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ABSTRACT

The effects of the presence of non-systematic
reflections on extinction distance, anomalous absorp-
tion, and image intensity have been studied for
different electron diffraction situations. 1In the
course of these studies a criterion for inclusion of
reflections in a many-beam calculation has been
developed and the question of Bloch wave labelling
in the presence of a non-systematic reflection examined.

In the extinction distance study it was found
that, in the presence of a single non-systematic re-
flection, the largest changes in extinction distance
occurred at small positive and negative deviations of
the non-systematic reflection from its Bragg condition.
Associated with these regions of maximum change were
small ranges of deviation over which the variation of
the diffracted beam intensity with depth became non-
sinusoidal. An analysis in terms of Bloch wave parz-—
meters showed that the changes in extinction distance
could be explained by relative displacements of the
important branches of the dispersion surface. Ir
addition, the regions of non-sinusoidal intensity
variations occurred when more than two Bloch waves
made significant contributions to the diffracted beam

intensity. A further analysis using three-beam analytical

iv



solutions of the dynamical theory showed that the
deviations at which the non-sinusoidal intensity
variations occurred could be predicted by examining

the wave vectors corresponding to the important Bloch
waves in the systematic case. It was also found that,
for one particular deviation of the systematic reflec-
tion from its Bragg condition, one of the non-sinusoidal
regions disappeared due to the degeneracy of two of the
Bloch waves.

Marked changes in anomalous absorption effects
and image intensity were also observed in the presence
of non-systematic reflections. Variations in Bloch
wave absorption coefficients arising from alterations
in the channelling characteristics of the wave under
such circumstances resulted in corresponding changes
in anomalous absorption effects. These effects were
found to be enhanced for negative deviations of the
non-systematic reflection from its Bragg condition but
diminished for positive deviations. 1In the case of image
intensity, it was found that, in the bright field rocking
curve, marked changes in the position of the intensity
maximum from that obtained in the systematic case could
occur in the presence of non-systematic reflections.

No such changes were observed, however, in the dark field

case.



As an aid in carrying out many-beam calculations
involving non-systematic reflections, a criterion was
developed for choosing the reflections to be included
in such calculations. This criterion, based on the
predicted effect of a reflection on the systematic
extinction distance, allowed a calculation to be carried
out with the minimum number of reflections included to
obtain the desired convergence.

Finally, the labelling of Bloch waves in the
presence of a non-systematic reflection was examined.
It was found that, under such circumstances, it is no
longer possible to associate certain characteristics
with particular Bloch wave numbers as is done in the

systematic case.
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CHAPTER 1

A REVIEW OF ELECTRON DIFFRACTION EFFECTS AND PURPOSES

OF THE PRESENT WORK

1l:1 Introduction

Electron diffraction is an important tool in the
study of the structure of materials. Both the surface
characteristics and internal features of a crystalline
specimen can be examined by using this phenomenon. 1In
the case of internal structure, such examination is
most often carried out in an electron microscope. The
interpretation of contrast effects in electron micros-
cope images of crystals in terms of electron diffraction
interactions has played an important role in the develop-
ment of electron microscopy as applied to problems in
material science. It was with a view to examining one
particular aspect of these interactions, namely, electron
diffraction effects in the presence of strongly excited
non-systematic reflections, that the work described in

this thesis was undertaken.

1:2 Historical Background

Electron diffraction was first observed experimen-
tally in 1927 by Davisson and Germer (1927) and almost

simultaneously by Thomson and Reid (1927). Their work



confirmed the de Broglie postulate for electrons (de
Broglie, 1924) and provided the basis for the develop-
ment of the electron microscope. In the year following -
the first experimental observation of electron diffrac-
tion, Bethe (1928) published a quantum mechanical theory
for the motion of a high energy electron in a crystal
potential. This theory, known as the dynamical theory
of electron diffraction, has come to play a very impor-
tant role in the analysis of electron diffraction effects.
Initially, however, after the development of the
electron microscope by Knoll and Ruska (1932), interpre-
tation of the image contrast observed in these instruments
was carried out in terms of the simpler kinematical theory
of electron diffraction. This theory was developed from
the corresponding kinematical theory of X-ray diffraction,
which had been found adequate in explaining most effects
observed when using X-radiation. However, in the case
of electrons, the assumptions of the kinematical theory
of single scattering and of negligible diffracted beam
intensity in comparison to that of the directly trans-
mitted beam, are not usually fulfilled. Thus, when a
number of authors (von Borries and Ruska, 1940; Hillier
and Baker, 1942; Heidenreich, 1942; Boersch, 1943;
Kinder, 1943; Heidenreich and Sturkey, 1945) reported
experimental results which could be only partially ex-

plained in terms of the kinematical theory, interest



returned to the dynamical theory.

In Bethe's theory neither of the assumptions of
the kinematical approach were required. Both multiple
scattering of the electrons and comparable diffracted
and directly transmitted beam intensities were allowed.
Also, any number of strong diffracted beams could, in
principle, be taken into consideration. It was found
in practice,however, that analytical solutions for the
intensities of the different beams could be easily
obtained only for the case where two reflections, the
directly transmitted and one diffracted beam, were con-
sidered. These analytical solutions gave good agreement
with experiment in the usual strong beam imaging situa-
tions where only one low-order reflection was close to
its Bragg condition. As a result the use of this two-
beam approximation of the dynamical theory became wide-
spread.

In order to take the effects of additional weak
diffracted beams into account and yet retain the sim-
plicity of the two-beam analytical solutions,it is
possible to use Bethe's Second Approximation. In this,
the effects of the additional reflections are included
by adding correction terms to the lattice potentials
corresponding to the directly transmitted and strongly
diffracted beams. However, these corrections result in

lattice potentials which are functions of crystal



orientation. Moreover, Bethe's Second Approximation is
found to break down whenever any.of the additional
reflections are‘close to their Bragg conditions. For
these reasons this Approximation was not widely used to
study situations where a number of strong beams were
present. Instead, interest turned to the numerical solu-
tion of the dynamical equations when it was desired to
take into account more than two reflections.

In this regard, a number of theoretical formula-
tions were put forward during the late 1950's for cal-
culating intensities in a many-beam situation. Cowley
and Moodie (1957) developed such a theory using scatter-
ing principles carried over from light optics. In the
same year Sturkey (1957) reported results of many-beam
calculations employing an exponential expansion of the
scattering matrix in the dynamical theory. Additional
matrix approaches were also reported by Niehrs (1959)
and Fujimoto (1959) in which they formulated the dynami-
cal theory in terms of an eigenvalue equation. Howie
and Whelan (1960) were the first to carry out many-beam
calculations using this formulation. Their method has
gradually gained wide acceptance for calculating many-
beam effects. It is their approach that has been used

in the work presented in this thesis.



1:3 Bloch Wave Concepts in the Dynamical Theory

Although the dynamical theory of electron diffrac-
tion will be treated in detail in Chap. 2,it is useful
to introduce some of its concepts at this point. In
the formulation of this theory in terms of an eigenvalue
equation, as given by Howie and Whelan (1960), the motion
of the high energy electrons in a crystal are described
in terms of a set of Bloch waves: The wave vector cor-
responding to each of these Blocﬁ waves is associated
with an eigenvalue of the initial equation and, in fact,
these eigenvalues give the differences between the wave
vectors of the different waves. ‘The eigenvector associa-
ted with eaéh of these eigenvalues gives the components
of the corresponding Bloch wave in the directions of the
directly transmitted and diffracted beams considered.

The effects of inelastic scattering of the incident elec-
trons, referred to as absorption in the dynamical theory,
is taken into account by allowing the Bloch waves to
attenuate as they propagate through the crystal.

Contrast observed in electron microscope images of
perfect crystals can be explained quite easily in terms
of Bloch waves. Thickness extinction contours,which arise
from a periodic variation of transmitted or diffracted
beam intensity with depth in a crystal,can be interpreted

in terms of beating between Bloch waves due to differences



in their wave vectors. The period of this beating, known
as the extinction distance, is then directly related to
the eigenvalues of the Bloch waves involved. The contri-
bution of a Bloch wave to a particular diffracted beam

is determined by both the extent to which it is excited
and the magnitude of its componeht in the direction of
the beam as given by the eigenvector. Usually,only a few
waves make a significant contribﬁtion to the intensity

of a given reflection. Differences in the absorption of
these waves can, héwever, give rise to anomalous absorp-
tion effects such as the disappearance of extinction con-
tours in thick crystals although‘appreciable intensity

is still transmitted.

It was partly with a view of investigating the
changes in the Bloch wave eigenvalues, eigenvectors and
absorption coefficients in the presence of two strongly
diffracted beams that the work reported here was under-

taken.

l:4 Systematic and Non-Systematic Reflections

When a high energy electron beam is incident on a
crystal it is generally found that a number of different
sets of planes are close to satisfying their Bragg con-
ditions. In forming conventional strong beam images the
crystal is usually oriented so that only one low-order

diffracted beam is strongly excited. If this reflection



7

has a reciprocal lattice vector, 3, then all reflections
corresponding to the vectors ns where n is an integer
are called systematic reflections (Hoerni, 1956).
Similarly, those reflections which have a reciprocal
lattice vector, K, not collinear with E are called
accidental or non-systematic reflections. Whether a
particular reflection is termed Systematic or non-
systematic depends entirely upon the low-order diffracted
beam being used for imaging purpcses. Thus, a reflection
which is termed systematic in one situation may, upon
choosing a different low-order reflection for study, be
termed non-systematic. This is illustrated in Fig. 1,
which shows a computed electron diffraction pattern for
a [1I2] orientation in a crystal with f.c.c. structure.
If the (111) reflection is the primary reflection being
used in image formation, then the reflections (222),
(333), (I1I1), (222) and (333) are designated as systema-
tic and all other reflections such as (220), (531) etc.
as non-systematic. Similarly, if the (220) reflection
is the primary diffracted beam, (430), (320) and (440)
are termed systematic and all other reflections such as
(111), (222) etc. are then called non-systematic.

The importance of this differentiation between
Systematic and non-systematic reflections can be seen
by examining Fig. 2. This Figure shows the calculated

diffraction ‘pattern for the above crystal after it has
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Fig. 1. A computed diffraction pattern for an f.c.c.
crystal at an exact [112] orientation with

respect to the incident beamn.
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Fig. 2. A computed diffraction pattern for an f.c.c.
crystal at an orientation obtained by tilting
10° from an exact [112] orientation about an
axis parallel to the [11l1l] direction.
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been rotated lO'degrees about an axis parallel to the
[111] direction. As can be seen,the (111) row of
systematic reflections are still present after carrying
out the 10° tilt but the corresponding non-systematic
reflections visible in Fig. 1 have disappeared. Instead
other non-systematic reflections such as (331), (240)
etc. are now excited. These two Figures illustrate the
importance of differentiating between systematic ana non-
systematic reflections. For example, if it is desired
to use the (11l1l) reflection in forming a conventional
strong beam image, this reflection must be set close to
its Bragg condition. The effects of systematic reflec-
tions are thereby determined and cannot be changed
without changing the deviation of the (111) reflection
from its Bragg condition. However, by rotating the
crystal about an axis parallel to [1ll] direction,the
excitations of the non-systematic reflections can be
drastically altered without affecting the deviation from
the Bragg condition of the (111) reflection. This fact
is commonly used by electron microscopists in order to
orient their specimens so that the only low-order reflec-
tions strongly excited lie along the systematic row.

In doing this they hope to minimize the effects of non-

systematic reflections on their images.
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In the next section a brief review of the effects
of systematic reflections will be given for purposes of
comparison with the effects of non-systematic reflec-

tions to be discussed later.

1:5 Studies of the Effects of Systematic Reflections

It was shown in the previous section that systema-
tic reflections must always be present whenever a low-
order reflection is excited. Because of this,most of
the many-beam calculations which have been carried out
in the past have been to investigate the effects of these.
reflections.

In their original paper on the numerical solution
of the dynamical equations of electron diffraction,
Howie and Whelan (1960) carried out seven-beam calcula-
tions to take into account the lower order systematic
reflections associated with the (111) reflection in Al.
They found that the piesence of these additional reflec-
tions can result in significant effects. In the case
of the (lllf extinction distance,marked changes in its
magnitude from the two-beam value were predicted to
occur both at the exact (1ll1ll) Bragg condition and at
deviations from this condition. In addition, they found
that the rate of absorption of the different Bloch waves

was also sensitive to the presence of the systematic
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reflections. The first experimental measurements show-
ing the effect of systematic reflections were those of
Dupouy, Perrier, Uyeda, Ayroles, and Mazel (1965) who
reported measurements of extinction distance in MgO as
a function of accelerating voltage for a range of vol-
tages from 100 to 1200 kV. At the higher voltages the
results obtained were found to deviate from those
predicted by the two-beam theory; Goringe, Howie and
Whelan (1966) showed that these results were in good
accord with many-beam calculations in which systematic
reflections were included.

Sheinin (1967) reported measurements of the varia-
tion of extinction distance with‘deviation from the
exact Bragg condition of the (110) reflection in Mo.

He found that the effects of systematic reflections
became important at deviations of approximately 1.5
Bragg angles. Here the extinction contours became guite
complex in nature. When, for larger deviations, they
again became sinusoidal in fcrm the extinction distance
was found to have increased markedly in magnitude. Cann
and Sheinin (1968) reported similar measurements for the
(111) reflection in Si in which they found systematic
reflections to have a strong effect, even quite close

to the exact Bragg condition. The greater effect of the

systematic reflections in this case was primarily
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attributed to the presence of the (222) reflection which
is kinematically forbidden in the diamond cubic struc-
ture. Similar measurements for the (220) reflection in
Si (Cann, 1967; Sheinin, 1970n) showed that the effects
of systematic reflections were negligible for deviations
within one Bragg angle of the (220) reflection from its
Bragg condition. Mazel (1971) also carried out similar
measurements in MgO but for a range of accelerating
voltages. She found good agreement between her experi-
mental results and many-beam calculations taking 10
systematic reflections into account. Finally, Spring
and Steeds (1970) and Steeds (1970), using a different
approach, examined images of extinction contours in bent
wedge-shaped crystals for the primary purpose of obtain-
ing absorption coefficients. They found that many-beam
calculations taking into account systematic reflections
were necessary in order to obtain good agreement between
theory and experiment.

The effects of systematic reflections have also
been studied in the case of images obtained from defect
containing crystals. Humphreys, Howie and Booker (1967)
considered the effect of these reflections on stacking
fault intensity profiles in Si and Au. For the (220)
reflection in Si they found the effects to be quite weak.

However, for the (111) reflection in Au the many-beam
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intensity profiles were markedly different from the
computed two-beam profiles. Sheinin and Botros (1970)
examined stacking fault contrast in Co as a function

of the deviation of the (111) reflection from its Bragg
condition for the case of both bright and dark field
images. They found that the good contrast obfained in
dark field images at large deviations could be explained
by the presence of the additional Bloch waves excited
when systematic reflections were considered. In the
case of dislocations, Cann, Foxon and Sheinin (1968)
reported calculations of many-beam dislocation profiles
that showed marked effects due to the presence of sys-
tematic reflections. Finally, Cockayne (1972) stated
that, in general, his weak-beam technique for obtaining
high resolution images of defects should not be applied
when a systematic reflection is close to its Bragg con-=
dition. This is because the intensity profiles may be
perturbed in such a situation, thus leading to possible
errors in measurements of features such as the splitting

of partial dislocations.

1:6 Studies of the Effects of Non-Systematic Reflections

In comparison with the extensive research done in
the case of systematic reflections only recently has

attention turned to the problem of interpretation of
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electron images in the presence of non-systematic
reflections. A number of authors (Hibi, Kambe and
Honjo, 1955; Uyeda and Nonoyama, 1965; Uyeda, 1968;
Takahashi, 1969) have observed complex periodicity in
thickness extinction contours when the non-systematic
reflections present were close to their Bragg conditions.
Lehmpfuhl (1970) showed that the preseﬁce of three
strongly excited Bloch waves at the crystal oiientationé
involved could result in the complexities observed.
Uyeda and Nonoyama (1965) also observed that outside

the region of complex periodicity the extinction dis-
tance varied with the deviation of the non-systematic
reflection from its Bragg condition. For positive
deviations the extinction distance was larger than that
measured when the non-systematic reflection was absent
while for negative deviations it was smaller. They
showed that this was in qualitative agreement with the
predictions of Bethe's Second Approximation.

Although the dynamical theory in the formulation
presented by Howie and Whelan (1960) handles the case
of non-systematic reflections quite readily, a number
of analytical approximations of the theory have also
been developed. Kambe (1967) derived approximate analy-
tical expressions for the beam intensities of three

non-collinear reflections which could be used to deter-
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mine the differences between the phase angles of the
structure amplitudes for the reflections involved.
Fukuhara (1966) developed analytical expressions for
the Bloch wave vectors and amplitudes for a number
of configurations involving both systematic and non-
syétematic reflections. The arrangement of the reflec-
tions in these configurations were, however, required
to obey certain symmetry conditions. Hirsch, Howie,
Nicholson, Pashley and Whelan (1965) and Reynaud (1971)
have examined orientations of high symmetry in order to
determine the channelling characteristics of the Bloch
waves present. Using a different approach, Gjgnnes (1966)
and Gjgnnes and Hgier (1969, 1971) investigated the
essentially strong non-systematic situations arising
at Kikuchi line intersections. They interpreted their
results in terms of three and four-beam analytical
solutions of the dynamical theory. From these solutions
they derived rules, depending upon the Fourier coeffi-
cients of the lattice potential involved, for the beha-
viour of the Kikuchi lines at the intersections.
Recently, since the commencement of the work
reported in this thesis, a number of papers have been
published inlwhich aspects of the effects of non-
systematic reflections have been interpreted in terms

of the dynamical theory by using many-beam calculations.
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Lehmpfuhl and Reissland (1968) and Lehmpfuhl (1970,
1972) have examined the intensities of the Bloch waves
excited in the presence of non-systematic reflections.
These intensities were studied experimentally by
observing the fine structure of diffraction spots
obtained from wedge-shaped crystals. The results were
compared with many-beam calculations including up to

108 reflections and good agreement obtained when absorp-
tion was taken into account. Fisher (1968) also carried
out many-beam calculations including a large number of
reflections. He found that, at an accelerating voltage
of 100 kV, it was necessary to include approximately 50
systematic and non-systematic reflections in order to
obtain convergence for the extinction distance obtained
at a [100] orientation in CuAu3.

In the case of electron microscope images, Ayroles
and Mazel (1970) reported measurements in MgO of the
(200) extinction distance with deviation of the (024)
and (224) reflections from their Bragg conditions.

They obtained good agreement between their observed
results and many-beam calculations. Ayroles (1971)

went on to show that the changes in extinction distance
and the appearance of complex periodicity, reported by
himand Mazel, could be explained by the dynamical theory

in terms of variations in the Bloch wave vectors and
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the contributions of the differenf Bloch waves to the
(200) diffracted beam intensity. Finally, Lynch (1971)
investigated fine-focus convergent-beam images in Au
[111] oriented foils. He found it necessary to take
into account 139 reflections in his calculations includ-
ing second zone spots in order to obtain agreement with

experiment.

1:7 Purposes of the Present Investigation

In carrying out the work presented in this thesis
the effects of nén-systematic reflections in five general
areas have been considered. The first three of these
involved electron microscope imaging and were concerned
with the effect of non-systematic reflections on extinc-
tion distance, anomalous absorption and image intensity.
The fourth area considered was the question of the
number of non-systematic reflections which should be
included in a many-beam calculation. The fifth study
was concerned with an investigation of Bloch wave label-
ling in the presence of a non-systematic reflection.

The purposes of these studies are discussed in detail

below.

1:7.1 To Investigate the Effects of a Non-Systematic

Reflection on Extinction Distance

A detailed examination was undertaken of the
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variation of the (220) extinction distance in Si as a
function of the deviation of the (133) reflection from
its Bragg condition. This study was carried out for

the (220) reflection both in its Bragg condition and

at a deviation from this condition of a quarter of a
Bragg angle. The first aim of this study was to examine
the behaviour of the Bloch waves in a situation where
only one non-systematic reflection was close to its
Bragg condition in hope that the interpretation would

be simpler than in the case considered by Ayroles (1971).
In his study two strong non-systematic reflections were
‘present resulting in the simultaneous excitation of up to
four strong Bloch waves in the crystal. With a single
non-systematic reflection three Bloch waves, at most,
should be important.

The second aim was to compare the results obtained
for the (220) reflection in its Bragg condition with
those found at a deviation from this condition of a
quarter of a Bragg angle. This &as done to determine
whether or not there were any significant differences
in the effects of the non-systematic reflection in these

two cases.

1:7.2 To Examine the Effects of a Non-systematic Reflec-

tion on Anomalous Absorption

Anomalous absorption effects in electron microscope
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images, as stated in Section 1:3, arise from differences
in the absorption coefficients of the Bloch waves. The
variation‘of the absorption coefficients corresponding
to the iméortant Bloch waves in the case of the (220)
reflection in Si have been studied as a function of the
deviation of the (133) reflection from its Bragg condi-
tion. This was done to determine the changes in anoma-
lous absorption effects which might result from the

presence of a non-systematic reflection.

1:7.3 To Examine the Effect of Non-Systematic Reflections

on Image Intensity

In electron microscopy, especially of thick materials,
it is usually desirable to use a crystal orientation
for which the imaging beam has a maximum intensity. The
orientation at which this maximum occurs is usually found
theoretically by calculating the variation of the beam
intensity as a function of orientation. The resulting
plots are referred to as rocking curves. In the case
where only systematic reflections are considered and for
an accelerating voltage of the order of 100 kV these
rocking curves predict maximum image intensity in the
dark field to occur at the exact Bragg condition of the
diffracted beam. For the bright field image, however,
the maximum intensity occurs at a small positive devia-

tion of the diffracted beam from its Bragg condition.
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In order to test whether the presence of non-
systematic reflections would significantly alter these
effects, many-beam calculations of rocking curves were
carried out in the presence of different non-systematic
reflections. The orientations at which the average
intensity was a maximum,as obtained from these curves,
were then compared with the predictions in the systema-

tic case.

1:7.4 To Develop a Criterion for the Inclusion of Non-

Systematic Reflections in Many-Beam Calculations

In Bethe's original dynamical theory an infinite
number of reflections are considered. However, in a
many-beam calculation only a finite number can be inclu-
ded. Moreover, in order to minimize computing time it
is desirable that this number should be no larger than
necessary. In the case where only systematic reflections
are considered, the number of reflections to be included
is usually found by a convergence criterion. This con-
sists of including higher and higher order reflections
until there is no significant change in the results
obtained. A similar convergence technique can also be
used when a crystal is near a low-order orientation such
that all the systematic and non-systematic reflections
excited lie in the same plane or zone. The justification

for this method of determining the reflections to be
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included in a calculation lies in the fact that the
effect of a reflection decreases with both increasing
order and increasing deviation from its Bragg condi-
tion.

When spots from different zones are present,
however, the problem of deciding which reflections
to include is more difficult. This is because, in
this case, the question arises as to the relative
importance of a low-order reflection far from its
Bragg condition as compared to a higher order reflection
close to its Bragg condition. It was for this latter
situation, in particular, that a criterion for the in-
clusion of reflections in a many-beam calculation was

developed.

1:7.5 To Examine the Problem of Bloch Wave Labelling

in the Presence of Non-Systematic Reflections

It has been stated in Section 1:3 that the motion
of the high energyv electrons in a crystal can be des-
cribed in terms of a set of Bloch waves. 1In the case
where only systematic reflections are considered it is
found that the properties associated with each of these
Bloch waves depend upon the relative magnitudes of their
wave vectors. On the basis of this dependence of the

Blcch wave characteristics on the wave vector,
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Humphreys and Fisher (1971) proposed a Bloch wave number-
ing system which consisted of numbering the Bloch waves
in increasing order with decreasing magnitude of the
corresponding Bloch wave vector. In this numbering
system Bloch wave 1 is always found to be symmetric

and to have a high absorption coefficient. Bloch wave

2, on the other hand, is found to be anti-symmetric
below the critical voltage and to have a low absorption
coefficient.

It was desired in the work undertaken here to
examine the effects of a non-systematic reflection on
Bloch wave characteristics. This was done with a view
to finding the significahce of these effects in rela-
tion to the characteristics usually associated with the

different Bloch wave numbers in the systematic case.



CHAPTER 2

ASPECTS OF THE DYNAMICAL THEORY OF ELECTRON DIFFRACTION

2:1 Introduction

The dynamical theory of diffraction of high energy
electrons in a crystal can be developed in a number of
ways. One approach is based on a formulation of the
dynamical theory of X-ray diffraction due to Darwin
(1914). 1In this treatment the behaviour of the elec-
trons is determined by considering single Bragg reflec-
tion events in successive slices of a crystal. A second
formulation of the theory was aeveloped from a physical
optics basis by Cowley and Moodie (1957). Here,

Huygens' Principle was applied to electron waves in

a three-dimensional periodic system in order to determine
electron beam intensities. In this thesis, however, the
effects of non-systematic reflections in electron diffrac-
tion have been studied by employing the Bloch wave formu-
lation of the dynamical theory as developed by Bethe
(1928). The basic reason for doing so is the insight
into the physical mechanisms responsible for electron
diffraction effects which can be obtained from a study
of Bloch wave interactions. A second reason is that the
scattering matrix representation of this formulation is
amenable to standard computing techniques (Howie and

Whelan, 1960).
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2:2 Basic Outline of the Dynamical Theory

The dynamical theory of electron diffraction, as
first proposed by Bethe (1928),starts with the
Schrddinger equation for an electron in a crystal

potential V(;). This equation can be written as

v (3) + (S“ige)(E-+V(§))w(§) =0, (2.1)
where w(;) is the wave function of the electron, and
E is the potential through which the electron was
accelerated before entering the crystal. Also, m and
e are the rest mass and charge of the electron respec-
tively, and h is Planck's ccastant. Due to the periodic
nature of the crystal potential, V(;) can be expressed
by a Fourier series of the form

V() =) Vg exp (27ig.T) (2.2)
g

where the summation is over all reflections, g, and Vg
is the Fourier coefficient of the potential correspon-
ding to the reflection g. In the notation to be used
here a denotes the reciprocal lattice vector associated
with the reflection g. It is useful,when considering
the Schrddinger equation,to rewrite equation (2.2) in

the form

-> h2

V(E) = 5 ] Ug exp (27ig.T) (2.3)
g
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where U_ = ZE% Vg. Since the potential energy of the
h
crystal must be real, V(;) = V*(f) and, therefore,
u =u (2.4)
g -9 :

Also, if the crystal is centro-symmetric as they are
in the cases to be considered in this thesis, an origin

can be chosen such that V(?) = V(-?). Then

*
U =20 =1U (2.5)

and the Ug's are all real.

In the case of electrons with energies of the
order of those found in the electron microscope,
(10-3000 keVv), E is much greater than V(?) and the
Schrodinger equation can be solved using a nearly-free
electron approximation. Outside the crystal where

V(¥) = 0 the solutions of the equation are plane waves

of the form
V(F) = exp(2riY.T) , (2.6)
where the wave vector ; has magnitude

1
(2m§E)2
h

(2.7)

In the crystal, the effect of the lattice potential
V(?) would be expected to result in solutions to the

Schrodinger equation which are Bloch waves, i.e. plane
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waves modulated by a function with the period of the
lattice. Thus, solutions to equation 2.1 are looked
for in the form

Y(zr) =3 cg(i)exp{Zwi(ic*+§).§} . (2.8)
g

Here, kX is a wave vector and Cg(f) is the amplitude of
the Bloch wave, corresponding to E, in the direction
i+~§. If equations 2.3 and 2.8 are substituted back
into equation 2.1 the following expression is obtained

yI{- (i+972+x2+uc}cg (k) + rZl'cg_h (®)u, Jexplami (k+§) .Z} =0 ,

g
(2.9)

where the prime on the second summation means that the
term h = 0 is omitted. Since the terms exp{Zﬁi(f+§).§}
are linearly independent, the coefficients of these
exponentials must all equal zero. This condition

results in a set of equations of the form

2 2 > ' >
(K kg)Cg(k) + Izl Uth_h(k) =0, (2.10)

where K2 = X2+ Uo and Eg= E4—§.

This set of equations, called the "dispersion
equation" by Bethe,gives the general relations among

the amplitudes, Cg(ﬁ), the Fourier coefficients, U

’

g
and the Bloch wave vectors, ﬁ. It is from these rela-

tions that the two and many-beam approximations of the

dynamical theory have been derived.
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2:2.1 Two-Beam Approximation

Although it is not used directly in the work des-
cribed in this thesis, it is useful to develop the two-
beam approximation in order to illustrate the origin of
some of the basic concepts in the dynamical theory. 1In
this approximation only the directly transmitted and
one diffracted beam, g, are considered. 1In this case

the set of equations 2.10 reduces to two equations of

the form
2 2 T >
K- k“)C (k) +U C (k) =0
( 1o (K) + U_C (®)
and (2.11)
> 2 2 >
gc,() ( g)g()

Non-zero solutions exist for CO(E) and Cg(f) in equations
2.11 only if the determinant formed by their coefficients
vanishes. Therefore, using equation 2.11 and the fact

that U_ = 10U
g =g

2_ 22y (22 12y _ 12 _
(%= x%) (K™= k) - Uz =0 . (2.12)

Since K is much larger than Ug or ]5], K and k must be
nearly equal and, to a good approximation, equation 2.12

can be rewritten

(k - K) (k- K) = — . (2.13)
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This is a quadratic equation in k and the values k(l)
and k(z) satisfying it lie on a surfaée in k-space
called the dispersion surface (see Fig. 3). Note, for
conduction electrons,dispersion surfaces are more
commonly known as Fermi surfaces. The particular
points on the dispersion surface satisfying the qua-
dratic equation are determined by the direction of the
incident electron beam in the crystal as given by .

In Fig. 3, for the situation shown, K is a vector from
the point E to the point 0. As the point E moves along
the sphere centred at 0 different points F and H on the
two branches D(l) and D(Z) of the dispersion surface
will satisfy the quadratic equation.

Physically, the two-beam approximation predicts
that the motion of a high energy electron in a crystal
can be described in terms of two Bloch waves. These
waves have the same total energy as that of the incident
electron, h2X2/2m, but different kinetic energies as deter-
mined by the vectors E(l) and f(z).

In order to determine the relative magnitudes of
these Bloch waves the boundary conditions at the top
surface of the crystal must be considered. The condi-
tion that electron density is conserved requires that
the wave function at the surface be continuous. The
fact that this condition must hold at any point on the

boundary surface also requires that the wave vectors
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Sphere of radius K
centred at G

Sphere of radius K
centred at O

E;(l)

Fig. 3.

Reflecting Sphere of
radius K centred at E

The dispersion surface in the two-beam approxima-
tion. D(l) and D(z) are the upper and lower
branches of the surface respectively. In this
drawing y(l)==EF, the distance from the tie point
E to branch 1 and y(2)=IEH, the distance from the

tie point E to branch 2.
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f(l) and K(Z) have the same tangential components as
;. Generally, reflected waves from the surface can
be ignored up to angles of incidence of greater than
80° (Hirsch et al; 1965) because of the large diffe-
rence between the energy of the incident electron and
the lattice potentials. The boundary conditions then
reduce to simple continuity of the incident wave at
the top surface and continuity of the transmitted and
diffracted waves at the bottom or exit surface.

In the crystal the total electron wave function
can be written as a linear combination of the Bloch

waves of the form

1)

Y(T) = w(l){Cél) exp(Zﬂiﬁ(l).;)+-Cé exp(2ﬁifél).;)} +

w(Z){céZ) exp(ZWiE(z).§)+ Céz) exp(ZNiKéz).;)}

(2.14)

(1)

where v and ¢(2) are the excitations of Bloch waves
1 and 2 respectively as determined by the boundary
conditions at the top surface of the crystal. Also,
for brevity in the notation Co(k(i)) and Cg(k(i)) have

been replaced by C(l) and Cél) respectively. The ampli-

o
tude, ug(z), of the diffracted beam g at a depth z in the
crystal is equal to the sum of the Bloch wave components

in the direction §+-§. Using equation 2.14 and the
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requirement that the tangential components of the wave
vectors are equal, ug(z) is then given by the expres-

sion

ug(2)=lp(l)Cél) exp(2wiy(1)2)+ w(Z)CQZ) exp ( 2ﬂiy(2)z)

(2.15)
where Y(l) and Y(Z) are defined as shown in Fig. 3.

The intensity of the diffracted beam g at a depth z,

*
ug(z)ug(z), is then given by the expression

2 2
(2.16)
(1) _ (1) a(1) (2) _ ,(2).(2)
where ¢g = Cg and ¢g Y Cg .

By examining equation 2.16 it can be seen that the
diffracted beam intensity will vary sinusoidally with
depth with a period equal to l/(y(l) - y(z)). This dis-
tance is called the extinction distance. By examining
Fig. 3 it can be seen that Y(l) - y(z) and, therefore,
the extinction distance varies with sg, the deviation
of the g'th reflection from its Bragg condition. For
sg= o, y(l) - Y(Z) is equal to the distance AC which is
less than the distance FH, the value of y(l) - y(z) at
the deviation shown. This is due to the hyperbolic

curvature of the dispersion surfaces.
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The situation, as shown here, is very similar to
the many-beam situation to be discussed in Section
2:2.3 when only two Bloch waves are important. It was
shown by Howie and Whelan (1960), however, that the
actual curvature of the dispersion surfaces is somewhat

altered from the two-beam case.

2:2.2 Second Bethe Approximation

Bethe, in his original paper, proposed a method
for taking into account the effects of additional weak
reflections in the two-beam approximation. This is
done by introducing "dynamic" potentials. When an
attempt is made to solve the "dispersion equation" 2.10
by progressively eliminating all terms in Ch’ where h
is one of the weak reflections, it is found that equation

2.10 reduces to two equations of the form

_ (K2 - k2)C + U C =20
00 o' 7o og g
and . (2.17)
2 2
U C_+ (K - k9)c =20
o~-g o ( gg 9)
where
2 .2 %, 0n
Ko = K - ! 2 .2
h K "kh
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and the dynamic potential Uog has the form

Ug-nY-n
UO-U-Z—L——Z > -
g g h K- ki

By comparing eguations 2.17 to equation 2.11 it is seen
that they are of the same form as the equations in the
two-beam approximation. However, the actual values of
the coefficients of the Co's and Cg's are different due
to the presence of the additional summation terms.
Herzberg (1671) has carried out a thorough inves-
tigation of the accuracy of the Second Bethe Approxima-
tion. He found that, as long as no terms whose denomina-
tors were close to zero occurred in the sums, the results
of the approximation were in very good agreement with
experiment and many-beam calculations using the eigen-
value approach. Also, Watanabe, Uyeda and Fukuhara (1968)
used the Second Bethe Approximation to explain the dis-
appearance of the second order Kikuchi line at a parti-
cular accelerating voltage or, as it is now known, the
critical voltage effect. They found that the dynamic
.potential of the reflection concerned went to zerc at the
critical voltage due to the summation term becoming

equal to U In general, however, the approximation

g.
has not been widely used to take into account additional

reflections because of the orientation dependence of the
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dynamic potentials and the breakdown of the approxima-
tion when a reflection h is close to its Bragg condi-

tion.

2:2.3 Many-Beam Approximation

Although the dynamical theory takes into account
an infinite number of diffracted beams, in practice,
only a finite number can be included in a many-beam
calculation. Usually from 3 to 100 reflections are
considered depending upon the accuracy desired and the
orientations involved. The many-beam formulation of
Howie and Whelan (1960) used in the calculations carried
out here starts from the dispersion equation 2.10. As
in the two-beam approximation,non-trivial solutions exist
for the amplitudes Céi) only if the determinant of the
coefficients is equal to zero. By analogy with the two-
beam case and by reference to Fig. 3 the diagonal ele-

ments of the determinant can be written

.. 2 . .
k2 - k37 ¢ ogm-x)y & —2ry )

and (2.18)
k2o @7 L -k = 2kes - v @)
g g g )

When these expressions are substituted back into the
determinant and a division by 2K carried out, the dis-

persion equation 2.10 can be written in the form of the
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eigenvalue equation

(1) _ (1) o) (2.19)

aAc =y " ¢t
c(1)
g

the components of the Bloch eigenvector and A is a

i .
Here C is a column vector whose elements, are

matrix with elements Aoo =0, Agg = sg and Agh==Ug_h/2K
where g # h. The eigenvalues, Y(i), define the positions
of the branches of the dispersion surface in K-space cor-
responding to the Bloch waves excited.

Consider now the situation shown in Fig. 4. Waves
in the directions of the n beams being considered, are
incident upon a slab of crystal of thickness 6§z. 1In the
case shown n is equal to three. These waves can be re-
presented by a column vector u whose components are the
amplitudes of the various waves. The boundary conditions
at the upper surface of the slab, z=0, result in a set

of equations of the form

Z w(i)céi) = ug (2.20)
i

or, in matrix notation
cCy=u , (2.21)

where C is a matrix whose columns are the eigenvectors
of equation 2.19 and ¥ is a column vector whose elements

give the excitation of the Bloch waves corresponding to

[ 3



Uh

Fig. 4.

Waves propagating through a thin slab
of crystal (From Howie and Whelan, 1961).
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the different branches of the dispersion surface. Y

can be found by multiplying both sides of equaticn

1

2.21 by C ~ to give

py=clu (2.22)

Since A is a real Hermitian matrix, the eigenvectors

9(1) are orthogonal and if they are also normalized,

ct = ¢ and equation 2.22 becomes

u (2.23)

e

}k:

where C is the transpose of C. The amplitude of the
diffracted beam g at the bottom of the slab is equal to
the sum of the components of the Bloch waves in the

direction E(l)+ g and is given by the expression
w' = 1yl expianiy ez . (2.24)
g i g

Here, the exponential terms take into account the phase
differences among the waves corresponding to different
branches of the dispersion surface. In matrix form this

expression can be written

(2.25)

where vy is a diagonal matrix whose i'th component is

exp(Zﬂiy(l)Gz). Upon substitution for Y from equation

2.23 the following expression is obtained for g'.



39

(2.26)

e
]
10
|=<
10
Is
]
|t
e

where P = cx é. P is, thus, a scattering matrix rela-
ting the amplitude vector u' at the bottom of the slab
to the incident wave u at the top surface. For any
finite number of beams, the components of the scatter-
ing matrix P can be computed and, thus, the amplitude
of any reflection found.

For the case where the top surface of the slab
correspohds to the to§ surface of the crystal, the in-
cident wave has a component only in the direction of
the directly transmitted beam. 1If this beam has unit
amplitude then.the components of u are u,= 1 and ug= 0
for g # 0. When this value of u is substituted into
equation 2.21 it is found that y is a column vector
whose i'th element is Céi). Substituting this into
equation 2.24 the following expression is obtained for
the amplitude of the diffracted beam g at a depth z

' - (L) A (1) . (1)
ug(z) = g Co Cg exp(2wiy z) (2.27)

or

u'(z) = J 61 exp(amiy d)y) (2.28)
g L %g

where ¢él) = Cél)cél). Thus, it is seen that the con-~

tribution of a particular Bloch wave to the g'th dif-

fracted beam amplitude is determined by the magnitude
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of ¢éi). When only two of the waves make significant
contributions to this amplitude, equation 2.28 has the
same form as equation 2.15 obtained in the two-beam
approximation. However, the actual values of the Y(i)‘s,

w(l)'s and C(l)'s will be different due to the inclusion

of the additional beams in the many-beam calculation.

2:3 Effects of Inelastic Scattering

High energy electrons incident on a crystal can
undergo both elastic and inelastic scattering. The
dynamical theory as presented by Bethe took into con-
sideration only elastic scattering. We will now con-
sider the modifications to the theory which allow the
effects of inelastic scattering of electrons on electron

microscope images to be taken into account.

2:3.1 Inelastic Scattering Processes

In a crystal a high energy electron may be invol-
ved in three different types of inelastic scattering
processes. These are plasmon scattering, electron-
electron interactions and phonon or thermal diffuse
scattering.

Plasmon scattering results from the long range
Coulomb interaction between the high energy electron

and the valence electron gas as a whole. The incident
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electron excites oscillations called plasmons in the
electron gas losing energy in the process. fhe inter-
action here can be considered to occur between the
electron and the crystal as a whole rather than any
individual element of the crystal and is referred to
as a collective excitation.

Electron-electron scattering, on the other hand,
consists of a short range Coulomb interaction between
the high energy electron and the valence and core
electrons of the individual atoms. In the case of the
valence electrons, these particles are only weakly
localized at the ion positions and the scattering cross
section is nearly uniformly distributed in the crystal.
Core electrons, on the other hand, are localized near
the ions. However, the range of the interaction
(Williams, 1933) and exchange effects (Shimamoto,
Fukamachi and Ohtsuki, 1972) effectively enlarge the
scattering cross section so that it also is nearly
uniform in the crystal.

Thermal diffuse scattering involves interactions
between the incident electrons and the ions. This
scattering results in the ion being displaced from its
equilibrium position thereby creating lattice waves or
phonons in the crystal. Calculations (Whelan, 1965;
Hall and Hirsch, 1965; Humphreys and Hirsch, 1968) have

shown that the scattering here is localized at the
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atomic positions and is, therefore, of great importance
in explaining anomalous absorption effects.

It should be noted that, for crystals of the thick-
nesses commonly examined in the electron microscope,
nearly ali the electrons are predicted to have undergone
inelastic scattering. This point is of interest when
it is considered that a diffraction theory ignoring the
effects of inelastic scattering usually gives good agree-
ment with experiment. This apparent contradiction is
resolved when it is noted that small angle inelastic
scattering processes, especially plasmon scattering re-
tains the same coherence between the Bloch waves after
scattering as was present before scattering. Thus, the
inelastically scattered electrons give the same image
contrast as those undergoing only elastic scattering.
This was shown to be so experimentally by Kamiya and
Uyeda (1961) who obtained images from both elastically
and inelastically scattered electrons. These images
showed very good agreement with regard to contrast fea-
tures.

Finally, the term absorption is often used in
describing inelastic scattering processes. Although
the electrons cannot be physically absorbed, those that
are scattered outside the objective aperture do not

contribute to the image and can be considered to be
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éffectively absorbed. It is in this context that the

term absorption will be used here.

2:3.2 Phenomenological Treatment of Tnelastic Scattering

Inelastic scattering or absorption of the incident
electrons is taken into account in electron diffraction
by using the phenomenological concept of a complex
lattice potential as introduced by Moli&re (1939). This
concept was substantiated theoretically by Yoshioka
(1957). It consists of adding a small complex component
iV'(;) to the real part of the lattice potential V(T).

Equation 2.3 then becomes

2
VE) + 1V (@) = ] (U + iU )exp (2mid.F) . (2.29)
g

In general, Ué B Ug/lO and a perturbation approach is
used to take into account this additional complex term.
The Schrodinger equation is first solved for the case
of the real part of the lattice potential and solutions
obtained as shown in Sect. 2:2.3. First order perturba-
tion theory is then applied with the perturbing poten-
tial being this additional complex term iU'(r). When
this is done it is found that each Bloch wave vector has
associated with it an additional imaginary part ia(j)

where

a9 - L [B(j)(;)*U'(;)B(j)(;)dT (2.30)
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and the Bloch wave B(j)(g) is given by
83 @=7 céj) expl2mi 83+ §) .37y . (2.31)
g

In matrix notation the expression for q(j) reduces to

(3) _ 1

g = L1l yr @) (2.32)

=
ek
0

where é(j) is the transpose or row vector corresponding
to the column vector g(j). g' is a matrix whose diagonal
- elements are all equal to Ué and whose gh'th off-diagonal
element is equal to U;-h' When this new wave vector
ﬁ(j)-+ia(j), resulting from the incluéion of absorption,
is substituted back into equation 2.31 the expression for

the Bloch wave becomes

BV @ =] ¢ exptani @+ §) . Frexp-2:g D2y .
g (2.33)

By examining this relation it can be seen that the Bloch
wave is effectively attenuated or absorbed with depth
in the crystal due to the presence of the exp(-ZWE(j).f)
term. Thus, the q(j)'s have become known as Bloch wave
absorption coefficients.

The differences that are commonly found between
these coefficients, q(j), have been explained by a

number of authors (Hashimoto, Howie and Whelan, 1962;
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Howie, 1966; Reynaud, 1971) in terms of the channelling
of Bloch waves. 1In general, the intensity, B(j)(;fB(j)(;)
of a Bloch wave as it propagates through a crystal is

not evenly distributed but instead is localized or chan-
nelled into certain regions either at or between the
atomic positions. On the other hand, the imaginary com-
ponent, v'(r), of the potential which represents the
inelastic scattering is positive and also, due to thermal
diffuse scattering, localized at the atomic positions.
Thus, it can be seen by examining equation 2.30 that a.
Bloch wave whose intensity is also concentrated at these
positions will have a larger positive value of q(j) than

a wave whose intensity is a maximum between the atoms.

2:3.3 Anomalous Absorption Effects

The differences between the q(j)'s have been used
to explilain contrast effects commonly classified under
the term of anomalous absorption. The anomalous absorp-
tion effect in the case of thickness extinction contours
in wedge-shaped crystals consists of the disappearance
of thickness contours in thicker regions of the crystal
together with the retention of significant diffracted
beam intensity. As discussed in Sections 2:2.1 and
2:2.3 these contours occur because of interference effects

between the different Bloch waves excited. The magnitude
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of the image contrast associated with this interference
is determined by the contributions of the different
Bloch waves to the diffracted beam amplitude. When
absorption is taken into account the expression for

this amplitude is of the form

ué(z)==§ Céj)céj) exp(2wiy(j)z)exp(-2wq(j)z) (2.34)
or
ul(z) = g ¢g‘fj’ (z) exp(2miy(3)z) (2.35)
where

¢§)(z) - céj)céj’ exp(-2197z) . (2.36)

In the case where only two Bloch waves make signi-
ficant contributions to the diffracted beam amplitude,
the contours vary in a regular sinusoidal manner with
depth as shown in Fig. 5a. Here can be seen the calculated
variation of a diffracted beam intensity with depth
in a crystal when only two Bloch waves make significant
but equal contributions to the corresponding amplitude.
Absorption has been neglected in this case. Fig. 5b
shows the same situation except that both Bloch waves
are attenuated at the same rate, i.e. they have equal
absorption coefficients. As can be seen the mean inten-

sity decreases with increasing thickness but the
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sinusoidal variations are still present. This is termed
a normal absorption situation. Fig. 5c, on the other
hand, shows the intensity profile obtained when one
Bloch wave is absorbed much more strongly than the other.
Here is seen the effects of anomalous absorption. 1In
thicker regions of the crystal the intensity variations
have essentially disappeared due to the strong attenua-
tion of one of the Bloch waves. However, diffracted
beam intensity is still present due to the weakly

absorbed Bloch wave.

2:4 Additional Corrections to the Dynamical Theory

The dynamical theory as it was originally formula-
ted did not take into consideration either relativistic
effects or thermal vibrations of the atoms about their
equilibrium positions in the lattice. Since the velo-
cities of the electrons in the electron microscope are
approaching that of the speed of light,relativistic
effects will be of importance. Fujiwara (1962) developed
a relativistic dynamical electron diffraction theory
using the Dirac wave equation. His results showed that
the non-relativistic theory developed using the
Schrédinger wave equation can be corrected for
relativistic effects by two simple substitutions.

These consist of replacing of the non-relativistic
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wavelength by a relativistically corrected one and
multiplying the Fourier coefficient term Ug by B where
2 -%

s=(1—‘c’—2-) .
Here v and c are the velocities of the electrons and
light respectively. This second substitution corrects
for the relativistic méss of the electron. The ima-
ginary part of Ug' Ué is relativistically corrected by
multiplying the uncorrected Ué by v 1B (Howie, 1962).
The accuracy of these corrections have been confirmed
experimentally by Hashimoto (1964) and also in the
results of Dupouy et al. (1965) as interpreted by
Goringe et al. (1966).

Thermal vibrations of the atoms result in a
decrease in the Fourier potential coefficients Ug by
a factor exp(-B|§|2/4) where B is the Debye-Waller B
factor and [3] is the magnitude of the reciprocal
lattice vector 3. This correction at room temperature
is usually of the order of a few per cent for low
order reflections but due to the]%]2 dependence can be
quite significant for higher order reflections. The
accuracy of this correction has also been confirmed

experimentally by Horstmann and Meyer (1963).



CHAPTER 3

THEORETICAL CALCULATIONS

3:1 Introduction

The use of many-beam calculations has become
necessary in interpreting many effects in electron
diffraction. The basic procedure used in these cal-
culations has been described in detail by Goringe
(1971). The procedure used in the calculations in
this thesis, although developed independently, is,
in general, similar to his procedure. However, it
was found that particular problems arise when it is
desired to include non-systematic as well as systematic
reflections in such calculations. In the discussion
which follows these problems are considered in detail,
as well as their relationship to the general procedure

used in carrying out many-beam calculations.

3:2 Setting Up the A Matrix

The first step in a many-beam calculation using
the eigenvalue approach of Hirsch et al. (1965) is to
set up the matrix A as defined in equation 2.19. Before
evaluating the elements of this matrix, however, it is

first necessary to decide what reflections are to be

50
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included in the many-beam calculation. In the case
where only systematic reflections are taken into account,
the reflections included are usually determined by a
convergence criterion. Higher and higher order systema-
tic reflections are added to the calculation until no
significant change in the results is obtained. This
approach is based on the generally accepted fact that

a low-order reflection has a larger effect on the
results obtained than a high-order reflection provided
that both reflections have the same deviation from their
respective Bragg conditions.

When non-systematic reflections are considered,
the question of what reflections to include in a calcu-
lation can become much more complicated. There are two
basic problems in this case. The first is the identi-
fication of the non-systematic reflections present in
the experimental situation. The second is deciding
which of these reflections it is necessary to include
in a many-beam calculation. These problems will be

discussed in the following two sections.

3:2.1 Indexing of Non-Systematic Reflections

In indexing spots in an electron diffraction pat-
tern, the following procedure is usually employed;
First, the distance from the diffraction spot corres-

ponding to the directly transmitted beam to a spot
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arising from a low-order reflection is measured. Using
the camera length at the diffraction condition and the
lattice constant of the crystal, the order, h2+ k2+ £2,
of the reflection can then be determined. From the
order and a knowledge of the crystal structure, the type,
{h k %}, of the reflection can be found. From the
different possible permutations of h, k and 4 one set

(hl’k zl) is usually arbitrarily chosen and the rest

17
of the spots in the diffraction pattern indexed in accor-
dance with it. This is done by measuring the distance
from each of these spots to the (000) and (hl,kl,zl) spots
and choosing the appropriate h, k, and & values.

When the orientation of the crystal is close to a
low-order zone axis the diffraction pattern is of a high
symmetry such as shown in Fig. 6. This Figure shows a
computed diffraction pattern for a [I11] orientation in
Si. For such a pattern, it is only necessary to index
two spots on different systematic rows in the manner
described above. The rest of the spots can then be
quickly indexed from symmetry arguments. For the more
general case when the crystal orientation does not lie
close to a low-order zone axis, the indexing process
can be more involved. This is due to the presence
of spots corresponding to points of the reciprocal

lattice lying on different planes (see Section 3:2.2).



] [ V] [
0-66 2-46 4-26 608

o o o U] o
--64 O A oy 54

0 ® U] U] ® ©
=lY-62 =42 0-22 202 YR 642

e ® Q) Q] U] o e

-6-60 440 -2-20 000 220 o 680

e ® U] U] ® ©
“6-4~2 g2 -202 022  A-2 Y62

o Q] Q] 0] o
-62-4 Y404 -T2y Ny 2By

o o ® L
-80-6 -4Y-6 -A-6 066

Fig. 6. A computed diffraction pattern for a
111] orientation in Si showing the high
symmetry present when the crystal orien-
tation lies close to a low-order zone axis.
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In this case, indexing of two non-collinear spots in the
pattern does not immediately lead to the indices of all
other spots, as in the high symmetry case. This can be
seen by examining Figs. 7a and 7b. These Figures show
experimental electron diffraction patterns in which a
{220} systematic row is present. Also visible in each
pattern is a second row parallel to the {220} row in
which a {137} type reflection is close to its Bragg
condition. However, with the excgption of the reflec-
tions lying on these two rows, thése diffraction patterns
have no other common reflections. Thus, indexing of the
{220} and {137} type spots does not immediately lead to
the Miller indices of the other diffraction spots present.
In order to index these other spots, different allowed
combinations for the indices of the {220} and {137} spots
must be considered until a self-consistent set of indices
is obtained for all spots in the pattern.

If the spot in the {220} systematic row directly
to the left of the (000) spot is indexed as a (220) spot,
then there are eight possible ways of indexing the 137
spot. These are (137), (137), (3I7), (317), (137), (137),
(317) and (317). 1In order to aid in choosing which of
these reflections lead to the correct diffraction pat-
tern, and to quickly index the other reflections present,

a method involving the computer generation of
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Fig. 7. Experimental electron diffraction patterns
showing {137} and {220} type reflections
simultaneously at their Bragg conditions but
with different other non-systematic reflections

excited.
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diffraction patterns Was developed. In this method, a
computer program was written which displayed the
indexed diffraction pattern expected when two non-
collinear reflections were in their Bragg conditions.
Thus, to index the diffraction pattern shown in Fig.
7a, the computer program was run with different com-
binations of the (220) and allowed {137} reflections
in their Bragg conditions. The resulting computed
diffraction patterns were then compared with the ex-
perimental pattern until one was obtained in which
there was a one to one correspondence between the spots
in the two patterns. When this was obtained, a correct
indexing of all the spots in the experimental pattern
was immediately available from the computed pattern.
Such a computed pattern for the experimental situation
shown in Fig. 7a can be seen by examining Fig. 8. A
comparison of these patterns shows a one to one corres-
pondence of the diffraction spots. Thus, the spots in
the experimental pattern are correctly indexed using the
indices shown in Fig. 8. A similar calculation for
Fig. 7b shows that the {137} reflection can be correctly
indexed as a (317) reflection and the rest of the spots
indexed accordingly.

It should be noted that, although there are eight

allowed combinations for the (220) and {137} type
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A computed electron diffraction pattern for

an orientation near the [774] direction in

Si.
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reflections the diffraction patterns corresponding to
these combinations are not all necessarily unique.
The number of different diffraction patterns obtained

will depend on the symmetry of the crystal.

3:2.2 Non-Systematic Reflections Included in a Many-

Beam Calculation

Once the non-systematic reflections present have
been identified, it is then necessary to determine
which of these reflections should be included in a
many-beam calculation to obtain the desired convergence.
When the crystal orientation lies close to a low-order
zone axis, the electron diffraction pattern demonstrates
a high symmetry as was seen in Fig. 6. 1In this case,
the reciprocal lattice points corresponding to the re-
flections excited, all lie in the same plane in recipro-
cal space as shown schematically in Fig. %a. This
Figure shows a cross section of reciprocal space with
the incident beam direction denoted by the arrow and
the corresponding position of the Ewald sphere by the
solid curved line segment. In this Figure the electron
beam is shown incident in a direction of high symmetry
in the lattice and the lower order points lying closest
to the Ewald sphere all lie in the same plane or zone

denoted by the dashed line. Due to the curvature of the



Fig. 9. A cross section of a reciprocal lattice
showing the position of the Ewald sphere
for the incident beam in a direction of (a),
high symmetry and(b), low symmetry in the
lattice.
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Ewald sphere, points, d, on the plane above the one
denoted may also lie close to the sphere. However,
these points correspond to high order réflections and
generally, do not have a significant effect on calcu-
lated results.

For the situation where all the reciprocal
lattice points lie on the same plane, the number of
reflections included in a many-beam calculation can be
determined by the same convergence technique as used in
the systematic case. This technique consists of inclu-
ding higher and higher order reflections until the
desired accuracy is obtained. In the non-systematic
case, however, these reflections lie on annular rings
in the plane in reciprocal space rather than along only
a systematic row. It is high symmetry situations of
this type that have been studied by Howie and Basinski
(1968) in Cu, and Lehmpfuhl(1972) and Ayroles(1971) in MgO.
Lynch (1971) also examined such a situation in Au. He
found, however, that it was necessary to include
reflections corresponding to reciprocal lattice points
lying in planes above and below the principal plane in
reciprocal space in his many-beam calculations in order
to obtain agreement with experiment. This was due to
the strong dynamic coupling in the presence of the heavy

gold atoms.
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In the more general case, where the incident
electron beam direction does not lie close to a low-
order zone axis, the electron diffraction pattern
demonstrates a low symmetry as was seen in Fig. 8.

In this case, the reciprocal lattice points, corres-—
ponding to the reflections excited, do not all lie in
the same plane in reciprocal space. The explanation
for this can be seen by examining Fig. 9b. In the
cross section of reciprocal space shown here, the
incident beam is in a direction of low-symmetry in

the lattice. The Ewald sphere then passes closer to
reciprocal lattice points,e and f, lying off the prin-
cipal plane than to points, d and ¢, lying on this
plane.

This result poses a problem in carrying out many-
beam calculations. To obtain convergence when only
systematic reflections or high symmetry non-systematic
situations are considered, it is only necessary to
include higher and higher order reflections until the
desired accuracy is obtained. This is because, in
general, in these situations the deviation from the
Bragg condition increases with increasing order of the
reflection considered. However, for a general low
symmetry non-systematic situation, this relation of the

deviation from the Bragg condition to the order of the
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reflection does not necessarily hold. Here, a high-
order reflection may be strongly excited and, thus,

have an important effect on the results of a calcula-
tion while a low order reflection may have a large
deviation from the Bragg condition and, therefore,have a
relatively small effect. Thus, the order in which non-
systematic reflections should be added in carrying out
convergence calculations may differ depending upon the
orientation of the crystal. The method used for deter-
mining this order, for the many-beam calculations
carried out at the low-symmetry situations considered

in this thesis, will be discussed in detail in Section
5:5. Once the reflections to be included in a many-beam
calculation have been chosen in some manner, however, one
can then proceed to evaluate the elements of the A

matrix.

3:2.3 Determination of the Diagonal Elements of A

The g'th diagonal element of the matrix A is equal

t =i|3s
° sy [sg]

the distance from the g'th reciprocal lattice point to

> . s
where sg is a deviation parameter equal to

the Ewald sphere. The sign chosen for Sg is given
by a convention which will be described later.
A good approximation, used by many workers when consi-

dering the two-beam or a systematics only case, is to
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assume the Ewald sphere can be approximated by a plane
and then set S4 = |g| A6 where A8 is the angle that the
reflection has been tilted away from its exact Bragg
condition. More recent work, however, has taken into
account the curvature of the Ewald sphere in order to
more accurately determine the values of the deviation
parameters when higher order reflections are considered.
Ayroles (1971), in his work on non-systematic reflec-
tions, developed an algebraic relationship for gg for
the case where all the corresponding reciprocal lattice
points lie in the same plane. However, because in the
situations investigated in this thesis non-coplanar
reciprocal lattice points were involved, a more general
approach, described below, for calculating the Eg's was
used.

When the boundary conditions at the top surface
of the crystal are taken into consideration, it is found
that the distance sg is measured in a direction normal
to the crystal surface. For the calculations carried
out in this thesis it was assumed that the incident
electron beam was also perpendicular to the crystal
surface. Therefore, if the directly transmitted beam
has a wave vector K in the crystal, gg is measured in

a direction parallel to K. It should be noted that
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modifications to the matrix approach may be required
when the angle of the incident beam makes with the
crystal surface is not 90°. However, Spencer and
Humphreys (1971) have found that these modifications
are only significant for large variations from normal
incidence.

When the incident beam direction is perpendicular
to the crystal surface, the deviatién parameter gg is
as shown in Fig. 10. By convention, sg is positive if
the reciprocal lattice point g lies inside the Ewald
sphere and is negative if it lies outside the sphere.

From Fig. 10 it can be seen that

K'=K+'§+§g . (3.1)

Squaring this equation and using the relations [?'I =
>
K] = % and gg || ¥ one then obtains, after a rearrange-

ment of terms, the following gquadratic equation in sg,

2 2

-5
2+ s [2(R.g+1)] + g° + 2K.g =0 . (3.2)

g A

Since % and 3 are known, this equation can be evaluated
for the two roots using the standard techniques. These
two values correspond to the distance from g to the
points of intersection with the Ewald sphere of a line
passing through g parallel to K. One of these points of

intersection is at B and the other where the line cuts
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the sphere again beyond the upper right hand corner of
Fig. 10. Since sg must equal 0.0 when g is in the
Bragg condition, it is seen that the distance gB is
the correct value to use for sg in the many-beam cal-
culations of the dynamical theory.

Thus, if the direction of E or its equivalent,
the exact orientation of the crystal with respect to
the iucident beam, is known, the deviation parameter
;g of any reflection g can be determined from equation
3.2. It was found useful, therefore, in the calculations
carried out in this thesis, to consider tilting of the
crystal in terms of the resulting changes in its exact
orientation. This is in contrast to the situation when
only systematic reflections are considered. In this
case, a simple relationship exists between the devia-
tions of all the systematic reflections from their Bragg
conditions and tilts of the crystal are, therefore,
usually expressed in terms of these deviations. In the
non-systematic case, however, a simple relationship does
not necessarily exist between the deviations of different
reflections. It is therefore necessary, in this case,
to consider tilting of the crystal from the point of view
of orientation change rather than the resulting change in
the deviation of a particular reflection from its Bragg

condition.
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3:2.4 Determination of the off-Diagonal Elements of A

The gh off-diagonal element of A is equal to
Ug_h/ZK where for a crystal composed of only one type

of atoms

sin 6
f(—-}\——g-_—h-)exp (-B|3-R|%/4) .

g

Ug-h = ’H'Vc Fg-h

Here, B is the relativistic mass correction for the
incident electrons; Vg is the volume of the unit cell

in the crystal; Fg—h is the kinematical structure factor
for the g-h reflection; f(sin eg_h/x) is the electron
scattering factor of the atom for the reflection (g-h)
and B is the Debye-Waller factor for the material con-
sidered. In practice, K, which is equal to l/)\2 + UO ’
is usually set equal to 1/>\2 since the energy of the
electrons is much greater than the mean potential of the
crystal. For a cubic crystal V.= ag where aj is the
lattice parameter. Fg—h is equal to 2z for a b.c.c.
crystal structure, 4 for a f.c.c. structure and +8, +4/2,
or 0 for a diamond cubic structure depending upon the
Miller indices of the reflection considered. Reflec-
tions, which in the diamond cubic structure have a

Fg—h = 0, may still be present. These forbidden reflec-
tions occur through dynamic multiple scattering effects

(Heidenreich, 1950; Hoerni, 1956; Fujimoto, 1960). The

electron scattering factors for different atoms have
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been tabulated by a number of authors (Ibers and
Vainshtein, 1962; Smith and Burge, 1962; Doyle and
Turner, 1968; Radi, 1970). Values for the Debye-
Waller B factor are also given in the literature
(Ibers and Vainshtein, 1962).

The values of the imaginary components of the
lattice potential, Ué, used in calculations of the
absorption coefficients, q(j), can be found from the
ratios given for Ué/Ug by Humphreys and Hirsch (1968)

or Radi (1970).

3:3 Calculations of the Effects of Non-Systematic

Reflections

Three basic types of calculations of the effects
of non-systematic reflections have been carried out.
The first of these were calculations of the variation
of the extinction distance of a low-order systematic
reflection as a function of the deviation of a non-
systematic reflection from its Bragg condition. The
results obtained here were then compared with results
of experimental measurements of the variation of extinc-
tion distance under the same circumstances. The second
type of calculation involved finding the variation of

Bloch wave parameters such as the y(J)'s, ¢éj)(z)'s and
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q(j)'s,again as a function of the deviation of a non-
systematic reflection from its Bragg condition. These
parameters were studied in order to interpret the
variations observed in the spacing and shape of the
extinction contours in the presence of a non-systematic
reflection. The third type of calculation undertaken
was that of "rocking curves" i.e. the variation in
intensity of a reflection measured at a constant depth
in the crystal as the orientation of a crystal is
changed. These calculations were carriea out for both
the directly transmitted and a low-order diffracted
beam. The purpose was to determine the effects that
the presence of non-systematic reflections might have
on the positions of the maxima occurring in rocking‘
curves.

The results of these three types of calcula-

tions will be discussed in detail in Chapter 5.

3:4 Programs, Computers and Displays

In general, many-beam calculations require the
use ¢of a computer for their execution. Thus, it was
necessary to develop and write suitable computer pro-
grams in order to carry out such calculations. Versions

of the programs, used in the calculations descriked in
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the previous section, have not been included in this

thesis but have been installed in the program

library of the electron microscope group in the Physics
Department of the University of Alberta. These programs,
with the exception of the subprograms described below,

were developed by the author with, however, many help-

ful suggestions from other members of the electron micro-
scope group. Three subprograms used in the calculations
were, however, developed elsewhere. These included the use
of standard programs for finding tne eigenvalues and eigen-
vectors of the real symmetric matrix A. The version used
in the calculations reported in this thesis was the
Householder method program, available in the IMSL sub-
routine library (IMSL, 1972). The subprogram employed

for obtaining the two-dimensional computer line printer
plots was written by Monk (1972). Finally, the sub-
routine used for defining the exact orientation of a
crystal was based on a method developed by Foxon (1968)
(see Appendix A).

The programs were executed using the IBM 360/67
computer of the Department of Computing Services at the
University of Alberta. The line printer two-dimensional
displays were printed using an IBM 1403 line printer
set at 8 lines per inch and using a TN print train.

The calculated line graphs were plotted using an off-

line model 770/663 Calcomp Plotter.



CHAPTER 4

EXPERIMENTAL PROCEDURES

4:1 Introduction

The effects of non-systematic reflections on
extinction distance and anomalous absorption were
examined experimentally. For these studies, wedge-
shaped specimens of Si were used. The variation of
the extinction distance of a low-order systematic
reflection as a function of the deviation of a non-
systematic reflection from its Bragg condition was
determined by measurements of the average spacing of
thickness extinction fringes. Also, the visibility of
these fringes in thick crystals gave a means of deter-
mining anomalous absorption effects. Si was chosen as
a specimen material primarily because its brittleness
results in relatively strain-free specimens. This is
very important in studies involving non-systematic
reflections, since their effects can vary drastically
over very small changes of the order of .05° in the cry-
stal orientation. The (220) reflection was chosen as
the low-order systematic reflection of interest. This
reflection was employed rather than a {111} type reflec-

tion as it had been found previously, by Cann (1967),

71
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that the systematic reflections had only a small effect
on the (220) extinction distance while having a very
marked effect in the case of the (111) reflection.

Thus, variations found in the (220) extinction distance
in the presence of a non-systematic reflection should

be relatively independent of systematic effects. The
principal non-systematic reflections considered for
study in the case of extinction distance were (133),
(135) and (I37). These reflections were chosen because,
at the accelerating voltage of 150 kV at which all the
experiments were carried out, orientations of the speci-
men could be obtained such that, when one of these
reflections was close to its Bragg condition, no other
low-order non-systematic reflection was strongly excited.
Therefore, any variation in the (220) extinction distance
would be due primarily to the presence of one of these
principal reflections.

The actual procedure used in making measurements
of the variation of extinction distance in the presence
of a non-systematic reflection may be divided into three
parts. These are specimen preparation, electron micros-

cope examination and analysis of observations.

4:2 Specimen Preparation

Suitable wedge-shaped specimens of Si single cry-

stals were obtained using a chemical polishing technique.
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First, 3 mm discs were cut from commercially obtained
(111) oriented silicon wafers, .25 mm in thickness.
These discs were cut out by using a high speed drill

in which was mounted a hollow brass cylindrical tool
with inside diameter slightly greater than 3 mm. An
abrasive paste was dabbed between the brass tool and
the Si slice which had been previously glued to a brass
block in order to hold it securely while the cutting
operation was in progress. The 3 mm discs, obtained

in this way, were then held at the edge by a set of
teflon coated tweezers over an acid jet in an arrange-
ment similar to that used by Booker and Stickler (1962).
The composition of the acid was 9 parts HNO4 (70%) and
1 part HF (48%). The disc was placed directly over and
approximately 2 mm above the nozzle of the jet so that
a constant column of acid was maintained between the
nozzle and disc. The height was adjusted after commence-
ment of polishing to eliminate any regions of etching.
The flow rate of the acid was approximately 60 drops or
3 ml per minute. The polishing of one side was allowed
+o0 continue until a definite dished shape appeared.
This occurred in approximately five minutes. The disc
was then turned over and the other side placed over the
jet until perforation was observed. It was then placed

in a beaker containing the acid mixture for about 10 secs
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to give a final polish to both sides before being
alternately washed in distilled water and ethyl
alcohol. After drying it was ready for examination

in the electron microscope.

4:3 Electron Microscope Examination

The Si specimens were examined in a JEM 150
electron microscope at an accelerating voltage of 150 kV
and with the second condenser lens partly defocused in
order to minimize beam divergence and yet give reasona-
ble image intensity. The orientation of the specimens
with respect to the electron beam was varied by using a
a high precision double tilting and rotating stage
(Brunel, 1968). This stage allowed tilting about
mutually perpendicular main and secondary tilt axes of
$13.0° and #2.75° respectively and rotation through a
full 360°. Tilting about the main axis was accomplished
by using a click-type control which allowed tilting in
increments of .0047°. On the secondary tilt a similar
type of control allowed tilting in increments of .0111°.
The rotation was varied using a continuous drive control.

This type of stage, with its associated controls,
allowed the effect of a non-systematic reflection on
extinction distance to be examined in a systematic
manner. From a known initial orientation, as deter-

mined from a diffraction pattern, a Si wedge specimen
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was tiited in known increments through the Bragg
condition of the non-systematic reflection using
the main tilt contrxrol. For each increment, a dark
field image, such as shown in Fig. 11, was recorded.
Care was taken that these images were all recorded at
the same magnification. The variation of the extinc-
tion distance with AeNSR’ the deviation from the Bragg
condition of the non-systematic reflection, could then
be determined from measurements of the changes in
thickness contour spacing between micrographs. Each
micrograph could be related to a particular value of
ASNSR by an examination of the initial diffraction
pattern and knowledge of the number of increments
tilted to reach the position at which it was recorded.
Before carrying out this incremental tilting,
however, it was necessary to orient the specimen care-
Fully so that the {220} systemati¢c row lay parallel to
the main tilt axis of the stage. This is because the
extinction distance of the (220) reflection is also
Zependent upon the deviation of that reflection from
its exact Bragg condition. Thus, if in the incremental
t3iiting procedure for observing the effect of a non-
svstematic reflection, A6220, the deviation of the (220)
rafiection from its Bragg condition, also changes,

a2rxroneous results could be obtained. In order to be



Fig.ll.

An experimental dark field electron
micrograph of a wedge-shaped Si

specimen showing thickness extinction
contours.
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Fig.1l1l.

An experimental dark field electron

micrograph of a wedge-shaped Si

specimen showing thickness extinction
contours.
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assured that the (220) systematic row lay parallel to
the main tilt axis, tilts of a few degrees about this
axis were carried out. At the same time, the Kikuchi
lines corresponding to the (220) systematic reflections
were examined for movement with respect to the (220)
diffraction spot. If any such movement was detected,
the specimen was rotated slightly:using the stage rota-
tion control and the procedure repeated until no move-=
ment was found.

After the (220) systematic row had been oriented
parallel to the main tilt axis, the desired value of

A6 was obtained by tilting about the secondary tilt

220
axis. For measurements with the (220) reflection in

the exact Bragg condition, such tilting was carried out
until the (660) Kikuchi line was observed to pass directly
through the (440) spot. Due to the nature of Kikuchi
lines this situation corresponds to the (220) reflection
in the exact Bragg condition. For measurements with
£B55g = .256220 , where 6220 is equal to the (220) Bragg
angle, the specimen was first tilted until the (440)
reflection was in its exact Bragg condition as deter-
mined from Kikuchi line positions. It was then tilted
through .756220 towards the Bragg condition of the
(220) reflection by clicking through the appropriate

number of increments on the secondary tilt control.
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This procedure gave a deviation of approximately a
guarter of a Bragg angle. The actual value for the
deviation was found, however, by taking measurements
from the diffraction patterns recorded with each series
of micrographs.

In summary, when a specimen was examined in the
electron microscope, the following procedure was
carried out. First, the specimen was searched for a
relatively uniform wedge-shaped region whose surfaces
were free of polishing artifacts. It was then rotated
until the (220) row of systematic reflections lay
parallel to the main tilt axis. The non-systematic
reflection of interest was then found by tilting about
this axis. Following this, the (220) reflection was
tilted to the required deviation from the Bragg condi-
tion using the secondary tilt. Then, using the main
tilt again, the deviation of the non-systematic reflec-
tion from its Bragg condition was changed in a systematic
manner using the incremental click control and electron

micrographs of the specimen recorded for each increment.

4:4 Analysis of Observations

The electron micrographs of the wedge-shaped
crystals were analysed in the following manner to de-

termine the variation of &, the {220} extinction
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distance, with AeNSR' First, a set of micrographs,
obtained as described in Section 4:3, was examined and
a reference point chosen along the edge of the image

of the wedge. The location of this point marked a
region where the thickness contours appeared to be
uniformly spaced and the image free of other contrast
perturbations such as those arising from surface irre-
gularities. Microdensitometer traces, using the setup
shown in Fig.l2a, were then recorded along a line per-
pendicular to the image of the edge of the wedge and
near the reference mark. These traces converted the
density variations, corresponding to the extinction
contours, to a periodic curve such as shown in Fig. 12b.
An average spacing for the extinction contours could be
found from measurements of the peak to peak spacing in
these intensity profiles. Comparisons of this average
spacing for different micrographs gave the variation of
extinction distance as a function of the deviation of the
non-systematic reflection from its Bragg condition.

It should be noted that this procedure did not
give the actual extinction distance but only variations
in it. To make measurements of the actual extinction
distance requires a knowledge of either the wedge angle
or the thickness of the specimen at a given point.

Since neither of these can be easily ascertained for

the case of a chemically polished specimen, no measure-
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Fig. 12a. Microdensitometer system for measuring the

distance between extinction contours.
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Depth

Fig. 12b. A microdensitometer trace across an electron
micrograph of a wedge-shaped crystal showing
the regular periodic variation of the (220)

diffracted beam intensity with depth.



ments were made of actual values of extinction
distance. The variation of the extinction distance,
in the presence of a non-systematic reflection,
could, however, be found by comparing the average
spacing of the contouts with the average spacing
obtéined when no non-systematic reflection was close
to its Bragg condition. The ratio of these average
spacings is equal to g/go where o is the extinction
distance at the orientation where no non-systematic
reflections were strongly excited. Thus, graphs,
obtained by plotting these ratios of average peak
spacing as a function of AeNSR' can be compared
directly with the corresponding theoretical plots of
£/E,-

In making the experimental measurements of the
average spacing of the thickness extinction contours,
care was taken that the measurements were carried out
over the same region of the wedge. Since the polish-
ing process results in slightly rounded rather than
uniform wedges, it is important that measurements be
made over the same region of the wedge each time in
order to minimize the effect of unknown thickness

variations.
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4:5 Experimental Errors

There are two basic sources of error in the
experimental results obtained by the methods outlined
above. These are, first, in the determination of
orientation and, second, in the measurement of the
average peak to peak spacing of the thickness extinc-
fion contours. As stated in Section 4:3 the exact
orientation at which a particulaf result was obtained
was found by calculating how far it had been tilted
from a reference orientation as determined from a
diffraction pattern. Thus, knowledge of the exact
orientation depends upon both the precision of the
stage and the accuracy with which the reference orien-
tation can be determined. Inaccuracies in the stage
can arise in two areas. These are the size of the
average tilt increment and the fluctuations of the
increments about this mean value. The average tilt
increment was checked by tilting through known angles
as determined from Kikuchi patterns (Cann, 1967).
These tests showed that the average increment on the
primary tilt axis was equal to the designed value of
.0047° within 1 per cent. The fluctuations of individual
tilt increments from this value were checked both by
observing the motion of Kikuchi lines and using the

edge movement technique of Sheinin (1966). Variations
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in the size of the increments were, in general, found
to be small although fluctuations of the order of

.005° or one tilt increment were observed on occasion.
Such large variations, however, usually occurred in
pairs such that the average increment remained close

to .0047°. Moreover, since 50 to 100 incremental tilts
were carried out in obtaining each set of measurements,
these short range variations would have little effect
on the overall shape of the experimental curves.

Of equal importance to the accuracy of the stage,
is the accuracy with which the initial deviation of the
non-systematic reflection from its Bragg condition can
be measured. This deviation, which is necessary for
comparison of different sets of experimental and theore-
tical results, was found from measurements of the
distance between corresponding Kikuchi lines and spots
in the diffraction pattern. The accuracy of the devia-
tions found in this manner depended upon a number of
factors. These included errors in measuring the actual
line and spot positions, as well as shifts in the
Kikuchi line positions due to thickness effects (Tan,
Bell and Thomas, 1971) and dynamic interactions (Shinohara,
1932; Pfister, 1953; Menzel-Kopp, 1962; Gjgnnes and
Watanabe, 1966; Gj¢nnes and Hgier, 1969, 1971). Thick-

ness effects, as determined from a comparison of the
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spacing between the relevant excess and defect lines and
the corresponding spot spacing in the diffraction pat-
tern, were not found to be important. Howeve;, dynamical
displacements of the lines were evident, especially in
the case of the lines corresponding to the non-systematic
reflection of interest. These effects, as well as errors
in determining the exact positions of the Kikuchi lines
and diffraction spots, resulted in uncertainties of the
order of %.02° in determinations of the initial orienta-
tions. Thus, different sets of experimental results and
the theoretical curve cculd only be compared with regard
to deviation from the Bragg condition to within this
range of accuracy.

The second basic source of error in the experimen-
tal results was in measuring the average peak to peak
spacing of the thickness extinction contours. Errors
may arise here from two sources. These are irregular
peak spacings and inaccuracies in defining actual peak
positions. The irregularities arise from two factors.
The first of these is the unevenness of the wedges due
to rounding of the specimen edges in the chemical
polishing process. Efforts were made to minimize this
effect by making measurements over the same region of
the wedge. The second cause for the irregularities is

due to the contribution of a third Bloch wave to the
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diffracted beam amplitude. When three Bloch waves make
nearly equal contributions to this amplitude, the ex-
tinction contours generally show a complex behaviour

and no average spacing can be defined. For orientations
slightly away from that at which the complex periodicity
is obtained, the éontribution of one of the Bloch waves
diminishes. At these orientations the intensity profiles
are generally sinusoidal in form, although variations

in the peak to peék spacing due to the contribution of
the third Bloch wave are evident. For the results ob-
tained at A6220 = 0.0, the errors due to these irregu-
larities in the spacing as well as in defining the actual
peak positions gave uncertainties of the order of #.03 in
the values of the ratio of the average peak to peak spac-
ings (Section 4:4).

For the results obtained at 88,5 = .256220, an
additional significant source of error must be considered
with regard to the uncertainties in this spacing. This
error arises from the sensitivity of the (220) thickness
extinction contour spacing to small changes in A6220 at
this deviation. As can be seen in Fig. 13, atlA6220= 0.0
a change of *.01° or 1.0236220 results in a change of
less than .01 in E/&O. However, at A6,,, = .256220 a
similar error in A6220 results in an uncertainty of

*,025 in the values of g/go. Thus, small variations in
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0.0

Fig.

13.

The variation with A6,,, of g/go, the normalized
extinction distance of the (220) reflection at
an accelerating voltage of 150 kV. A6220 is

given in units of 8220.
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AB due to slight movements about the secondary tilt

220
axis on the stage, or beam drift in the electron micro-
scope would be expected to result in larger scatter

in the experimental results at A6220 = .256220 than at
A6220= 0.0. For this reason, the uncertainties in the

value of the ratio of the average peak to peak' spacings

at A6220= .256220 are considered to be of the order of

+,04 as compared to *.03 at A6220 = 0.0.

4:6 Experimental Procedures in Observing the Effects on

Anomalous Absorption of the Presence of a Non-Systematic

Reflection

The effects of a non-systematic reflection on
anomalous absorption were studied by examining the
visibility of thickness contours in wedge-shaped Si
specimens (see Section 2:3.3). The effect of the (133)
non-systematic reflection on anomalous absorption in the
case of the (220) dark field image was studied as a func-

tion of A6= This was done by using regions of the

133°
wedge specimens which were bent so that the orientation
changed in the [I133] direction but remained relatively
constant in the [220] direction (see,for example,Fig.
29b in Section 5:3.2). Such regions were oriented,

using the tilting stage, so that the (220) reflection

was in its Bragg condition while Aei33 varied from
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negative to positive values. The variation in the
effects of anomalous absorption with Aei33 could then
be found by observing the visibility of thickness

contours in thick regions of the crystal.



CHAPTER 5

RESULTS AND DISCUSSION

5:1 Introduction

The effects of non-systematic reflections in
electron diffraction have been studied in five dif-
ferent areas. These areas included the changes in
extinction distance, anomalous absorption, and image
intensity in the presence of such reflections, as well
as the problems arising in many-beam calculations and
Bloch wave labelling when non-systematic reflections
are considered. The results of these five studies will
be presented and discussed in the subsequent sections
of this chapter. For brevity in these discussions, the
following convention has been adopted. Whenever Aehkz'
the deviation of the reflection (hkf) from its Bragg
condition, is equated to a decimal fraction, it is to
be interpreted as that fraction of ehkz, the Bragg angle

of the (hk%) reflection.

5.2 The Effects of a Non-Systematic Reflection on

Extinction Distance

The effects of the (I33), (I35) and (I37) reflec-
tions on the (220) extinction distance in Si were exa-

mined as a function of the deviation of these reflections
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from their Bragg conditions. In the case of the (133)
reflection, these studies were carried out for both
A6220 = 0.0 and 0.25. The range of deviations consi-~
dered for the (I33) reflection was -.30 < AB754 < +.30.
For the (I35) and (137) reflections, the studies were
only carried out for the case A6220 = 0.0. The ranges

of deviations involved for these reflections were

-.15 < AOI35 S +.15 and -.10 < Aei37 < +.10 respectively.

5:2.1 The Variation of the (220) Extinction Distance

with A6133 for A6220 = 0.0

The results of three sets of measurements of the
variation of the normalized (220) extinction distance,
E/Eo, with A6i33 for A9220 = 0.0 are shown in Fig. 14.
For the experimental points in this Figure, the refe-
rence spacing of the thickness extinction contours for
each set of results was taken to be the average value
of this spacing as measured at Aei33 2 =.75. Therefore,
in calculating the corresponding theoretical variation
of £/g  with A87,5, the value of 844 & used for £, was
the value found for the extinction distance from a many-
beam calculation also carried out at approximately
AOz ., = .75.

As can be seen in Fig. 14, there is good agreement

between the experimental results and the theoretically
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predicted variation of E/EO with AGI33. For large nega-
tive values of Aei33, the ratio g/go = .99 or only
slightly less than 1.0 i.e. the effect of the (I33)
reflection is small. As A6133 becomes less negative

and passes through Aei33 = 0.0, however, g/go decreases
in magnitude until, at A6733 = -025, £/£ = .84. In the
range .025<A6133<.06, it was found that both theoretical
and experimental thickness extinction contours exhibited
complex structure. As an example of this structure,
Fig. 15 shows a mic:odensitometef trace taken across
-the image of a wedge-shaped specimen oriented so that
the deviation of the (133) reflection from its Bragg
condition lay within the range .025 <A9i33 <.06. It

can be seen in this Figure that the contours do not
exhibit a regular sinusoidal behaviour such as was shown
in Fig. 12b but, instead, show marked variations in peak
to peak spacing as well ds distorted peak shapes. Such
regions of complex structure were always found to be
associated with marked changes in extinction distance.
This can be seen by comparing the values of E/Eo at

AB = 0.075 and 0.025 which are 1.28 and 0.84 respec-

133
tively. For values of A6133 greater than those at which
the complex periodicity occurs, the ratio g/go decreases

in magnitude with increasing Aei33 until, at Aei33 = .30

E/Eo = 1.07.
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Depth
Fig. 15 A microdensitometer trace showing complex
structure in the variation of the (220)

intensity with depth.
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5:2.2 Explanation of the Observed Variation of &/go

with A6133 for A6220 = 0.0

The behaviour of the (220) extinction distance
as described in the previous section can be explained
in terms of Bloch wave parameters. It was seen in
Sections 2:2.1 and 2:2.3 that the extinction distance
is determined by the spacing between the branches of the
dispersion surface corresponding to the important Bloch
waves. Thus, in order +o explain the variation of g/go
with Aei33, it is necessary to examine the behaviour of
the different branches of the dispersion surface as a
function of A6133.

In the theoretical calculations carried out to
determine the variation of g/go with Aei33 shown in
Fig. 14, approximately twenty-five reflections were
included, resulting in an equal number of Bloch waves
being excited. The branches of the dispersion surface
corresponding to these waves are shown in Fig. 16. It
was found, however, that, at a given orientation, only
a few Bloch waves made significant contributions to the
(220) intensity. Thus, only the dispersion surface
branches corresponding to these waves are important
when considering the variation of g/go with Aei33. In
Fig. 16, these branches are denoted by the dotted line

segments. It is seen here that, in general, only three
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Fig. 16 The excited branches of the dispersion surface as

given by a 25 beam calculation for -0.305AGI3350.30

and A6220= 0.0.
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Bloch waves are important at any orientation although it
is not the same three Bloch waves over the whole range

of Aﬁi
which shows the three branches of the dispersion surface

33 considered. However, by comparison with Fig.17

obtained from a calculation including only the (000),
(220) and (I33) reflections, it can be seen that the
important branch segments in the many-beam case corres-
pond closely in position to the branches given by the
three-beam calculation. Because of this good agreement
between the positions of the important branches in the
three and many-beam calculations, the analysis of the
variation of E/EO with Aei33 will be carried out in terms
of the much simpler three-beam approximation.

Even in the three-beam calculation, however, it
is necessary to find which Bloch waves make large
contributions to the (220) amplitude in order to know
which branches of the dispersion surface are important
in interpreting the variation of g/go with Aei33. In
this regard, Fig. 18 shows the contributions, [¢égg]'sl
of the three Bloch waves to the (220) amplitude as a
function of A67;;. The values of the ]¢égé|'s shown here
were calculated at the top surface of the crystal and,
therefore, do not include any effects of absorption.

These effects will be considered separately in Section

5:3. In Fig. 18 it can be seen that, in the range
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17 The variation with A6i33 of the branches of the

dispersion surface as given by a three-beam
calculation including the (000), (220) and (133)

reflections. A6220= 0.0.
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|¢é§é[, of the different Bloch waves to the
(220) amplitude as given by a three-beam cal-

culation. A8220= 0.0.
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-0.3 < Aei33 < =-0.5, only Bloch waves 1 and 2 make sig-

nificant contributions to the (220) amplitude. At

88335

tions of Bloch waves 2 and 3 appear to interchange over

* .05, however, it can be seen that the contribu-

a narrow range of values of Aei33 as denoted by the
dashed lines. Referring back to Fig. 17, it can be
seen that at this point Bloch waves 2 and 3 have iden-
tical y(j) values and are, therefore, degenerate,
Sprague and Wilkins (1970) have shown that when absorp-
tion is taken into account in such a situation using
first order non-degenerate perturbation theory, signifi-
cant mixing of the Bloch waves corresponding to the
degenerate Y(j)'s is predicted. Sheinin and Cann (1973)
have shown that, when the more correct doubly degenerate
perturbation theory is applied in this situation, there
is a significant difference in the predicted (220) inten-
sity from that obtained when the first order perturbation
theory is used. However, in both cases the predicted
effects due to the presence of the degeneracy take place
over a very small range of Aei33. Also, since both of the
Bloch waves involved in the mixing have nearly identical
values of y(j) in this range, nc detectable variation in
the extinction distance which involves either y(l) - y(z)
or Y(l) - Y(3) would be expected.

In the range of A6133 from -.05 to .025, the most

important contributions to the (220) amplitude are made
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by Bloch waves 1 and 3, although the contribution of
Bloch wave 2 is increasing in magnitude while that of
Bloch wave 1 is becoming smaller. This behaviour of
Bloch waves 1 and 2 leads to all three Bloch waves

making significant contributions to the diffracted beam
intensity in the range .025 < A6i33 £ .075. Finally,

it can be seen from Fig. 18, that, for .075 < Aei33 < .30,
Bloch waves 2 and 3 are the only waves making a signifi-
cant contribution to the (220) amplitude.

These observations from Fig. 18 can now be applied
in interpreting the variation of E/Eo with Aei33 in terms
of the spacing between the important branches of the dis-
persion surface. Thus, in the range -.30 < AGI33 < .05,
Bloch waves 1 and 2 make important contributions to the
(220) amplitude and, therefore, the extinction distance,
€, depends upon the differencé Y(l) - 7(2). Similarly,
in the range -.05 < A6133 < .025, £ depends upon the
difference y(l) - y(3). By examining Fig. 17, it can be
seen that, through the range of AGI33 from -.30 to .025,
the difference, Y(i) - y(j), determining the extinction
distance is increasing in magnitude. Since ¢ equals
(y(i) - y(j))_l, this behaviour results in a correépond-
ing decrease in E/Eo in agreement with the results shown
in Fig. 14. 1In the region, .025 < Aei33 < .075, Fig. 18

shows that all three Bloch waves are important, and,
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therefore, the (220) intensity variation with depth
will be a function of three different periodicities;

(v oy 207l @y v3)™L ana (@ y$3))-1

This should result in a complicated non-sinusoidal
variation with depth of the (220) intensity as was
observed. For .075 < AGI33 < .30, Bloch waves 2 and
3, as noted previously, are the only waves making sig-
nificant contributions to the (2%0) intensity and, thus,
the extinction distance depends on y(z) - Y(3)- If this
difference at A6133 = .075 is compared to the difference
Y(l) - Y(3) at A9i33 = .025 it is found to be much smaller.
This marked change in the magnitude of Y(i) - y(j), where
i and j are the important Bloch waves, in passing through
the complex region explains the observed jump in E/Eo in
Fig. 14. Finally, in the range of A9I33 from .075 to
.30 the difference Y(Z) - 7(3) increases with the result
that g/go decreases again as observed.

From the foregoing discussion, it can be seen
ﬁhat an analysis in terms of Bloch wave parameters
accurately describes the behaviour of the (220) extinc-

tion distance in the presence of the strongly excited

(I33) reflection for the case 46,,4 = 0.0.
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5:2.3 The Variation of the (220) Extinction Distance

with A6133 for A6220 = 0.25

———

The results of three sets of measurements of the
variation of the (220) extinction distance with devia-
tion of the (I33) reflection from its Bragg condition
for A6220 = 0.25 are shown in Fig. 20. The reference
spacings of the thickness fringes used in obtaining the
experimental E/Eo points were found from the average
values of the spacing of the thickness contours measured
at Aby33 = -.70. The value of 638 &, used for £, in
determining the theoretical variation of g/go with
Aei33, was obtained from a many-beam calculation also
carried out for Aei33 x -.70.

From Fig. 19 it can be seen that there is relative-
ly good agreement between the experimental results and
the theoretical predictions when the accuracy of the
experimental results is taken into consideration. As
Aei33 varies from -.30 to -.06, the ratio g/go remains
Close to 1.0 but then increases to a value of 1.05 at

AB .03. In the range -.03 < Aei33 < =-.01, the

133 ©
variation of the (220) intensity with depth was observed
to become complex in structure. This region of complex
periodicity is followed by a drop in the magnitude of
g/go to a value of .93 at Aei33 = -.01. As A6133 varies
from -.01 to .03, E/Eo remains nearly constant before
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decreasing to a value of .87 at A6133 = .10. A second
region of complex behaviour was observed to occur in
the range .10 < A6i33 < .14. Associated with this
complex region is a large jump in extinction distance
with E/Eo changing from .87 at A6i33 = .10 to 1.23 at
AB= = .l14. From Aei33 = ,14, g/go decreases to a

133

value of 1.12 at A6I33 =

then shows g/go to increase to a value of 1.14 at

.20. The theoretical curve

A6133 = .21. This is followed by a region of complex
behaviour in the range .21 < A6133 < .22 and an associated
drop in g/go to 1.06 at A6133 = .22. The experimental
results, however, do not behave in the same manner in

this region. They show a continuous decrease in g/go

for this range of A6133. This lack of agreement may

arise from experimental error as the predicted theoreti-
cal variation is small compared to the accuracy of the

experimental measurements. Finally, in the range

.22 < A9

733 < .30, E/EO for both the experimental and
theoretical results shows similar behaviour in slowly

decreasing to a value of 1.04 at AGI33 = .30.

5:2.4 Explanation of the Observed Variation of

E/Eo with A6133 for A6220 = 0.25

The behaviour of the (220) extinction distance as

a function of A6133 for A9220 = 0.25 can be explained,
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as in the case for A6220 = 0.0, in terms of Bloch wave
parameters. Fig. 20 shows the branches of the disper-
sion surféce as given by a three~beam calculation
including the (000), (220) and (I33) reflections.

Fig. 21 shows the contributions of the Bloch waves,
corresponding to these branches, to the (220) diffracted
beam amplitude. From this latter Figure, it can be

seen that, in the region -.30 < AeI33 £ -.03, only Bloch
waves 1 and 2 make large contributions to the (220) am-
plitude. Therefore, the extinction distance depends on
the spacing between the correspoﬁding branches of the
‘dispersion surface. Since this spacing, as shown in

Fig. 20, remains constant, except near Aei33 = -.03 where
it starts to decrease, the extinction distance would also
be expected to be constant except for a small increase
near A6133 = -.63. This is in agreement with the observed
results. Again, from Fig. 21, it can be seen that in the
range 0.03 < Aei33 < =.01 all three Bloch waves are
important with the result that a complex variation of
intensity with depth is obtained. For A6133 between -.01
and .10, however, only Bloch waves 1 and 3 make large
contributions to the (220) amplitude with the result

that the variation of intensity with depth is again

sinusoidal. The period of this variation, &, depends

upon the spacing between branches. 1 and 3 in this region.
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Fig. 20 The variation with A6133 of the branches of
the dispersion surface as given by a three-
beam calculation including the (000), (220) and

(133) reflections. A6220 = .25.
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Fig. 21 The variation with Aei33 of the contributions,
|¢(J)[, of the different Bloch waves to the

220
(220) amplitude as given by a three-beam

calculation. A9220= .25.
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Since y(l) - y(3) at Afy33 = -.01 is significantly
larger than y(l) - Y(2) at ABT33 = -.03, the drop in
extinction distance in passing through the region of
complex structure centred at A6133 = -.02 is explained.
The difference y(l) - y(3) remains relatively constant
in the range -.01 < Aei33 < .03 before slowly increasing
as Aei33 approaches .10. This is in agreement with the
observed behaviour of the extinction distance which
remained constant before slowly decreasing in this
region.

In the range .10 < Aei33 < .14, the three Bloch
waves are again all important as shown in Fig. 21.
This results in the complex variation of the intensity
with depth observed for this range of values of Aei33.
For A6i33 > .14, however, only Bioch waves 2 and 3 are
important. By comparing y(z) - y(3) at Aei33 = .14 and
Y(1) - Y(3) at 463
g/go in passing through the complex region ‘10<Aei33< .14

33 = .10, the jump in the value of

is again explained. Finally, since the spacing between
branches 2 and 3 is increasing as Aei33 varies from .14
to .30, a corresponding decrease in g/go in this range
is predicted. As can be seen in Fig. 19, such a decrease
was indeed observed.

Although the three-beam approximation can predict
the general behaviour of the experimentél results for

the case A6220 = .25, it does not explain the observed
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jump in the theoretical variation of g/go with ABI33,
which occurs at A6133 = .21. This jump was found to

be associated with the presence of another non-systematic
reflection. Because of the particular crystal orienta-
tion used, the (175) reflection was found to be close

to its Bragg condition at AGI33 = .,21. The fact that
the effect of this reflection was not observed experi-
mentally may be explained, as noted in Section 5:2.3,

by the large experimental error in comparison with the
magnitude of the effect. Also, because of the small
range of angle over which the (I75) reflection is impor-
tant, divergence in the incident beam in the electron
microscope would tend to decrease the already small
effect. Therefore, except for the perturbation due to
the presence of the (175) reflection, the Bloch wave
parameters, as given by the three beam approximation,
successfully explain, as in the case A6220 = 0.0, the

observed variation of E/Eo, with A6133.

5:2.5 A Discussion of the Results Obtained at

= 0.25

A® 0.0 and A92

220 = 20

A comparison of the results presented in Sections
5:2.1 and 5:2.3 shows that the presence of the (I33)

non-systematic reflection results in marked changes in
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the (220) extinction distance for both the case 88550 =
0.0 and A8550 = 0.25. The actual manner in which these
changes occur, however, differs in two important aspects.
The first of these is that a region of complex variation
of the (220) intensity with depth is observed for A8733
negative in the case A6220 = 0.25 but not in the case

A8 = 0.0. The secénd difference involves the different

220
ranges of positive values of A6z over which the complex

133

variation is observed in the two cases. For A6220 = 0.0
this range is .055 < A6133 < .06 but for ABZZO = 0.25
the complex region is observed to be .10 < AGI33_S .14.

It is of interest to compare these results with
the results reported by Ayroles and Mazel (1970) in their
study of the effects of the simultaneous excitation of
pairs of non-systematic reflections on the (200) extinc-
tion distance in MgO. They found that, when the (024)
and (224) pair of reflections were simultaneously tilted
through their Bragg conditions, the (200) diffracted
beam intensity showed a complex variation with depth
through only one region of tilt located at A6024= A6224 S
0.0. This behaviour is similar to the results obtained
in this thesis in the case A9220 = 0.0 except that, in
this case, the complex region was found to occur at a
marked positive deviation of the (I33) reflection from

its Bragg condition. Ayroles and Mazel (1970) also



112

examined the effects of the (224) and (424) pair of
reflections. For these reflections they observed two
regions of tilt in which the (200) intensity variation
with depth exhibited complex structure. As in the case
A6220 = 0.25 described in Sectioﬁ 5:2.3, one of these
regicns occurred for positive deviations and the other
for negative deviations of the non-systematic reflections
from their Bragg conditions.

Thus, the results obtained by Ayroles and Mazel
(1970) in the more complex four-beam situation are,
in general, very similar to those obtained in the simpler
three-beam case. The occurrence of either one or two
regions of complex behaviour as observed by them is,
therefore, not specifically associated with the special
case of the simultaneous excitation of two non-systematic
reflections. Such behaviour, as has been shown in this
thesis, also occurs in the more general case where only
one non-systematic reflection is strongly excited.

Two important questions arise from the results
presented in this thesis and those of Ayroles and Mazel
(1970) . The first of these is under what circumstances
will one or two regions of complex intensity variation
with depth be obtained in the presence of a non-
systematic reflection. The second question is at what

deviations of the non-systematic reflection from its
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Bragg condition will these regions occur. The answer

to these questions is of great importance to the elec-
tron microscopist who normally wishes to minimize the
effects of non-systematic reflections. Bloch wave
analyses can explain, for a particular case, why the
complex regions with their corresponding marked changes
in extinction distance take place. This was shown here
in Sections 5:2.2 and 5:2.4 and by Ayroles (1971).
However, such analyses do not answer the questions posed
above for the general non-systematic case.

In order to predict under what circumstances and at
what deviations of the non-systematic reflection from its
Bragg condition complex regions will'be obtained for the
general case, analytical solutions of the dynamical
theory have been examined. This examination has been
carried out for the case of a single non-systematic
reflection close to its Bragg condition since this repre-
sents the simplest and yet most commonly occurring non-
Systematic situation obtained in practice. The results

of this examination are presented in the following

Section.
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5:2.6 Analysis of Extinction Distance Behaviour in Terms

of the Three-Beam Analytical Solution of the Dynamical

Theory

Before proceeding with this analysis, it is first
useful to make some general observations of the Bloch
wave analyses which have already been carried out. It
can be seen by examining Figs. 17 and 18 that the
branches of the dispersion.surface important in deter-
mining the extinction distance are those with y(j)
values closest to #5.25 x10~% &1, These values,
+5.25x10" 4 ﬁ-l, are the y(j) values of the two impor-
tant Bloch waves in the absence of the non-systematic
reflection. Similarly, in Fig. 20, the important
branches are those with y(j) values lying closest to
1.23x10°3 87! ang 2.3 x10"% 871, These are the y {3
values of the two important Bloch waves for the case
AB,,, = 0.25 when the (I33) reflection is absent.

A second observation that can be made from the
Bloch wave analyses is that the regions of complex
variation of beam intensity with depth, in general,
take place when there is an interchange in the branches
lying closest to the two beam Y(j) values. This can be
seen in Fig. 17 where the complex region at
.025 < Ab= < .075 is associated with a marked depar-

133 =
ture of branch 1 away from the Y(J) value of 5.25><10"4§.-l
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while branch 2 is asymptotically approaching this y(j)
value. Similar behaviour at the two complex regions
found for the case A6220 = 0.25 can be seen by examining
the relevant branches of the dispersion surface in Fig.
20. Returning to Fig. 18, it can be seen that an inter-
change in branches also takes place at Aei33 = =-.05.
However, complex behaviour of the (220) intensity with
depth is not observed at this point. This can be
explained both by the fact that Bloch waves 2 and 3 have
identical y(j)'s here and that the interchange in the
importance of the contributions of these waves to the
(220) intensity takes places over an extremely narrow
region of A6133.

These observations drawn from the Bloch wave
analyses in Sections 5:2.2 and 5:2.4 suggest the
following approach with regard to a study of the three
beam analytical solution to the dynamical theory. 1In
order to determine under what conditions one or two
regions of complex intensity behavioqr are obtained in
the presence of a non-systematic reflection, the analy-
tical solution should be examined for those situations
which give two equal y(j) values. Secondly, in order
to predict at what deviations of the non-systematic
reflection from its Bragg condition the complex regions
occur, the conditions under which an interchange takes

place in the Y(J)'s lying closest to the two beam Y(J)
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values should be determined.

The three beam analytical solution of the dynamical
theory starts with the set of equations 2.10. When only
three reflections are taken into account and a centro-
symmetric crystal is assumed, this set of equations

reduces to three equations of the form:

Yo L
“YCo * 3K Cg * g Cp = O
g J9-h
5% Co * (5= VIC + ¢y = 0 (5.1)
U U
h g-h - -
-2? CO + 5K Cg + (Sh Y)Ch = 0 .

In order for non-zero solutions to exist for the C's,

the determinant of the coefficients of the C's must equal

zZero. This results in the following cubic equation
in vy ,
2 2 2
- U U U
3 2 g h g-h
- (s_+s + (s s, - - -
Y #g*Sn) Y % ak®  4x?  4x? g
2 2
U U 20 U.U_ |
+ (s + Do —_gBhagmh g (5.2)
4K 48 9 8K3

The analytical expressions for the roots of this equa-
tion are, in general, quite complicated. However,

Gjgnnes and Hgier (1971) in a study of line displacements
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at Kikuchi 1line intersections, derived the following
conditions that sg and Sy, must satisfy in order that

two of the y(J)'s be equal, These conditions are

U Us_p - Uf;
s = (ﬁﬂ) (L= 2, (5.3)
S h 2KU__,.
and
‘ 2 2
U U - U
s, = @ (Seh—9) (5.4)
g g-h

If the three reflections (000), (220) and (I33)

1 - \f- — - =
are now considered, Ug = U220’ Jh U133 and Ug-h

U313 = _UI33‘ In this case equaticn 5.3 reduces to
Syo9 = 0.0 and equation (5.4) becomes
U2 U2
5733 = —aa—220 (5.5)
220

Thus, it can be seen that two of 'the three branches of
the dispersion surface will touch only when A6220 = 0.0

and Af= is such that equation 5.5 is satisfied. For

133
A6220 # 0, no value of Af=- will exist at which two of

133
the Bloch waves will be degenerate. This is in agree-
ment with the observations in Sections 5:2.2 and 5:2.4.
For A6220 = 0.0, branches 2 and 3 were found to have
equal Y(j) values at A9i33 = =.05. However, for A6220=

0.25, the branches of the dispersion surface did not
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touch at any value of Aei33.

From the above discussion, it can be seen that,
in general, two regions of complex variation of the
intensity of the systematic reflection with depth will
be observed when a single non-systematic reflection is
tilted through its Bragg condition. For one particular
deviation of the systematic reflection from its Bragg
condition , however, one of these regions will disappear
because two of the Bloch waves become degenerate in a
previously complex region.

It is next of interest to examine the particular
deviations of the non-systematic reflection from its
Bragg condition at which these complex regions occur.
The locations of these regions will be such that one
occurs at a positive deviation and the other at a nega-
tive deviation of the non-systematic reflection from its
Bragg condition. This can be seen from the following
discussion starting with the set of equations 5.1. When
the non-systematic reflection h is far from its Bragg con-
dition, these equations reduce to the two-beam approximation

U
- 3 =
YCO + 5K Cg 0

(5.6)

K

C + (s_ - cC =0.
ot (85 = Y)Cq

The values of y satisfying these equations for non-zero
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values of CO and Cg are of the form

Y= syt (s + Kz) 1/72.0 . (5.7)

Thus, it is seen that,of the two solutions for v, one
will be positive and the other negative. If we label

these solutions Yél) and yéz), then, for sg = 0.0,

(1) l)l 2),
2

[y,7' ] = lYéZ)]. Also, for sq4 pPositive, lyé > Iyé
while for sS4 negative ]yél)l < lyéz)].

The values of these yéj)'s play an important role
in determining the values of s, at which the regions of
complex periodicity occur. This can be seen from the
following argument. If the terms in Ch are eliminated
from equations 5.1 by algebraic substitution, the

following pair of equations is obtained:

U U U_U "
4x% (s, - v) 4K (s, -y) 9

(5.8)
U U U U
(=2 - __E_SZE__)CO + (sg -y - —-—532———)C =0 .

3K 2 2
4K (s, -v) 4K (s, -y) 9

In these equations the terms U§/4K2(sh-y), U;-h/4K2(sh-Y)
and UhUg_h/4K2(sh-y) can be seen, by comparison with
equation 5.6, to represent corrections to the two beam

approximation due to the presence of the third reflection
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h. The importance of these corrections is determined
by the term Sp~Y appearing in all the denominators of
equations 5.8. When this term is large, the correction
terms will be small and the values obtained for y will
be approximately those given by the two-beam approxima-
tion. On the other hand, when Sp=Y is small, the correc-
tion terms will be large and there will be marked
deviations of the y's from their two beam values. As
discussed at the beginning of this Section, such marked
deviations are associated with complex variations of
the intensity with depth. These marked deviations of
the y's from their two beam values will occur when Sy
approaches one of the yéj) values. This can be seen if
Y = yéj) is substituted into equations 5.8. The correc-
tion terms in these equations will then become infinite
when s, = yéj).
Thus, the values of s, at which complex periodi-
city will occur can be predicted by an examination of
the Yéj) values found from a two-beam calculation in
which only the directly transmitted and systematic
reflections are considered. When the deviation of the
systematic reflection from its Bragg condition is equal
to zero, the regions of complexity should occur for

equal positive and negative deviations of the non-

systematic reflection from its Bragg condition as
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2 1 2
Yél) = —Yé ). For sg # 0, however, Yé ) # —yé ) and

the complex regions will no longer be symmetric about

the Bragg condition.

For example, in the three-beam situation examined

previously in Sections 5:2.1 and 5:2.2, A6220 = 0.0 and

-4 a-1
Yél) = _Y§2) = 5.,25%x 10 ° A . The corresponding values
of S733 at which the complex regions are predicted to
_ -4 ¢o-1 _ -
occur are Sjy.3 = +5.25 x 10 A or Ael33 x +.,05. An

examination of Fig. 14 confirms this prediction for the
case ABy35 = +.05. As discussed previously in this
Section, complex behaviour of the (220) intensity will
not be observed in this case for A6133 negative due to
Bloch wave degeneracy. At A6220 = .25 the values of
yél) and yéz) are 1.23 x10"3 871 ana -2.3x107% 871
respectively and the corresponding values of A6i33 at
which the complex regions are predicted to occur are

.128 6= and -.029 6= An examination of Fig. 19

133 133°
verifies the accuracy of these predictions.

In summary, it has been found that, as a non-
systematic reflection is tilted through its Bragg con-
dition, two complex regions with associated marked
changes in extinction distance will, in general, be
observed. For one deviation of the systematic reflec-

tion from its Bragg condition, however, one of the

complex regions will vanish due to the degeneracy of
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two of the Bloch waves. The particular deviation at
which this occurs is determined by the Fourier co-
efficients of the lattice potential corresponding to
the reflections involved. A second result that was
obtained is that the locations of the regions of
complex periodicity are dependent upon the Yéj)'s
corresponding to the Bloch waves excited in the absence
of the non-systematic reflection. Since these yéj)'s
depend upon the deviation of the systematic reflection

from its Bragg condition, the location of the complex

regions will also depend upon this deviation.

5:2.7 The Variation of Extinction Distance in the

Presence of Higher Order Non-Systematic Reflections

The variation of the (220) extinction distance
was examined as a function of the deviation of the
higher order (I35) and (I37) non-systematic reflections
from their Bragg conditions. Three sets of measurements
were obtained in each case and compared with the theore-
tical variation as given by a many-beam calculation.
The results of these measurements are shown in Figs. 22
and 23 for the (135) and (I37) reflections respectively.
These results were obtained for the case of A6220 = 0.0.
As can be seen by comparing these'Figures to Fig. 14,

the behaviour of the extinction distance in the presence
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of these non-systematic reflections is very similar

to that obtained for the (133) reflection in the case
A6220 = 0.0. For negative and small positive values

of the deviation of the non-systematic reflection from
its Bragg conditicrn, the extinction distance falls

below the reference value obtained in the absence of
strongly excited non-systematic reflections. The
smallest value of extinction distance is obtained at -

a small positive deviation, just less than the range

of values for which the variation of the (220) intensity
with depth becomes complex. For positive deviations just
'greater than the complex range, the extinction distance
is found to have undergone a marked change in value and
is now larger than the reference Value. For even larger
deviations, however, the extinction distance slowly
decreases back towards this reference value.

Although the general behaviour Sf the extinction
distance is similar for all three non-systematic reflec-
tions, there are significant differences in the results
when the magnitudes of the variations of the extinction
distance from the reference value are compared. This
is particularly evident in the magnitudes of the jumps
in the extinction distance which take place at the com-

plex region. In the case of the (I33) reflection, this

jump corresponds to a change of approximately .45 in
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the ratio g/go. For the (135) reflection, however,
this change is only .25 and even less, .15, for the
(137) reflection. Therefore, although the behaviour
is qualitatively the same for all three reflections,
quantitatively the magnitude of the effect decreases

with increasing order of the non-systematic reflection.

5:2.8 Explanation for the Observed Behaviour in the

Presence of Higher Order Reflections

It was seen in Sections 5:2.2 and 5:2.4 that the
magnitude of the jump in extinction distance is deter-
mined by the distance between the branches of the dis-
persion surface whose corresponding Bloch waves are
undergoing significant changes in their contfibutions
to the (220) diffracted beam amplitude. In the case of
the (I35) and- (137) reflections, Fig. 24a and 25a show
the branches of the dispersion surface corresponding to
the Bloch waves excited as these reflections are tilted
through their'Bragg conditions. From Figs. 24b and 25b,
it can be seen that, in the complex regions, marked
changes in the contributions of Bloch waves 1 and 2 to
the (220) amplitude take place in.the presence of these
two reflections. This is in agreement with the results

obtained for the (I33) reflection in Section 5:2.2.
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Fig. 24. (a) The variation with ABT 35 of the dispersion
surface branches as given by a three beam cal-
culation including the (000), (220) and (I35)
reflections. (b) The variation with A6135 of
the contributions to the (220) amplitude of the
Bloch waves corresponding to the branches in (a).
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Fig.25. (a) The variation with Aei37 of the dispersion

surface branches as given by a three beam cal-
culation including the (000), (220) and (137)
reflections. (b) The variation with A6i37 of
the contributions to the (220) amplitude of the

Bloch waves corresponding to the branches in (a).
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If the minimum spacing in the complex region
between branches 1 and 2 of the dispersion surface
are compared for the (133), (135) and (137) reflections
by examining Figs. 17, 24a and 25a respectively, it is
seen that this spacing decreases with increasing order
of the non-systematic reflection. For the situation
examined here [i.e. Sg = 0.0 and Uy =—Ug_h where g is
the (220) reflection and h is one of (I33), (I35),
(I37)1, this spacing can be found quite easily from the
three beam analytical theory. In this case, the general

expression for the y's as given in equation 5.2 reduces

to
2 2 2 2
U 20 U”s 20 U

Vesyie (- - By LR IR _o,0. (5.9
4% 4K 4K 8K

An examination of Figs. 17, 24a and 25a shows that one
of the roots of this equation is independent of Sk and,
therefore, equal to -Ug/ZK, one of the roots of the two
beam approximation. If y+Ug/2K is divided into equation

5.9,the following guadratic equation is obtained:

2
U s, U 20

y2 + (—sh - 5%)7 + ( gKg - g) = 0.0 . (5.10)
4K

The roots of this equation, as given by the standard

formulae, are
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Y:%{sh+?%i[(sh— s + —31 ). (5.11)

The value of Sy at which the difference between these
two roots is a minimum can be found by differentiating
the expression for this difference with respect to Sy
and setting the result equal to zero. When this is
done,it is found that fhe minimum difference occurs

at s, = Ug/ZK and is equal to Uh//f K. Therefore, this
spacing is directly proportional to the Fourier co-
efficient of the lattice potential of the non-systematic
reflection involved. Since these coefficients decrease
in magnitude with increasing h due to their dependence
on the electron scattering factors, the decrease in
spacing between branches 1 and 2 with increasing order
of the non-systematic reflection is explained.

It should be noted, however, that the minimum
spacing between branches 1 and 2 is not exactly equal
to the observed jump in extinction distance. This jump
is determined, instead, by the difference between the
values of Y(l) and y(z) calculated at two different_
deviations of the non-systematic reflection from its
Bragg condition. These deviations depend upon the
limits set for the region of comp}ex variation in the

(220) intensity with depth. For deviations just less

than those associated with the complex region, the
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extinction distance is given by 1/(7(1) - Y(3))- How-
ever, for deviations just larger than the complex
- region, the extinction distance is given by l/(y(z)—y(3)).

Since Y(3) is a constant in this region, the jump in
extinction distance will depend upon the difference
between y(l) and Y(Z). However, since these Y(j)'s

are célculated at slightly different brientations, this
difference will not be exactly equal to Uh//f K.

Thus, it can be seen that the magnitude of the
effect of a non-systematic reflection depends upon its
Fourier coefficient of the lattice potential. Since
these coefficients, in general, decrease with increas-
ing order of a reflection, the observed decreasing
effects on extinction distance with increasing order

of the non-systematic reflections are explained.

5:3 The Effects of a Non-Systematic Reflection on

Anomalous Absorption

Recent work by Sheinin (1970B) has shown that,
in the case where only systematic reflections are
assumed to be present, the effects of anomalous absorp-
tion can be drastically altered if the deviations of
these reflections from their Bragg conditions are

changed by tilting the crystal. This behaviour results
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primarily from the fact that changes in Bloch wave
excitation occur under these circumstances. Thus,"-

for example, when the lowest order reflection, g, of

a systematic set is in the exact Bragg condition,
pronounced effects of anomalous absorption can normally
be observed. The reason for this is that the two Bloch
waves which make a significant contribution to the
diffracted beam intensity at this orientation have
widely differing absorption coefficients. If the
crystal is tilted outside the reflection 3g in the
Bragg condition, on the other hénd, the effects of
anomalous absorption are found to be small. The
explanation for this behaviour lies in the fact that

in thick crystals, the two Bloch waves which make a
significant contribution to the diffracted beam intensity
have nearly equal absorption coefficients.

Changes in Bloch wave excitation also occur in the
presence of non-systematic reflections as was seen in
Section 5:2 and as has been shown previously by
Lehmpfuhl and Reissland (1968), Ayroles (1971) and
Lehmpfuhl (1972). To examine what effects a non-
systematic reflection might have on anomalous absorption,
the variations of the Bloch wave absorption coefficients
have been calculated as a function of the deviation of a

non-systematic reflection from its Bragg condition. The
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effects of these variations on the contributions of
the different Bloch waves to the diffracted beam
amplitude in thick specimens were then examined.
This was done to detetmine the changes in anomalous
absorption effects which take pléce in the presence

of 'a non-systematic reflection.

5:3.1 Variation .of Bloch Wave Absorption Coefficients

in the Presence of a Non-Systematic Reflection

Using expression 2.32, the :absorption coefficients,
q(j), of the three important Bloch waves excited for
the situation examined in Section 5:2.1 were calculated.
This situation consisted of maintaining the (220) reflec-
tion in its Bragg condition while the deviation of the
(133) reflection was systematically varied about A6133 =
0.0. The results of the calculations are shown in Fig.
26. Each coefficient has been numbered so that its
corresponding Bloch wave is associated with the similarly
numbered branch of the dispersion surface in Fig. 17.
Thé dashed line segments in Fig. 26 at A6133 ~ —.05 show
the region of degeneracy of branches 2 and 3 of the
dispersion surface. As stated in Section 5:2.2, however,
this region is quite small and does not affect the

results.
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As can be seen in Fig. 28, the absorption co-
efficients show a strong dependence on A8733¢ indicating
that the presence of the non-systematic reflection does
have a pronounced effect on the values of these co-
efficients. For example, q(l), which has an initial
value of .44 x 10~% 871 a¢ A®343 = -.30, slowly increases
as Abys; increases until it reaches a maximum of
.48x10"% 871 a¢ A6733 = .02. From there it decreases
to a value of .29 x10~% &1 at A8734 = -30. q(z), on the
other hand, is constant and equal to .08><10"4 ﬁ—l in the
range -.3 £ Aei33 < -.05. At Aei33 = =.05, it jumps in
magnitude to a value of .2><10-4 K_l before decreasing to
a minimum of 1.7x10"% 871 a¢ A8745=.02. It then increases
to a value of .38x10"4 271 a¢ AB743 = .30. Finally, the
absorption coefficient for Bloch wave 3 has an initial
value of .23x10"% 871 a¢ AB8733 = -.30 before decreasing
to .2x10"% 871 a¢ AB733 = —.05. At this point it drops
sharply to a Qalue of .08 x10™% 871 and then remains con-
stant through the range -.05 < ASI33 < .30.

In order to interpret these variations of the q(j)'s
with Aei33, a study was carried out of the channelling
of the Bloch waves in the crystal. Following the pro-
cedure of Metherell and Spring (1970), Bloch wave inten-
sity distributions across a section of crystal perpen-

dicular to the direction of current flow were calculated

for the three Bloch waves at orientations of Aei33
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equal to -.30, .02 and .30. These distributions are
shown in Fig. 27. Here, the light regions correspond
to zones of high current flow while the lines extend-
ing vertically from the top and bottom of each display
and those extending diagonally from the sides show the
locations of (220) and (133) planes respectively. The
black disks show the posiﬁions of the atomic rows
which lie perpendicular to the plane of the displays.
Earlier, in Section 2:3 it was shown that the
inelastic scattering potential is positive and localized
at the atomic positions.’ Thus, Bloch waves whose inten?
sities are also concentrated at these points will tend
to be strongly absorbed. On the other hand, Bloch waves
whose intensities are concentrated away from the atomic
positions will tend to be well transmitted. Returning
to Fig. 27a, it can be seen that at Aei33 = -,30, the
intensity of Bloch wave 1 is concentrated along the
(220) planes and, moreover, is localized near the atoms,
thus resulting in it being highly absorbed. Bloch wave
2 is concentrated between the (220) planes and, therefore,
is weakly absorbed while the intensity distribution of
Bloch wave 3 is nearly uniform resulting in moderate
absorption. At A6i33 = .02, as seen in Fig. 27b, the
intensity of Bloch wave 1 is now very strongly concen-

trated at the atomic positions resulting in even higher
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C

Fig.27. The intensity distribution of the 3 Bloch waves across
a section of crystal perpendicular to the direction of
current flow for values of A6133 of (a) -.30, (b) .02
and (¢) .30. The light regions correspond to zones of
high current flow while the lines extending vertically
from the top and bottom of each display and those ex-
tending diagonally from the sides show the locations
of the (220) and (133) planes respectively. The black
disks show the positions of the atomic rows which lie
perpendicular to the plane of the display.
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absorption than at A6133 = ~-,30. In the case of Bloch
wave 2, the intensity, although mainly lying along the
(220) planes, is strongly concentrated between the

atoms and, thus, a relatively low absorption coefficient
is expected. For Bloch wave 3, weak absorption should
be obtained as its intensity is ﬁrincipally located
between the (220) planes. At A6133 = .30, the intensity
of Bloch wave 1, as seen in Fig. 27c, is nearly uniformly
distributed with the result that this wave is now only
m§derately absorbed. Bloch wave 2 is no longer as
strongly concentrated between the atoms on the (220)
planes as at A9133 = .02 with the result that it has
become more strongly absorbed. Bloch wave 3 is concen-
trated between the (220) set of planes and, therefore,
is weakly absorbed. These results indicate, therefore,
that the non-systematic reflection has a pronounced
effect on the channelling characteristics of the Bloch
waves and that, as in the two-beam and systematic cases,
these characteristics offer a physical explanation for

the differences in the Bloch wave absorption coefficients.
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5:3.2 Effects of the Variation of the Absorption Co-

efficients with A6i33 on the Contributions of the

Different Bloch Waves to the Diffracted Beam Intensity

In Section 2:3.2, it was shown that the amplitude
of the g'th diffracted beam at a crystal depth z is
given by the expression

¥ 5 (3) |
u (z) = J ¢.3'(z) exp(2riy(3)z) (5.12)
g j21 9

where the summation is over all Bloch waves excited and

¢éj)(z) = Céj)Céj) exp(—2nq(j)z) . (5.13)
From these two expressions, it can be seen that tha con-
tribution of a particular Bloch wave to the diffracted
beam amplitude at a depth z is determined by ¢;j)(z).
Therefore, it depends on both the product Céj) Céj) and
the exponential term exp(—qu(j)z). Thus, it can bé
seen that a change in the absorption coefficient of a
Bloch wave will affect the contribution of that wave to
the diffracted beam amplitude.

Before discussing the effects of the variations
of the absorption coefficients with A6133 on the Bloch
wave contributions, it is first useful to consider the

situation of a single low-order reflection, g, in its
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exact Bragg condition. Under these circumstances, only
two of the Bloch waves, numbered 1 and 2 (Humphreys and
Fisher, 1971), are strongly excited and the intensity
of the diffracted beam g at a depth z is given by the

expression

* (1) 2 (2) 2
u_(z)u (z)=1{¢ (z) 17+ {¢ (z)}
g g g g (5.14)

+2¢él)(z)¢é2)(Z)COS{ZH(Y(l)‘ Y(Z))z} .
It can be seen from this expression that excellent thick-
ness fringe contrast will be obtained near the top
surface of the crystal since in this case, l¢él)(z)| o
l¢é2)(z)|. However, because the absorption coefficient
of Bloch wave 1 is usually five to ten times greater

than that of Bloch wave 2, l¢é1)(z)| << |¢é2)(z)| in
thick regions of the crystal and equation 5.14 shows

that poor fringe contrast will result, although appre-
ciable intensity is still present due to the {¢éz)(z)}2
term. This is the anomalous absorption effect described
earlier in Section 2:3.2.

For a more general crystal orientation than that
considered above, such as the case when a non-systematic
reflection is present, the magnitudes of the ¢éj)(z)'s
need not be equal at the top surface of the crystal.
However, the effect of the differences in the absorp-

tion coefficients is to still change the relative
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magnitudes of the ¢éj)(z)'s with increasing thickness.
Thus, by examining how these relgtive magnitudes, as
defined by the ratio |¢;j)(z)|/h%i)(z)[, vary with depth
in the crystal, the effects of anomalous absorption on
thickness fringe contrast due to the dependence of the
q(j)'s on A6133 can be predicted.

The variations of the |¢éj)(z)|'s of the three
important Bloch waves with A6i33.at the top or incident
surface of the crystal and at a depth of 10,000 & are
shown in Fig. 28. It is first of interest to examine
the situation at large deviations from the‘Bragg condi-
tion. At Aei33 = -,30 and at the top surface of the
crystal |¢él)(z)[ x |¢éz)(z)| >> l¢;3)(z)|. At a depth
of 10,000 &, on the other hand, all of the Bloch waves

have been attenuated, but Bloch wave 1 much more so than

Bloch wave 2, with the result that |¢éz)(z)| >> |¢él)(z)
The ratio |¢él)(z)[/[¢éz)(z)| changes from =x1.0 at the
top surface to .11 at 10,000 2. similarly, at Aei33 =
.30 and at the top surface [¢éz)(z)| x l¢é3)[ >>|¢él)(z)[.
At a depth of 10,000 ﬁ, however, Bloch wave 2 has now
been attenuated much more than Bloch wave 3 with the
result that |¢éz)(z)|/|¢é3)(z)| x .15. These results
indicate that anomalous absorption effects will be impor-
tant for both large positive and negative deviations of

the (I33) reflection from its Bragg condition although
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tions of the different Bloch waves to the (220)

diffracted beam amplitude, with AB755 at (a),
the top surface of the crystal and (b), a depth

of 10000 A.
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slightly better thickness fringe contrast should be
observed for A6133 = .30 than for Aei33 = ~-.30.

It is next of interest to look at the variation
of the relative values of the [¢éj)(z)]'s with crystal
thickness for small positive and negative values of

AB= where the wvariations in the q(J)'s are more

133
marked. Figs. 28a and 28b show that, at AGI33 = -,10,
the values of l¢él)(z)]/]¢é2)(z)[ near the top surface
of the crystal and at a depth of 10000 A are about 1 and
0.1 respectively. At AeI33 = +.10 the corresponding
values of |¢éz)(z)[/|¢é3)(z)| are about 0.7 and 0.25.
These ratios indicate that a marked decrease in thickness
fringe contrast occurs with increasing thickness for

ABz ., = =.01 (|¢él)(z)|/|¢éz)(z)] decreases by a factor
of 10) while for Aei33 = +.10, the decrease in contrast
is relatively small (l¢éz)(z)l/]¢é3)(z)[ decreases by a
factor of 3). As a consequence, thickness fringes in
thick crystals should exhibit considerably better con-
trast at small positive vaues of AeI33 than for small
negative values even though in thin crystals, somewhat
worse contrast is expected. Since a decrease in fringe
contrast with crystal thickness is associated with
anomalous absorption, these results indicate that for
small negative values of Aei33, anomalous absorption

effects are much more pronounced than for small positive

values,
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The enhanced thickness fringe contrast at small
positive values of A6i33, noted in the previous para-
graph, should result in thickness fringes being
observed there in thicker crystals than for small
negative values. That this is, in fact, so can be
seen from Figs. 29a and 29b which show a computed and
experimental (220) dark field image of a bent wedge-
shaped Si specimen. The computed image in Fig. 29a was
obtained by calculating the variation of the (220)
diffracted beam intensity with depth for a range‘of
values of A9i33 from +.21 to -.21 and with the (220)
reflection in its exact Bragg condition. These calcu-
lated results were then displayed using a computer line
printer to give a two dimensional intensity plot (Head,
1967; Spring and Steeds, 1970). The experimental results
in Fig. 29b show thickness fringes in a Si specimen which
was found bent in such a manner that approximately the
same range of values of Aei33 and A6220 were obtained
as in the computed image. It can be seen in these
Figures that the thickness fringes are predicted and,
indeed, are observed to be visible in thicker régions
of the crystal for 86733 positive than for 067455 nega-
tive. Thus, the effects of anomalous absorption are more

pronounced for small negative values of A8743 than for

small positive values.
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Fig.29. A computed, a, and experimental, b, (220) dark
field image of a bent wedge-shaped silicon crystal.
The (220) reflection is in its Bragg condition while
AGI33 varies from + to - in moving from left to
right.
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A computed, a, and experimental, b, (220) dark
field image of a bent wedge-shaped silicon crystal.
The (220) reflection is in its Bragg condition while

A8133 varies from + to - in moving from left to

right.
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Finally, it is of interest to compare the effects
of anomalous absorption obtained close to the Bragg
condition of the non-systematic reflection with those
obtained in the two beam limit (i.e. for large values

of |A® It was found, that under these circums-

133D
tances, the values of ]¢él)(z)]/[¢éz)(z)| at the top
surface and a depth of 10,000 R are 1 and 0.12 respec-
tively. A comparison of these values with those for

the small values of ABI33 quoted above indicate that
anomalous absorption effects for large values of ]Aei33|
are very similar to those obtained for small negative
values. For small positive values of A6133, on the other
hand, the marked changes in the effect of anomalous absorp-
tion which have already been noted occur. This behaviour
is consistent with the results in Fig. 26 which show that
small changes in absorption coefficient occur for nega-

tive values of Aei33 whereas marked changes occur for

positive values.

5:3.3 Effects of Beam Divergence on Thickness Fringe

Contrast

The results presented in Section 5:3.2 on the
contrast associated with thickness fringes assumed a
parallel incident beam of electrons. In practice,

however, a parallel beam is not achieved and, instead,
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the electrons are incident on the specimen through a
small angular range, known as the beam divergence.
This divergence is of particular importancé when the
extinction distance is very sensitive to crystal orien-
tation. 1In such cases, thickness fringe contrast in
thicker regions of the crystal may be diminished due
to interference effects. This is because in these thick
regions intensity maxima associated with electrons at
one angle of incidence may coincide wiﬁh the intensity
minima associated with electrons at a slightly different
angle of incidence and thus, result in diminished con-
trast.

It will be noted by examining Fig. 14 that at
Aei33 ¥ .09, where the effects of anomalous absorption
are smallest, the rate of change of extinction distance
with A6I33 is relatively large. 1In order to estimate
how beam divergence might affect thickness fringe con-
trast at this orientation, a thickness fringe profile
was calculated by taking the average of three profiles
corresponding to A6i33 = .083, .090 and .097. These
orientations were chosen as they correspond closely to
an angular beam divergence of .015°. This was appro-
ximately the value of divergence at which most of the

exXperimental results described here were obtained as

determined from measurements of diffraction spot size.
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The thickness fringe profile found in this way is

shown in Fig. 30b, while Fig. 30a shows a normal
profile calculated for A9133 = .09 only. As can be
seen by comparing these two figures, the effect of

the beam divergence is to significantly decrease the
fringe contrast in thicker regions of the specimen.

If contrast is defined as AI/I where AI is the diffe-
rence between the maxiﬁum and minimum values of inten-
sity observed in the region of thickness considered,
and I is the mean intensity at the same depth, then,

at z » .8y, AI/I = 1.33 for a parallel electron beam
situation. However, when beam divergence is taken into
account in the manner described, AI/I is only equal to
.85'at the same depth. Even with this marked reduction
in AI/I the fringe contrast at A6133 = .09 is still
significantly better than that obtained at A6I33 = -.09.
This can be seen by comparing Figs. 30b and 3la. Fig.
3la shows the variation of the (220) intensity with
depth for A6133 = -.09 again taking into account a beam
divergence of .615°. Here, at a depth of z = .8y,

AI/I = .43 and the contrast is only half as good as that
at A= = .09. It is interesting to note that, for

133

thick crystals, the contrast at Aei33 = .09 is also

slightly better than at Aei33 = .70, where the effects

of non-systematic reflections are very small. This can
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be seen by comparing Figs. 31b and 30b where Fig. 31b
shows a thickness intensity profile computed at Aei33=
.70 taking beam divergence into account. Here, at

z = .8u, AI/I =~ .75 as compared to AI/I ~ .85 for
A9133 = ,09.

Thus, although beam divergence results in a
decrease in fringe contrast in the region of low
anomalous absorption due to interference effects, this
contrast will still be better in thick crystals at
A6133 = .09 than at Aei33 = -.09, i.e. where the effect
of a non-systematic reflection is small as was seen in
Fig. 29. Also, it should be noted that divergence is
an experimental problem and that the angle can be
reduced further by suitable adjustment of the condenser
lens current. However, proportionally longer exposure

times would then be required to obtain properly exposed

electron micrographs.

534 Variation of Bright and Dark Field Rocking Curves

in the Presence of Non-Systematic Reflections

When examining specimens in the electron micro-
scope, it is usually desirable to orient the specimen
so that the maximum intensity is obtained in the image.
The orientation at which this maximum penetration of

the specimen by the electrons is obtained, can be found
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theoretically by calculations of the variation of beam
intensity with orientation. The resulting curves are
commonly known as rocking curves. These curves were
first used by several investigators to examine the
effects of anomalous absorption on the directly trans-
mitted and diffracted beam intensities of perfect
crystals. Hashimoto, Howie and Whelan (1960, 1962)
showed that, in the two-beam case, the bright field
intensity was a maximum when the deviation parameter sg
was slightly positive, while the diffracted beam inten-
sity was maximum at sg = 0. Their results, which were
in good agreement with experimental observations of
absorption bands in bent crystals, have proven to be of
considerable value to the electron microscopist in help-
ing him choose the diffraction conditions for which
optimum electron transmission can be obtained.

The two beam theory does not, however, take into
account the possible effects of additional reflections
which might be excited. The effect of systematic
reflections on rocking curves was first investigated
by Howie and Whelan (1969). They showed that, at low
accelerating voltages, these reflections did not result
in any gqualitative changes in the predictions of the
two beam theory. A number of authors (Humphreys and

Lally, 1970; Humphreys, Thomas, Lally and Fisher, 1971;
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Humphreys, 1972) have recently examined the effects of
these reflections at very high accelerating voltages.
In this case, they found that these effects can be of
much greater significance, resulting in a maximum in the
directly transmitted intensity which may occur anywhere
from the symmetry position to 3g near its Bragg condi-
tion. The exact location depended upon the accelerating
voltage and material being considered.

None of the theoreéical rocking curves reported
in the literature, up to the present time, have, how-
ever, taken the effects of non-systematic reflections
into account. Since the excitation of these reflections
is dependent on crystal orientation, the possibility
exists that, for some orientations, non-systematic
rocking curves may be significantly different from
those obtained by taking only systematic reflections
into account. An investigation (Sheinin and Cann, 1971)
was undertaken with a view to exploring this possibility.
In order to study the effects of non-systematic reflec-
tions in a variety of circumstances, rocking curves were
obtained for a number of crystal orientations at both

low and high accelerating voltages.
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5:4.1 Procedures Used in Calculating Theoretical

Rocking Curves

The rocking curve calculations were carried out
for molybdenum at accelerating voltages of 150 and
1000 kV. Absorption was taken into account in the
usual manner by assuming a complex part of the lattice
potential. The absorption parameters used were those
obtained experimentally by Sheinin, Botros and Cann
(1970) , while the e;ectron scattering factors employed
were those tabulated by Smith and Burge (1962). The
Fourier coefficients of the lattice potential were tem-
perature corrected using a Debye-Waller B factor of .20 ﬁz.

The orientations used in the calculations were
obtained in the following manner. The (110), (220), ...
row of reflections was assumed to constitute the system-
atic 'set. The initial orientation for each rocking
curve calculated was defined by specifying initial
values of deviation parameters S110 and $170- The
initial value of S110 chosen in each calculation was

such that s = $77¢ (i.e. the symmetry position of

110
the (110) row of reflections). In order to study the
effects of different non-systematic reflections, the
initial values of S179 were varied from S170 = 5110

(the symmetry position of the (110) row of reflections)

to a value of s;7, corresponding to the (10,10,0)
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reflection in the Bragg condition. Once the initial
values of S110 and $170 Were specified, (110) dif-
fracted beam and directly transmitted intensities were
calculated fér various angles of tilt about an axis in
the [110] direction. Bright and dark field rocking
curves were then obtained by plotting these intensities
as a function of the deviation parameter S110°

The reflections taken into account in non-
systematic calculations such as these must be limited
to some reasonably small number if prohibitively long
computing times are to be avoided. In order to accom-
plish this, a method similar to the criterion to be
discussed in Section 5:5 was used to ensure that only
those reflections which might significantly affect the
final result were included in the calculation. Although
in the criterion used, the importance of a non-systematic
reflection was measured in terms of its effect on extinc~
tion distance rather than beam intensity, convergence
calculations shqwed that it was quite accurate in pre-
dicting the importance of reflections in this latter
case also. Using this criterion then, additional reflec-
tions in order of importance were included in a calcula-
tion until general convergence of the calculated results
was obtained. Once some facility was gained with such

convergence calculations, it was possible to obtain
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results in computing times which were not unduly long.
I+ should be noted that the reflections taken into
account in calculations carried out in this manner would
change with orientation and would, therefore, not neces-

sarily be the same for each point on the rocking curve.

5:4.2 The Variation of Bright and Dark Field Intensity

at an Accelerating Voltage of 150 kV

The bright and dark field rocking curves obtained
for several different initial orientations and for an
accelerating voltage of 150 kV are shown in Fig. 32.
Fig. 32a shows the results obtained when only systematic
reflections were taken into account. These curves illus-
trate the well established results that intensity maxima
in bright and dark field images occur when the lowest
order reflection of a systematic set is close to the
exact Bragg condition, while relatively low intensities
result when the crystal is near the symmetry position of
the systematic row. Fig. 32b,c, and d show typical
examples of rocking curves obtained when non-systematic
reflections are taken into account. The accompanying
diffraction patterns show the reflections taken into
account at the initial values of S110 and S110° The
initial orientation assumed in Fig. 32b was an exact
[001] or symmetry orientation, while in Figs. 32c and

d, the initial orientations were obtained by tilting
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Fig. 32. Bright and dark field rocking curves for moly-
bdenum at an accelerating voltage of 150 kV and a crystal
thickness of 5000 A. The accompanying diffraction
patterns show the reflections taken into account at the
initial value of S110° In (a) systematic reflections
only were considered, while in (b), (c) and (d) non-
systematic reflections were also taken into account. The
initial orientation in (b) was exactly (001), while in

(c) and (d) the initial orientations were obtained by
tilting the crystal from an exact (001) orientation by
two and ten Bragg angles of the (110) reflection respec-
tively. Also shown in each case is the intersection of the
Ewald sphere with the (001) reciprocal lattice plane.
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the crystal from the symmetry orientation about an axis
in the [110] direction by two and ten Bragg angles of
the (110) reflection respectively.

The first general feature tb be noted about the
rocking curves, obtained by taking non-systematic
reflections into account, is that for the same crystal
thickness, changes in intensity with deviation from the
Bragg condition occur much more rapidly than when only
systematic reflections are taken into consideration.
These detailed variations in intensity, however, become
less pronounced as crystal thickness increases (see
results for 1000 kV in Section 5:4.3). Thus, they are
less important in determining the diffraction conditions
for obtaining optimum electron transmission than are the
general broad intensity maxima and minima which persist
regardless of thickness. It is, therefore, of interest
to examine the curves in Fig. 32 with a view to comparing
the values of S110 at which these broad intensity maxima
and minima occur. 1In the dark field rocking curves shown
in Figs. 32b, ¢, and d, it can be seen that, regardless
of orientation, relatively high intensities occur when
the (l1l0)reflection is close to the Bragg condition,
while lower intensities result for values of Sy10 Rear
the symmetry position of the (110) row. These results

show that non-systematic reflections, although affecting
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the detailed variation of diffracted beam intensity
with deviation from the Bragg condition, do not have
any significant effect on the values of $110 at which
relatively high or low intensities are to be expected.
A comparison of the bright and dark field results
in Fig. 32 shows that the effects of non-systematic
reflections on bright field rocking curves are more
pronounced than in the dark field. This can be seen
from the fact that the values of $i10 at which inten-
sity maxima occur in the bright field vary consi-
derably with the non-systematic reflections excited.
Thus, for example, in Fig. 32b, the intensity maximum
occurs at a value of $110 which is intermediate between
those at which the (220) and (330) reflections are in
the Bragg conditions, while in Fig. 32c, the intensity
maximum occurs when the (440) reflection is close to
the Bragg condition. Fig. 32d shows that relatively
high intensities occur in the same range of values
predicted by systematic calculations but, in addition,
also occur for values of $110 which are intermediate
between those for which the (220) and (330) reflections
are in the Bragg condition. It should be noted that in
each of these cases, relatively low intensities were
obtained for values of S;1g hear the symmetry position

of the (110) row. These results show that the bright



160

field rocking curves, taking non-systematic reflections
into account, are similar to systematic rocking curves

in that relatively low intensities occur near the

cymmetry position followed by an intensity maximum

when the crystal is tilted away from this position.

The angles of tilt at which these intensity maxima occur,
however, vary with orientation and may be quite different
from the value predicted by taking only systematic reflec-
tions into account.

Thus, it is seen that the effects of non-systematic
reflections on dark and bright field rocking curves are
quite different. This is illustrated by the fact that
the values of S110 2t which intensity maxima occur in
the bright field vary considerably with crystal orien-
tation, while those in the dark field do not. Also, the
appearance of extinction bend contour bands in bent crys-
tals will be similar to that predicted by systematic
reflection calculations. The reason for this lies in
the fact that both systematic and non-systematic calcu-
lations result in a rocking curve which is characterized
by a relatively high intensity at some positive value of
sg and relatively low intensities near the symmetry
position of the systematic row. Since guantitative
measurements of sg cannot normally be made from bend

extinction contour measurements, the fact that the value
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of s_ at which the intensity maximum occurs varies with

orientation would remain undetected.

5:4.3 The Variation of Bright Field Intensity at an

Accelerating Voltage of 1000 kV

In order to determine whether or not the conclu-
sions drawn from the results at 150 kV are valid at
higher accelerating voltages, calculations at 1000 kV
were also carried out. Fig. 33 shows bright field
rocking curves obtained at two different crystal thick-
nesses and for an orientation that was defined in the
same way as in Fig. 32d. The first point to note about
these curves is that the detailed variations in inten-
sity decrease considerably with increasing crystal
thickness but that the broad intensity maxima and minima
remain essentially unchanged. The second point to note
is that, in contrast to the results at 150 kV, the
effects of non-systematic reflections produce a quali-
tative change in the shape of the rocking curve. The
rocking curves in Fig. 33a, which were obtained by
taking effects of systematic reflections only into
account, are similar to those obtained by Humphreys
and Lally (1970) and show an intensity maximum at the
symmetry position of the systematic row. Fig. 33b shows

that the effects of non-systematic reflections result in
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Bright field rocking curves for molybdenum at

an accelerating voltage of 1000 kV and for
crystal thicknesses of 2 and 4u. In (a) sys-
tematic reflections only were taken into account
and in (b) the initial orientation assumed was

defined in the same way as in Fig. 324.
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an intensity maximum which occurs when the (220) reflec-
tion is close to the Bragg condition with relatively low
intensities resulting when the crystal is tilted toward
the symmetry position of the systematic row. Thus,
these results indicate that, at least under certain
circumstances, the ndn-systematic rocking curves ob-
tained at high and low accelerating voltages can be
similar in character while the systematic curves are

quite different.

5:5 The Development of a Criterion for the Inclusion of

Non-Systematic Reflections in Many-beam Calculations

As stated in Section 1:7.4, whenever calculations
involving the dynamical theory are carried out, some
decision must be made concerning which reflections are
to be included. This decision is usually based on a
number of factors including the accuracy desired in the
results, the number of strongly excited reflections
present at the orientations involved as well as the
important consideration of the computing facilities
available to carry out the calculation.

It was noted in Section 3:2.2 that, when only
systematic reflections or a high symmetry non-systematic
situation is examined, the desired accuracy in a calcu-

lation can be obtained by systematically including higherx



164

and higher order reflections. The justification for
using this technique in these two cases is that the
deviation of a reflection from its Bragg condition
increases with increasing order of the reflection.
Thus, the effect of any higher order reflection will
be less than that of a reflection of lower order. The
convergence tecﬂnique used in these cases, therefore,
includes additional reflections in a calculation in
decreasing order of importance. Thus, the desired
accuracy can easily be obtained in a many-beam calcu-
lation with the minimum number of reflections being
included.

The inclusion of only the necessary reflections
in a calculation is an important consideration when
carrying out many-beam calculaticns. This is because
the computing time required for such calculations is
directly related to the number of reflections involved.
For example, the time required to find the eigenvalues
and eigenvectors of the A matrix varies approximately
as the square of the number of reflections considered.
In addition, the time used to compute extinction contour
profiles, rocking curves and other diffraction phenomena
from these parameters is also proportional to the number
of reflections included. Since it is often necessary

to minimize computing time, it is desirable, therefore,
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to include only important reflections in a calculation.
For a general low-symmetry non-systematic situa-
tion where the importance of the reflections does not
necessarily decrease with increasing order, it is
essential to find an alternative method of ranking
the reflections in decreasing order of their importance.
For the strong-beam diffracting conditions examined in
this thesis, the method developed to obtain such a

ranking is described in the following section.

5:5.1 Ranking of Non-Systematic Reflections in Order

of Their Importance for Inclusion in a Many-Beam

Calculation

In general, the inclusion of a non-systematic
reflection in a many-beam calculation will affect the
values of all the Bloch wave parameters. In determining
the importance of a non-systematic reflection for inclu-
sion in a many-beam calculation, a method based on the
predicted changes in the Bloch wave y(j)'s was used.

The Y(j)'s rather than the q(j)'s or Céj)’s were employed
because the y(j)'s are directly related to the extinc-
tion distance, the physical qﬁantity of primary interest
in the work described in this thesis. Also, small
changes in the y(j)'s, as evidenced by corresponding

changes in the extinction distance, are more easily
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detected than small changes in either the q(J)'s or
C(J)'s.
g

The method used for predicting the importance
of a non-systematic reflection was based on Bethe's
Second Approximation as outlined in Section 2:2.2.
If only three beams, 0, g and h, are considered and
the reflection h is taken into account by using the

correction terms given by this approximation, equations

2.17 reduce to

U .0 U U
{ (k% - %"—2) - kg}co + {Ug - —g—'h—;—h}cg =0
K—kh K -kh
(5.15)
[8) U U U
(g --gzh =B 4 (g2-hog g-hy 4240 g
g 2 2" 70 2 2 g’ g
K"=k K= k
h h
In equation 2.18, it was seen that the term Kz— ki is

approximately equal to 2K(sh- Yéj)) where Yéj) is one

of the two Y(J)'s given by a two-beam calculation
including only the 0 and g'th reflections. From equa-
tions 5.12 it can then be seen that the terms of the form

U ,Uh./(KZ— ki,) will become infinite as Sy approaches

g
either of the two yéj) values. Because of this behaviour
the condition that |s, | >>|y§3)| is generally imposed when

applying the Second Bethe Approximation to take into account
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the effect of a reflection h. Under this condition the term
2K(sh-y£j% reduces to 2Ksh. In developing the method of
ranking reflections in order of their importance described
here,it was also assumed that the yéj)'s could be.neglected
in comparison with Sy, . This assumption facilitates the
application of the ranking procedure although it may
introduce some inaccuracies which will be discussed
in Section 5:5.3.

Using the assumption that the Yéj)'s can be

neglected in comparison with Sy equations 5.15 become

U, U U_ .U
2_"h-h, .2 _ _g=a =h _
{ (K= —=——) ko}cc> + {Ug —‘1-—5 Ic =0

_ZK;h 2K h g
(5.16)
U U U U
__9-h -h 2 __h-g-g-h, ,2 =
{Ug T s }Co+{(K 5% s, ) kg}Cg o .

. - -1 - -2 2
Since K ~ 30 27" and U, = .02 &R7°, R >> (U U_4))/2Ks,
except for the case s, very small which is excluded,

however, by the assumption that]sh]>>]y§3)]. Using

2

the fact that K° >> (UhU_h)/ZKsh , equations 5.16

reduce to

U U
(KZ - k2)C + (U_ - _.g.i-_h)c =0
o’ o g 2K Sy g

(5.17)
U
v - _EZE_:E)C + (K2 - kz)c
g s, | © g’'"g

]
o
.
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The resulting eigenvalues Y(J)'of this set of equations

are found to be of the form

U_.U
+ L (y -_g-h-hy

2 2%
== }
g K2 g 2K Sh

(3) _5g,1
In the strong-beam diffracting conditions considered in

this thesis, sg * 0 and this expression reduces to

(5.19)

y@ L L g - Jgchoh
2K g 2K Sy

Therefore, it can be seen that the change in the Y(j)'s
due to the presence of the reflection h will be of the
order (Ug—hU-h)/4K25h' An analysis of this term,
(Ug-hU—h)/4Kzsh , shows that the effect of the non-
. systematic reflection h on the Y(j)'s is predicted to
be directly proportional to the product Ug_hUh and
inversely proportional to Sy - The two Fourier coeffi-
cients Ug—h and Uh are, thus, of equal importance in
determining the effect of h. Therefore, not only is
the order of the reflection h important but also the
relationship of the reflection h to g. Consider, for
example, two reflections h and h' which have equal
Fourier coefficients, Up= U.,. If lg-h| < |g-h'|, then

Ug-h will be larger than Ug—h' and the effect of the
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reflection h will be larger than that of the reflection
h' for Sp = Spr-

The prediction that the change in the Y(j)'s will
vary inversely with Sp is in agreement with previous
observations in Section 5:2. There it was seen that
the variation of the extinction distance from its wvalue

in the absence of a non-systematic reflection, in

. Since

general, decreased with increasing IAeh
£= l/(Y(l)— vy 37y ana sy * IH]Aeh , changes in the y (3

with Sy will result in corresponding changes in £.

5:5.2 Development of a Criterion For Including Non-

Systematic Reflections in a Many-Beam Calculation

In Section 5:5.1, it was shown that the presence
of a non-systematic reflection results in a change,
Ug_hU_h/4K2sh, in the value of Y(j) from that calculated
in the absence of that reflection. The corresponding
change in the calculated extinction distance can then be

found from the expression

T S K i (5.20)

. U
. (3) _ g .
Slncelshl>>y2 * TR Ug will be much larger than

Ug_hU_h/ZKsh and equation 5.20 can be rewritten as
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U U
. K g-h -h
g g "h

But K/Ug is the extinction distance in the absence of
the non-systematic reflection. Therefore, the predicted
fractional change in the extinction distance due to the
presence of the non-systematic reflection is equal to
Ug_hU_h/(ZUngh). In the following discussion, this
ratio will be denoted by €.

Thus, it can be seen that the importance of a
reflection in a calculation of extinction distance can
be determined by finding its corresponcéing value of €.
Therefore, a convergence technique based on values of
€ can be used to include only those beams which are
necessary to obtain the deéired accuracy. In this
technique, many-beam calculations are carried out
including all reflections with a value of ¢ greater
than some reference value €o" By decreasing the value
of €, more reflections are included in the calculation
until the desired accuracy is obtained in the results.

In order to test the validity of using the para-
meter £ in this manner, a series of many-beam calcula-
tions of extinction distance were carried out in which
the reference value, €or Was systematically varied.

Four situations were considered. 1In the first of these,
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only systematic reflections were included. Since in
the derivation of €, no iimitation was placed on the
type of reflection involved, € should predict the
importance of systematic as well as non-systematic
refilections. The second situation considered both
systematic and non-systematic reflections at a high
symmetry orientation such as studied by Howie and
Bacsinski (1968), Lynch (1971) , Ayroles (1971), and
Lehmpfuhl (1572). The crystal orientation examined
here was an exact [111] orientation in Si. Calculations
were carried out for this case to test the applicability
of the criterion in a situation which is not strictly
a strong-beam diffracting situation. The third and
fourth situations considered orientations used in the
work described in Section 5:2 of this thesis. The

first of these involved an orientation where no non-
systematic reflections were strongly excited, i.e.

A8y = 0.0 and ABj33 = -.50. The second considered
an orientation at which the (220) extinction distance
was varying rapidly with A8733- At this orientation,
ABT33 = .10 while Af,,4 = 0.0. All the calculations
were carried out for Si at an accelerating voltage of
150 kV.

The results of these calculations are given in

Tables 1, 2, 3, and 4 below. Here, €, is the minimum
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value allowed for £, N is the number of beams and £ is
the calculated bright field extinction distance as

determined from l/(y(j) - Y(i)) where y(j) and y(i)
are the y's corresponding to the two most important

Bloch waves.

Table 1. The calculated extinction distance £ found
from many-beam calculations in which the reflections
included were determined by the parameter €. Only

systematic reflections are considered.

€ .05 .02 .01 |.006 |.002 [.001 |.0005

N 2 2 4 4 4 6 6

3 906 906 869 869 869 867 867

Table 2. The calculated extinction distance & found
from many-beam calculations in which the reflections
included were determined by the parameter . The

orientation was an exact [lil}.

€ .05 .02 .01 {.006 |.002 [.001 {.0005

N 4 7 9 12 26 47 73

g 275 285 286 287 290 289 286
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Table 3. The calculated extinction distance & found
from many-beam calculations in which the reflections
included were determined by the parameter e. The

orientation is such that A6220 = 0.0 while Aei33= -.50.

€ .05 .02 .01} .006 [.002 |.001} .0005

N 2 3 5 15 26 38 65

g 906 894 857 848 837 835 836

Table 4. The calculated extinction distance £ found
from many-beam calculations in which the reflections

included were determined by the parameter €. At the
= ,10.

orientation considered, A6220 = 0.0 and Aei33

€ .05 .02 .01 | .006 | .002 [ .001 ] .0005

N 3 4 7 15 26 41 68

3 1046 | 10471025 | 1020 | 1014 | 1015 1019

By examining these four Tables, it can be seen
that by including all reflections with & values greater
than .002 in the many-beam calculations, good conver-

gence can be obtained with regard to the extinction
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distance. Doubling or even tripling the number of
reflections included in the calculation does not
significantly alter the calculated value of £. Thus,
at e = .002 all the reflections having a significant
effect on the extinction distance have been included,
An examination of the manner in which the extinction
distance varies in the range of €5 from .05 to .002
shows that the reflections are brought into the cal-
culations in order of decreasing importance. This

can be seen by the fact that,as additional reflections
are included, the resulting change in the extinction
distance decreases.

Thus, it can be seen that, by finding the quan-
tity (Ug_hUh)/ZKsh for each reflection h and comparing
it to Ug, the magnitude of the effect Qf different
non-systematic reflections on the extinction distance
of the g'th reflection can be predicted. Using these
predictions, the non-systematic reflections can be
ranked according to their importance. Many-beam cal-
culations can then be carried out in which reflections
are included in order of this ranking to permit the

minimum number of beams possible to be used.
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5.5.3 Additional Considerations In Using the Criterion

In employing the criterion described in the pre-
vious section in many-beam calculations, two points
should be noted. The first of these is that the use
of a particular value of the criterion parameter €
does not necessarily imply that the extinction distance
obtained in a many-beam calculation is accurate to this
value. The reason for this lies in the cumulative
nature of the effects of a number of non-systematic
reflections. This was first pointed out by Hewat (1972)
for the case of a centro-symmetric crystal where Uh=U_h.
In this case, the presence of the -h'th refle@tion will
tend to cancel out the effect of the h'th reflection
when the reciprocal lattice point corresponding to one
reflection lies inside the Ewald sphere, while the reci-
procal lattice point corresponding to the other reflec-
tion lies outside. This is because the presence of one
of these reflections will tend to increase the extinc-
tion distance, while the presence of the other reflec-
tion will tend to decrease it. For example, when a
four-beam calculation including the (000), (220), (111)
and (111) reflections is carried out for A6220= 0.0 and

AB= x~ 25 = -A® the net effect of the presence

111 111
of the two non-systematic reflections on the (220)

extinction distance is of the order of only .l per cent.
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fhis can be compared to the 1 per cent effect predicted
for each reflection in the absence of the other. How-
ever, the presence of the (I11) reflection tends to
increase the extinction distance, while the (111)
reflection causes a decrease. The net result is that
only a small change in the extinction distance takes
place.

Similarly, if two non-systematic reflections
are present, both of which lie outside or inside the
Ewald sphere, the net effect on the extinction distance
will, to a good approximation, be the sum of the two
individual effects. For example, if an orientation is
examined in Si for which the (220) and (220) reflections
are present, it is found that the (400) reflection is
also strongly excited. If A6220 = 0.0 and Aezio = -2.0

then AS is found to be equal to -1.0 8400. When

400
three-beam calculations including the (000), (220) and
either the (220) or (400) reflections are.carried out

at these orientations, the change in extinction distance
is found to be 3.7 per cent. However, when both the
(220) and (400) reflections are included in a four-beam
calculation, the change in extinction distance is appro-
ximately 7.4 per cent. The effects tend to add here
rather than cancel because the reciprocal lattice points

corresponding to the (220) and (400) reflections both

lie outside the Ewald sphere.
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Thus, it is seen that using the criterion to
include all reflections in a many-beam calculation
of extinction distance whose effect is predicted to
be 1 per cent or larger does not necessarily result
in an extinction distance accurate to 1 per cent.

This is because of the cumulative nature of the
effects described above, Therefore, the desired
accuracy in the calculations must be obtained by
using the convergence technique described in Section
5:5.2. In this technigque, the value of € is pro-
gressively decreased and more beams included in the
calculation until the desired convergence is obtained.

An important point to note is that in these
discussions of cumulative effects, the Fourier co-
efficients, Uh’ were all considered to have the same
sign. When this is not the case, the above discussion
requires modification (see Appendix B) although the use
of the parameter ¢ for determining the importance of a
reflection is still valid.

The second point to be considered in using the
criterion is the accuracy with which it predicts the
effect of a non-systematic reflection. This, in turn,
is determined by the validity of the assumption
|sh|>> Iyéj)[ used in deriving the parameter e. Although
this condition is unlikely to be fulfilled for all the

reflections present at a given general orientation, this
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does not necessarily introduce significant errors in
the use of the criterion to include reflections in a
calculation. This can be seen by considering the
following example.

In Section 5:5.2, it was shown that a value of €0~
.002 resulted in the necessary reflections being included
in the many-beam calculations to give good convergence.
It is of interest, therefore, to examine the Sh values of
different order non-systematic reflections for which the
calculated values of ¢ are equal to €oe AS defined in Sec-
tion 5:5.2, the parameter ¢ is equal to (Ug_hU_h)/(ZUngh).
For a low order (non-systematic reflection h of the same
order) as g, Uy_p = U, = Uy % .03 272, while K = 30 71
for 100 keV electrons. When these values are substituted
into the expression for ¢ and this expression set equal to
.002, a value of .5 &1 is obtained for s, Since the ty-
pical value of]yéj)l is of the order of 107> i_l, the con-
dition that 'Sh|>>lY§j)l is well fulfilled in this case.
For medium order non-systematic reflections, [K[ x 4|§|,

= U

U .1 U and the value of Sy found in this

g-h -h ©
case is .005 ﬁfl again fulfilling the condition

|sy,| >>|y§j)|. For high order non-systematic reflections,

3

|R| = 10]4], U ~ U ~» 107 x U, and the value of sy

g-h
found in this case is .5 xlO-6 i_l. For these reflections,

therefore, the condition |[s, | >> lyéj)] is not satisfied.

As seen in Sections 5:2.7 and 5:2.8, however, the effects
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of these high order reflections are small compared to the
lower order reflections. Moreover, the range of devia-
tions over which these reflections have a significant
effect is quite narrow (le_4 degrees) with the result
that the effect will not, in general, be observed experi-
mentally due to such limitations as beam divergence.
Thus, due to these two factors, errors in the use of the
criterion for including the higher order reflections in a

many-beam calculation are not expected to be significant.

5:5.4 Application of the Criterion to Calculations

Carried Out in This Thesis

For the theoretical results presented in Section
5:2 of this thesis, convergence calculations showed
that a value of €g = .002 resulted in the inclusion
of the necessary reflections to obtain good agreement
with experimental results. The inclusion of additional
reflections in the theoretical calculations by making
€q smaller did not result in any improvement in the
agreement with experiment. As an additional test of
the accuracy of the criterion, many-beam calculations
were carried out in which all the reflections which
could be detected in an experimental diffraction
pattern were included. The results of these calcula-
tions were compared with many-beam calculations for the
same orientations in which the reflections included
were found using the criterion. No significant diffe-

rence between the results of the calculations were noted
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although many more reflections were included in the

calculations based on the diffraction patterns.

5:6 Bloch Wave Labelling in the Presence of Non-

Systematic Reflections

In the Bloch wave formulation of the dynamical
theory of electron diffraction,i; is necessary to
identify in some manner the différent Bloch waves
excited in the crystal. This identification hasv
usually been based on the magnitude of the wave vectors
associated with the different waves. In the two-beam
approximation, the Bloch wave with the larger wave
vector has customarily been labelled as wave 2 while
the Bloch wave with the smaller wave vector has been
labelled 1. Humphreys and Fisher (1971) have suggested,
however, that the Bloch wave labelling scheme which is
simplest and the most logical, particularly in a many-
beam situation, is a scheme in which the waves are
labelled in order of decreasing wave vector. 1In this
scheme, the wave with the largest wave vector would be
labelled 1; the wave with the second largest wave vector
would be labelled 2 and similarly for Bloch waves 3, 4,
-+..M. In comparison with the earlier labelling in the
two-beam situation, it should be noted that the labels

1 and 2 are reversed in the Humphreys and Fisher scheme.
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When Bloch waves are labelled in such a consistent
manner, it i; found for the case where only systematic
reflections are considered that the different numbered
Bloch waves will always have ceriain characteristics
for a given set of diffraction conditions. For example,
in the Humphreys and Fisher labelling scheme, Bloch wave
1 is symmetric and has a high absorption coefficient when
the lowest order systematic reflection is in the Bragg
condition. Similarly, for this diffracting situation,
Bloch wave 2 is antisymmetric and has a low absorption
coefficient. In Section 5:6.2 the effect of the presence
of a non-systematic reflection on the association of
certain characteristics with particular numbered Bloch
waves will be examined. First, however, it is useful to
consider the labelling of Bloch waves when two of the
waves are degenerate due to the presence of a non-system-

atic reflection.

5:6.1 Bloch Wave Labelling at a Degeneracy Resulting

from the Presence of a Non-Systematic Reflection

In Fig. 17 it was seen that, for the (220) re-
flection in its exact Bragg condition, two Bloch waves
are degenerate at A6i33 x -0.05. These waves are
labelled 2 and 3 following the convention of Humphreys
and Fisher (1971). The labelling shown in Fig. 17

assumes that the branches of the dispersion surface
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come together and touch at the degeneracy point before
splitting apart again. However, it is also possible
to consider a cross over of the two branches at this
point and a subsequent relabelling of the branches as
shown in Fig. 34. The labelling here is no longer
consistent with that of Humphreys and Fisher.

To investigate the possibility of a cross over
of the two branches of the dispersion surface at the
degeneracy point, it is useful to examine the Bloch

(3)
wave parameters ]¢2;0|. In Fig. 18, it can be seen that

an interchange in the values of [¢£§é| and ]¢£§%| , as
denoted by the dashed lines, is required to take place
if branches 2 and 3 are cénsidered to touch and not
cross. However, as can be seen in Fig. 35, if branches
2 and 3 are assumed to cross at the degeneracy point,
this interchange is not presént. Fig. 35 is, in fact,
characteristic of the results obtained for 88550
exactly equal to zero in fhat, at this deviation of the
(220) reflection from the Bragg condition, the numerical
results indicated that no interchange occurred at or in
the vicinity of the degeneracy point.

In the Bloch wave analyses carried out in this
thesis, however, it has been assumed that branches 2
and 3 of the dispersion surface only touch and that
an instantaneous interchange in the |¢§3é] values takes

place at the degeneracy point. This assumption is based
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(220) amplitude assuming that branches 2 and

3 of the dispersion surface cross over at the

degeneracy point.
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on two separate results. First, calculations at values

not equal to zero showed that an interchange

0
in the values of |¢égé[ and |¢é§é| took place over a

range of values of Aei33 at which dispersion surface

branches 2 and 3 were closest together. Such an inter-

of A622

change is shown at AB733 = -.02 in Fig. 21 for the case

A6220 = .25. The range of A6220 over which the inter-
change occurred was found to be proportional to A6220‘
The closer Aezzo was made to zero the narrower the
range of Aei33 over which the interchange took place.
Thus, continuity in the behaviour of ]¢é§é] and |¢§gé]
at the exact degeneracy point would require an instan-
taneous interchange in the values of ]¢§§é[and ]¢é§é]
at this point.

A similar analysis of the behaviour of branches
2 and 3 of the dispersion surface also supports the
assumption that the two branches touch rather than
cross. For any deviation of the (220) reflection from
its Bragg condition not equal to zero, branches 2 and 3
were found to behave in a hyperbolic fashion in the
region of their closest approach as can be seen at
AGI33 * .02 in Fig. 20. As A6220 was made to approach
zero, however, it was found from numerical calculations
that the distance of closest approach decreased and the

behaviour of the two branches in the region about

Aei33= .02 more closely followed that shown in Fig. 17.
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Thus, sharp bends in branches 2 and 3 of the dispersion
surface at the degeneracy point are in agreement with
the behaviour of the branches at small values of A6220
where the degeneracy is not present.

Another result which is in agreement with an
interchange of the |¢§g%| values at a degeneracy point
can be seen from the results obtained in critical vol-
tage measurements (Metherell and Fisher, 1969; Lally,
Humphreys, Metherell and Fisher, 1972). For the case
of the reflection 2g in the Bragg conditions, it is
found that, below the critical voltage, Bloch wave 2
is antisymmetric and Bloch wave 3 is symmetric. Above
the critical voltage, however, Bloch wave 2 is symmetric
and Bloch wave 3 is antisymmetric. This interchange in
symmetries of waves 2 and 3 is explained by an instan-
taneous interchange of the Bloch wave amplitudes at the
critical voltage where Bloch waves 2 and 3 are degenerate.

Based on these results, therefore, a labelling
system for the Bloch waves present in a non-systematic
situation has been employed which assumes no cross over
of branches of the dispersion surface at degeneracy
points. This system is in agreement with that of

Humphreys and Fisher (1971).
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5:6.2 The Effect of the Presence of a Non-Systematic

Reflection on Bloch Wave Labelling

In general, when only systematic reflections are
considered and the low order reflection g is in its
Bragg condition, it is found that the Bloch waves
numbered 1 and 2 in the Humphreys and Fisher (1971)
-scheme make the most important contributions to the
diffracted beam amplitude. This is also the case
when the (220) systematic reflection is in its Bragg
condition and the (133) non-systematic reflection is
at a large negative deviation from its Bragg condition.
This can be seen by examining Fig. 18 which shows that
Bloch waves 1 and 2 make the largest contributions to
the (220) amplitude at Aei33 = =-.30. For large positive
values of A6133, however, the same Figure shows that
Bloch waves 2 and 3 are the important waves contributing
to this amplitude.

It is next of interest to examine the characte-
ristics of the important Bloch waves at the two devia-
tions, Afs = *#.30. In Fig. 26, it can be seen that

133

at A6z -.30, Bloch wave 1 is strongly absorbed,

133 ©
while Bloch wave 2 is weakly absorbed. At A6133 = +,30,
however, Bloch wave 2 is strongly absorbed, while Bloch

wave 3 is weakly absorbed. Similarly, at Aei33 = -.30,
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Bloch wave 1 is symmetric (C(l) > C(l)) and Bloch wave 2

o 220
antisymmetric (C(z) x —C(z)) while for A6z = +.30,
o 220 133

Bloch wave 2 is symmetric and Bloch wave 3 antisymmetric.
Thus, for large negative deviations of the non-systematic
reflection from its Bragg condition, the important Bloch
waves and their corresponding cheracteristics are found
to be the same as those obtained in the case where only
systematic reflections are considered. For large positive
deviations, although the characteristics of the important
Bloch waves are the same as those in the systematic case,
the waves are numbered 2 and 3 rather than 1 and 2 due
to the presence of the non-systematic reflection.

Therefore, it is seen that, when non-systematic
reflections are taken into account, particular Bloch
wave numbers no longer necessarily correspond to Bloch
waves with certain characteristics. The characteristics
associated with a particular Bloch wave will depend upon

the number of non-systematic reflections considered and

their deviations from their Bragg conditions.



CHAPTER 6

SUMMARY AND SUGGESTIONS FOR FURTHER WORK

6:1 Variation of Extinction Distance in the Presence

of a Non-Systematic Reflection

Measurements of the variation of the (220) ex-
tinction distance in Si were carried out as a function
of the deviation of a single strongly excited non-
systematic reflection from its Bragg condition. These
measurements were subsequently interpreted in terms of
both Bloch wave parameters and three-beam analytical

expressions.

6:1.1 Experimental Observations

It was found from measurements of the variation
of the (220) extinction distance as a function of the
deviation of the (133) non-systematic reflection from
its Bragg condition that:

1. Marked variations of the extinction distance
from its systematic value took place as the (133)
reflection was tilted through its Bragg condition.
2. These variations were found, in general, to be

largest at small positive and negative values of A6133.

189
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3. Associated with these regions of maximum varia-
tion of the extinction distance were ranges of tilt
through which the variation of the (220) intensity with
depth became non-sinusoidal or complex in nature. Sharp
changes in the observed extinction distance took place

in tilting through suck regions.

4. For large positive values of ABI33,the observed
extinction distance was larger than the systematic

value. This difference increased as A6133 decreased
until the first complex region was encountered.

5. For small positive and nedgative values of Aei33
lying between the two complex regions, the extinction
distance was smaller than the systematic value.

6. For values of Aei33 more negative than that

at which the second complex region occurred, the ex-
tinction distance was found to lie close to the system-
atic value.

7. For the particular case where the (220) reflection
was in its exact Bragg condition, the complex region was
not observed for negative A6i33. The extinction distance

in this case lay below the systematic value for all
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6:1.2 Bloch Wave Analysis

Three-beam calculations of Bloch wave parameters
were carried out for a range of deviations of the non-
systematic reflection about its Bragg condition. An
analysis of the behaviour of the different branches of
the dispersion surface and the contributions of their
corresponding Bloch waves td the (220) amplitude was
then undertaken. This analysis showed that the varia-
tion in extinction distance could be explained in terms
of displacements of the different branches of the dis-
persion surface in the presence of the non-systematic
reflection. The analysis also showed that the regions
of complex variation of the (220) intensity with depth
occurred when three Bloch waves made significant con-

tributions to the (220) intensity.

6:1.3 Three-Beam Analytical Theory

In order to acquire insight into the observed
behaviour of the extinction distance in the presence
of a non-systematic reflection an analysis was carried
out in terms of the three-beam analytical expressions
as given by the dynamical theory of electron diffracticn.
These expressions showed that, in agreement with experi-

ment, two regions of complex variation of intensity with
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depth will occur, in general, whenever a non-systematic re-
flection is tilted through its Bragg condition. For one
particular deviation of the systematic reflection from
its Bragg condition, however, one of these regions

will not be observed due to degeneracy of two of the
Bloch waves. The particular values of the deviations

of the systematic and non-systematic reflections from
their Bragg conditions at which this degeneracy occurs
are determined by the Fourier coefficients of the lattice
potential of the reflections involved.

The analytical expressions were also examined to
determine at what deviations of the non-systematic re-
flection from its . Bragg condition the regions of
complex variation of the systematic diffracted beam in-
tensity with depth will occur. These deviations were
found to depend upon the values of the Y(j)'s correspond-
ing to the important Bloch waves in the absence of the
non-systematic reflection. As a result,when the system-
atic reflection is near its exact Bragg condition, the
regions of complexity will occur at approximately equal
positive and negative deviations of the non-systematic
reflection from its Bragg condition. When the systematic
reflection is far from its Bragg condition, however, the
positions of the complex regions will be asymmetric with

respect to the Bragg condition of the non-systematic

reflection.
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6:1.4 Effects of Higher Order Non-Systematic Reflections

The effects on the (220) extinction distance of
the (133), (I35) and (137) non-systematic reflections
were measured. A comparison of the results of these
measurements showed that the effect of the non-systematic
reflection, although similar in the three cases, decreased
with increasing order of the reflection involved. From an
analysis in terms of the three-beam analytical theory,
this decrease was found to be associatgd with a correspon-
ding decrease in the Fourier coefficients of the lattice

potential corresponding to the higher order reflections.

6:2 The Effect of the Presence of a Non-Systematic

Reflection on Anomalous Absorption

It was found that the presence of a non-systematic
reflection has a marked effect on the channelling of
Bloch waves in a crystal. Since the Bloch wave absorp-
tion coefficients are dependent upon this channelling,
these coefficients were found to be a function of the
deviation of a non-systematic reflection from its Bragg
condition. Since anomalous absorption effects are, in
turn, dependent upon differences between the absorption
coefficients, the presence of a non-systematic reflection
was found to alter anomalous absorption effects. In the

case of the (220) systematic reflection in Si, these
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effects were found to be enhanced for negative values
and diminished for positive values of the deviation
of the (133) non-systematic reflection from its Bragg
condition. These theoretical predictions were con-
firmed by observation of thickness extinction contours

in wedge-shaped crystals.

6:3 Effect of the Presence of Non-Systematic Reflections

on Image Intensity

Rocking curve c¢alculations were carried out for
both briéht and dark field images in the presence of
non-systematic reflections. It was found that the
presence of these reflections did not significantly
alter the position of the intensity maximum in the dark
field rocking curve from that predicted when only sys-
tematic reflections are considered. In the bright
field, however, the presence of the non-systematic
reflections were found, under certain circumstances,
to have marked effects on the location of the intensity
maximum in the rocking curve. This maximum, which for
low accelerating voltages usually occurs at a small
positive deviation of the low-order diffracted beam, g,
from its Bragg condition, was found to occur as far
away as 4g in the Bragg condition depending upon the

non-systematic reflections excited.
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Calculations of bright field rocking curves were
also carried out at high accelerating voltages. These
calculations showed that the character of the rocking
curve in such a case could be fundamentally changed by
the presence of non-systematic reflections. In the
absence of these reflections, the intensity maximum
in the rocking curve occurs‘at the symmetry position.
However, in the presence of certain configurations of
non-systematic reflections, the maximum was found to
occur instead near 2g in the Bragg condition. Thus,
bend contours examined in such a situation would exhibit
two bright lines rather than only the one which would be

observed in the absence of non-systematic reflections.

6:4 Development of a Criterion for Inclusion of

Reflections in a Many-Beam Calculation

A method was developed for predicting the impor-
tance of a reflection for inclusion in a many-beam
calculation. This method used the approach of the
Second Bethe Approximation to estimate the effect
of the reflection in terms of changes in the two-
beam extinction distance. By including reflections
in decreasing order of their estimated effect, it was
found that many-beam calculations could be carried out
in which only the necessary reflections for the accuracy

desired were taken into consideration.
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6:5 The Effect of the Presence of a Non-Systematic

Reflection on Bloch Wave Labelling

An examination of the Bloch waves excited in the
presence of a non-systematic reflection was carried out
to determine the effect of such a reflection on the
characteristics of different numgered Bloch waves. It
was found that when non-systematic reflections are
taken into consideration, particular Bloch wave numbers
no longer necessarily correspond to Bloch waves with
certain characteristics.

Under certain conditions, the presence of a non-
systematic reflection was also found to result in Bloch
wave degeneracies. An analysis of these degeneracies
suggested that the corresponding dispersion surfaces can
be considered to touch but not cross at the degeneracy
point. Such a behaviour is in agreement with similar

degeneracies reported in critical voltage work.

6:6 Suggestions for Further Work

The measurements and analyses of the effects of
é non-systematic reflection have been carried out in
this thesis for a strong beam diffracting situation.
Due to recent interest in weak beam imaging (Cockayne,
1972), a similar study of the effects of non-systematic
reflections in the weak beam case would be of great

interest.
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In the examinations reported in this thesis, only
the effects of a non-systematic reflection on perfect
crystal image contrast have been considered. A most
logical extension of this work would be to the case of
defect image contrast. Some work on stacking fault
images in the presence of non-systematic reflections
(Humphreys, Howie and Booker, 1967) and dislocations
(Skalicky and Papp, 1972; Oblak and Xear, 1972) has
been carried out. However, analysis in terms of Bloch
waves or an analytical theory has not been undertaken.

A third possible extension of this work is to
the measurement of low-order coefficients of the lattice
potential, Vg, by making measurements of the effect of
a higher order non-systematic reflection, h, on the
extinction distance of the reflection g. Since the
coefficients Vv, and Vg—h are more accurately known in
such a case, the value of Vg could be varied in many-
beam calculations until the best fit is obtained between
experiment and theory.

In the case of anomalous absorption effects in
the presence of a non-systematic reflection, an appli-
cation of this work could be to the imaging of crystal
defects in thick materials. It may be possible to
introduce non-systematic reflections into a diffraction

situation in such a manner as to enhance defect image
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contrast in thick crystals by diminishing anomalous
absorption effects. Richards and Stobbs (1972) have,
in fact, reported such enhancement in the case of weak
beam images.

Finally, in the results reported in this thesis
on the effects of non-systematic reflections on the
location of intensity maxima in rocking curves,only
particular configurations of non-systematic reflections
were considered. As an extension to this work, it is
suggested that, instead of rocking curves, two-dimensional
rocking surfaces be calculated in which the orientation
of the crystal is varied in a continuous manner in both
the systematic and non-systematic directions. Such
surfaces would give better insight into the behaviour
of intensity maxima in the presence of non-systematic
reflections. These surfaces could also be compared

directly with experimental convergent beam patterns.
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APPENDIX A

Determination of the Exact Orientation of a Crystal for

the Case of Two Reflections in Their Exact Bragg Conditions

In many diffraction situations, it is usually suf-
ficent to express the orientation of a crystal in terms
of the nearest low~order zone axis: [111], [013], etc.
In electron diffraction, however, very small changes in
orientation can have very marked effects on the observed
images. Thus, in this case it is necessary to know the
orientation of a crystal with greater accuracy than
afforded by the zone axis approach.

The procedure used in this thesis for accurately
determining the orientation of a crystal was based on
a method developed by Foxon (1968). 1In this procedure,
it is assumed that two reflections (hl,kl,zl) and
(h2,k2,22) whose reciprocal lattice vectors, g and h,
are non-collinear are in their exact Bragg conditions.
In this situation, as shown in Fig. Al, the correspond-
ing reciprocal lattice points 5 and B as well as the
origin of reciprocal space 0 are all equidistant from
the points A and B. This distance is equal to 1/
where )\ 1is the wave length of the incident electrons.
Only two orientations of the crystal, designated ORT

and OR2 in Fig. Al, will result in this situation.
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Fig. Al. A diagram in reciprocal space showing the
the allowed orientation ORI and OR2 of the
crystal when the reflections corresponding
to 3 and B are in their exact Bragg conditions.
OA = gA = hA = OB = giH = hB = %. The points
h and g are at positions iL-(h ,k.,2,) and
a, 2772172
1,kl,SZ,l) respectively in the reciprocal

lattice.

'_l_(h
a
O
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These orientations can be found by solving the set of

equations

OR.§ = |OR| |g| cos 87
(A.1)

——

OR.h

[OR| [h| cos o,

l ~—d

OR| =

>

Here, el, the angle between g and the vectors ORT and
OR2, is equal to 90° + sin—1(|§|1/2) and, 6,, the
corresponding angle between h and ORL and OR? is equal
to 90° + sin~T(|B|r/2).

These equations A.l result in two distinct solu-
tions for OR corresponding to the two vectors ORL and
ORZ shown in Fig. Al. By convention, the orientation
of a crystal is defined to be that direction in the
crystal parallel to the direction of the incident
electron beam. To determine which of the two solutions
ORY and ORZ is correct, it is necessary to examine the
relationship of the reflection g to the refleétion h.
If the electron beam is incident in the direction ORI,
the reflection g will occur at a clockwise position
with respect to h in a diffraction pattern. If the
electron beam is incident in the direction 5§§: the
reflection g will occur at a counterclockwise position

with respect to h. Thus, it is necessary to consider
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the actual experimental situation to determine which
of the two orientations should be chosen.

In practice, in the computer subroutine which
was used to calculate orientations, the reflections g
and h were assumed to be in a counterclockwise order
and the orientation chosen was thé one closest to the

'direction h xg.



APPENDIX B

The Effect of the Signs of the Fourier Coefficients of

the Lattice Potential

In a centro-symmetric crystal, the Fourier co-
efficients, Ug’ are all real. If, in addition, the
centre of symmetry coincides with the centre of an
atom, the U _'s will usually be positive (Hashimoto,
Howie and Whelan, 1962). When this centre of symmetry
does not coincide with an atomic position, however,

the U_'s may be either positive or negative depending

g
upon the structure factor. For example, in Si a centre
of symmetry lies at the point (%, %, -ggl)ao midway
1 1 1

between atoms at the positions (O,O,O)aO and (I’ v Z)ao'
When the (220) systematic reflection and one of the (I33),
(135) and (137) non-systematic reflections are considered,
it is found that Ug and U, are negative but Ug—h is
positive. An examination of equation 5.18, which is
reproduced below, shows that, for these reflections,

the extinction distance will increase for Sy positive

but decrease for S} negative.

U U
£ o« ﬁK— (1 + Egiﬁ—-'—ri) ) (5.18)
g g °h

This behaviour is in agreement with that obtained

when the Fourier coefficients are all of positive sign.
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When the reciprocal lattice point corresponding to the
non-systematic reflection of interest lies inside the
Ewald sphere, the systematic extinction distance will
have increased over its value obtained when the non-
systematic reflection is absent. Also, when the
lattice poiht is outside the Ewald sphere, a decrease
will be found in the extinction distance. For the
(313) non-systematic reflection, however, Ug is nega-
tive but U, and Ug—h are both positive. An examiation
of equation 5.18 in this case reveals that the extinc-
tion distance will decrease for s, positive and increase
for Sh negative in contrast to the previously described
behaviour.
Thus, in considering the cumulative aspect of the
effects of non-systematic reflections in a material
such as Si, no general statement can be made with regard
to their effects on the extinction distance and the
positions of their corresponding reciprocal lattice
points with respect to the Ewald sphere. In this case,
the effects of two reflections, both of which have nega-
tive Sy values, may tend to cancel, while the effects
of reflections with deviations of opposite signs may add.
Finally, it may be noted that the criterion deve-
loped in Section 5:6 is independent of the signs of the

Fourier coefficients. Therefore, the use of this
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criterion for including reflections in a many-beam
claculation will not be affected by the presence of

both positive and negative coefficients.
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