 𝑒  Υ𝑘 𝛽𝑠 = 0 

() 

∑ [(
𝐸𝐼

𝑅2
Υ𝑘 +

𝑘𝑠

𝑅
) 𝐴𝑖,𝑘 − (

𝐸𝐼

𝑅2
Υ𝑘) 𝐴𝑖+1,𝑘] (1 + Υ𝑘

2) 𝑒  Υ𝑘 𝛽𝑠6
𝑘=1 =

0  
() 

where "𝛽𝑠" is the position of the selected node (or the support).  

For each support, six equations, (50-55) can be formed. The 

whole ring then has 6n equations, which can be recast into 

compact matrix form of: 

 () 

where 𝐺(𝜔) is a matrix of 6𝑛 × 6𝑛. For the particular case of 

four supports n=4, 𝐺(𝜔) are given in Appendix A. 

A non-trivial solution of (56) exists if the determinant of 𝐺(𝜔) 

is zero. By solving 
|𝐺(𝜔)| = 0, () 

the natural frequencies 𝜔  will be obtained. Then the mode 

shape can be obtained through (57). 

 

V. CASE STUDY 

A symmetrically supported ring with a rectangular cross-

section is studied in this section. The ring is supported by four 

equally spaced bolts (n=4). The parameters of the ring and 

supports are given in Table 1 below.  

Table 1 Parameters of a ring. 

 

Following the methodology explained in section 4, (56) can be 

derived for both Euler-Bernoulli and Timoshenko theories. For 

instance, the detailed entries of the matrix in Euler-Bernoulli 

case are presented in Appendix A. Equation (57) generally must 

be solved numerically for either case. In this paper, the Maple 

package is used. The first six natural frequencies are found by 

using the modified Newton-Raphson and Bisection methods as 

given in Table 2.  

Table 2 System natural frequencies. 

 

Once natural frequencies of the system are obtained, the 

corresponding mode shape functions for each of those natural 

frequencies can be plotted by using (34). Figs, (5,6) illustrate 

the mode shape in a radial direction about the ring centerline for 

the first and second natural frequency, respectively. 
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Figure 5. Radial mode shape 

corresponding to 𝜔1 

Figure 6. Radial mode shape 

corresponding to 𝜔2 

 

In the figures, the dashed lines represent the undeformed 

shapes, and the solid lines are the mode shapes with 

deformation. It is noted that only the radial displacement is 

visible. 

 

VI. CONCLUSIONS 

This paper represents an analytical method to derive natural 

frequencies and mode shapes of a thin- or thick-walled ring 

under general boundary conditions. Results categorized in 

Table 2 shows that for the first three natural frequencies, the 

Timoshenko theory predicts lower numbers in comparison with 

the Euler-Bernoulli theory, unlike for higher frequencies where 

the Euler-Bernoulli theory is more conservative. This is because 

for low frequencies, the effects of shear deformation and rotary 

inertia are significant and that will result in lower natural 

frequencies of the vibrating system when the Timoshenko 

theory is in use. 
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