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Abstract

Benefits brought by automatic control systems through increasing the production

efficiency, reducing the production cost and environmental footprint have already

been seen and experienced by process industry in the past few decades. However,

given the rapid increase of the complexity in process itself as well as its interactions

with the outside world, it is getting more common to observe that the controlled pro-

cess exhibits time-varying/switching behaviors due to, for instance, the change of its

operating conditions such as grade change in polymer plants or the feedstock change

for chemical reactors. In this thesis, systems showing gradually varying dynamics

or abrupt changing behaviors will be referred to altogether as switched systems.

In real production practice, these switching behaviors may greatly compromise the

performance of the most of current control systems owing to the fact that they are

not initially designed for process with switching behaviors. Due to the critical role

the control systems play in ensuring the safety as well as the profitability of the

plant operation, it is desirable to enable the control systems to achieve satisfactory

performance for the switched process. Therefore, as a prerequisite for any model-

based optimal controllers, modeling of the switched systems is of necessity and it

directly determines the performance of the designed controller.

Two different types of switching mechanism are considered in this thesis, one is

featured with abrupt/sudden switching while the other one shows gradual chang-

ing behavior in its dynamics. The Expectation-Maximization (EM) algorithm is

employed throughput the thesis in identifying the switched systems. Identification

methods with/without considering the modeling of the switching dynamics are pro-

posed and they are tested on various numerical simulation examples as well as a



pilot scale tank system. For the identification method without considering the mod-

eling of switching dynamics, its robustness to the data set polluted with outliers is

achieved by assuming a contaminated Gaussian distribution as the distribution of

noise. It is shown that, through the comparison of the identification results from

the proposed method and a benchmark method, the proposed robust identification

method can achieve better performance when dealing with the data set mixed with

outliers. For the identification method in which the modeling of discrete switching

dynamics is considered, the hidden Markov model is employed in describing the evo-

lution of the discrete switching variable. By simultaneously estimating parameters

of the discrete dynamics (hidden Markov model) and continuous dynamics (local

ARX model), it is found that the performance of the identification method can be

effectively increased compared with the methods without considering the switching

dynamics.

In the process industry, process may gradually switch over several local sub-

systems. To model the switched systems exhibiting gradual or smooth transition

among different local models, in addition to estimating the local sub-systems param-

eters, a smooth validity (an exponential function) function is introduced to combine

all the local models so that throughout the working range of the gradual switched

system, the dynamics of the nonlinear process can be appropriately approximated.

Scheduling variable(s) is/are defined to represent the conditions under which the

process is operated and it is assumed to be measurable. The EM algorithm is ap-

plied in estimating the local model parameters as well as the key parameters for the

validity functions for each local model. Verification results on a simulated numeri-

cal example and an CSTR process confirm the effectiveness of the proposed Linear

Parameter Varying (LPV) identification algorithm.
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Chapter 1

Introduction

1.1 Motivation

In the past few decades, automatic control systems have been widely installed in

manufactory industry owing to the significant amount of benefits these systems have

brought in increasing the production efficiency and safety while, on the other hand,

reducing the environmental footprint caused by the production process. For in-

stance, model predictive control, which is also known as MPC, has already seen an

great success in controlling multivariate interactive process after being first intro-

duced around 1960s (Qin & Badgwell (2003)). However, in the mean time, factors

such as fierce market competition, increase of process complexity, interactions with

digital control systems cause unexpected variability in process dynamics under con-

trol. Taking a polymer plant operation for example, fierce market competition drives

the plant operating under different conditions from time to time so as to produce

polymer with various grades. Such frequent changes in plant operation conditions

can greatly compromise the performance of the control systems as most of these

automatic controllers are not designed for time-varying process. How to design

controllers which can achieve satisfactory or even optimal control performance un-

der time-varying plant dynamics has become an area of interest for both academia

researchers and industrial practitioners. As the prerequisite for any advanced con-

troller design and implementation, process modeling plays a key role in determining

the performance of the designed controller.

Switched systems are dynamic systems in which both continuous and discrete

valued dynamics exist simultaneously. Due to its capability in describing process

with time-varying dynamics, it is gaining increasing attention and considerable

amount of work has already been done in switched system modeling (Barton &

Pantelides (1994);Ferrari-Trecate et al. (2003);Bempoard et al. (2005);Vidal et al.

(2003);Nakada et al. (2005);Ragot et al. (2003);Jin & Huang (2009b);Juloski et al.

(2005)). This thesis is concerned with the identification of the switched systems.
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According to the switching behavior, the switched systems are categorized into two

general groups, one is featured with the abrupt change/switch of the process dy-

namics while the other one is characterized by the smooth/slow transition among

different process dynamics. In chemical process industry, both of these two types

of switching are commonly experienced. For example, abrupt stock change for the

feed of chemical reactors can introduce immediate change in the reaction kinetics

which ultimately causes the switching of the process dynamics. Grade change in

polymer plant requires the process being transited gradually from one local operat-

ing condition to the other, the process dynamics does not switch immediately due

to the existence of the transition period. The following sections will present the

general switched system identification problem in a mathematical form and give a

brief introduction on the Expectation-Maximization algorithm (EM) through which

the identification algorithms are built in this thesis. The main contributions of the

thesis as well as its organization are given in the end of this chapter.

1.2 Identification of Switched ARX Systems

Switched systems provide a general framework in describing nonlinear/time-variant

process in which switching/transition among sub-systems with various process dy-

namics occurs. In this thesis, a special but representative form of the switched sys-

tems named switched Autoregressive eXogenous system (SWARX) is investigated

and relevant identification methods for different types of the SWARX systems are

proposed. The mathematical formulation along with the schematic diagram of a

general switched ARX system are given in Equation 1.1 and Figure 1.1:

yk = θT
k

[
xk

1

]
+ ek, k = 1, 2 . . . N, θk ∈ θ1 . . . θM (1.1)

where yk and xk in Equation 1.1 represent the output and the regressor of the

SWARX system respectively. ek is the Gaussian distributed noise. M denotes

the number of sub-models and N represents the number of data points that have

been collected. As can be seen from the equation, at each sampling time instant,

the value of system parameters θk may change due to the switching among sub-

systems. If the switching variable is observable or can be inferred from the other

measurement indirectly, in other words, if the identity of the sub-system is known

at each sampling instant, then the SWARX system identification problem would be

trivial as linear identification methods such as ordinary least squares can be directly

applied to each cluster of the data set and the local ARX model parameters can be

estimated. On the other side, if the parameters of each local model as well as the

variance of the process noise are already known in advance, the data points could

be directly classified based on the likelihood and the value of the switching variable

2



Figure 1.1: Schematic diagram of the general switched system

can be inferred from the cluster identity of each classified data point. For nonlinear

systems, even if the switching variable is known or measured, the global LPV model

does not depend on the local model only. The global model is weighted combination

of all local models.

In practice, it is common that neither the local ARX model parameters nor

the value of switching variable are known as a priori owing to the limitation of

the measurement as well as the process knowledge. Therefore, it is desirable that

the proposed identification methods do not require any information regarding the

system parameters. In accordance with the types of switching behavior that is con-

sidered, the identification problems that have been investigated and solved in this

thesis can be categorized into tow classes. For the problem that will be discussed

in Chapter 2 and Chapter 3, it can be stated as:

Problem 1:Identifying the SWARX system local ARX model parameters as well as

the value of the hidden switching variable based on the collected system input and

output data

In Chapter 4, the discussion is directed to nonlinear process modeling problem

in which an LPV model is identified to approximate the process dynamics over the

whole operating range. It can be stated as:

Problem 2:Identifying LPV model with multiple local ARX model structure for

nonlinear systems based on the collected input and output data

3



Some common assumptions are made all over the different chapters of the thesis

to simplify the problems while still preserving the applicability of the proposed

algorithms. The first assumption requires that the number of sub-models M an

SWARX system has is known a priori. Although under certain circumstances, M

may not be able to be inferred or observed, the number of the sub-models can

still be estimated. For instance, in the experimental example illustrated by Juloski

et al. (2005), based on the analysis of the working mechanism of the pick-and-

place machine, 4 modes are distinguished, which equally means that the value for

M equals 4. The second assumption that has been made is that the local ARX

model structures including the model order, time delay are known in advance. In

system identification, how to select appropriate model structures has been a twin

issue with model parameter estimation as the selected model structures have direct

impact on the parameter estimation accuracy. Different selection criteria such as

AIC has been proposed in other literatures and relevant estimation methods can be

found in Ferrari-Trecate et al. (2003); Nakada et al. (2005); Ljung (1987); Akaike

(1974); Bindlish (2003). Moreover, as discussed in Jelali & Huang (2009), for most

of industrial process, first or second order plus time delay model would be sufficient

in capturing the process dynamics. Hence, in case the local ARX model structures

are not able to be obtained from the process knowledge, the existing algorithms can

be applied to search for the appropriate model structures (Zhu (2001); Kay (2001)).

The switched ARX systems that will be discussed in this thesis can be categorized

into three groups based on their switching patterns and switching dynamics. As

mentioned earlier in this chapter, two types of switching patterns are considered,

abrupt switching and smooth switching/transition in nonlinear processes. Different

identification strategies are proposed in an effort to estimate the system parameters.

Moreover, for systems that switch in an abrupt fashion, further categorization is

made based on the switching dynamics of the system. It will be shown that, for

some switched ARX systems that exhibit complex switching behavior, instead of

treating the switching variable as completely random, the Markov model can be

utilized to model the discrete switching dynamics and it is found that the accuracy

of the estimated parameters is higher. The switched ARX systems with switching

dynamics being modeled as a Markov model are named as switched Markov ARX

systems (SMARX) in the thesis.
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1.3 Brief Introduction to the EM Algorithm

1.3.1 EM Algorithm Revisit

The Expectation-Maximization (EM) algorithm, after being first introduced by

Dempster et al. (1977), has found extensive applications in various areas including

machine learning, computer vision, speech recognition, bioinformatics, psychomet-

rics for finding maximum likelihood estimates of parameters in probabilistic models.

Assume that a complete data set C consists of two parts: {Cobs, Cmis}, Cobs is the

data collected from the process and it is called incomplete data set. Cmis needs to

be estimated from Cobs and is called missing data set. The EM algorithm consists of

two consecutive steps, the first step calculates the Expectation of the complete data

C with respect to the missing data while the second step searches for the parameters

to increase the Expectation of the complete data. Putting the objective of the EM

algorithm in a mathematical form, it can be written as (Dempster et al. (1977)):

L(Cobs, Θ) =

∫
f(C | Θ)dCmis (1.2)

where Θ in Equation 1.2 represents the system parameters while f(·) is the prob-

ability distribution function. In the E-Step, parameter estimation results from the

previous iteration are used to compute the expectation of the complete data likeli-

hood (Dempster et al. (1977))

Q(Θ | Θold) = ECmis|(Θold,Cobs){log L(C, Θ)} (1.3)

where the conditional expectation is defined as EA|B{g(A)} ,
∫

g(A)f(A | B)dA if

A is a continuous random variable; if A is a discrete random variable the integration

is replaced by summation. M-step maximizes the expectation shown in Equation

1.3 with respect to Θ so as to ensure that the newly found ΘNew makes the log

likelihood of the complete data set C non-decreasing, which equally means that

Q(ΘNew | Θold) ≥ Q(Θ | Θold),∀Θ (1.4)

Hence, starting with some initial values of the parameters, the EM algorithm can

ultimately converge to some stationary points after finite steps of iteration. While

EM algorithm has received significant attention in many areas, it is a relatively new

data processing/optimization technique in control engineering. So far, the main

applications of the EM algorithm in process control literature have been mainly

on parameter estimation for nonlinear/switched systems (Chitralekha et al. (2009);

Goodwin & Aguero (2005, 2008)).
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1.4 Thesis Overview

1.4.1 Thesis Contributions

Relevant work on switched systems identification has already been seen and different

methods targeting on the identification of various types of the switched systems have

been proposed (Logothetis & Krishnamurthy (1999); Doucet et al. (2001); Zhu & Xu

(2008); Jin & Huang (2009b); Lee & Poolla (1996); Banerjee et al. (1997); Xu et al.

(2009); Ferrari-Trecate et al. (2003); Nakada et al. (2005)). Paoletti et al. (2007)

gave a nice review on the status of the research on the switched system identification

along with some main methods that have been proposed. As the characteristics that

distinguish the research being performed in this thesis from the other existing work,

the main contributions of this thesis are listed below:

1. Formulate and solve the PWARX system identification problem under the

EM algorithm framework

2. Robustness of the EM algorithm to the outliers is considered and a robust

strategy is proposed for the EM algorithm. In the literature, some EM algorithms

with different robustness strategy have already been suggested to handel the out-

liers (Saldju & Landgrebe (2000); Kalyani & k. Giridhar (2007); Saint-Jean et al.

(2000)). However, the proposed strategy is based on the rigorous contaminated

Gaussian distribution to describe the outliers, leading to an explicit weighted least

square solution.

3. A computationally cost-efficient method is developed for the classification of

un-decidable data points

4. Evaluation of the proposed identification method is performed on a simulated

continuous fermenter as well as a pilot-scale switched control system

5. For SMARX systems identification, the continuous ARX model for process

dynamics and the discrete-valued HMM for switching dynamics are identified simul-

taneously, thus improving both the clustering and identification performance.

6. Apply the EM algorithm to the identification of linear parameter varying

systems and test its performance on nonlinear process modeling.

1.4.2 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 describes the identifica-

tion of Piecewise/Switching ARX process and presents the validation results of the

proposed identification method based on the estimation results from the simulated

examples as well as the experiment performed on a pilot-scale setup. Chapter 3

explains the concept of the SMARX system and renders the identification formu-

lation of the SMARX systems within the EM algorithm framework. Identification
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results from the proposed SMARX identification method are compared against the

other comparative method in terms of the parameter estimation accuracy. Chapter

4 provides the detailed procedures on formulating the LPV system identification

problem within the EM algorithm framework and gives the algorithm verification

results on simulated numerical and chemical engineering examples. Chapter 5 draws

the conclusion based on the work that has been done in this thesis and provides some

perspectives for future research on the switched system identification.
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Chapter 2

Robust Identification of
Piecewise/Switching
Autoregressive eXogenous Process

1 A robust identification approach for a class of switching processes named PWARX

(piecewise AutoRegressive eXogenous) processes is developed in this chapter. It is

proposed that the identification problem can be formulated and solved within the

EM (Expectation-maximization) algorithm framework. However, unlike the regu-

lar EM algorithm in which the objective function of the maximization step is built

upon the assumption that the noise comes from a single distribution, contaminated

Gaussian distribution is utilized in the process of constructing the objective func-

tion which, effectively makes the revised EM algorithm robust to the latent outliers.

Issues associated with the EM algorithm in the PWARX system identification such

as sensitivity to its starting point as well as inability to accurately classify ‘un-

decidable’ data points are examined and a solution strategy is proposed. Data sets

with/without outliers are both considered and the performance is compared between

the robust EM algorithm and regular EM algorithm in terms of their parameter

estimation performance. Finally, a modified version of MRLP (multi-category ro-

bust linear programming) region partition method is proposed by assigning different

weights to different data points. In this way, negative influence caused by outliers

could be minimized in region partitioning of PWARX systems. Simulation as well as

application on a pilot-scale switched process control system are employed to verify

the efficiency of the proposed identification algorithm.

1. This chapter has been published in ”Robust Identification of Piecewise/Switching Autoregressive
eXogenous Process, AIChE Journal, DOI 10.1002/aic.12112”
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2.1 Introduction

Hybrid systems are gaining increasing attention in process control research (Baneqee

& Arkun (1998); P. Mhaskar and N.H. El-Farra and P. D. Christofides (2005); Morari

(2007)). Hybrid systems are dynamic systems in which both continuous and discrete

valued dynamics exist simultaneously. A number of examples on hybrid systems can

be found in fields such as process control, embedded system, electrical circuits, bi-

ological process and so on (Juloski (2004)). In chemical process industry, due to

the inborn complexity of the chemical process as well as wide application of auto-

mated control systems, discrete behavior of the chemical process control system is

commonly experienced (El-Farra & Christofides (2003); El-Farra et al. (2005)). The

intricate interactions between continuous behavior (driven by the underlying phys-

ical laws such as mass and energy conversation) and the discrete events pose great

challenges for both academic researchers and industrial practitioners. Motivated by

the economic, safety and environmental considerations, relevant researches on hy-

brid chemical process modeling (Barton & Pantelides (1994)), optimization (Barton

et al. (2000); Barton & Lee (2004)) and control have been conducted (El-Farra &

Christofides (2003); El-Farra et al. (2005)).

As an important subclass of hybrid systems, PWA (Piecewise affine) system is

receiving a growing interest owing to its capability of describing a large number of

processes by switching among different affine subsystems when state/input comes to

a different region. Furthermore, equivalence of PWA systems to other forms of hy-

brid system models, such as mixed logical dynamical system, linear complementary

systems and max-min-plus-scaling systems has been proved under mild conditions

(Bempoar & Ferrari-Trecate (2000); Heemels et al. (2001)), which further stimulates

the interest in the research of PWA systems. Provided that each affine subsystem

is a linear ARX model, the PWA system can be considered as a PWARX system.

In the past few years, a number of methods for PWARX systems identification

have been put forward. A data clustering based identification algorithm (Ferrari-

Trecate et al. (2003)) has been proposed in which data clustering, linear identifi-

cation and region partition are performed together to identify PWA subsystems as

well as valid region for each subsystem from input-output data. Juloski et al. (2005)

employ a particle filter method to estimate local ARX model parameters by sequen-

tially processing the input-output data. A bounded error method is developed to

solve the identification problem (Bempoard et al. (2005)). After roughly classifying

the data, a further refinement step is taken to get rid of ‘un-decidable’ and infeasible

data points. Nakada et al. (2005) apply a statistical clustering strategy in order

to classify each data point to its relevant regions. An algebraic geometric approach

is introduced for the identification of switched linear hybrid systems (Vidal et al.
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(2003)). In this identification algorithm, the data classification procedure is set to

be independent of the sub-model parameter estimation procedure by using hybrid

decoupling constraint. Ragot et al. (2003) suggest an adaptive weighting method for

iteratively classifying the data points and estimation of local ARX sub-models. An

optimization technique is introduced by Roll et al. (2004). By considering hybrid

system identification as a prediction error minimization problem, they use mixed

integer programming to search for globally optimal identification solution, which

becomes computationally infeasible when facing a large data set.

It can be seen from the analysis above that for the PWARX system identification,

the main issue involved is how to identify each local ARX model when partition of

regression space is controlled by unobservable variable and no relevant priori knowl-

edge is at hand. It needs to be pointed out that Nakada et al. (2005) have used

the regular EM algorithm to cluster the data points by iteratively calculating the

center of different clusters which, to some extent, is similar to the data classification

process presented in Ferrari-Trecate et al.(2003) by using ‘K-means’ like algorithm.

The distinguished features of the method developed in this chapter are 1) By treat-

ing the unobservable data point identity as ‘missing variable’ and formulating the

PWARX system identification within the EM algorithm framework, not only are

the data points from different sub-models classified, but also the local ARX model

parameters are estimated in the same time. This enables us to make full use of the

convergence property of the EM algorithm within finite iteration steps. 2) Robust-

ness of the EM algorithm is considered and a novel strategy for achieving this is

proposed. It is not rare to find outliers in practical applications and the performance

of the regular EM algorithm could deteriorate significantly in the presence of the

statistical outliers (Saldju & Landgrebe (2000)). Therefore, being robust to outliers

is desirable as well as necessary for the EM algorithm.

In real applications, contamination of measurements by noise may lead to mis-

classification of data points which lie far away from region of the intersection area.

For such misclassified data points, they can be viewed as outliers to the misattributed

sub-models and accuracy of parameter estimation can be greatly deteriorated. For

other data points which are classified to the correct sub-model, once they are pol-

luted with abnormal measurement or process noise, they still need to be removed

from data sets for better parameter estimation. A robust parameter estimation

method is applied by weighting every data point so that in local parameter estima-

tion, smaller or even zero weights are given to outliers while normal data points are

granted with much higher weight.

After finishing the data classification and sub-model identification, a robust lin-

ear programming for multi-category discrimination of polyhedral regions (Bennett

& Mangasarian (1994)) is applied. This polyhedral region discrimination method
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has already been employed in Juloski et al (2005) and different data points are

weighted based on their likelihood to be undecidable. However, only considering

those undecidable data points may not be sufficient as we have found that misclassi-

fication could also happen for data points which lie far away from intersection area.

To reduce the effect of the outliers that may be present in data clusters, weights

obtained in robust parameter estimation are used for each data point in the region

partition stage.

When PWARX systems are considered, we assume that the switching of the

system is triggered by different operating regions of the input and output although

we do not know in advance how the region of the input and output is partitioned.

However, if the switching mechanism of the system can not be represented by re-

gressor space partition, the switched system would be regarded as switching along

the time. This provides a more general way of treating the switched system. In this

chapter, we also apply the proposed PWARX system identification algorithm to a

simulated continuous fermenter as well as an experimental switched control system

upon which two controllers with different characteristics operate alternatively. The

identification results verify the validity of the proposed identification algorithm and

show the potential of its usage in identification of various kinds of switched linear

system.

The main contribution of this chapter are: 1) Formulate and solve the PWARX

system identification problem under the EM algorithm framework. 2) A robust

strategy is proposed for the EM algorithm. In the literature, some EM algorithms

with different robustness strategy have already been suggested to handel the out-

liers (Saldju & Landgrebe (2000); Kalyani & k. Giridhar (2007); Saint-Jean et al.

(2000)). However, the proposed strategy is based on the rigorous contaminated

Gaussian distribution to describe the outliers, leading to an explicit weighted least

square solution. The effectiveness of the robust procedure in resisting the abnormal

data/outliers is demonstrated through comparison with the existing bench-marking

method. 3) A computationally cost-efficient method is developed for the classifi-

cation of un-decidable data points. 4) Evaluation of the proposed identification

method is performed on a simulated continuous fermenter as well as a pilot-scale

switched control system. The capability of the proposed PWARX system identifi-

cation algorithm in handling switched linear systems is demonstrated.

The remainder of the chapter is organized as follows: In section 2, the PWARX

system is formulated and several fundamental issues regarding the identification are

explained through an example. Section 3 gives an overall introduction to the EM

algorithm and formalizations for the identification of PWARX systems are obtained

based on an improved version of the EM algorithm. An approach to initialize the

EM algorithm together with a data classification refinement procedure is given in
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section 4. Section 5 focuses on the derivation of robust parameter estimation for each

sub-model parameters with reclassified data points. Effectiveness of the proposed

algorithm is demonstrated in section 6 through an illustrative simulation example.

Section 7 illustrates a potential application of the proposed algorithm in chemical

process operation monitoring and process modeling. Section 8 explains how a pro-

cess control experiment is performed and the way the proposed PWARX system

identification method is employed in the analysis of the experimental data. Section

9 draws the conclusion.

2.2 Problem Statement

As an important subclass of PWA systems, a PWARX system is formulated asFerrari-

Trecate et al. (2003); Juloski et al. (2005); Roll et al. (2004):

yk =





θT
1

[
xk

1

]
+ ek, xk ∈ χ1

...

θT
M

[
xk

1

]
+ ek, xk ∈ χM

, k = 1, 2 . . . N (2.1)

where N, M represent number of data points collected and number of sub-models

respectively , yk ∈ R is the output, xk ∈ Rn is the regressor which consists of past

input and output,

xk = [yk−1 yk−2 · · · yk−na uT
k−1 uT

k−2 · · · uT
k−nb]

T (2.2)

where na and nb are orders of the output and input, u ∈ Rm is the input and

n = na + m · nb . ek ∈ R is Gaussian distributed noise with zero mean and vari-

ance σ2. θi ∈ Rn+1 is the parameter vector of the ith sub-model and {χi}M
i=1 is the

polyhedral region of the input-output space. Given the number of sub-model M, the

PWARX system identification problem can be stated as:

Problem: Assigning each data point in data set (xk, yk), k = 1, 2 . . . N to one of M

sub ARX models and identifying the parameter vector {θi}M
i=1 along with polyhedral

region {χi}M
i=1 for each local ARX model.

It is assumed that the number of sub-models M and the order of each sub-model

(ARX) are given a priori . In the case that the number of sub-models is unknown,

there also exist methods to estimate it (Ferrari-Trecate et al. (2003); Nakada et al.

(2005)). On the other hand, if the orders of the sub-ARX models are unknown

, fixed high-order ARX models can be used since a sufficiently high-order ARX
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Figure 2.1: Data set generated by the PWARX system expressed in 2.3

model can approximate any linear dynamic system (Ljung (1987)). This chapter

will however focus on the robust identification problem for the PWARX models

given the assumptions stated above.

Example 1. Consider the following bimodal PWARX example which is used in

Juloski et al (2005),

yk =





[
0.5 0.5

] [
xk

1

]
+ ek, xk ∈ [−2.5 0]

[−1 2
] [

xk

1

]
+ ek, xk ∈ [0 2.5]

, k = 1, 2 . . . N (2.3)

Let N = 200 and the data set (xk, yk), k = 1, 2 . . . 200 is generated by the bimodal

PWARX system expressed by Equation 2.3. ek ∼ N(0, 0.025) and input xk follows

a uniform distribution between [-2.5 2.5]. Figure 2.1 shows the data set.

From Figure 2.1, it can be seen that the polyhedral boundary that separates

two regions is the y-axis given by {x = 0} and the regressor x is a scalar in this

specific case. We will use this simple example to illustrate the PWARX identification

problem.

2.3 EM Algorithm

2.3.1 Formulation of The PWARX System Identification
Problem Based On The EM Algorithm

A brief introduction of the EM algorithm has been given in Chapter 1. It can be

seen that the calculation of the expectation of the complete data C plays a key role
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as it provides the objective function for the maximization step of the EM algorithm.

The formulation for the PWARX system identification under regular and robust EM

algorithms is given in the following two sections.

Regular EM Algorithm

Define Zk = {xk, yk}, k = 1, 2 . . . N as the observed data set generated from a

PWARX system. Therefore, for data Zk, its conditional probability equals (Mclach-

lan & Krishnan (1996))

P (Zk | Zk−1 . . . Z1) =
M∑
i=1

αiP (Zk | θi, Zk−1 . . . Z1) (2.4)

where αi is the probability that ith sub-model takes effect. As Cobs in the PWARX

system is the observed dataset Zk = {xk, yk}, k = 1, 2 . . . N , the maximum likelihood

equation for system parameter estimation is

max
Θ

L(Cobs, Θ) = max
Θ

P (Cobs | Θ)

= max
θi,i=1...M

N∏

k=1

M∑
i=1

αiP (Zk | θi, Zk−1 . . . Z1) (2.5)

To simplify the problem, rather than maximizing the likelihood function directly,

one usually maximizes the log likelihood function,

max
Θ

log L(Cobs, Θ) = max
Θ

log P (Cobs | Θ)

= max
θi,i=1...M

N∑

k=1

log
M∑
i=1

αiP (Zk | θi, Zk−1 . . . Z1) (2.6)

The parameters may be estimated from Equation 2.6 by brute force maximiza-

tion, but this optimization is still difficult.

To make the problem tractable and solve the maximum likelihood estimation

problem, we introduce I = {I1, I2, . . . , IN} as a ‘missing variable’ to denote the

sub-model identity of each data point. Following Equation 1.3, the expression for

expectation of complete data C = {Cobs, I} is:

Q(Θ | Θold) = EI|(Θold,Cobs){log P (Cobs, I | Θ)}
= EI|(Θold,Cobs){log P (ZN , ZN−1 . . . Z1, IN . . . I1 | Θ)}

= EI|(Θold,Cobs){log
N∏

k=1

P (Zk, Ik | Zk−1, . . . Z1, Ik−1, . . . I1, Θ)}

= EI|(Θold,Cobs){log
N∏

k=1

P (Zk | Zk−1, . . . Z1, Ik, . . . I1, Θ)P (Ik)}

= EI|(Θold,Cobs){
N∑

k=1

log[αIk
P (Zk | θIk

, Zk−1 . . . Z1)]} (2.7)
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where αIk
represents the probability that Zk comes from the Ikth sub-model. Here,

Ik ∈ {1, 2 . . . M} represents the true sub-model that Zk comes from. In deriv-

ing Equation 2.7, we have used the fact that P (Zk|Zk−1, . . . , Z1, Ik, . . . , I1, Θ) =

P (Zk|Zk−1, . . . , Z1, Ik, Θ) since Ik completely determines which sub-model that Zk

belongs to. We have also used the equation P (Ik | Zk−1, . . . Z1, Ik−1, . . . I1, Θ) =

P (Ik); namely switching between the sub-models is completely random and does

not depend on which sub-model the system takes in previous instants.

By moving the Expectation operator inside the summation, Equation 2.7 be-

comes

Q(Θ | Θold) =
N∑

k=1

EI|(Θold,Cobs){log αIk
+ log P (Zk | θIk

, Zk−1 . . . Z1)}

=
N∑

k=1

M∑
i=1

P (Ik = i | Θold, Cobs) log αi

+
N∑

k=1

M∑
i=1

P (Ik = i | Θold, Cobs) log P (Zk | θi, Zk−1 . . . Z1) (2.8)

where P (Ik = i | Θold, Cobs) in Equation 2.8 denotes the probability that the kth

data point comes from the ith sub-model, and can be derived following the Bayes

rule as

P (Ik = i | Θold, Cobs) = P (Ik = i | Θold, Zk, Zk−1, . . . , Z1)

=
P (Zk | Ik = i, Θold, Zk−1, . . . , Z1)P (Ik = i | Θold, Zk−1, . . . , Z1)∑M
i=1 P (Zk | Ik = i, Θold, Zk−1, . . . , Z1)P (Ik = i | Θold, Zk−1, . . . , Z1)

=
P (Zk | θold

i , Zk−1, . . . , Z1)P (Ik = i)∑M
i=1 P (Zk | θold

i , Zk−1, . . . , Z1)P (Ik = i)

=
αiP (Zk | θold

i , Zk−1, . . . Z1)∑M
i=1 P (Zk | θold

i , Zk−1 . . . Z1)αi

(2.9)

For notational simplicity, we will use Pk,i, namely the probability that the kth data

point comes from the ith sub-model, to denote P (Ik = i | Θold, Cobs) in the remainder

of the chapter.

Let x̄k =

[
xk

1

]
, then for the PWARX system, log P (Zk | θi, Zk−1 . . . Z1) in Equa-

tion 2.8 equals

log P (Zk | θi, Zk−1 . . . Z1) = log
1√
2πσ

exp−
1

2σ2 (yk−θT
i x̄)T (yk−θT

i x̄)

= − log
√

2πσ − 1

2σ2
(yk − θT

i x̄)T (yk − θT
i x̄) (2.10)

Therefore, substituting Equation 2.10 of log P (Zk | θi, Zk−1 . . . Z1) in the second

term on the right hand side of Equation 2.8, after computing Equation 2.9 by using
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previous estimation of θold
i and αold

i , and then taking it into the right hand side of

Equation 2.8, we get the expectation of complete data Q(Θ | Θold).

For the M-step of the EM algorithm, derivatives are taken with respect to αi,

θi and noise variance σ2 in an effort to maximize the likelihood of the parameters

given the observed data. After several steps of algebraic manipulations, expressions

for θi, αi and σ2 at each iteration can be derived as:

θNew
i =

∑N
k=1 Pk,ix̄kyk∑N

k=1 Pk,ix̄kx̄k
T

(2.11)

αNew
i =

∑N
k=1 Pk,i

N
(2.12)

(σNew)2 =

∑N
k=1

∑M
i=1 Pk,i(yk − (θNew

i )T x̄k)
T (yk − (θNew

i )T x̄k)∑N
k=1

∑M
i=1 Pk,i

(2.13)

Pk,i is updated using value of (θi)
New, (αi)

New and (σNew)2 , and then the updated

Pk,i can be used for the calculation of E-step in the next iteration.

If we take a look back at Equation 2.11, it can be found that this is a typical

quadratic minimization problem and the method of weighted least squares has been

used unconsciously to find the parameters (θi)
New for each local ARX model. As a

matter of fact, Equation 2.11 could be transferred into classic results in weighted

least squares,

(θi)
New = (X̄T WX̄)−1X̄T WY (2.14)

where X̄ =

[
x1 . . . xN

1 . . . 1

]

(n+1,N)

, Y =
[
y1 y2 . . . yN

]
(N,1)

,

W =




P1,i 0 . . . 0

0 P2,i . . .
...

...
...

. . . 0
0 0 0 PN,i




(N,N)

is weighting matrix for each data point with di-

mension (N,N). Therefore, for PWARX systems, the EM algorithm works as a com-

bination of weight updating (which is E-step) and weighted least squares (which is

M-step).

Robust EM Algorithm

It is noticed that in the maximization step of the regular EM algorithm for PWARX

systems identification, an assumption that the residual errors follow the single nor-

mal distribution is made. The resulted maximization step of the regular EM algo-

rithm is essentially an ordinary least squares procedure as shown in Equation 2.14.

However, if the data set contains outliers, which is not uncommon is real applica-

tions, ordinary least squares could fail and parameter estimation results obtained

from it can be misleading (Tjoa & Biegler (1991)).
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To offset the negative influence brought by outliers, the maximum likelihood

objective function for parameter estimation is built based on a mixture distribution

function (Tjoa & Biegler (1991); Albuquerque & Biegler (1996); Ragot et al. (2005))

instead of single normal distribution as being used in the maximization step of

the regular EM algorithm. This mixture distribution function is also known as a

contaminated Gaussian distribution.

As a result, P (Zk | θi, Zk−1 . . . Z1) in Equation 2.10 can be written as:

P ((xk, yk) | θi, (xk−1, yk−1) . . . (x1, y1)) = P (ek)

= mP (eregular
k ) + (1−m)P (eoutlier

k ) (2.15)

In Equation 2.15, error e consists of two parts: error introduced by regular noise

eregular and error caused by irregular noise or outlier eoutlier, and m is the probability

that the noise is the regular noise.

Setting that the ratio of noise variance between eoutlier and eregular equals d2 and

d À 1 , Equation 2.15 can be further written as:

P (ek) = m
1√
2πσ

exp−0.5
eT
k ek
σ2 +

1−m

d

1√
2πσ

exp
−0.5

d2

eT
k ek
σ2 (2.16)

Take the logarithm of Equation 2.16 and substitute it into the right hand side

of Equation 2.8. Again, for the M-step of the robust EM algorithm, derivatives

are taken over θi, αi and noise variance σ2 so as to ensure that Equation 1.4 is

always satisfied. After several steps of mathematical manipulation, the equation for

calculating new θi is:

θi =

∑N
k=1 Pk,iwk

[
xk

1

]
yk

∑N
k=1 wk

[
xk

1

] [
xk

1

]T
= (XT WX)−1XT WY (2.17)

where in Equation 2.17 wk =
m

P (e
regular
k

)

σ2 +(1−m)
P (eoutlier

k )

d2σ2

mP (eregular
k )+(1−m)P (eoutlier

k )
,

W =




P1,iw1 0 . . . 0

0 P2,iw2 . . .
...

...
...

. . . 0
0 0 0 PN,iwN




(N,N)

, X =




x1 1
...

...
xN 1




N,2

and Y =




y1
...

yN




N,1

.

From Equation 2.17, it can be seen that for different data points, different weights

are given based on their measurement noise as well as the probability of coming

from the ith sub-model. Starting from an initial guess of the system parameters

θinitial
i , i = 1, 2 . . . M , the robust EM algorithm iterates and usually converges within

finite iterations.
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Table 2.1: Comparison of identified results with different staring points
Starting Point Identified Parameters

θini1 =

[
0.800 −0.839
−0.116 −0.156

]
θiden1 =

[−0.998 1.999
0.517 0.521

]

θini2 =

[
0.385 0.922
−0.919 0.059

]
θiden2 =

[
0.770 1.013
0.117 0.032

]

The priori knowledge of m, d and the covariance of data set σ2 is not required

since m and d can normally be set to between 0.7 - 0.9 and 10 - 15 respectively

(Albuquerque & Biegler (1996)) and σ2 has already been estimated in the EM

algorithm using Equation 2.13. Furthermore, Farris et al (1979) pointed out that

the robust parameter estimation procedure is not very sensitive to the values of m

and d.

2.4 Initialization of EM Algorithm and Refine-

ment of Data Classification

2.4.1 Initialization of EM Algorithm

Even though it is guaranteed that EM algorithm can converge to a stationary point

after steps of iteration, there is no guarantee that this stationary point is a global or

even local maxima. It may turn out to be a saddle point, and starting point plays

an important role in determining what the convergence point of the EM algorithm

would be (Mclachlan & Krishnan (1996); Biernacki et al. (2003)).

To demonstrate the importance of the starting point for the EM algorithm, by

using equations obtained in section 3, Example 1 is identified using the EM algorithm

with different starting points.

The true parameters of the PWARX system are: θtrue =

[
θT
1

θT
2

]
=

[−1 2
0.5 0.5

]

It is shown in Table 2.1 that the EM algorithm could converge to totally different

results under different starting points. This uncertainty in the performance of the

EM algorithm introduced by the starting point has to be resolved as dependency on

the initial conditions is undesirable for an identification algorithm.

Among various initializing strategies, pre-running of the EM algorithm for several

times with randomly selected starting points before entering the main EM step

is most widely used owing to its simplicity and efficiency. After taking h trials

for pre-running, the one with the largest likelihood would be chosen as the initial

condition for the main EM algorithm. To balance the computation time spent on

the initialization step and goodness of the initial condition obtained, the stopping
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condition has to be appropriately defined (Biernacki et al. (2003)):

L(C, Θ)m − L(C, Θ)m−1

L(C, Θ)m − L(C, Θ)1
≤ l (2.18)

where L(C, Θ) denotes the complete data likelihood and l is a stopping value which

can be tuned.

2.4.2 Refinement of Data Classification Result

A classification refinement procedure was proposed in order to deal with ‘un-decidable’

data points by Bempoard et al(2005). It uses bounded error along with spatial

location information of ‘un-decidable’ data points to achieve data reclassification.

However, given tens of thousands of data points, we found that it is computationally

formidable by searching through every data point instead of focusing on only those

‘un-decidable’ data points. Hence, in this chapter, ‘certainty’ of each data point is

defined based on the probability value Pk,i, k = 1, 2 . . . N , i = 1, 2 . . . M obtained in

the EM algorithm and ‘un-decidable’ data points are determined in terms of their

‘certainty’ level.

Data clustering in the EM algorithm is realized by comparing Pk,i, i = 1, 2 . . .M

for the kth data and finding the largest Pk,i among all possible modes.

modek = arg max
i

Pk,i, k = 1, 2, . . . N, i = 1, 2, . . . M (2.19)

Through Equation 2.19, the mode that each data point belongs to can be deter-

mined.

However, the data point such as those displayed in Figure 2.2, which lie in the

greyed zone, may be classified to either of the two sub-models, and most of time,

the classification result can be quite random as it is greatly influenced by the noise

level. Hence for the data points lying in the interaction area among several sub-

models, they are normally ‘un-decidable’ and misclassification can happen with a

great chance.

Therefore, a refinement is needed to deal with those ‘un-decidable’ data points.

Here, we propose to use ‘certainty’ level of each data point to denote the probability

that a data point is ‘un-decidable’. The lower the ‘certainty’ is, the more likely the

data point is ‘un-decidable’. The certainty of the kth data point is defined as,

Certainty(Zk) = | log
Pk,imin

Pk,jmin

| (2.20)

(imin, jmin) = arg min
i,j
| log

Pk,i

Pk,j

|, i = 1, 2 . . . M − 1 j = i + 1, . . . M (2.21)

In Equation 2.21, the probability of a data point belonging to each sub-model is

compared and a pair of sub-models {imin, jmin} with closest probabilities are picked.
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Figure 2.2: An explanation figure for ‘un-decidable’ data points generated by the
bimodal PWARX system in Example 1

When probability between this couple of sub-models is equal, which implies that the

data can be attributed to either sub-model, the ‘certainty’ value obtained through

Equation (Equation 2.20) will be zero. Hence, in this way, ‘un-decidable’ data points

can be sorted out effectively using this ‘certainty’ metric so that in the following clas-

sification refinement procedure, only those ‘un-decidable’ data with low ‘certainty’

levels are considered. The procedure for the refinement of ‘un-decidable’ data points

classification result is:

Step1 : Check ‘certainty’ level of the kth data point, if it is lower than some specified

level lb, then go to step 2; otherwise check (k + 1)th data until it reaches N.

Step2 : Collect p data points that are closest to the kth data point in terms of the

Euclidean distance.

Step3 : For these (p+1) data points, label them as q = 1, 2 . . . p+1, the probabilities

Pq,i of those data points classified to the same ith sub-model are added up, and the

sub-model with the highest sum is taken as the new sub-model identity for this kth

data point. This is based on the similarity principle. Namely, a data point that

has low certainty value is classified to the same sub-model as its closest decidable

neighbors tend to belong.

Step4 : If k < N , go back to step 1; otherwise stop and exit the refinement proce-

dure.

As an illustration, set lb = 2 and p = 0.1∗N , the refinement procedure is applied

to Example 1 to show its effectiveness in correcting the misclassified ‘un-decidable’

data.

As we can see from Figure 2.3, some misclassifications have occurred in the in-
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Figure 2.3: Comparison of data classification results before and after refinement
procedure for Example 1

tersection area between two sub-models, and the refinement procedure can reclassify

those misclassified data to the correct mode by exploring their spatial information.

2.5 Robust Parameter Re-estimation of Local Mod-

els and Region Partition

2.5.1 Robust Parameter Re-estimation of Each Local ARX
Model

The reclassification procedure introduced above can effectively reduce the chance

of misclassification for the ’un-decidable’ data points located in the intersection

areas of different sub-models by exploring the spatial information of those data

points. This provides us an opportunity that by applying linear regression techniques

such as ordinary least squares to each reclassified cluster, more accurate parameter

estimation results could be obtained. However, if the data set of a local ARX model

contains outliers, as pointed out earlier in the robust EM algorithm section, ordinary

least squares can suffer. These outliers mainly come from two sources:

1. Measurements of process variables may be corrupted by occasional outliers such

as noise spikes that come along with normal noise. These data may be clustered in
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a correct group but they deviate significantly from the rest of data within the same

group.

2. Occurrence of misclassification which mistakenly assigns data points to sub-

models other than the one they truly belong to.

Therefore, it is necessary to employ another robust parameter estimation method

so as to immunize the parameter estimation procedure from the outliers in each

clustered data set. Here, once again, contaminated Gaussian distribution is utilized

as the assumption for the residual errors and it is expected that by granting small

weights to the abnormal data points, the identified local ARX models can better

represent the dynamics of the system.

Let Zn,i = {xn,i, yn,i}, i = 1, 2 . . . M , n = 1, 2 . . . Ni , where Ni represents the

number of data points assigned to the ith sub-model. Assume that the sampling

instant of Zn,i is mn, following the same approach as being introduced in section 2,

the likelihood function would be:

Ji =

Ni∏
n=1

P (Zmn | θi, Zmn−1, Zmn−2 . . . Z1)

=

Ni∏
n=1

P (xmn , ymn) | θi, (xmn−1, ymn−1) . . . (x1, y1)) (2.22)

For an ARX model, we have

yn,i = θT
i

[
xn,i

1

]
+ en,i, i = 1, 2 . . . M, n = 1, 2 . . . Ni (2.23)

Considering that the noise en,i follows the contaminated Gaussian distribution which

consists of regular noise eregular and irregular noise eoutlier, following the same way

as having been done in the M-step of the robust EM algorithm, the expression for

θi is:

θi =

∑Ni

n=1 wn,i

[
xn,i

1

]
yn,i

∑Ni

n=1 wn,i

[
xn,i

1

] [
xn,i

1

]T
= (XT

i WiXi)
−1XT

i WiYi (2.24)

where wn,i =
m

P (e
regular
n,i

)

σ2 +(1−m)
P (eoutlier

n,i )

d2σ2

mP (eregular
n,i )+(1−m)P (eoutlier

n,i )
, Xi =




x1,i 1
...

...
xNi,1 1




Ni,2

, Yi =




y1,i
...

yNi,i




Ni,1

, Wi =




w1,i · · · 0
...

. . .
...

0 · · · wNi
, i




Ni,Ni

. If error en,i satisfies Tjoa & Biegler (1991)

mP (eregular
n,i ) > (1−m)P (eoutlier

n,i ) (2.25)

Zn,i can be treated as a normal data point and a relatively high weight wn,i
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2.5.2 Region Partition

In addition to data clustering and local ARX model parameter estimation, polyhe-

dral region {χ}M
i=1 in which each sub-model takes effect should also be estimated in

order to complete the identification of a PWARX system. Here, we use the MRLP

algorithm which is introduced by Bennett et al (1994). The rationale behind this

method is that for the data point Zn,i = {xn,i, yn,i}, n = 1, 2, . . . Ni that belongs to

region i, the following Equation always holds (Bennett & Mangasarian (1994)):

xn,i(ωi − ωj) > γi − γj, i, j = 1, 2 . . . M, i 6= j (2.26)

or equivalently

xn,i(ωi − ωj) ≥ γi − γj + 1, i, j = 1, 2 . . . M, i 6= j (2.27)

where ωi , ωj,γi and γj are parameters of hyperplane that separates region χi and χj

. The hyperplane that separates χi and χj satisfies xn,i(ωi − ωj) = γi − γj . Define

Gi,j
n = max(−xn,i(ωi − ωj) + (γi − γj) + 1, 0) (2.28)

Then a linear objective function can be defined as:

Jrp = min
ωi,γi

M∑
i=1

M∑

j=1,i6=j

Ni∑
n=1

Gi,j
n (2.29)

where Ni denotes the number of data points classified to the ith sub-model. Nor-

mally, Gi,j
n should always be zero when Equation 2.29 holds. However, if misclas-

sification of data occurs, Equation 2.28 or 2.29 will be violated, which means that

Gi,j
n is larger than zero. As a result, the accuracy of region partition results from

linear minimization Equation 2.29 could be reduced because of those misclassified

data points.

As discussed in the robust parameter estimation section, weights for data points

that are suspicious of being outliers are small or even equal to zero. These weights

can be used to weight each data point in Equation 2.29. Therefore, a new objective

equation would be:

Jrp = min
ωi,γi

M∑
i=1

M∑

j=1,i6=j

Ni∑
n=1

wn,iG
i,j
n (2.30)

To summarize, the complete framework of the algorithm introduced in this chap-

ter is shown as Figure 2.4,

Returning to Example 1, the initial variance σ2
ini is arbitrarily chosen as 0.04.

Based on the recommendation given in Biernacki et al.(2003), the stopping condition

l and pre-running times h are set to be 0.01 and 10 respectively. For lb and p, we
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Figure 2.4: Framework of robust PWARX system identification using EM algorithm

Table 2.2: True bimodal PWARX system parameters and estimated parameters
θ1 θ1regularEM θ1robustEM θ1WLS θ2 θ2regularEM θ2robustEM θ2WLS

-1 -0.9845 -0.9886 -0.9886 0.5 0.5047 0.5115 0.5115
2 2.0418 2.0392 2.0392 0.5 0.5435 0.5541 0.5540
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find that, in general, the un-decidable data points can be effectively detected and

classified with the choice of lb = 2 and p = 0.1∗N . Applying the proposed algorithm

to Example 1, we obtain the results shown in Table 2.2.

θregularEM and θrobustEM in Table 2.2 are the parameter estimation results from

the regular EM algorithm, robust EM algorithm respectively. θWLS is obtained by

applying the robust parameter estimation procedure to the reclassified data clusters.

The final estimation of variance σ̂2 = 0.0278 while true data variance equals σ2 =

0.025. As no outliers are added in the data set, the estimation result from the

regular EM algorithm is similar to its robust counterpart as well as robust parameter

estimation procedure. The region partition result is x = −0.00258.

2.6 A More Complex Simulation Example

Consider the following PWARX system with 3 sub-models (Bempoard et al. (2005);

Nakada et al. (2005)):

yk =





[−0.4 1 1.5
] [

xk

1

]
+ ek, xk ∈ χ1

[
0.5 −1 −0.5

] [
xk

1

]
+ ek, xk ∈ χ2

[−0.3 0.5 −1.7
] [

xk

1

]
+ ek, xk ∈ χ3

, k = 1, 2 . . . N (2.31)

where the regressor xk =

[
y(k−1)

u(k−1)

]
. Region partition is given by

χ1 = {[4 − 1]x + 10 < 0

χ2 =

{
[−4 1]x− 10 ≤ 0
[5 − 1] x− 6 ≤ 0

}

χ3 = {[−5 − 1]x + 6 ≤ 0}

Hence, the hyperplane of the PWARX system is shown in Figure 2.5.

In order to test the capability of the algorithm in handling outliers, certain

percentage of outliers are added to a data set generated by the PWARX system.

Set total number of data points N = 300 in which around 10 percents are outliers.

Regular Normal distributed noise ek ∼ N(0, 0.05) is chosen while initial guess of

noise variance σ2
ini is arbitrarily set 0.03. The input uk follows a uniform distribution

between [−5 5]. Let lb = 2, p = 0.1 ∗ N , l = 0.01, h = 10, m = 0.9 and d2 = 60,

then apply the algorithm to the data set and data classification result is shown in

Figure 2.6.

In Figure 2.6, we can see that before the refinement procedure, some misclas-

sification occurs at the intersection of different sub-models (those ‘floating’ circle
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Figure 2.5: Hyperplane of the PWARX system
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Figure 2.6: Comparison of data classification result before and after refinement
procedure (Cross points denote the true mode of each data point, circle points
represent classification results before refinement and square ones are the results
after classification refinement)
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Table 2.3: Comparison of estimated parameters using different methods with outliers
in the data set

θ1 θ1regularEM θ1robustEM θ1WLS θ2 θ2regularEM θ2robustEM θ2WLS

-0.4 -0.538 -0.516 -0.405 0.5 0.3 0.442 0.454
1 1.028 1.021 1.017 -1 -0.988 -1.0 -0.997

1.5 0.904 0.972 1.397 -0.5 -0.511 -0.524 -0.514

θ3 θ3regularEM θ3robustEM θ3WLS

-0.3 -0.229 -0.302 -0.296
0.5 0.508 0.486 0.498
-1.7 -2.049 -1.657 -1.687

points) and it is partially eliminated after the refinement procedure. Parameter

estimation results from different estimation methods are listed in Table 2.3.

where θi, i = 1, 2, 3 are the real parameters of its corresponding sub-model re-

spectively. The subscript regularEM stands for the parameters estimated from the

regular EM algorithm; subscript robustEM represents the parameter estimation re-

sults obtained from the robust EM algorithm; θWLS denotes the identification results

after applying the robust parameter estimation procedure to the reclassified data

points. As can be seen in Table 2.3, the estimation from the regular EM algorithm

for some parameters is greatly influenced by outliers while, on the other hand, the

robust EM algorithm θrobustEM and the robust parameter estimation θWLS exhibit

sufficient robustness to resist the negative influence brought by outliers. However,

from the estimation results of θ1, in which robust parameter estimation procedure

outperforms the robust EM algorithm in terms of parameter estimation accuracy, it

can be seen that the classification refinement procedure can effectively improve the

performance of the parameter estimation.

Finally, transfer the weights obtained in robust parameter estimation to the

region estimation procedure, the regressor partition results are obtained as:

The estimated hyperplane between χ1 and χ2 is λ̂12x + 1 = 0, λ̂12 = [0.33− 0.1087]

while χ2 and χ3 are separated by the hyperplane λ̂23x+1 = 0, λ̂23 = [−0.823−0.152].

It is noticed from Equation 2.31 that the true hyperplane that separates χ1 and χ2

is λ12x + 1 = 0, λ12 = [0.4 − 0.1], and χ2, χ3 are separated by λ23x + 1 = 0,

λ23 = [−0.83− 0.167].

2.7 Application Example: Continuous Fermenta-

tion Reactor

Discontinuous behavior of the chemical process may originate from its inherent

physicochemical discontinuities(such as phase changes, flow reversals, and shocks)

or some interventions/disturbances from outside world(such as human or controller
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manipulation, changes in raw materials). These discrete events drive the system

traveling among various operating regimes featured by different dynamics. In op-

timal control of plant grade transition, the governing process dynamics during the

plant transition period can vary dramatically and as a result, the performance of

the model based controller may deteriorate greatly if only one single local model is

utilized. Hence, being able to detect the changes of process dynamics and identify

the relevant local models under different operating regimes could be critical in some

applications.

To illustrate potential applications of the proposed identification method for

chemical process, a continuous fermentation reactor is given in this section (Henson

& Seborg (1992a); Gugaliya et al. (2005); Venkat et al. (2003)). The fermenter con-

sists of two inputs and three outputs, namely feed substrate concentration (u1),

dilution rate (u2) and biomass concentration (y1), substrate concentration (y2),

production concentration(y3). Following the same parameter setting and normal

operating conditions given by Gugaliya et al.(2005), a single input, single output

(SISO) model between dilution rate (u2) and biomass concentration (y1) is identi-

fied. To ensure the local linearity of the identified model, a random binary signal

with appropriate amplitude (from 0.1636h−1 to 0.19h−1) is designed for the input

u2. Assume that the feed substrate concentration u1 fluctuates between its nomi-

nal value 20kg/m3 and 26.5kg/m3 and cannot be tracked in a timely manner, the

process dynamics under different u1 values are compared and the step responses are

shown in Figure 3.4

As can be seen from Figure 3.4, the dynamics of the model under different feed

substrate concentration values exhibit different characteristics, including process

gain, time constant as well as steady state values. This indicates the necessity of

detecting and identifying the switching process model in order to achieve satisfactory

control performance. Let the feed substrate concentration change between 20kg/m3

and 26.5kg/m3 randomly, adding white noise which is about 1% of the noise-free

output in power. The obtained output and input data are shown in Figure 2.8

In this case, the switching frequency of the input signal is determined based

on the minimum time constant of all the sub-models. Distinct dynamics coexist

in the output data set shown in Figure 2.8 owing to the change of feed substrate

concentration. Passing the data set through the proposed algorithm, the identified

models as well as self-validation results are shown in Figure 2.4 and Figure 3.7.

Due to the discrepancy of process behavior under different feed substrate concen-

tration values (20kg/m3 and 26.5kg/m3 in this case), we are able to classify the data

point at each instance to its clusters featured with different u2 values. As a result,

we can detect the grade change of the raw materials by analyzing and clustering

the data. For the data set shown in Figure 2.8, 80% of the data points have been
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Figure 2.7: Input-Output data of the continuous fermenter. Dash line represents
the step response when u1 = 20, solid line denotes the step response when u1 = 26.5
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Figure 2.8: Input-Output data of the continuous fermenter
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Table 2.4: Identified models under different feed substrate concentrations
Feed substrate concentration Identified model from u2 to y1

20kg/m3 yk = 1.6550yk−1 − 0.6842yk−2 − 6.4345uk−1

+6.0230uk−2 + 0.2676
26.5kg/m3 yk = 1.9010yk−1 − 0.9034yk−2 − 5.7619uk−1

+5.6314uk−2 + 0.0374
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Figure 2.9: Comparison between model prediction and the true data, self validation
MSE=0.0155. Dotted line represents prediction from identified models, Solid line
denotes the true data from the fermenter.
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Figure 2.10: Comparison between model prediction and the true data when u2 =
26.5kg/m3, cross validation MSE=0.008. Dashed line represents prediction from
identified models, Solid line denotes the true data from the fermenter.

classified to the right mode, which equally means that we may be able to indirectly

infer the value of feed substrate concentration correctly during 80% of the operating

time.

To further validate the identified models, cross validation for both identified

models is performed using newly generated data set under different u2 values. The

validation results are given in Figure 2.10 and Figure 2.11.

Satisfactory cross validation results demonstrate the capability of the proposed

identification algorithm in handling the process which exhibits various distinct dy-

namics owing to the influences from diverse sources. Detection of the process change

not only facilitates the monitoring of the process operation by informing us with

happening of dramatic change in operating condition (feed substrate concentration

change in this case), but also provides us with deeper perspective on the process

itself during the operation (such as whether phase change happens). Moreover, mul-

tiple local models identified through the algorithm can also be used by model-based

optimal controllers so that decent control performance could always be achieved

regardless of the switching of process dynamics.
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Figure 2.11: Comparison between model prediction and the true data when u2 =
20kg/m3, cross validation MSE=0.00366. Dashed line represents prediction from
identified models, Solid line denotes the true data from the fermenter.
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Figure 2.12: Schematic diagram of the tank system with switched controller

2.8 Identification of An Experimental Switched

Process Control System

As a typical form of switched linear systems, the PWARX system switches because

its input and output come to different domains as mathematically formulated in

Equation 2.1. Provided that no prioir knowledge regarding the triggering signal

of the switched system is at hand, time could be considered responsible for the

switching of the system. This grants us a general way of treating the switched

linear system and the proposed PWARX system identification algorithm can be

applied to such a switched system without need of further modification.

The tank system is a pilot scale setup on which two switching level controllers

with different characteristics are installed in an effort to maintain the level of the

tank. The schematic diagram is shown in Figure 2.14:

By controlling the speed of the pump, the level controller can manipulate the

inlet water flow rate of the tank so as to control its level. The closed loop step

response under each of the two level controllers is given in Figure 2.13.

It can be seen that both controllers do not have any offset in tracking the set-

point, which equally means that the steady state gains of the control loop under

both controllers are one. However, apparent difference is observed in terms of their

transient response to the setpoint change; in other words, the dynamics of the closed
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Figure 2.13: (a) Step response of controller 1 (b) step response of controller 2

loop process under different controllers are different. Hence, the control loop oper-

ates under two modes:

Mode1: The loop is running on level controller 1, which enables the controller to

response aggressively to any setpoint change or unknown disturbance with certain

amount of overshoot.

Mode2: The loop is running on the sluggish level controller 2, which makes

the controller act slowly in setpoint tracking or disturbance rejection. There is no

overshoot under level controller 2.

For each time point, the switched controller may randomly reside on one of

the two level controllers with certain probability, resulting two-mode closed-loop

operations. Without knowing how the controller is switched internally, it is expected

that the proposed system identification algorithm can separate the bimodal process

with different dynamics and flag the identity of the controller on which the system

is running at each sampling instance in the presence of the disturbances.

As shown in Figure 2.14, the setpoint of the closed loop is treated as the input

of the process and the water level of the tank is considered as the output, the pro-

posed identification method can be performed after collecting the input-output data

of the closed-loop process. Cases with/without outliers in the experimental data are

considered. According to the algorithm framework shown in Figure 2.4, the robust

parameter estimation for each local clustered data set θWLS is calculated only when

the refinement of the classification result from the robust EM algorithm is achieved.

Due to the fact that the (time) switched system does not have input/output de-
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Figure 2.14: Block diagram of the switched control system

pendent partition, the region partition procedure will not be performed. Only the

identified models from the regular EM algorithm θregularEM and the robust EM al-

gorithm θrobustEM are compared to demonstrate the difference between robust and

regular (non-robust) algorithm, which is the focusing point of this chapter.

2.8.1 Case 1: Experimental Data Without Outliers

The model order for both sub-models of the bimodal closed-loop process can be

deduced from the analysis of the process based on the physical knowledge of the

system, the number of sub-models for the multi-model identification algorithm is

known as 2. After running an experiment, the collected input-output data shown

in Figure 2.15 are separated into two parts, one is for estimation of each local ARX

model parameters while the other one is used for cross validating the identified

models obtained from training data set.

The hidden variable that represents the identity of the controller mode on which

the system is running at each sampling time point needs to be estimated and the

accuracy of its estimation directly influences the quality of the identified models.

Given the estimation of the hidden variable Îk for the kth sampling time point, each

data point can be clustered into one of the two groups.

After passing the training data set through the algorithm, it is noticed that the

identified switched models from the regular EM algorithm and its robust counterpart

are similar. Figure 2.16 shows the estimated hidden variable Îk as well as the

comparison between the simulated response of the identified models and the actual

experimental data.

The identified closed-loop models under different level controllers are:

Mode1 :yk = 1.1430yk−1 − 0.4346yk−2 + 0.0572uk−1 + 0.2415uk−2 (2.32)

Mode2 :yk = 0.9534yk−1 − 0.0475yk−2 + 0.0618uk−1 + 0.0336uk−2 (2.33)
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Figure 2.15: Input-output data of the switched control system
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Figure 2.16: Subplot (a) denotes the estimated mode sequence of the switching evo-
lution along the time for training data . Subplot (b) self-validation of the identified
multi-ARX modes (solid line: measured water level data, dashed line: prediction
from the identified hybrid model)
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Figure 2.17: Subplot (a) denotes the estimated mode sequence of the switching
evolution along the time for training data . Subplot (b) cross-validation of the
identified multi-ARX modes (solid line: measured water level data, dashed line:
prediction from the identified hybrid model)

As shown in Figure 2.16, even though a relatively high percentage fit is achieved

in self-validation, cross-validation is still required to further test the validity of

the identified models. Due to the switching time points are unknown in advance,

unlike the conventional way of cross-validation, the mode identity of each data

point in the cross-validation data set should be known before we are able to use the

identified switched models to predict the system output. As a result, cross validation

is performed through a two-step procedure. In the first step, validation data are

clustered to estimate the model identity for each data point using the proposed

clustering method, and then in the second step, the ARX models obtained from the

identification data set are validated using the clustered data. The cross validation

results of the multi-ARX models expressed in Equation 2.32 and 2.33 along with

the validation data’s estimated cluster identity are given in Figure 2.17.

Again, it is noticed from Figure 2.17 that the predictions from the identified mod-

els are close to the true system output, which implies that the identified sub-ARX

models can effectively describe the dynamics of close-loop process under different

controllers.
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Figure 2.18: Input-output data of the switched control system with manually added
outliers

2.8.2 Case 2: Experimental Data With Outliers

No apparently abnormal data points have been observed in the data set shown in

Figure 2.15 and the identified models have been successfully validated. To test the

robustness of the proposed identification algorithm, several outliers are randomly

added to the experimental training data set and Figure 2.18 shows the new data set

after outliers are added.

With the outliers it is expected that the performance of various identification

procedures would degrade compared with the outlier-free case. As a result, the iden-

tified models described in Equation 2.32 and Equation 2.33 are treated as reference

models against which the new models obtained from the robust EM algorithm, regu-

lar EM algorithm and the identification method introduced by Nakada et al.(2005).

Here, the reasons we chose the method (Nakada et al. (2005)) as the comparative

method against which the proposed robust EM algorithm is evaluated are because

both of the methods use statistical theory as a way to classify the observed data.

Moreover, the structures of the parameters identified from the two algorithms are

quite similar which makes them more comparable. To simplify the expression, we

will refer the method put forward by Nakada et al. (2005) as the comparative

method hereafter.

To sufficiently investigate the performance of different identification procedures
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Table 2.5: Comparison of identification results, SD stands for standard deviation
Mode θreference θrobustEM (Mean) SDrobustEM θnormalEM (Mean) SDnormalEM

mode 1




1.1430

−0.4346

0.0572

0.2415







1.0917

−0.4153

0.0924

0.2297







0.2627

0.2015

0.1979

0.1972







0.5034

0.0838

0.0183

0.4589







0.4210

0.4715

0.1834

0.2008




mode 2




0.9534

−0.0475

0.0618

0.0336







0.9888

−0.0811

0.0645

0.0285







0.0466

0.0541

0.0335

0.0329







0.9963

−0.0999

0.0576

0.0461







0.1442

0.1467

0.0619

0.0606




Mode θreference θcomparison(Mean) SDcomparison

mode 1




1.1430

−0.4346

0.0572

0.2415







0.4482

0.2229

0.0173

0.5404







0.4107

0.4440

0.1848

0.1896




mode 2




0.9534

−0.0475

0.0618

0.0336







0.9862

−0.0894

0.0559

0.0477







0.1423

0.1456

0.0625

0.0591




in the presence of outliers, Monte-Carlo simulation is performed. In each run of the

simulation, the percentage of outliers is fixed as 5% and the location of those outliers

are randomly determined. After 100 runs, the averaged parameters along with

the standard deviation of the estimated parameters from each of the identification

procedures are calculated. Table 2.5 gives the identified results:

In comparison with the reference models, it is found that the presence of the

outliers greatly skews the identification results from both the comparative method

and the regular EM algorithm while, on the other hand, the robust EM algorithm

identification procedure renders identified models closer to the reference ones by ef-

fectively spotting the outliers and diminishing their negative influence on parameter

estimation. To demonstrate the discrepancy of various identified models in a clearer

way, step tests are performed respectively for the models listed in Table 2.5. It is

found that 2 out of 100 sets of parameters obtained from the regular EM algorithm

and the comparative method have poles outside of the unit circle, which can end up

with unstable step response. These unstable models are removed before calculating

the mean and standard deviation of the Monte-Carlo simulation for the regular EM

algorithm and the comparative method.

The mean as well as the standard deviation of the step responses from the two

sets of models identified from the EM algorithm with (θrobustEM) or without robust

procedure (θregularEM) together with the comparative method for mode 1 and 2 have

been calculated. Figure 2.19 and 2.20 show the comparison results.
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Figure 2.19: Comparison of the step response of the identified models for mode
1. (a) Step response of the regular EM algorithm identified model. Solid line:
step response of the reference model, bold dotted line: mean step response of the
identified models, dotted line: standard deviation bound of the step response from
the identified models.(b)Step response of the comparative method identified model.
Solid line: step response of the reference model, bold dash-dotted line: mean step
response of the identified models, dash-dotted line: standard deviation bound of
the step response from the identified models. (c) Step response of the robust EM
algorithm identified model. Solid line: step response of the reference model, bold
dash-dotted line: mean step response of the identified models, dash-dotted line:
standard deviation bound of the step response from the identified models.
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Figure 2.20: Comparison of the step response of the identified models for mode
2. (a) Step response of the regular EM algorithm identified model. Solid line:
step response of the reference model, bold dotted line: mean step response of the
identified models, dotted line: standard deviation bound of the step response from
the identified models.(b)Step response of the comparative method identified model.
Solid line: step response of the reference model, bold dash-dotted line: mean step
response of the identified models, dash-dotted line: standard deviation bound of
the step response from the identified models. (c) Step response of the robust EM
algorithm identified model. Solid line: step response of the reference model, bold
dash-dotted line: mean step response of the identified models, dash-dotted line:
standard deviation bound of the step response from the identified models.
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Not surprisingly, the model identified from the robust EM algorithm outperforms

the models rendered by the other two methods. It gives more accurate estimation of

the step response on average while, in the mean time, enjoys much smaller standard

deviation bound.

2.9 Conclusion

A new approach for identification of PWARX systems is developed in this chapter.

The EM algorithm is employed in data clustering as well as parameter estimation

of the PWARX system. By expressing the noise distribution in a contaminated

Gaussian distribution form, a robust EM algorithm is developed and its robustness

to the outliers is demonstrated through simulations and pilot-scale experiments. It

is shown that pre-running of the EM algorithm for several times with certain stop-

ping condition can be an effective way to overcome its pitfall of sensitiveness to the

starting point. Also, for those ‘un-decidable’ data points in the data clustering, a

refinement procedure can classify them to their own clusters by using the informa-

tion provided by their spatially closest data points. For PWARX systems, in case

that outliers exist in the reclassified local data set, robust parameter estimation of

each local ARX model is realized by employing the contaminated Gaussian distri-

bution for residual errors. Region partition of PWARX systems is performed by

using slightly modified MRLP algorithm in which data points are weighted based

on their probability of being outliers. In this way, the influence of those abnormal

data points could be minimized in the process of hyperplane determination. Finally,

successful identification of simulated PWARX systems, a simulated continuous fer-

menter and a experimental switched control system is achieved by employing the

proposed identification algorithm. The identification results confirm the potential

capability of the proposed PWARX systems identification algorithm in handling a

class of switched linear systems.
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Chapter 3

Identification of Switched Markov
Autoregressive eXogenous
Systems With Hidden Switching
State

1 Identification of the Switched Markov Autoregressive eXogenous (ARX) systems

is considered in this chapter. With a Markov chain model governing the evolu-

tion of the hidden switching state, a Switched Markov ARX System (SMARX) is

formulated and a solution strategy is proposed. Expectation-Maximization (EM)

algorithm is employed in the identification of the SMARX systems in which both a

Hidden Markov Model (HMM) for the discrete switching dynamics and a local ARX

model parameters for continuous dynamics are estimated. Through the compari-

son between the proposed method and previous switched ARX system identification

methods on simulated examples, it is shown that by modeling both the switching

and continuous dynamics, the accuracy of the identification results can, to various

extent, be increased.

3.1 Introduction

With tighter environmental regulation and fiercer market competition, process in-

dustry has been aggressively searching for better solutions to reduce the environment

footprint as well as increase the production quality. For instance, model predictive

control (MPC), owing to its capability of handling multi-variable process in an op-

timal way, has gained tremendous popularity in process industry after being firstly

introduced in 1970s (Qin & Badgwell (2003)). While all these model based control,

optimization and monitoring techniques are extensively applied nowadays, their per-

formance is, to large extent, dependent on the the quality of the process models

1. This chapter has been submitted to Automatica
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they adopt. In view of all the importance of process models, a significant amount of

work has already been done on process identification and dynamic modeling (Ljung

(1987); Huang & Kadali (2008)). Although linear time-invariant modeling meth-

ods have been successful in many cases, in chemical process industry, however, the

system dynamics change caused by interactions between process and its operating

environment as well as intrinsic physio-chemical discontinuities is commonly expe-

rienced and this poses great challenges to traditional system identification methods

(El-Farra & Christofides (2003); El-Farra et al. (2005)).

Hybrid systems, in which continuous dynamics and discrete events coexist, are

considered to be a natural modeling framework for switched systems. Issues such

as optimal control, process optimization and modeling of hybrid systems have been

extensively investigated by both industrial practitioners and academic researchers

(Barton & Pantelides (1994), Barton et al. (2000); Barton & Lee (2004); El-Farra

& Christofides (2003); El-Farra et al. (2005)). As a special but representative form

of hybrid systems, switched ARX systems assume that all the local continuous dy-

namics of hybrid systems are linear and ARX model structure is employed to repre-

sent the linear dynamics (Jin & Huang (2009b); Vidal (2008)). Relevant works on

switched ARX process identification have been put forward by a considerable num-

ber of researchers (Ferrari-Trecate et al. (2003); Juloski et al. (2005); Bempoard et al.

(2005); Nakada et al. (2005); Vidal et al. (2003); Vidal (2008); Ragot et al. (2003);

Roll et al. (2004)). For example, Juloski et al. (2005) proposed a Bayesian theory

based method for the identification of a class of switched ARX systems represented

by Piecewise ARX system. By employing particle filters as a means to iteratively

classify the data, the data points are clustered and the local model parameters are

estimated based on the classification result. For more detailed discussion and review

of the work that has been done on hybrid system modeling, readers may refer to

tutorials on hybrid systems written by Simone Paoletti et at. (2007) and Luisella

Balbis et al. (2007) as well as the references therein.

In our previous work (Jin & Huang (2009b)), we proposed a method for the iden-

tification of a class of switched ARX process in which, the transitions among differ-

ent subsystems are triggered by traveling of regressors (PWARX system) or purely

time driven (time based switched ARX system). The Expectation-Maximization

(EM) algorithm is employed and the whole identification problem is formulated in

such a way that the data classification results along with the estimation of sub-

model parameters are obtained simultaneously. Moreover, to deal with the real

data set which may be polluted by outliers, robustness of the algorithm is con-

sidered and achieved by employing contaminated Gaussian distribution to describe

the noise distribution. However, modeling of the switching dynamics has not been

considered in the switched ARX modeling. In practice, the switching dynamics

44



may follow some patterns that could be modeled by, for example, Markov chain

(Costa et al. (2004)), or in other cases, the switching dynamics exhibit certain be-

havior and it would be beneficial to use the Markov chain to describe it (Wong

& Lee (2009)). In the literature, switched systems with Markovian switching dy-

namics are normally referred to as Jump Markov Systems (JMS) or Jump Markov

Linear systems (JMLS) if the subsystems are further specified as linear. Consid-

erable amount of research has been done on modeling, control and optimization of

JMLS owing to its potential applications in speech recognition (Rabiner (1989)),

process control (Morales-Menendez et al. (2003)), signal processing (Logothetis &

Krishnamurthy (1999); Doucet et al. (2001)), chemical engineering (Tamir (1998))

and other interesting areas (de Souza (2007); Costa et al. (2004)). An interesting

illustrative example in which the concept of JMLS was successfully applied is the

optimal control of a solar thermal receiver (Sworder & Rogers (1983)). In that case,

a Markov jump controller was designed by assuming that the transition between

different types of weathers (cloudy or sunny) follows a simple first order Markov

chain. There are various model structures in describing the linear dynamics, such as

linear state space model, linear first principle model (normally a set of differential

equations in continuous case and difference equations in discrete case) and linear

empirical input-output model(ARX, BOX-Jenkins, Output Error). In this chapter,

we will confine our discussion to ARX models. This assumption not only greatly

simplifies the computation problem so that we can focus on the main issues of JMLS

modeling , but also reasonable approximation in practice given the capability of the

ARX model structure in approximating any linear dynamics (Ljung (1987)). For

notation simplicity, abbreviation SMARX will be used hereafter when referring to

the discussed Switched Markov ARX system.

The mathematical formulation of SMARX systems is as follows:

yk = θT
Ik

[
xk

1

]
+ ek, k = 1, 2 . . . N (3.1)

where yk ∈ R, xk ∈ Rn represent the output and regressor of the system at kth time

point respectively. Regressor xk is expressed as:

xk = [yk−1 yk−2 · · · yk−na uT
k−1 uT

k−2 · · · uT
k−nb]

T (3.2)

where na and nb are orders of the output and input, u ∈ Rm is the input and

n = na + m ·nb . ek ∈ R is Gaussian distributed noise with zero mean and variance

σ2. θi ∈ Rn+1 is the parameter vector of the Ikth sub-model.

For the SMARX system as expressed in Equation 3.1, random switching variable

I ∈ {1, 2 . . . S} evolves in a Markovian fashion. In other words, the state of variable

I at time point k only depends on its immediate past and it has only S discrete

45



Figure 3.1: Graphical representation of SMARX system with hidden switching vari-
able

values. Putting this in a mathematical form, we have

αij = P (Ik = i | Ik−1 = j), k = 2, 3 . . . N, 1 ≤ i, j ≤ S (3.3)

S∑
j=1

αij = 1 (3.4)

When the switching variable I is not known as a priori and cannot be measured

directly, the discrete switching dynamics described by a latent variable I is normally

referred to as a Hidden Markov Model (HMM). As one of important statistical

models, HMM has already been applied to various areas (Rabiner (1989); Tamir

(1998)). A graphical representation of the SMARX system with hidden switching

variable is shown in Figure 3.1.

Following the same assumptions regarding the fixed orders as well as the fixed

number of local ARX models as being made in previous literature (Jin & Huang

(2009b); Juloski et al. (2005); Ferrari-Trecate et al. (2003)), the tasks involved in

the identification of SMARX systems with hidden switching variable include (1)

estimating the value of the hidden switching state at each time point; (2) estimating

the transition probability matrix of the Hidden Markov Model; (3) estimating the

parameters of the local ARX models.

The main contribution of this chapter is to identify both the continuous ARX

model for process dynamics and the discrete-valued HMM for switching dynamics,

thus improving both the clustering and identification performance. Comparisons

between the proposed method and the most relevant previous algorithms for the

identification of piecewise/switched ARX systems in terms of their identification

performance are conducted using a simulated chemical process example. It is found

that the incorporation of a Markov model in the identification procedure can, to

various extent, improve the relevant identification results. To simplify the notation

when referring to the comparative methods, the method proposed by Jin etc. (2009)

46



(Jin & Huang (2009b)) will be abbreviated as SARX method and a representative

algorithm put forward by Nakada et al. (2005) (Nakada et al. (2005)) is referred to

as Nakada method hereafter.

The chapter is organized as follows: An illustrative numerical example of SMARX

systems is given in Section 2 followed by a brief introduction of the EM algorithm.

Section 3 includes all the mathematical derivations for the identification of SMARX

process with hidden switching states. A numerical simulation example is put for-

ward in Section 4 and a comparative study of the identification results from the

proposed method, the SARX method and the Nakada method is conducted. Sec-

tion 5 illustrates the application results for a simulated continuous fermentation

reactor when the grade of the fermenter’s feeding material changes in a Markovian

fashion. Results from the the proposed method and two previous methods are ex-

amined and compared. Section 6 draws the conclusion and provides our perspective

on potential applications of SMARX systems in process identification and control.

3.2 Introduction to SMARX Systems and The

EM Algorithm

3.2.1 An Illustrative Bimodal SMARX System

To render a simple but representative example of SMARX systems, a bimodal

switched system is constructed in which the transition between two sub-models

is controlled by a hidden variable. The system is given as follows:

yk =





[
yk−1 uk−1

] [
0.5
0.5

]
+ ek, Ik = 1

[
yk−1 uk−1

] [−1
2

]
+ ek, Ik = 2

, k = 1, 2 . . . N (3.5)

where Ik in Equation 3.5 is a hidden state which evolves in a first order Markov

chain manner and the transition probability matrix of the Markov chain is set to be

A = (αij) =

[
0.2 0.8

0.75 0.25

]
. The ARX model parameters a1 and b1 change according

to the value of the hidden state I at each time instance. Meanwhile, except for

the system input-output data, neither switching state at each time point Ik, k ∈
1, 2 . . . N nor the transition probability matrix (αij)can be directly measured or

observed.

In practical words, the assumption of the switching in accordance with the

Markovian transition probability implies that, for example, the probability for the

process to operate in mode 1 is 20% and the probability for it to switch from mode

1 to mode 2 is 80%. Thus the Markov chain models certain tendency of process
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operation. For instance, it is known that a reactor which has multiple equilibrium

points tends to operate in more stable operating points and its transition among

different operating points may be described by a Markov chain.

3.2.2 EM Algorithm

As being introduced in our previous work (Jin & Huang (2009b,c)), the EM algo-

rithm consists of two consecutive steps, the first step calculates the Expectation of

the complete data while the second step searches for the parameters to increase the

Expectation of the complete data. Hence, starting with some initial values of the

parameters, the EM algorithm can ultimately converge to some stationary points

after finite steps of iteration. After first being introduced by Dempster et al. (1977),

the EM algorithm has found extensive applications in various areas including ma-

chine learning, computer vision, speech recognition, bioinformatics, psychometrics

and so on. While EM algorithm has received significant attention in many areas,

it is a relatively new data processing/optimization technique in control engineering.

So far, the main applications of the EM algorithm in process control literature have

been mainly on parameter estimation for nonlinear/switched systems (Chitralekha

et al. (2009); Goodwin & Aguero (2005, 2008)).

For linear systems with Gaussian distributed noise, the expectation of the com-

plete data set can be derived in an analytical form, which is normally referred to as

Q function in the literature (Dempster et al. (1977); Mclachlan & Krishnan (1996)).

How to derive the expression for the Q function and maximize it (regular EM al-

gorithm) or increase it (generalized EM algorithm) is an interest of active research

when employing the EM algorithm to solve certain optimization problems. The de-

tailed mathematical derivation for the Q function and the maximization procedure

for the discussed SMARX process is given in the following section.

3.3 Mathematical Solution for The SMARX Sys-

tem Identification

Let Θ be the parameters of the switching ARX model, it is composed of state

transition probability αij, i = 1, 2 . . . M, j = 1, 2 . . . M , the initial state distribution

πi, i = 1, 2 . . .M , the local ARX model parameters θi, i = 1, 2 . . . M and the process

noise variance σ2. Given the observed data set Cobs = ZN , ZN−1 . . . Z1 and hidden

state I to denote cluster identify of data points at each sampling instant, the com-

plete data C = (Cobs, I) is constructed. Since the state I is actually hidden, the Q

function can be derived as the conditional expectation over the hidden state I given

the observed data Cobs and the initial/previous parameter estimation results Θold,
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Q(Θ | Θold) = EI|(Θold,Cobs){log P (Cobs, I | Θ)}
= EI|(Θold,Cobs){log P (ZN , ZN−1 . . . Z1, IN . . . I1 | Θ)}

= EI|(Θold,Cobs){log
N∏

k=1

P (Zk, Ik | Zk−1, . . . Z1, Ik−1, . . . I1, Θ)}

= EI|(Θold,Cobs){log
N∏

k=1

P (Zk | Zk−1, . . . Z1, Ik, . . . I1, Θ)P (Ik | Ik−1)}

= EI|(Θold,Cobs){
N∑

k=2

[log P (Zk | Zk−1 . . . Z1, Ik, Θ) + log P (Ik | Ik−1)]

+ log P (Z1 | I1, Θ) + log P (I1)}

=
∑

I

P (I | Θold, Cobs)(
N∑

k=1

log P (Zk | Zk−1 . . . Z1, Ik, Θ)

+
N∑

k=2

log P (Ik | Ik−1) + log P (I1))

=
∑
I1

· · ·
∑
IN

P (I1 . . . IN | Θold, Cobs){
N∑

k=1

log P (Zk | Zk−1 . . . Z1, Ik, Θ)

+
N∑

k=2

log P (Ik | Ik−1) + log P (I1)}

=
M∑
i=1

N∑

k=1

P (Ik = i | Θold, Cobs) log P (Zk | Zk−1 . . . Z1, Θi)

+
M∑
i=1

M∑
j=1

N∑

k=2

P (Ik = i, Ik−1 = j | Θold, Cobs) log αij

+
M∑
i=1

P (I1 = i | Θold, Cobs) log πi

(3.6)

In the derivation of Equation 3.6, we have used the identities such as P (Zk |
Zk−1 . . . Z1, Ik, . . . I1, Θ) = P (Zk | Zk−1 . . . Z1, Ik, Θ) and P (Ik | Ik−1 . . . I1) = P (Ik |
Ik−1) in accordance with the Markov chain property of Ik. Moreover, since the

expectation over the hidden state I is taken with respect to the hidden state I

over the time period from k = 1 till k = N , the summation over I has to be

expanded to N different time instants over their possible values. To maximize the

Q function over parameters Θ, derivative operation is taken with respect to each

individual component of the system parameters Θ. Therefore, optimal local ARX
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model parameters θi, i = 1 . . . M are calculated by taking the derivative with respect

to the local ARX model parameters and then equating the derivatives to zero:

∂
∑M

i=1

∑N
k=1 P (Ik = i | Θold, Cobs) log P (Zk | Zk−1 . . . Z1, Θi)

∂θi

=
∂

∑M
i=1

∑N
k=1 P (Ik = i | Θold, Cobs) log( 1√

2πσold exp
(yT

k yk−2yT
k xkθi+θT

i xT
k xkθi)

2(σold)2
)

∂θi

= 0 (3.7)

After several steps of mathematical manipulations, the relevant updating equa-

tions for θi, i = 1 . . . M is:

θNew
i =

∑N
k=1 P (Ik = i | Cobs, Θ

old)xT
k yk∑N

k=1 P (Ik = i | Cobs, Θold)xT
k xk

(3.8)

Following the similar procedure, optimal estimation of αij is obtained by taking

the derivative with respect to the relevant components in the Q function. However,

the optimization problem here is constrained by
∑M

i=1 αij = 1 and as a result,

Lagrange multiplier λ is introduced and the unconstrained optimization equation is

obtained:

∂
∑M

i=1

∑M
j=1

∑N
k=2 P (Ik = i, Ik−1 = j | Θold, Cobs) log αij + λ(

∑M
i=1 αij − 1)

∂αij

= 0 (3.9)

This yields the updating equation for αij as

αNew
ij =

∑N
k=2 P (Ik = i, Ik−1 = j | Cobs, Θ

old)∑M
i=1

∑N
k=2 P (Ik = i, Ik−1 = j | Cobs, Θold)

(3.10)

The initial distribution of the hidden state πi, i = 1 . . . M can also be found by

introducing the Lagrange multiplier λ and then taking the derivative,

∂
∑M

i=1 P (I1 = i | Θold, Cobs) log πi + λ(
∑M

i=1 πi − 1)

∂πi

= 0 (3.11)

As a result, we can get the updating equation for πi, i = 1, . . . M

πNew
i = P (I1 = i | Θold, Cobs) (3.12)

The updating equation for noise variance σ2 is derived by taking the derivative

of the first component of the Q function with respect to it,

∂
∑M

i=1

∑N
k=1 P (Ik = i | Θold, Cobs) log P (Zk | Zk−1 . . . Z1, Θi)

∂σ

=
∂

∑M
i=1

∑N
k=1 P (Ik = i | Θold, Cobs)(− log

√
2πσ − 1

2σ2 (yk − xkθ
New
i )T (yk − xkθ

New
i ))

∂σ
= 0 (3.13)
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Finally, the updating equation obtained from Equation 3.13 for noise variance

σ2 equals

(σNew)2 =

∑M
i=1

∑N
k=1 P (Ik = i | Cobs, Θ

old)(yk − xkR
New
i )T (yk − xkR

New
i )∑M

i=1

∑N
k=1 P (Ik = i | Cobs, Θold)

(3.14)

It can be seen that in the derivation of equations for local model parameters

θi, i = 1, 2 . . . M (Equation 3.8), transition probabilities αij, i = 1, 2 . . . M, j =

1, 2 . . . M (Equation 3.10) and noise variance σ2 (Equation 3.14), the intermediate

terms P (Ik = i | Cobs, Θ
old), k = 1, 2 . . . N and P (Ik = i, Ik−1 = j | Cobs, Θ

old), k =

2, 3 . . . N are required as a part of updating equations. To calculate the intermediate

terms from the estimated parameters in the previous iteration, the expression for

P (Ik = i, Ik−1 = j | Θold, Zk, . . . Z1) can be derived as:

P (Ik = i, Ik−1 = j | Θold, Zk, . . . Z1)

=
P (Zk | Ik = i, Ik−1 = j, Θold, Zk−1 . . . Z1)

P (Zk | Θold, Zk−1 . . . Z1)
P (Ik = i | Ik−1 = j, Θold, Zk−1 . . . Z1)

·P (Ik−1 = j | Θold, Zk−1 . . . Z1)

=
P (Zk | Ik = i, Θold, Zk−1 . . . Z1)P (Ik = i | Ik−1 = j, Θold)P (Ik−1 = j | Θold, Zk−1 . . . Z1)∑M

m=1

∑M
n=1 P (Zk, Ik = m, Ik−1 = n | Θold, Zk−1 . . . Z1)

=
P (Zk | Ik = i, Θold, Zk . . . Z1)P (Ik = i | Ik−1 = j, Θold)P (Ik−1 = j | Θold, Zk−1 . . . Z1)∑M

m=1

∑M
n=1 P (Zk | Ik = m, Zk−1 . . . Z1, Θold)P (Ik = m | Ik−1 = n, Θold)P (Ik−1 = n | Zk−1 . . . Z1, Θold)

(3.15)

where i, j, m, n in Equation 3.15 represent cluster identity of the data points at

k and k − 1 time instance respectively. Θ denotes the overall parameters of the

Markov switched system including the local model parameters, transition proba-

bilities and noise variance. Each component of Equation 3.15 in both the denom-

inator and numerator can be calculated or retrieved based on the parameter esti-

mation results from the previous iteration. For instance, P (Ik = i | Ik−1 = j, Θold)

equals αold
ij which denotes the transition probability obtained in the previous cal-

culation, P (Zk | Ik = i, Θold, Zk−1 . . . Z1) represents the probability of observing Zk

given all the past observed data as well as the previously estimated local model

parameters, P (Ik−1 = j | Θold, Zk−1 . . . Z1) is obtained through the discrete-valued

state propagation of Markov chain starting from the initial estimation of P (I1 =

j | Θold, Zk−1 . . . Z1) = (πj)old. Therefore, although it appears to be more complex af-

ter expanding P (Ik = i, Ik−1 = j | Θold, Zk, . . . Z1) into multiple components, however,

the expansion/conversion enables us to utilize the parameter estimation results Θold

from the previous step to calculate the probability P (Ik = i, Ik−1 = j | Θold, Zk, . . . Z1).

After calculating the probabilities as in Equation 3.15, use the results in Equation

3.10 so that the updating equation for αi,j can be calculated.

The term P (Ik = i | Cobs, Θold), k = 1, 2 . . . N is needed in calculating updating

equations for local model parameters as well as the noise variance, which are denoted
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by Equation 3.8 and Equation 3.14 respectively. Its computation equation can be

derived as

P (Ik = i | Θold, Cobs) =

M∑

j=1

P (Ik = i, Ik−1 = j | Θold, Zk, Zk−1, . . . Z1)

=

∑M
j=1 P (Zk | Ik = i, Θold, Zk−1 . . . Z1)P (Ik = i | Ik−1 = j, Θold)P (Ik−1 = j | Θold, Zk−1 . . . Z1)

∑M
m=1

∑M
n=1 P (Zk | Ik = m, Zk−1 . . . Z1, Θold)P (Ik = m | Ik−1 = n, Θold)P (Ik−1 = n | Zk−1 . . . Z1, Θold)

(3.16)

where the identities i, j,m, n share the same meaning as given in Equation 3.15.

Based on the calculation results from Equation 3.15 and Equation 3.16, the updating

equations for various parameters θi, i = 1, 2 . . . M , αij , i = 1, 2 . . . , M, j = 1, 2 . . . M , πi, i =

1, 2 . . . M and σ2 can be derived.

3.4 Verification by A Numerical Simulation Ex-

ample

To validate the proposed identification algorithm, a simulated SMARX process with

three sub-systems is constructed and its equations are given as follows,

yk =





[
y(k − 1) y(k − 2) u(k − 1) u(k − 2)

]



1.143
−0.4346
0.0572
0.2415


 + ek, Ik = 1

[
y(k − 1) y(k − 2) u(k − 1) u(k − 2)

]



0.9534
−0.0475
0.0618
0.0336


 + ek, Ik = 2

[
y(k − 1) y(k − 2) u(k − 1) u(k − 2)

]



1.178
−0.09
0.089
0.15


 + ek, Ik = 3

, k = 1, 2 . . . N

(3.17)

Ik in Equation 3.17 is a hidden random integer variable which evolves according

to a first order Markov chain model and Ik ∈ 1, 2, 3, k = 1 . . . N . Under different re-

alization of hidden variable Ik, corresponding sub-system with distinct parameters

will take effect. Set the transition matrix A = (αij) =




0.25 0.1 0.65
0.55 0.35 0.1
0.15 0.15 0.7


 and noise

variance ek ∼ N(0, 0.025). The input u is randomly changed within [−5, 5] following

uniform distribution. 900 data points are generated and passed through the pro-

posed identification algorithm, the identified sub-system parameters are shown in

Table 3.1.

θi, i = 1, 2, 3 in Table 3.1 are true system parameters while θ̂i, i = 1, 2, 3 are the

estimated ones. It is noticed that the estimated sub-system parameters are close
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Table 3.1: True system parameters and estimated parameters

θ1 θ̂1 θ2 θ̂2 θ3 θ̂3

1.143 1.1432 0.9534 0.9536 1.178 1.1850
-0.4346 -0.4381 -0.0475 -0.0516 -0.09 -0.0941
0.0572 0.0597 0.0618 0.0644 0.089 0.0889
0.2415 0.2404 0.0336 0.0316 0.15 0.1499
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Figure 3.2: Comparison between estimated and actual state sequence

to their real counterparts. Moreover, the estimated transition probability matrix is

α̂ij =




0.181 0.1242 0.6948
0.5349 0.3839 0.0812
0.1762 0.1393 0.6845


 and the estimated noise variance is σ̂2 = 0.0250.

Some minor discrepancy between the estimated transition probabilities and its

true ones is observed. Due to the uncertainty introduced by the noise, it is expected

that the misclassification of some data points may happen during the process of

identification, which leads to the deviation of the estimated transition probabilities

from their true values. Hence, when dealing with process data collected from indus-

trial or pilot-scale setup, pre-filtering of the noise may be conducted as overly high

noise variance may result in poor clustering results.

Part of the estimated hidden state sequence Îk, k = 1 . . . N is shown along with its

true counterpart in Fig. 3.2. Some minor disagreement between the true Ik and the

estimated Îk is spotted in the figure.
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3.5 A Simulated Continuous Fermentation Reac-

tor

3.5.1 Process Description and Problem Statement

A well mixed continuous fermentation reactor (Henson & Seborg (1992b)) is adopted

here to perform the test of the algorithm on a nonlinear process. This example was

adopted in our previous work (Jin & Huang (2009b)) and is used in this section as

a comparison of the new proposed method with the previous results. The simplified

model consists of relatively few parameters which, makes itself more appropriate

for control oriented simulation and optimization purpose. The nonlinear process

dynamics are described by the following equations:

Ẋ = −DX + µX (3.18)

Ṡ = D(Sf − S)− 1
YX/S

µX (3.19)

Ṗ = −DP + (αµ + β)X (3.20)

µ =
µm(1− P

Pm
)S

Km + S + S2

Ki

(3.21)

where X, S, P are biomass concentration, substrate concentration, and production

concentration respectively. Feed substrate concentration Sf and dilution rate D are

normally treated as the system inputs. Cell-mass yields YX/S, α and β are system

parameters. Nonlinearities of the process are mainly introduced by Equation 3.21

in which µm (maximum specific growth rate), Pm (product saturation constant), Km

(substrate saturation constant)and Ki (substrate inhibition constant) are considered

to be the model parameters. The schematic diagram of the fermentation reactor is

given in Figure 3.3:

The discussed fermenter shown in Figure 3.3 has two manipulated inputs and

three states. Assume that the dynamic model from the input dilution rate D to

the state biomass concentration X is of interest, to accurately capture the dynamic

relationship between these two variables, all the other input variables including the

feed substrate concentration are maintained as constant throughout the identifica-

tion period. In other words, any fluctuation in the feed substrate concentration will

be considered as external noise to the system under identification.

When the process from the dilution rate to the biomass concentration is un-

dergoing certain excitation procedure, any undetected abrupt change of the feed

substrate concentration may exert undesirable influences on the identified model.

For instance, if the feed substrate concentration jumps from its normal operating

point 20kg/m3 to 26.5kg/m3 due to upstream feed stock change, the dynamics of the
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Figure 3.3: Schematic diagram of the fermentation reactor
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Figure 3.4: Input-Output data of the continuous fermenter. Dash line represents
the step response when u1 = 20, solid line denotes the step response when u1 = 26.5
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process under investigation will change dramatically. Figure 3.4 shows the step

responses of the SISO model under different feed substrate concentration values.

Therefore, if a model is identified directly from the identification data set col-

lected under different feed substrate concentration values, it would be expected that

the identified model can hardly capture the behavior of the complete process. As

a result, achievement of satisfactory performance by any model-based controller or

other optimization techniques which use the identified model would be unlikely.

Moreover, from the perspective of process operation monitoring, it will also be de-

sirable that any significant change in operating conditions, such as the property of

raw feed material, can be detected immediately. Hence, in the following sections, we

will illustrate the capability of the proposed method in detecting the process change

as well as in process modeling under different operating conditions. The switching

dynamics will also be identified in the form of a Markov chain model.

3.5.2 Results

As discussed in the previous section, for chemical/bio-chemical reactors, fluctuation

of the feed stream properties such as flow rate, temperature and concentrations may

greatly change the reaction kinetics in the reactor. Here, we take a scenario in

which the fermenter feed substrate concentration fluctuates between two operating

values. Each of the feed substrate concentration values corresponds to one specific

mode, say, mode 1 corresponding to Sf = 26.5kg/m3 and mode 2 to the case when

Sf = 20kg/m3. Suppose that the mode change/switching does not occur frequently;

in other words, the abrupt jump of the concentration value is infrequent during the

operation. To generate a mode sequence with only a few switchings, the diagonal

value of the transition matrix is set to be close to 1 while the other elements of

the matrix is given a quite small number. As a result, the underlying transition

probability matrix is assumed as A = (αij) =

[
0.99 0.01
0.01 0.99

]
, i = 1, 2, j = 1, 2. Adopting

the same model parameters as given by Seborg et al. (1992), the simulated responses

are shown in Figure 3.5.

From Figure 3.5, we can roughly tell that the output biomass concentration

dynamics exhibit distinct behaviors during the excitation period of the input signal.

Passing the collected data through the proposed algorithm, the identified models as

well as the estimated mode switching sequence are shown in Figure 3.7 and Figure

3.8.

Figure 3.8 shows that the estimated/identified mode sequence is in a good agree-

ment with the true modes of the process. Moreover, self-validation results given in

Figure 3.7 indicate that the identified models under each operation mode (feed sub-

strate concentration value) are sufficient to capture the dynamics of the process.

56



0 100 200 300 400 500 600 700 800 900
5

5.5

6

6.5

7

7.5

B
io

m
a
ss

 c
o
n
ce

n
tr

a
tio

n
 (

g
/l)

Output

0 100 200 300 400 500 600 700 800 900
0.15

0.16

0.17

0.18

0.19

0.2

Input

Time 

D
ilu

tio
n
 r

a
te

 (
/h

)

Figure 3.5: Input-Output data of the continuous fermenter
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Figure 3.6: Mode sequence of the fermentation reactor
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Figure 3.7: Self validation of the identified model, MSE=0.001423. Red solid line
represents the true fermener data, blue dashed line denotes the prediction of the
simulated model
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Figure 3.8: Comparison of the true modes with the identified mode sequence, 92.1%
of time is right. Red cross is the estimated mode sequence, blue solid line denotes
the true mode of the process through out the simulation time period.
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Figure 3.9: Cross validation of the identified model under mode 1, MSE=0.0.000479.
Red solid line represents the true fermener data, blue dashed line denotes the pre-
diction of the simulated model

Cross validation is also performed here to further verify the identified models. Fig-

ure 3.9 and Figure 3.10 render the relevant cross validation results.

Small Mean Squared Errors (MSE) are achieved for each of the identified local

model which effectively verify the performance of the identified models. Moreover,

the estimated transition probability matrix Â = α̂ij =

[
0.9767 0.0233
0.0132 0.9868

]
, i, j = 1, 2 is

identified, which is close to the real values.

To render a better view of the difference brought by modeling the switching

dynamics, the proposed SMARX system identification method is compared with

the SARX method as well as the method introduced by Nakada et al (2005). With

the same data set from the fermentation reactor as well as the same initial parameter

guess for each identification method, the identified results are listed in Table 3.2.

It is noticed from Table 3.2 that one of the models identified from both the

SARX method and the Nakada method has a high MSE value in its cross validation.

Table 3.2 ensures us that it is beneficial to incorporate the modeling of the switching

mechanism into the identification procedure. Not only will the switching sequence be

identified better, but also the accuracy of the estimated local ARX model parameters

is increased.

3.6 Conclusion

Switched Markov ARX systems identification problem is investigated in this paper.

The problem is formulated and solved within a probabilistic framework. The work
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Figure 3.10: Self validation of the identified model under mode 2, MSE=0.0553. Red
solid line represents the true fermener data, blue dashed line denotes the prediction
of the simulated model

Table 3.2: Comparison of identification results from different identification methods.
The benchmark method is proposed by Nakada et al. (2005) and the SARX method
is given by Jin & Huang (2009b). SV, CV 1, CV 2 are short for self validation
and cross validation results for model 1 and model 2. N\A represents can not be
calculated

Method SV (MSE) CV 1 (MSE) CV 2 (MSE)
The proposed method 0.01423 0.00047 0.0553

The benchmark method 0.1883 0.00024 231.02
The SARX method 0.0226 0.00024 143.5

Method Transition Matrix Rate of Accuracy

The proposed method

[
0.9767 0.0233
0.0132 0.9868

]
92.11%

The benchmark method N\A 53.33%
The SARX method N\A 53.33%
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in this paper extended previous work on switched/piecewise ARX system identifica-

tion by considering switching dynamics through a hidden Markov model. From the

analysis of the identification results of the simulated switched system examples, it is

found beneficial to incorporate the switching dynamics into the identification proce-

dure and identify all the parameters (including continuous local model parameters

as well as the discrete switching HMM model parameters).
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Chapter 4

Identification of Switched Markov
Autoregressive eXogenous
Systems With Hidden Switching
State

1 This paper is concerned with the identification of a nonlinear process which oper-

ates over several working points with consideration of transition dynamics between

the working points. Operating point changes due to economic considerations (e.g.

grade change in polymer plants) or working environment changes (e.g. feed raw

materials property change) are commonly experienced in process industry. These

transitions among different operating conditions excite the inherent nonlinearity of

the chemical process and pose significant challenges for process modeling. To cir-

cumvent the difficulties, we propose a probability-based identification method in

which a linear parameter varying (LPV) model is built using process input-output

data. Without knowing the local model dynamics a priori, only small excitation

signals around each operating point are required to identify linear models of the

local dynamics, and then the local models are synthesized with transition data to

construct a global LPV model. Simulated numerical examples as well as an ex-

periment performed on a pilot-scale heated tank are employed to demonstrate the

effectiveness of the proposed method. The conclusion section raises some practical

issues involved with the implementation of the algorithm and relevant suggestions

are given.

4.1 Introduction

During the last few decades, process plants have seen an astonishing increase in

their complexity which poises a great challenge for process modeling and control.

1. This chapter has been submitted to Journal of Process Control
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Although linear modeling technology has been quite sophisticated after decades of

development both in academic research and industrial applications (Ljung (1987)),

however, due to the nonlinearity of the chemical production process, the perfor-

mance of single linear model-based controllers or optimizers may be compromised

or even unsatisfactory for certain highly nonlinear process (such as PH process). To

overcome the limitations imposed by the nonlinearity of the process, researchers have

developed different strategies for nonlinear process modeling. A black box model-

ing approach characterized by the usage of theoretically sound nonlinear functions

such as Nonlinear Autoregressive eXogenous (NARX) models (Henson & Seborg

(1992a); Proll & Karim (1994)) or artificial neural network models (S.Piche et al.

(2000)) is able to identify nonlinear process models solely based on the process data.

No specific process knowledge is required and the model parameters are chosen to

minimize certain optimization criteria. However, as the model is built purely based

on process data, to ensure the validity of the model within a large operating range,

a global identification test throughout the whole operating region of the process

has to be conducted which, may greatly interfere the plant operation. In addition,

the search of the nonlinear model structure is also a considerable challenge. Fun-

damental modeling based on the first principles of the process (such as heat/mass

conversation law) (Henson & Seborg (1992a)) has also gained great attention for

nonlinear process modeling. It normally provides more meaningful model structure

with less model parameters when compared with nonlinear models identified from

black box methods. However, given the complexity of the industrial-scale process

nowadays, it may become overly costly to build a model that meets the accuracy

requirement due to the lack of the understanding of the process.

A Linear Parameter Varying (LPV) model, as being indicated by its name, is

featured by its linear model structure and varying model parameters. After being

first introduced by Shamma et al. (1991) in their study of gain scheduling control

of LPV process, a considerable number of publications on LPV model identification

have already been seen thanks to its capability in approximating complex nonlinear

systems (Lee & Poolla (1996); Banerjee et al. (1997); Bamieh & Giarr (2002); Xu

et al. (2009); Murray-Smith & Johansen (1997)). Bamieh et al. (2002) put forward

a LPV identification method in which the input-output data as well as the schedul-

ing parameters are assumed to be measured. As the LPV system model parameters

vary with the change of the scheduling variable, polynomial functions with unknown

coefficients are employed to describe the relationships of parameter changes. The

identification problem is formulated in such a way that the least squares method

(off-line estimation) or recursive least squares method (on-line estimation) can be

directly applied to estimate the coefficients of the polynomial dependence functions.

The method requires the input signal to be manipulated sufficiently throughout the
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whole operating range so that persistent excitation of the process can be achieved.

This requirement can be costly or even unrealistic in practice as too much upset

caused by the input excitation signal may not be allowed. To circumvent the dif-

ficulty of designing the input signal for LPV system identification, Xu et al (2009)

proposed a novel identification procedure in which only input excitation around cer-

tain chosen operating points is needed to approximate a global LPV model for the

nonlinear process. To blend the local linear models identified around their relevant

operating points, validity of each local model at every sampling time instance is

calculated and the overall prediction of the LPV model is the weighted average of

the predictions from all the local models. However, as a prerequisite for the iden-

tification method, all the local linear models need to be known a priori which, may

deteriorate the performance of the identification method if any of the local models

is not able to satisfactorily approximate the local process dynamics due to improper

identification or undetected change of the process dynamics. Moreover, as Xu et al.

(2009) employed cubic spline functions to represent the validity functions of each

local model for the LPV model, how to search for the appropriate orders for each

of those valid functions can be challenging in some cases. Therefore, developing an

LPV model identification method with low test cost and less requirement on the

prior knowledge of the process motivates us to conduct the research in this paper.

The model predictive controller (MPC), owing to its capability of handling mul-

tivariate process in an optimal way, has been widely accepted and implemented in

process industry after its first advent in 1970s. Although linear MPC has already

become a sophisticated advanced process control technology with well defined de-

velopment and implementation procedures, nonlinear MPC, which is featured by

the adoption of a nonlinear process model for process prediction and optimization,

is still relatively less popular compared with its counterpart, linear MPC. The main

reasons that prevent the nonlinear MPC from wide application lie in 1) complexity

of nonlinear process modeling; 2) overly high computational burden with complex

nonlinear process models for online implementation. An LPV model, owing to its

simpler structure compared with first principles or nonlinear black box empirical

models and its capability in approximating the nonlinear process dynamics, has al-

ready been utilized by a number of researchers in the design of nonlinear model

predictive controllers (Xu et al. (2009); Baneqee & Arkun (1998); Giarre et al.

(2006); Dougherty & Cooper (2003); Foss et al. (1995); Aufderheide & Bequette

(2003)). In the test of these LPV model based nonlinear predictive controllers, it

is shown that compared with predictive controllers with first principle models, the

LPV model based controllers achieve near optimal control performance while re-

quiring much less effort in building the nonlinear predictive model as well as in the

need of computation power.
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The work introduced in this paper aims at identifying the LPV models without

requiring the prior knowledge of the local model parameters; namely all local models

are identified simultaneously together with their transitions to form a global LPV

model. Following the similar assumptions regarding the scheduling variables and

the segmentation of the process as being made by Xu et al. (2009); Bamieh & Giarr

(2002), we assume that the scheduling variable values can be measured or inferred

and the number of local models under different working conditions is known a priori.

Given the knowledge of the scheduling variable, the segmentation of the nonlinear

process as well as the process input-output data, an LPV model is identified us-

ing the EM algorithm which by itself is an iterative optimization procedure. The

EM algorithm has been employed in our previous work on switched autoregressive

eXogenous systems (SMARX) identification and satisfactory identification results

have been achieved (Jin & Huang (2009b,a)). For most of chemical systems, when

shifting from one operating point to the other, its dynamic behavior tends to vary

gradually. In other words, abrupt switching from one local linear model to another

is unlikely. Therefore, we assume smooth transition of the operating points and a

smooth validity function is utilized to combine multiple local models to approximate

the transition dynamics. In this paper, an exponential function is employed to cal-

culate the validity of each local model under different working conditions. As the

segmentation of the process is given a priori, the centers of the exponential functions

are fixed and need not be estimated. Therefore, the main tasks involved in the LPV

modeling are estimation of the local model parameters as well as the validity width

of each local model.

Simulated as well as experimental examples are employed to demonstrate the

efficiency of the proposed LPV model identification algorithm. It is shown that,

through the illustrated examples, only small excitation signals are required for LPV

identification and the local model parameters as well as the validity functions are

estimated simultaneously. The remainder of this paper is organized as follows:

Section 2 lays out the mathematical formulation for the LPV model identification

and a relevant identification procedure is provided. Section 3 shows the identification

results on a simple illustrative numerical simulation example adopted from Zhu et al.

(2008) as well as an CSTR benchmark process. Section 4 elaborates the design of the

experiment conducted on a heated tank process and renders verification results on

the identified LPV model. Section 5 draws conclusions and provides our perspective

on several implementation issues associated with the algorithm.
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4.2 Mathematical Formulation of Nonlinear Mod-

eling Using Multiple Local Models

In the normal operation of a chemical plant, the process may transit among several

operating points. Assume that the information regarding the operating conditions of

the system can be inferred from the measurement of the scheduling variable T , given M

different operating points, their relevant local linear models are centered abound M

constant values, which can be denoted as Ti, i = 1, 2 . . . M . Let θi be the ith local linear

model parameters, the probability of observing Zk given all the past observations

can be calculated as:

P (Zk | Zk−1 . . . Z1) =
M∑

i=1

αkiP (Zk | Zk−1 . . . Z1, θi) (4.1)

where αki in Equation 4.1 represents the the normalized weight given to the proba-

bility of Ẑk being at local model i. To achieve smooth combination of the predictions

from M local models, an exponential weighting function is employed and the un-

normalized weighting factor for ith local model wki is calculated by the following

equation:

wki = exp(
−(Tk − Ti)2

2(oi)2
) (4.2)

where Tk in Equation 4.2 denotes the measurement of the scheduling variable at the kth

sampling time instant, oi denotes the validity width of the ith local model. Therefore,

the normalized weight αki can be derived as:

αki =
wki∑M
i=1 wki

(4.3)

In this paper, the centers of M local linear models Ti, i = 1, 2 . . . M are assumed to

be known a priori. This is a reasonable assumption owing to the fact that the plant

is normally operated under several explicitly designed conditions to produce the

desired products. The scheduling variable Ti, i = 1, 2 . . . M is assumed to be measured

or can be inferred from the plant routine operation data. Under this assumption,

the parameters that need to be estimated from the process input-output data Zk, k =

1, 2 . . . N would be Θ = {θ1, θ2 . . . θM , o1 . . . oM}. Using the maximum likelihood principle,

the LPV model parameters Θ equals

Θ = max
Θ

N∏

k=1

P (Zk | Zk−1 . . . Z1)

= max
Θ

N∏

k=1

M∑

i=1

αkiP (Zk | Zk−1 . . . Z1, θi) (4.4)

As pointed in Jin & Huang (2009b), brute force optimization over Equation 4.4

can be computationally formidable and as a result, a hidden variable Ik is introduced
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to represent the identity of the sub-model that takes effect at time point k. Denoting

the observed data Zk, Tk, k = 1, 2 . . . N as Cobs and the hidden state Ik, k = 1, 2 . . . N as

Cmis, the complete data would be C = {Zk, Tk, Ik}, k = 1, 2 . . . N . The expectation of

the complete data C in the procedure of the EM algorithm is derived as:

Q(Θ | Θold) = EI|(Θold,Cobs){log P (Cobs, I | Θ)}
= EI|(Θold,Cobs){log P (ZN , ZN−1 . . . Z1, TN , . . . T1, IN . . . I1 | Θ)}

= EI|(Θold,Cobs){log
N∏

k=1

P (Zk, Tk, Ik | Zk−1, . . . Z1, Tk−1, . . . T1, Ik−1, . . . I1, Θ)}

= EI|(Θold,Cobs){log
N∏

k=1

P (Zk | Zk−1 . . . Z1, Tk . . . T1, Ik . . . I1,Θ)

·P (Ik | Zk−1 . . . Z1, Tk . . . T1, Ik−1 . . . I1, Θ)

·P (Tk | Zk−1 . . . Z1, Tk−1 . . . T1, Ik−1 . . . I1, Θ)}

= EI|(Θold,Cobs){log
N∏

k=1

P (Zk | Zk−1, . . . Z1, Ik, . . . I1, Θ) · P (Ik | o, Tk)} · P (Tk)

= EI|(Θold,Cobs){
N∑

k=1

log[P (Ik | o, Tk) · P (Zk | θIk
, Zk−1 . . . Z1) · P (Tk)]}

=
N∑

k=1

M∑

i=1

P (Ik = i | Θold, Cobs) log P (Ik = i | o, Tk)

+
N∑

k=1

M∑

i=1

P (Ik = i | Θold, Cobs) log P (Zk | Zk−1 . . . Z1, θi)

+
N∑

k=1

M∑

i=1

P (Ik = i | Θold, Cobs) log P (Tk)

(4.5)

where P (Ik = i | o, Tk) in Equation 4.5 equals αki and Q(Θ | Θold) is defined as the ex-

pectation over the overall system parameter Θ given the initial/previous estimation

results of Θ. In Equation 4.5, P (Zk | Zk−1 . . . Z1, Tk . . . T1,

Ik−1 . . . I1,Θ) is considered to be equal to P (Zk | Zk−1 . . . Z1, Ik . . . I1,Θ) based on the

fact that the observed data at kth time instant Zk is directly dependent on the data

identity Ik . . . I1. The value of the scheduling variable Tk . . . T1 determines the identity

of the collected data set. Similarly, P (Ik | Zk−1 . . . Z1, Tk . . . T1, Ik−1 . . . I1, Θ) is equal to

P (Ik | o, Tk) as according to Equation 4.2, the data identity at kth time instant is

determined together by the value of Tk as well as the validity width of each local

model. P (Tk | Zk−1 . . . Z1, Tk−1 . . . T1, Ik−1 . . . I1,Θ) is equal to P (Tk) by a typical assump-

tion that the scheduling variable Tk is independent of the past observations and

model parameters. To calculate the parameters, derivative is taken with respect to

the relevant components in Q(Θ | Θold) function as being expressed in Equation 4.5.

For estimation of local model parameters θi, i = 1, 2 . . .M , derivative is taken over
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the term
∑N

k=1

∑M
i=1 P (Ik = i | Θold, Cobs) log P (Zk | Zk−1 . . . Z1, θi) in Equation 4.5 with

respect to θi, i = 1, 2 . . . M

∂
∑N

k=1

∑M
i=1 P (Ik = i | Θold, Cobs) log P (Zk | Zk−1 . . . Z1, θi)

∂θi
= 0 (4.6)

As a result, the local ARX linear models parameter θi, i = 1, 2 . . . M is derived as:

θNew
i =

∑N
k=1 P (Ik = i | Θold, Cobs)xT

k yk∑N
k=1 P (Ik = i | Cobs,Θold)xT

k xk

(4.7)

where xk, yk in Equation 4.7 represent local ARX models regressor and the process

output respectively.

Based on Equation 4.1, the prediction of the identified LPV model under certain

working point ŷk(Tk), which is denoted by the scheduling variable Tk, can be derived

as the weighted average summation of the prediction from each local model,

ŷk(Tk) =
M∑

i=1

αkiŷki (4.8)

where ŷki in Equation 4.8 represents the prediction from ith local model at kth time

instant. With each local model being formulated in ARX model form, the Equation

4.8 can be further written as

XT
k θ̂k(Tk) =

M∑

i=1

αkiX
T
k θ̂i (4.9)

where Xk in Equation 4.9 denotes the regressor that is constructed as per the ARX

model structure. From Equation 4.9, it can be seen that the identified LPV model

is able to predict the process output at any given value of the scheduling variable T .

To estimate the process noise variance σ2, derivative is taken over the term
∑N

k=1

∑M
i=1 P (Ik = i | Θold, Cobs) log P (Zk | Zk−1 . . . Z1, θi) with respect to σ and the re-

sulted equation for estimating σ2 is derived as:

(σNew)2 =
∑N

k=1

∑M
i=1 P (Ik = i | Θold, Cobs)(yk − xkθNew)T (yk − xkθNew)∑N

k=1

∑M
i=1 P (Ik = i | Cobs)

(4.10)

As for the local model validity width oi, i = 1, 2 . . . M , due to the usage of expo-

nential function in combing the local models, it cannot be derived in an analytical

form when minimizing the term
∑N

k=1

∑M
i=1 P (Ik = i | Θold, Cobs) log P (Ik = i | o, Tk) in

Equation 4.5. The mathematical formulation of the optimization problem in the

search for optimal oi, i = 1, 2 . . . M values can be expressed as:

max
oi,i=1,2...M

N∑

k=1

M∑

i=1

P (Ik = i | Θold, Cobs) log P (Ik = i | o, Tk)

S.t. omin ≤ oi, i = 1, 2 . . . M ≤ omax

(4.11)
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where P (Ik = i | Θold, Cobs) in Equation 4.11, as being explained before, represents

the probability of kth data point belonging to ith sub-model. log P (Ik = i | o, Tk) is

equivalent to log αki which can be calculated from Equation 4.3. A nonlinear numer-

ical optimization method is required in order to calculate the optimal oi, i = 1, 2 . . .M

which is bounded by omin (the lower bound for oi, i = 1, 2 . . .M ) and omax (the upper

bound for oi, i = 1, 2 . . . M) for each local model. In this paper, we adopt a constrained

nonlinear optimization function named ’fmincon’ provided by MATLAB as to cal-

culate the best width of each Gaussian weighting function associated with relevant

local models.

4.2.1 Discussion on one practical implementation issue

Robustness VS Optimality

The LPV model identification method introduced in this paper is essentially an it-

erative optimization procedure in which the local model parameters θi, i = 1, 2 . . .M

along with the local model validity width oi, i = 1, 2 . . . M are identified simultaneously

at each iteration. By gradually increasing the accuracy of the estimation at each

iteration, it is expected that the estimated parameters will converge to the optimal

values after finite number of iterations. However, when the nonlinear optimization

scheme adopted in searching for the optimal oi, i = 1, 2 . . .M slips into a local max-

ima, the parameter estimation results may be severely skewed and the prediction

from the identified LPV model can rarely capture the nonlinear process dynamics.

Therefore, before applying the proposed algorithm to the real process data, it is of

benefit to narrow the searching space for parameters by incorporating additional

information such as the process priori knowledge or preliminary estimation results

from the other estimation methods. It was found that the validity width is the most

effective parameter influencing the algorithm robustness. For example, to increase

the robustness of the algorithm, the upper bound for local models validity width

omax should be reduced (in an extreme case when omax = 0, the local models will be

identified simply based on the corresponding local experiment data). Therefore, the

upper bound omax can be used as a tuning parameter through which the robustness

of the algorithm can be adjusted.

4.3 Simulations

4.3.1 A Numerical Simulation Example

A first order process with varying model parameters is utilized here to demonstrate

the efficiency of the proposed LPV model identification method. This simple process

has been adopted by Zhu & Xu (2008) as an illustrative simulation example. The
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process is described by the following equation:

G(s, w) =
K(T )

τ(T )s + 1
(4.12)

where both the process gain K(T ) and the process time constant τ(T ) are nonlinear

function of the scheduling variable T . The specific nonlinear relation is expressed as

follows:

K(T ) = 0.6 + T 2, T ∈ [1, 4] (4.13)

τ(T ) = 3 + 0.5T 3, T ∈ [1, 4] (4.14)

Apparently, over the whole operating range of the process, the process gain as

well as the time constant change dramatically and one single linear process model

identified under one specific working condition would hardly capture the dynamics of

the process throughout its complete operating range. As a result, a nonlinear model

or an LPV model is required here in order to sufficiently describe the behavior of

the process under various operating conditions (or various T values in other words).

The proposed LPV modeling method is employed and it is assumed that the

process is only to be tested around T1 = 1,T2 = 2.25 and T3 = 4 with Random Binary

excitation signals with small magnitude. To realize the transition from one operating

point to the other, scheduling variable T is gradually increased by fixed incremental

size and no additional excitation signal is added. In the simulation, white noise with

a variance of 0.015 is added in the simulated output to account for unknown process

noise.

After collecting the input-output data from the simulation, the proposed LPV

model identification method is applied and the identified results are shown in Figure

4.1. Here, to better test the validity of the identified model, step responses of

the identified model under randomly selected T values are calculated and they are

compared with the step response of the true process model.

Comparison result displayed in Figure 4.1 shows that the identified LPV model

not only can well capture the process dynamics under the training operating condi-

tions, but also perform well in capturing the process dynamics under other operating

points. This confirms the effectiveness of the identified LPV model in approximat-

ing the global process dynamics throughout the whole operating range. Figure 4.2

provides a weighting map of each local model under different T values. Based on

this calculated weighting map as well as Equation 4.9, model predictions can be

calculated under all the T values chosen from the operating range.

Finally, the identified local ARX model parameters are given in Table 4.1. It is

noticed that in comparison with the true model parameters, the estimated ones are

close to the real values.
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Figure 4.1: Comparison of the step response between identified and true models
under different T values (Red solid line: step response of the true model, black
dashed line: identified LPV model using the proposed method, blue dotted line:
identified LPV model using the interpolation method given in Xu et al. (2009)) (A):
system step response when T = 1.5 (B): system step response when T = 1.9 (C):
system step response when T = 3.4 (D): system step response when T = 4
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Figure 4.2: Weight of each local model at different operating points
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Table 4.1: True system parameters and estimated parameters

θ1 θ̂1 θ2 θ̂2 θ3 θ̂3

0.7515 0.7649 0.8914 0.8845 0.9718 0.9687
0.3976 0.4607 0.6152 0.6149 0.4676 0.5032

4.3.2 Continuous Stirred Tank Reactor

As a commonly used production unit in chemical and petro-chemical processes, the

continuous stirred tank reactor (CSTR) has been widely investigated and accepted

as a benchmark process for nonlinear process modeling, optimization and control.

In this section, we employ an exothermic CSTR with irreversible reaction A− > B.

Based on the mass as well as heat balance of the process, the first principle model

can be derived as (Xu et al. (2009); Senthil et al. (2006)):

dCA(t)
dt

=
q(t)
V

(CA0(t)− CA(t))− k0CA(t)exp(
−E

RT (t)
) (4.15)

dT (t)
dt

=
q(t)
V

(T0(t)− T (t))− (−∆H)k0CA(t)
ρCp

exp(
−E

RT (t)
) +

ρcCpc

ρCpV
qc(t){1− exp(

−hA

qc(t)ρCp
)}(Tc0(t)− T (t)) (4.16)

where the explanations and their corresponding steady state values for the parame-

ters of Equation 4.15 and Equation 4.16 are given in Table 4.2. As can be seen from

Table 4.2, coolant flow rate qc is defined as the process input while the concentration

of component A and the reactor temperature T are treated as the outputs. By ma-

nipulating the flow rate of the coolant, the reactor temperature changes accordingly

which leads to the change of the reaction kinetics. As a result, products with differ-

ent concentration of component A can be produced. In this paper, we assume that

the concentration of the outlet reagent A is of interest and it is controlled through

manipulating the coolant flow rate. Therefore, a single input single output (SISO)

model between the coolant flow rate and the reagent A concentration is built to ap-

proximate the process dynamics accross the whole operating range. Measurement

white noise with the magnitude of about 0.5% of the noise-free output in power

is added to the simulated output concentration and the input-output data of the

process are given in Figure 4.3.

As can be seen from Figure 4.3, five operating points are considered and the

coolant flow rate varies from 97L/min to 109L/min. During the transition period

between different operating points, the coolant flow rate increases by a fixed step

size and no additional excitation signal is added. Without knowing the parameters

of each local model, applying the proposed algorithm to the input-output data and

the identification results are obtained as shown in Figure 4.4 and Figure 4.5.
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Figure 4.3: Input-output excitation data, (a): outlet reagent A concentration (b):
cooling water flow rate

Table 4.2: CSTR model parameters and their steady state values
parameters steady state value

production concentration of Component A, CA output1
temperature of the reactor, T output2

feed Concentration of Component A, CA0 1mol/L
feed temperature, T0 350.0 K
specific heats, Cp, Cpc 1 cal/(g K)
liquid density, ρ, ρc 1× 103 g/L

heat of reaction, −∆H −2× 105 cal/mol
activation energy term, E/R 1× 104 K
reaction rate constant, k0 7.2× 1010min−1

heat transfer term, hA 7× 105 cal/(min K)
the reactor volume, V 100L

inlet coolant temperature, Tc0 350.0 K
process flow rate, q 100 L/min
coolant flow rate, qc input
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Figure 4.4: Self validation of the identified CSTR LPV model, MSE=9.7535×10−5.
Red solid line si the real process output and the blue dashed line is the simulated
output from the identified LPV model
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Figure 4.5: Cross validation of the identified CSTR LPV model, MSE=4.4838×10−5.
Red solid line si the real process output and the blue dashed line is the simulated
output from the identified LPV model
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Figure 4.6: Validity function of each local model under different working conditions
(coolant flow rates)

To achieve a better validation of the identified model, the data used for cross

validation are generated under different coolant flow rates from that of the training

data. For example, in the cross validation, we test the performance of the identi-

fied model under qc = 105, which is not considered in the model training data. The

validation results are satisfactory and good match between the prediction from the

identified model and the real simulated data is achieved both in self validation (Fig-

ure 4.4) and cross validation (Figure 4.5). The validity/weighting values calculated

for each local model with different coolant flow rates are given in Figure 4.6.

Based on the weighting map shown in Figure 4.6, the predictions from each of

the five local linear models can be effectively combined and the overall prediction

of the LPV model is obtained under different coolant flow rates.

4.4 Experimental Verification & Discussion

4.4.1 Process Description and Identification Results

To further verify the capability of the proposed algorithm, nonlinear process identi-

fication experiment is designed and performed on a pilot-scale heated tank system.

The simplified process piping and instrumentation diagram (P & ID) is shown in

Figure 4.7.
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Figure 4.7: Simplified heated tank system piping and instrumentation diagram

As can be seen from Figure 4.7, the saturated steam is used to heat the water

in the tank. By passing the steam through the coil, energy travels from the steam

to the water through heat exchange. As a result, given a fixed volume of water in

the tank, the temperature of the water is mainly influenced by the flow rate of the

steam. Considering that the process dynamics from the steam flow rate (input) to

the tank water temperature (output) is of interest, to identify the process model,

the flow rate of the steam is manipulated as the excitation signal and the water

temperature change is recorded as the process response. In the configuration as

shown in Figure 4.7, the flow rate of the steam and the cold water are controlled by

the controllers tagged as FIC105 and FIC104 and the level of the tank is measured

through a field mounted level transmitter. Cascade control scheme is applied to

the tank level control in which a level controller, considered as a master controller,

calculates the set point for the cold water flow rate controller.

With the same system configuration, for instance, same tank exit manual valve

position, etc., under different water levels, the transfer function from the steam flow

rate to the water temperature could vary accordingly. In other words, the process

is essentially nonlinear and relevant local linear approximation around each tank

level cannot be applied to the other levels. Owing to the significant effect of the

water level on the process dynamics, the tank level is denoted as the scheduling

variable of the system. Four different operating points are selected and random

binary excitation signal (RBS) is designed for the steam flow rate. The design

parameters for the experiment are shown in Table 4.3:
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Table 4.3: Designed experiment parameters for the heated tank process
Operating points, Tk, k = 1, 2, 3, 4 Steam flow rate excitation signal

0.15 (m) 10 kg/hr - 15 kg/hr
0.25 (m) 10 kg/hr - 15 kg/hr
0.35 (m) 10 kg/hr - 15 kg/hr
0.39 (m) 10 kg/hr - 15 kg/hr
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Figure 4.8: Heated tank process input-output data (a) water temperature in the
tank, process output; (b) steam flow rate, process input

The transition between different operating points is operated in a way that the

tank level is slightly increased by a fixed step over the transition period and it

reaches the next operating level when the transition period is over. The process

input - output data along with the scheduling variable (which is tank level in this

case) are given in Figure 4.8 and Figure 4.9.

As pointed out in the discussion section on how to set the tuning parameter omax

values under different collected process data sets, when the process measurement

is considered to be noisy, to increase the robustness of the algorithm, relatively

small values are going to be assigned to omax and as a result, it is expected that

the optimality of the algorithm could be compromised. In this calculation, the omax

values for each of the local model are set to be 0.5oC and identification results are

shown in Figure 4.10.

The estimated LPV model performs well in self-validation test which indicates

the efficiency of the proposed method. However, to further test the identified LPV
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Figure 4.9: Heated tank process scheduling variable
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Figure 4.10: Self-validation result, the fitting percentage equals 93.6%. Red solid
line is the collected process data , blue dashed line is the simulated output of the
identified LPV model
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Figure 4.11: Cross-validation input-output data, (a) tank temperature, process out-
put, (b) steam flow rate, process input

model, cross-validation is also performed in an effort to further evaluate the quality

of the identified model. Here, simple step tests with steam flow rate changes between

10kg/hr and 15kg/hr are conducted under the tank level equals 0.3 meter. The process

input-output data are given in Figure 4.11

Setting the same initial condition as the cross-validation data, the comparison

between the prediction from the identified model against the collected process vali-

dation data is plotted in Figure 4.12

The tank level around which the step tests are performed is 0.3 meters, which

has not been chosen as one of the local operating points in the training data as given

in Figure 4.9. To vividly illustrate the nonlinearity of the process, predictions from

the locally identified models under different levels are compared with the collected

process data when the water level equals 0.3 meters. The comparison results are

given in Figure 4.13. It is noticed that due to the nonlinearity brought by the

change of the process operating condition (water tank level change in this case), the

identified local models can not satisfactorily capture the process dynamics when at

level equals 0.3 meters.

To test the capability of the identified nonlinear model in describing the dynamic

behavior of the process, the data shown in Figure 4.11 are passed through the

identified model and relevant validation result is given in Figure 4.12. It can be

seen from Figure 4.12 that the real process data and the model prediction is in good
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Figure 4.12: Cross-validation result, the fitting percentage equals 97%. Red solid
line is the collected process data , blue dashed line is the simulated output of the
identified LPV model

agreement with each other which effectively confirms the efficiency of the algorithm.

4.4.2 Comparative Study With An Existing LPV Modeling
Method

Xu et al. (2009) and Zhu (2008) have proposed a nonlinear process modeling method

in which an LPV model is identified based on the interpolation of each local model

obtained around its relevant operating condition (Xu et al. (2009); Zhu & Xu (2008)).

It has been shown that by appropriately combing all the local models using certain

type of smooth validity functions, the identified LPV model is able to predict the

nonlinear process behavior given inputs as well as the information on the process op-

erating conditions. Owing to the similarity of the modeling philosophy, we perform

a comparative study between the proposed method and the method that has been

given by Xu et al. (2009); Zhu & Xu (2008) in this section. For notation simplicity,

the LPV model identification method proposed in Xu et al. (2009); Zhu & Xu (2008)

is referred to as the comparative method afterwards in this section.

The same data used in the previous section will be applied to the comparative

method. It consists of the training data as shown in Figure 4.8 and the testing data

as in Figure 4.11. As pointed in the introduction section, one of the main draw-

backs associated with the method proposed in Zhu & Xu (2008); Xu et al. (2009)
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Figure 4.13: Comparison among the predictions from different local models and
the collected real process data, pink cross solid line: predictions from the model
identified at level = 0.15 meters, black dash dotted line: predictions from the model
identified at level = 0.25 meters, red solid line: real process response at level =
0.3 meters, blue dashed line: predictions from the model identified at level = 0.39
meters, blue plus line: predictions from the model identified at level = 0.35 meters
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Figure 4.14: Noisy tank level measurement, measurement noise with variance of
0.001 is added to the original level measurement

is its dependance on the locally identified models. Although it is assumed that the

scheduling variable/variables through which the operating condition of the process

being inferred can be measured or observed in this paper, however, given noisy mea-

surement of the scheduling variable/variables, the inference of the process operating

condition can be quite difficult or even misleading under certain circumstance. In

other words, the selection of the data set for local models identification may not

be that easy as it is even when the scheduling variable/variables measurements are

available. Taking the heated tank process for example, measurement noise with the

variance of 0.001 is added to the original level measurement and the resulted level

readings are shown as in Figure 4.14.

As can be seen from Figure 4.14, when the scheduling variable measurement is

noisy, selection of the local data sets by hand can be challenging which makes the

inappropriate segmentation of the process data more likely. To demonstrate the

dependence of the comparative method on the segmentation of the process data,

comparative study between the proposed method and the comparative method is

conducted in this section. Two scenarios are contrived in which the first scenario

provides the accurate local models for the comparative method to start with while

in the second scenario, the local models are estimated with poorly segmented data

(data mixed with the local data set and its neighbouring transition data) due to

the noisy level measurement as shown in Figure 4.14. To ensure the fairness of the
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Table 4.4: Comparison of estimated parameters using different methods with outliers
in the data set

Method SV MSE (Scenario 1) CV MSE (Scenario 1)
The Comparative Method 0.3924 0.0349

The Proposed Method 0.4081 0.0349

Method SV MSE (Scenario 2) CV MSE (Scenario 2)
The Comparative Method 0.6972 0.0413

The Proposed Method 0.4342 0.037

comparison, the same global data set is used for both of the methods and the level

measurement data shown in Figure 4.9 and Figure 4.14 are used as the scheduling

variable measurement for Scenario 1 and Scenario 2 respectively. Under two differ-

ent scenarios, the process data with different scheduling variable measurements are

passed through the algorithms and the relevant validation results are summarized

in Table 4.4

As can be seen from Table 4.4, under Scenario 1 in which appropriate local models

are provided, both of the methods are able to achieve satisfactory identification

results while, when the prerequisite on the quality of the local models is not satisfied

for the comparative method due to the various reasons, e.g. poor selection of the

local data set caused by noisy scheduling variable measurement in this case, it

delivers lower identification performance and the proposed method outperforms it

under this situation owing to the fact that the local models as well as the smooth

combination functions are estimated simultaneously using the whole global data set

in the proposed method.

4.5 Discussion & Conclusion

Modeling of nonlinear process with multiple operating conditions is considered in

this paper. By incorporating process information such as scheduling variables, the

number of operating point that the system is likely to be operated on, the model

order of each local model identified around its corresponding operating point, an

LPV model is identified for the nonlinear process and it has been demonstrated

that within the specified working range, the identified model provides satisfactory

approximation of the process dynamics. To further validate the effectiveness of the

proposed identification method, an experiment is performed on a pilot-scale setup

and it is demonstrated that the proposed LPV modeling method can be applied to

the collected experimental data to effectively identify an LPV model for nonlinear

process. Some issues may rise when it comes to real industrial process applications

and we would like to provide our perspective on circumventing some of those issues

(1) How to decide the excitation sinal magnitude for each local model? We did not
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quantitatively specify the magnitude of the excitation signal in the work that has

been done so far; however, as identifying a local linear model around certain operat-

ing point has been a relatively sophisticated practice after decades of development,

design information such as the magnitude of the input excitation sinal can well be

obtained from the process operation knowledge. (2) How to model the process dy-

namics outside the operating range of the training data? It would be difficult for the

identified LPV model to predict the system behavior outside the operating range of

the training data set. Therefore, we suggest collecting the input-output data from

a wider operating range which covers all the potential prediction region. If overly

wide operating range excitation is not allowed due to safe process operation or cost

consideration, then the identified local linear model which locates closest may be

chosen as the prediction model. (3) How to determine the operating points over

which the local identification experiments are to be performed. In this paper, we as-

sume that the operating points at which the local models are identified have already

been specified in such a way that it is optimal for identifying the nonlinear process.

However, relevant research work on optimal working points design for nonlinear

process modeling using LPV models has already been conducted by researchers in

the past few years such as the research performed by Khalate et al. (2009). These

algorithms can be well employed in practice when process priori knowledge is not

sufficient to determine appropriate operating points for the construction of LPV

models.
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Chapter 5

Summary and Conclusions

5.1 Summary of This Thesis

This thesis is concerned with the identification of switched systems. The popularity

of the switching phenomena happening in industrial process along with the relevant

challenges it poses for process control and monitoring motivate us to investigate

and try to solve the modeling of different types of switched systems. The work is

confined to the switched ARX systems as we believe that it greatly simplifies the

switched system identification problems while, at the mean time, preserves the ap-

plicability of the proposed identification methods to the real experimental or even

industrial scale processes. Different types of switched ARX systems are considered.

The Piecewise ARX system, in which the validity region of each sub-system is sepa-

rated by the regressor hyperplane, is considered owing to its capability of describing

a large number of processes by switching among different ARX sub-systems. To

immunize the identification algorithm from the negative influence of the abnormal

data points that may be present in the data set, a robust EM algorithm is developed

by expressing the noise distribution in a contaminated Gaussian distribution form.

For switched systems with random switching behavior, the robust EM algorithm is

applied directly for estimating the system parameters as well as the cluster identity

of each data point. Moreover, for the PWARX system identification, a robust iden-

tification procedure which consists of robust EM algorithm block (for local ARX

models parameter estimation), data clustering block and sub-system region parti-

tion block (for calculation of the boundaries among different sub-systems) is put

forward and its efficiency in identifying the PWARX system parameters through

the data set with/without outliers is demonstrated. Simulated numerical examples

as well as experiment performed on pilot-scale setup are used to confirm the capa-

bilities of the proposed identification methods in identifying the PWARX systems

and switched ARX systems with random switching behavior.

The identification methods given in Chapter 2 do not take the switching dynam-
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ics into the consideration which, under certain circumstances, may exhibit complex

switching behavior or it is known that the system switches in a Markov model fash-

ion. The identification problem of switched Markov ARX systems (SMARX) is

evaluated in Chapter 3 and an identification method built upon the EM algorithm

is presented in which the discrete switching dynamics along with the continuous

process dynamics are estimated simultaneously. The benefits of simultaneous esti-

mation of the continuous dynamics and discrete switching dynamics are confirmed

and demonstrated from the comparison of different switched system identification

methods in terms of their parameter estimation accuracy. The identification meth-

ods employed in the comparison include the proposed method in Chapter 3, the

method for general switched ARX system identification given in Chapter 2, the

switched system identification method proposed by Nakada et al. (2005).

Chapter 4 moves the discussion into a relatively different domain in which the in-

vestigated switched system does not have immediate switching among different local

models. Instead, the switching that occurs requires certain amount of time before

the transition is finished. Such kind of gradual switching has been commonly expe-

rienced in the process industry due to the necessity of operating condition change

from time to time. The linear parameter varying model is employed in describing

the switched process and the LPV model identification problem is formulated and

solved based on the assumption that certain scheduling variable(s) through which

the operating mode of the process is indicated can be measured or inferred from the

measurement. Without knowing the local ARX models parameters and the validity

region of each local model, the process input-output data along with the scheduling

variable measurement (sometimes, the scheduling variable can be the input, output

or any other process variables) are analyzed and passed through the algorithm. Sim-

ple nonlinear numeric model along with an example of nonlinear CSTR process are

utilized to verify the efficiency of the proposed method. The identification results

demonstrate the capability of the proposed identification method in identifying the

local models parameters and their validity regions. By combing all these identified

local models based on their respective validity region, a global nonlinear process

model is obtained and it can be used for the prediction of the process behavior

under different operating conditions.

5.2 Directions for Future Work

Up to this point of the thesis, we have been concentrating on the identification of

switched ARX systems which, are worthwhile to investigate given their potential

applications in nonlinear process modeling, process abrupt change detection as well

as advanced process control. In this section, we would like to share our perspective
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on the fields and directions that are worthy of future investigation.

1. Extending the discussion to other local linear model structures. As be-

ing pointed at the beginning, one of the basic assumptions made throughout the

thesis is that all the sub-systems share the same model structure: ARX model. Al-

though it has been proved that ARX model with sufficiently high order is capable

of approximating any process dynamics (Ljung (1987)), however, being aware of

the complexity that the real process can be, ARX model structure may not be the

optimal choice compared with other linear model structures such as Box-Jenkins

(BJ) model, Output-error (OE) model or even linear state space model. Therefore,

it will be of beneficial to assign different model structures to different local models

accordingly based on the priori information of the process.

2. Considering the switched systems with linear as well as simple nonlinear sub-

systems. So far, it is assumed that all the sub-models of the switched systems are

linear. However, simple nonlinear systems can estimate the local process dynamics

more accurately than its linear counterpart due to the fact that all real systems

are essentially nonlinear. It is expected that, owing to the introduction of simple

nonlinear models for the process under certain operating conditions, the identified

switched system is able to approximate the process with better accuracy while less

number of local models are required.

3. Applying the general EM algorithm to nonlinear process modeling using

multiple local models. In Chapter 4, the nonlinear process modeling problem is

considered and it is formulated as LPV model identification problem. The proposed

identification method is built upon the regular EM algorithm in which the direct

derivative is taken when searching for the optimal parameters in each iteration. Al-

though the direct derivative facilitates the convergence of the algorithm, however,

it makes the whole algorithm more sensitive to the noise level. In the general EM

algorithm, instead of taking the direct derivative, it only searches for the new set

of parameters through which the expectation of the complete data set can be in-

creased (not optimally increased). This is helpful in enabling the algorithm to be

less sensitive to the data noise although, as the expense, it may take more time for

the algorithm to converge.

4. Estimating the number of sub-models automatically from the data set. It is

assumed all over the thesis that the number of sub-models of the switched system is

known in advance either from the process knowledge or from the existing estimation

algorithm. However, it may be desirable to incorporate the estimation block for the

number of the sub-systems into the switched system identification procedure so that

by iteratively estimating the parameters and the local model number, the switched

system parameters can be more accurately estimated.
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