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Abstract

In the year 1693, the Franco-Italian astronomer Giovanni Domenico Cassini published

three empirical laws describing the orbital and rotational motions of the Moon. Cassini’s

Third Law describes the orientations of the lunar equatorial plane and the lunar orbital plane

vis-a-vis the ecliptic. Specifically, it states that the lunar orbit normal and the lunar figure

axis remain co-planar with the ecliptic normal. However, measurements from lunar laser

ranging observations conducted in the decades following the Apollo missions unequivocally

demonstrate the existence of a small 0.265 arc-second phase lead between the theoretical

state, as described by Cassini, and the observed state of the Moon. This fact is suggestive of

the existence of dissipation mechanisms within the Moon. Examples of previously proposed

dissipation mechanisms include viscous dissipation in the Moon’s fluid core and solid-body

tides induced by the gravitational pull of the Earth and Sun. The objective of this study

is to propose an additional dissipation mechanism, namely the viscoelastic relaxation of a

solid inner core. This hypothesis is analyzed from the perspective of the angular momentum

dynamics of the Moon and its constituent layers; a numerical model of the Moon is con-

structed, consisting of 5 homogeneous regions (a solid inner core, a fluid outer core, a low

seismic velocity zone, a mantle and a crust). The model is constrained by the observed lunar

mass, the moment of inertia of the solid Moon and other selenodetic and seismic observa-

tions. Viscoelastic deformations are incorporated into the angular momentum dynamics of

the Moon. This is done by evaluating the elastic-gravitational equations and computing the

appropriate deformation parameters. The objective is to demonstrate that a Maxwellian

solid inner core can influence the observed misalignment of the mantle rotation vector. The

rotational dynamic model developed here demonstrates that the orientation of the inner core

relative to the mantle is dependent upon its viscoelastic properties. Through the exchange

of torques with the mantle, the relative misalignment of the inner core will manifest itself

as a shift in the position of the mantle’s rotation axis. It has been demonstrated here that

for specific inner core parameters, such as radius, viscosity, etc., it is possible to reproduce

the observed 0.265 arcsecond misalignment in the mantle rotation vector.
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p
3) Basis vectors for the lunar mantle-fixed coordinate system.

(ês1, ê
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1 Introduction

1.1 The Cassini State

In the year 1693, the Franco-Italian astronomer Gian Domenico Cassini (1625-1712)

published a set of empirical laws describing the rotational motion of the Moon. These laws

state the following:

1. The Moon is locked in a 1:1 spin-orbit resonance with the Earth; for every one orbit

around the Earth, the Moon rotates once about its own axis. Consequently, the same

side of the Moon always faces the Earth.

2. The Moon’s rotation axis and the normal to the ecliptic plane maintain a constant

angle of misalignment relative to one another. This angle is nowadays measured to be

1.543◦.

3. The normal to the lunar orbital plane and the lunar mantle’s rotation axis precess

about the normal to the ecliptic plane with the same frequency; the three vectors

remain coplanar at all times.

For the interested reader, a lucid overview of these laws is presented in An Introduction

to Celestial Mechanics by Richard Fitzpatrick (2012). Further readings include papers by

Colombo (1966) and Peale (1969). The third law describes a configuration referred to as a

Cassini state; it is this precessing coplanar configuration of the lunar orbit normal, lunar

mantle rotation axis and ecliptic normal that is at the center of this study. The orbit normal

and the rotation axis precess about the ecliptic normal with a period of 18.6 years. More

detailed observations of the lunar mantle’s rotation axis, made possible by the advent of

Lunar Laser Ranging (LLR) in the decades following the Apollo missions (e.g. Dickey et al.,

1994), indicate that the rotation axis is not exactly co-planer with the ecliptic and orbital

plane normals, as the third law suggests. In fact, observations unequivocally demonstrate

that the rotation axis leads the exact co-planer state in which it should theoretically be by

an angle of 0.265 seconds of arc (Figure 1) (Yoder, 1981; Williams et al., 2001; Williams and
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Boggs, 2008). This lead is indicative of an ongoing energy dissipation mechanism existing

within the Moon (Cappalo et al., 1981; Yoder, 1981; Williams et al., 2001).

There have been at least two such mechanisms proposed in the literature. The first is

dissipation due to solid-body tides (Cappallo et al., 1981), which can be intuitively described

as follows. Essentially, the Moon deforms in response to changes in the gravitational po-

tential imposed on it primarily by the Earth and Sun, and to a lesser extent by other solar

system bodies (Jupiter, Venus, Mars, etc.). In the case of the Moon there is a permanent

tidal deformation in the form of a bulge that arises as a consequence of the synchronous

rotation of the Moon around the Earth. This bulge is due to the constant gravitational po-

tential from the Earth. However, time-dependent gravitational potentials induce temporally

varying tides in the Moon; impermanent physical deformations in the satellite’s shape. As

these physical deformations evolve through time in response to the changing gravitational

potential, the energy from the resulting macroscopic motion of the elements of mass within

the Moon is converted into heat, which is then dissipated into space.1 Because of this dis-

sipation, the tidal deformation lags behind the sub-point of the imposing potential on the

lunar surface.

The second proposed dissipation mechanism involves viscous coupling at the lunar Core-

Mantle Boundary (CMB) (Yoder, 1981; Williams et al., 2001). A fluid core that is rotating

with a differential velocity relative to its overlying envelope (i.e. the lunar mantle) will

exert a viscous drag on the CMB, and hence a torque on the mantle (Williams et al., 2001).

Indeed it is understood that the fluid core and the mantle rotate about different axes; the

Cassini state of the fluid core does not follow the Cassini state of the mantle. This is due to

the fact that the ellipticity of the lunar CMB is insufficient for adequate inertial coupling

between the two bodies (Goldreich, 1967). Although the fluid core tilt angle is not known,

it is presumed to be closer in alignment to the ecliptic normal (Williams et al., 2001). The

core-mantle coupling will dissipate energy and have a damping effect that contributes, in a

measurable way, to the observed 0.265 arcsecond lead in the lunar mantle’s rotation vector.

The individual contributions from these two mechanisms to the observed lead in the

mantle’s rotation axis relative to the Cassini state can be differentiated by analysis of the

LLR data (Williams et al., 2001). In this thesis, we consider a third possible dissipation

mechanism. Namely that viscoelastic relaxation occurring within the solid inner core of

the Moon can contribute, in a not insignificant way, to the observed lead in the mantle’s

rotation vector.

1An excellent introduction to tidal deformation can be found in the Caltech on-
line lecture Ge131: Planetary Structure and Evolution, Chapter 17, accessible through
http://web.gps.caltech.edu/classes/ge131/index.html
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Figure 1: (Top) Inclination of the lunar orbit relative to the Ecliptic plane. (Bottom) A lunar-
centric visualization of the Cassini state. The normal of the lunar orbital plane and the normal
of the lunar equatorial plane remain coplanar with and precess about the Ecliptic normal with a
period of 18.6 years. (Bottom right insert) Observations of the lunar spin axis indicate that it lies
ahead of the exact coplanar state described by Cassini by an angle of 0.265 arcseconds.
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1.2 The Internal Structure of the Moon: Data

Our understanding of the internal structure and composition of the Moon is constrained

primarily by two types of data:

1. Selenodetic data: Selenodesy is the branch of science that studies the Moon’s size,

shape and surface topography, along with its electromagnetic and gravitational fields.

Selenodetic data are collected primarily using satellites, optical and radio telescopes

(Counselman, 1973), and a technique known as Lunar Laser Ranging (LLR) (Dickey et

al., 1994; Williams and Boggs, 2008). Examples of recent satellites dispatched to orbit

and study the Moon include NASA’s Lunar Reconnaissance Orbiter (LRO) (Chin et

al., 2007) and Gravity Recovery and Interior Laboratory (GRAIL) (Zuber et al., 2012;

Asmar et al., 2013; Klipstein et al., 2013) missions.

Lunar Laser Ranging is a method of measuring, with considerable accuracy and preci-

sion, the Earth-Moon separation and their relative orientation (Williams et al., 1996;

Williams and Boggs, 2008). The method involves transmitting short laser pulses to

the surface of the Moon and recording their reflection from optical points on the lunar

surface. These optical points are retro-reflectors, which were positioned on the lunar

surface by the U.S. Apollo Program (Apollo 11, 14 and 15) and the Soviet Lunokhod

rover missions (Lunokhod 1 and 2) (Dickey et al., 1994).

2. Seismic data: The most detailed and well-constrained information pertaining to

the internal structure of the Moon is derived from seismic data (Goins et al., 1981).

During the U.S. Apollo missions, seismometers were positioned at five lunar landing

sites between 1969 and 1972, in what is called the Apollo Passive Seismic Experiment

(APSE). The operation of the APSE was terminated in September 1977, and consti-

tutes the only seismic data available from our closest solar system neighbor. There

have been numerous studies published based on the APSE data; a few fairly recent

publications include Khan et al. (2000), Weber et al. (2011), Garcia et al. (2011) and

Matsumoto et al. (2015).

Any model of the Moon’s interior must therefore be consistent with both selenodetic and

seismological observations. However, despite the broad range of available measurements,

there is a great veil of uncertainty shrouding the deep structure of the Moon. Consequently,

there is a large set of plausible Moon models which will fit the observed data. This problem

of non-uniqueness compels us to consider a broad range of configurations for the internal

structure and composition of the Moon.
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1.3 The Internal Structure of the Moon: Models

There have been numerous studies conducted over the years utilizing data from the

APSE and other lunar datasets. The studies that are pertinent to the work in this thesis

are those whose objective was to constrain the internal structure of the Moon. A select few

of these studies will be briefly alluded to in order to familiarize the reader with the current

state of the literature and our understanding of the structure and composition of the Moon.

We begin with the work of Lognonné et al. (2003) in which the authors independently

reprocessed the APSE data, identified arrival times, and inverted the data. Lognonné et

al. assert that the boundary between the lunar crust and mantle is situated at a depth

of ∼ 40 km below the lunar surface. Furthermore, they approximate the densities and

mineral composition of these layers by comparing their seismic models with travel time

estimates for various mineralogies. Interestingly, the inversions conducted in their study

had no seismological constraints at radii smaller than 400-600 km, dependent on the type of

seismic wave; therefore any constraint on the size of a possible lunar core originated solely

from selenodetic observations. The authors conclude that a core with a radius of ∼ 340

km is consistent with their model of the lunar crust and mantle and fits observations of the

Moon’s induced magnetic moment (Hood and Zuber, 2000).

Inspired by the popular ’Preliminary Reference Earth Model’ (Dziewonski and Anderson,

1981), which has become a staple in the geophysics community over the last few decades,

Garcia et al. (2011) published a ’Very Preliminary Reference Moon Model’ which gives

values for various seismological and selenodesic parameters as functions of distance from

the lunar center (Figure 2, a & b). Importantly, Garcia et al. (2011) demonstrate the

presence of a fluid core with a radius of ∼ 380 km. Published that same year, Weber et

al. (2011) presented evidence of a solid inner core, enveloped by a liquid outer core, which

itself is encased by a low seismic velocity zone. This low velocity zone is interpreted by

the authors to be a partially molten transition layer. The radius of the inner core is poorly

constrained, but is suggested to be ∼ 240 km; the fluid core radius is suggested to be ∼ 330

km; the partially molten boundary layer sitting atop the fluid core extends to a radius of ∼
480 km (Figure 2, c, e & f).

A more recent publication by Matsumoto et al. (2015) progressed the literature by

incorporating more recent selenodetic data made available by NASA’s GRAIL mission. The

results of their work are summarized in a series of probability density functions for the

various parameters of interest (e.g. core radii, core densities, etc.). Notably, their results

corroborate the work of Weber et al. (2011) in that they also identify a solid inner core, a

fluid outer core and a transition zone overlying the core region, the latter being characterized

by anomalously low seismic velocities (Figure 2, c, j, k & l). To highlight the uncertainties

5



associated with modeling the deep lunar interior, Matsumoto et al. (2015) estimate the

radius of the low velocity zone to be ∼ 570 km, approximately 100 km greater than the

estimates of Weber et al. (2011).

The nature of this low seismic velocity zone at the base of the lunar mantle will be of

some significance in this work. Notable publications on this topic include the work of Harada

et al. (2014), in which the authors argue that the transition zone at the base of the lunar

mantle must have a viscosity of the order of 1016 Pa·s. A slightly more recent publication

by Matsuyama et al. (2016) placed constraints on the rigidity (in the elastic limit) of the

transition layer, and concluded that the rigidity of the layer is comparable to that of the

overlying lunar mantle. The results of Matsuyama et al. (2016) (Figure 2, g, h & i) are

comparable with those published by Matsumoto et al. (2015); however there are differences

in the methodologies employed by both groups of authors (e.g. the number of free parameters

used in the inversion process, the use of anelastic vs. viscoelastic corrections, etc.). This

invariably results in there being variations in the calculated probability density functions;

see Figure 2. It further highlights the uncertainties surrounding the deepest regions of the

Moon. However, despite these difficulties we are nevertheless able to develop models of the

Moon that are broadly consistent with seismological and selenodetic observations.

1.4 Observations of Lunar Energy Dissipation

In recent decades, analysis of LLR data has offered a tantalizing glimpse into the interior

workings of the Moon. Indeed, in the context of describing the observed 0.265 arcsecond

misalignment in the lunar mantle rotation axis, it is possible to determine the relative

contributions from the two dominant energy dissipation mechanisms currently active in

the Moon today. This differentiation is made possible by the detection of small physical

librations on the order of a few milliarcseconds (Williams and Boggs, 2008). Scientists at

NASA’s Jet Propulsion Laboratory (JPL) have developed software that enables them to fit a

Moon model to several decades worth of frequency dependent LLR measurements (Williams

and Boggs, 2015). The Moon model that is utilized is simple in that it consists of only two

layers; a rigid solid mantle and a fluid core. The effects of tidal dissipation within the solid

mantle are modelled as a time-delay in the response of the rigid mantle to the imposed

forcing (Williams et al., 2001). This is analogous to modelling tidal dissipation as a phase

shift between the imposing force and the resultant behaviour of the solid body. In contrast,

the effects of viscous fluid friction along the CMB are described by a dissipation parameter,

namely K; the resulting torque from this viscous coupling is parameterized as a product of

K and the difference in angular velocity between the fluid core and the overlying mantle

envelope (Williams et al., 2001). The dissipation parameter K is often presented in a ratio

6



Figure 2: (a & b) Radial profiles of seismic and selenodetic properties, Garcia et al. (2001); (c)
Cross section of the lunar interior, Weber et al. (2011); (c) Probability density functions of inner
and outer core radii, Matsumoto et al. (2015); (e & f) Radial profile of seismic properties, Weber
et al. (2011); (g, h & i) Probability density functions of inner and outer core radii along with
transition zone/low velocity zone radius, Matsuyama et al. (2016); (j, k and l) Radial profile of
seismic properties, Matsumoto et al. (2015).
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to the polar moment of inertia of the Moon, C, as follows (Williams et al., 2014)

K

C
≈ 1.64± 0.17× 10−8 days−1 = 1.90± 0.20× 10−13 s−1 (1)

Thus, based on this two-layered Moon model, it is possible to isolate the contributions from

viscous fluid friction and tidal dissipation on the observed 0.265 arcsecond misalignment in

the mantle’s rotation axis. However, it must be kept in mind that the recovered contributions

from the two energy dissipation mechanisms are dependent on the assumptions inputted into

the model. If an additional significant energy dissipation mechanism exists, for instance

viscoelastic relaxation of the solid inner core, there would be clear implications on the

results described above. Namely, the relative contributions from tidal dissipation and viscous

friction to the total dissipation would have to be modified.

In this thesis, we demonstrate that the viscoelastic relaxation of a small lunar inner core

has a negligible influence on the tidal dissipation occurring with the mantle. Consequently,

if the inner core has any influence on the misalignment of the mantle rotation axis vis-à-vis

the Cassini plane, it will be through the dissipation parameter K that modulates the effects

of viscous fluid friction in the aforementioned JPL Moon models. The presence of an inner

core implies that viscous fluid friction occurs along two surfaces; the Core-Mantle Boundary

(CMB) as described by Williams et al. (2001) and the Inner Core Boundary (ICB). Further-

more, the viscoelastic relaxation of the lunar inner core has a comparable effect to tilting

the inner core. A tilted core will couple, both gravitationally and otherwise, with the rest

of the Moon. Thus the dissipation parameter K contains contributions from CMB and ICB

friction along with the effects associated with a misaligned inner core. Phrased differently,

the inner core-Moon coupling could be a partial (or in the extreme case an alternative)

explanation for the inferred contribution to the mantle rotation axis offset attributed to

viscous fluid friction.

1.5 Objective

The underlying motivation behind this thesis is two-fold. Firstly, correctly identifying

and quantifying the dissipation mechanisms at work today within the Moon allows us to more

accurately constrain our understanding of our closest solar system neighbour. For example,

an accurate description of the deformation of the lunar mantle will impose limitations on

the material properties of the mantle, and thus on its composition. Such information will

invariably be beneficial for anyone studying the composition and origin of the Moon, and

may aid in the exclusion of certain hypotheses regarding the lunar genesis (e.g. Ringwood,
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1970; Taylor, 1987). Additionally, properly constraining viscous coupling across solid-fluid

boundaries will benefit those studying the history of the Moon. For instance, it has been

suggested that an ancient lunar dynamo may have arisen as a consequence of the velocity

gradient that exists across the lunar CMB (e.g. Dwyer et al., 2011). But perhaps most

obviously for this study, if it can be shown that the lunar inner core can in part explain the

observed lead in the mantle rotation vector relative to the Cassini plane, it will affect the

conclusions of earlier papers regarding the nature of energy dissipation within the Moon.

Secondly, the tilt of the lunar inner core relative to the lunar mantle can theoretically be

large (Stys and Dumberry, 2018). In the reference frame of the lunar mantle, a tilted inner

core will precess with a frequency of one lunar day. This precession should theoretically

manifest itself as an observable gravitational anomaly with the same frequency (Williams,

2007). However, the inner core has not been directly observed in the selenodetic data

collected to date (Williams et al., 2015). One possible explanation for this inability to

detect the inner core is that the effective tilt angle of the inner core is reduced due to the

effects of viscoelastic relaxation; consequently, the magnitude of any associated gravitational

anomaly should also be reduced. Thus quantifying the effects of viscoelastic relaxation of

the lunar inner core will allow us to make inferences about its relative orientation. If the

reduction in the tilt angle of the inner core due to viscoelastic effects is minimal, this suggests

that a large tilt angle is less likely.

The remainder of this thesis is organized as follows. Chapter 2 introduces the reader to

the equations of motion governing the rotational dynamics of the Moon. Chapter 3 details

the computation of the effects of viscoelastic deformation and their influence on the Moon’s

rotational dynamics. Chapter 4 describes the behaviour of the rotation axis of a Moon

without a solid inner core. Chapter 5 describes the behaviour of the rotation axis for a

Moon with a solid inner core. Lastly Chapter 6 is a discussion of the results and conclusions

presented in this work.
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2 The Angular Momentum Dynamics of the Moon

2.1 Approximating the Lunar Interior

Given what we know about the interior of the Moon, we can (somewhat crudely) ap-

proximate the Moon as consisting of five concentric spherical layers (Figure 3) with three

independently rotating regions. For the purposes of this study, the physical parameters of

each individual layer will be uniform; physical parameters will not be radially dependent

within the confines of a layer. Thus the only discontinuities that arise in the radial distribu-

tion of physical parameters occur at layer boundaries. This is analogous to making the layers

homogeneous in their composition. Justification for the crudeness of this approach can be

extracted from the works of Garcia et al. (2011) and Matsumoto et al. (2015); both authors

have presented radial profiles of the Moon’s seismological parameters which illustrate the

approximate uniformity of the lunar mantle’s density and, to a lesser extent, compressional

and shear wave velocities. Similar arguments can be made for the core regions, where the

uncertainties are greatest. Furthermore, because of the relatively small size of the Moon,

the effects of compression on the physical parameters at depth are likely to be negligible. To

illustrate this point, the expected pressure at the center of the Moon is on the order of 10

GPa (Garcia et al. 2011), compared with 350 GPa for the center of the Earth (Dziewonski

and Anderson, 1981).

The Moon model used here consists of a Solid Inner Core (SIC); a Fluid Outer Core

(FOC); a low seismic velocity transition zone at the base of the mantle, or more succinctly a

Low Velocity Zone (LVZ); a thick lunar mantle; and a thin crust. The three independently

rotating regions are the SIC, the FOC, and the solid mantle (comprised of the LVZ, the

mantle, and the crust). Importantly, due to the uncertainties surrounding the depths of layer

boundaries, specifically the Inner Core Boundary (ICB) and the Core-Mantle Boundary

(CMB), models with various core radii will be considered in this analysis. The densities of

the five lunar layers are denoted as ρs, ρf , ρl, ρm, and ρc, which respectively correspond

to the SIC, FOC, LVZ, mantle and crust. The radii of the five layers are denoted as rs,

rf , rl, rm, and R, which similarly correspond to the SIC, FOC, LVZ, mantle and crust
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Figure 3: Cartoon schematic of the five layer Moon model used in this study. Beginning from the
center; Solid Inner Core (SIC) (red); Fluid Outer Core (FOC) (yellow); Low Seismic velocity Zone
(LVZ) (light blue); mantle (dark blue); and crust (gray). Both the SIC and the FOC can rotate
independently, while the LVZ, mantle and crust are ’welded’ together to form the ’solid mantle.’
For illustrative purposes only, not to scale.

respectively. The SIC radius rs corresponds to the ICB radius, and the FOC radius rf

corresponds to the CMB radius. Other physical parameters ascribed to specific layers will

be denoted in a similar fashion and are defined later on in the text, along with deviations

from sphericity (i.e. polar flattening), propagation of elastic deformations, etc., which will

be outlined in great detail in subsequent sections. For now, we have established the basic

conceptual framework for building a Moon model which is both simple and consistent with

observations.

2.2 The Equations of Motion for Rotating Bodies

2.2.1 Preamble

The analysis conducted in this work is centered around explaining the observed 0.265

second of arc lead in the lunar rotation axis relative to the theoretical Cassini state. This

misalignment is investigated by examining the angular momentum dynamics of the whole

Moon, along with its constituent layers. This is accomplished by utilizing the founda-

tional work of Mathews et al. (1991), Mathews et al. (2002), and Dehant and Mathews
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(2015), which present a comprehensive mathematical framework for modelling the angular

momentum dynamics of an elliptical, multi-layered planet. Specifically, these models were

developed to study the Earth’s nutations. By modifying this framework, Dumberry and

Wieczorek (2016) presented a model of the Cassini state for an axially symmetric, rotat-

ing, four layered Moon comprised of a SIC, a FOC, a mantle and a thin lunar crust. The

analysis presented here builds upon the Dumberry-Wieczorek model, subsequently referred

to in the shorthand as DW16. Specifically, the novel contribution detailed in this thesis

involves the incorporation of viscoelastic deformation into the rotational dynamic model.

These deformations are implemented in terms of deformability parameters, referred to as

compliances in the literature (Dehant and Mathews, 2015). Furthermore, the incorporation

of the compliances allows for the addition of a fifth layer into the DW16 model, namely the

LVZ at the base of the lunar mantle. What follows is a detailed description of the angular

momentum formalism used to compute the position in the lunar rotation axis relative to

the ecliptic and orbital plane normals.

2.2.2 Principal Moments of Inertia: Defining an Appropriate Coordinate Sys-

tem

The first task is to understand the mathematical relationships governing the angular

momentum balance of the Moon and its constituent layers. In order to accomplish this, we

must decide upon an appropriate reference frame in which to express the angular momentum

balance. Two candidate frames immediately come to mind; an ’inertial’ reference frame

situated at a point in space looking at the Moon and a non-inertial frame attached to the

rotating lunar mantle. The latter frame is particularly convenient in this case as it has been

employed by the previously alluded to Earth nutation models, and thus is the preferred

frame in which to express the relevant equations of motion. Let ê3 denote the unit normal

vector to the ecliptic plane. Let the rotating lunar mantle frame be defined by three mutually

orthogonal basis vectors (êp1, ê
p
2, ê

p
3) that each point in a direction parallel to a principal

moment of inertia of the whole Moon. In the case of the whole Moon, the principal moments

are defined as A, B, and C, where A and B are the two equatorial moments of inertia and

C is the polar moment of inertia. It holds that C > B > A for the Moon. The frame is

oriented such that the êp3 basis vector points in the direction of the maximum (C) moment

of inertia (i.e. the polar moment of inertia); consequently êp3 defines the orientation of the

lunar mantle symmetry axis. Similarly, the êp2 and êp1 basis vectors lie respectively in the

directions of the intermediate (B) and minimum (A) moments of inertia (i.e. the equatorial

moments of inertia). The misalignment of the lunar mantle’s symmetry axis êp3 relative to

the ecliptic normal ê3 is denoted by the vector p, such that
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êp3 = ê3 + p. (2)

Following this precedent, a similar coordinate system can be defined for the SIC. Let As,

Bs, and Cs denote the SIC’s principal moments of inertia, such that Cs > Bs > As. Let

(ês1, ê
s
2, ê

s
3) be the three mutually orthogonal basis vectors defined with respect to the SIC’s

principle moments of inertia, in the same fashion as for the lunar mantle. Because the SIC

is suspended within the FOC, it is free to rotate independent of the lunar mantle. Therefore

the symmetry axes of the mantle and the SIC need not be aligned. The misalignment of the

SIC symmetry axis ês3 relative to the mantle symmetry axis êp3 is described by the vector

ns, such that

ês3 = êp3 + ns = ê3 + p+ ns. (3)

Importantly, the coordinate systems defined by (êp1, ê
p
2, ê

p
3) and (ês1, ê

s
2, ê

s
3) rotate with

respect to a space-fixed ’inertial’ reference frame. The axis of rotation for the lunar mantle is

not necessarily in alignment with the mantle symmetry axis. Similarly for the SIC. We thus

express the misalignment of the mantle rotation vector Ω relative to the mantle symmetry

axis êp3 with the vector m, such that

Ω = Ωo + ωm = Ωoê
p
3 +Ωom = Ωo(ê

p
3 +m), (4)

where Ωo is the angular frequency of the rotation of the lunar mantle about its own spin axis

(Ωo = 2.6617 × 10−6s−1). The vector ωm is the differential angular velocity between the

mantle symmetry axis and the mantle rotation axis. Similarly, the misalignment of the SIC

rotation vector Ωs relative to the lunar mantle rotation vector Ω is defined by the vector

ms such that

Ωs = Ω+ ωs = Ωo(ê
p
3 +m) + Ωoms = Ωo(ê

p
3 +m+ms). (5)

The vector ωs is the differential angular velocity of the SIC rotation axis relative to the

mantle rotation axis. For the FOC there is no need to define a separate coordinate system

as in the case of the mantle and SIC. This is because the mantle, through the geometry of

the CMB, defines the shape (and thus the axis of symmetry) of the FOC. However, it is

necessary to define the FOC’s principal moments of inertia and rotation vector. Let Af , Bf ,

and Cf denote the FOC’s principal moments of inertia, such that Cf > Bf > Af . Let the
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Figure 4: Cartoon schematic of the five vectors p, ns, m, mf , and ms. For illustrative purposes
only, not to scale.

vector mf define the misalignment of the FOC rotation vector Ωf relative to the mantle

rotation vector Ω as follows

Ωf = Ω+ ωf = Ωo(ê
p
3 +m) + Ωomf = Ωo(ê

p
3 +m+mf ), (6)

where ωf is the differential angular velocity of the FOC relative to the mantle rotation axis.

The five vectors p, ns, m, mf , and ms are illustrated for the readers convenience in Figure

4.

The tri-axial nature of the figures of the solid lunar mantle and SIC must be accounted

for in order to accurately specify the magnitude of the torques acting on the Moon and its

constituent layers. However, in the DW16 model the angular momentum response of the

Moon to the imposed torques is computed based on an axially symmetric Moon. We employ
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the same simplifying assumption here; thus it is convenient to define the mean equatorial

moments of inertia for the whole Moon (Ā), FOC (Āf ), and SIC (Ās) as

Ā =
A+B

2
, Āf =

Af +Bf

2
, Ās =

As +Bs

2
. (7)

The explicit mathematical definitions for Ā, Āf , and Ās are functions of the density ρ and

the pole-to-equator flattening ε. To first order in ε, they are (DW16)

Ā =
8π

3

∫ R

0

ρ(r′)
[
r′4 − 1

15

∂

∂r′
(
r′5ε(r′)

)]
dr′, (8a)

Āf =
8π

3

∫ rf

rs

ρ(r′)
[
r′4 − 1

15

∂

∂r′
(
r′5ε(r′)

)]
dr′, (8b)

Ās =
8π

3

∫ rs

0

ρ(r′)
[
r′4 − 1

15

∂

∂r′
(
r′5ε(r′)

)]
dr′. (8c)

The pole-to-equator flattening is defined here as the difference between the equatorial and

polar radii divided by the average spherical radius. The limits of integration are dependent

on the region for which the mean equatorial moment of inertia is being calculated. Likewise

we can explicitly define the expressions for the polar moments of inertia of the whole Moon

(C), FOC (Cf ), and SIC (Cs) as

C =
8π

3

∫ R

0

ρ(r′)
[
r′4 +

2

15

∂

∂r′
(
r′5ε(r′)

)]
dr′, (9a)

Cf =
8π

3

∫ rf

rs

ρ(r′)
[
r′4 +

2

15

∂

∂r′
(
r′5ε(r′)

)]
dr′, (9b)

Cs =
8π

3

∫ rs

0

ρ(r′)
[
r′4 +

2

15

∂

∂r′
(
r′5ε(r′)

)]
dr′. (9c)

The angular momentum response of the Moon to an applied torque along the equatorial

direction is dependent on the difference between the polar and mean equatorial moments of

inertia (i.e. C − Ā). Thus it is convenient to define the dynamical ellipticities for the whole
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Moon (e), the FOC (ef ), and the SIC (es), as follows

e =
C − Ā

Ā
, ef =

Cf − Āf

Āf
, es =

Cs − Ās

Ās
. (10a)

Furthermore it is necessary to define two more principal moments of inertia, namely Ā′
s and

C ′
s. These two quantities define a body that has the same shape and orientation as the SIC

but which has a density equal to that of the FOC at the ICB (e.g. Mathews et al., 1991).

Because the model used in this study assumes constant densities within the various lunar

layers, the body defined by Ā′
s and C ′

s is a SIC with a density equal to that of the FOC.

The dynamical ellipticity of this body is thus

e′s =
C ′

s − Ā′
s

Ā′
s

. (10b)

We define the ratio of the differences between the polar and mean equatorial moments

of inertia of the hypothetical SIC with uniform FOC density, and the true SIC, by the

parameter α1

α1 =
C ′

s − Ā′
s

Cs − Ās
=

Ā′
se

′
s

Āses
. (11)

Additionally it is convenience to define

α3 = 1− α1 = 1− Ā′
se

′
s

Āses
. (12)

These parameters enter the rotational dynamic model described below.

2.3 Equations of Motion

For the case of the five layer Moon model adopted in this thesis, there are three angular

momentum balance equations (also referred to as Euler’s Equations) and two kinematic

relationships that govern the state of the Moon. The angular momentum equations describe

the time rate of change of the angular momenta of the whole Moon (H), the FOC (Hf ),

and the SIC (Hs) (DW16). The two kinematic relationships govern the behavior of the SIC
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symmetry axis (ês3), and the relationship between the ecliptic normal (ê3) and the lunar

mantle rotation axis (Ω). The five equations thus constitute a coupled system of ordinary

differential equations as follows

d

dt
H+Ω×H = Γext, (13a)

d

dt
Hf − ωf ×Hf = −ΓCMB − ΓICB , (13b)

d

dt
Hs +Ω×Hs = Γs + ΓICB , (13c)

d

dt
ês3 = ωs × ês3, (13d)

d

dt
ê3 +Ω× ê3 = 0. (13e)

The vectors Γext, ΓCMB , ΓICB , and Γs define the torques acting on the Moon and its

constituent layers. Because the lunar crust and the LVZ are ’welded’ to the lunar mantle,

and consequently cannot rotate independently, they do not require separate equations as

their behavior is encapsulated in the above system. Furthermore, note that the equation

for the FOC is expressed using the differential angular velocity of the fluid core relative to

the lunar mantle, ωf .

2.3.1 Angular Momentum Vectors and Moment of Inertia Tensors

The three angular momentum vectors are expanded in terms of the moment of inertia

tensors for the whole Moon ([C]), FOC ([Cf ]), and SIC ([Cs]) respectively as follows

H = [C] ·Ω+ [Cf ] · ωf + [Cs] · ωs. (14a)

Hf = [Cf ] ·Ωf , (14b)
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Hs = [Cs] ·Ωs, (14c)

The original DW16 model ignores the effects of viscoelastic deformation. Consequently,

the only non-zero components of the moment of inertia tensors for the whole Moon, FOC

and SIC are the principal, or diagonal components. Incorporating the effects of viscoelastic

deformation will introduce changes to the moment of inertia tensors in the form of non-zero

off-diagonal components, as well as modifications to the principal components. We begin

by providing explicit mathematical definitions for the moment of inertia tensors

[C] = Ā[I] + (C − Ā)êp3ê
p
3 +

(
(Cs − Ās)− (C ′

s − Ā′
s)
)
(ês3ê

s
3 − êp3ê

p
3) +

∑
ij

cij ê
p
i ê

p
j , (15a)

[Cf ] = Āf [I] + (Cf − Āf )ê
p
3ê

p
3 + (C ′

s − Ā′
s)(ê

p
3ê

p
3 − ês3ê

s
3) +

∑
i,j

cfij ê
p
i ê

p
j , (15b)

[Cs] = Ās[I] + (Cs − Ās)ê
s
3ê

s
3 +

∑
i,j

csij ê
p
i ê

p
j . (15c)

The quantity [I] is the unit tensor. Equations (15) are valid in all reference frames provided

that the unit tensor [I] is appropriately defined; in the reference frame of the lunar mantle,

[I] = êpi ê
p
jδij , where δij is the Kronecker delta (DW16). The quantities cij , cfij and csij

represent contributions to both the moments and products of inertia that result from the

viscoelastic deformations of the various lunar layers (Mathews et al. 1991); they are in

essence perturbations to the moment of inertia tensors (Buffett et al., 1993).

2.3.2 Small Angles

The system of five coupled ordinary differential equations is non-linear. However, for

small angles of misalignment, the system can be approximated as linear in terms of the

previously defined variables p, m, mf , ms, and ns. Furthermore, for small angles of mis-

alignment, the pertinent information regarding the relative positions of the Moon’s various

symmetry and rotation axes is contained in the two equatorial components of the mantle’s

coordinate system. Therefore it becomes reasonable to project the three-component vectors

p, m, mf , ms, and ns (from hereon collectively referred to as the rotation variables) onto
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the equatorial plane defined by the basis vectors êp1 and êp2 (e.g. Mathews et al., 1991;

Mathews et al., 2002; Dehant and Mathews, 2015). This has the added benefit of collapsing

a 3D problem into a 2D problem, thus simplifying the analysis. Given the regularity of the

oscillatory behavior of the system, it is particularly convenient to use the complex plane to

represent the equatorial coordinates êp1 and êp2, such that the êp1 coordinate is aligned with

the real axis and the êp2 coordinate is aligned with the imaginary axis. In the complex plane,

the rotation variables take on the following definitions

p → p̃ = p1 + ip2, (16a)

m → m̃ = m1 + im2, (16b)

mf → m̃f = mf1 + imf2, (16c)

ms → m̃s = ms1 + ims2, (16d)

ns → ñs = ns1 + ins2. (16e)

For small amplitudes of the rotation variables p, m, mf , ms and ns, the complex rep-

resentations p̃, m̃, m̃f , m̃s and ñs are equivalent to the angles of misalignment (DW16).

For example, the angle of misalignment between the ecliptic normal and the mantle sym-

metry axis (θp) is measured to be 1.543◦(e.g. Dickey et al., 1994; Williams and Dickey,

2002; Williams et al., 2014), or about 0.0269 radians. Trigonometrically this translates to

cos(θp) ≈ 0.9996 and sin(θp) ≈ 0.0269 ≈ θp; in this domain, the small angle approximation

holds up rather well, and we are justified in using a linear approximation. This simplifica-

tion enables us to recast the above system of five coupled equations as a linear system of

five equations and five unknowns in the complex domain. Here it is the variables p̃, m̃, m̃f ,

m̃s, and ñs that are the unknown solutions to the system. Quantities such as the torques

acting on the Moon and its constituent layers are projected onto the complex equatorial

coordinates in the same fashion as the rotation variables (e.g. Γ → Γ̃ = Γ1+ iΓ2). Likewise,

the projections of the perturbations to the moment of inertia tensors cij , c
f
ij and csij can be

expressed as follows (Mathews et al., 1991)

19



c̃3 = c13 + ic23, c̃f3 = cf13 + icf23, c̃s3 = cs13 + ics23 (17)

Euler’s relation from complex analysis enables us to re-write the complex rotation vari-

ables in terms of the time-dependent complex exponential eiθ(t), where

θ(t) = ωΩot. (18)

In the above expression, t is the time and ω is the frequency, in cycles per lunar day (cpld),

with which the external forcing from the Earth is applied to the Moon. Its numerical value

is computed as follows

ω = −1− δω, (19)

where δω is the Poincaré Number, defined to be the ratio of the lunar orbital plane precession

frequency (Ωp) to the mantle rotation frequency (Ωo) (DW16). The lunar orbital plane

precesses about the ecliptic normal with a period of 18.6 years, thus

δω =
Ωp

Ωo
= 4.022× 10−3. (20)

Thus, the rotation variables for a given forcing frequency ω can be explicitly defined in

terms of their time-dependence

p̃(ω) = p̃eiωΩot, (21a)

m̃(ω) = m̃eiωΩot, (21b)

m̃f (ω) = m̃fe
iωΩot, (21c)

m̃s(ω) = m̃se
iωΩot, (21d)
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ñs(ω) = ñse
iωΩot. (21e)

When expressed in this form, it is easy to see that the time derivatives of all the rotation

variables are proportional iωΩo as follows

d

dt
p̃(ω) = iωΩop̃(ω), (22)

and likewise for the remaining four rotation variables. Utilizing the prescribed temporal

variations illustrated above and the assumption of small angles of misalignment, Equations

(13) can be linearized. That is to say, all the terms in the coupled system can be expressed

as a linear combination of the five rotation variables and the perturbations to the moment of

inertia tensors c̃, c̃f , and c̃s. The torques in Equations (13a) through to (13c) can similarly

be linearized, as described in the subsequent section.

2.3.3 Torques

The torques acting on the Moon can be subdivided into two primary categories. The

first are those that are external in their origin; they are the gravitational torques exerted

by celestial objects like the Earth and Sun. The second are internal in their origin; they are

the torques arising from the gravitational and viscous coupling between the various lunar

layers, along with the torque due to the centrifugal potential arising from the rotation of the

Moon and its constituent layers. Both the internal and external torques share a common

proportionality to the same complex exponential defined previously, such that any torque

in the complex domain can be expressed as follows (DW16)

Γ̃(ω) = Γ̃eiωΩot, (23)

where Γ̃ is the magnitude of the torque. We now express the magnitudes of the different

torques acting on the system.

Torques: External

There are two external forcings that need to be considered in this analysis. They are the

gravitational torque exerted by the Earth on the whole Moon (Γext) and the gravitational
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torque exerted by the Earth on the SIC (Γext
s ). The two torques are functions of the

perturbations in the moment of inertia tensors of the whole Moon (c̃3) and SIC (c̃s3). The

projections of the magnitudes of these two torques in the complex domain (Γ̃ext and Γ̃ext
s )

have the following expressions

Γ̃ext = −iΩ2
oĀ

(
βΦ1 +Φ2

(
βp̃+

c̃3
Ā

)
+

Ās

Ā
α3Φ2

(
βsñs +

c̃s3
Ās

))
, (24a)

Γ̃ext
s = −iΩ2

oĀsα3

(
βsΦ1 +Φ2

(
βsp̃+ βsñs +

c̃s3
Ās

))
. (24b)

The quantities Φ1 and Φ2 are numerical coefficients that contain information pertaining to

the magnitude of the applied torque (DW16). The two parameters are computed as follows

Φ1 =

(
3

2Ω2
o

)(
n2

(1− e2L)
3/2

)(
ME

MM +ME

)
cos(I) sin(I), (25a)

Φ2 =

(
3

2Ω2
o

)(
n2

(1− e2L)
3/2

)(
ME

MM +ME

)(
cos2(I)− sin2(I)

)
. (25b)

The quantities ME and MM are the masses of the Earth (5.972 × 1024 kg) and Moon

(7.346 × 1022 kg) respectively; eL is the eccentricity of the lunar orbit (0.0549); and I is

the inclination of the lunar orbital plane relative to the ecliptic plane (I = 5.145◦). The

quantity n is the mean orbital angular velocity for the Moon, and n2 is computed as follows

n2 =
G(ME +MM )

a3L
, (26)

where aL is the length of the semi-major axis of the Moon’s orbit. The quantity β is defined

in Williams et al. (2001) to be a ratio of the principal moments of inertia such that

β =
C −A

B
. (27)

Likewise the quantity βs can be defined in a similar fashion for the SIC such that

βs =
Cs −As

Bs
. (28)
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Torques: Internal

There are two torques that arise as a consequence of viscous fluid interactions at the

CMB and ICB. The first is the torque exerted by the differentially rotating fluid in the

outer core on the mantle along the surface of the CMB (ΓCMB). The second is the torque

exerted by the differentially rotating fluid in the outer core on the SIC along the ICB surface

(ΓICB). The expressions for the magnitudes of these two terms in the complex domain are

respectively

Γ̃CMB = iΩ2
oĀfKCMBm̃f , (29)

Γ̃ICB = iΩ2
oĀsKICB(m̃f − m̃s). (30)

where KCMB and KICB are the coupling constants at the CMB and ICB respectively.

Lastly, the combined centrifugal and internal gravitational torques acting on the SIC (Γint
s )

can be expressed together in the complex domain as follows (Dumberry, 2009)

Γ̃int
s = iΩ2

oĀs

(
− esα1(m̃+ m̃f ) + esα2ñs + α2

c̃s3
Ās

+ esα3αgñε

)
. (31)

The coefficient αg encapsulates the strength of the gravitational coupling between a tilted

SIC and the rest of the Moon (DW16)

αg =
8πG

5Ω2
o

[∫ R

rs

ρ(a′)
dε(a′)
da′

da′ + ρfsεs

]
, (32)

where G is the universal gravitational constant. The coefficient α2 is an amalgamation of

the two previously defined coefficients α1 and α3 with αg as follows

α2 = α1 − α3αg. (33)

The quantity ñε represents an equivalent rigid rotation of the FOC and solid mantle relative

to a stationary SIC resulting from viscoelastic deformations (Dumberry, 2009).

The total torque acting on the SIC is then the summation of the external and internal
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torques

Γ̃s = Γ̃ext
s + Γ̃int

s , (34a)

Γ̃s = iΩ2
oĀs

(
− esα1(m̃+ m̃f ) + esα2ñs + α2

c̃s3
Ās

+ esα3αgñε

− α3Φ2
c̃s3
Ās

− α3βs(Φ1 +Φ2p̃+Φ2ñs)

)
(34b)

2.3.4 Compliances

The perturbations in the moment of inertia tensors arising as a consequence of vis-

coelastic deformations, along with the quantity ñε, are defined as linear combinations of the

rotation variables and the set of compliances Sij . The perturbations in the complex domain

c̃3, c̃
f
3 , and c̃s3, as well as ñε, are given by

c̃3 = Ā
(
S11(m̃− φ̃ext

m ) + S12m̃f + S13(m̃s − φ̃s)
)
, (35a)

c̃f3 = Āf

(
S21(m̃− φ̃ext

m ) + S22m̃f + S23(m̃s − φ̃s)
)
, (35b)

c̃s3 = Ās

(
S31(m̃− φ̃ext

m ) + S32m̃f + S33(m̃s − φ̃s)
)
, (35c)

ñε = S41(m̃− φ̃ext
m ) + S42m̃f + S43(m̃s − φ̃s). (35d)

Here, φ̃ext
m is the tidal potential from the Earth acting on the whole Moon, such that

φ̃ext
m = Φ1 +Φ2p̃. (36)

The quantity φ̃s is the total potential acting on a titled SIC. It can be decomposed as

the sum of the tidal potential from the Earth acting on the SIC (φ̃ext
s ), the gravitational

potential from the rest of the Moon acting on the SIC (φ̃g
s), and the centrifugal potential

arising from the rotation of the SIC (φ̃c
s),
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φ̃s = φ̃ext
s + φ̃g

s + φ̃c
s, (37a)

where

φ̃ext
s = α3Φ2ñs, (37b)

φ̃g
s = α3αgñs, (37c)

φ̃c
s = −α1ñs. (37d)

The three sets of compliances (S11, S12, S13), (S21, S22, S23) and (S31, S32, S33) describe

the elastic deformations of the whole Moon, the FOC, and the SIC respectively. These

elastic deformations arise as a consequence of the independent rotation of these three regions

(Mathews et al., 1991; Dumberry, 2009). The fourth set of compliances (S41, S42, S43)

describes the relative changes in the gravitational coupling parameter αg that arise as a

consequence of the viscoelastic deformations in the FOC and solid mantle (Dumberry, 2009).

2.3.5 The Linear System

Equations (13) can now be recast as a linear system, succinctly expressed as a non-

homogeneous matrix equation of the form

[M] · x = y, (38)

where

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

0 0 1 ω 0

1 0 0 0 (1 + ω)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (39a)
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x =

⎡
⎢⎢⎢⎢⎢⎢⎣

m̃

m̃f

m̃s

ñs

p̃

⎤
⎥⎥⎥⎥⎥⎥⎦
, (39b)

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
− β + (1 + ω +Φ2)S11 +

(
Ās

Ā

)
α3Φ2S31

)
Φ1

ωΦ1S21(
− βsα3 +

(
1 + ω − α2 +

βsα3Φ2

es

)
S31 − esα3αgS41

)
Φ1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (39c)

The components M11 through to M35 of the coefficient matrix M are defined as follows

M11 = ω − e+ (1 + ω +Φ2)S11 +
Ās

Ā
α3Φ2S31, (40a)

M12 = (1 + ω)

(
Āf

Ā

)
+ (1 + ω +Φ2)S12 +

(
Ās

Ā

)
α3Φ2S32, (40b)

M13 = (1 + ω)

(
Ās

Ā

)
+ (1 + ω +Φ2)S13 +

(
Ās

Ā

)
α3Φ2S33, (40c)

M14 =

(
Ās

Ā

)
α3

(
(1 + ω)esΦ2βs

)
+ (1 + ω +Φ2)(α2 − α3Φ2)S13

+

(
Ās

Ā

)
α3Φ2(α2 − α3Φ2)S33, (40d)

M15 = βΦ2 − (1 + ω +Φ2)Φ2S11 −
(
Ās

Ā

)
α3Φ

2
2S31, (40e)

M21 = ω(1 + S21), (40f)
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M22 = 1 + ef +KCMB +

(
Ās

Āf

)
KICB + ω(1 + S22), (40g)

M23 = ωS23 −
(
Ās

Āf

)
KICB , (40h)

M24 = ω

(
− esα1

(
Ās

Āf

)
+ (α2 − α3Φ2)S23

)
, (40i)

M25 = −ωΦ2S21, (40j)

M31 = ω − α3es +

(
1 + ω − α2 +

βsα3Φ2

es

)
S31 − esα3αgS41, (40k)

M32 = α1es +

(
1 + ω − α2 +

βsα3Φ2

es

)
S32 − esα3αgS42 −KICB , (40l)

M33 = 1 + ω +

(
1 + ω − α2 +

βsα3Φ2

es

)
S33 − esα3αgS43 +KICB , (40m)

M34 =

(
1 + ω − α2 +

βsα3Φ2

es

)
(es + (α2 − α3Φ2)S33)

− esα3αg(α2 − α3Φ2)S43 + βsα3Φ2, (40n)

M35 =

(
βsα3 −

(
1 + ω − α2 +

βsα3Φ2

es

)
S31 + esα3αgS41

)
Φ2. (40o)

The deformability parameters Sij , or more succinctly the compliances, contain informa-

tion regarding the viscoelastic deformations of the Moon and its constituent layers. The

computation of these compliances is the topic of the following chapter.
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3 Computation of the Compliances

3.1 Elastic-Gravitational Equations

Our Moon is not a perfectly rigid body. Consequently when it is subjected to forces,

typically either gravitational or centrifugal in origin, it will respond by physically deform-

ing. Any such deformation will in effect change the distribution of mass within the Moon,

which then manifests itself as a perturbation in the moment of inertia tensors, as specified in

Equations (15). The rationale for incorporating the effects of deformations into the DW16

model is as follows. The primary objective of this thesis is to understand the energy dissipa-

tion mechanisms at the origin of the observed 0.265 arcsecond misalignment of the mantle

rotation vector relative to the Cassini state. The viscoelastic deformation of the Moon in re-

sponse to tidal forcing is a significant contributor to this observed offset; thus it is important

to account for this phenomenon in the rotational dynamic model. Furthermore, we wish to

investigate whether such deformations within the SIC can contribute to the observed 0.265

arcsecond offset. To quantify the deformations occurring within the constituent layers of the

Moon, it is necessary to calculate numerical values for the compliances Sij . The computation

of the compliances is reliant on solving a set of six coupled, ordinary differential equations,

which are derived from the set of four linearized elastic-gravitational equations (Dumberry

and Bloxham, 2004; Dehant and Mathews, 2015). The set of linearized elastic-gravitational

equations consists of the momentum relation

0 = ∇ · [T]−∇(ρou ·∇φo)− ρo∇φ1 − ρ1goêr + f, (41)

a constitutive relation

[T] = λo[I](∇ · u) + μo(∇u+ (∇u)T ), (42)

the continuity relation
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ρ1 = −ρo∇ · u− u · êr ∂ρo
∂r

, (43)

and Poisson’s equation

∇2φ1 = 4πGρ1. (44)

In these equations, the vector u = u(r) describes the displacement of matter particles

specified by the position vector r. The quantity ρo = ρo(r) is the reference density and ρ1 =

ρ1(r) is the perturbed density that arises as a consequence of deformation. Similarly, φo =

φo(r) is the reference gravitational potential and φ1 = φ1(r) is the perturbed gravitational

potential within the Moon; go = go(r) is the magnitude of the gravitational acceleration

in the undeformed Moon; λo = λo(r) and μo = μo(r) are the radially dependent Lamé

parameters in the undeformed Moon; the vector f = f(r) contains the external body force

acting on the solid regions of the Moon; and the unit vector êr points in the radially outward

direction. The tensor [T] = [T(u)] is the incremental Lagrangian-Cauchy stress tensor, while

[I] is the rank 2 identity tensor. A more complete description of this system of equations

is found in Dumberry and Bloxham (2004), from which the information in this passage is

sourced.

3.2 Elastic Deformation to Viscoelastic Deformation

For a simple Hookean material, the elastic moduli (more specifically, the Lamé param-

eters) are independent of the frequency with which a force is applied to the material. It is

assumed that an elastic material will deform instantaneously in response to an applied force.

In contrast, the response of a viscoelastic material to an applied forcing is delayed; there is

a phase lag between the application of force and the resultant deformation. For a Maxwell

solid, such viscoelastic deformations can be modelled by considering frequency-dependent

Lamé parameters in conjunction with the materials dynamic viscosity η (Wu and Peltier,

1982; Koot and Dumberry, 2011)

λ(ω′) =
(iω′λo +

κ
ημo)

(iω′ + 1
ημo)

, (45a)

μ(ω′) =
iω′μo

(iω′ + 1
ημo)

, (45b)
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where ω′ is the frequency in cycles per second

ω′ = ωΩo, (45c)

and κ is the bulk modulus

κ = λo +
2

3
μo. (45d)

The quantities λo and μo are the Lamé parameters in the elastic limit. This can be verified

by taking the limit of Equations (45a) and (45b) when η → ∞ (or when ω′ → ∞), in

which case the definitions of the frequency-dependent Lamé parameters converge to λo and

μo respectively. In contrast, at the fluid limit when η → 0 (or when ω′ → 0), we recover

λo = κ and μo = 0. By introducing the frequency-dependent Lamé parameters, we are

able to model the effects of different viscosities in the various lunar layers; for example,

the hypothesized contrast between the viscosities of the LVZ and the lunar mantle (Harada

et al., 2014) can now be accounted for in the rotational dynamic model. Importantly, the

mantle does not exactly mimic the behaviour of a Maxwell material. Nevertheless, this

viscoelastic model enables us to model the dissipation responsible for the relative offset of

the lunar mantle’s rotation vector.

To model the solid regions of the Moon as a viscoelastic material, the elastic moduli

λo and μo in Equation (42) (the constitutive relation) are replaced with their frequency

dependent counterparts λo(ω
′) and μo(ω

′). This enables us to calculate the viscoelastic

response of the Moon to forcings applied with a frequency ω′; specifically for the problem

addressed in this thesis, the frequency corresponds to that of the torque associated with the

mantle’s Cassini state.

3.3 Radial Equations

The mathematical derivation of the six radial functions from the set of elastic-gravitational

equations is too long to be included in this work, and the interested reader is referred to

the likes of Alterman et al. (1959) and Dehant and Mathews (2015). The displacements,

volumetric changes, and perturbations in the gravitational potential that arise as a con-

sequence of deformation are expanded as radially varying spherical harmonics. The types

of deformation we are considering here are tidal and rotational in nature, and thus only

depended on the spherical harmonic degree n = 2 (the expansions are independent of the

30



spherical harmonic order). The six radial functions can be expressed succinctly as follows

∂

∂r
y = [A] · y+ f, (46)

where the matrix [A] is a second order matrix whose elements depend on ρo, φo, go, λ, and

μ. The vector y consists of six radially dependent variables

y = [y1, y2, y3, y4, y5, y6]
T. (47)

The quantity y1 is the radial displacement; y2 is the radial stress; y3 is the tangential

displacement; y4 is the tangential stress; y5 is the gravitational potential; and y6 is a gravi-

tational acceleration. Lastly, f is a vector of six radially dependent forcing terms

f = [0, f2, 0, f4, 0, 0]
T. (48)

For an imposed gravitational potential of degree 2 and unit amplitude at the lunar surface,

the non-zero terms in f are

f2 = 2ρor, f4 = ρor. (49)

The scalar variable r is the radius, as measured from the center of the Moon. Except

for a change in sign, an imposed centrifugal potential of unit amplitude at the surface is

prescribed by the same forcing as in Equation (49). In reference to Equation (35a), this

is the reason underlying the fact that a single compliance, namely S11, can be used to

model the deformation resulting from either a change in the tidal potential (through φ̃ext
m )

or centrifugal potential (through m̃). The forcing that is described by f plays an important

role in the computation of the other compliances as well; different types of forcing correspond

to different compliances. We can explicitly state the six individual equations as follows, for

the case of spherical harmonic degree 2 (Dehant and Mathews, 2015)

dy1
dr

=
1

λ+ 2μ

(
y2 − λ

r
(2y1 − 6y3)

)
,

(50a)
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dy2
dr

= −ω2Ω2
oρoy1 −

ρogo
r

(4y1 − 6y3) + ρoy6 − 3

r
ρoy5 +

6

r
y4

− 4

r

μ

λ+ 2μ

(
y2 − 1

r
(3λ+ 2μ)(y1 − 3y3)

)
+ 2ρor,

(50b)

dy3
dr

=
1

μ
y4 +

1

r
(y3 − y1),

(50c)

dy4
dr

= −ω2Ω2
oρoy3 −

λ

λ+ 2μ

(
1

r
y2 +

4μ

r2
(y1 − 3y3)

)

+
ρogo
r

y1 +
ρo
r
y5 − 3

r
y4 − 2μ

r2
(y1 − 5y3) + ρor,

(50d)

dy5
dr

= y6 − 4πGρoy1 − 3

r
y5,

(50e)

dy6
dr

=
1

r
y6 − 12πGρo

r
(y1 − 2y3).

(50f)

In the above equations, for the case of a viscoelastic Moon, λ = λ(ω′) and μ = μ(ω′).
Implicit also is the fact that λ, μ, ρo and go are dependent on the radius r (i.e. λ = λ(r),

μ = μ(r), ρo = ρo(r) and go = go(r)).

The above equations are valid in the solid regions of the Moon only. The fluid region
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(i.e. the FOC) has a slightly different set of radial equations which accounts for the fact

that a fluid cannot sustain tangential stresses; that is to say, the shear modulus μ = 0 in the

FOC. Furthermore, for the purposes of this study it is practical to assume that the Moon’s

FOC is both in hydrostatic equilibrium and is incompressible. Under these assumptions,

the radial equations in the fluid region simplify to (Dumberry and Bloxham, 2004):

∂y5
∂r

=

(
4πGρo
go

− 3

r

)
y5 + y6,

(51a)

∂y6
∂r

=
8πGρo
go

1

r
y5 +

(
1

r
− 4πGρo

go

)
y6,

(51b)

with the conditions that

y1 = −y5
go

, (51c)

y2 = ρo(goy1 + y5). (51d)

Note the absence of any forcing terms in Equations (51). The reason for this is as follows.

In the solid regions of the Moon, the variable y5 is defined as the perturbation in the

gravitational potential; however, in the fluid region, y5 is defined as the perturbation plus

the imposed potential. Similarly for y6, the gravitational acceleration. Thus the forcings

acting on the FOC are prescribed through the boundary conditions that exist at the ICB and

CMB. Numerous detailed explanations of all the boundary conditions have been published

(e.g. Alterman et al. 1959; Buffett et al., 1993; Dumberry and Bloxham, 2004; Dehant and

Mathews, 2015), but it is worthwhile to briefly discuss them here. The system is solved by

integrating the six equations from the center of the Moon out towards the lunar surface. The

first set of boundary conditions thus impose constraints on the values of the radial variables

at the lunar center. As is clear from inspecting the six equations that are pertinent in the

solid regions of the Moon, and thus are applicable in the SIC, the equations diverge to
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infinity as r → 0. Thus, an analytical solution to the equations must be found at some

small radius r = rsmall near the center of the Moon. The method for finding the analytical

solutions involves using a power-series expansion of the equations near the lunar center and

is presented in Crossley (1975) and summarized in the appendix of Dumberry and Bloxham

(2004).

The equations are thus integrated from rsmall to the lunar surface. At radial disconti-

nuities between adjacent solid regions (i.e. the LVZ-mantle and mantle-crust boundaries),

all six of the radial variables yi are continuous across the interface. At the ICB and CMB

however, a set of boundary conditions are imposed which reflect the different definitions of

the variables in a solid versus fluid medium (e.g. y1 is defined as the vertical displacement

of material particles in a solid medium, whereas in a fluid medium, y1 is defined as the

vertical displacement of hydrostatic surfaces). Furthermore, the absence of any shear stress

within a fluid medium is accounted for as well. At the surface, the radial stress (y2), the

tangential stress (y4), and the perturbation in the gravitational acceleration (y6) must all

vanish. The system of coupled ordinary differential equations is solved numerically, and in

this particular case is solved using what is called a ’shooting method’ (Press et al., 1989).

3.4 From Radial Equations to Compliances

The solutions to the coupled system of ordinary differential equations described in the

preceding section are dependent on the radial distribution of the density and elastic param-

eters. Additionally, the solutions are dependent on whether the forcing is applied to the

whole of the Moon, or whether it is restricted to the FOC or SIC respectively. The compli-

ances Sij are calculated from these solutions. In essence, the compliances encapsulate the

respons of a given Moon model to different applied forcings. The set of compliances (S11,

S21, S31, S41) correspond to an external forcing that is applied to all five layers of the Moon;

the set (S12, S22, S32, S42) corresponds to a forcing that is applied solely in the FOC, with

no forcing applied to the solid regions of the Moon; the set (S13, S23, S33, S43) corresponds

to a forcing that is applied solely in the SIC and nowhere else.

Recall that the radial functions y1 and y3 describe the displacements of elements of mass.

These deformations will alter the moment of inertia tensors. Below are expressions for the

computation of the 12 compliances. We begin with the three compliances that are used to

compute the perturbation in the moment of inertia of the whole Moon

S11 =
H1

Ā
, S12 =

H2

Ā
, S13 =

H3

Ā
, (52)
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where the quantities H1, H2, and H3 are the perturbations to the moment of inertia of

the whole Moon. The subscripts on the perturbations identify whether the applied forcing

specified in the radial equations is acting on the whole Moon (1), the FOC (2), or the SIC(3).

The three compliances associated with the moment of inertia tensor for the FOC are

S21 =
Hf1

Āf
, S22 =

Hf2

Āf
, S23 =

Hf3

Āf
, (53)

where the quantities Hf1, Hf2, and Hf3 are the perturbations to the moment of inertia of

the FOC; the subscripts 1, 2, and 3 identify the nature of the applied forcing, as specified

above. Similarly, the three compliances associated with the moment of inertia tensor for the

SIC are

S31 =
Hs1

Ās
, S32 =

Hs2

Ās
, S33 =

Hs3

Ās
, (54)

where the quantities Hs1, Hs2, and Hs3 are perturbations to the moment of inertia of the

SIC. Lastly, the three compliances associated with the gravitational coupling parameter αg

are

S41 =
F1

αg
, S42 =

F2

αg
, S43 =

F3

αg
, (55)

where F1, F2, and F3 are the relative changes in αg that arise as a consequence of defor-

mations within the mantle, FOC and SIC respectively. The procedure for computing the

perturbations in the preceding equations is similar to that outlined in Dumberry (2008), the

detailed calculations of which are relegated to Appendix I.

3.5 The k2 Love Number and Q factor

There are two important parameters whose numerical values can now be calculated once

the solutions to the radial equations are found. The first is the degree-2 potential Love num-

ber k2. As the name suggests, this non-dimensional parameter describes the contribution to

the gravitational potential at the surface of the Moon due to internal deformations resultant

from an imposed potential of unit amplitude. The imposed potential can be gravitational in

origin, such as the pull of the Earth and Sun (Goossens and Matsumoto, 2008), or inertial

in origin, such as the centrifugal force due to the Moon’s rotation. The effects of these de-

formations, regardless of their origin, manifest themselves as changes in the Moon’s moment
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of inertia, and consequently can be inferred from LLR observations (Williams et al., 2001)

or more directly measured using tracking data from satellites in lunar orbit (Goossens and

Matsumoto, 2008). Recently reported values of k2 include 0.0199 ± 0.0025 (Williams and

Boggs, 2008), 0.0213± 0.0075 (Goossens and Matsumoto, 2008), 0.0255± 0.0016 (Goossens

et al., 2011), 0.0242±0.0004 (Yan et al., 2012), and 0.02416±0.00022 (Williams et al., 2014).

Our model of a viscoelastically deforming Moon makes use of a normalized amplitude for

the forcing, such that at the lunar surface the forcing is of unit amplitude. Hence, the value

of k2 for a given Moon model can be simply obtained from the real component of y5 at the

lunar surface

k2 = Re{y5(R)}. (56)

We can reject any Moon model with a k2 that differs significantly from the average observed

range approximately between 0.020 and 0.025.

Another parameter that contains information regarding the response of a body to an

imposed potential is the dissipation function, also referred to as the Quality factor, Q-factor,

or simply Q. This non-dimensional parameter describes the deviation from perfect elasticity

for a body that has been distorted, either tidally or rotationally (Goldreich, 1966). For the

case of tidal forcing, the Q-factor is proportional to the angle between the tidal bulge and the

celestial body responsible for prompting the tidal response. For the terrestrial planets, along

with the major satellite bodies in the solar system, Q-factors typically range from between

10 - 500 (Goldreich, 1966). For the case of the Moon, the Q-factor was first estimated

from observations of its secular acceleration, which yielded a value of approximately 13

(Goldreich, 1966). Importantly, the Q-factor is dependent on the frequency of the forcing

applied to the body. For our proposes, we are concerned with the monthly Q-factor; that

is, the Q-factor corresponding to a forcing period of one month. With the advent of LLR,

the monthly values of the lunar Q-factor became better constrained, and recently reported

values including 37.5±4 (Williams et al., 2014) and 38±4 (Williams and Boggs, 2015). We

can calculate the Q-factor for our Moon model as follows

Q =
Re{S11}
Im{S11} . (57)
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4 Results I: Tidal Dissipation

4.1 Constraints on Moon Models

4.1.1 Constraints from Observations of Lunar Mass

The mass of each Moon model is constrained by the observed lunar bulk mass (MM )

MM =

(
4π

3

)
ρ̄R3, (58)

where ρ̄ = 3345.56 kg·m−3 is the mean density of the Moon and R = 1737.151 km is the

mean lunar radius (Williams et al. 2014). For a Moon model consisting of five uniform

density layers, this requires that the following relationship be satisfied

ρ̄R3 = ρsr
3
s + ρf (r

3
f − r3s) + ρl(r

3
l − r3f ) + ρm(r3m − r3l ) + ρc(R

3 − r3m). (59)

Based on the radial profiles of the Moon’s seismological parameters, we will assume that the

density of the LVZ and the density of the mantle are the same. An additional constraint on

the densities of the solid mantle is the observed value of the moment of inertia of the solid

Moon (Ism) (Williams et al., 2014)

Ism = (0.393112± 0.000012)MMR2, (60a)

which gives the constraint

Ism =
8π

15

(
ρl(r

5
l − r5f ) + ρm(r5m − r5l ) + ρc(R

5 − r5m)
)
. (60b)

It is assumed that in all Moon models, the density of an underlying layer cannot be less than
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the density of an overlying layer, such that no region may be less dense than the overlying

region. The average density and thickness of the lunar crust is fairly well constrained. All

Moon models have a fixed crustal density of 2736 kg·m−3 and a fixed crustal thickness of

40 km (Matsuyama et al., 2016); thus the average radius of the lunar mantle rm = R − 40

km. Similarly, the density of the SIC is fixed at 7700 kg·m−3 for all Moon models, based

on results presented by Tsujino et al. (2013). Lastly, the radius of the LVZ is fixed for all

Moon models at 600 km (comparable to Matsumoto et al. (2015)). Thus, the variables ρc,

ρs, rm, and rl are all specified a priori and are common to all Moon models. The radii of

the FOC and SIC are varied over a range of acceptable values, thus creating a set consisting

of Moon models with various core radii. Equations (58) and (59) are then used to fit the

densities of the mantle and FOC to the observed bulk mass and solid moment of inertia;

the density of the LVZ is equal to that of the overlying mantle. The end result is a series of

Moon models that all satisfy the constraints imposed by observations of the lunar mass.

4.1.2 Constraints from Observations of Lunar Geometry

We have already defined β and βs to be the ratios of the principal moments of inertia.

We can approximate the numerical values of these two parameters using selenodetic obser-

vations of the Moons gravitational field and geometric ellipticities. The value of β can be

approximated in terms of the unnormalized second degree gravity coefficients J2 and C22

(Williams et al., 2014; DW16)

β ≈ C −A

Ā
= e

(
1 + 2

C22

J2

)
. (61)

The quantity βs can be approximated in terms of the polar and equatorial (denoted by the

superscript E) geometric ellipticities of the ICB εs and εEs , respectively, as follows

βs ≈ εs +
1

2
εEs . (62)

A priori, we do not know the values of the polar and equatorial ICB flattenings εs and εEs .

Computing numerical values for these quantities requires starting with the observed polar

and equatorial flattening at the lunar surface, and then gradually working down through

the various layer interfaces towards the ICB using a set of assumptions about the internal

pressure and temperature conditions of the Moon. If the ICB is assumed to be at a constant

temperature and pressure, and be in hydrostatic equilibrium, then the ICB flattening can be

expressed as a function of the flattening at the CMB (εf and εEf ), the LVZ-mantle boundary
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(εl and εEl ), the crust-mantle boundary (εm and εEm), and the observed flattening at the

lunar surface (εr and εEr ). Because our model assumes a LVZ with a density equal to that

of the overlying mantle, there is no contribution from the geometry of the LVZ-mantle

interface; the flattenings εl and εEl are nevertheless included for the sake of completeness.

The ICB flattening as a function of the flattening of the other lunar interfaces is (Veasey

and Dumberry, 2011; DW16)

εs = ksrεr + ksmεm + kslεl + ksf εf , (63a)

εEs = ksrε
E
r + ksmεEm + kslε

E
l + ksf ε

E
f , (63b)

where the constants ksr, ksm, ksl, and ksf are

ksr =
ρc

2
3ρs + ρf

, ksm =
ρm − ρc
2
3ρs + ρf

,

ksl =
ρl − ρm
2
3ρs + ρf

, ksf =
ρf − ρl
2
3ρs + ρf

. (63c)

The observed value for the polar geometric ellipticity at the lunar surface (εr) is 1.2899 ×
10−4; similarly the observed value for the equatorial geometric ellipticity at the surface (εEr )

is 2.4346× 10−4. The flattenings of the crust-mantle boundary, the LVZ-mantle boundary,

and the CMB are not directly observable and must be calculated.

Following the above precedent, applying the assumption of hydrostatic equilibrium to

the CMB allows us to express the CMB flattenings as a function of the flattenings of the

other layer interfaces (Veasey and Dumberry, 2011; DW16)

εf = kfrεr + kfmεm + kflεl + kfsεs, (64a)

εEf = kfrε
E
r + kfmεEm + kflε

E
l + kfsε

E
s , (64b)

where the constants kfr, kfm, kfl, and kfs are

kfr =
ρc
P , kfm =

ρm − ρc
P , kfl =

ρl − ρm
P ,
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kfs =

(
rs
rf

)5
(ρs − ρf )

P , (64c)

with the constant P being defined as

P = ρl +
2

3
ρf +

5

3

(
rs
rf

)3

(ρs − ρf ). (64d)

Assuming that both the ICB and the CMB are simultaneously in hydrostatic equilibrium,

Equations (62) can be substituted into Equations (63) to derive an expression for the CMB

flattening independent of the ICB flattening, assuming ksl = kfl = 0 (DW16)

εf =

(
kfr + kfsksr
1− kfsksf

)
εr +

(
kfm + kfsksm
1− kfsksf

)
εm, (65a)

εEf =

(
kfr + kfsksr
1− kfsksf

)
εEr +

(
kfm + kfsksm
1− kfsksf

)
εEm. (65b)

In order to determine the numerical values for εm and εEm, Equations (62) and (64) are

substituted into the following expression for J2 and C22

J2 =
8π

15

1

MMR2

(
(ρs − ρf )r

5
sεs + (ρf − ρm)r5f εf + (ρm − ρc)r

5
mεm + ρcR

5εr
)
, (66a)

C22 =
2π

15

1

MMR2

(
(ρs − ρf )r

5
sε

E
s + (ρf − ρm)r5f ε

E
f + (ρm − ρc)r

5
mεEm + ρcR

5εEr
)
. (66b)

The substitution enables us to re-write the above expressions for J2 and C22 such that they

are independent of the ICB and CMB flattenings. This allows for the determinations of εm

and εEm. Once these two values are known, they can be inputted along with the values of εr

and εEr into Equations (64). This yields numerical values for εf and εEf . Lastly, all six values

are inputted into Equations (62) to solve for εs and εEs . With numerical values obtained for

these last two quantities, it is possible to compute βs.

Having numerical values for the polar geometric ellipticities of the various lunar layers

give us an alternative expression for the dynamical ellipticities of the SIC, the FOC, and
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the whole Moon as follows (DW16)

es = εs, (67a)

ef =
r5f εf − r5sεs

r5f − r5s
, (67b)

e =
(ρs − ρf )r

5
sεs + (ρf − ρm)r5f εf + (ρm − ρc)r

5
mεm + ρcR

5εr

(ρs − ρf )r5s + (ρf − ρm)r5f + (ρm − ρc)r5m + ρcR5
. (67c)

Equation (66c) can be expressed in an alternate form involving the mean equatorial moment

of inertia of the whole Moon

e =
8π

15

1

Ā

(
(ρs − ρf )r

5
sεs + (ρf − ρm)r5f εf + (ρm − ρc)r

5
mεm + ρcR

5εr
)

(67d)

4.2 The Kinematic Relationship Between the Mantle’s Rotation

and Symmetry Axes

We are primarily concerned with computing the position of the misaligned mantle ro-

tation vector relative to the Cassini plane containing the ecliptic and orbital plane normal

vectors. The calculation of the offset requires that we know the numerical values of the ro-

tation variables p̃ and m̃. An inspection of Equations (39) reveals the simple mathematical

relationship that exists between the two variables

p̃ = − m̃

1 + ω
. (68)

Indeed this is a fundamental kinematic relationship between the variables p̃ and m̃; it is

independent of the structure and composition of the Moon (DW16). Of the five rotation

variables, only p̃ can be directly measured by LLR. The angle of misalignment that is

approximated by p̃ in the small angle domain, θp, is approximately 0.0269 radians. Thus

the offset between the mantle rotation and symmetry axes can be calculated as follows

m̃ ≈ (4.022× 10−3)0.0269 ≈ 1.0819× 10−4 rad ≈ 0.0062◦. (69)
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Based on this result, for all intents and purposes the rotation and symmetry axes can be

considered to be parallel, as the misalignment of a few thousandths of a degree is too small

to be measured. In the subsequent analysis, the misalignment of the mantle symmetry axis

will be akin to the misalignment of the mantle rotation axis, and the two terms will be

used interchangeably. Thus it is p̃ that encapsulates the information regarding the relative

position of the mantle rotation axis. The magnitude of the misalignment relative to the

Cassini plane is contained in the imaginary component of p̃.

4.3 Computing the Phase Lead of the Lunar Mantle Rotation Axis

Our Moon model allows us to explore a broad, multidimensional parameter space and to

calculate a relative offset for the mantle rotation vector for every coordinate in that space.

This thesis is too short to comprehensively detail the results of every possible permutation

of allowable Moon models. Thus we will limit ourselves to discussing a relatively narrow set

of possibilities. The potential for future work is significant.

To fully appreciate the manner in which the SIC influences the phase lead of the mantle

rotation vector, it is necessary to understand how the Moon would behave if the SIC were

absent. To model the behavior of a such a Moon, the linear system of coupled equations is

modified to remove the SIC, thus creating a four layered Moon model with two independently

rotating regions. This truncated system has only three rotation variables, namely p̃′, m̃′,
and m̃′

f ; the prime differentiates these variables from those of the non-truncated system.

This system satisfies the constraints described in Section 4.1 for lunar mass and geometry,

which are simplified by the omission of the SIC. The truncated system is explicitly defined

below for the readers conveniance

[M′] · x′ = y′, (70)

where

[M′] =

⎡
⎢⎣
M ′

11 M ′
12 M ′

13

M ′
21 M ′

22 M ′
23

1 0 (1 + ω)

⎤
⎥⎦ , (71a)
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x′ =

⎡
⎢⎣
m̃′

m̃′
f

p̃′

⎤
⎥⎦ , (71b)

y′ =

⎡
⎢⎢⎢⎣
(
− β + (1 + ω +Φ2)S11

)
Φ1

ωΦ1S21

0

⎤
⎥⎥⎥⎦ . (71c)

The components M ′
11 through to M ′

23 of the primed coefficient matrix [M′] are

M ′
11 = ω − e+ (1 + ω +Φ2)S11, (72a)

M ′
12 = (1 + ω)

(
Āf

Ā

)
+ (1 + ω +Φ2)S12, (72b)

M ′
13 =

(
β − (1 + ω +Φ2)S11

)
Φ2, (72c)

M ′
21 = ω(1 + S21), (72d)

M ′
22 = 1 + ef +KCMB + ω(1 + S22), (72e)

M ′
23 = −ωΦ2S21. (72f)

The astute reader will observe that the truncated system depends on only four compliances,

namely S11, S12, S21, and S22. These four compliances are calculated in a fashion similar

to that outlined in Chapter 3. The absence of a SIC changes the procedure slightly, as

the integration of the six radial equations now originates within the FOC. Besides such

procedural differences, the definitions of the four compliances, along with the specified

forcings, remains the same.

The above model is similar to the one employed by Williams et al. (2001) in their efforts
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to fit LLR data in that is does not posses an SIC. Consequently, it should be possible to

reproduce the results of the aforementioned publication. That is to say, it should be possible

to produce a 0.265 arcsecond lead in the mantle rotation vector in which ∼ 45% of the lead

is attributed to viscous fluid friction and the remainder is due to tidal dissipation occurring

within the lunar mantle. The remainder of this chapter is focused on exploring the results

of the truncated linear system.

4.4 Tidal Dissipation in the Solid Mantle

4.4.1 Calibration of the Numerical Models

We begin by investigating how the viscosity of the LVZ influences the mantle’s misalign-

ment relative to the Cassini state. This is accomplished by neglecting the effects of viscous

fluid friction at the CMB (i.e. KCMB = 0). In this case, the only energy dissipation mecha-

nism is tidal dissipation occurring within the solid mantle. The first objective is to calibrate

the parameters of the Moon models such that the amount of tidal dissipation generated is

in agreement with the values estimated in Williams et al. (2001) and subsequently refined

in Williams and Boggs (2015). The truncated system is solved for a range of fluid core radii

and LVZ viscosities. The fluid core radius is varied from 333 km to 410 km. At radii less

than 333 km the density of the fluid core exceeds that of solid iron in the face-centered cubic

phase (γ-Fe) (Tsujino et al., 2013); thus 333 km is the lower bound for the CMB radius, as

it is unlikely that the fluid core will exceed this density at the estimated temperature and

pressure conditions of the deep lunar interior. The radius of the LVZ is fixed at 600 km. This

is consistent with the results of Matsumoto et al. (2015) and lies within the range of accept-

able values presented by Matsuyama et al. (2016). Estimates for the viscosity of the lunar

mantle based on its observed topography, history of lunar volcanism, estimated thermal and

chemical evolution, etc. range from approximately 1018 Pa·s to 1022 Pa·s (e.g. Hess and

Parmentier, 1995; Zhong and Zuber, 2000; Parmentier et al., 2000). Some estimates based

on observations of basin topography and the lunar gravitational field suggest a lithosphere

viscosity greater than 1027 Pa·s (e.g. Namiki et al., 2009). This broad range of published

lunar mantle viscosity values, which spans several orders of magnitude, is indicative of the

uncertainties associated with these quantities. In this analysis, the viscosities of both the

mantle and crust are fixed at 1 × 1020 Pa·s. For comparison, estimates of the viscosity of

the Earth’s upper mantle range from approximately 1020 Pa·s to 1023 Pa·s (e.g. Mitrovica

et al., 1997; Mitrovica and Forte, 2004). The dynamic viscosity of the LVZ (ηLV Z) is varied

from 1 × 1012 Pa·s to 1 × 1020 Pa·s. By varying ηLV Z , we can generate results consistent

for tidal dissipation reported in Williams and Boggs (2015).
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Vp (ms−1) Vs (ms−1) ρ (kgm−3) λ(ω) μ(ω)

Calculated Calculated
Crust 4000 2000 2736 from Vp, from Vp,

Vs, ρ, ω Vs, ρ, ω
Calculated Calculated

Mantle 8000 4500 Calculated from Vp, from Vp,
from Ism Vs, ρ, ω Vs, ρ, ω

Calculated Calculated
LVZ 7500 3500 Calculated from Vp, from Vp,

from Ism Vs, ρ, ω Vs, ρ, ω
Calculated Calculated

FOC 4000 0 Calculated from Vp, from Vp,
from ρ̄ Vs, ρ, ω Vs, ρ, ω

Table 1: Seismological parameters for the truncated four-layer Moon model.

4.4.2 The Compliance S11

We begin by investigating how the viscosity of the LVZ influences the complaince S11.

Recall that S11 models the deformation resulting from changes in both the tidal and cen-

trifugal potentials. The degree of tidal dissipation is dependent upon the response of the

whole Moon to the applied external forcings. The greater the effect of the forcings on the

Moon, the greater the potential for energy loss. To calculate S11, it is necessary to know the

radial distribution of the elastic parameters λ and μ, and the density ρ. The lunar seismic

velocity profiles, derived from the APSE data (e.g. Garcia et al., 2009; Weber et al., 2009;

Matsumoto et al., 2015), are used to calculate λ and μ as follows

μ = ρV 2
s , (73a)

λ = ρV 2
p − 2μ, (73b)

where Vp and Vs are the compressional and shear wave velocities, respectively. The density

profile is calculated from the constraints on the observed lunar bulk mass and solid moment

of inertia (Section 4.1.1). Table 1 summarizes the seismological properties of the four-layer

Moon model described by the truncated system of equations.

Figure 6 illustrates the dependence of S11 on the LVZ viscosity and FOC radius; the

behaviour of S11 mimics that of a classic Maxwell solid. The real component of S11 demon-
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Figure 5: Flow chart illustrating the work-flow for computing the misalignment of the mantle
rotation vector: (1.) Selection of a Moon model consistent with observations; (2.) Model viscoelastic
response of selected Moon model by using it as an input to the elastic-gravitational equations;
(3.) Spherical harmonic expansion of elastic-gravitational equations into the radial equations; (4.)
Solution of radial equations using numerical integration; (5.) Computation of compliances; (6.)
Evaluation of the rotational dynamic model.

strates the transition from a fluid response (for low values of ηLV Z) to an elastic response

(for high values of ηLV Z). The transition from fluid to elastic is centered around a LVZ

viscosity of 1× 1016 Pa·s. The upper bound for the value of the real component of S11, for

the case of low ηLV Z values, is limited by the fact that both the mantle and crust are elastic,

with their relatively large viscosities. The imaginary component of S11 has a lower bound

of zero for both the fluid (ηLV Z → 0) and rigid (ηLV Z → ∞) end members. The upper

bound for the imaginary component is centered around a LVZ viscosity of 1 × 1016 Pa·s,
which coincides with the transition from fluid to elastic in the real component. We expect

the imaginary component of S11 to be proportional to the amount of energy dissipation for

a given LVZ viscosity.

4.4.3 The Monthly Q-Factor

Having calculated the real and imaginary components of S11 over a range of LVZ vis-

cosities, it is possible to compute the viscosity dependent monthly Q-factor by utilizing

Equation (56). The measured monthly Q values are dependent on a tidal forcing with a

period of one month. Due to the elliptical nature of the lunar orbit around the Earth, the

applied tidal forcing varies over the course of the Moon’s month long orbit. In our model

of the Moon’s Cassini state, the applied tidal forcing is averaged over one orbital period

(DW16). This results in our model having an applied forcing that is half the value for which

the monthly Q factor is measured. It is therefore appropriate for us to use a value of Q
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Figure 6: S11 as a function of LVZ viscosity. (Top) Real component of S11 compliance. (Bottom)
Imaginary component of S11 compliance. The curves are coloured according to fluid core radius.
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Figure 7: Monthly Q-factor as a function of LVZ viscosity. The dashed line corresponds to the
scaled measured monthly Q-factor of 19. The curves are coloured according to fluid core radius.

which is half that reported in the literature. Thus, the values of Q mentioned at the end of

Chapter 3 (37.5±4 and 38±4), when scaled to fit our model, are on the order of 19. Figure

7 illustrates the computed monthly Q value as a function of LVZ viscosity and fluid core

radius. The lower bound of the computed monthly Q-factor corresponds to a LVZ viscosity

of 1× 1016 Pa·s. Comparison with the scaled measured value of monthly Q suggests a LVZ

viscosity of 2× 1016 Pa·s, in agreement with Harada et al. (2014).

4.4.4 k2 Love Number

The degree 2 potential Love number k2 is computed for every Moon model. Figure 8

illustrates the dependence of k2 on the LVZ viscosity and fluid core radius; the behaviour

of k2 mimics that of the real component of S11. Recall that k2 quantifies the additional

gravitational potential at the lunar surface resulting from deformations occurring within

the Moon. If the Moon is susceptible to deforming in the presence of an imposed potential

(i.e. it has a lower viscosity), the additional gravitational potential resulting from the
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Figure 8: k2 Love number as a function of LVZ viscosity. The dashed lines correspond to the
observed values of k2 published by Goossens et al. (2011) and Williams et al. (2014). The curves
are coloured according to fluid core radius.

displacement of mass will be proportionately larger; this is a consequence of the greater

amount of deformation occurring within a ’soft’ Moon. Conversely, if the Moon is rigid (i.e.

it has a higher viscosity), the amount of deformation will be relatively less, and the additional

gravitational potential resulting from the deformation will be proportionately smaller. This

is exactly what is observed in Figure 8; higher values of k2 correspond to lower values of LVZ

viscosity, and lower values of k2 correspond to higher values of LVZ viscosity. Additionally,

k2 is dependent on the fluid core radius. As the LVZ viscosity approaches the fluid limit

(ηLV Z → 0), the effects of the fluid core radius are nullified by the fluid-like nature of the

LVZ. However, as the LVZ viscosity approaches the rigid limit (ηLV Z → ∞), the effects

of the fluid core radius become apparent; as the fluid core radius increases, the density of

the fluid core decreases, so as to conserve the total lunar mass. This results in a smaller

density contrast across the CMB, and hence a reduced gravitational force capable of resisting

deformations. Consequently, the amplitudes of the deformations are greater.
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4.4.5 Mantle Rotation Vector Misalignment

The misalignment of the lunar mantle’s rotation vector relative to the Cassini plane

containing the ecliptic and orbital plane normals is the primary focus of our results. The

dependence of this misalignment (Im{p̃′}) on the LVZ viscosity and fluid core radius is

depicted in Figure 9. A non-linear relationship exists between the LVZ viscosity and the

computed offset. The amplitude of the misalignment is proportional to the amount of

dissipation occurring within the lunar mantle. At the two end members of the LVZ viscosity

spectrum (the fluid limit when ηLV Z → 0 and the rigid limit when ηLV Z → ∞), the amount

of energy dissipation is at a minimum. The maximum amount of energy dissipation occurs

for the range of LVZ viscosities centered around 1 × 1016 Pa·s; this coincides with the

maximum computed angle of misalignment between the mantle rotation vector and the

Cassini plane. For a LVZ viscosity of 2 × 1016 Pa·s, which corresponds to the estimate

published by Harada et al. (2014), tidal dissipation accounts for approximately 48% to 58%

of the observed misalignment in the mantles rotation axis. This result is consistent with

Williams et al. (2014).

An important caveat: there are potentially an infinite number of acceptable Moon models

that produce the desired amount of tidal dissipation within the solid mantle. This problem

of non-uniqueness persists throughout the analysis. The specific values for the LVZ radius

and mantle viscosity decided upon in this chapter are therefore a subset of a much larger

solution set. Constraining the viscosity profile of the solid lunar mantle is not a primary

goal of this analysis. Indeed modelling the lunar mantle as a Maxwell material, as was

done in this thesis, may not be ideal. However, the primary focus is to understand the

significance of viscoelastic relaxation within the SIC. Therefore, so long as the amount of

energy dissipation resulting from tidal effects is consistent with observations, we should be

able to effectively map the influence of SIC relaxation on the mantle rotation axis.
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Figure 9: Lunar mantle rotation vector misalignment relative to the Cassini plane as a function of
LVZ viscosity. Viscous friction at the CMB is absent. The radius of the LVZ is fixed at 600 km.
The dashed line indicates the observed lead angle of 0.265 arcseconds. The curves are coloured
according to fluid core radius.

51



4.5 Viscous Fluid Friction

We now investigate how viscous fluid coupling along the CMB surface affects the cal-

culated offset between the mantle rotation vector and the Cassini plane. The coupling

parameter KCMB is dependent on the nature of the fluid flow on the core side of the CMB;

this flow can either be laminar or turbulent. In the case of laminar flow, the viscous shear

stress (τL) acting on a surface defined by the normal vector ẑ, is defined as follows

τL = ρf
√
νfΩo

(
uo, ẑ × uo, 0

)
, (74)

where the vector uo is the mean stream velocity within the fluid core. The laminar flow

coupling parameterKL
CMB can be calculated from τL and, for a rotating planet, is dependent

on the Ekman number (ECMB
k ), which itself is a function of the kinematic viscosity of the

fluid core (νf ) (Mathews and Guo, 2005)

KL
CMB =

(√
2

2

)(
πr5fρf

Āf

)(
ECMB

k

)1/2
(0.195− 1.976i), (75a)

where

ECMB
k =

νf
r2fΩo

. (75b)

Laminar flow in the core is unlikely (e.g. Toomre, 1966). However, for the case of turbulent

core flow, the coupling parameter KT
CMB can be derived by analogy from KL

CMB . The

viscous shear stress for the case of turbulent flow in a non-rotating fluid core (τT ) is defined

as

τT = ρfff |uo|uo, (76)

where ff is a coefficient of friction along the CMB surface and the magnitude of the mean

stream velocity is defined as

|uo| = rfΩo|m̃f |. (77)
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By analogy to the case of laminar flow, and only using the component of stress in the

direction of uo, the coupling parameter KT
CMB for a rotating fluid core can be derived to

yield

KT
CMB = (−1.976i)

(√
2

2

)(
πr5fρf

Āf

)(
ff |m̃′

f |
)
. (78)

The coefficient of friction along the CMB (ff ) depends on the roughness of the boundary

and on the frequency of the time-dependent flow within the fluid core. A priori these values

are unknown; however, we can choose a value for ff that is consistent with the amount of

viscous friction inferred from LLR observations (e.g. Williams et al., 2001; Williams et al.,

2014). This information is contained in the quantity (K/C) introduced in Equation (1).

Indeed (K/C) is related to KT
CMB as follows

Im{KT
CMB} = −

(
K

C

)(
Ā

Āf

)(
1

Ωo

)
. (79)

Equating Equations (76) and (77) reveals the coefficient of friction ff must take on the form

ff =

(
K

C

)(
Ā

Ωo

)(
1.976√

2
πρfR

5
f |m̃′

f |
)−1

. (80)

To calculate both ff and KT
CMB , the value of the fluid core tilt angle, m̃′

f , must be known.

A priori we do not know what the value of the tilt angle is. This issue is overcome by

making an initial guess as to what the magnitude of the angle of misalignment is between

the fluid core and mantle. It is assumed that the fluid core is closer in alignment to the

ecliptic normal than to the mantle symmetry axis (Williams et al., 2001); thus a value of

1.5◦ is used (compared to θp = 1.543◦). The system is then solved iteratively, updating the

values of m̃′
f , ff , and KT

CMB after each iteration until convergence is reached.

In principle, using the numerical value for (K/C) obtained from LLR to derive the

viscous coupling parameter at the CMB should allow us to match the computed results

to the inferred dissipation due to viscous friction. Indeed, the viscous coupling produces

an almost uniform offset for the mantle rotation vector of approximately 0.12 arcseconds,

largely insensitive to the viscosity of the LVZ (Figure 10). The viscous friction at the CMB is

independent of the tidal dissipation occurring within the solid mantle. Combining the effects

of tidal dissipation discussed in Section 4.4 with viscous friction enables us to reproduce the

observed 0.265 arcsecond lead in the mantles rotation axis relative to the Cassini plane. In

53



1012 1014 1016 1018 1020

Low Velocity Zone Viscosity ( LVZ) (Pa s)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
Im

{p
}(

S
ec

on
ds

of
A

rc
)

Mantle Rotation Vector Offset

Observed

rf = 340 km

rf = 360 km

rf = 380 km

rf = 400 km

Figure 10: Lunar mantle rotation vector misalignment relative to the Cassini plane as a function
of LVZ viscosity. Viscous friction at the CMB is included. The radius of the LVZ is fixed at 600
km. The dashed line indicates the observed lead angle of 0.265 arcseconds. The curves are coloured
according to fluid core radius.

other words, using a well constrained Moon model comparable to the one employed by JPL

to fit the LLR data (e.g. no SIC, similar fluid core radius, etc.), we can recover the observed

0.265 arcsecond lead in the mantle rotation axis relative to the Cassini plane. This gives us

confidence that the rotational dynamic model developed here is correct and well calibrated!
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5 Results II: Viscoelastic Relaxation of the SIC

5.1 Preamble

Having established how the effects of tidal dissipation in the solid mantle and viscous

coupling along the CMB influence the mantle rotation vector offset, we can now investigate

how the presence of a SIC modifies the results of the previous chapter. There are two

dominant mechanisms through which the SIC can interact with the rest of the Moon: viscous

fluid friction along the ICB, and the gravitational and pressure torques exerted by the rest

of the Moon on the SIC. For the case of viscous fluid friction, the magnitude of the ICB

coupling parameter is proportional to the differential rotation of the SIC relative to the

FOC; thus it is proportional to the misalignment between the FOC rotation vector and SIC

rotation vector. In contrast the pressure torque exerted on a tilted SIC by a deferentially

rotating FOC is dependent on the relative misalignment of the SIC symmetry axis vis-à-

vis the FOC rotation axis (DW16). Lastly, the gravitational torque exerted on the SIC is

proportional to the misalignment of the SIC symmetry axis vis-à-vis the mantle symmetry

axis.

Viscoelastic relaxation within the SIC will tend to reduce the angle of misalignment

of the SIC symmetry axis relative to the mantle. The degree of relaxation depends on the

viscosity of the SIC; thus the reduction in the angle of misalignment is also dependent on the

SIC viscosity. Consequently, viscous relaxation within the SIC will influence the magnitude

of the pressure and gravitational torques applied by the rest of the Moon by altering the

orientation of the SIC symmetry axis. This chapter begins by exploring how deformation

occurs within the SIC. This is accomplished by solving the full system of equations described

in Chapter 2. We neglect all contributions from viscous fluid friction at the CMB and ICB.

The value for the viscosity of the LVZ is fixed at 2× 1016 Pa·s, as per Harada et al. (2014).

Likewise as before, the viscosities of the mantle and crust are both fixed at 1 × 1020 Pa·s,
and the LVZ radius is held constant at 600 km. The SIC radius is varied from 140 km to 240

km; the FOC radius is varied from 310 km to 410 km. We investigate firstly how viscoelastic

relaxation within the SIC influences the tidal response of the mantle. Secondly, we analyze
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Vp (ms−1) Vs (ms−1) ρ (kgm−3) λ(ω) μ(ω)

Calculated Calculated
Crust 4000 2000 2736 from Vp, from Vp,

Vs, ρ, ω Vs, ρ, ω
Calculated Calculated

Mantle 8000 4500 Calculated from Vp, from Vp,
from Ism Vs, ρ, ω Vs, ρ, ω

Calculated Calculated
LVZ 7500 3500 Calculated from Vp, from Vp,

from Ism Vs, ρ, ω Vs, ρ, ω
Calculated Calculated

FOC 4000 0 Calculated from Vp, from Vp,
from ρ̄ Vs, ρ, ω Vs, ρ, ω

Calculated Calculated
SIC 4200 2200 7700 Calculated from Vp, from Vp,

from ρ̄ Vs, ρ, ω Vs, ρ, ω

Table 2: Seismological parameters for the full five-layer Moon model.

how the SIC radius and viscosity influence the nature of deformation within the SIC itself.

Lastly we investigate how viscoelastic relaxation contributes to the orientation of the SIC

relative to the lunar mantle. Throughout the chapter, the primary objective is to recreate

the observed 0.265 arcsecond lead in the mantle rotation axis utilizing a combination of

tidal deformation in the solid mantle and viscoelastic relaxation in the SIC.

5.2 The SIC and Tidal Dissipation within the Lunar Mantle

5.2.1 Viscoelastic Relaxation of the SIC and its Influence on S11

We begin our analysis by investigating how the SIC radius and viscosity impact the

compliance S11. As discussed before, S11 is a measure of how the entire Moon deforms

in response to changes in either the tidal or centrifugal potentials. The question we seek

to address here is how the presence of a SIC influence the deformational response of the

whole Moon. The question is answered by computing S11 for a range of Moon models

with varying SIC radius and viscosity. As before, the elastic moduli are computed using

the seismic velocity profiles derived from the APSE. Table 2 summarizes the seismological

parameters of the five-layer Moon model employed here.

Figure 11 illustrates the sensitivity of S11 to a range of inner core radii and viscosities

for a fixed FOC radius of 360 km. Even as the SIC viscosity is varied over four orders
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of magnitude, and the SIC radius varied from 140 km to 240 km, the influence on S11 is

negligible. Indeed the real component of S11 is on the order of 1.57×10−7; the perturbations

in the real component resulting from a viscoelastic SIC are on average on the order of 1 ×
10−11. Similarly the imaginary component is on the order of 9×10−9, with the perturbations

due to the SIC on the order of 1× 10−11. This demonstrates that the tidal response of the

Moon, and the associated energy dissipation, are largely insensitive to the presence and

deformation of the SIC. Even a very ’soft’ inner core does not contribute significantly. This

is most likely due to the small size of the SIC relative to the rest of the Moon. A SIC radius

between 140 km and 240 km represents between 8% and 14% of the mean lunar radius. We

can further comment on how the presence of a SIC will influence the monthly Q-Factor;

recall that the monthly Q is computed as the ratio of the real and imaginary components of

S11. Based on the results presented here, we can conclude that the monthly Q-Factor will

be largely insensitive to the presence of a SIC.

5.2.2 Viscoelastic Relaxation of the SIC and its Influence on k2

The viscosity of the SIC dictates the degree to which it will deform in response to an

imposed potential. The greater the viscosity, the less the SIC will deform. The question is

whether deformations within the relatively small SIC will manifest themselves as observable

changes to the gravitational potential at the lunar surface, as defined by the k2 Love number.

We address this question by investigating how the SIC radius and viscosity influence the

calculated value of k2. Figure 12 illustrates how k2 varies as a function of SIC radius and

viscosity. As for the case of S11, it is apparent that the effects of SIC size and viscosity

are negligible on the calculated value of k2. Indeed, together these two factors contribute

on the order of one part in ten thousand to the value of k2, which is below the current

measurement error (e.g. Williams et al., 2014).

We thus conclude that the SIC has a minimal contribution to the deformations that

occur within the whole Moon. The tidal deformations that occur within the lunar mantle

are largely independent of the radius and viscosity of the SIC; the relative small size of the

SIC limits its influence on the deformational behaviour of the other lunar layers, specifically

within the solid mantle. Therefore, the contribution to the observed 0.265 arcsecond lead

in the mantle rotation axis from tidal dissipation within the mantle is for all intents and

purposes independent of the presence of a SIC. If the SIC can indeed influence the mantle

rotation vector offset, it is through a mechanism other than tidal dissipation in the mantle.

Therefore, the dissipation due to a viscoelastic SIC may replace, at least in part, the dissi-

pation attributed to viscous fluid friction at the CMB. In other words, the approximate 0.12

arcsecond offset attributed to viscous fluid friction in the previous chapter may contain a
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Figure 11: The dependence of the real and imaginary components of S11 on the SIC viscosity for a
fixed FOC radius of 360 km. The curves are coloured according to SIC radius. (a & c) Changes in
the real and imaginary components of S11 presented using the same ordinate scaling as in Chapter
4. (b & d) Changes in the real and imaginary components of S11 presented using a refined scaling.
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(a) (b)

Figure 12: The dependence of the k2 Love number on the SIC viscosity for a fixed FOC radius of
360 km. The curves are coloured according to SIC radius. (a) k2 plotted using the same ordinate
scaling as in Chapter 4. (b) k2 plotted using a refined scaling.

contribution from energy dissipation associated with the SIC. To frame this differently, the

ratio K/C inferred from LLR observations may not solely capture viscous friction at the

CMB (and ICB), but may also contain a contribution from viscoelastic deformations of the

SIC.

This thesis, more than anything, is a proof of concept. We do not attempt to differentiate

the individual contributions from viscous friction at the CMB and ICB, or viscoelastic

relaxation of the SIC. Instead, our goal is to demonstrate that viscoelastic deformation

within the SIC can produce a measurable lead in the Cassini state. Towards this end, we

assume an end-member scenario where all of the ∼ 0.12 arcsecond offset assumed to be

due to viscous drag at the CMB is due instead to viscoelastic deformation within the SIC.

To accomplish this, we set the coefficients of friction KCMB and KICB equal to zero, and

attempt to demonstrate whether tidal deformation and viscous inner core deformation can

explain the observed 0.265 arcsecond lead. If indeed the observed lead can be reproduced,

what are the requirements for the inner core size and viscosity.

5.3 The Deformational Response of the SIC

Let us first seek to explain how the deformational behaviour of the SIC varies as a func-

tion of inner core radius and viscosity. The compliance S33 contains information pertaining

to how the SIC deforms in response to a forcing that is applied solely to the SIC. Similar to

how our analysis of the S11 compliance enabled us to understand the nature of deformation

within the mantle, analyzing the behaviour of S33 illuminates the nature of deformation

within the SIC. Figure 13 demonstrates the dependence of S33 on the viscosity and radius
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of the SIC for fixed FOC radii of 340 km, 360 km, and 380 km. The real component of S33

tracks the transition from a fluid response to an elastic response as the viscosity of the SIC is

increased. This transition is influenced by the inner core radius. The imaginary component

of S33 clearly identifies the transition points for various Moon models as a global maximum;

the larger the SIC, the higher the viscosity of the transition point. We expect that the

amount of energy dissipation will be proportional to the imaginary component, and thus

should occur in the range of SIC viscosities centered around approximately 1× 1013 Pa·s to
3×1013 Pa·s. The lower bound of the imaginary component of S33 is zero for both the fluid

and elastic end members. Consequently we do not expect a large amount of dissipation if

the SIC viscosity is much less than 1× 1012 Pa·s, or much greater than 1× 1014 Pa·s. The
magnitude of energy dissipation within the SIC, as represented by the imaginary compo-

nent, is also influenced by the radius of the FOC; a smaller fluid core radius results in a

greater amount of energy dissipation. Similarly, the FOC affects the real component; in the

fluid limit (ηSIC → 0), the resultant deformation from a forcing applied solely to the SIC

is inversely proportional to the fluid core radius. Thus we conclude that a larger fluid core

results in SIC deformations of a smaller magnitude. The viscosity of the transition point

between a fluid and elastic response is largely insensitive to the FOC radius.

For a given set of SIC parameters, we can estimate the corresponding viscous relaxation

time τ , often referred to as the Maxwell time. If the period of the forcing is shorter than the

viscous relaxation time of a material, viscous deformations are limited, as the material does

not have sufficient time to respond to the imposed force. Conversely, if the period of the

forcing is of the order of the relaxation time or longer, the material can deform significantly

through viscous relaxation. The maximum amount of energy dissipation occurs when the

period of the forcing is equal to the relaxation time. For the case of the Cassini state we

are modelling here, the period of the imposed gravitational force from the Earth is equal

to the time it take the Moon to complete a single orbit; one sidereal month. Thus, for the

SIC to efficiently dissipate energy, its viscous relaxation time should be on the order of one

month or less. We can estimate the viscous relaxation time for the SIC by modifying the

approximate relation given in Buffett (1997)

τ ≈ χηSIC

ΔρICB g rs
, (81)

where ΔρICB is the density contrast between the SIC and FOC, and χ is a constant ≈ 4.5.

A SIC with a viscosity approaching the fluid limit has a relatively short characteristic relax-

ation time. Conversely, a SIC with a viscosity approaching the rigid limit has a relatively

long relaxation time. To give a numerical example, let us consider a Moon model from

Figure 12; suppose rs = 200 km, ρs = 7700 kg·m−3, ηSIC = 1 × 1014 Pa·s, and rf = 380
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km. For such a Moon model, the density contrast at the ICB will be Δρ = 2599 kg·m−3 and

the gravitational acceleration at the ICB is g = 0.43 m·s2. The resulting relaxation time is

∼ 4× 105 s; compared to forcing period of ∼ 3.8× 105 s. This is consistent with the results

from our analysis of S33. The maximum amount of energy dissipated by a viscoelastic SIC,

based on calculations of S33, occurs when the viscosity of the SIC is on the order of 1×1013

Pa·s (Figure 13); or alternatively, when the SIC relaxation time is coincident with the period

of the imposed external forcing.

5.4 Lead angle of the Cassini State

Figure 14 illustrates how the misalignment of the mantle rotation vector from the Cassini

state is affected by the viscosity and radius of the SIC. When the viscosity of the SIC

approaches the fluid limit (ηSIC → 0) or the elastic limit (ηSIC → ∞), viscous relaxation

within the SIC contributes insignificantly to the total dissipation. The dissipation is then

solely from tidal deformation in the LVZ, and the Cassini plane offset angle approaches the

expected fraction from this contribution alone, approximately 0.145 arcseconds. However,

in the range of SIC viscosities between approximately 5 × 1012 Pa·s and 1 × 1015 Pa·s,
the observed 0.265 arcsecond offset can be reproduced for specific combinations of inner and

outer core radii and SIC viscosity. This demonstrates that viiscoelastic relaxation within the

inner core can significantly contribute to the observed Cassini offset. Indeed, the computed

offsets can be extreme, several times larger than the observed value. Note however that when

we compare the Cassini state rotation vector offset with the energy dissipation associated

with SIC viscoelastic relaxation, we observe that they do not correlate with one another

(Figure 15). Indeed the maximum energy dissipation from SIC relaxation occurs at SIC

viscosities lower than those at which the maximum lead angle occurs. The reason for this

is explained in the subsequent section.

5.5 Viscosity of the SIC and its Influence on the SIC Symmetry

Axis

Thus far, we have discussed several important findings in this chapter: (i) Tidal dis-

sipation occurring within the mantle is largely insensitive to the physical properties of a

viscoelastic SIC; (ii) By neglecting the effects of viscous fluid friction at the CMB and ICB,

the observed 0.265 arcsecond misalignment of the mantle rotation vector relative to the

Cassini plane can be reproduced from a combination of tidal dissipation within the lunar

mantle and a viscoelastic SIC; (iii) The maximum offset angles for the mantle rotation vector

do not coincide with the maximum energy dissipation resulting from viscoelastic relaxation
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(a) (b)

(c) (d)

(e) (f)

Figure 13: S33 as a function of SIC viscosity. The curves are coloured according to SIC core radius.
(a & b) Real and imaginary components for a FOC radius of 340 km; (c & d) Real and imaginary
components for a FOC radius of 360 km; (e & f) Real and imaginary components for a FOC radius
of 380 km.
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Mantle rotation vector misalignment relative to the Cassini plane. (a & b) Im{p̃} as
a function of SIC viscosity. The observed 0.265 arcsecond offset is denoted with a black dashed
line. Image (a) illustrates the computed offset for a fixed FOC radius of 360 km; (b) for a fixed
FOC radius of 380 km. The curves are coloured according to SIC core radius. (c & d) Im{p̃} as a
function of SIC and FOC radii. The observed 0.265 arcsecond offset is denoted with a black dashed
line. Image (c) is for a constant SIC viscosity of 1 × 1013 Pa·s; (d) is for a constant SIC viscosity
of 1× 1014 Pa·s. (e) The FICN frequency as a function of SIC and FOC radii. The thick black line
corresponds to the Poincaré Number δω. (f) Real component of ñs as a function of SIC and FOC
radii for a SIC viscosity of 1× 1014 Pa·s.
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Figure 15: Mantle rotation vector misalignment relative to the Cassini plane plotted with the
imaginary component of S33.
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of the SIC. In this section, we attempt to explain the mechanism through which the SIC

can produce changes in the relative position of the mantles rotation axis. The answer is

connected to the amplitude of the tilt of the inner core with respect to the mantle, ñs. The

latter is associated with a free mode of precession of the inner core, the Free Inner Core

Nutation (FICN). The frequency of the FICN is dependent on the radius and density of the

SIC. By neglecting the effects of deformation within the SIC, we can approximate the FICN

frequency as follows (DW16)

ωFICN ≈ (esα2 − esα3Φ2). (82)

The three variables es, α2, and α3 are all dependent on the radius and density of the SIC; α2

also depends on the FOC density, and thus the FOC radius. Expressed as it is in Equation

(82), the FICN frequency is given in the units of cycles per lunar day. The frequency of the

forcing associated with the Cassini state, when expressed also in cycles per lunar day, is given

by the Poincaré Number δω (Equation (20)). For a given Moon model, when the frequency

of the FICN approaches the Poincaré Number (i.e. ωFICN → δω), there is an amplification

of the misalignment of the SIC relative to the mantle. For our linear rotational model, and

in the absence of dissipation, ñs diverges to ±∞ as ωFICN approaches δω (DW16). Figure

13e illustrates how ωFICN changes as a function of rs and rf .

Figure 16 further illustrates how ñs varies as a function of SIC viscosity. For inner core

viscosities less than approximately 1× 1012 Pa·s, the SIC symmetry axis is roughly aligned

with the ecliptic normal; it is offset vis-a-vis the mantle symmetry axis by ∼ 1.6◦. As the vis-

cosity increases, so does the misalignment; eventually it stabilizes when the SIC is no longer

able to deform in response to the imposed forcing. The maximum tilt angle is dependent

on the SIC radius, with smaller cores able to achieve greater angles of misalignment.

The combination of Figure 13f and Figure 15 illustrate that the tilt of the inner core is

large close to the resonance of the FICN mode. Because of viscoelastic deformations, our

solutions remain finite at the resonance. However, ñs remains large. In fact, given that our

model is only valid under the assumption of small angles, solutions where ñs is larger than

∼ 100 have significant errors and are thus unreliable. The connection between ñs and p̃ is

through the gravitational torque exchanged between the mantle and the SIC. This internal

gravitational torque exerted on a misaligned SIC relative to the mantle (Γ̃int
sg ) is (Dumberry,

2009)

Γ̃int
sg = −iΩ2

oAsesαg

(
ñs +

c̃s3
Ases

)
+ iΩ2

oAsesαeαgñε. (83)
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This internal gravitational torque is dependent on the tilt of the SIC symmetry axis (ñs),

the deformation of the SIC (c̃se) and the deformation of the rest of the Moon, which is

modelled as an equivalent rigid body rotation of the rest of the Moon relative to the SIC

(ñε). In Equation 83, ñs gives the orientation of the SIC pre-deformation; ñs + c̃s3/Ases

gives the orientation of the SIC post-deformation. The factor ñs + c̃s3/Ases represents

the instantaneous orientation of the symmetry axis of the deformed SIC. To first order,

the orientation of the deformed SIC symmetry axis can be approximated using the S33

compliance

ñs +
c̃s3

Ases
≈ ñs

(
1− S33α3αg

es

)
. (84)

This approximation makes use of Equations (35) and (37) and assumes that the dominate

potential acting on the SIC is φ̃g
s . The imaginary components of ñs and c̃s3 contain infor-

mation about the relative position of the SIC symmetry axis relative to the Cassini plane

of the mantle. Figure 16 illustrates that the SIC symmetry axis achieves a maximum lag

relative to the mantle symmetry axis when the SIC viscosity is on the order of approxi-

mately 7 × 1013 Pa·s. Conversely, Figure 17 demonstrates that the viscoelastic relaxation

within the SIC acts to reduce the lag relative to the mantle’s Cassini plane. This maximum

lag is dependent on SIC viscosity, radius, and FOC radius. Figure 17 illustrates how the

viscoelastic deformation of the SIC, characterized by c̃s3, can modify the misalignment of

the SIC symmetry axis. In essence, Figure 17 illustrates a ’correction’ that is added to the

results in Figure 16 to establish the symmetry axis for a viscoelastically deformed SIC.

When we plot the lead of the mantle symmetry/rotation axis versus the lag of the

deformed SIC symmetry axis, we see that they are almost perfectly anti-correlated (Figures

18). The anti-correlation observed in the imaginary components of the two variables holds

true for the real component as well (Figure 19). Indeed the viscoelastic nature of the SIC

can produce a substantial offset in the mantle rotation axis relative to the Cassini plane.

This is achieved through the dependence of the SIC’s relative orientation on its viscosity. If

the viscosity of the SIC is such that the symmetry axis lags the mantle, and thus lags the

mantle’s Cassini plane, the mantle will compensate by leading. This phenomenon can be

understood in the context of the exchange of gravitational torques between the mantle and

the SIC. As the tilt of the SIC is increased relative to the mantle, the mantle will conserve

angular momentum by reorienting itself in the direction opposite of the SIC. The small size

of the SIC relative to the mantle explains the muted response of the mantle to even extreme

SIC tilt angles. For instance Figure 19 demonstrates that for a FOC radius of 360 km

and a SIC radius of 200 km, the maximum tilt angle for a rigid SIC is ∼ 8◦; the resulting

perturbation in the mantle rotation/symmetry axis is on the order of ∼ 0.001◦.
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(a) (b)

(c) (d)

Figure 16: SIC symmetry axis offset relative to the mantle symmetry axis (ñs) as a function of
SIC viscosity. The curves are coloured according to SIC core radius. (a & b) Real and imaginary
components for a FOC radius of 360 km; (c & d) Real and imaginary components for a FOC radius
of 370 km.
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(a) (b)

(c) (d)

Figure 17: The contribution to the relative SIC symmetry axis offset due to viscoelastic relaxation
as a function of SIC viscosity. The curves are coloured according to SIC core radius. (a & b) Real
and imaginary components for a FOC radius of 360 km; (c & d) Real and imaginary components
for a FOC radius of 370 km.
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Figure 18: Imaginary components of p̃ (in arcseconds, thick continuous curves) and ñs + Asesc̃
s
3

(in degrees, thin dashed curves). The curves are coloured according to SIC core radius. The FOC
radius is fixed at 360 km (top) and 380 km (bottom).
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Figure 19: Real components of p̃ (in degrees, thick continuous curves) and ñs +Asesc̃
s
3 (in degrees,

thin dashed curves). The curves are coloured according to SIC core radius. The FOC radius is
fixed at 360 km (top) and 380 km (bottom).
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6 Discussion and Conclusion

6.1 Discussion

6.1.1 The Viscosity of the Lunar SIC

The main conclusion of our study is that viscoelastic deformation within the Moon’s

inner core can lead to significant dissipation and can possibly explain a part of the observed

lead in the Cassini state. The condition for this is that the viscosity of the SIC must be of

the order of 1× 1013 Pa·s to 1× 1015 Pa·s. In other words, the viscosity of the SIC must be

several order of magnitude smaller than that of the mantle (∼ 1× 1010 Pa·s). The question

is: is this realistic?

The viscosity of the lunar SIC is unknown at present. Furthermore, estimates for the

viscosity are difficult to come by. However, there are several observations which suggest that

we may be able to make some inferences based on estimates of the Earth’s SIC viscosity.

We begin by highlighting a few caveats. Firstly, the Earth’s SIC is substantially larger than

the Moon’s, both in absolute (∼1200 km vs. up to ∼200 km) and relative terms (∼19%

vs. up to ∼12% of the mean radius). Furthermore, there are compositional differences

between the Earth and its satellite; this is not unexpected considering the probable origin

of the Moon. It is generally accepted, based on the anomalously large angular momentum

of the Earth-Moon system, that the Moon was formed from a collision between the proto-

Earth and a large secondary body (Cameron and Ward, 1976). If the majority of the lunar

material originated from the proto-lunar impactor, then the composition of the Moon should

naturally differ from that of Earth. Numerical simulations of the impact suggest that indeed

a higher portion of the impactor (christened Theia) went towards the formation of the Moon

than was absorbed by the Earth (Herwartz et al., 2014). This notion is further supported

by geochemical studies conducted on lunar samples, which confirm that the lunar mantle

has a unique composition (e.g. Wanke and Dreibus, 1986; Taylor, 1987). However, both the

terrestrial and lunar mantles are depleted of siderophile elements (Newsom and Palme, 1984;

Newsom, 1986). This is a key observation, as it suggests that the lunar core, much like the
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Earth’s, is predominantly composed of iron. This inferred compositional similarity between

the lunar and terrestrial inner cores give us the courage to speculate on the viscosity of the

lunar SIC based on inferences that have been made on the viscosity of the Earth’s SIC.

Estimates for the viscosity of the Earth’s SIC vary. In an attempt to reconcile the

differential axial rotation of the Earth’s SIC with the gravitational forces exerted on it by

the mantle, Buffett (1997) demonstrated that the viscosity of a SIC with a Maxwellian

behaviour must be between 1 × 1015 Pa·s and 3 × 1016 Pa·s. By fitting electromagnetic

coupling and viscoelastic relaxation within the SIC to observations of the FICN, Koot and

Dumberry (2011) demonstrate that the viscosity of the SIC must be approximately 5×1014

Pa·s. Studies based on mineral physics also give a wide range of possible values. Van

Orman (2004) estimated SIC viscosity on the order of 1 × 1011 Pa·s; more recent results

by Gleason and Mao (2013) give a range of 1 × 1015 Pa·s to 1 × 1018 Pa·s. This broad

spectrum of values is indicative of the uncertainty surrounding the viscosity of the Earth’s

SIC. However, all of the above studies suggest that the SIC viscosity is significantly lower

than that of the mantle. Flawed as it may be, and with all of the associated uncertainties,

it is not unreasonable to suggest that the viscosity of the lunar SIC may not be too distance

from the range approximately between 1× 1013 Pa·s and 1× 1015 Pa·s.

Suppose in the not too distance future, more data regarding the internal structure of

the Moon becomes available; for the sake of argument, suppose the relative orientation

of the lunar SIC is determined by detecting its gravitational signature. The rotational

dynamic model presented here offers a useful tool that may aid in constraining the SIC

viscosity. Depending on the magnitude of the hypothetically observed SIC tilt angle, either

this model or a more complete non-linear version of it (e.g. Stys and Dymberry, 2018) could

be used to compute a set of possible solutions based on the range of accepted core radii

and the observed 0.265 arcsecond lead in the mantle rotation axis. Although the problem

of non-uniqueness would not be overcome, the solution set would most certainly impose

greater constraints on acceptable values for SIC viscosity. Additionally, if it where somehow

possible to isolate the various contributions to the LLR-inferred dissipation parameter K

(e.g. a contribution from viscous friction at the ICB vs. the CMB; contribution from SIC

orientation; etc.), then additional constraints would immediately limit the range of possible

SIC viscosities. For instance, suppose for the sake of argument that it is discovered that 50%

ofK’s observed value comes from a viscoelastic SIC. This would imply that the SIC accounts

for approximately 0.06 arcseconds of the observed 0.265 arcsecond lead; the model used here

could then easily generate a solution set of acceptable SIC parameters that correspond to

the hypothetically obseved value of K. Thus although at the current time it is difficult to

speculate about the viscosity of the lunar inner core, rotational dynamic models, such as

the one presented here, may serve as a useful constraint once more data becomes available.
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6.2 Conclusion

Cassini’s third law describes a configuration referred to as a Cassini state. This state is

defined as a precessing coplanar configuration of the lunar mantle rotation axis, the lunar

orbital normal, and the ecliptic normal. It has been unequivocally demonstrated that the

lunar rotation axis is misaligned relative to the plane containing the lunar orbit normal

and ecliptic normal. The angle of misalignment is measured to be 0.265 arcseconds. Ap-

proximately ∼ 55 % of the 0.265 arcsecond misalignment is attributed to tidal deformation

occurring within the lunar mantle. This tidal deformation is sensitive to the viscosity of

the low seismic velocity zone observed above the lunar CMB. The remainder of the 0.265

arcsecond misalignment is attributed to viscous fluid friction along the CMB surface. This

thesis proposes an additional mechanism through which the rotation axis of the mantle may

become misaligned relative to the Cassini state.

Inspired by previous studies of the Earth’s nutations, we have developed a linearized

rotational dynamic model for a viscoelastical Moon. This model has enabled us to calculate

the relative misalignment of the mantle rotation vector, and to investigate the plethora

of factors that influence its position at any given time. Our results demonstrate that the

misalignment of the inner core relative to the mantle can result in a significant offset in

the position of the mantle rotation axis relative to the Cassini plane. Importantly, the

misalignment of the inner core relative to the mantle depends on the viscosity of the inner

core. We have shown that if the viscosity of the inner core is of the order of 1 × 1013 Pa·s
and 1 × 1015 Pa·s, viscoelastic deformations in the inner core contribute to the observed

offset of the Cassini state.
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Appendix I

Computation of the Perturbations in the Moments of Inertia

The computation of the perturbations in the moments of inertia used in the determi-

nation of the compliances Sij in Chapter 3 is detailed here. We use an approach similar

to the one discussed in Dumberry (2008). The perturbations, denoted by the symbol H,

consist of two contributions: the first arise as a consequence of the compression that occurs

with depth and the corresponding changes in pressure; the second arise as a result of the

displacements of the boundaries between the different lunar layers. Mathematically, these

two contributions can be expressed as follows

H =

∫ r2

r1

δρ r′4dr′ −
∑
i

Δρi r
4
i y1i, (AI.1)

where r is the radius, y1 is the radial displacement determined from the solution of the

radial equations, and the index i denotes a specific region of the Moon (e.g. i = 1 for the

SIC, i = 2 for the FOC, etc). The limits of integration r1 and r2 define the region for which

H is computed (e.g. r1 = 0 and r2 = rs corresponds to Hs for the SIC). Δρ is the contrast

in density across layer boundaries, such as the ICB, CMB, etc.

Δρ = ρi+1 − ρi. (AI.2)

Note that the contrast in density is negative or zero across layer boundaries based on how

we defined the index i, with lower values of i corresponding to lower regions of the Moon.

By assigning a uniform density to each layer, we de facto neglect the effects of compres-

sion in the reference Moon model. This simplification is acceptable when simply dealing

with the rotational dynamics of the Moon; however, in order to accurately specify the con-

tributions from deformation to the moments of inertia tenors, we must account for the

radial change in pressure and density that result from viscoelastic deformation. Hence, δρ

describes the change in density within a solid layer

δρ = −∇ · (ρou) = −ρo(∇ · u), (AI.3)

where ρo is the uniform density of a given layer and u describes the displacement of matter
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particles. For the degree 2 spherical harmonic displacements we are concerned with, the

divergence of u can be expressed as

∇ · u =
dy1
dr

+
2y1
r

− 6y3
r

(AI.4a)

or alternatively as

∇ · u =
y2
λ

− 2μ

λ

dy1
dr

. (AI.4b)

The quantities λ and μ are the elastic parameters; y2 is the radial stress; and y3 is the

tangential displacement. Equating Equations (AI.4a) and (AI.4b) gives us an expression for

the radial derivative of y1.

dy1
dr

=
1

λ+ μ

(
y2 − λ

r
(2y1 − 6y3)

)
. (AI.5)

We now substitute Equation (AI.5) into Equation (AI.4b) to get an expression for the

divergence that does not involve any radial derivatives

∇ · u =
y2

λ+ μ
+

2μ

λ+ μ

1

r
(2y1 − 6y3). (AI.6)

Lastly, we substitute the above expression into Equation (AI.3) to get

δρ = − ρo
λ+ μ

(
y2 +

2μ

r
(2y1 − 6y3)

)
. (AI.7)

The values of the radial variables y1, y2, and y3 of course depend on the forcing prescribed

during the computation of the radial equations. Thus, the combinations of the various

forcings along with the different limits of integration in Equation (AI.1) enable us to compute

all of the perturbations to the moments of inertia of the whole Moon, FOC and SIC.
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