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Abstract

Field Cancerization is a hypothesis for the formation of cancer in certain types

of tissues. It proposes the idea that a tumour can form in a “field” of cells that

are predetermined for the development of cancer. Further, it is hypothesized

that these fields are mainly caused by the onslaught of carcinogens on the

tissue. Lastly, field cancerization proposes that tumour recurrence is related

to the tumour being excised without fully removing the surrounding field.

The model we propose is a hybrid cellular automaton (CA) used to verify

the previously stated propositions and determine how long cancer development

will take. The CA is considered to be hybrid due to its’ rule depending on the

results of partial differential equations (PDEs) and a multi-layer perceptron

(MLP). The PDEs represent the spread of carcinogens in the tissue, while the

MLP computes the effects of the carcinogens on the gene expression of the

genes related to cancer development in the tissue under consideration.

We apply the model to field cancerization of the tongue. Most of the

parameters of the model were chosen and are not based upon real data, as

the necessary data was not available. This includes the choice of substitut-

ing nicotine, which is a mutagen but not currently listed as a carcinogen, to

represent the carcinogen impacts of smoking tobacco. According to Health

Canada tobacco contains over 4,000 chemicals, of which more than 70 are car-

cinogens [25]. Many researchers are investigating how nicotine contributes to

the development of cancer due to its use in non-tobacco products such as e-

cigarettes and nicotine patches. One such study by Sanner & Grimsrud [121]
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suggests that nicotine has several cancer-causing effects including speeding up

cell growth, it is poisonous to cells, it kick-starts a process that is an im-

portant step in the path toward malignant cell growth, and it decreases the

tumour suppressor CHK2. Therefore, we considered the readily available data

with regards to nicotine as an appropriate choice to substitute for the over

70 carcinogens in tobacco. The other carcinogen considered in this thesis is

ethanol to represent alcohol consumption. It was found that nicotine was a

more potent carcinogen than ethanol. The combined impact of both ethanol

and nicotine resulted in more aggressive cancer growth. It was verified that re-

moving the field results in recurrence taking longer to occur than if the field is

not removed. We also tracked cell lineages and found that as the field develops,

the number of distinct cell lines decreases. Finally, we found that most tumour

masses formed via polyclonal origin instead of monoclonal origin, though both

occur within the simulations.
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Chapter 1

Introduction

1.1 Biological Introduction

Cancer initialization (carcinogenesis) is an important topic of research due to

its applications in early detection of tumours and treatment strategies. There

exists many different hypothesis on the matter but we shall discuss just one,

namely, field cancerization. However, before delving into field cancerization the

concepts of carcinogenesis and cancer stem cells (CSCs) should be introduced.

1.1.1 Carcinogenesis

Most carcinogenesis models consider that cancer is initialized from the result of

a multi-step process. A normal cell does not become a cancer cell until multiple

genetic alterations accumulate within it. The number of genetic alterations in

a cancer cell is an indicator of the level of malignancy of the cell.

Gatenby & Gillies [51] found six micro-environmental barriers for a malig-

nant phenotype: apoptosis with loss of basement membrane contact, inade-

quate growth promotion, senescence (deterioration of a cells’ power of division

and growth with age), hypoxia (deficiency in the amount of oxygen reaching

the tissues), acidosis (excessively acidic condition of the body fluids or tis-

sues), and ischaemia (restriction of blood supply to tissues, causing hypoxia).

The development of cancer occurs when a normal cell overcomes at least one of

these barriers. Thus, the micro-environment is an important factor to consider

in cancer initialization.

A normal cell lineage can acquire epimutations, termed mutations in Cur-
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tius et al. [31], that are positively selected in the micro-environment of a

healthy organ. Not only do carcinogens cause mutations, the natural aging

process of tissue can as well, because mutations accrue in such tissues [15].

Considering that all mutant cells are cancerized, the entire body becomes in-

creasingly cancerized as it grows older [31]. A driver mutation is one that

confers growth or survival advantages for tumour cells within the appropriate

micro-environment [22, 61, 139]. A passenger (neutral) mutation is one that

passively accumulates in cell lineages [22, 61, 139]. It may be that some driver

mutations are not currently affecting cancer growth but instead had previ-

ously driven the growth of an ancestral lineage [31]. Progression to cancer

usually requires the accumulation of multiple driver mutations [157]. A mu-

tant lineage/clone, can grow to produce large patches, or fields, of cells that

are predisposed to eventually progress to neoplasm.

The stromal micro-environment is a key regulator of self-renewal in the

epithelium [33]. Epithelium is one of the four basic types of animal tissue,

along with connective, muscle and nervous tissue [42]. Epithelial tissues line

the outer surfaces of organs and blood vessels throughout the body, as well as

the inner surfaces of cavities in many internal organs [42]. Epithelial tissue is

organized into two different types: glandular and squamous [42]. A gland is

one or more cells that produce and secrete a specific product [42]. Glandular

tissue has two types: exocrine (secrete their products (enzymes, mucus, milk,

etc.) into ducts that lead directly to the external environment), endocrine

glands (secrete their products (hormones) directly into the bloodstream) [56].

Exocrine glandular epithelium tissues include salivary glands, the esophagus,

gastric glands, intestinal glands, pancreatic glands, mammary glands, and

sweat glands [56]. Examples of endocrine glandular tissues include pituitary

glands, thyroid glands, parathyroid glands, adrenal glands, pancreas, gonads,

and pineal glands [56]. Squamous epithelium tissue is a single layer of flat

cells in contact with the basal lamina of the epithelium [131]. It is often

permeable and occurs where small molecules need to pass quickly through

membranes via filtration or diffusion [131]. Some examples of squamous tissue

include the skin, walls of capillaries, linings of the pericardial, pleural cavities,
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peritoneal cavities, and linings of the alveoli of the lungs [131]. The tissue

architecture constrains evolution by limiting the ability of mutant clones to

expand [91], so understanding the differences between mutant clone expansions

in glandular and squamous tissue is important. In glandular epithelium a

mutant clone undergoes niche successions, where a mutant stem cell (SC) in

the gland replaces all other SCs; after which the mutant glands produces a

field of mutant glands by gland fission [7, 60, 95, 103]. Epithelial cells within a

squamous tissue expand by basal replacement of neighbouring SCs [1, 30, 36,

79]. During normal homeostasis basal cells proliferate to produce differentiated

progeny that then form the superficial layers of the epithelium [145]. Any new

basal cells compete to grow a patch by lateral replacement of one progenitor

cell by another [145].

Phenotypic change is caused by either individual high-impact mutations

or epistasis among a group of mutations that require each other [31]. As well,

large-scale mutational events that simultaneously alter expansive parts of the

genome will elicit phenotypic change [84, 135]. Micro-environmental factors

provide selective pressures for phenotype adaptation in which cells explore

the adaptive landscape (via genetic mutations or phenotypic plasticity), and

genotypes of lineages reflect the phenotype that survived [31]. Curtius et al.

[31] consider only phenotypes that are cancer-related when discussing cancer

development and initiation, thus they exclude regions of tissue having DNA

damage or passenger mutations and oncogene or tumour suppressor gene mu-

tations that are not currently active. It is important to note that cancerized

phenotypes may be subtle and/or lasting only for a short time [31], making

them hard to detect. Phenotypic consequences of a driver mutation may be

context dependent, so the existence of a driver mutation may not be sufficient

to cause a phenotypic change in the current micro-environmental condition

[31]. Due to the fact that crypt fission is the main mechanism in glandular

tissue development, a mutation that increases upregulation of crypt fission

is a cause for carcinoma development or initialization [31]. Mutations that

help cells adhere to the basal membrane influence carcinoma development in

squamous tissue because they will not allow those cells to migrate and differ-
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entiate, thus causing the mutated cells to expand and/or replace neighbouring

cells [31].

1.1.2 Cancer Stem Cells

Before discussing cancer stem cells (CSCs) it should be noted that there is

no standardized definition of CSCs but instead many slightly different ones,

some of which even contradict each other. Typically the definition of CSCs

composed by researchers is such that it suits their current work. CSCs are not

SCs, they are cells that have some of the characteristics of SCs.

SCs are biological cells that can differentiate into other types of cells and

divide to reproduce more of the same type of SCs. There are two types of

SCs: embryonic and somatic (adult). In the case of carcinogenesis we only

consider somatic SCs, for simplicity we will term a somatic SC as a normal

SC (NSC). These are found in all tissues, particularly bone marrow, fat cells,

and blood, in which their function is to maintain and repair the tissue. NSCs

undergo two types of cell division namely, symmetric (produces two identical

SCs) and asymmetric (produces one SC and a progenitor cell) [8]. A cell is a

SC if it has the following two properties: self-renewal and potency (potential

to differentiate into different cell types).

In the context of SCs, self-renewal is considered the ability to achieve nu-

merous cycles of cell division while maintaining the undifferentiated state. One

way that self-renewal can be obtained is through obligatory asymmetric repli-

cation. Another mechanism of self-renewal is stochastic differentiation, which

occurs when simultaneously one SC develops into two differentiated daugh-

ter cells while another SC undergoes symmetric division. Progenitors move

through several rounds of cell division before terminally differentiating into a

mature cell [8].

Types of potency include totipotent (omnipotent), pluripotent, multipo-

tent, oligopotent, and unipotent. Totipotent SCs can differentiate into em-

bryonic and extra-embryonic cell types, which results in the construction of a

complete organism [123]. Pluripotent SCs are descendants of totipotent cells

and can differentiate into nearly all cells, i.e., cells derived from any of the
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three germ layers (endoderm, mesoderm, ectoderm) [123]. Pluripotent NSCs

are rare and small in number but they can be found in tissues. Multipotent

SCs can differentiate into a number of cell types, but only those of a closely re-

lated family of cells [123]. Unipotent cells can produce only one cell type, their

own, but have the property of self-renewal [123]. Most NSCs are multipotent

and named based upon their tissue of origin.

Cancer stem cells (CSCs) are multipotent cells in a tumour that like NSCs

have self-renewal, but in addition, have the abilities of tumour initiation, mi-

gration and metastasis [13, 20]. Another definition, is a small population of

cells within the tumour that are tissue specific, slow dividing and with un-

limited self-renewal capacity [21]. CSCs are critical in tumour initiation and

progression, through their interaction with cancer cells and the extracellular

matrix [26]. A CSC differs from an NSC in that it has deregulated proliferative

capacity and can have metastatic properties [21, 165].

The origin of CSCs is explained by three possible processes. The first

process states that an NSC undergoes several genetic as well as epigenetic

alterations to give rise to a CSC [43]. The second process states that CSCs

originate from NSCs that acquire a precancerous phenotype during its’ devel-

opment stage [14, 43, 58]. The third process states that the CSC originate

from mature tumour cells [35, 69, 81, 98] or epithelial cells [14, 43, 58] that

undergo dedifferentiation into a SC through modifications in signaling path-

ways and regulatory mechanisms. Note that the first and second processes

only differ in whether an NSC acquires a genetic alteration when it is fully

developed or still in development.

1.1.3 Field Cancerization

The idea of field cancerization was first mentioned by Slaughter et al. [133] in

1953 when histologically observing 783 squamous-cell tumours in oral cancers.

Within the entire patient population it was found that benign epithelium sur-

rounding the malignant tumour was abnormal. As well some of the patients

had multiple separate tumours occur in the same area of the oral cavity. From

these observations they proposed a process termed field cancerization, in which
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a carcinogenic agent preconditions an area of epithelium towards cancer. If a

carcinogenic agent is exposed to an area of epithelium for a sufficient amount

of time and with enough intensity then it produces irreversible changes in

cells and cell groups, such that the process toward cancer becomes inevitable

[133]. Slaughter et al. [133] also hypothesized, that a field of preconditioned

epithelium may develop cancer at multiple points and possibly lead to multi-

ple tumours. As a result, they do not believe cancer arises from one cell that

suddenly becomes malignant but instead from areas of precancerous change.

From their hypotheses, Slaughter et al. [133] consider that local recurrence

after surgery or radiation occurs due to left-over benign epithelium that is

preconditioned towards cancer, i.e., from the remaining field. Many papers

were written following Slaughter et al. [133], that showed field cancerization

can be found in colon carcinoma in patients with [49, 80, 83, 150] IBD (irri-

table bowl syndrome) and without IBD [2, 5, 32, 66, 74, 78, 96, 127], gastric

carcinoma [63, 76, 95, 144, 148, 163, 164], aesophogeal squamous carcinoma

[27, 75, 82, 92, 106, 118, 162], aesophgeal adenocarcinoma [50, 89, 90, 149],

non-small-cell lung squamous carcinoma [28, 47, 72, 93, 110, 134, 137], non-

small-cell lung adenocarcinoma [57, 73, 87, 101, 158], small-cell lung carcinoma

[57, 73, 87, 101, 161], head and neck squamous cell carcinoma (HNSCC) (oral,

oropharanx, hypopharanx, larynx) [4, 16, 18, 23, 102, 108, 126, 133, 151],

breast carcinoma [39, 40, 46, 117, 146], cervix [29], prostate carcinoma [64,

104, 147], bladder carcinoma [65, 155, 156], skin carcinoma [71, 77, 138, 140,

154], melanoma [125], and blood cancer [53, 61, 99].

At the time Slaughter et al. [133] were conducting their research, the study

of genetics was in its infancy, so they could only create hypotheses based on

histological observations. The desire to understand cancer from a molecu-

lar perspective brought about studies using different molecular analyses on

tumour-adjacent tissue to discover biomarkers that would indicate the pres-

ence of a field. Biomarkers that were discovered to correlate with the presence

of a field are loss of heterozygosity (LOH) [141], micro-satellite alterations

[141], chromosomal instability [70], and mutations in the TP53 gene [19, 152].

Braakhuis et al. [18] attempted to explain field cancerization from the per-
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spective of genetics. They altered Slaughter et al. [133] definition of field

cancerization to: growth of one or more genetically altered cell(s) that pro-

duces a field of cells predisposed to subsequent tumour growth. Braakhuis et

al. [18] enforce the understanding that a field lesion does not grow invasively

nor does it have metastatic properties. They proposed a process for the for-

mation of a field and subsequent tumour within it for head and neck mucosa,

esophagus, and bladder carcinomas. First, a SC acquires one or more genetic

alterations and forms a group of cells with a mutation in TP53 (clonal unit)

that creates genetically altered daughter cells. The SC and its’ clonal unit

is considered to be a lesion. Following more genetic alterations the SC gains

growth advantage and develops into an expanding clone. The lesion, which

is gradually becoming a field, displaces the normal epithelium surrounding it

due to the enhanced proliferative capacity of a genetically altered clonal unit.

As the lesion becomes larger, additional genetic hits create various sub-clones

(clonal divergence) within the field. Eventually a sub-clone evolves into inva-

sive cancer due to the presence of a large number of genetically altered SCs,

and clonal divergence/selection.

Based on genetic evidence, there currently exists two main hypotheses that

explain the underlying cellular basis of field cancerization: polyclonal origin

and monoclonal origin. Polyclonal origin proposes that mutations occur in

multiple sites of the epithelium due to continuous carcinogen exposure which

leads to multi-focal carcinomas or lesions of independent origin [153]. Mon-

oclonal origin proposes that the mutant cells from the initial lesion migrate

and develop multiple lesions that share a common clonal origin. Three the-

ories have been proposed to explain the mechanisms involved in monoclonal

origin. The first two theories suggest that some tumour or tumour progenitor

cells from the primary site either migrate through the submucosa or shed in

the lumen of an organ (e.g ., the oral cavity or the bladder) which in both

cases leads to the formation of a tumour at an adjacent secondary site [9, 24].

The third theory suggests that the continuous genetically altered lesions in

the epithelium lead to the development of clonally related neoplastic lesions

that develop via lateral spreading in the same or adjacent anatomical areas
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[4, 112, 129, 143]. Some biological researchers believe both hypotheses hold,

while others that just one holds. Braakhuis et al. [18] are in the group that

believes only monoclonal origin is the correct hypothesis. Histologically it

has been suggested that monoclonal origin holds true due to multiple biop-

sies sharing “early markers of carcinogenesis” [24, 142, 152]. Also the “late”

markers being heterogeneously mixed within the tissue in and surrounding the

tumour implies that clonal divergence, i.e., development of multiple sub-clones

occurred [105], which means that monoclonal origin likely occurred. Though

monoclonal and polyclonal origin are the standard hypotheses to explain field

cancerization origin based upon genetic evidence, these do not fully address

all mechanisms for field formation. In fact, further exploration of biological

mechanisms would likely elicit expanded theories.

Another breakthrough in biology since Slaughter et al. [133] was the dis-

covery of CSCs and their importance in cancer initiation, progression, and

treatment. Simple et al. [130] came up with a model to explain field cancer-

ization using Braakhuis et al. [18] model plus the addition of CSCs. They

define field cancerization as the occurrence of molecular abnormalities in the

tumour adjacent mucosal field. They consider both monoclonal and polyclonal

origin within their model. Simple et al. [130] model for oral cancer includes

the following steps. First, continuous exposure of the oral mucosa to carcino-

gens results in molecular alterations that lead to the induction of CSC-like

behaviour in a step-wise manner. Second, CSCs originate either by transfor-

mation of the NSCs or by dedifferentiation of the tumour cells and migrate

through normal mucosa to develop the field. Third, initial hits at 17p (TP53)

and 3p/9p (p16/FHIT) lead to transformation of the NSCs into transient am-

plifying cells (TACs). Fourth, these transformed cells divide and expand to

create a field of neoplastic cells. Fifth, a genetic hit in the cells within the

field at 13q, location of the Rb gene, allows a carcinoma to develop. Note that

alteration to the Rb gene is known to release CSCs from their quiescent stage

such that proliferation, self-renewal and formation of tumours can occur.

The development of the field mentioned at the second and fourth steps of

the process either occurs polyclonally or monoclonally. In the case of poly-
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clonal origin the following process occurs. First, NSCs at different sites in

the mucosa undergo step-wise transformation into CSCs through independent

carcinogen-mediated molecular alterations. Second, the CSCs proliferate lead-

ing to the development of clones at different sites. Third, additional genetic

hits give rise to further divergence in the sub-clones within the field. Fourth,

one of the sub-clones obtains the final genetic hit at 13q to develop into carci-

noma. Considering the monoclonal process of field cancerization the following

occurs. An initial lesion originates from the NSCs and gradually expands to

become a field. Next, either the resident CSCs of the lesion or those that

originate by dedifferentiation of the tumour cell migrate from the parental le-

sion. The dedifferentiation process can be driven by mutations in TP53 and

over expression of OCT4, SOX2. The CSCs that migrate have gained growth

advantage and thus can displace the normal epithelium by either lateral intra-

epithelial migration or submucosal spread. It is known that the migratory

CSCs can then switch to the non-migratory form and generate secondary tu-

mours in the adjacent mucosal field.

Recently Curtius et al. [31] decided to study field cancerization from an

evolutionary perspective. They define a cancerized field to be a single cell or

group of cells that are further along an evolutionary path towards cancer. Since

a cancerized field has mutational diversity it is a great candidate for natural

selection, meaning that over time the fittest mutant clone will dominate the

field. A cancerized field can be described by the following phenotypic proper-

ties: growth and death rate, and immune evasion capacity. Curtius et al. [31]

define field cancerization drivers as mutations that drive phenotypic changes

that cause a cancerized field. Driver mutations have been found in both the

carcinoma and the cancerized field thus indicating that a driver mutation may

also be a field cancerization driver.

Curtius et al. [31] define field cancerization as a somatic evolutionary pro-

cess that produces cells that are close to cancer. Braakhuis et al. [18] definition

of field cancerization implies that the mutant clone that grows has an altered

phenotype that drives its expansion. From an evolutionary perspective this

is achieved by a mutant clone being fitter than the resident cell population.
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During field cancerization multiple phenotype states are achieved. Per Curtius

et al. [31] a cancerized fields’ formation is driven by exposure of a prevalent

carcinogen and promoter of clonal expansion and/or subsequent convergent

evolution of the epigenome. As a result field cancerization can occur because

of multiple independent clonal expansions, i.e., polyclonal origin. Thus, both

Simple et al. [130] and Curtius et al. [31] consider that a cancerized field can

be formed via monoclonal or polyclonal origin.

The general framework that Curtius et al. [31] propose for the initiation of a

cancerized field is as follows. A group of cells, gradually becoming a cancerized

field, undergo mutations that occur due to DNA replication errors during aging

and/or carcinogens, resulting in many genetically distinct clones within. As

more time passes, daughter clones with phenotypes that increase their fitness

will dominate the group. Finally, if the mutagenic insult is ongoing then

new clones will be continually generated and the cancerized field will appear

genetically diverse. At this point carcinoma will first occur as described by

Simple et al. [130], i.e., when one of the clones acquires a genetic hit at 13q.

Considering all the literature, a field will be considered as a region of

tissue that has genetic and phenotypic change that preconditions it towards

the possible formation of one or multiple tumours within it. The genetic and

phenotypic change can be caused by carcinogenic onslaught, genetic defects at

birth, chance mutations, or a combination thereof. Field cancerization is then

described as the process that results in the formation of a field that successfully

yields one or more tumours within it. Note that the causes of genetic change

will be provided solely by chance mutations and carcinogens. The steps of the

process of field cancerization that will be considered here are as follows:

1. a region of tissue is affected by one or more carcinogen over time;

2. the carcinogen(s) cause genetic mutations in the cells of the tissue which

in turn influence the phenotype of the cell;

3. as the cells start to proliferate and differentiate, the field expands;

4. eventually a CSC will be created, which will finally create the first TC.
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It is important to note that not all the cells in the field have to be clonally

related they just have to be considered preconditioned towards tumour forma-

tion, so both monoclonal and polyclonal origins are possible.

1.2 Mathematical Literature Review

There exists an extensive amount of literature that study cancer initiation

[38, 107, 122], progression [10, 41], metastasis [48], treatment (chemother-

apy, immunotherapy, radiation) [34, 41, 114], and effects of various micro-

environmental and external factors on cancer development [54] from the per-

spective of mathematical analysis. However, the only mathematical analysis

on field cancerization that could be found at the time of writing, were spatial

stochastic models in Foo et al. [45] and Ryser et al. [120].

1.2.1 Review of Foo et al.

Foo et al. [45] describe field cancerization as the process of primary tumours

forming from genetically altered fields of premalignant cells that have high

chances of progression to malignancy. Also they state that the premalignant

fields can cause recurrent tumours if not excised with the primary tumour

during surgery. The main objectives of their study were to:

1. develop a spatial evolutionary framework for field cancerization;

2. describe the size and geometry of the premalignant fields at the moment

of tumour initiation;

3. determine the risk of multi-focal lesions, recurrence timing, and clonal

origin of recurrent tumours;

4. discover the effects of different characteristics of tissue and cancer type

on 2 and 3.

The domain of their model is a lattice of dimension (d) 1, 2, or 3 wherein

each lattice point is occupied by one cell. The dimension is generally either 1

or 2 because although epithelial tissues are 3D it is sufficient to consider just
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1 or 2D approximations of the areas of interest. For example due to the ratio

of tube radius to the length of mammary ducts of the breast, renal tubules of

the kidney and bronchi tubes of the lung can be approximated with d=1. Also

cancer initiation in the squamous epithelium of the cervix, bladder, and oral

cavity can be considered a d=2 process as it occurs in the basal layer which

is only 1-2 cells thick. In the lattice model, each cell reproduces by placing

its offspring randomly in one of the 2d neighbours at the rate equal to their

fitness, s≥0, at exponential waiting time. A cell having a fitness advantage has

increased reproductive rate or avoidance of apoptotic signals. The cell type is

determined by the fitness, s, which they also describe as the number of genetic

hits a cell has accumulated. A cell of type-0 have fitness normalized to 1, s=1,

and are considered to be wild-type or normal. The type-0 cell can become a

type-1 cell by acquiring the first type of mutation at the rate u1. In general

a type-i cell has a fitness advantage of 1 + si relative to the type-(i-1) and is

assumed to have acquired all the mutations up to mutation i. If it acquires the

(i + 1) − th mutation at rate ui+1 then it will become a type-(i+1) cell. The

mutation rates are quite small, ui << 1, and so the domain has to be large

to increase the chance a cell will acquire a mutation. The previously stated

definitions and properties make up what is called the spatial Moran model.

The lattice is initialized with cells having type-0. The starting time is at

the end of tissue development and start of the tissue renewal phase. Since

this time is difficult to acquire it is challenging to find the time of cancer ini-

tiation, σk. It is assumed that when a cell has developed k mutations and

so is of type-k that cancer has initialized and the simulation is stopped. The

critical number of mutations k is set based upon the type of cancer because

different cancers have different mutation thresholds. It is important to note

that the model assumes all k-mutations positively influence cancer initializa-

tion and have the effect of increased cell growth and/or reduction in apoptotic

signalling. Another assumption they used was, that all their mutations come

from random mutations, which occur very rarely and are generally fixed by the

bodies DNA repair process, before they have an effect. Foo et al. [45] ignore

the genetic hits that cause selective disadvantage because the result is that the
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cell and its’ progeny die too quickly. Cell death and reproduction dynamics

are accomplished similarly to the biased voter model [86].

To determine the probability of a mutant clone population of type-1 sur-

viving they considered a one mutation model with cells of type-0 having fitness

1 and type-1 having fitness 1+s. The lattice is initialized with all type-0 cells

except the cell at x=0, this allows the lattice to be either finite or infinite.

In the finite case a Williams-Bjerknes model [160] is used, otherwise a biased

voter model is used [86]. The number of type-1 cells is a jump process in which

a discrete time random walk moves one up with probability

s

1+s

or one down with probability
1

1+s
,

since the only possible events are type-0 which is replaced by type-1 (jump up)

and type-1 which is replaced by a type-0 (jump down). Thus the probability

that a mutant clone population of type-1 survives is

s

1+s
≈ s

(when s << 1). A mutant clone population with fitness s is successful if it

reaches size >> 1
s
as this results in a negligible chance of its extinction. Un-

successful type-1 mutant clone populations typically have a space-time volume

of order:

l(s)=

⎧⎪⎨⎪⎩
s−2, d=1

s−1 ln(s−1), d=2

s−1, d=3

,

which represents the magnitude of the domain a mutant clone population will

occupy. The probability of a mutant clone population of type-1 surviving still

holds for spatial Moran models as long as

1

u1
>> l(s)

d+2
2 ,

where u1 is the mutation rate for type-0 cells to become type-1 cells.As a result

of the previous condition if the number of type-1 cells is significantly less than
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the total number of cells, N , for all time, then successful type-1 mutations

arrive as a Poisson process at rate

Nu1s

1+s
.

Upon considering a mesoscopic model (a hybrid model that includes elements

from both the macroscopic and microscopic scales) they allow type-1 muta-

tions arrive as Poisson with rate Nu1, distributed uniformly at random in the

domain. Each mutation event has two potential outcomes:

(a) With probability s
1+s

the mutation is successful and the clonal expansion

is approximated with a ball whose radius grows deterministically with

macroscopic growth rate cd(s).

(b) With probability 1
1+s

the mutation is unsuccessful and the clone is con-

ditioned to go extinct.

Having acquired the basic probabilistic and size aspects of the model they

moved to a two mutation model so that it could be fit in the context of field

cancerization whereby type-0 cells have fitness 1, type-1 cells are premalignant

with fitness 1+s1 relative to type-0, and type-2 are cancer cells with fitness

1+s2 relative to type-1. If s1=s2=s > 0 the timing of cancer initiation is

controlled by the limiting value of the meta-parameter:

Γ=(Nu1s)
d+1(cdd(s)u2s)

−1,

which is the number of type-1 clones needed to generate a successful type-2

mutation. If Γ → 0 then the first successful type 2 mutation will occur in

the first successful type 1 clone. Varying the meta-parameter Γ results in the

following three regimes:

(a) Regime 1 (R1): When Γ<1 the first successful type-2 mutation occurs

within the expanding clone of the first successful type-1 mutation. The

time at cancer initiation, σ2, is exponential and does not depend on the

spatial dimension.
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(b) Regime 2 (R2): For Γ∈(10, 100) the first successful type-2 mutation oc-

curs within one of the several successful type-1 clones. The time at cancer

initiation, σ2, is not exponential and depends on the spatial dimension.

(c) Regime 3 (R3): When Γ>1000 the first successful type-2 mutation occurs

after many successful type-1 mutations. It can arise from a successful

or unsuccessful type-1 mutation. The time at cancer initiation, σ2, is a

mixture distribution of these events.

The borderline regimes R1/R2 and R2/R3 occur for Γ∈[1, 10] and

Γ∈[100, 1000], respectively. For all further analysis Foo et al. [45] assumed

that in R3 successful type-2 mutation arise only from successful type-1. As

the number of cells increases, the time that the first type-2 mutation arises, σ2,

decreases, and thus cancer initiation occurs earlier. When σ2 is small, there is a

diffuse premalignant field and a large number of independent lesions. However,

when σ2 is large there is a single premalignant field that contains the initial

tumour cell. Assuming that the time of diagnosis, TD, is independent of σ2

then the premalignant field at time of diagnosis, σ2+TD, can be characterized

by the field at σ2 together with the distribution of TD.

The size of an initiating clone population is picked from a distribution

generated around the sizes of the clones at the time the initiated mutation

arose. If the premalignant field is left during surgery, they found that tumours

appearing later have a higher recurrence probability. As u1 increases, the

premalignant field is made up of an increasing number of independent type-1

patches and the model moves towards R2 and R3. As the number of type-1

patches increases, so does the chance of a type-2 cell being formed and hence

σ2 (time of first type-2 cell forming) decreases. As u2 increases, the model

moves towards R1 in which fewer type-1 clones are required to produce the

first successful type-2 cell, and the size of the type-1 field decreases. In R1 and

R2 the total distant field size is of the same order of magnitude as the local

field size, whereas in R3 it is significantly larger. Thus, secondary tumour

recurrences for cancer types in R3 are more likely to come from the distant

field and as a result are not directly related to the primary tumour because the
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distant fields will be genetically distinct. In R1 the expected number of small

cell groups peaks and then declines as larger cell groups begin to dominate,

whereas in R2 and R3 small and large cell groups coexist for a longer period

of time. A larger premalignant field increases the chance of fast recurrence. In

R1 local recurrence is more likely, however when σ2 is large, then it is slightly

more likely to come back in the distant fields. In R2 and R3 the overall

probability of local and distant recurrences is comparable, however when σ2 is

small, recurrence is more likely to occur in distant fields and when σ2 is larger

local recurrence is more likely.

Foo et al. [45] also found the distribution of the local field radius, distri-

bution of the area of the local field at σ2, size-distribution of the distant field

clones at σ2, distribution of the number of field patches, probability of a sec-

ond field tumour having formed before a given time, and probability that the

distant field at the time of initiation gives rise to a second primary tumour at

some point in time.

A limitation of Foo et al. [45] is that they use a specific sequence of mu-

tations, although it is well known that mutations are not sequential and they

occur in random order. They assume the micro-environment is static and

uniform, which brings about differences in the timing and intensity of malig-

nancy. They use circular growth for the cell groups which does not allow them

to grow in every direction or shapes other than circular. They assume a two-

hit mutation model, when in reality it is dependent on the cancer as to how

many mutations are required. There is no genetic heterogeneity within the

clone groups. They don’t consider carcinogens as mutagens but instead con-

sider only random mutations, which would greatly dwindle the process of field

cancerization since carcinogenic onslaught is considered a significant mutagen.

The phenotypic actions they consider are proliferation and apoptosis, but they

do not include differentiation and quiescence. They ignore tissue structures,

thus boundaries and growth limitations will not occur. Finally, they include

only normal tissue cells, where as, most tissue also includes blood cells, fat

cells, and stem cells.
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1.2.2 Review of Ryser et al.

Ryser et al. [120] applied the model described in Foo et al. [45] to head and neck

squamous cell carcinoma (HNSCC) which is commonly a result of field can-

cerization. They specifically investigated HPV-negative cases, patients that

had a history of smoking, and age of diagnosis. Ryser et al. [120] attribute the

difficulty of detecting the premalignant fields surrounding the primary tumour

in clinical practise to a lack of understanding of the dynamics and geometry

of the fields. Since HNSCC are formed in stratified epithelia, the growth and

renewal of the tissue is accomplished by stem cells (SC), which they call pro-

genitor cells (PC). The PC are located in the basal layer of the tissue, and

they renew the tissue by producing transit amplifying cells (TAC), which have

limited proliferative potential. These TAC move upwards through the tissue

generating new cells and within a few weeks or less are sloughed off. As a result

of the short lifespan of the TAC, they are not good candidates for becoming

mutated and thus do not create neoplastic lesions. Therefore Ryser et al. [120]

only consider the PC in their microscopic model. Cells mutate from normal to

cancerous through accumulation of genetic aberrations. When a normal PC

acquires growth advantage its’ progeny start spreading through the epithe-

lium. Since the number and timing of genetic alterations changes from patient

to patient Ryser et al. [120] decided to look at phenotypic progression instead

of genotypic progression.

The three histopathological stages of epithelial dysplasia (precancerous

stages) are mild, moderate and severe (carcinoma in situ [CIS]). Based on

these three stages Ryser et al. [120] consider the following four type of cells:

normal cells (type 0), mildly dysplastic cells (type 0*), moderately dysplastic

cells (type 1), and severely dysplastic cells (type 2). They use the stochastic

Moran model on a regular two-dimensional lattice as described in Foo et al.

[45]. Ryser et al. [120] initialize the model with normal PCs (type 0) with

proliferative rate f0. A type 0 cell becomes a type 0* cell at the rate u1,a, type

0* becomes type 1 at the rate u1,b, and type 1 becomes type 2 at the rate u2.

Biologically the proliferative rate of type 0 and type 0* is the same so type
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0* has proliferative rate f0. Based on the previous result they computed the

probability of a type 0* cell becoming a type 1 cell, thus resulting in a rate

v01 that a type 0 cell becomes a type 1 cell. Type 1 cells have a proliferative

advantage over type 0 and type 0* cells due to having a fitness advantage s1,

and so its’ proliferative rate is given by f1 = f0(1 + s1). Similarly the type 2

cells have a proliferative rate of f2 = f1(1 + s2).

Ryser et al. [120] model the time between onset of carcinoma in situ (CIS)

and diagnosis using an exponentially distributed random variable with rate Ψ.

To analytically compute the waiting times and field geometries they use the

mesoscopic approximation to the spatial model from Foo et al. [45]. In this

model the arrival of expanding type 1 clones is a stochastic Poisson process

with rate Nu1
s1

1+s1
, where N is the total number of cells. The factor s1 =

s1
1+s1

represents the idea that progeny of a new type 1 cell either go to extinction

with probability 1− s1 or expand indefinitely with probability s1.

According to a theorem, expanding type 1 clones asymptotically grow as a

convex symmetric shape with constant radial growth rate c2. In Foo et al. [45]

it was found in particular that the convex symmetric shape can be approxi-

mated as a disk or circle. The rate c2 depends on the selective advantage s1.

For small s1 it scales as cs(s1) ∼
√︁
4πs1/ log (1/s1), where f(s) ∼ g(s) means

that f(s)/g(s) → 1 as s→ 0.

For larger values of s1 the relationship had to be numerically computed,

in particular for s1 > 0.5, Ryser et al. [120] found an approximately linear

dependence given by c2(s1) ≈ 0.6s1+0.22. Ryser et al. [120] allow the existence

of multiple precancer fields of type 1 cells within the model.

To estimate and compute the parameters for their model they use age-

specific incidence rates from the Surveillance, Epidemiology, and End Results

(SEER) program of the National Cancer Institute (18 registries, 2000-2012) in

a Bayesian framework. Since Ryser et al. [120] only considered HPV-negative

cancers they restricted to only HNSCC within the lip, tongue, floor of the

mouth, gum and other mouth, hypopharynx, and larynx. They computed the

number of susceptible individuals and the number of cancer cases diagnosed for

the following age groups: 15-19, 20-24, ..., 80-84, and 85+. The final reduction
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to the data used was to consider only smokers within each considered age

groups, as tobacco consumption is a major cause of HPV-negative HNSCC.

Ryser et al. [120] computed the survival function, the probability density

function of the local field radius, and the probability of harboring at least two

clonally unrelated fields in the head and neck region with respect to the mean

age at smoking initiation to diagnosis with invasive cancer. They found that

there is a strong dependence of the local field size on age at diagnosis, with a

doubling of the expected field diameter between ages at diagnosis of 50 and 90

years. Further the probability of harboring multiple clonally unrelated fields

at the time of diagnosis were found to increase substantially with patient age.

As a result of these discoveries Ryser et al. [120] suggest that patient age at

diagnosis is a critical predictor of the size and multiplicity of precancerous

lesions.

1.2.3 Review of Gerlee et al.

The next set of literature discusses mathematical techniques that were used

for the model that will be proposed in this thesis. The first paper by Gerlee

& Anderson [54] inspired the general framework of the mathematical model.

Gerlee & Anderson [54] created a hybrid cellular automaton to model the effect

of various micro-environmental factors on solid tumour growth. Their model

is a hybrid cellular automaton because the rule of the automaton depends

upon the output of a neural network and partial differential equations. The

cellular automaton comprises of two cell types; an empty cell (normal cell)

and a tumour cell. It is initialized by setting all the automaton elements to

empty except the middle four cells which are occupied by tumour cells. The

neural network is used to approximate the relationship between the micro-

environmental variables and the phenotype of a cell. The partial differential

equations are used to model the spread of the various micro-environmental

variables in the domain of consideration.

For the neural network they use a multi-layer perceptron (MLP), with input

being the output of the partial differential equation for the cell at a location

(x, y) and output being a vector of likelihoods of a phenotype and movement
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occurring at a time-step. The hidden layer of the MLP represents the genes

and hence the neural network attempts to replicate the genotype-phenotype

relationship. They consider the phenotypes proliferation (P), quiescence (Q),

and apoptosis (A). Each time-step represents a cell cycle so that a single pheno-

typic action will occur for each cell. The maximum of the likelihoods between

P, Q, and A determines which phenotypic action occurs. If the likelihood of

movement is sufficiently large then the cell is allowed to move.

Each of the actions also has some restrictions based upon the cells

metabolism and adhesion but these will be ignored due to both of these aspects

of the cell not being modelled in this thesis. All of the partial differential

equations are chemical field equations of the form:

∂c(x, y, t)

∂t
= D∆c(x, y, t)± f(x, y, t).

Where c(x, y, t) is the concentration of the micro-environmental variable, D is

the diffusion coefficient, ∆ is the Laplacian operator, and

f(x, y, t) =

{︄
0, If the automaton element at (x, y) is empty

rF (x, y), If the automaton element is occupied
;

where r is the base consumption/production rates and F (x, y) is the modulated

energy consumption of the individual cell occupying the automaton element

at (x, y). The hybrid cellular automaton goes through the following process

for each cell and time-step:

1. The input to the neural network is sampled from the local environment.

2. The MLP is computed to obtain the phenotype and likelihood of move-

ment.

3. The cell consumes nutrients according to the chosen phenotype and the

metabolic pathway is chosen.

4. The chosen phenotype is carried out.

5. If movement is activated and the cell has not divided it tries to move to

a neighbouring cell location.
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This thesis aims to answer the following questions around field canceriza-

tion:

1. What degree of carcinogenic onslaught is necessary for field cancerization

to occur? Which carcinogens are the most aggressive?

2. How long before a cancer field is formed? How long before the first

tumour cell within the field is formed?

3. Is the field formed via monoclonal origin, polyclonal origin, or a mixture

of both? Which type of origin is the most common?

4. How long does it take for a tumour to be large enough such that it is

detectable by physicians? Once a tumour is detected, what size is the

surrounding field?

5. How long does it take a recurrence to occur after removal of the field

versus the field remaining intact?
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Chapter 2

Model

2.1 Model Overview

Here we develop a hybrid cellular automaton (CA) model for the cancer field

effect. The CA is hybrid since its rule depends on the output of other mathe-

matical objects. In this case the mathematical objects are partial differential

equations (PDE) and neural networks (NN). The PDE model spreads one or

more carcinogen(s) within the domain of the CA. The NN is used to compute

the change in gene expression of the genes under consideration for each cell

with respect to the amount of carcinogen at the cell’s location and age of the

cell. The CA includes states that are used to represent the following biological

cell types: normal tissue cells (NTC), mutated normal tissue cells (MNTC),

normal stem cells (NSC), mutated normal stem cells (MNSC), cancer stem

cells (CSC), and tumour cells (TC). Evolution of the model occurs in the

following basic steps:

1. Carcinogens spread via a reaction diffusion PDE or a given function.

2. Changes in gene expressions resulting from carcinogenic exposure and

age of the cell are computed by the NN causing gene mutations to occur.

3. The state of each cell is updated using the CA rule, which includes

spatial translocation, genetic mutations, phenotypic drift, mitosis, cell

death through the process of apoptosis, and dedifferentiation.
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2.2 Carcinogen Partial Differential Equations

Consider a carcinogen that is in the spatial domain

Ω={x=(x1, x2)|0<x1<L, 0<x2<M} and evolves in the domain

ΩT=Ω×(0, T ], T>0. The concentration for the carcinogen is computed by the

function c(x, t). In which c(x, t) is a solution to the following initial boundary

value problem (IBVP)

PDE ct(x, t)=D∆c(x, t)+F (x, t), (x, t)∈Ω; (2.1)

BCs c(0, x2, t)=g1(x2, t), c(L, x2, t)=g2(x2, t), (x2, t)∈∂Ω×[0, T ]; (2.2)

BCs c(x1, 0, t)=g3(x1, t), c(x1,M, t)=g4(x1, t), (x1, t)∈∂Ω×[0, T ]; (2.3)

IC c(x, 0)=f(x),x∈Ω; (2.4)

Source F (x, t)=I(x, t)−O(x, t), (2.5)

where ∆= ∂2

∂x2
1
+ ∂2

∂x2
2
; F (x, t)∈R is the source term with I(x, t)∈R+ being the

input and O(x, t)∈R+ being the loss of the carcinogen;

g1(x2, t), g2(x2, t), g3(x1, t), g4(x1, t), f(x)∈R+. The IBVP (2.1)-(2.4) is non-

homogeneous both in the boundary conditions (BC) and PDE.

Let us non-dimensionalize the equation so that the solution of the PDE

is unit-less and can be later used as input into a neural network. To non-

dimensionalize a PDE all the dependent and independent variables need to be

made dimensionless. This is achieved by dividing all the independent and de-

pendent variables by some characteristic value that is denoted with a subscript

c. Let us define the dimensionless variables

x1̂=
x1

x
(1)
c

, x2̂=
x2

x
(2)
c

, t̂=
t

tc
(2.6)

ĉ=
c

cc
, F̂=

F

Fc

(2.7)

g1̂=
g1

g
(1)
c

, g2̂=
g2

g
(2)
c

, g3̂=
g3

g
(3)
c

, g4̂=
g4

g
(4)
c

, (2.8)

f̂ =
f

fc
. (2.9)

We choose the characteristic values of the source term, boundary conditions

and initial condition to be the absolute value of the maximum value of the
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functions so that

Fc=max
x,t

|F (x, t)| (2.10)

g(1)c =max
x2,t

|g1(x2, t)|, g(2)c =max
x2,t

|g2(x2, t)|, (2.11)

g(3)c =max
x1,t

|g3(x1, t)|, g(4)c =max
x1,t

|g1(x1, t)| (2.12)

fc=max
x

|f(x)|. (2.13)

To discover the characteristic space, time, and concentration values we need

to plug the dimensionless variables into the PDE, which gives us

cc
tc
ĉt̂(x1̂, x2̂, t̂)=Dcc

(︃
ĉx1̂x1̂(x1̂, x2̂, t̂)

x
(1)2
c

+
ĉx2̂x2̂(x1̂, x2̂, t̂)

x
(2)2

c

)︄
+F̂ (x1̂, x2̂, t̂)Fc.

Multiplying the above by tc
cc

and letting x
(1)
c = x

(2)
c := xc gives us

ĉt̂(x1̂, x2̂, t̂)=
Dtc
x2c

(︁
ĉx1̂x1̂(x1̂, x2̂, t̂) +ĉx2̂x2̂(x1̂, x2̂, t̂)

)︁
(2.14)

+F̂ (x1̂, x2̂, t̂)
Fctc
cc

.

By convention of non-dimensionalization we make the coefficients equal to one

so to simplify the equation, this gives us

Dtc
x2c

=1 =⇒ tc=
x2c
D
, (2.15)

Fctc
cc

=1 =⇒ cc=Fctc=
x2cFc

D
. (2.16)

Thus we have the non-dimensional PDE given by

ĉt̂(x1̂, x2̂, t̂)=∆ĉ(x1̂, x2̂, t̂)+F̂ (x1̂, x2̂, t̂) (2.17)

For convenience we choose

xc=max(L,M). (2.18)

We can now write out the boundary conditions in the new dimensionless vari-
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ables

ĉ(0, x2̂, t̂)=
g
(1)
c

cc
g1̂(x2̂, t̂)=

g
(1)
c D

x2cFc

g1̂(x2̂, t̂), (2.19)

ĉ

(︃
L

xc
, x2̂, t̂

)︃
=
g
(2)
c

cc
g2̂(x2̂, t̂)=

g
(2)
c D

x2cFc

g2̂(x2̂, t̂), (2.20)

ĉ(x1̂, 0, t̂)=
g
(3)
c

cc
g3̂(x1̂, t̂)=

g
(3)
c D

x2cFc

g3̂(x1̂, t̂), (2.21)

ĉ

(︃
x1̂,

M

xc
, t̂

)︃
=
g
(4)
c

cc
g4̂(x1̂, t̂)=

g
(4)
c D

x2cFc

g4̂(x1̂, t̂). (2.22)

Finally we write out the initial condition in the new dimensionless variables

ĉ(x1̂, x2̂, 0)=
fc
cc
f̂(x1̂, x2̂)=

fcD

x2cFc

f̂(x1̂, x2̂). (2.23)

Thus we have the non-dimensional PDE problem given by

ĉt̂(x1̂, x2̂, t̂)=∆ĉ(x1̂, x2̂, t̂), (x̂, t̂)∈
(︃
0,
L

xc

)︃
×
(︃
0,
M

xc

)︃
×
(︃
0,
T

tc

]︃
(2.17)

+F̂ (x1̂, x2̂, t̂),

ĉ(0, x2̂, t̂)=
g
(1)
c D

x2cFc

g1̂(x2̂, t̂), (x2̂, t̂)∈
(︃
0,
M

xc

)︃
×
(︃
0,
T

tc

]︃
, (2.19)

ĉ

(︃
L

xc
, x2̂, t̂

)︃
=
g
(2)
c D

x2cFc

g2̂(x2̂, t̂), (x2̂, t̂)∈
(︃
0,
M

xc

)︃
×
(︃
0,
T

tc

]︃
, (2.20)

ĉ(x1̂, 0, t̂)=
g
(3)
c D

x2cFc

g3̂(x1̂, t̂), (x1̂, t̂)∈
(︃
0,
L

xc

)︃
×
(︃
0,
T

tc

]︃
, (2.21)

ĉ

(︃
x1̂,

M

xc
, t̂

)︃
=
g
(4)
c D

x2cFc

g4̂(x1̂, t̂), (x1̂, t̂)∈
(︃
0,
L

xc

)︃
×
(︃
0,
T

tc

]︃
, (2.22)

ĉ(x1̂, x2̂, 0)=
fcD

x2cFc

f̂(x1̂, x2̂), (x1̂, x2̂)∈
(︃
0,
L

xc

)︃
×
(︃
0,
M

xc

)︃
, (2.23)

xc=max(L,M), (2.18)

tc=
x2c
D
, (2.15)

Fc=max
x,t

|F (x, t)|, (2.10)

g(1)c =max
x2,t

|g1(x2, t)|, g(2)c =max
x2,t

|g2(x2, t)|, (2.11)

g(3)c =max
x1,t

|g3(x1, t)|, g(4)c =max
x1,t

|g1(x1, t)| (2.12)

fc=max
x

|f(x)|. (2.13)
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Since the diffusion equation is a linear differential equation of the parabolic

type then we can solve the IBVP via the method of Green’s Function as

described by Polyanin & Nazaikinskii [111].

First let us go through the theory of solving a non-homogeneous linear

differential equation of the parabolic type in n space variables of the form

ut − Lx[u]=Φ(x, t), (2.24)

where u=u(x, t),x=V⊂Rn, with V being a simply connected region with

boundary S=∂V . The symbol Lx is a second-order partial differential op-

erator having non-divergence form so

Lx[u]=
n∑︂

i,j=1

aij(x, t)uxixj
+

n∑︂
i=1

bi(x, t)uxi
+c(x, t)u. (2.25)

Also the partial differential operator ∂
∂t
−Lx is uniformly parabolic, that is

there exists a constant θ>0 such that

n∑︂
i,j=1

aij(x, t)ξiξj≥θ
n∑︂

i=1

ξ2i

for all (x, t)∈V×(0, T ]. The initial condition for the PDE is given by

u=f(x) at t=0. (2.26)

Let Sk, k=1, ..., p be distinct portions of the surface S such that S=
∑︁p

k=1 Sk

then the non-homogeneous linear boundary condition is given by

Γ(k)
x [u]=gk(x, t), (x, t)∈Sk×[0, T ], k=1, ..., p. (2.27)

In the general case, Γx is a first-order linear differential operator in the space

coordinates with coefficients depending on x and t. The three main important

forms of Γx include

1. Dirichlet: Γ
(k)
x [u]=u,

2. Neumann: Γ
(k)
x [u]=uMx ,

3. Robin: Γ
(k)
x [u]=uMx+v(x, t)u,
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where uMx=
∑︁n

i,j=1 aij(x, t)NjGxi
with N={N1, ..., Nn} being the unit out-

ward normal to the surface Sk, k=1, ..., p. The boundary condition allows the

carcinogen concentration to be influenced by some source at the boundary. A

Dirichlet boundary condition is used in cases where it is known how the car-

cinogen concentration is distributed at the boundary. For example, it might

be known that the surrounding tissue releases carcinogen at some fixed rate.

Another possibility is that surrounding blood vessels or saliva release the car-

cinogen into the domain. A Neumann boundary condition is utilized when

only the normal derivative of the carcinogen concentration at the boundary is

known or in other words the flux of the carcinogen. It can be interpreted as

the carcinogen concentration spatial distribution at the boundary changing at

some known rate at each time-step. Biologically, this might be the carcinogen

entering the domain via some porous medium or biological gate that regulates

and controls what passes through, such as a protein gate. The Robin boundary

condition is a linear combination of Dirichlet and Neumann conditions. Bio-

logically, multiple sources would influence the carcinogen concentration at the

boundary some of which would be constant and others that change the con-

centration spatial distribution at some rate. By the theory of Green’s function

the solution of the non-homogeneous linear boundary value problem defined

by (2.24)-(2.27) is given by

u(x, t)=

∫︂ t

0

∫︂
V

Φ(y, τ)G(x,y, t, τ)dVydτ+

∫︂
V

f(y)G(x,y, t, 0)dVy (2.28)

+

p∑︂
k=1

∫︂ t

0

∫︂
Sk

gk(y, τ)Hk(x,y, t, τ)dSydτ.

G(x,y, t, τ) is the Green’s function; for t>τ≥0, it satisfies the homogeneous

equation

Gt−Lx[G]=0 (2.29)

with the non-homogeneous initial condition of the special form

G=δ(x−y) at t=τ (2.30)

and the homogeneous boundary condition

Γ(k)
x [G]=0,x∈Sk, k=1, .., p. (2.31)
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The vector y={y1, ..., yn}∈V from problem (2.29)-(2.31) is an

n-dimensional free parameter, and δ(x−y)=δ(x1−y1)...δ(xn−yn) is the

n-dimensional Dirac delta function. The Green’s function G is independent

of the in-homogeneity’s in the IBVP (2.24)-(2.27), so it is independent to

functions Φ, f , and g. In the solution (2.28) the integrations are performed

everywhere with respect to y with dVy=dy1...dyn. The functions Hk, k=1, ..., p

involved in the integrand of the last term in solution (2.28) can be expressed

in terms of Green’s function G and its choice is based upon the three main

types of boundary conditions as follows

1. Dirichlet: Hk=−GMy :=−
∑︁n

i,j=1 aij(y, τ)NjGyi , Nj is the j-th

component of the unit outward normal to Sk;

2. Neumann: Hk=G;

3. Robin: Hk=G.

Note if the coefficients of (2.29) and the boundary condition (2.31) are inde-

pendent of t, then the Green’s function reduces to only three arguments and

G(x,y, t, τ)=G(x,y, t−τ).

For the problem (2.17)-(2.23) we have that u=ĉ, n=2, V=Ω, p=4,

S1={x̂|x1̂=0, 0<x2̂<
M
xc
}, S2={x̂|x1̂= L

xc
, 0<x2̂<

M
xc
}, S3={x̂|x2̂=0, 0<x1̂<

L
xc
},

S4={x̂|x2̂=M
xc
, 0<x1̂<

L
xc
}, a11=a22=1, a12=a21=b1=b2=c=0, Lx̂=∆ĉ, Φ=F̂ ,

Γx̂=ĉ, f=f̂ , g1=g1̂, g2=g2̂, g3=g3̂, g4=g4̂. Since the coefficients in Lx̂ and

Γx̂ are independent of t̂ then G=G(x̂,y, t̂−τ). Also since the boundary con-

ditions are Dirichlet then

H1=−
2∑︂

i,j=1

aij(y, τ)NjGyi=−(N1Gy1+N2Gy2)=Gy2|y1=0, (2.32)

H2=−
2∑︂

i,j=1

aij(y, τ)NjGyi=−(N1Gy1+N2Gy2)=−Gy2|y1= L
xc
, (2.33)

H3=−
2∑︂

i,j=1

aij(y, τ)NjGyi=−(N1Gy1+N2Gy2)=Gy1|y2=0, (2.34)

H4=−
2∑︂

i,j=1

aij(y, τ)NjGyi=−(N1Gy1+N2Gy2)=−Gy1|y2=M
xc
. (2.35)
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Next we solve for Green’s function via the IBVP (2.29)-(2.31) which can be

written as

Gt=∆x̂G, (2.29)

G=δ(x1̂−y1)δ(x2̂−y2) at t=τ, (2.30)

G=0, x̂∈Sk, k=1, ..., 4. (2.31)

Assume by separation of variables that

G:=ϕ(x̂,y)η(t̂−τ)

and insert into (2.29) to acquire

ϕ(x̂,y)η′(t̂−τ)=∆x̂ϕ(x̂,y)η(t̂−τ).

Divide the above by ϕ(x̂,y)η(t̂−τ) to obtain

η′(t̂−τ)
η(t̂−τ)

=
∆x̂ϕ(x̂,y)

ϕ(x̂,y)
.

Since the left hand side (LHS) of the above only depends on t̂−τ and the right

hand side (RHS) only on (x̂, y) then set each side equal to some separation

constant, -λ. This results in the differential equations

η′(t̂−τ)+λη(t̂−τ)=0, (2.36)

∆x̂ϕ(x̂,y)+λϕ(x̂,y)=0. (2.37)

Taking under consideration the assumed form of G and η(t̂−τ )̸=0, the BC

(2.31) becomes

ϕ(x̂,y)=0, x̂∈Sk, k=1, ..., 4 (2.38)

The equations (2.37)-(2.38) form a BVP which can be solved using separation

of variables. Assume

ϕ(x̂,y):=χ(x1̂, y1)ψ(x2̂, y2)

and insert into (2.37) to acquire

χx1̂x1̂(x1̂, y1)ψ(x2̂, y2)+χ(x1̂, y1)ψx2̂x2̂(x2̂, y2)+λχ(x1̂, y1)ψ(x2̂, y2)=0.
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Subtracting the above by the second and third terms of the LHS and then

dividing the result by χ(x1̂, y1)ψ(x2̂, y2) yields

χx1̂x1̂(x1̂, y1)

χ(x1̂, y1)
=−

(︃
ψx2̂x2̂(x2̂, y2)

ψ(x2̂, y2)
+λ

)︃
.

The LHS of the above equation depends only on (x1̂, y1) while the RHS only on

(x2̂, y2). Thus setting both sides equal to a separation constant, -µ, acquires

the following ordinary differential equations (ODEs)

χx1̂x1̂(x1̂, y1)+µχ(x1̂, y2)=0, (2.39)

ψx2̂x2̂(x2̂, y2)+(λ−µ)ψ(x2̂, y2)=0. (2.40)

Insert ϕ(x̂,y) into the BC (2.38), with the assumption that the trivial solutions

of the ODEs are undesirable because it would lead to the spatial part of the

PDE problem being zero and hence we would be left with the trivial solution

of the PDE problem, to acquire

χ(x1̂, y1)=0, x1̂∈Sk, k=1, 2 (2.41)

ψ(x2̂, y2)=0, x2̂∈Sk, k=3, 4. (2.42)

Assume by separation of variables that χ(x1̂, y1)=X1
ˆ (x1̂)Y1(y1),

ψ(x2̂, y2)=X2
ˆ (x2̂)Y2(y2) then (2.43) and (2.44) become

Y1(y1)(X1
ˆ ′′

(x1̂)+µX1
ˆ (x1̂))=0

Y2(y2)(X2
ˆ ′′

(x2̂)+(λ− µ)X2
ˆ (x2̂))=0.

Since χ(x1̂, y1)=0, ψ(x2̂, y2)=0 is undesirable, as it would lead to a trivial so-

lution for the PDE problem, then it must be that Y1(y1), Y2(y2)∈R and

X1
ˆ ′′

(x1̂)+µX1
ˆ (x1̂)=0 (2.43)

X2
ˆ ′′

(x2̂)+(λ− µ)X2
ˆ (x2̂)=0 (2.44)

Insert χ(x1̂, y1), ψ(x2̂, y2) into the BC (2.41) and (2.42), respectively, with the

assumption that the trivial solutions of the ODE’s are undesirable since it

would lead to a trivial solution for the PDE problem, to acquire

X1
ˆ (x1̂)=0, x1̂∈Sk, k=1, 2 (2.45)

X2
ˆ (x2̂)=0, x2̂∈Sk, k=3, 4 (2.46)
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Two Sturm-Liouville problems (SLP), namely (2.43, 2.45) and (2.44, 2.46)

have resulted from the separation of variables. Since (2.44, 2.46) depends

on two separation constants, (λ, µ), and (2.43, 2.45) only on the constant

µ then (2.43, 2.45) must be solved first. The equation (2.43) is a homoge-

neous second order linear ODE with constant coefficients in the canonical

form: ãv′′(ξ)+b̃v′(ξ)+c̃v(ξ)=0. Therefore the solution can be classified using

the discriminant of the characteristic equation ãν2+b̃ν+c̃=0, whereby, if it is:

strictly positive then v(ξ)=K1 cosh(ν1ξ)+K2 sinh(ν2ξ),

strictly negative then v(ξ)=eRe(ν)ξ (K1 cos(Im(ν)ξ)+K2 sin(Im(ν)ξ)) ,

zero then v(ξ)=K1e
νξ+K2ξe

νξ.

Applying the above solution method to equation (2.43) we have that ã=1,

b̃=0, c̃=µ, therefore the discriminant is strictly negative and ν=±√
µi, µ>0.

Thus the general solution is given by

X1
ˆ (x1̂)=K1 cos(

√
µx1̂)+K2 sin(

√
µx1̂), K1, K2∈R.

The first BC in (2.45) implies that K1=0, so that

X1
ˆ (x1̂)=K2 sin(

√
µx1̂).

The second BC in (2.45) results in K2 sin
(︂√

µ L
xc

)︂
=0 which implies that ei-

ther K2=0 or sin
(︂√

µ L
xc

)︂
=0. Choose K2=1 and set sin

(︂√
µ L

xc

)︂
=0, so that

X1
ˆ (x1̂) ̸=0, to arrive at the solution

X1
ˆ (n)

(x1̂)= sin(
√
µnx1̂),

µn=
n2π2x2c
L2

, n=1, 2, 3, ....

Note that the SLP (2.44, 2.46) differs from the SLP (2.43, 2.45) only in that

the characteristic equation has c̃=λ−µn and thus the solution is

X2
ˆ (m)

(x2̂)= sin(
√︁
λnm−µmx2̂),

λnm=π
2x2c

(︃
n2

L2
+
m2

M2

)︃
, n,m=1, 2, 3, ....
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Therefore the solution of the BVP (2.37)-(2.38) is given by

ϕnm(x̂,y)= sin

(︃
nπx1̂xc
L

)︃
Y

(n)
1 (y1) sin

(︃
mπx2̂xc
M

)︃
Y

(m)
2 (y2), (2.47)

λnm=π
2x2c

(︃
n2

L2
+
m2

M2

)︃
, n,m=1, 2, 3, ... (2.48)

Thus the solution of the BVP (2.29, 2.31) is

Gnm(x̂,y, t̂−τ)=ϕnm(x̂,y)ηnm(t̂−τ).

Since Gnm(x̂,y, t̂−τ) is a set of infinite solutions and a superposition of solu-

tions is also a solution then Gnm(x̂,y, t̂−τ) can be written as an infinite sum,

i.e.,

G(x̂,y, t̂−τ)=
∞∑︂

n,m=1

ϕnm(x̂,y)ηnm(t̂−τ). (2.49)

Now ηnm(t̂−τ) must be solved via the ODE

η′nm(t̂−τ)+λnmηnm(t̂−τ)=0. (2.36)

This equation is a first order linear ODE which can be solved by multiplying it

by an integrating factor, so that the LHS is the result of an application of the

product rule and thus can be written as a derivative of the product between

the dependent term, ηnm(t̂−τ), and the integrating factor, after which it can

be integrated w.r.t. the independent variable, t̂. Using this technique with the

integrating factor eλnm(t̂−τ) obtains

eλnm(t̂−τ)ηnm(t̂−τ)=Knm, Knm∈R.

Multiplying the above by e-λnm(t̂−τ) results with the general solution

ηnm(t̂−τ)=Knme
-λnm(t̂−τ), Knm∈R (2.50)

Applying the initial condition (IC) (2.30) to acquire a formulation of Knm

which in turn obtains the particular solution, results in

G(x̂,y, 0)=
∞∑︂

n,m=1

ηnm(0)ϕnm(x̂,y)=δ(x̂−y).
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By the rules of exponents e0=1 it is easily shown that ηnm(0)=Knm and there-

fore
∞∑︂

n,m=1

Knmϕnm(x̂,y)=δ(x̂−y).

If we let Knm=
4x2

c

LM
, Y1(y1)= sin

(︁
nπxcy1

L

)︁
, Y2(y2)= sin

(︁
mπxcy2

M

)︁
then

4x2c
LM

∞∑︂
n,m=1

sin

(︃
nπxcx1̂
L

)︃
sin

(︃
mπxcx2̂
M

)︃
sin

(︂nπxcy1
L

)︂
sin

(︂mπxcy2
M

)︂
=δ(x̂−y)

is the Fourier sine series of δ(x̂− y). Thus Green’s function is given by

G(x̂,y, t̂−τ)= 4x2c
LM

∞∑︂
n,m=1

ϕnm(x̂,y)ηnm(t̂−τ), (2.51)

ϕnm(x̂,y)= sin

(︃
nπxcx1̂
L

)︃
sin

(︃
mπxcx2̂
M

)︃
sin

(︂nπxcy1
L

)︂
sin

(︂mπxcy2
M

)︂
.
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Therefore the solution of the IBVP (2.17)-(2.23) is

ĉ(x̂, t̂)=

∫︂ t̂

0

∫︂ L
xc

0

∫︂ M
xc

0

F̂ (y, τ)G(x̂,y, t̂−τ)dy1dy2dτ

+
fcD

Fcx2c

∫︂ L
xc

0

∫︂ M
xc

0

f(y)G(x̂,y, t̂)dy1dy2

+
g
(1)
c D

Fcx2c

∫︂ t̂

0

∫︂ M
xc

0

g1̂(y2, τ)H1(x̂,y, t̂−τ)dy2dτ (2.52)

+
g
(2)
c D

Fcx2c

∫︂ t̂

0

∫︂ M
xc

0

g2̂(y2, τ)H2(x̂,y, t̂−τ)dy2dτ

+
g
(3)
c D

Fcx2c

∫︂ t̂

0

∫︂ L
xc

0

g3̂(y1, τ)H3(x̂,y, t̂−τ)dy1dτ

+
g
(4)
c D

Fcx2c

∫︂ t̂

0

∫︂ L
xc

0

g4̂(y1, τ)H4(x̂,y, t̂−τ)dy1dτ

H1(x̂,y, t̂−τ)=Gy2(x̂,y, t̂−τ)|y1=0, (2.32)

H2(x̂,y, t̂−τ)=−Gy2(x̂,y, t̂−τ)|y1= L
xc
, (2.33)

H3(x̂,y, t̂−τ)=Gy1(x̂,y, t̂−τ)|y2=0, (2.34)

H4(x̂,y, t̂−τ)=−Gy1(x̂,y, t̂−τ)|y2=M
xc
, (2.35)

G(x̂,y, t̂−τ)= 4x2c
LM

∞∑︂
n,m=1

ϕnm(x̂,y)ηnm(t̂−τ), (2.51)

ϕnm(x̂,y)= sin

(︃
nπxcx1̂
L

)︃
sin

(︃
mπxcx2̂
M

)︃
sin

(︂nπxcy1
L

)︂
sin

(︂mπxcy2
M

)︂
,

(2.47)

ηnm(t̂)=e
-λnm t̂, (2.50)

λnm=π
2x2c

(︃
n2

L2
+
m2

M2

)︃
, (2.48)

Fc=max
x,t

|F (x, t)|, (2.10)

g(1)c =max
x2,t

|g1(x2, t)|, g(2)c =max
x2,t

|g2(x2, t)|, (2.11)

g(3)c =max
x1,t

|g3(x1, t)|, g(4)c =max
x1,t

|g1(x1, t)| (2.12)

fc=max
x

|f(x)|, (2.13)

xc=max(L,M), (2.18)

tc=
x2c
D
. (2.15)

When considering C>1 carcinogens each carcinogen evolves using the same

PDE model described above with each solution and the parameters of the
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model being distinguished by an index i=1, ..., C.

2.3 Introduction to Neural Networks

This section is adapted from Géron [55].

2.3.1 History

Artificial neural networks (ANNs) were created to build an intelligent ma-

chine, more commonly known as artificial intelligence (AI), based upon the

brain’s architecture. In 1943 the neurophysiologist Warren McCulloch and

mathematician Walter Pitts invented the first ANN architecture which was

a simplified computational model for how biological neurons might work in

animal brains to perform complex computations using propositional logic [94].

The initial success of these ANNs up until the 1960s led to the hope that

there would soon be truly intelligent machines that could be conversed with.

However when this hope was not met the development of ANNs stopped due

to loss of funding and interest. In the early 1980s development of new network

architectures and better computational techniques led to a renewed interest in

ANNs. By the 1990s more powerful alternative machine learning techniques

such as support vector machines were favoured by researchers as they had

better results and stronger theoretical foundations to understand and further

develop. Until more recently, the last decade or so, ANNs were not very preva-

lent but there is now a prominent wave of development and research into them

that has led to AI being used almost everywhere. This new wave likely will

not stop due to the following reasons:

� a significant quantity of data available to train neural networks,

� ANNs frequently outperform other machine learning (ML) techniques,

� computational power improvements since the 1990s which reduces both

training and execution time,

� new training algorithms are perpetually being developed and existing

algorithms have been perfected,
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� When ANNs are applied to real problems some of the theoretical limi-

tations are not present,

� ANNs have acquired significant funding and progression due to promi-

nent ongoing development of applications for ANNs.

2.3.2 Basic ANN Architectures

McCulloch & Pitts [94] proposed a very simple model of the biological neuron,

which later became known as an artificial neuron. An artificial neuron is made

up of one or more binary (on/off) inputs and one binary output. The output

is activated when a certain number of its inputs is active. They showed that

even with this seemingly simple model it was possible to build a network of

artificial neurons that could compute any possible logical proposition.

Another simple ANN architecture was invented by Frank Rosenblatt in

1957 that was called the Perceptron. It was based upon an artificial neuron

called a linear threshold unit (LTU) in which the inputs and output are now

real numbers instead of binary on/off values and each input connection is

associated with a weight. The LTU computes a weighted sum of its inputs

z=wT ·x, then applies a step function to that sum and outputs the result:

hw(x)=step(z)=step(wT ·x), reference Figure 2.1 for a visual representation.

x1 x2 · · · xn

w1 w2 · · ·
wn

Σ

Inputs

Weights

Weighted sum: z=wT ·x
Step function: step(z)

Output: hw(x)=step(wT ·x)

Figure 2.1: In this figure we show a visual representation of a linear threshold unit (LTU). Firstly, a weighted
sum of the inputs is computed, followed by an application of a step function. This figure is adapted from
Géron [55].

The most common step function used in Perceptrons is the Heaviside step

function although sometimes the sign function is used in its place. A single

LTU is typically used for linear binary classification as it computes a linear
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combination of the inputs and outputs the positive or negative class dependent

on whether the inputs exceed some threshold.

A Perceptron is composed of a single layer of LTUs, with each LTU con-

nected to all the inputs, see Figure 2.2 for a visual representation.

x1 x2 · · · xn

↑ ↑ · · · ↑1

Σ Σ
· · ·

ΣΣ

Inputs

Outputs

Input Neuron

(passthrough)

Bias Neuron

(outputs 1)

LTU

Input

layer

Output

layer

Figure 2.2: In this figure we show a visual representation of a perceptron. Inputs are passed through an
input layer (with an added bias neuron), the output of each of the neurons of the input layer are then
inputted into each of the LTUs that make up the output layer. This figure is adapted from Géron [55].

Perceptrons make predictions based off some threshold, thus they do not out-

put a class probability. In Minsky & Papert [97] they discuss a number of

serious weaknesses of Perceptrons, in particular Perceptrons are incapable of

solving some trivial problems. Some of the limitations of Perceptrons can be

eliminated by stacking multiple Perceptrons to create what is called a Multi-

Layer Perceptron (MLP).

2.3.3 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is composed of one input layer, one or more

layers of LTUs called hidden layers, and one final layer of LTUs called the

output layer, an example MLP can be seen in Figure 2.3. The input and

hidden layers have a bias neuron and are fully connected to the next layer,

meaning each output node of one layer is connected to every node of the input

of the next layer. Note that when an ANN has two or more hidden layers, it

is called a deep neural network (DNN).
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x1 x2 · · · xn

↑ ↑ · · · ↑1

Σ Σ
· · ·

ΣΣ
1

Σ Σ
· · ·

ΣΣ

Input

layer

Hidden

layer

Output

layer

Figure 2.3: This figure shows a simple Multi-Layer Perceptron with one hidden layer. It is adapted from
Géron [55].

To train, the weights for each LTU using training data, MLPs use an algo-

rithm called back-propagation, which was created by Rumelhart et al. [119].

Back-propagation attempts to minimize the weights in a network so that the

measure of the difference between the actual output and the networks output

is minimized. The measure for the difference, typically called the loss function,

is minimized by computing the gradient of the loss function with respect to

each weight by chain rule, computing the gradient one layer at a time, starting

at the last layer to avoid redundant calculations of intermediate terms in the

chain rule. Gradients are used as it shows how much the input of a func-

tion needs to change to minimize the function. Since LTUs use step functions

which are not differentiable everywhere Rumelhart et al. [119] replaced the

step function with the logistic function, σ(z)= 1
1+ exp(−z)

. Many other functions

can be used and are known as activation functions. Some examples of activa-

tion functions include the hyperbolic tangent function tanh(z)=2σ(2z)−1 and

the ReLU function ReLU(z)=max(0, z).

An MLP is typically used for classification, where each output corresponds
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to the log likelihood of a different class. The probability that the input be-

longs to class k can be estimated by computing the exponential of every log

likelihood, and normalizing them. The probabilities are thus given by:

p̂k=
exp(sk(x))∑︁K
j=1 exp(sj(x))

.

If only the class with the highest probability is desired then compute ŷ =

argmax
k

p̂ = argmax
k

sk(x).

2.3.4 Designing an Artificial Neural Network

One of the important decisions when designing an ANN architecture is how

many hidden layers to include. If the problem at hand does not have inherent

structures, such as hats in photos of people, then one hidden layer is sufficient

for complex functions, provided it has enough neurons. A deep network can

model complex functions using fewer neurons than shallow nets, making them

much faster to train so they are more parameter efficient. Sometimes the

complex patterns in data can be broken down into a combination of simpler

patterns, whereby lower layers model low-level patterns, intermediate layers

combine the low-level patterns to model intermediate-level patterns, and the

highest layers along with the output layer combine the intermediate patterns

to model the high-level patterns. The hierarchical architecture helps DNNs

generalize to new data-sets. A trained DNN can be used for another similar

task by reusing the parameters of the lower hidden layers and retraining the

intermediate and higher-level layers. Thus for many problems when designing

an ANN we start with just one or two hidden layers on a simple problem

and then for more complex problems we gradually increase the number of

hidden layers until over-fitting of the training set starts to occur. Another

decision to make when creating an ANN architecture is how many neurons

to include in each hidden layer. A prior common technique was to set the

number of neurons for each layer such that each successive layer had fewer

neurons than the previous layer, which represented the fact that higher-level

structures required fewer individual classes to distinguish. However, nowadays,
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one simply sets all the layers to have the same number of neurons so that there

is just one parameter instead of a parameter for each layer. Another technique

is to gradually increase the number of neurons until the network starts over-

fitting the training data-set. If the number of layers over the number of neurons

per layer is increased the model will become more accurate. Another simpler

technique is to pick a model with more layers and neurons than needed, then

use early stopping when training to prevent it from over-fitting.

The final important question to consider is what activation function to

use for each layer. For the hidden layers, it is common practice to use the

ReLU activation function as it is faster to compute than most other functions

and gradient descent does not become stuck as much on plateaus. For the

output layer, the softmax activation function (which normalizes a vector into

some probability distribution so that the sum of the output vector sums to

one and each component of the vector can be interpreted as a probability),

is generally a good choice for classification tasks that have mutually exclusive

classes. When the classes are not mutually exclusive the choice is typically

to use the logistic function. When dealing with some tasks, like a regression,

that do not involve classification, it is sometimes useful to have no activation

function at all in the output layer.

2.4 Gene Expression Neural Network

In this section we describe the neural network we use to mutate genes through

cell age and carcinogenic onslaught. We consider G∈N genes that are biomark-

ers to the considered cancer type. The gene expression of each gene is repre-

sented by the function

ej(x, t)∈R, j=1, 2, ..., G. (2.53)

The gene expression is a non-dimensional value that is zero when the expression

is normal, negative when it is under-expressed, and positive when it is over-

expressed. The gene expression of each gene changes over time based upon a
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simple multi-layer perceptron (MLP). The input of the MLP is the vector

X(x, t):=[{ci(x, t−1)}i=1,...,C , α(x, t−1)]T∈RC+1
+ , (2.54)

where ci(x, t) are the carcinogen concentrations and α(x, t) is the age of the

cell. This choice is such that changes in gene expression is based upon the

carcinogens in the environment of the cell and the age, which essentially means

we are looking at the effects of the carcinogens and replication errors as a cell

ages. The output of the MLP is given by

Y (x, t):=[{δj(x, t)}j=1,2,...,G]
T∈RG, (2.55)

where δj(x, t) is the computed maximum possible change in gene expression

for gene j. The amount the gene j will be mutated in a time-step is a random

sample from the uniform distribution multiplied by δj(x, t).

Y (x, t) is computed using matrix multiplication, addition and application

of a non-linear transform. The hidden layer is computed by

H(x, t):=γ(WXX(x, t))∈RG, (2.56)

where

γ(ξ):=
ξ√︁

1+νξ2
,∈

(︃
-1√
ν
,
1√
ν

)︃
(2.57)

is the non-linear transform (also known as an activation function) that is

applied element wise to a vector and WX∈RG×C+1 is a weight matrix. Note

that the activation function is chosen to ensure |δj(x, t)| < 1√
ν
, hence allowing

us to control the maximum amount the expression of gene j can change in a

time-step via ν. After the hidden layer is computed the output is computed

by

Y (x, t)=γ(WYH(x, t)+bY (x, t)), (2.58)

where WY∈RG×G is a weight matrix and bY (x, t)∈RG is a bias vector.

Biologically speaking W
(i,j)
X , i∈[1, G], j∈[1, C] represents how carcinogen i

influences gene j, W
(i,C+1)
X , i∈[1, G] represents whether cell age influences gene

j, W
(i,j)
Y represents whether gene i influences gene j, and b

(i)
Y (x, t) is whether

gene i has a higher chance of gene expression changes relative to other genes.
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Note that if a value in the weight matrices is negative it means there is a

negative relationship, if it is positive it means there is a positive relationship,

and finally if it is zero it means there is no relationship. In the case of deter-

mining how age affects each gene, the values ofW
(i,C+1)
X , i∈[1, G] are randomly

made positive or negative at every time-step based upon sampling from the

uniform distribution and setting it positive if the sample is less than 0.5 and

negative otherwise. We randomly choose the direction cell age regulates gene

expression because as a cell ages there are higher changes of gene replication

errors, thus the direction will depend on the type of error.

Let U(0, 1) be the uniform distribution. The gene expression, ej(x, t), of

a gene is updated by

ej(x, t)=ej(x, t−1)+zδj(x, t), z∼U, (2.59)

where we use z∼U to indicate that z is sampled from U . A gene j is considered

to be mutated if its’ gene expression is above the threshold value M∈R+, i.e.,

|ej(x, t)|≥M . The bias for a gene j, b
(j)
Y (x, t), is updated through the relation

b
(j)
Y (x, t)=

⎧⎪⎨⎪⎩
β , ej(x, t−1)≥M
−β , ej(x, t−1)≤−M
0 , otherwise

, β∈R+. (2.60)

2.5 Cellular Automaton

As mentioned in the model overview, the six cell classes that we consider are

normal tissue cells (NTC), mutated normal tissue cells (MNTC), normal stem

cells (NSC), mutated normal stem cells (MNSC), cancer stem cells (CSC), and

tumour cells (TC). Each cell class is specified in the cellular automata (CA)

using a numerical value between 0 and 5. More precisely, we have that

0=NTC, 1=MNTC, 2=NSC, 3=MNSC, 4=CSC, 5=TC. Since biological cells

can move, proliferate, differentiate, and go through apoptosis then we must

also introduce an empty cell class which is represented by the value 6. The

cell class in the CA is represented by s(x, t)∈{0, 1, ..., 6}. Note that when

visualizing the CA each value of s(x, t) also has a colour associated to it.
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Though we can choose any arbitrary colour for each cell class the colours

chosen for the results of the model can be seen in table 2.1.

Cell class s(x, t) Colour
normal tissue cell (NTC) 0 brown

mutated normal tissue cell (MNTC) 1 green
normal stem cell (NSC) 2 blue

mutated normal stem cell (MNSC) 3 yellow
cancer stem cell (CSC) 4 purple

tumour cell (TC) 5 red
empty cell 6 white

Table 2.1: CA cell classes

Each cell in the CA tracks the gene expression of the G genes in a vector

defined by

E(x, t)=[{ej(x, t)}j=1,...,G]. (2.61)

The phenotype of a cell is tracked by a vector that contains probabilities for

each type of phenotypic action occurring in a given time-step and is defined

by

P (x, t)=[p(x, t), q(x, t), a(x, t), d(x, t)], (2.62)

where p(x, t) represents proliferation, q(x, t) represents quiescence, a(x, t) rep-

resents apoptosis, and d(x, t) represents differentiation. The probabilities are

set such that P (x, t) generates a probability distribution, so that

4∑︂
i=1

Pi(x, t)≡p(x, t)+q(x, t)+a(x, t)+d(x, t)=1 and Pi(x, t)≥0,∀t. (2.63)

At a time-step in the CA a phenotypic action is chosen to occur by sampling

from the probability distribution generated from P (x, t). Hence, since we

do not want a cell to reproduce more than once in a time-step, each time-

step represents the length of a typical cell cycle for the type of tissue under

consideration.

When a NSC, MNSC, or CSC differentiate the resultant cell initially is a

transient amplifying cell (TAC) for a set number of generations, Θ, after which

it turns respectively into a NTC, MNTC, or TC. As a result of this each cell

has two parameters τ(x, t)∈{0, 1} and n(x, t)∈{0, ...,Θ}, where τ(x, t) is a

43



binary parameter used to determine if a cell is currently a TAC or not and

n(x, t) is the number of generations a TAC cell lineage has produced. The

parameters τ(x, t) and n(x, t) are copied from parent to child cell and once

n(x, t)=Θ then τ(x, t+1)=0, n(x, t+1)=0.

The final aspect of the cell that is tracked and represented in the overall

cell state is the age of the cell, α(x, t)∈N. The state of a cell in the CA is

given by the vector

S(x, t)=[s(x, t), α(x, t),E(x, t),P (x, t), τ(x, t), n(x, t)] (2.64)

The domain could theoretically be either two-dimensional or

three-dimensional, however for simplicity and computational purposes, the

domain considered will be two-dimensional, so x∈R2. Each cell has a neigh-

bourhood that contains itself, the cardinal directions around it, and the cells

directly NE, SE, SW, and NW of the cell. In CA theory this is called the Moore

neighbourhood and is mathematically defined for two-dimensional grids as

NM
(x0,y0)

={(x, y)||x−x0|≤r, |y−y0|≤r}, (2.65)

where r is the range of the Moore neighbourhood and (x0, y0) is the cell that

the neighbourhood surrounds [59]. Most commonly the Moore neighbourhood

used is with r=1 and it will be the one used in this thesis.

The boundary conditions of the grid are standard periodic boundary con-

ditions. Periodic boundaries were chosen because they are easier to work with

and the size of the domain physically speaking is minuscule so they will not

effect the results. We could easily also use non-periodic boundaries by dealing

with edge cases.

2.5.1 Cell Mutation

A cell can become mutated through changes in both the likelihood of a phe-

notype occurring and the gene expression. The process of these changes is

described in this section.
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2.5.1.1 How Mutations Effect Gene Expression

The chosen G genes are known genes related to the type of cancer being

studied. Thus, each of the G genes is either a tumour suppressor gene or an

oncogene. Define the vector T∈{0, 1}G, where each element, Tj, represents

gene j’s type, whereby Tj=0 represents a tumour suppressor gene and Tj=1

represents an oncogene.

A gene j is positively mutated towards cancer (positively mutated) if it

is mutated and either it is a tumour suppressor gene and its gene expres-

sion is downregulated, Tj=0 and ej(x, t)≤ −M , or it is an oncogene and its

gene expression is upregulated, Tj=1 and ej(x, t)≥M , where M is the given

threshold.

At each time-step the gene expression of each gene is updated from the

results of the gene expression neural network. The changes in the gene ex-

pression allow the gene to become mutated or even go from mutated to non

mutated (normally expressed). The following function is used as an indicator

to determine if a gene j is mutated, positively mutated or normally expressed:

Ψ(x, t, j)=

⎧⎪⎨⎪⎩
0, |ej(x, t)|<M(normally expressed)

1−2Tj, ej(x, t)≤−M(underexpressed gene)

−2+4Tj, ej(x, t)≥M(overexpressed gene)

(2.66)

Notice that when Ψ(x, t, j)>0 the gene j is positively mutated and when

Ψ(x, t, j)<0 it is mutated away from cancer. Further take note that if

|Ψ(x, t, j)|=1

the gene j is downregulated and when

|Ψ(x, t, j)|=2

it is upregulated.

2.5.1.2 Update Rules for Gene Expression

A given gene can influence the expression of another gene as follows. A posi-

tively mutated gene will cause a positive mutation of a related gene. A non-

positively mutated gene will cause a negative mutation (mutation that regu-

lates a gene towards normal expression) of a related gene. Define the matrix
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R∈{0, 1}G×G, where each entry, Rij, represents whether gene i is related to

gene j with 0=unrelated and 1=related. Note that the matrix R is not nec-

essarily symmetric as a gene i might regulate gene j but not vice versa. To

update gene j according to formula (2.68) below, we chose a random number

z∼U(0, 1) and an update occurs only if z≤γ and Rij=1. The process of a gene

i changing the gene expression of another gene j is represented by the formula:

ς(x, t, i, j)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, (Ψ(x, t, i)>0 and Tj=1 and ej(x, t)<M) or

(Ψ(x, t, i)≤0 and ej(x, t)<0)

−1, (Ψ(x, t, i)>0 and Tj=0 and ej(x, t)>−M) or

(Ψ(x, t, i)≤0 and ej(x, t)>0)

0, otherwise

, (2.67)

ej(x, t)=ej(x, t−1)+ς(x, t−1, i, j)ε, (2.68)

where ε∼U(ε1, ε2) is a randomly chosen increment between ε1 and ε2. The

previous update is used by fixing a gene i and applying the function to all the

other genes, then repeating the process on the next gene and so forth, until all

the genes have been processed. In each of these steps new random numbers

z, ε are generated.

In addition if a gene j is mutated then there is a chance that the gene

expression is negatively mutated, so to replicate the bodies attempting to re-

vert mutated genes. The following function is applied only when some random

variable z∼U(0, 1) is less than or equal to a threshold ϕ. This is represented

by the gene repair function:

ej(x, t)=ej(x, t−1)+

{︄
ε, |Ψ(x, t−1, j)|=1

−ε, |Ψ(x, t−1, j)|=2
, (2.69)

where ε∼U(ε1, ε2) is a random increment. In a given time-step the previous

function (2.69) is applied once to all G genes.

2.5.1.3 Update Rules for Phenotypic Action

The probability of a phenotypic action occurring can change at each time-step

based upon the gene expression of a gene. When a gene is mutated it can
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modify the probability of a phenotypic action occurring, Pi(x, t). We define

the matrix U∈R4×G, where each entry, U ij, is an increment to the probability

of phenotypic action i, Pi(x, t), under the circumstance that gene j is mutated

and its’ expression is upregulated. Similarly, we define the matrix D∈R4×G,

where each entry, Dij, is an increment to the probability of phenotype action

i, Pi(x, t), under the circumstance that gene j is mutated and its’ expression

is downregulated. We define updates for the phenotypic actions in (2.72) and

(2.73) in a way such that the probability of a phenotypic action occurring is

kept bounded between 0 and 1 and
∑︁4

i=1 Pi(x, t)=1.

The sum of the phenotype vector equaling one is maintained by balancing

the probability of each phenotype action against the probability of quiescence

and quiescence equally against all the other phenotypic actions. Note that

usually U=−D since the effects of the up-regulation of a gene j has the op-

posite effect on the phenotypic action i relative to the down-regulation of the

gene. For each update we choose a random sample ϖ∼U(0, 1) which denotes

the magnitude of the change to Pi based on a change in ej. To ensure that

updates remain between 0 and 1 we use the following modified expression for

the increment:

Ξ(ϵ, ξ)=

⎧⎪⎨⎪⎩
−ξ×0.99, ξ+ϵ≤0

(1−ξ)×0.99, ξ+ϵ≥1

ϵ, otherwise

, (2.70)

Given the mutated gene j we change the phenotypic probability Pi with the

following formulas, where Φ defines the maximum increment or detriment

amount:

Φ(x, t, i) =

{︄
Dij, |Ψ(x, t, j)| = 1

U ij, |Ψ(x, t, j)| = 2
(2.71)

Then the update for Pi ensures that the new probabilities remain between 0

and 1.

Pi(x, t)=Pi(x, t−1)

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sgn(Φ(x, t, i))min(|Ξ(ϖΦ(x, t, i), Pi(x, t−1))|, , i̸=2

|Ξ(−ϖΦ(x, t, i), P2(x, t−1))|)

Ξ(ϖΦ(x, t, i), P2(x, t−1)) , i=2

, (2.72)
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These changes are balanced with changes to the other phenotype actions k ̸=i

to ensure full probability.

Pk(x, t)=Pk(x, t−1)

−

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sgn(Φ(x, t, i))min(|Ξ(ϖΦ(x, t, i), Pi(x, t−1))|, , k=2

|Ξ(−ϖΦ(x, t, i), Pk(x, t−1))|)

Ξ(ϖΦ(x, t, i), Pi(x, t−1))Pk(x, t−1)∑︁
l ̸=2 Pl(x, t−1)

, k ̸=2

, (2.73)

The equation (2.72) modifies a phenotypic action with respect to a gene j, with

equation (2.73) balancing those changes so that the sum of the probability

distribution generated by P (x, t) remains one. Thus, to mutate a phenotypic

action i with respect to gene j, we use equation (2.72) then if i̸=2, we are not

modifying quiescence, and we use equation (2.73) with k=2, otherwise we use

equation (2.73) with k=1, 3, 4. Since |Ψ(x, t, j)|=1 means that gene j is down-

regulated, then we know that in that case the increment for the phenotypic

action i with respect to gene j will be Dij. Similarly, whenever |Ψ(x, t, j)|=2

then the increment for the phenotypic action i will be Uij. Mathematically

speaking this update process is accomplished through a composition of appli-

cations of (2.72) and (2.73). We define the functional P
j
(x, t, i) where i is the

phenotypic action being modified using (2.72) and (2.73) with respect to gene

j. Thus the update can be written as Pi(x, t) = P
1
(P

2
(...P

G
(x, t, i))), where

in each step we re-sample random variables z,ϖ as described above.

Lemma 2.5.1. Let Pl(x, t−1)∈(0, 1), l=1, 2, 3, 4 and
∑︁4

l=1 Pl(x, t−1)=1. If

the probability Pi of phenotypic action i ∈ {1, 2, 3, 4} is modified using the rules

(2.72) and (2.73) with respect to gene j then we will still have
∑︁4

l=1 Pl(x, t)=1,

∀t>0.

Proof. Assume Ψ(x, t, j)̸=0 and the threshold for gene j to modify the proba-

bility of phenotypic action i is met, i.e., z∼Z(0, 1)≤ρ. Also since the increment

being applied to the probability of phenotypic action i has only two possible

values related to whether |Ψ(x, t, j)|=1 or |Ψ(x, t, j)|=2, then we can assume

without loss of generality that the increment is some value ϵ. If ϵ=0 then triv-

ially we have that
∑︁4

l=1 Pl(x, t)=1 since no changes will occur to Pi(x, t−1).
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Case 1: First we assume that i̸=2 and k=2 as we are balancing the change in

the probability of phenotypic action i with the probability of quiescence.

Further assume that Pl(x, t)=Pl(x, t−1), l ̸=i, 2.

Case A: Assume ϵ<0.

Case a: Assume 0<Pi(x, t−1)+ϵ<1 and 0<P2(x, t−1)−ϵ<1. We have

that

sgn(ϵ)min(|Ξ(ϵ, Pi(x, t−1))|, |Ξ(−ϵ, P2(x, t−1))|)

=sgn(ϵ)min(|ϵ|, |−ϵ|)=sgn(ϵ)|ϵ|=ϵ. (1)

Using equation (2.72) and considering (1) we have that

Pi(x, t)=Pi(x, t−1)+ϵ. (2)

Also using equation (2.73) and considering again (1) we have

that

P2(x, t)=P2(x, t−1)−ϵ. (3)

Therefore, using equations (2) and (3) we have

4∑︂
l=1

Pl(x, t)=
4∑︂

l=1
l ̸=i,2

Pl(x, t)+(Pi(x, t−1)+ϵ)+(P2(x, t−1)−ϵ)

=
4∑︂

l=1
l ̸=i,2

Pl(x, t)+Pi(x, t−1)+P2(x, t−1)

=
4∑︂

l=1
l ̸=i,2

Pl(x, t−1)+Pi(x, t−1)+P2(x, t−1)

=
4∑︂

l=1

Pl(x, t−1)=1.

Case b: Assume Pi(x, t−1)+ϵ≤0 and 0<P2(x, t−1)−ϵ<1. Since

Pi(x, t−1)≤−ϵ we have

sgn(ϵ)min(|Ξ(ϵ, Pi(x, t−1))|, |Ξ(−ϵ, P2(x, t−1))|)

=−min(|−0.99Pi(x, t−1)|, |−ϵ|)

=−min(0.99Pi(x, t−1),−ϵ)=−0.99Pi(x, t−1). (4)
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Using equation (2.72) and considering (4) we have that

Pi(x, t)=Pi(x, t−1)−0.99Pi(x, t−1)=0.01Pi(x, t−1). (5)

Also using equation (2.73) and considering again (4) we have

that

P2(x, t)=P2(x, t−1)+0.99Pi(x, t−1). (6)

Therefore, using equations (5) and (6) we have

4∑︂
l=1

Pl(x, t)=
4∑︂

l=1
l ̸=i,2

Pl(x, t)+0.01Pi(x, t−1)

+(P2(x, t−1)+0.99Pi(x, t−1))

=
4∑︂

l=1
l ̸=i,2

Pl(x, t)+Pi(x, t−1)+P2(x, t−1)

=
4∑︂

l=1
l ̸=i,2

Pl(x, t−1)+Pi(x, t−1)+P2(x, t−1)

=
4∑︂

l=1

Pl(x, t−1)=1.

Case c: Assume 0<Pi(x, t−1)+ϵ<1 and P2(x, t−1)−ϵ≥1. Since

1−P2(x, t−1)≤−ϵ we have

sgn(ϵ)min(|Ξ(ϵ, Pi(x, t−1))|, |Ξ(−ϵ, P2(x, t−1))|)

=−min(|ϵ|, |0.99(1−P2(x, t−1))|)

=−min(−ϵ, 0.99(1−P2(x, t−1)))=0.99(P2(x, t−1)−1). (7)

Using equation (2.72) and considering (7) we have that

Pi(x, t)=Pi(x, t−1)+0.99(P2(x, t−1)−1)

=Pi(x, t−1)+0.99P2(x, t−1)−0.99. (8)

Also using equation (2.73) and considering again (7) we have

that

P2(x, t)=P2(x, t−1)−0.99(P2(x, t−1)−1)

=0.01P2(x, t−1)+0.99. (9)
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Therefore, using equations (8) and (9) we have

4∑︂
l=1

Pl(x, t)=
4∑︂

l=1
l ̸=i,2

Pl(x, t)+(Pi(x, t−1)+0.99P2(x, t−1)−0.99)

+(0.01P2(x, t−1)+0.99)

=
4∑︂

l=1
l ̸=i,2

Pl(x, t)+Pi(x, t−1)+P2(x, t−1)

=
4∑︂

l=1
l ̸=i,2

Pl(x, t−1)+Pi(x, t−1)+P2(x, t−1)

=
4∑︂

l=1

Pl(x, t−1)=1.

Case d: Assume Pi(x, t−1)+ϵ≤0 and P2(x, t−1)−ϵ≥1. We compute

sgn(ϵ)min(|Ξ(ϵ, Pi(x, t−1))|, |Ξ(−ϵ, P2(x, t−1))|)

=-min(|-0.99Pi(x, t−1)|, |0.99(1−P2(x, t−1))|)

=-min(0.99Pi(x, t−1), 0.99(1−P2(x, t−1))). (10)

There are two possible situations for the minimum in equation

(10) but both are similar respectively to Case b and c and so

in either situation
∑︁4

l=0 Pl(x, t)=1.

Case B: Assume ϵ>0.

Case a: Assume 0<Pi(x, t−1)+ϵ<1 and 0<P2(x, t−1)−ϵ<1. Same as

Case (1, A, a) so
∑︁4

l=1 Pl(x, t)=1.

Case b: Assume Pi(x, t−1)+ϵ≥1 and 0<P2(x, t−1)−ϵ<1. Since

1−Pi(x, t−1)≤ϵ we have

sgn(ϵ)min(|Ξ(ϵ, Pi(x, t−1))|, |Ξ(−ϵ, P2(x, t−1))|)

=min(|0.99(1−Pi(x, t−1))|, |ϵ|)

=min(0.99(1−Pi(x, t−1)), ϵ)=0.99(1−Pi(x, t−1)). (11)

Using equation (2.72) and considering (11) we have that

Pi(x, t)=Pi(x, t−1)+0.99(1−Pi(x, t−1))

=0.01Pi(x, t−1)+0.99. (12)
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Also using equation (2.73) and considering again (11) we have

that

P2(x, t)=P2(x, t−1)−0.99(1−Pi(x, t−1))

=P2(x, t−1)+0.99Pi(x)−0.99. (13)

Therefore, using equations (12) and (13) we have

4∑︂
l=1

Pl(x, t)=
4∑︂

l=1
l ̸=i,2

Pl(x, t)+(0.01Pi(x, t−1)+0.99)

+(P2(x, t−1)+0.99Pi(x, t−1)−0.99)

=
4∑︂

l=1
l ̸=i,2

Pl(x, t)+Pi(x, t−1)+P2(x, t−1)

=
4∑︂

l=1
l ̸=i,2

Pl(x, t−1)+Pi(x, t−1)+P2(x, t−1)

=
4∑︂

l=1

Pl(x, t−1)=1.

Case c: Assume 0<Pi(x, t−1)+ϵ<1 and P2(x, t−1)−ϵ≤0. Since

P2(x, t−1)≤ϵ we have

sgn(ϵ)min(|Ξ(ϵ, Pi(x, t−1))|, |Ξ(−ϵ, P2(x, t−1))|)

=min(|ϵ|, | − 0.99P2(x, t−1)|)

=min(ϵ, 0.99(1−P2(x, t−1)))=0.99P2(x, t−1). (14)

Using equation (2.72) and considering (14) we have that

Pi(x, t)=Pi(x, t−1)+0.99P2(x, t−1) (15)

Also using equation (2.73) and considering again (14) we have

that

P2(x, t)=P2(x, t−1)−0.99P2(x, t−1)

=0.01P2(x, t−1). (16)
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Therefore, using equations (15) and (16) we have

4∑︂
l=1

Pl(x, t)=
4∑︂

l=1
l ̸=i,2

Pl(x, t)+(Pi(x, t−1)+0.99P2(x, t−1))

+0.01P2(x, t−1)

=
4∑︂

l=1
l ̸=i,2

Pl(x, t)+Pi(x, t−1)+P2(x, t−1)

=
4∑︂

l=1
l ̸=i,2

Pl(x, t−1)+Pi(x, t−1)+P2(x, t−1)

=
4∑︂

l=1

Pl(x, t−1)=1.

Case d: Assume Pi(x, t−1)+ϵ≥1 and P2(x, t−1)−ϵ≤0. We compute

sgn(ϵ)min(|Ξ(ϵ, Pi(x, t−1))|, |Ξ(−ϵ, P2(x, t−1))|)

=min(|0.99(1−Pi(x, t−1))|, |−0.99P2(x, t−1)|)

=min(0.99(1−Pi(x, t−1)), 0.99P2(x, t−1)). (17)

There are two possible situations for the minimum in equation

(17) but both are similar respectively to Case b and c and so

in either situation
∑︁4

l=0 Pl(x, t)=1.

Case 2: Now assume that i=2 and k=1, 3, 4 as we are balancing modifications in

the probability of quiescence equally against the probabilities of all the

other phenotypic actions.

Case A: Assume ϵ<0.

Case a: Assume 0<P2(x, t−1)+ϵ<1. We have that

Ξ(ϵ, P2(x, t−1))=ϵ (18)

Using equation (2.72) and considering (18) we have that

P2(x, t)=P2(x, t−1)+ϵ. (19)
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Also using equation (2.73) and considering again (18) we have

that

Pk(x, t)=Pk(x, t−1)− ϵPk(x, t−1)∑︁4
m=1

m̸=2

Pm(x, t−1)
, (20)

k=1, 3, 4.

Therefore, using equations (19) and (20) we have

4∑︂
l=1

Pl(x, t)=
4∑︂

l=1

Pl(x, t−1)−ϵ
4∑︂

l=1
l ̸=2

Pl(x, t−1)∑︁4
m=1

m ̸=2

Pm(x, t−1)
+ϵ

=
4∑︂

l=1

Pl(x, t−1)+ϵ

⎛⎜⎝1−

∑︁4
l=1

l ̸=2

Pl(x, t−1)

1−P2(x, t−1)

⎞⎟⎠
=

4∑︂
l=1

Pl(x, t−1)+ϵ

(︃
1−1−P2(x, t−1)

1−P2(x, t−1)

)︃

=
4∑︂

l=1

Pl(x, t−1)+ϵ(1−1)

=
4∑︂

l=1

Pl(x, t−1)=1.

Case b: Assume P2(x, t−1)+ϵ≤0. We have that

Ξ(ϵ, P2(x, t−1))=-0.99P2(x, t−1) (21)

Using equation (2.72) and considering (21) we have that

P2(x, t)=P2(x, t−1)−0.99P2(x, t−1)

=0.01P2(x, t−1). (22)

Also using equation (2.73) and considering again (21) we have

that

Pk(x, t)=Pk(x, t−1)+
0.99P2(x, t−1)Pk(x, t−1)∑︁4

m=1
m ̸=2

Pm(x, t−1)
, (23)

k=1, 3, 4.
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Therefore, using equations (22) and (23) we have

4∑︂
l=1

Pl(x, t)=
4∑︂

l=1
l ̸=2

Pl(x, t−1)

+0.99P2(x, t−1)
4∑︂

l=1
l ̸=2

Pl(x, t−1)∑︁4
m=1

m ̸=2

Pm(x, t−1)

+0.01P2(x, t−1)

=
4∑︂

l=1
l ̸=2

Pl(x, t−1)

+0.99P2(x, t−1)

∑︁4
l=1

l ̸=2

Pl(x, t−1)

1−P2(x, t−1)
+0.01P2(x, t−1)

=
4∑︂

l=1
l ̸=2

Pl(x, t−1)

+0.99P2(x, t−1)
1−P2(x, t−1)

1−P2(x, t−1)
+0.01P2(x, t−1)

=
4∑︂

l=1
l ̸=2

Pl(x, t−1)+0.99P2(x, t−1)+0.01P2(x, t−1)

=
4∑︂

l=1
l ̸=2

Pl(x, t−1)+P2(x, t−1)=
4∑︂

l=1

Pl(x, t−1)=1.

Case B: Assume ϵ>0.

Case a: Assume 0<P2(x, t−1)+ϵ<1. Same as Case (2, A, a) so

4∑︂
l=1

Pl(x, t)=1.

Case b: Assume P2(x, t−1)+ϵ≥1. We have that

Ξ(ϵ, P2(x, t−1))=0.99(1−P2(x, t−1)) (24)

Using equation (2.72) and considering (24) we have that

P2(x, t)=P2(x, t−1)+0.99(1−P2(x, t−1)

=0.01P2(x, t−1)+0.99. (25)
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Also using equation (2.73) and considering again (24) we have

that

Pk(x, t)=Pk(x, t−1)−0.99(1−P2(x, t−1))Pk(x, t−1)∑︁4
m=1

m ̸=2

Pm(x, t−1)

=Pk(x, t−1)

+
(0.99P2(x, t−1)−0.99)Pk(x, t−1)∑︁4

m=1
m ̸=2

Pm(x, t−1)
, (26)

k=1, 3, 4.

Therefore, using equations (25) and (26) we have

4∑︂
l=1

Pl(x, t)=
4∑︂

l=1
l ̸=2

Pl(x, t−1)

+(0.99P2(x, t−1)−0.99)
4∑︂

l=1
l ̸=2

Pl(x, t−1)∑︁4
m=1

m ̸=2

Pm(x, t−1)

+0.01P2(x, t−1)+0.99

=
4∑︂

l=1
l ̸=2

Pl(x, t−1)

+(0.99P2(x, t−1)−0.99)

∑︁4
l=1

l ̸=2

Pl(x, t−1)

1−P2(x, t−1)

+0.01P2(x, t−1)+0.99

=
4∑︂

l=1
l ̸=2

Pl(x, t−1)

+(0.99P2(x, t−1)−0.99)
1−P2(x, t−1)

1−P2(x, t−1)

+0.01P2(x, t−1)+0.99

=
4∑︂

l=1
l ̸=2

Pl(x, t−1)+0.99P2(x, t−1)−0.99

+0.01P2(x, t−1)+0.99

=
4∑︂

l=1
l ̸=2

Pl(x, t−1)+P2(x, t−1)=
4∑︂

l=1

Pl(x, t−1)=1.
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Since the two cases above are exhaustive and all cases resulted in∑︁4
l=1 Pl(x, t)=1 then it must be that modifying phenotypic action i with re-

spect to some gene j will maintain the summation given by
∑︁4

l=1 Pl(x, t)=1.

2.5.2 Update Rules for Cell Class

The difference between the mutated class of a cell and the non-mutated class

is that the mutated class has Υ∈N positively mutated genes. Note that to

delay the arrival of the first CSC not only does there have to be Υ positively

mutated genes but for a SC or MNSC to transition into a CSC a random

variable has to be less than the threshold ι∈R+(0, 1). This can be described

by the following

Ψ(x, t, j) =

{︄
1, Ψ(x, t, j)=1 or Ψ(x, t, j)=2

0, otherwise
, (2.74)

s(x, t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0(NTC), s(x, t−1)=1(MNTC),∑︁G
j=1 Ψ(x, t, j)<Υ

1(MNTC), s(x, t−1)=0(NTC),∑︁G
j=1 Ψ(x, t, j)≥Υ

2(NSC), s(x, t−1)=3(MNSC),∑︁G
j=1 Ψ(x, t, j)<Υ

3(MNSC), s(x, t−1)=2(NSC),∑︁G
j=1 Ψ(x, t, j)≥Υ

4(CSC), s(x, t−1)=2(NSC),∑︁G
j=1 Ψ(x, t, j)≥Υ,

z≤ ι

2

4(CSC), s(x, t−1)=3(MNSC),∑︁G
j=1 Ψ(x, t, j)≥Υ,

z≤ι

, (2.75)
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where z∼U(0, 1), Ψ(x, t, j) is the mutation indicator function given by (2.66),

and G is the number of genes.

Since each cell class has different probabilities for each phenotypic action,

then there exists an initial phenotype matrix, P̃∈R6×4(0, 1) with
∑︁4

i=1 P̃ ki=1,

k=0, 1, 2, 3, 4, 5. Therefore, whenever a non-empty cell changes class, the phe-

notype vector must be set to its’ new cell class’s initial values, while also

keeping all the changes that have happened to the phenotype vector. This is

achieved through the following process

Pi(x, t)=P̃ ki+Ξ(Pi(x, t−1)−P̃ s(x,t−1)i, P̃ ki), (2.76)

where k is the new cell state, i=1, 2, 3, 4.

If the probabilities of the phenotypic actions no longer sum to one after the

changes, then standard normalization is used to fix the sum.

2.5.3 Dedifferentiation

Dedifferentiation is the process of a specialized cell reverting back to a non-

specialized cell. In our model this is accomplished by a non stem cell becoming

a stem cell. Dedifferentiation is used to help maintain the proper ratio of stem

cells to non stem cells in the grid by dedifferentiating whenever the number of

stem cells in the neighbourhood of a non stem cell is less than or equal to some

chosen value, Ŝ, or if the number of empty cells in the neighbourhood of a non

stem cell is less than or equal to some chosen value, Ê, or by random chance

based on a sample from the uniform distribution being less than a threshold.

To help reduce the number of cells dedifferentiating, the process is completed

only when a random sample from the uniform distribution is less than or equal

to some threshold, D̂∈R+(0, 1). If the non stem cell is not a TAC then the

threshold is set at D̂
2
. In the case of random chance the threshold is set at D̂

4
.

This process is represented by the function:

s(x, t)=

⎧⎪⎨⎪⎩
2(NSC), s(x, t−1)=0(NTC)

3(MNSC), s(x, t−1)=1(MNTC)

4(CSC), s(x, t−1)=5(TC)

. (2.77)
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2.5.4 Cell Fitness

Each cell has a fitness value associated to it, so that the cells can compete and

the population contains only the healthiest, or in the case of mutated cells, the

most positively mutated cells. The characteristics that affect the fitness are

based upon work by Bowling et al. [17], in which they point to the following

important characteristics:

1. if a cell has a high apoptotic rate, it is less fit;

2. if a cell has a high proliferation rate, it is more fit;

3. if a cell is older, then it is less fit;

4. if a gene in a cell is mutated towards cancer, than it is less fit unless the

cell is cancerous, in which case it is more fit;

5. if a cell is what they call super-competitive, then it is more fit than any

type of cell.
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Based upon this the fitness of a cell in the CA is computed using the functions

M̂ which is the gene expression ratio and the fitness function F̂ :

M̂(x, t, j)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Ej(x, t)

M
, (Tj = 0 and Ej(x, t) < 0)

or (Tj = 1 and Ej(x, t) > 0)

Ej(x, t)

M
, (Tj = 0 and Ej(x, t) > 0)

or (Tj = 1 and Ej(x, t) < 0)

0 , otherwise

, (2.78)

F̂ (x, t)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P1(x, t)

P̃ s(x,t)1

, τ(x, t)=0

P1(x, t)

P̃ s(x,t)1+ω
, τ(x, t)=1

−P3(x, t)

P̃ s(x,t)3

−α(x, t)P3(x, t) (2.79)

+

⎧⎪⎨⎪⎩
∑︁G

j=1 M̂(x, t, j) , s(x, t)=0 (NTC) or s(x, t)=2(NSC)

−
∑︁G

j=1 M̂(x, t, j) , otherwise

,

where Ej(x, t) is the gene-expression of gene j, M is the threshold that deter-

mines where gene j is mutated, Tj indicates if the gene j is either a tumour

suppressor gene or oncogene, P1(x, t) is the probability that proliferation will

occur in a time-step, P3(x, t) is the probability that apoptosis will occur in a

time-step, α(x, t) is the age of the cell, τ(x, t) indicates if the cell is a TAC

or not, ω is the amount the probability of proliferation is increased when a

cell is a TAC, and P̃ is the initial phenotype matrix that provides the initial

values for each of the phenotypic actions for each cell class. If the cell is from

a SC class (SC, MNSC, CSC) then its’ fitness is multiplied by a factor Π∈R+

if F̂ (x, t)>0 or Π−1 if F̂ (x, t)<0, so that a SC type cell has a higher fitness

than a non-stem cell.
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2.5.5 CA Rule

Each non-empty cell in the CA grid chooses a phenotypic action to execute for

that time-step and attempts to complete such action. The phenotypic action

is chosen by taking a random sample from the probability distribution that is

generated by the phenotype vector. Consider that the cell that is performing

the phenotypic action is located at x(p)∈Ω. The cell the action is being applied

to will be located at x(c)∈Ω, which is a randomly chosen location in the cell’s

neighbourhood. The randomly chosen cell is an empty cell or a cell with a

lower fitness in the case of proliferation, and differentiation. It is important

to note that only NSC, MNSC, and CSC can differentiate.

CSCs and TCs are the only class of cells that can kill other cells when

moving during quiescence. If the parent cell is a CSC or TC and the chosen

cell has a higher fitness then the phenotypic action is accomplished only if a

sample from some random variable is less than a threshold to kill, κ∈R+(0, 1).

A CSC can kill a TC and TC a CSC only if the fitness is lower, as otherwise

the tumour cell population and/or CSC population would die out before they

have had the chance to thrive.

2.5.5.1 Proliferation

Assuming all the conditions for the phenotypic action to occur are met then

the following changes occur to the states of the parent and child cell upon

proliferation:

S(x(k), t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[s(x(p), t−1), 0,E(x(p), t−1),P (x(p), t−1), , τ(x(p), t−1)=0

τ(x(p), t−1), n(x(p), t−1)]

[s(x(p), t−1), 0,E(x(p), t−1),P (x(p), t−1), , τ(x(p), t−1)=1,

τ(x(p), t−1), n(x(p), t−1)+1] n(x(p), t−1)̸=Θ

[s(x(p), t−1), 0,E(x(p), t−1), , τ(x(p), t−1)=1,

[P1(x
(p), t−1)−Ξ(ω, P1(x

(p), t−1)), n(x(p), t−1)=Θ

P2(x
(p), t−1)+Ξ(ω, P2(x

(p), t−1)),

P3(x
(p), t−1), P4(x

(p), t−1)], 0, 0]

,

(2.80)
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where k∈{p, c}; ω∈R+(0, 1); S(x, t) is defined by equation (2.64); Ξ(ϵ, ξ),

defined by equation (2.70), ensures that the increment ω does not cause the

phenotypic action being modified to leave the interval [0, 1].

2.5.5.2 Quiescence

Assuming all the conditions for the phenotypic action to occur are met then

the following changes occur to the states of the parent and child cell upon cell

movement:

S(x(p), t)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[6, 0,0,0, 0, 0] , z<ζ

[s(x(p), t−1), α(x(p), t−1),E(x(p), t−1), , otherwise

P (x(p), t−1), τ(x(p), t−1), n(x(p), t−1)]

, (2.81)

S(x(c), t)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[s(x(p), t−1), α(x(p), t−1),E(x(p), t−1), , z<ζ

P (x(p), t−1), τ(x1, y1, t−1, n(x(p), t−1)]

[s(x(c), t−1), α(x(c), t−1),E(x(c), t−1), , otherwise

P (x(c), t−1), τ(x(c), t−1), n(x(c), t−1)]

, (2.82)

where z∼U(0, 1) and ζ∈R+(0, 1) is the threshold that must be met for the cell

to move.

2.5.5.3 Apoptosis

The following changes occur to the state of the cell at x(p) upon apoptosis:

S(x(p), t)=[6, 0,0,0, 0, 0]. (2.83)

2.5.5.4 Differentiation

Assuming all the conditions for the phenotypic action to occur are met then

the following changes occur to the states of the parent and child cell upon
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differentiation:

S(x(p), t)=[s(x(p), t−1), 0,E(x(p), t−1), (2.84)

P (x(p), t−1), τ(x(p), t−1), n(x(p), t−1)]

Σ(x(p), t)=

⎧⎪⎨⎪⎩
0(NTC) , s(x(p), t−1)=2(NSC)

1(MNTC) , s(x(p), t−1)=3(MNSC)

5(TC) , s(x(p), t−1)=4(CSC)

(2.85)

S(x(c), t)=[Σ(xp, t), 0,E(x(p), t−1), (2.86)

[P1(x
(p), t−1)+Ξ(ω, P1(x

(p), t−1)),

P2(x
(p), t−1)−Ξ(ω, P2(x

(p), t−1)),

P3(x
(p), t−1), P4(x

(p), t−1)], 1, 0],

where ω∈R+(0, 1) is the amount the probability of proliferation changes when

the cell is a TAC.

2.5.6 Tumour Excision

For the purpose of exploring the length of time it takes for a tumour to recur,

we include three simple types of excisions in the model. One whereby, all

the tumour cells in the grid and their neighbours up-to a certain depth are

removed. Another, where all the mutated cell class cells and their neighbours

up-to a certain depth are removed. Lastly, where a circular sub-region of the

grid is removed.

2.5.7 Lineage Tracking

The lineage of each cell is tracked for the purpose of following tumour cell lin-

eages from their origin, checking how many independent tumour masses form

throughout the simulation, and whether the origin is monoclonal or polyclonal.

The lineage is tracked using the following methods. Each cell has a parameter

Λ(x, t)∈{−1, 0, 1, ..., L×M−1}, where L is the length in the x-direction and

M is the length in the y-direction, that when set to −1 implies no information

is known or the cell is empty, and if set to any other value represents the

spatial index of the parent at the time it created the first cell in the lineage.
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During cell movement the parameter is passed down from parent (x(p)) to

child cell (x(c)). In the case of apoptosis the parameter is set to −1. Finally,

during proliferation and differentiation the parameter is set as follows for the

cells x(p) and x(c):

Λ(x, t)=

{︄
x
(p)
1 M+x

(p)
2 , Λ(x(p), t−1)=− 1

Λ(x(p), t−1), otherwise
. (2.87)

(2.88)

2.5.8 Field Definition

A field in this model is defined to be any groupings of mutated cells, thus a

field is a section of the grid that contains few or no NTC or NSC. We can also

further define a field based around the lineages, so that a grouping of mutated

cells that share the same lineage would be considered a field.

2.5.9 CA Model Timeline

Each time-step has the following order of actions:

1. update the carcinogen sensitivity function,

2. run the gene expression neural network,

3. update the gene expressions based upon the output of the neural network

in step 2,

4. update the gene expressions via the gene instability process,

5. update the phenotype vector based upon the gene expressions of each

gene,

6. update the states of each cell using the state transition process,

7. apply the dedifferentiation process,

8. apply the phenotypic action chosen by the cell for that time-step,

9. possibly perform tumour excision.
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Chapter 3

Application and Implementation

Though field cancerization is found in many types of tissue throughout the

body, the most commonly studied case is head and neck squamous cell car-

cinoma (HNSCC). HNSCC is the case study we will use to test the model

proposed in the previous chapter. Ethanol and nicotine are the most com-

monly associated carcinogens to HNSCC, thus we consider them in this chap-

ter. These two carcinogens typically enter the body through smoking and/or

chewing tobacco and drinking alcohol, respectively.

In this chapter we will discuss how the parameters for the model were

chosen for this case study. As well as how the model was implemented in

parallel and the difficulties that arose in that process.

3.1 Application

3.1.1 Introduction to Head and Neck Squamous Cell
Carcinoma

We review head and neck squamous cell carcinoma (HNSCC) as presented in

[68]. Squamous cell carcinoma (SCC) is cancer that originates from squamous

cells. These cells are found in the outer layer of skin and in the mucous mem-

branes, which are the moist tissues that line body cavities such as the airways

and intestines. There is a particular type of SCC that develops in the mucous

membranes of the mouth, nose, and throat, it is called head and neck SCC.

HNSCC is classified relative to its location, namely, there are the following

main types: oral cavity (occurs in the mouth), oropharynx (middle part of the

65



throat near the mouth), nasal cavity and para-nasal sinuses (space behind the

nose), nasopharynx (upper part of the throat near the nasal cavity), larynx

(voice-box), and the hypopharynx (lower part of the throat near the larynx).

Symptoms of HNSCC include abnormal patches or open sores (ulcers) in the

mouth and throat, unusual bleeding or pain in the mouth, sinus congestion

that does not clear, sore throat, earache, pain when swallowing or difficulty

swallowing, a hoarse voice, difficulty breathing, or enlarged lymph nodes. It

can metastasize to other parts of the body such as the lymph nodes or lungs.

There is about a 50% chance of surviving another 5 years after initial diag-

nosis. HNSCC is the seventh most common type of cancer worldwide with

approximately 600,000 new diagnoses each year, including about 50,000 in the

US alone. It most often occurs in men in their 50s or 60s.

Tobacco use, including cigarettes, cigars, pipes, chewing tobacco, and snuff,

is the largest risk factor for HNSCC, since it is linked to 85% of cases [67]. In

the US smoking more than 2 packs of cigarettes per day is the main tobacco-

related risk factor for mouth and throat cancer [116]. Pipe smoking in par-

ticular has been linked to cancer in the part of the lips that touch the pipe

stem [116]. Chewing tobacco or snuff is associated with a 50% increase in the

risk of developing cancer in areas of the mouth that comes most in-contact

with the tobacco. This includes the cheeks, gums, and inner surface of the lips

[116]. Secondhand smoke may also increase a person’s risk of head and neck

cancer [116]. Frequent and heavy alcohol consumption increases the risk of

head and neck cancer with the risk increasing proportional to the amount of

alcohol a person consumes [116]. Using alcohol and tobacco together is known

to increase the risk of developing head and neck cancer by two to three times

more than just one of them alone [116]. Human papillomavirus (HPV) infec-

tion, which induces cancer to develop in the tonsils and base of the tongue,

increases the risk of developing throat cancer 16-fold and causes 60% of throat

cancers [116]. HPV is causing an increase in the number of incidences of HN-

SCC among younger individuals [116]. Prolonged sun exposure can increase

the risk of cancer in the lip area due to UV radiation [116]. Gender seems to

be a factor in the risk as well since men are more likely to develop HNSCC
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then women [116]. People with fairer skin also seem to have an increased risk

to develop HNSCC [67]. Generally people older than 45 have an increased risk

for oral cancer, though it can develop in people of any age [67]. Poor dental

care and not following regular oral hygiene practises may cause an increased

risk of oral cavity cancer, this risk is even further increased for people that use

alcohol and tobacco products [116]. A diet low in fruits and vegetables and a

vitamin A deficiency may increase the risk of oral and oropharyngeal cancer

[67]. Chewing betel nuts, a nut containing a mild stimulant that is popular in

Asia, also raises a person’s risk of developing oral and oropharyngeal cancer

[67]. It has also been seen that people that have a weakened immune sys-

tem may have a higher risk of developing HNSCC [67]. Finally, it has been

shown that people that use marijuana may be at a higher-than-average risk

for HNSCC [67]. HNSCC is generally not inherited so as result it arises from

mutations in the body’s cells that occur during an individuals lifetime [68].

The best ways to prevent the risk of developing HNSCC is to not use any

tobacco products and to try to prevent acquiring HPV infection.

There are many genes related to HNSCC but the top nine genes are: ING1,

PTEN, TNFRSF10B, TP53, MIR21, MIR210, MIR205, MIR98, and ING3

[52]. Looking specifically at HNSCC in the tongue the top twenty genes that

are related are: TP53, FAT1, CDKN2A, NOTCH1, PIK3CA, KMT2D, FAT4,

CASP8, MYH9, EP300, NSD1, HRAS, NOTCH2, MLLT4, FBXW7, NFE2L2,

AKAP9, GRIN2A, RB1, and CDH11 [52].

The reason we use HNSCC for a case study of the model proposed in this

thesis is twofold, first, it is the first type of cancer that field cancerization was

discovered, and secondly, it is a widely studied case. This thesis will consider

the case of tobacco and alcohol as carcinogens as related to HNSCC of the

tongue.

3.2 Application

As mentioned we will be using HNSCC of the tongue for our particular case

study. Ethanol (indexed as 1) and tobacco are the most commonly associated
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carcinogens to HNSCC, thus we consider these in this chapter. Recall that

we are substituting nicotine (indexed as 2) to represent the carcinogens of

tobacco. We will be considering ten genes in our model that are correlated

with HNSCC of the tongue.

3.2.1 Carcinogen Parameters

For each carcinogen there are two required parameters, the diffusion coefficient

and the influx of the carcinogen. Since the length of each time-step in the CA

is based upon the length of the cell cycle, which is typically in the magnitude

of hours, then our time unit will be in hours.

First let us look at the diffusion coefficients which are computed using the

Reddy-Doraiswamy equation [115] which is given by

D=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
10−7 M

1
2 T

µ(V1V2)
1
3
, V2

V1
≤1.5

8.5×10−8 M
1
2 T

µ(V1V2)
1
3
, V2

V1
> 1.5

, (3.1)

where M is the molar mass of the solvent, T is the absolute temperature, µ is

the solvent viscosity, V1 is the molar volume of the solute, and V2 is the molar

volume of the solvent. We assume the solvent is water for which the molecular

weight is M=18.01528g/mol. We will use normal body temperature of 37oC

which is equivalent to 310.15K, so that T=310.15K. We will compute the

viscosity of the solvent using the equation

µ=2.4152×10−5Pas exp

(︃
4742.8J/mol

R(T − 139.86K)

)︃
, (3.2)

where R=8.31441J/(mol K) is the gas constant [44]. Using (3.2) we determine

that the viscosity of water at body temperature is

µ=6.882×10−4Pas=6.882×10−3 g

cms
.

The molar volumes, V1 and V2, will be computed using

Vm=
M

ρ
, (3.3)
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where ρ is the mass density of the substance. Using (3.3) we acquire the molar

volume of ethanol as

V e
1 =

46.07g/mol

0.789g/cm3
=58.39cm3/mol.

From (3.3) we acquire the molar volume of nicotine as

V n
1 =

162.23g/mol

1.01g/cm3
=160.624cm3/mol.

Finally, from (3.3) we acquire the molar volume of water as

V2=
18.01528

0.997g/cm3
=18.07cm3/mol.

Upon inserting these values into (3.1) we acquire the diffusion coefficient as

De=2.18×10−2 cm2

h
for ethanol. Similarly, we acquire the diffusion coefficient

of nicotine as Dn=1.56×10−2 cm2

h
.

The influx of the carcinogens for each time-step may now be computed. If

males consume 5 or more drinks a day and women 4 or more drinks a day then

they are considered heavy drinkers [37]. If males consume 2 drinks or less in a

day and women 1 drink or less in a day, they are considered moderate drinkers

[37]. Both moderate and heavy drinkers have a higher risk of developing

particular head and neck cancers [6, 88]. For instance it has been found that

moderate drinkers have a 1.8-fold and heavy drinkers a 5-fold higher risk of oral

cavity cancer and pharynx cancer, as compared to non-drinkers [6, 88]. It has

also been found that moderate drinkers have a 1.4-fold and heavy drinkers a

2.6-fold higher risk of developing larynx cancers, as compared to non-drinkers

[6, 88]. A standard alcoholic beverage contains 14g of pure alcohol [136], so a

moderate drinking male would be consuming 28g or less a day and a female

14g or less a day. Similarly, a heavy drinking male would be consuming 70g or

more a day and a female 56g or more per day. Let us consider a heavy drinker

and take the average amount per day between males and females to obtain

63g per day. If we consider that a person is typically awake 15.65 hours a

day, then that means they would be consuming 4.026 g
h
of alcohol. Only about

5% of the alcohol is absorbed in the mouth [113], therefore we can assume

that the tongue absorbs about 0.201 g
h
. The average volume of the tongue is
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79.5cm3 [85] so the concentration per hour of alcohol absorbed by the tongue

is 2.532×10−3 g
cm3h

. Since most of the ethanol is metabolized by the liver and

none of it is metabolized by the oral cavity, then we set the outflux to be

0 g
cm3h

.

An individual that smokes two packs a day is more likely to develop cancer

[116], we assume a typical pack contains 20 cigarettes so that they smoke

40 cigarettes a day. Most cigarettes contain 1.45×10-3g of nicotine, so again

assuming a person is awake 15.65 hours a day, we determine that the person

consumes 3.71×10-3 g
h
. Now we use the decay formula of nicotine given by:

g(x, t)=g0+x

(︃
1

2

)︃ 2t
3

, (3.4)

where t is time, g0 is the initial amount of nicotine, and x is the accumula-

tive amount of nicotine. Using equation (3.4) as an iterator until equilibrium

is reached, we calculate that the amount of nicotine that is left in the body

after decay has occurred is 1.543×10-4g. Therefore, considering the initial

consumption and remaining amount the body metabolizes 3.70×10-3 g
h
of nico-

tine. Since only 15% of nicotine is metabolized by saliva then 5.55×10-4 g
h
is

metabolized in the oral cavity. Thus, again using the volume of the tongue

of 79.5cm3, we obtain the influx of nicotine as 7.01×10−6 g
cm3h

, assuming 15%

is absorbed in the oral cavity, and the outflux of nicotine is 6.98×10−6 g
cm3h

.

Thus F e
c=2.009×10-3 g

cm3h
and F n

c =3.00×10-8 g
cm3h

.

We set the characteristic length as xc=N1.45×10−3cm, where

1.45×10−3cm is the size of an epithelial cell [132]. We let the boundary and

initial conditions be zero. The boundary condition is set at zero as we don’t

know how the carcinogen enters the domain at the boundary and thus assume

all the influx comes from the source term. The initial condition is zero as the

body doesn’t naturally produce the carcinogens considered so there would be

no initial base concentration within the body.

3.2.2 Gene Expression Neural Network Parameters

The four main parameters for the gene expression neural network are the two

weight matrices, activation function parameter, and the mutation bias. The
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weight matrix associated with the input of the neural network (2.56) is given

by:

α̃(x, t, z)=

{︄
1, z ≤ 0.5

-1, z > 0.5
, (3.5)

WX(x, t)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 -1 α̃(x, t, z1)10
-7

0 0 α̃(x, t, z2)10
-7

0 -1 α̃(x, t, z3)10
-7

1 -1 α̃(x, t, z4)10
-7

1 0 α̃(x, t, z5)10
-7

1 1 α̃(x, t, z6)10
-7

1 1 α̃(x, t, z7)10
-7

0 1 α̃(x, t, z8)10
-7

0 1 α̃(x, t, z9)10
-7

1 1 α̃(x, t, z10)10
-7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.6)

where zi∼U(0, 1), i=1, ..., 10. As insufficient data was unavailable we assumed

that each carcinogen has a weight of 1, -1, or 0 for each gene depending on how

the carcinogen effects that gene. For example since ethanol tends to upregulate

TP53 then W 11
X =1. We assume that each gene has the same mutation rate

which causes the last column in WX , that is associated with mutations caused

by replication errors due to cell age, to have one value. The mutation rate was

chosen based upon the human genomic mutation rate being approximately

2.5×10-8 per base per generation [100]. The weight matrix associated with the

output of the neural network (2.58) is given by:

WY=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 0 0.01 0 0 0 0 0 0 0
0.01 0.1 0 0 0 0 0 0 0 0
0.01 0 0.3 0 0 0 0 0 0 0
0.01 0 0 0.1 0 0 0.01 -0.01 0 0
0.01 0 0 0 0.1 0 0 0 0 0
0.01 0 0 0 0 0.1 0 0 0 0
0.01 0 0.01 0 0 0 0.2 0 0 0.01
0.01 0 0 0 0 0 0 0.3 0 0.01
0.01 0 0 0 0 0 0 0 0.1 0
0.01 0 0 0 0 0 0 0.01 0 0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.7)

The main diagonal of the above matrix gives the main weights for each gene

with W 11
Y being the highest as it is TP53. Each diagonal value was given a

default of 0.1 and it is increased by 0.1 for each gene it calls or is related

to, so TP53 gets a value of 1 because it is assumed all the genes relate to
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TP53. Each column describes the relations between the other genes and the

gene associated with the main diagonal value of that column, where if the

gene is upregulated by the diagonal gene it gets a value of 0.01 and when it

downregulates the gene it gets a value of -0.01. The magnitude of the values

in the matrix were chosen by trial and error since there is not sufficient data

to complete the matrix with accurate values. The activation function (2.57)

parameter is given by:

ν=106. (3.8)

The value of ν results in the neural network outputting values in the range

( -1√
ν
, 1√

ν
) = (-1×10-3, 1×10-3) and was chosen so to keep the maximum amount

each gene can change to a reasonable figure. Finally the mutation bias vector

update function (2.60) parameter is given by:

ϕ = 10-3. (3.9)

The value of ϕ was chosen to correspond with the maximum output value of

the neural network, so that when a gene is mutated, the neural network will

always output the maximum value.

3.2.3 CA Parameters

The initial seed is set such that the domain has the following breakdown of

each cell type: 64.5% normal tissue cells (NTC; green), 6.5% normal stem cells

(NSC; yellow), and 29% empty cells (white). The maximum number of TAC

generations is given by Θ=2. The chance a cell moves when it is quiescent is

0.25. The chance a tumour cell (TC; red) or cancer stem cell (CSC; purple)

randomly kills another cell during movement, proliferation, or differentiation

is 0.2. The chance that an SC or MSC becomes a CSC is 2.5×10-6. The

chance a non stem cell becomes a stem cell through dedifferentiation is 10-4.

If either there are no stem cells or there are at least six empty cells in the

neighbourhood of a non stem cell, then the process of dedifferentiation will be

attempted. The threshold that has to be met for dedifferentiation to randomly

occur is 10-4. When an excision is performed the number of neighbourhoods

around a TC removed is two.
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Index Gene Gene-type Regulation Phenotypes

1 TP53 tumour-suppressor down ↑: p
↓: a, q

2 TP73 tumour-suppressor down ↓: a
3 RB tumour-suppressor down ↑: p, d

↓: q
4 TP21 tumour-suppressor down ↑: p
5 TP16 tumour-suppressor down ↑: p
6 EGFR oncogene up ↑: p
7 CCDN1 oncogene up ↓: a
8 MYC oncogene up ↑: p, d

↓: a
9 PIK3CA oncogene up ↓: a
10 RAS oncogene up ↑: p, d

↓: a

Table 3.1: Provides the following properties of each gene considered in the model: index for the gene used
in the various matrices and vectors required in the model, name, type of the gene, direction the gene must
be regulated to become positively mutated, and how phenotypic actions are modified when the gene is
positively mutated.

We consider ten genes which are given in Table 3.1. We set the mutation

threshold toM=0.1 and the minimum number of positively mutated genes for

a cell to be considered mutated to be four [3]. Using the last two columns

of Table 3.1 and assuming each phenotypic action is modified at the same

magnitude we obtain the phenotypic action increment matrices (2.71) given

by:

D=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10-6 -10-6 -10-6 0
0 0 -10-6 0

10-6 -10-6 0 10-6

10-6 0 0 0
10-6 0 0 0
-10-6 0 0 0
0 0 10-6 0

-10-6 0 10-6 -10-6

0 0 10-6 0
-10-6 0 10-6 -10-6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.10)
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U=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

-10-6 10-6 10-6 0
0 0 10-6 0

-10-6 10-6 0 -10-6

-10-6 0 0 0
-10-6 0 0 0
10-6 0 0 0
0 0 -10-6 0

10-6 0 -10-6 10-6

0 0 -10-6 0
10-6 0 -10-6 10-6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.11)

Using Table 3.1 we can create the gene type vector, T , that is used in (2.66),

(2.67), and (2.78) which is given by:

T=
[︁
0 0 0 0 0 1 1 1 1 1

]︁T
, (3.12)

where 0 means the gene is a tumour-suppressor and 1 means it is an oncogene.

Gene Gene Activation’s

TP53 TP21,TP16, RB
RB TP53, CCDN1

CCDN1 TP21
MYC TP21 (de-activates), Ras
RAS CCDN1, MYC

Table 3.2: Shows which genes are activated by certain genes.

Using Table 3.2 we can create the gene relationship matrix, R, that is used

in (2.67) which is given by:

R=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.13)

where 0 means the genes are not related and 1 means the genes are related.

Note that in the above matrix we assumed that TP53 is related to all the genes.
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The main diagonal is zero so that genes cannot modify themselves during the

genetic instability phase of the model. The chance that a gene modifies the

gene expression of another or that the body tries to fix the gene expression

is 0.45. The maximum amount a gene expression can be changed during the

gene instability stage is 1√
ν
.

We let

a1=
c̃

c1
, (3.14)

a2=
c̃

c2
(3.15)

be the initial probabilities of apoptosis for a normal tissue cell and normal

stem cell. Where c̃ is the length of the cell cycle in hours, c1 is the life span of

a cell, and c2 is the life span of a stem cell. The initial phenotype matrix that

is used in equation (2.76) is given by:

P̃=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1a1 a1 1−a1(p1+1) 0

p1a1
a1
α

1−a1(α-1+p1) 0

p2a2 a2 1−a2(p2+1)−dd̃ dd̃

p2a2
a2
α

1−a2(α−1+p2)−dd̃ dd̃

p2a2
a2
5α2 1−a2((5α)-2+p2)−dd̃ dd̃

p1a1
a1
5α2 1−a1((5α)-2+p1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.16)

where p1 is the proliferation factor for normal tissue cell types, p2 is the pro-

liferation factor for normal stem cell types, α is the apoptotic factor, d is the

differentiation factor, and d̃ is the probability of differentiation occurring ne-

glecting competition between cells. The cell cycle length can range anywhere

between 8 and 24 hours for the various cells in the body, since we are analyz-

ing the tongue we will use c̃=10h [11]. The lifespan of a taste bud is 250±50

hours [11], so c1=250h. The lifespan of a typical stem cell is around 25550
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hours [128], so c2=25550h. We set α=1.625, p1=0.65, p2=14.75, and d=1.485

so that equilibrium in the tissue is maintained when there are no carcinogens

in the domain. Note that p1 is less than 1, since we want most of the new cells

to come from TACs created by SCs, because, biologically speaking, normal

tissue cells rarely proliferate. Since each TAC produces a certain number of

generations, given by Θ, then it will produce 2Θ+1−2 new cells so we set

d̃=
1

2Θ+1−2
. (3.17)

When a cell is a TAC the probability of proliferation increases by 1
3
, so that it

will create its’ Θ generations in as few time-steps as possible, assuming there

is enough available space. The chance that a gene modifies the probability of

a phenotypic action is given by 0.35. The maximum value a gene can modify

the phenotypic action by is 10-6.

3.3 Model Implementation

3.3.1 Parallel Implementation

Due to the vast number of cells that would need to be updated each time-

step we utilized GPU parallelization to implement the model resulting in the

ability to run the model in real time and vastly speeding up the generation

of the results. It has been shown that utilizing asynchronous updates doesn’t

impact the results of a CA as compared to synchronous updates [124]. One

problem with using parallelization is that if a cell has been acted upon then

it should not itself be able to complete an action due to the fact that its state

has been changed. Although, as long as the new state of the cell is not empty,

the results are not impacted.

Issues can occur when a cell is searching for another to perform an action

upon, due to the mechanism used in our CA allowing the cell to randomly

choose a neighbor on which to perform an action. As the cells are updating

concurrently, methods had to be developed to prevent multiple neighbours

attempting to perform an action upon the same cell. We also had to ensure

that while a cell is attempting to perform an action, another cell cannot be
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attempting to perform an action on that cell. As well we had to ensure that

as soon as an action succeeds or fails the search for a new neighbour is ceased.

This issue was resolved using a lock mechanism. When a cell is attempting an

action, it locks itself to any other cell attempting an action upon it in the same

time-step. Similarly, if a cell currently has an action being attempted upon

it by another cell, that cell is also locked. When a cell succeeds in an action,

that cell is labelled as having completed an action and the cell being acted

upon is updated. A cell will search its neighbours until it locates one that

is unlocked upon which it attempts an action on that cell. To prevent a cell

indefinitely searching it completes the task in a loop until either it succeeds

or fails or it reaches a maximum number of searches. The simulation used a

maximum value of 100 searches through the neighbours.
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Chapter 4

Results

In this chapter we will be discussing the results of simulations of the CA

model as applied to the case study discussed in the previous chapter. We will

explore what impact the following have on the results: grid size, number of

carcinogens, ethanol and nicotine concentration, excising the tumour versus

excising the entire field, and earlier excision versus later excision.

We will discuss field growth, changes in probabilities of phenotypic actions

over time, mutation spread rates, and the number of lineages. By tracking

lineages we will also check monoclonal versus polyclonal origins.

4.1 Equilibrium

To test that the model can maintain tissue such that the cell numbers stay at

equilibrium and tumours do not sporadically appear without carcinogens, we

run a simulation that does not include any carcinogens. This will show that

in our base model, random mutations alone cannot cause cancer to form due

to the low mutational rate of genes in the body, and the fact that the body

is well adept at fixing mutations as they occur. We run the simulation on a

128×128 grid for 8766 time-steps, and as stated above, with no carcinogens.

In Figure 4.1 we present three time-steps from a simulation where no car-

cinogens were included, with NTC as the brown cells, NSC as the blue cells,

and empty cells are white. The Figures 4.1 show (a) the initial seed, (b) the

domain (tissue) at the halfway point of the simulation, and (c) the final time-

step. We observe that the tissue stayed in equilibrium. The changes through
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time are due to cell movement and the natural birth and death processes. The

figures show that, as desired, no mutated cells (green, yellow) arise and thus

no cancer stem cells (purple) or tumour cells (red) are formed.

(a) Initial Seed (b) Time-step 4383 (5 years) (c) Time-step 8766 (10 years)

Figure 4.1: This figure includes three time-steps from a simulation with parameters set at: grid size 128x128
and no active carcinogens. Using the colour map for the cell classes as provided in Table 2.1. These show
(a) the initial seed of the simulation, in (b) the domain (tissue) at the halfway point of the simulation, and
in (c) the final time-step.

In Figure 4.2 we present the time evolution of the fraction of cells in the

different cell classes. We see that the fraction of normal tissue stays constant

(with small fluctuations) and mutated cell classes never form. Figure 4.2 shows

us that, as desired, the number of NSC and NTC stay approximately constant

over time.

Figure 4.2: This figure shows the time course of the fraction of cells in the different cell classes NTC, MNTC,
NSC, MNSC, CSC, TC, and empty. The parameters of the simulation were as follows: grid size was 128x128
and no carcinogens were active.

In Figure 4.3 we present the time evolution of the average gene expression
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for each of the ten genes. We see that all of the genes maintain a normal

gene expression of zero. This does not necessarily mean that the cells had a

zero gene expression, but those that did were negligible due to the averaging

process. We can see that none of the genes are mutated. Our model is able to

maintain regular healthy tissue.

Figure 4.3: This figure shows the time course of the average gene expression for the ten genes we consider.
The parameters of the simulation were as follows: grid size was 128x128 and no carcinogens were active.

4.2 General Observations

Now we study simulations where carcinogens are present and cause mutations

and, ultimately, cancer. Figure 4.4 illustrates the development of a cancer

field and tumours within it, where nicotine and ethanol are simulated using

carcinogen spatial distribution 2 equation (4.2). The various time-steps show

(a) the initial seed, (b) the cancer field at its early development, (c) the cancer

field further developing prior to cancer, in (d)-(f) the multiple stages of cancer

development. The colour map for the cell classes is as provided in Table 2.1.

The cancer field is initially minimal and undeveloped, but over time it evolves

and matures, eventually forming tumours. These tumours grow and outpace

the growth rate of the cancer field, as observed from the time-steps in Figures

4.4e and 4.4f. Note that in the time-step within Figure 4.4e the tumour masses

near the edge of the field begin to explore beyond the field.
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(a) Initial seed (b) Early field development, time-step 1000

(c) Late field development, time-step 1400 (d) Early cancer development, time-step 1975

(e) Late cancer development, time-step 3947 (f) Final time-step, time-step 8766

Figure 4.4: This figure includes time-steps illustrating the development of a cancer field and cancer cells
using the colour map for the cell classes as provided in Table 2.1. These show (a) the initial seed, (b) the
cancer field at its early development, (c) the cancer field further developing but prior to cancer, (d) the
first stages of cancer development, (e) further cancer growth, and (f) the final time-step. Parameters are as
follows: grid size 256x256, carcinogen spatial distribution 2, both carcinogens activated.
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4.2.1 Field Development

Regardless of changes to parameters, other than carcinogens activated, we

observe that the field begins to form where the carcinogen is most concentrated;

this can be verified with Figure 4.4b (early field development) and 4.10b (visual

representation of the carcinogen spatial distributions used in 4.4b). Initially,

the field is made up of only mutated normal tissue cells (green cells) and

mutated normal stem cells (yellow cells), as shown in Figure 4.4b. Typically,

the first mutated cell is a MNTC due to there being a higher number of NTC

compared to NSC. The field grows outwards as it takes over normal tissue.

In Figure 4.5 we show the time evolution of the fraction of mutated cells.

We defined the cancer field as the areas of the domain that contain cells from

the mutated cell classes thus, the figure shows the cancer field growth over

time.

Figure 4.5: This figure shows the time course of the fraction of mutated cells, thus illustrating the cancer
field growth over time. Parameters are as follows: grid size 256x256, carcinogen spatial distribution 2, both
carcinogens activated.

The point at which the curve begins its rapid linear growth is that time for

which the first mutated cell appears, this line flattens at the time in which

the carrying capacity of the domain is achieved. Field growth rate initially

starts off moderately, briefly slows, finally becoming aggressive. The period of

slow growth is related to empty cells being unusually abundant because the

mutated cells are not yet aggressive enough to overtake the empty cells, nor
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is the stem cell to normal tissue cell ratio stabilized at this point. Further

evidenced by Figure 4.4b which shows patches of empty cells (white) within

the field and very few stem cells (yellow) at this point. Figure 4.5 illustrates

that once the field has developed and grown large enough, the odds of a NSC

or MNSC becoming a CSC increases. Soon after the emergence of the first

CSC, TCs begin to form. Note that the TCs will die off if the first TC’s fitness

is too low compared to neighbouring cells, or if the CSC that created the TCs

dies off. Once the tumour mass within the field itself starts to form, TCs and

CSCs eventually take over the entire field, as shown in Figures 4.4d-4.4f. This

phenomenon is a result of having limited space, and other mutated cells not

being as aggressive and fit as the tumour cells.

4.2.2 Tumour Growth Rate

In Figure 4.6 we show the time evolution of the fraction of CSC and TCs which

together form the tumour mass. We observe that the tumour follows logistic

growth which is due to domain spatial limitations.

Figure 4.6: This figure shows the time course of the fraction of CSC and TC, thus illustrating the tumour
growth over time. Parameters are as follows: grid size of 256x256, carcinogen spatial distribution 2, both
carcinogens activated.

Growth is initially quite slow but rapidly increases as the cells become more

aggressive from the accumulated mutations. The growth flattens, never quite

achieving 100% due to the aforementioned spatial limitations of the domain
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and the domain still also containing some CSCs and empty cells. Theoretically,

with an infinite or growing domain the growth curves would be exponential.

However, a fixed domain is more realistic biologically speaking due to the

fact that the tissue surrounding the tumour has limited space. Therefore, the

growth of a tumour within a given tissue should follow logistic growth, which

our model confirms.

4.2.3 Mutational Evolution

Recall we use the term “positive mutation” to portend that a mutation pro-

motes cancer, (i.e., upregulation of an oncogene or downregulation of a tu-

mour suppressor gene). In Figure 4.7 we show various graphs that represent

the mutational evolution of the genes over time. In (a) and (b) the average

gene expression is illustrated for first the tumour suppressors and secondly the

oncogenes. In (c) we show the time evolution of the fraction of genes that

are positively mutated. In Figure 4.7a all the tumour suppressor genes are

downregulated, hence positively mutated. Other than RB, which decreases at

a faster rate, the gene expressions of all the other tumour suppressor genes

decrease at a similar rate. Figure 4.7b displays that the oncogenes are upreg-

ulated, therefore positively mutated. The gene expressions of the oncogenes

increase at a similar rate except CCDN1 and RAS, which increase at a faster

rate. In Figures 4.7a and 4.7b we see that the gene expressions between the

genes can vary significantly, principally with P21 and CCDN1. These two

genes mutate because they are related to the most genes, and therefore have

a higher weight in the MLP output weight matrix, Wy, in equation (3.7).

Figure 4.7c shows a lag of time before the first positively mutated genes

occur, this is due to the low mutational rate, and competition against the

body trying to revert mutations. The initial spike in mutational rate at the

onset of the first mutated cell is due to the relative size of the domain versus

the mutated cells. Once multiple genes become positively mutated the pro-

gression accelerates, due to changes in the expression of other genes caused

by genetic instability, as displayed in the period starting at about 20 to 25

months. Referring to Figures 4.7a and 4.7b we can observe that all the genes
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(a) Tumour suppressor gene expression over time

(b) Oncogene gene expression over time

(c) Fraction of positively mutated genes over time

Figure 4.7: In this figure we show the mutational evolution of the genes. The time course of the average
gene expression are shown for in (a) the tumour suppressor genes, in (b) the oncogenes. In (c) we show the
time course of the fraction of genes that are positively mutated. Parameters were chosen as follows: grid
size of 256x256, carcinogen spatial distribution 2 was used, both carcinogens were activated.
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are positively mutated by about 25 months. Once TP53 is positively mutated,

genes will become cancerous, as it correlates to cell cycle arrest and can make

a cell apoptotic, due to genetic mutations.

4.2.4 Phenotypic Evolution

Next we consider the evolution of a phenotypic action, which includes prolif-

eration, quiescence, apoptosis, and differentiation as functions of time. Figure

4.8 illustrates the phenotypic evolution of these actions as (a) the time evolu-

tion of the fraction of cells that underwent each phenotypic action and in (b)

the time evolution of the average probability for each of these. Figure 4.8b

demonstrates the probability of apoptosis occurring decreases as the cell pop-

ulation moves towards being cancerous. This occurs mathematically with time

as the majority of the genes become positively mutated causing apoptosis to

decrease as expected due to the genes modifying the probability of apoptosis.

While the probability of apoptosis decreases, the chance of proliferation and

differentiation increases, this again is caused by how the positively mutated

genes influence the probability of proliferation and differentiation. Probability

of differentiation increases at a slower rate than proliferation because fewer of

the genes we consider influence differentiation. Finally, for the most part, the

probability of quiescence remains stable - it goes slightly up and down, due

to being balanced against the other phenotypic actions, and not many genes

are influencing it, but otherwise it is at equilibrium. Figure 4.8a shows us

that apoptosis and proliferation change the most over time, in particular, as

apoptosis decreases, we see that proliferation increases, due to less cells dying

before they can become more cancerous. This figure reveals that quiescence

(movement) initially increases when the field begins forming as the field con-

tains an insufficient number of mutated stem cells to thrive, consequently there

will be more empty cells.
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(a) Fraction of cells undergoing each phenotypic action

(b) Average probability for each phenotypic action over time

Figure 4.8: This figure illustrates the phenotypic evolution of proliferation, apoptosis, quiescence, and
differentiation. In these we show (a) the time course of the fraction of cells that underwent each phenotypic
action and (b) the time course of the average probability for each phenotypic action. Parameters are as
follows: grid size 256x256, carcinogen spatial distribution 2, both carcinogens activated.

4.3 Grid Size Comparisons

In Figure 4.9 we show a sample time-step for each grid size we compare. In

(a) the grid size is 64x64, in (b) the grid size is 128x128, in (c) the grid size is

256x256, and in (d) the grid size is 512x512. When comparing the grid sizes

all the other parameters were the same, both carcinogens were activated and

carcinogen spatial distribution 2 was used. We see that as the domain size

increases, the tumour masses within it also increase.
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(a) 64x64 (b) 128x128

(c) 256x256 (d) 512x512

Figure 4.9: This figure shows a time-step from each of the grid sizes that were considered for comparison.
In (a) the grid size is 64x64, in (b) the grid size is 128x128, in (c) the grid size is 256x256, and in (d) the
grid size is 512x512. Parameters: both carcinogens were activated and carcinogen spatial distribution 2 was
used.

The various grid sizes show slight differences in four ways, all predominantly

due to the increase in the number of cells. Most of the events in the CA

are probabilistic, as a result, almost automatically, as we increase the size of

the grid, the chance of a probabilistic event increases as well. Therefore, the

overall dynamics are the same for each grid size, but the timing of various

main events differ slightly as will be illustrated with the following tables.

In Table 4.1 we show the time-step at which the first mutated cell forms

and the cell class of that cell. The time-step indicates no pattern to explain

the differences in the values as a consequence of the random effects. We note
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that the first mutated cell is always an MNTC, due to the fact that a higher

ratio of NTC than NSC exists in the domain.

Grid size Time-step first mutated cell forms Cell class of first mutated cell
64x64 817 MNTC
128x128 748 MNTC
256x256 744 MNTC
512x512 735 MNTC

Table 4.1: In this table we compare the time-step the first mutated cell forms and the cell class that cell
belongs to between the different grid sizes.

In Table 4.2, we compare the time-step the first CSC forms and the amount

of time since the first mutated cell formed for each grid size. The table shows

that the variation between the smallest grid size as compared to the remaining

three is substantially larger. Due to the fact that the probability of a CSC

forming is minuscule, attempting such an action within such a small grid size

reduces the chances of these formations drastically in comparison to the larger

grid sizes. Similarly, it would be expected that the opposite would be true for

the largest grid size in which we observe the shortest time-step to the formation

of the first CSC. With regards to the other two grid sizes we observe these to

be insignificantly different demonstrating the probabilistic effects influencing

the differences. We note that the time-steps since the first mutated cell was

formed to the first CSC forms follow the same pattern in that the smallest

grid has the largest value and the largest grid has the smallest value. This is

expected due to the fact that all four grids formed the first mutated cells at

very close time-steps. Overall, grid size in the two outer cases, the smallest

and largest, does impact the time it takes for the first CSC to form.

Grid size Time-step first CSC forms # of time-steps since first mutated cell
64x64 2872 2055
128x128 1402 654
256x256 1650 906
512x512 1082 347

Table 4.2: In this table we compare the time-step the first CSC forms and the number of time-steps since
the first mutated cell formed between the various grid sizes.

Table 4.3 compares the time-step the first TC forms and the amount of time

since the first CSC formed for each grid size. Note that we observe basically no
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time lapse between the formation of the first CSC and the first TC, therefore

we observe the same differences with the formation of the first TC as we did

in the prior observations of the formation of the first CSC. The 128x128 grid

formed the first CSC and the first TC simultaneously, this is possible due to a

cell’s ability to change cell class and perform a phenotypic action in the same

time-step.

Grid size Time-step first TC forms # of time-steps since first CSC
64x64 2875 3
128x128 1402 0
256x256 1653 3
512x512 1084 2

Table 4.3: In this table we compare the time-step the first TC forms and the elapsed amount of time it
takes a CSC to form the first TC between the various grid sizes.

In Table 4.4 we compare the total number of time-steps to the final end-

point, number of time-steps since the first TC formed, and the percentage of

the domain occupied by the tumour mass(es) at the endpoint for each of the

grid sizes. Recall that the model is set with a loop in which the cells are act-

ing and being acted upon either until a period of 10 years (8776 time-steps) is

reached or the grid is composed of only CSC, TC, and empty cells. Note that

the two grid sizes that were stopped due to the 10 years rule were the 64x64

and the 512x512. The smaller of these only reached a very small percentage of

occupied tumour mass whereas the larger grid size reached similar percentages

as the other two. Since the smallest grid size has insufficient cell numbers, the

law of large numbers does not come into play and thus the chance of various

events is too low, as a result it does not form a tumour aggressive enough to fill

the majority of the domain within 10 years. With regards to the 512x512 grid

size the 10 year rule stopped the tumour from further developing simply due

to the vast number of cells within the domain increasing the number of time-

steps. When comparing the 128x128 to the 256x256 in which the simulation

ended before the 10 years, then the smaller grid size took less time to reach

a similar percentage occupied of tumour mass due to a combination of less

space to overcome and less competition between cell lineages. A smaller total
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number of time-steps is correlated with a cancer field and tumour mass(es)

being more aggressive as observed with the 128x128 grid showing the lowest

number of time-steps from the first TC being formed to the endpoint.

Grid size Total # time-steps # time-steps since first TC % occupied by tumour mass(es)
64x64 8766 5891 28.44%
128x128 5398 3996 84.45%
256x256 7995 6342 86.05%
512x512 8766 7682 86.51%

Table 4.4: This table compares the total number of time-steps, number of time-steps since the first TC
formed, and the percentage the tumour mass(es) make up of the domain at the end of the simulation
between all the grid sizes.

In Table 4.5 we show the number of tumour cell lineages at the end of

the simulation for each grid size. Comparing the number of distinct tumour

cell lineages between the grid sizes in Table 4.5, we see an increase relative

to grid size. Since all the other lineages either died out or were overthrown

via competition, the first two grid sizes end with a domain that has only one

tumour cell lineage. Overall, for all the grid sizes, the number of tumour cell

lineages decreases over time as the system reaches an equilibrium, where the

most fit lineages survive.

Grid size # of tumour cell lineages
64x64 1
128x128 1
256x256 6
512x512 24

Table 4.5: In this table we compare the number of tumour cell lineages at the end of the simulation between
each of the grid sizes.

Due to how the parameters for the gene expression neural network were

set, such as TP53 influencing all the other genes, comparing all the grid sizes

result in all the genes becoming positively mutated.
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4.4 Carcinogen Concentration Spatial Distri-

bution

We consider three different carcinogen spatial distributions (CSD) given by

the equations below and shown in Figure 4.10:

CSD1:
1
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where N is the domain size, assuming a square domain is used. The carcinogen

is present within the domain starting at the initial seed (time-step zero). Since

the solution of a diffusion equation and CSD2 are both Gaussian distributions

the dynamics and results are comparable. Therefore, we will not discuss the

case of using the diffusion equation since it only changes the timing of events

relative to CSD2 because it covers a larger region of the domain. Throughout

this section we consider CSD2 to be the default spatial distribution, thus other

than when comparing between the spatial distributions all the comparisons are

against CSD2.

(a) CSD1 (b) CSD2 (c) CSD3

Figure 4.10: This figure shows a visual representation of each of the carcinogen spatial distributions within
a 256x256 domain. In the figures we show (a) carcinogen spatial distribution 1 (CSD1), (b) CSD2, and (c)
CSD3.

In Figure 4.11 we present the time evolution of the fraction of cells in the
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different cell classes. In (a) we use CSD1, in (b) CSD2, and in (c) CSD3.

Videos of the scenarios CSD2 and CSD3 are provided at Hybrid Cellular Au-

tomata of Field Cancerization Example 1 (https://youtu.be/eKxsrSoDiKs)

and Hybrid Cellular Automata of Field Cancerization Example 2

(https://youtu.be/Gtf6MoxXCkM), which each contain three simultaneous

videos including from left to right the carcinogen spatial distribution, the

CA grid, and a visualization of the top twenty cell lineages. We observe in

all graphs that the fraction of normal tissue (brown, blue) decreases to be

replaced by the cancer field (green, yellow, and purple). The cancer field is

later replaced by the tumour cells (red). The fraction of MNSC decreases

along with the mutated cells, while the fraction of CSCs increases as the can-

cer increases. The field starts to form at around 10 months as it correlates to

four genes being positively mutated in at least one cell. Note that a spike in

empty cells occurs soon after the beginning of field formation due to insuffi-

cient MNSC to create TAC which rejuvenate the MNTC. CSD1 results in the

most expeditious development of a field and tumours, because the function

covers most of the domain and has the highest average intensity within the

domain. CSD3 is the next to develop a field and tumours, it is ahead of CSD2

because CSD3 has five Gaussian distributions to CSD2’s one, thus events have

a higher probability of occurring due to the carcinogen(s) covering more of the

domain. Figure 4.11 shows us that the field develops at approximately the

same rate for CSD1 and CSD3. The field does not reach as high of a fraction

of the domain for CSD2, compared to CSD1 and CSD3, before the tumour

cells take over.
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(a) CSD1

(b) CSD2

(c) CSD3

Figure 4.11: In figures (a),(b),(c) we show the time course of the fraction of cells in the different cell classes
NTC, MNTC, NSC, MNSC, CSC, TC, empty. In (a) we consider carcinogen spatial distribution 1 (CSD1),
in (b) CSD2, and in (c) CSD3. Parameters are as follows: grid size 256x256 and both carcinogens activated.

In Figure 4.12 we show the time evolution of the average gene expression
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for each of the ten genes.

(a) CSD1

(b) CSD2

(c) CSD3

Figure 4.12: In figures (a),(b),(c) we show the time course of the average gene expression for each of the
ten genes. In the plots we consider (a) carcinogen spatial distribution 1 (CSD1), (b) CSD2, and (c) CSD3.
Parameters are as follows: grid size 256x256 and both carcinogens activated.
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In (a) we show CSD1, in (b) we show CSD2, and in (c) we show CSD3. We

see that no matter what carcinogen spatial distribution is used, all the genes

become positively mutated. Figure 4.12 shows that the mutation rate for

CSD1 and CSD3 is linear, whereas for CSD2 it is initially exponential before

becoming linear; less cells would be mutated and as a result averaging would

affect the curve.

In Figure 4.13 we show the time evolution of the fraction of cells that under-

went each of the phenotypic actions, namely proliferation (purple), apoptosis

(blue), quiescence (moved, green), and differentiation (orange). In (a) we con-

sider CSD1, in (b) CSD2, and in (c) CSD3. For all the carcinogen spatial

distributions we see that as the cancer field develops, proliferation increases,

apoptosis decreases, and cell movement and differentiation remain approxi-

mately constant. When the field begins forming there is a spike in cell move-

ment and differentiation caused by more empty cells being available. Figure

4.13 shows that all the spatial distributions have similar phenotypic evolution.

Cell movement spikes less for CSD2, as compared to CSD1 and CSD3, due

to the smaller coverage of the domain. Proliferation declines more for CSD1

and CSD3, as compared to CSD2, during the early stages of the field, due to

competition for empty cells from cell movement caused by higher probability

of quiescence.
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(a) CSD1

(b) CSD2

(c) CSD3

Figure 4.13: In figures (a),(b),(c) we show the time course of the fraction of cells that underwent each of the
phenotypic actions, namely proliferation, apoptosis, quiescence (moved), and differentiation. In the plots we
consider (a) carcinogen spatial distribution 1 (CSD1), (b) CSD2, and (c) CSD3. Parameters are as follows:
grid size 256x256 and both carcinogens activated.

In Figure 4.14 we compare various characteristics of the cancer field and
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cancer development between the carcinogen spatial distributions (CSDs). In

the plots, we show (a) the time evolution of the fraction of positively mutated

genes, (b) the time evolution of the average cell fitness, (c) the time evolution

of the log of the number of cell lineages, and (d) the time evolution of the

fraction of cells that are part of the tumour mass(es). Figure 4.14a shows

us that all the genes become positively mutated for the three distributions,

however, it takes CSD2 longer than the rest. Figure 4.14b reveals to us that

the fitness increases at a similar rate for the three distributions, with CSD2

being more delayed in the increase and having a lower fitness overall. Figure

4.14c indicates that the number of cell lineages decreases, however, at the

period 40-60 months CSD2 decreases rapidly until it stabilizes and continues

decreasing at the same rate as the other two. This occurs because the point at

which the first TC is formed the field in CSD2 is significantly smaller, thus the

TCs overtake the field more quickly than the other two cases, as demonstrated

in Figure 4.11. Finally, Figure 4.14d shows us that the tumour growth rate

curve has a similar shape for all the distributions, with CSD1 requiring the

most time to fill the domain, followed by CSD3, and CSD2 requiring the least

amount of time. This phenomenon is explained by less competition occurring

between lineages for CSD2. More carcinogen in the domain leads to faster

development of the field.
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(a) Positively mutated gene fraction (b) Average cell fitness

(c) Number of cell lineages (d) Tumour growth rate

Figure 4.14: In this figure we compare various characteristics of the cancer field and cancer development
between the carcinogen spatial distributions (CSD). In the plots we show (a) the time course of the fraction
of positively mutated genes, (b) the time course of the average cell fitness, (c) the time course of the log
of the number of cell lineages, and (d) the time course of the fraction of cells that are part of the tumour
mass(es). Parameters are as follows: grid size 256x256 and both carcinogens activated.

4.4.1 Single Carcinogen

In Figure 4.15 we present the time evolution of the fraction of cells in the dif-

ferent cell classes. In Figure 4.16 we present the time evolution of the average

gene expression for each gene. For both figures in (a) we use ethanol and in

(b) nicotine. We see that for ethanol (alcohol) the dynamic is very similar to

the equilibrium case, except the genes are mutated slightly. Alcohol alone does

not cause a field to develop due to the carcinogen causing the majority of the

genes to mutate away from cancer, as shown in Figures 4.15a and 4.16a. This

is in accordance with the biology that states alcohol alone rarely causes oral

cancer. Nicotine alone does cause a field to develop because, unlike alcohol,

the genes are positively influenced towards cancer, as is evidenced by Figures
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4.15b and 4.16b. This again agrees with the actual effects of nicotine on the

body, as smoking is a major cause of oral and lung cancers.

(a) Ethanol

(b) Nicotine

Figure 4.15: In figures (a),(b) we show the time course of the fraction of cells in the different cell classes NTC,
MNTC, NSC, MNSC, CSC, TC, empty. In the plots we consider (a) ethanol and (b) nicotine. Parameters
are as follows: grid size 256x256 and carcinogen spatial distribution 2.
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(a) Ethanol

(b) Nicotine

Figure 4.16: In figures (a),(b) we show the time course of the average gene expression for each of the ten
genes. In the plots we consider (a) ethanol and (b) nicotine. Parameters are as follows: grid size 256x256
and carcinogen spatial distribution 2.

If we had considered a different tissue such as the liver and/or included

more genes that are positively mutated by alcohol, then it is probable that

alcohol would cause a field and, eventually, cancer. In particular, alcohol

would likely develop cancer in the liver as it has a high mutagenic effect on

the liver [6, 62, 109].

4.4.2 All Carcinogens

When both carcinogens are included, a cancer field and tumour always develop.

Tumour development is faster when both carcinogens are active compared to

nicotine alone, as is demonstrated by comparing Figures 4.11b and 4.15b.
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Analyzing the figures, we can conclude that although the field initiates first

in the nicotine case and becomes larger, the tumour grows at a faster rate in

the case that both carcinogens are active. This agrees with the clinical data,

which alludes to drinking and smoking in combination increasing the chances

of cancer forming relative to one of them alone [67]. Further it is known that

alcohol in combination with smoking increases the chances of developing cancer

because the alcohol weakens the cells, which allows the tobacco to be more

mutagenic [159]. This combined impact of the carcinogens is what causes the

field to be smaller than the nicotine alone. In the case of nicotine being the

sole carcinogen, the field initiates faster since it does not have to fight against

the mutagenic effects of alcohol. The tumour growth rate is quicker in the

two-carcinogen case because there is more carcinogen within the domain, thus

more gene mutations will accrue.

4.4.3 Cyclic Carcinogenic Onslaught

We analyze various realistic scenarios where the carcinogen(s) are removed

from the domain in a cyclic fashion. For all the simulations we use a grid

size of 256x256 and CSD2 (equation 4.2). In Figure 4.17 we show the time

evolution of the fraction of cells in the different cell classes. In the plots,

we have the case of (a) smoking every day and drinking on weekends, (b)

smoking on weekends, and (c) smoking on weekdays. A video of the scenario

of smoking on weekends is provided at Hybrid Cellular Automata of Field

Cancerization Example 3 (https://youtu.be/4CTrhoddFOw), which contains

three simultaneous videos including from left to right the carcinogen spatial

distribution, the CA grid, and a visualization that shows the top twenty cell

lineages. We can see the field starts to develop earlier in cases (a) and (c)

relative to case (b), as evidenced by the MNTC (green) and MNSC (yellow)

curves. Additionally, in case (a) the field reaches a larger size, relative to cases

(b) and (c), as is established by the MNTC and MNSC curves. The first TC

forms earlier in cases (a) and (c) compared to case (b). The rate of tumour

growth is slightly faster in (a) and (c) as compared to (b), although (c) is

slightly faster than (a).
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(a) Smoke every day and drink on weekends

(b) Smoke on weekends

(c) Smoke on weekdays

Figure 4.17: In figures (a),(b),(c) we show the time course of the fraction of cells in the different cell classes
NTC, MNTC, NSC, MNSC, CSC, TC, empty. In the plots we show the case of (a) smoking every day and
drinking on weekends, (b) smoking on weekends, and (c) smoking on weekdays. Parameters are as follows:
grid size 256x256 and carcinogen spatial distribution 2.

As noted above, the development of the field in Figure 4.17b in which the
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only carcinogen is nicotine and smoking occurs on weekends only, is vastly

delayed and develops much less rapidly as compared to the other two figures.

This is to be expected since in this case there is a large reduction in the

carcinogenic onslaught due in part to the lack of alcohol consumption and to

the large reduction of nicotine. Further, we note that it takes the body up-to

four days after smoking stops for it to be cleared of nicotine [12], thus nicotine

will still continue to mutate the genes during the days of non-smoking.

When comparing these three scenarios it was noted that onset of cancer

is slower and grows at a slightly lower rate in the scenario of smoking every

day and drinking on weekends versus the scenario in which smoking occurs on

weekdays only. This contradicts what was observed in the comparison of Fig-

ures 4.11b (smoking and drinking every day) and 4.15b (smoking every day) in

which the combined impact of the two carcinogens caused more rapid cancer

growth. Thus, it is shown that the negative impacts of the alcohol in combi-

nation with nicotine are negated somewhat when alcohol is only consumed on

the weekend. In fact it would appear in this case that this small amount of

alcohol fights against the mutations being caused by the nicotine.

Comparing the difference of this impact of the amount of alcohol con-

sumption is also illustrated by comparing Figure 4.17a with 4.11b in which

the alcohol consumption occurred every day along with smoking. The field

develops faster when less alcohol is consumed due to the lack of alcohol during

the week which would otherwise be fighting the positive mutations caused by

the nicotine. The onset of cancer and the rate of cancer growth when drink-

ing every day with smoking is significantly greater than when only drinking

on the weekends. Further, confirming the impact of cancer growth when two

carcinogens are introduced and the impact of the onslaught of carcinogens.

The final case is the impact of the quantity of nicotine alone, thus we

compare Figure 4.17c (smoking on weekdays) versus Figure 4.15b (smoking

every day). The dynamics between the two are near identical illustrating

that if a heavy smoker only ceases smoking for two days per week, it is not

a sufficient reduction in onslaught to impact the results. This is due to the

fact that in the model once carcinogen onslaught has caused some positively
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mutated genes to occur, then those genes will continue to mutate throughout

the two day period.

4.5 Tumour Excision

We will be looking at how long recurrence takes after a tumour excision is per-

formed and the dynamics of the field development after excision. We consider

two types of excision, one where we only remove the TCs - which we will call

keeping the field, and the other where we kill all mutated cell classes - which

we will call removing the field.

In Figure 4.18 we show the time evolution of the fraction of cells in the

different cell classes. In (a) we consider the case of keeping the field and in (b)

the case of removing the field. Videos of the scenarios of keeping the field and

removing the field are provided at Hybrid Cellular Automata of Field Cancer-

ization Example 4 (https://youtu.be/zngGzjSlPwU) and Hybrid Cellular Au-

tomata of Field Cancerization Example 5 (https://youtu.be/EOFI4Ai1A9U),

which each contain three simultaneous videos including from left to right the

carcinogen spatial distribution, the CA grid, and a visualization that shows

the top twenty cell lineages. The excision occurs in the period of 40-60 months,

prior to this period we observe normal cancer field and tumour development.

As the field develops, the number of normal tissue cells decreases as the num-

ber of mutated cells increases, with TC just starting to form and accelerate its

growth and a very small uptake in CSCs beginning. At the point of excision

there is a spike in the number of empty cells, which is more prominent in the

removing the field case, and the number of tumour cells goes to zero. In the

case for which the field is removed, Figure 4.18b, the number of mutated cells

is reduced to zero and after an extended lag the field restarts its growth at

about the same rate as prior. This lag in field growth is due to the extensive

tissue damage that occurs. Tumour growth rate after excision including the

field, is reset back to the initial time-step of zero with an increased lag before

the first TC appears and a slower initial growth rate once it restarts. Recall

that the TC growth lags the field growth, thus as shown in Figure 4.18b we
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observe the relationship in growth between these cells. Whereas when the

field is kept intact it continues to grow as shown in Figure 4.18a. Thus, when

the cancer returns in this case, we observe that the tumour growth is at the

same rate as before the excision, or even slightly more aggressive. Referring to

Figure 4.18 we can see that the longer the delay in excision in either case, the

larger the field will have grown and in the case of a) the tumour growth will

be in a more accelerated state and thus when it returns will be in this more

accelerated growth rate.

(a) Remove only tumour cells, i.e., keeping the field (b) Remove all mutated cells, i.e., removing the field

Figure 4.18: In figures (a),(b) we show the time course of the fraction of cells in the different cell classes
NTC, MNTC, NSC, MNSC, CSC, TC, empty. In the plots we consider the case where we (a) remove only
TCs (keeping the field) and (b) we remove all mutated cells (removing the field). Parameters are as follows:
grid size 256x256, both carcinogens activated, carcinogen spatial distribution 2, and time elapse of excision
following first TC appearance was 18 months.

In Figure 4.19 we show the elapsed time it takes for cancer to recur after an

excision has been performed some set amount of time after the first successful

tumour cell(s) formed. In (a) we consider the case of keeping the field and in

(b) we consider removing the field. Figure 4.19 in either case does not result

with a linear graph due to the probabilistic nature of the CA model. In the

case of keeping the field a linear downward trend is observed. This illustrates

that the longer the elapsed time after the first TC forms and before excision,

the less time it takes for the cancer to recur. This is to be expected because the

remaining field will have developed more mutations over the course of time,

is larger, and is more aggressive, which allows a tumour cell to recur faster.

In the removing the field case there is no correlation between length of time

before performing an excision and elapsed time before recurrence, there does,
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however, seem to be an upward trend, the values are in a similar range and can

be attributed to random effects. Comparing keeping the field versus removing

the field it is evident that it takes substantially longer for the cancer to recur

in the case of removing the field.

(a) Remove only tumour cells, i.e., keeping the field (b) Remove all mutated cells, i.e., removing the field

Figure 4.19: In figures (a),(b) we show how long it takes for cancer to recur after excision has been completed
on the tumour cells that were alive for a given number of months. In the plots we consider the case where (a)
we remove only TCs (keeping the field) and (b) we remove all mutated cells (removing the field). Parameters
are as follows: grid size 256x256, both carcinogens activated, carcinogen spatial distribution 2, and time
elapse of excision following first TC appearance was 18 months.

If we were to include a wound healing mechanism in the model, the tissue

would heal more rapidly and allow the first TC to recur faster, whether keeping

the field or removing it. It is also important to note that in the case of keeping

the field, if the domain at the time of excision is only made up of a large tumour

mass, then all the cells will be killed off. Similarly, in the case of removing the

field, if the field makes up the whole domain, then all the cells in the domain

will be killed. These cases would be biologically realistic only in situations

in which the excision removed the whole tumour mass and/or its surrounding

field within a tissue or if the whole organ was removed. Recurrence would not

happen at all if after the excision the individual was no longer exposed to the

carcinogenic onslaught that originated the cancer field.

4.6 Cell Lineages

In Figure 4.20 we show the top twenty cell lineages at time-steps that are

relevant to the major developmental stages of field cancerization.
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(a) Initial seed (b) Field early in its development

(c) Field later in its development prior to tumours (d) Tumour masses early in their development

(e) Tumour masses later in their development (f) Final time-step

Figure 4.20: Important time-steps that show the top twenty lineages throughout the development stages
of field cancerization. In the figures we show (a) the initial seed, (b) early cancer field formation, (c) later
cancer field development, (d)-(f) cancer development. Note that light grey means the cell is not in any of
the top twenty lineages and each colour represents a different cell lineage. Parameters are as follows: grid
size 256x256, carcinogen spatial distribution 2, both carcinogens activated.
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In the figures we show (a) the initial seed, (b) early cancer field formation,

(c) later cancer field development, in (d)-(f) cancer development. The initial

seed does not have any lineages because we can not track lineages until after

the first phenotypic actions occur. At the beginning of the field formation the

largest cell lineages are scattered everywhere, but as the field develops and

grows, the largest cell lineages are concentrated at the location of the field,

as shown in Figure 4.20d. Note that the largest cell lineages increase in size

as the field and tumour cells become more aggressive. Figure 4.20 shows that

the cell lineages that are part of the field are the largest cell lineages in the

domain, which goes to show that the field contains the most fit cells in the

domain. By the final time-step the remaining lineages, less than ten, are all

TC lineages. Initially, there are several cell lineages, but over time the number

of cell lineages decreases as the higher fitness cell lineages overcome less fit

lineages.

In Figure 4.21 we illustrate a time-step from a simulation that shows the

largest tumour cell lineages, each represented by a different colour. We observe

that most of the lineages are concentrated near the location of the carcinogen,

with smaller lineages dispersed throughout the domain. Cell lineages are com-

petitive as is demonstrated by tumour mass cell lines enveloping or infringing

on other tumour mass cell lines, displayed in Figure 4.21. Theoretically, given

enough time the number of cell lineages would be reduced to one or very near

to one, because certain cell lines become more and more competitive. Since we

use periodic boundary conditions, we should be able to observe convergence

to one lineage as time goes to infinity, this means our model will maintain

multiple lineages only on sufficiently small space and time scales.
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Figure 4.21: Each colour represents a different tumour cell lineage. Both the light green and light blue
lineages have a main mass of tumour cells with other small masses disconnected from it, which implies they
both have formed tumour masses by monoclonal origin. However, most of the tumour masses have been
formed via polyclonal origin. Parameters are as follows: grid size 256x256, carcinogen spatial distribution
2, and both carcinogens activated.

4.6.1 Monoclonal versus Polyclonal Origin

We investigate whether a typical cancer field is formed via monoclonal or

polyclonal origin. Our model demonstrated both, as evidenced by examining

the top twenty cell lineages over time in Figure 4.20, where different cancer

lineages are indicated in different colours. However, generally it seems that

polyclonal origin is the more common origin, as can be verified by Figure 4.21.

The chance of monoclonal origin is associated with the amount of cell

movement that occurs, since a cell has to move far enough away from its origin
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to form a new tumour mass. As a result, it is possible to increase the amount

of monoclonal origin by increasing the chance of movement. Polyclonal origin

has no relation to movement, thus it is much more likely to occur due to the

vast amount of cells and competition between cell lineages.
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Chapter 5

Conclusion

5.1 Discussion of Results

In this thesis we developed a sophisticated cellular automata model for the

cancer field effect. The model is an extension to existing cellular automata

models [54] since I include the effect of carcinogens (ethanol and tobacco)

on the gene expression of oncogenes and tumour suppressor genes. The gene

expression was modelled by a multi-layer neural network, which can be trained

once more data is available.

Due to the fact that the chosen genes are not positively mutated towards

cancer by ethanol, our model shows that ethanol alone will not cause a field to

develop. Nicotine is the most effective carcinogen in our simulations, since it

causes the most positive mutations. A field does not develop without carcino-

gens in the domain, thus verifying the original hypothesis that field canceriza-

tion is caused by carcinogenic onslaught, and in particular that it needs con-

sistent carcinogenic onslaught. As well, when investigating cyclic carcinogenic

onslaught, we verify that the frequency of carcinogenic onslaught is important,

because the less time the carcinogen is in the body, the more time the field

takes to develop.

We determined that grid size does not significantly have an impact on the

dynamics of the model, other than that it seems the domain size needs to be

a certain size for cancer to thrive. We observed, by tracking the cell lineages,

that the model shows that the tumour masses form both from monoclonal and

polyclonal origin, with more polyclonal origin than monoclonal.
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We demonstrated that when an excision is performed that removes only

the tumour cells but leaves the remaining surrounding tissue intact, the cancer

recurs faster than when removing the entire field of mutated tissue. When the

field is not removed during excision the cancer that recurs is more aggressive

than when the field was removed. We found that the more time the field has

to develop before excision, the faster and more aggressive the recurrence.

Our research shows that for heavy smokers, the development of a cancer

field is expected, which may or may not lead to cancer.

5.2 Future Work

With regards to the genes, several possible enhancements could be explored.

It is possible to increase accuracy of gene expression by accounting for the

fact that there are two sets of each gene, positive and negative. A dynamic

mutation threshold that would alter on predefined parameters, such as the

number of genes that are mutated, or on cell age, could be added. The muta-

tion threshold could also be specific for each gene or each type of gene. In our

model we assumed TP53 is related to all other genes and as a result once it

is mutated all other genes will become mutated as well. However, it might be

better to have an order the gene mutations must occur in such as for RAS to

become mutated TP53 must first become mutated. Another possibility would

be to only allow a gene to mutate when a related gene is mutated. Currently

we consider ten genes in our model, in the future we want to examine using

genes specifically associated with cancer formation caused by the carcinogens

we consider, especially for ethanol. We could use data from lab experiments

to train the gene expression neural network by looking at how each carcinogen

effects the expression of each gene. It would be of benefit to include viral

infections to the model such as human papillomavirus (HPV) as input to the

gene expression neural network. We would want to include genetic precursors

towards cancer as input to the gene expression neural network as well. Non-

carcinogen mutagen factors to consider adding to the gene expression neural

network or a new neural network or through a correlation matrix, include;
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gender, age and lifestyle. It would be beneficial to be able to use a patient

specific data set, such as genetic sequencing to improve accuracy of the values

in the gene expression neural network and carcinogen exposure information

such as how often the patient smokes.

Future biological mechanisms to add to our model would incorporate wound

healing, cell metabolism, micro-environment variables, and cell adhesion.

Telomeres are at the end of the DNA strands and with each cell division they

get cut shorter, eventually becoming so short that the cell can no longer prolif-

erate and so will enter senescence. Senescent cells are similar to quiescent cells

except they can’t perform any actions and at some point undergo apoptosis.

Therefore, the model could be enhanced by introducing telomeres. How stem

cells are distributed in the domain could be more accurately represented by

using a stem cell niche instead of allowing stem cells to distribute randomly

in the grid. Currently the model only forms tumour cells from cancer stem

cells, whereas we could allow tumour cells to randomly appear, or transition

other cell classes into tumour cells. Currently a non-mutated cell class can

transition to its associated mutated class as long as it has a certain num-

ber of positively mutated genes, it would be more accurate to specify certain

genes that must be positively mutated before a transition to a mutated class

is allowed. A Transient amplifying cell (TAC) currently doesn’t fully differ-

entiate until it succeeds in producing its allotted number of cell generations,

it would be more realistic to have the cell fully differentiate after some rule

has been met, such as there being a sufficient number of cells surrounding

it or if it has been a certain number of time-steps since first being formed.

The SC classes could be given an extended neighbourhood to search for dead

tissue and make a TAC to regenerate it. Other cells types could be included

such as muscle, fat, and white blood cells. Carcinogens could be permitted to

hinder phenotypic actions from occurring, or allow the direct killing of cells.

We could include immune-response mechanisms that would randomly kill mu-

tated cells to replicate the body eliminating rouge cells. Carcinogens could

also be allowed to weaken cells so that more genetic and phenotypic mutations

can be accomplished by other carcinogens. The carcinogens currently spread
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via carcinogen spatial distributions that don’t depend on time, it would be

interesting to consider spatial distributions that can vary over time, such as

allowing it to increase in size or move location. We currently consider only

one type of carcinogen spatial distribution for each carcinogen in a simulation,

instead we could allow each carcinogen to have different carcinogen spatial dis-

tributions depending on the type of carcinogen. Cyclic carcinogen onslaught

could be improved by including a rule for a carcinogen where it is perma-

nently deactivated, for example due to a person quitting smoking. Instead

of substituting nicotine as the carcinogen for tobacco we could consider the

key carcinogens of tobacco. The chance of occurrence of each phenotypic ac-

tion could be estimated from lab experiments, by recording how often cells

differentiate, proliferate, and move. A case analysis between different types of

cancers could be achieved by applying our model to other cancer types. The

CA grid could be initialized with mutations and mutated cells already within

the domain. Grid initialization could utilize patient-specific parameters such

as age or genetic tests.

Running the model through more simulations and parameters would help

to determine a rough estimate of the field size and the parameter values.

The ability to tune the grid size and type of lattice to match the tissue and

cancer type would be beneficial. More simulations for a broader base of cases

could be run such that we are able to determine averages and trends. Some

CA parameter analysis could be accomplished by modifying for example the

chance a cell moves. Eventually we would want to run the model in a three-

dimensional domain. One of the questions we originally wanted to answer was

how long it would take for a tumour to become large enough to be detected by

physicians, however, we were not able to answer this question due to the size of

the cells requiring at least a domain size 1024x1024 to represent the required

1cm detection size. A few simulations at 1024x1024 were run and we found it

would take more than 10 years to fill in the space, thus it would take at least

10 years for the tumour to be detectable. Another possibility would be to use a

three-dimensional domain, which would require a grid size of only 128x128x64.

With regards to the CA we could consider various types of neighbourhoods

115



such as Neumann or extended Moore. All the random samples in the CA

are currently taken from a uniform distribution, thus investigation could be

conducted on other distributions and potentially a mixture of distributions

based upon the use case of the sample point.

With regards to efficiency of running the model, as the complexity in-

creases, the speed of the calculations involved in the gene expression neural

network could be improved with linear algebra libraries in CUDA. Using tex-

ture memory in the GPU to store cell neighbourhoods would make calculations

both faster and easier, as it has faster bandwidth and built in boundary con-

ditions. The code could be made more cross compatible by allowing parallel

computation on the CPU and switching from CUDA to OpenCL. Running the

model with cloud computing would be a better option for a program built for

hospital use.

116



References

1. Alcolea, M. P. et al. Differentiation imbalance in single oesophageal progenitor cells cause
clonal immortalization and field change. Nature Cell Biology 16, 612–619 (2014) (cit. on p. 3).

2. Alonso, S. et al. Methylation of MGMT and ADAMTS14 in normal colon MUCOSA: biomark-
ers of a field defect for cancerization preferentially targeting elder African-Americans. Oncotarget
6, 3420–3431 (2015) (cit. on p. 6).

3. Anandakrishnan, R. et al. Estimating the number of genetic mutations (hits) required for
carcinogenesis based on the distribution of somatic mutations. PLoS computational biology 15,
e1006881 (2019) (cit. on p. 73).

4. Angadi, P. V. et al. Oral field cancerization: current evidence and future perspectives. Oral
and Maxillofacial Surgery 16, 171–180 (2012) (cit. on pp. 6, 8).

5. Asada, K. et al. FHL1 on chromosome X is a single-hit gastrointestinal tumor-suppressor
gene and contributes to the formation of an epigenetic field defect. Oncogene 32, 2140–2149
(2013) (cit. on p. 6).

6. Bagnardi, V. et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-
response meta-analysis. Br J Cancer 112, 580–593 (2015) (cit. on pp. 69, 101).

7. Baker, A.-M. et al. Quantification of Crypt and Stem Cell Evolution in the Normal and
Neoplastic Human Colon. Cell Reports 8, 940–947 (2014) (cit. on p. 3).

8. Beckmann, J. et al. Asymmetric cell division within the human hematopoietic stem and
progenitor cell compartment: identification of asymmetrically segregating proteins. Blood 109,
5494–5501 (2007) (cit. on p. 4).

9. Bedi, G. C. et al. Multiple head and neck tumors: evidence for a common clonal origin. Cancer
Research 56, 2484–2487 (1996) (cit. on p. 7).

10. Beerenwinkel, N. et al. Cancer Evolution: Mathematical Models and Computational Infer-
ence. Systematic Biology 64, e1–e25 (2014) (cit. on p. 11).

11. Beidler, L. M. & Smallman, R. L. Renewal of cells within taste buds. The Journal of cell
biology 27, 263–272 (1965) (cit. on p. 75).

12. Benowitz, N. L., Hukkanen, J. & Jacob, P. Nicotine chemistry, metabolism, kinetics and
biomarkers. Nicotine psychopharmacology, 29–60 (2009) (cit. on p. 104).

13. Biddle, A. et al. Cancer Stem Cells in Squamous Cell Carcinoma Switch between Two
Distinct Phenotypes That Are Preferentially Migratory or Proliferative. Cancer Research 71,
5317–5326 (2011) (cit. on p. 5).

14. Bjerkvig, R. et al. The origin of the cancer stem cell: current controversies and new insights.
Nature Reviews Cancer 5, 899–904 (2005) (cit. on p. 5).

15. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during
life. Nature 538, 260–264 (2016) (cit. on p. 2).

117

https://doi.org/10.1038/ncb2963
https://doi.org/10.1038/ncb2963
https://doi.org/10.18632/oncotarget.2852
https://doi.org/10.18632/oncotarget.2852
https://doi.org/10.1371/journal.pcbi.1006881
https://doi.org/10.1371/journal.pcbi.1006881
https://doi.org/10.1007/s10006-012-0317-x
http://dx.doi.org/10.1038/onc.2012.228
http://dx.doi.org/10.1038/onc.2012.228
https://pubmed.ncbi.nlm.nih.gov/25422909
https://pubmed.ncbi.nlm.nih.gov/25422909
https://doi.org/10.1016/j.celrep.2014.07.019
https://doi.org/10.1016/j.celrep.2014.07.019
https://doi.org/10.1182/blood-2006-11-055921
https://doi.org/10.1182/blood-2006-11-055921
http://www.ncbi.nlm.nih.gov/pubmed/8653681
https://doi.org/10.1093/sysbio/syu081
https://doi.org/10.1093/sysbio/syu081
https://doi.org/10.1083/jcb.27.2.263
https://doi.org/10.1007/978-3-540-69248-5_2
https://doi.org/10.1007/978-3-540-69248-5_2
https://doi.org/10.1158/0008-5472.CAN-11-1059
https://doi.org/10.1158/0008-5472.CAN-11-1059
https://doi.org/10.1038/nrc1740
https://doi.org/10.1038/nature19768
https://doi.org/10.1038/nature19768


16. Boscolo-Rizzo, P. et al. Telomere shortening in mucosa surrounding the tumor: Biosensor
of field cancerization and prognostic marker of mucosal failure in head and neck squamous cell
carcinoma. Oral Oncology 51, 500–507 (2015) (cit. on p. 6).
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