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Abstract

Most of the work in modeling time in information systems has concentrated on issues such as sup�

port for historical information and providing query facilities to manipulate such information� In

doing so� some simplistic view of the underling nature of time has been assumed� However� the

domain of time is far from being simplistic� In this paper� we outline the various issues which arise

in modeling basic temporal entities and propose solutions to these issues� More speci�cally� we

note that the nature of temporal information can either be anchored �e�g�� October �
� ���
	 or

unanchored �e�g�� � week	� and is usually available in multiple granularities �e�g�� the airline �ight

departure and arrival times are usually given in minutes� while the history of the salary of an em�

ployee is usually recorded in days	� Physical temporal information also needs to be represented in

a manner so as to be human readable� This is achieved using calendars� In this work� we show how

both anchored and unanchored temporal entities are represented within the context of calendars�

We discuss how calendars provide relationships between multiple granularities and facilitate the

conversion of anchored and unanchored times from one granularity to another� We also give the

semantics of various operations on anchored and unanchored times�

Keywords� temporal databases� object models� calendars� granularity



� Introduction

In the last decade there has been extensive research activity on temporal databases �see �Sno�
a�

�OS�
� Sno��� SS��� Soo��� Kli��� Sno��� Pea��� TCG����	� Most of this research has concen�

trated on the de�nition of a particular temporal model and its incorporation into a �relational or

object�oriented	 database management system �DBMS	� These temporal models are usually based

on a simplistic view of the underlying structure of temporal entities� There is signi�cant evidence�

however� that suggests that many applications have varying requirements for the support of tem�

poral entities� For example� in a university information system multiple time units need to be

supported� These include day� week� semester� etc� in o�ce information systems temporal infor�

mation is usually available in di�erent time units of the Gregorian calendar �BP�
�� in real�time

systems a process is usually composed of sub�processes that evolve according to di�erent time scales

�CMR���� in �nancial trading multiple calendars with di�erent time units and operations need to

be available to capture the semantics of �nancial data �CS��� CSS���� Therefore� it is necessary to

be able to customize the temporal DBMS� In this paper we describe a novel approach to providing

customizability� Instead of developing a temporal model that implements a particular notion of

time� we model and implement� in an object�oriented system� temporal entities �primitives	 on top

of which various temporal models can be built� Our approach� as we discuss in more detail below�

is based on using calendars to model these temporal primitives�

Modeling of basic temporal primitives requires the characterization of temporal data� A �rst

order characterization is as follows�

� Nature � Temporal information can either be anchored �absolute	 or unanchored �relative	�

For example� July ��� ���
 is an anchored time in that we know exactly where it is located on

the time axis� whereas �� days is unanchored in that we do not know where it is located on the

time axis since it can stand for any block of �� consecutive days on the time axis� Anchored

temporal information can be speci�ed using an instant �moment� chronon	 and interval time

primitives� An instant is a speci�c anchored moment in time� e�g�� July ��� ���
� An interval

is a duration of time between two speci�c anchor points �instants	 which stand for the lower

and upper bounds of the interval� e�g�� �June �
� ���
� July ��� ���
�� Unanchored temporal

information can be speci�ed using the span time primitive� A span is an unanchored duration

of time� It has a known length� but no speci�c starting and ending anchor points� Thus� it is

independent of any instant or interval�

�



� Structure � Usually� temporal information is available in multiple granularities� For example�

in a medical information system the history of an admitted patient would be kept on a daily

basis whereas the history of the condition of the patient�s body would be kept on an hourly

basis�

For human readability� it is important to have a framework in which the above characteristics of

temporal data can be represented� We propose to use a calendar as a framework for the repre�

sentation of anchored and unanchored temporal primitives at various granularities� A calendar is

a means by which physical time can be represented so as to be human readable� Calendars are

comprised of di�erent time units of varying granularities that enable the representation of di�erent

temporal primitives� Common calendars include the Gregorian and Lunar calendars� Educational

institutions also use Academic calendars�

In many applications� it is desirable to have multiple calendars that have di�erent calendric

granularities� One way to meet this requirement is to provide system support for multiple calendars

with a large number of calendric granularities� However� this has high overhead� and inevitably�

there will be applications that will need calendars and calendric granularities beyond a reasonable

set provided by the system� It is� therefore� important for the model to be extensible and not limited

to a prede�ned set of calendars and calendric granularities� There are a number of important issues

related to calendars that must be addressed�

�� How are calendars modeled� What are the components of a calendar� Are there any interac�

tions between di�erent calendars� Does a calendar provide relationships between granulari�

ties�

�� How is anchored and unanchored temporal information modeled within the context of calen�

dars� Can instants be of mixed granularities� How about spans�

�� Can anchored time be converted from one granularity to another� What about unanchored

time�

�� What are the semantics of operations between anchored times� anchored and unanchored

time� unanchored times� where the �nest granularities of the operands are di�erent�

Table � shows the various works that have dealt with the above issues in one way or another�

We note from Table � that not much work has been carried out in the temporal database research

community towards comprehensively modeling the basic temporal entities� The few works that

�



Citation Calendar�s� Granularities Time primitives Granularity conversions

	CR�
� No support Multiple Anchored Anchored

	WJL���� 	WJS�
� No support Multiple Anchored Anchored

	BP���� 	MPB��� No support Multiple Anchored Anchored

	MMCR��� No support Multiple Anchored Anchored

	Sno��b� Multiple Multiple Anchored � Unanchored Anchored

Table �� Temporal models supporting calendars and
or granularities

have appeared in this area have concentrated mainly on modeling anchored temporal entities� We

contend that unanchored temporal information is equally important in information systems and

the issues that arise in providing support for it should be addressed�

In this paper� we provide a model for supporting calendars and show how calendars provide

relationships between multiple granularities� We further show how both anchored and unanchored

temporal entities are represented in the context of calendars� We also show in detail how granu�

larity conversions are carried out using both anchored and unanchored temporal entities� These

conversions allow us to perform di�erent kinds of operations between anchored and unanchored

temporal entities�

The rest of the paper is organized as follows� in Section � we describe our model for supporting

calendars and show how multiple granularities are accommodated� Sections � and � show how

unanchored and anchored temporal entities are represented in the context of calendars� and how

granularity conversions between temporal entities with di�erent granularities are performed� In

Section 
 we show how our model of calendars and temporal entities are mapped to an object

model� Section � compares our research to the work given in Table �� Finally� Section � presents

conclusions�

� Calendars

A calendar allows physical time to be represented in human readable form� Perhaps the most

familiar calendar is the Gregorian calendar based on the revolution of the earth around the sun�

Another familiar calendar is the Lunar calendar� based on the rotation of the moon around the earth�

In general� calendars are based on the needs of di�erent cultures or organizations� For example� the

Lunar calendar is also commonly known as the Islamic calendar and is used by Muslims world wide�

Academic calendars used by educational institutions are examples of organizational calendars�

�
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Figure �� A hierarchical calendric structure�

De�nition �	� Calendar �C�� A calendar C is a triplet hO� fGg� fFgi� where O is the origin of C�

fGg is the set of calendric granularities belonging to C� and fFg is the set of conversion functions

associated with C�

A hierarchical structure of a calendar is given in Figure �� The origin marks the start of a calendar�

Calendric granularities de�ne the reasonable time units �e�g�� minute� day� month	 that can be used

in conjunction with this calendar� Calendric granularities within a calendar are counted from the

origin of that calendar� The origin of a calendar is in essence a time span in calendric granularities

of the calendar� The functions establish the conversion rules between calendric granularities of a

calendar� In the remainder we discuss calendric granularities and functions in more detail�

	�� Calendric Granularities

A calendar can be de�ned in terms of any reasonable time unit� For example� the Gregorian

calendar has days and months as time units� However� the Academic calendar also adds semesters�

More speci�cally� a calendar is comprised of a �nite number of time units� We call these time units

calendric granularities� In the Gregorian calendar� years� months� days� hours� minutes� seconds�

etc� are the calendric granularities�

�



De�nition �	� Calendric granularity �G�� A calendric granularity is a special kind of determinate

time span �duration	 that can be used as a unit of time�

Generally speaking� a calendric granularity is a unit of measurement for time durations� For

example� the calendric granularity of days �Gday	 in the Gregorian calendar behaves similar to the

time span � day �time spans are discussed in more detail in Section �	�

Calendric granularities are also commonly used to express a lack of information about the

particular time of an event� For example� the statement �I am �ying to Calgary on July 
th�

������ implies that the �ight will take place some time on July 
th� In this case the calendric

granularity that is used to represent the time of the �ight �� day	 is also a period of indeterminacy

of an instant� Note that no indeterminacy arises about the duration of time� In other words� � day

as a duration of time carries no indeterminacy� We do not deal with temporal indeterminacy in

this paper� We refer the reader to �GL�OS�
� for details on how we model indeterminate temporal

information�

Since a calendric granularity is a special kind of a time span� it is meaningful to compare two

calendric granularities with each other�

De�nition �	� Comparison between calendric granularities� GA is coarser than GB if GA is �

than GB as a time span� Similarly� GA is �ner than GA if GA is � than GB as a time span�

Example �	� The span of � day is shorter ��	 than the span of � month and therefore the

calendric granularity of days �Gday	 is �ner than the calendric granularity of months �Gmonth	 in

the Gregorian calendar� Similarly� Gmonth is coarser than Gday�

We assume that we can always compare two calendric granularities belonging to the same calendar

with each other� Thus�

Observation �	� The set of all possible calendric granularities in a given calendar �fGg	 is totally

ordered with respect to the comparison operators de�ned in De�nition ����

Observation �	� The set of all possible calendric granularities belonging to di�erent calendars is

partially ordered with respect to the comparison operators de�ned in De�nitions ����

Each calendric granularity in a calendar has a reference to a set of similar calendric granularities

belonging to di�erent calendars� hereafter referred to as SetGA � associated with it� SetGA contains

calendric granularities which have the same time duration as GA� For example� the calendric






granularities Gmonth and GacademicMonth have references to the set fmonth� academicMonthg� More

speci�cally� SetGmonth
� SetGacademicMonth

� fmonth� academicMonthg� SetGA is utilized when a

calendric granularity of one calendar needs to be converted to a calendric granularity with the same

time duration but belonging to a di�erent calendar� For example� the span � months is equivalent

to the span � academicMonths when converted to the calendric granularity of academicMonths�

A calendric granularity also has a list of calendric elements� For example in the Gregorian

calendar� Gday has the calendric elementsMonday� Tuesday� � � � � Sunday� Similarly in the Academic

calendar� Gsemester has the calendric elements Fall� Winter� Spring� and Summer�

Example �	� Figure � shows the hierarchical calendric structures of two real�world calendars

namely� the Gregorian and Academic calendars� We use these two example calendars in the follow�

ing discussion�
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Figure �� The Gregorian and Academic calendric structures�

The origin of the Gregorian calendar is given as the span �
�� years from the start of time�

It was proclaimed in �
�� by Pope Gregory XIII as a reform of the Julian calendar� The calen�

dric granularities in the Gregorian calendar are the standard ones� each having similar calendric

�



granularities from the Academic and possibly other calendars� e�g�� the Business calendar�

The origin of the Academic calendar shown in Figure 

 is assumed to be the span ���� academic�

Y ears having started in the year ����� which is the establishment date of the University of Alberta�

The Academic calendar has similar calendric granularities as the Gregorian calendar and de�nes a

new calendric granularity of semester� It is worth noting that the calendric elements of academic�

Month start from September as compared to those of the Gregorian calendar which start from

January�

	�	 Functions

Associated with each calendar is a list of functions �fFg	 which determine the number of �ner

calendric elements in coarser calendric elements� For example� lets assume we have a calendar C

which has the calendric granularities year� month and day� Then� three functions are de�ned� The

�rst returns the number of months in a given year� the second returns the number of days in a

given month of a given year� The third maps a given year� month� and day to a real number on a

global timeline�

More generally� let C be a calendar with calendric granularities G�� G�� � � � � Gn� where G� is

the coarsest calendric granularity and Gn is the �nest calendric granularity� Additionally� let the

calendric elements of the calendric granularities be�

G� � ceG�

� � ceG�

� � � � � � ceG�
p�

G� � ceG�

� � ceG�

� � � � � � ceG�
p�

���

Gn � ceGn� � ceGn� � � � � � ceGnpn �

where ceGij stands for the jth calendric element of the calendric granularity Gi� For example�

ceGmonth
� represents the second calendric element of the calendric granularity Gmonth in the Grego�

rian calendar� The following functions are then de�ned�

De�nition �	� Conversion functions�

f�C�i�	 � NG�
� � � i� � p�

f�C�i�� i�	 � NG�
� � � i� � p�� � � i� � p�

���

fnC�i�� i�� � � � � in	 � R� � � i� � p�� � � i� � p�� � � � � � � in � pn

�



where ij �� � j � n	 are natural numbers which correspond to the ordinal number of a calendric

element of the jth calendric granularity in calendar C� For example� the ordinal values of the year

���
 and the month September in the Gregorian calendar would be ���
��
���� and �� respectively�

NGx �� � x � n	 is a natural number which stands for the number of Gx�s� R is a real number�

The �rst function �f�C�i�		 gives the number of G��s in a given calendric element of G�� The

second function �f�C�i�� i�		 gives the number of G��s in a given calendric element of G� and a

calendric element of G�� The last function �fnC�i�� i�� � � � � in		 maps a calendric element of the

�nest calendric granularity �Gn	 to a real number on an underlying global real timeline� hereafter

referred to as Gtl� Gtl provides a homogeneous underlying platform whereby operations involving

time instants belonging to di�erent calendars �or the same calendar� but represented in di�erent

calendric granularities	 can take place� More speci�cally� each time instant can be converted to its

corresponding value on Gtl� and the operation can then be performed� The conversion functions

and Gtl are used mainly in operations involving instants in which the operands could belong to

di�erent calendars� The role of the conversion functions and Gtl are discussed in detail later on in

this paper� The scale of Gtl is dependent on the precision of the respective machine architecture�

For simplicity and explanatory purposes� we assume the scale of Gtl to be seconds in this paper�

Example �	� To illustrate the workings of the above functions� lets suppose we interested in the

number of months in ���
� the number of days in September ���
 and the number of seconds in

September ��� ���
 in calendar C� The ordinal values corresponding to the year ���
� the month

September� and the day ��� are ��� ����
��
����	� �� and ��� respectively� Then�

f�C����	 � ��

f�C����� �	 � ��

f�C����� �� ��	 � �������

In this section we have described our model of calendars� In the next two sections we show how

anchored and unanchored temporal primitives of di�erent granularities are represented using the

components of a calendar� Additionally� we show how operations between anchored and unanchored

temporal primitives are carried out across di�erent calendars�

�



� Unanchored Temporal Entities

We identify a time span as being an unanchored� relative duration of time� Examples of time spans

include 
 hours� �� days� � to � months� etc� A time span is basically an atomic� cardinal quantity�

independent of any time instant or time interval� with a number of operations de�ned on it�

�� A time span can be compared with another time span with the transitive comparison operators

� and �� This comparison operator forms a partial order between time spans�

�� A time span can be subtracted from or added to another time span to return a third time

span�

Time spans can be further characterized as being determinate or indeterminate� A determinate

span represents complete information about a duration of time� For example� the maximum time

allowed for students to complete their Introduction to Database Management Systems examination

is a determinate span� An indeterminate span represents incomplete information about a duration

of time� It has lower and upper bounds that are determinate spans� � day � � days� for example�

is an indeterminate span that can be interpreted as �a time period between one and two days��

Any determinate span can be represented as a special kind of indeterminate span with identical

lower and upper bounds�

��� Representation of Spans

Since a calendric granularity is a unit measurement of a time span� we use calendric granular�

ities to construct time spans� For example� to obtain a time span of 
 days we would mul�

tiply the calendric granularity of days by the integer 
� 
 � Gday� To obtain a time span of

� academicMonths and 
 days� we would add the span of � academicMonths to the span of


 days� � � GacademicMonth � 
 � Gday� In general� a time span is made up of di�erent calendric

granularities� possibly belonging to di�erent calendars�

De�nition �	� Discrete Determinate span�

Sdiscr �
NX
i��

MX
j��

�KCi
j �GCi

j 	 ��	

where KCi
j is an integer coe�cient of GCi

j � which is a distinct calendric granularity in calendar Ci�

�



De�nition �	� Continuous Determinate span�

Scont �
NX
i��

MX
j��

�RCi
j �GCi

j 	 ��	

where RCi
j is a real coe�cient of GCi

j � which is a distinct calendric granularity in calendar Ci�

Basically� Sdiscr and Scont are summations of distinct calendric granularities over di�erent calendars�

Scont is a generalization of Sdiscr for the case of real coe�cients�

In a temporal model where times with di�erent calendars and calendric granularities are sup�

ported� the calendric granularities of a time span may belong to di�erent calendars� Therefore� we

need to be able to�

�� Convert one calendric granularity to another calendric granularity belonging to the same

calendar�

�� Convert one calendric granularity to another calendric granularity belonging to another cal�

endar�

We discuss these conversions below�

��	 Conversions Between Calendric Granularities

The �rst question to answer is whether it is always possible to convert a time span from the coarser

to the �ner calendric granularity without loss of information� The answer� perhaps surprisingly� is

no� To illustrate this point let us consider the following conversions� The conversion of the time

span � hour to the calendric granularity of minutes is exact and will result in the time span of

�� minutes� However� the conversion of the time span � month to the �ner calendric granularity

of days can not possibly be an exact one� Should the resulting time span be ��� ��� �� or �� days�

We cannot tell unless we know exactly which month is involved� Since a time span is unanchored

this information is not available� Of course� we could convert � month to the indeterminate span

�� days � �� days but in this case the conversion is not exact and some information is lost�

Therefore� the following observation is made�

Observation �	� The set of all calendric granularities is not totally ordered with respect to the

binary relation �exactly convertible to��

In order to be able to carry out the conversion �whether exact or inexact	 of a time span to a

given calendric granularity� we de�ne two functions�

��



De�nition �	� Lower bound factor �lbf�GA� GB	�� The lower bound factor of GA and GB is the

minimum number of GB units that can form � GA unit�

De�nition �	� Upper bound factor �ubf�GA� GB	�� The upper bound factor of GA and GB is

the maximum number of GB units that can form � GA unit�

Example �	� lbf�Gmonth� Gday	 � �� and ubf�Gmonth� Gday	 � ��� Both factors coincide in the

case of exact conversion� For instance� lbf�Ghour� Gminute	 � ubf�Ghour� Gminute	 � ���

The user can de�ne new calendric granularities in terms of existing ones� For example� the new

calendric granularity decade could be de�ned in terms of the existing calendric granularity year

using lbf�Gdecade� Gyear	 � ubf�Gdecade� Gyear	 � ���

�	�	� Derivation Procedure for lbf�GA� GB	 and ubf�GA� GB	

We �rst show how lbf�GA� GB	 and ubf�GA� GB	 are derived from the conversion functions de�ned

in Section �� if GA andGB belong to the same calendar� To simplify the description� we �rst consider

a simple calendar and then give the derivation for the general case which involves any calendar with

any number of calendric granularities�

Derivation �	� GA is coarser than GB � Simple calendar� Let C be a calendar with the calendric

granularities year� month and day� The following functions are de�ned in C�

f�C�y	 � Nmonths

f�C�y�m	 � Ndays

f�C�y�m� d	 � R

where y�m� and d are ordinal values of calendric elements in the calendric granularities year� month�

and day� respectively� Suppose we want to �nd lbf�Gyear� Gday	 and ubf�Gyear� Gday	� The number

of days in any year y is given by the summation�

f�
C
�y�X

m��

f�C�y�m	

The minimum �maximum	 number of days in a year is then the minimum �maximum	 of the above

summation over all y� More speci�cally�

lbf�Gyear� Gday	 � min
y
f

f�
C
�y�X

m��

f�C�y�m	g

��



ubf�Gyear� Gday	 � max
y
f

f�
C
�y�X

m��

f�C�y�m	g

Derivation �	� GA is coarser than GB � General calendar�

We now consider the general case� Let G�� � � � � GA� � � � � GB� � � � � Gn be the totally ordered calen�

dric granularities of calendar C with G� being the coarsest calendric granularity and Gn the �nest�

The following functions are de�ned in C�

���

fkAC �i�� � � � � iA	 � NiA��

���

fkBC �i�� � � � � iB	 � NiB��

���

Now� the number of GB units in any given calendric element iA is given by the following summation�

fkA�kB
C �i�� � � � � iA	 �

f
kA
C

�i������iA�X
j���

f
kA��

C
�i������iA�j��X
j���

� � �

f
kB��

C
�i������iA�j������jkB�kA���X

jkB�kA����

fkB��C �i�� � � � � iA� j�� � � � � jkB�kA��	

The minimum �maximum	 number of GB units in calendric element iA is then the minimum

�maximum	 of the above formula over all i�� � � � � iA� More speci�cally�

lbf�GA� GB	 � min
�i������iA��C

ffkA�kB
C �i�� � � � � iA	g ��	

and

ubf�GA� GB	 � max
�i� �����iA��C

ffkA�kB
C �i�� � � � � iA	g ��	

Derivation �	� Minimum and maximum number of GB in K units of GA� Formulas ��	 and

��	 calculate the minimum and maximum number of GB in one unit of GA� respectively� We now

generalize formulas ��	 and ��	 to calculate the minimum and maximum number of GB in K units

of GA� e�g�� the minimum and maximum number of days in � �Gmonth where K � ��

lbf�K�GA� GB	 � min
i������iA

f
X

��distkA��i
�

�
�����i

�

A
���i������iA���K��

fkA�kB
C �i

�

�� � � � � i
�

A	g �
	

��



and

ubf�K�GA� GB	 � max
i������iA

f
X

��distkA ��i
�

�
�����i

�

A
���i������iA���K��

fkA�kB
C �i

�

�� � � � � i
�

A	g ��	

The summation in formulas �
	 and ��	 is the number of kB units in K consecutive kA units

starting with �i�� � � � � iA	� The function distiA��i
�

�� � � � � i
�

A	� �i�� � � � � iA		 �nds the number of kA units

elapsed between �i
�

�� � � � � i
�

A	 and �i�� � � � � iA	� For example� the number of months elapsed between

������ February	 and ����
� January	 is ��� The lower and upper bound factors are then obtained

by taking the minimum and maximum of the summation over all �i�� � � � � iA	� Embedding the

coe�cient K within formulas �
	 and ��	 reduces the information lost in the process of calculating

the number of GB units in K units of GA as compared to �rst �nding the number of GB units in

one unit of GA and then multiplying it by K to �nd the number of GB in K units of GA� For

example� using formulas ��	 and ��	 to calculate the minimum and maximum number of days in

� �Gmonth gives us 
� and ��� respectively� while formulas �
	 and ��	 give us 
� and ��� respectively

� thereby reducing the information lost by � days� Note that for exact conversions�

lbf�K�GA� GB	 � ubf�K�GA� GB	 � K � lbf�GA� GB	 � K � ubf�GA� GB	

For example� lbf�K�Gdays� Ghours	 � ubf�K�Gdays� Ghours	 � K � ���

Derivation �	� GA is �ner than GB� So far we have considered the case of GA being coarser

than GB� If GA is �ner than GB� then the lower and upper bound factors can be calculated using

the formulas�

lbfi�N�GA� GB	 � max
K�Z

fK j N � ubf�K�GB� GA	g ��	

ubfi�N�GA� GB	 � min
K�Z

fK j N � lbf�K�GB� GA	g ��	

Example �	� To illustrate the above formulas� suppose we want to �nd the number of months in

�
 days� Then�

lbfi��
� Gday� Gmonth	 � max
K�Z

fK j �
 � ubf�K�Gmonth� Gday	g � �

ubfi��
� Gday� Gmonth	 � min
K�Z

fK j �
 � lbf�K�Gmonth� Gday	g � �

Hence� the number of months in �
 days is � � ��

Note that it is not necessary that K be an integer� It can be a real number as well� in which case

we reduce the amount of indeterminacy in �nding the number of months in �
 days� Thus� the

��



formulas in Derivation ��� become�

lbfr�R�GA� GB	 � max
K�R�

fK j R � ubf�K�GB� GA	g ��	

ubfr�R�GA� GB	 � min
K�R�

fK j R � lbf�K�GB� GA	g ���	

Example �	� We know that the number of days in � month is �� � �� and the number of days

in � months is 
� � �� � Therefore� we can reasonably say that for � � K � ��

lbf�K�Gmonth� Gday	 � �� � �
�� ��	 � �K � �	 � �� �K � �

ubf�K�Gmonth� Gday	 � �� � ���� ��	 � �K � �	 � �� �K

Now�

lbfr��
� Gday� Gmonth	 � max
K�R�

fK j �
 � ubf�K�Gmonth� Gday	g

� max
K�R�

fK j �
 � �� �Kg � �
���

� ���


ubfr��
� Gday� Gmonth	 � min
K�R�

fK j �
 � lbf�K�Gmonth� Gday	g

� min
K�R�

fK j �
 � �� �K � �g � �����

� ��



In this case the number of months in �
 days is ���
 � ��

� quite a contrast from what was

obtained for K as an integer�

So far� we have considered derivations for lbf�K�GA� GB	 and ubf�K�GA� GB	 when GA and

GB belong to the same calendar� We now consider the case when GA and GB belong to di�erent

calendars�

Derivation �	� GA and GB belong to di�erent calendars�

Let GA and GB belong to calendars C� and C�� respectively� The following procedure derives

lbf�K�GA� GB	 and ubf�K�GA� GB	 for both K as an integer coe�cient and K as a real coe�cient�

if �G
�

A� G
�

B j G
�

A � SetGA 	G
�

B � SetGB 	G
�

A � C
�

	G
�

B � C
�

f

if G
�

A is coarser than G
�

B

Derive lbf�K�G
�

A� G
�

B	 and ubf�K�G
�

A� G
�

B	 using Derivation ���

else if G
�

A is �ner than G
�

B

��



Derive lbf�K�G
�

A� G
�

B	 and ubf�K�G
�

A� G
�

B	 using Derivation ���

Use lbf�K�G
�

A� G
�

B	 for lbf�K�GA� GB	 and ubf�K�G
�

A� G
�

B	 for ubf�K�GA� GB	

g

else

lbf�K�GA� GB	 and ubf�K�GA� GB	 have to be explicitly speci�ed

Since SetGA and SetGB contain calendric granularities which have the same time duration as GA

and GB� respectively� the above procedure �rst checks whether there exists in SetGA and SetGB

calendric granularities which belong to the same calendar� If such calendric granularities exist� then

they are used instead ofGA and GB in the derivations of lbf�K�GA� GB	 and ubf�K�GA� GB	� If no

calendric granularities exist in SetGA and SetGB belonging to the same calendar� the lbf�K�GA� GB	

and ubf�K�GA� GB	 have to be explicitly provided�

Example �	� Suppose we want to calculate lbf�GbusinessMonth� Gyear	 where GbusinessMonth be�

longs to the Business calendar and Gyear belongs to the Gregorian calendar� Suppose also that

SetGbusinessMonth
� fGbusinessMonth � GAcademicMonthg and SetGyear � fGyear� GAcademicY earg� where

GAcademicMonth and GAcademicY ear belong to the Academic calendar� Then� lbf�GbusinessMonth� Gyear	 


lbf�GAcademicMonth� Gyear	 
 lbf�GAcademicMonth� GAcademicY ear	�

�	�	� Span Conversion

Having discussed the derivation procedure of lbf�K�GA� GB	 and ubf�K�GA� GB	� we now de�ne

the conversion of a determinate span to any given calendric granularity GA�

De�nition �	� Discrete span conversion� The conversion of a span of the form depicted in

formula ��	 to a calendric granularity GA results in an indeterminate span with lower bound

b
NX
j��

MX
i��

L
Cj
i c �GA ���	

and upper bound

d
NX
j��

MX
i��

U
Cj
i e �GA ���	

where

L
Cj
i � lbfr�K

Cj
i � G

Cj
i � GA	 ���	

and

U
Cj
i � ubfr�K

Cj
i � G

Cj
i � GA	 ���	

�




De�nition �	� Continuous span conversion� The conversion of a span of the form depicted in

formula ��	 to a calendric granularity GA results in an indeterminate span with lower bound

NX
j��

MX
i��

L
Cj
i �GA ��
	

and upper bound
NX
j��

MX
i��

U
Cj
i �GA ���	

where

L
Cj
i � lbfr�K

Cj
i � G

Cj
i � GA	 ���	

and

U
Cj
i � ubfr�K

Cj
i � G

Cj
i � GA	 ���	

Example �	� To illustrate the conversion described above� let us convert the discrete time span

� months and �
 hours and � academicY ears to a discrete indeterminate span in the calendric

granularity of days �Gdays	� First we represent the given span in the form given in formula ��	�

� �Gmonths � �
 �Ghours � � �GacademicY ears

In this span we have calendric granularities from two calendars� the Gregorian and Academic

calendars� Gmonths and Ghours are members of the Gregorian calendar �C�	� while GacademicY ears

is a member of the Academic calendar �C�	� Additionally� KC�
� � �� KC�

� � �
� KC�
� � �� GC�

� �

Gmonths� G
C�
� � Ghours� G

C�
� � GacademicY ears� We now use the formulas ���	 and ���	 to compute

LC�� � LC�� � LC�� � UC�
� � UC�

� � UC�
� �

LC�� � lbf�KC�
� � GC�

� � Gdays	

� lbf��� Gmonths� Gdays	

� 
�

UC�
� � ubf�KC�

� � GC�
� � Gdays	

� ��

LC�� � lbf�KC�
� � GC�

� � Gdays	

� lbf��
� Ghours� Gdays	

� maxfK j �
 � ubf�K�Gdays� Ghours	g

� maxfK j �
 � K � ��g

��



� �
���

� ����


UC�
� � ubf�KC�

� � GC�
� � Gdays	

� minfK j �
 � lbf�K�Gdays� Ghours	g

� minfK j �
 � K � ��g

� ����


LC�� � lbf�KC�
� � GC�

� � Gdays	

� lbf��� GacademicY ears� Gdays	

� lbf��� Gyears� Gdays	

� ���


UC�
� � ubf�KC�

� � GC�
� � Gdays	

� ubf��� GacademicY ears� Gdays	

� ubf��� Gyears� Gdays	

� ����

lbf�K�Gmonths� Gdays	� lbf�K�Gdays� Ghours	� ubf�K�Gmonths� Gdays	� and ubf�K�Gdays� Ghours	 are

calculated from the conversion functions in the Gregorian calendar� In deriving lbf�K�GacademicY ears� Gdays	

and ubf�K�GacademicY ears� Gdays	� since GacademicY ears and Gdays belong to di�erent calendars�

we �rst make use of Derivation ��
 and note that in SetGAcademicY ear
and SetGday there exist

calendric granularities Gyear and Gday which belong to the same calendar �the Gregorian cal�

endar	� Therefore� lbf�K�GacademicY ears� Gdays	 is equivalent to lbf�K�Gyears� Gdays	 which is then

calculated from the conversion functions in the Gregorian calendar� The same holds true for

ubf�K�GacademicY ears� Gdays	� If SetGAcademicY ear
and SetGday did not have calendric granularities

belonging to the same calendar� then lbf�K�GacademicY ears� Gdays	 and ubf�K�GacademicY ears� Gdays	

would have to be explicitly speci�ed�

Lastly� we compute the lower and upper boundary of the resulting indeterminate span according

to formulas ���	 and ���	� respectively�

lower bound � bLC�� � LC�� � LC�� c �Gdays

� b
� � ����
� ���
c �Gdays

� ��

 �Gdays

��



upper bound � dUC�
� � UC�

� � UC�
� e �Gdays

� d�� � ����
� ����e �Gdays

� ���� �Gdays

Hence� the result of our conversion is the indeterminate discrete time span ��

 days � ���� days�

In this section we have described in detail how conversion of a time span of mixed calendric

granularities to another calendric granularity takes place� To the best of our knowledge� this

feature of conversions between granularities based on unanchored time has not been considered by

any of the previous models dealing with time granularities� In the following section we show� using

examples� how mathematical operations between time spans take place�

��� Mathematical Operations between Spans

As described in Section ���� a span is represented as a summation of di�erent calendric granularities�

In this section we elaborate on the mathematical operations between spans using various examples�

The semantics of adding �subtracting	 two spans is to add �subtract	 the components which have the

same calendric granularity and concatenate the remaining components to the resulting span� For

example� let us assume we have two calendars� the Gregorian calendar with calendric granularities

year� month� and day� and the Academic calendar with calendric granularities academicYear and

semester� Then�

Example �	�

�� �
 years� � months	 � � years� �� years� � months	

�� �
 years� � months	 � �� years� � months	 � �� years � � months	

�� �
 years� � months	 � �
 days� �
 years� � months � �
 days	

�� �
 years � � months	 � � academicY ears � �
 years � � months� � academicY ears	 


� months � � years 
 � months � � academicY ears


� �
 years� � months � � academicY ears	 � �� academicY ears� � semester	 � �
 years�

� months�� academicY ears�� semester	 
 � months�� semester�� academicY ears 


� months � � semester � � years

��



Similar semantics hold true for addition �subtraction	 of determinate spans and indeterminate

spans�

Example �	�

�� �
 days � � days	 � � day � � days � � days

�� �
 days � � month	 � � days� � days � �� month � � days	

�� �� month � � months	� �� days� �� month � �� days	 � �� months � �� days	

�� ���month��� days	 � ��months��� days		� ��month��� days�
 hours	� �
 hours �

�� month � 
 hours	


� ��� month� �� days	 � �
 days	 � 
 hours� �� month� �� days� 
 hours	 � ��
 days�


 hours	

Subtraction leads to the notion of negative spans� In our model� both positive and negative

spans are allowed� Positive spans have the semantics of forward duration in time� whilst negative

spans have the semantics of backward duration in time� Allowing positive and negative spans

enables us to carry out the subtraction operation between spans of di�erent calendric granularities

which could result in either a positive or negative span� for example� � month � �� days� It is

worth mentioning that mathematical operations between spans could result in spans which are

composed of calendric granularities belonging to di�erent calendars� In such a case� if human

understandability becomes an issue� the span can be converted to a single calendric granularity

using the conversion procedure described in Section ����

� Anchored Temporal Entities

We identify a time interval as the basic anchored speci�cation of time� it is a duration of time

between two speci�c anchor points which stand for the lower and upper bounds of the interval�

e�g�� �June �
� ���
� July ��� ���
�� A time instant is a speci�c anchored moment in time�� For

example� the anchor points of the time interval �June �
� ���
� July ��� ���
� are the time instants

June �
� ���
 and July ��� ���
� We model a time instant as a special case of a �closed	 time

�In this paper� a time instant refers to the beginning of the period it denotes� Therefore the time instants �����

January ����� and January �� ���� are equivalent and refer to the beginning of the year ����� A discussion on

time instants which refer to the whole period they denote is given in �GL�OS����

��



interval which has the same lower and upper bounds� For example� the time instant June �
� ���
 is

equivalent to the time interval �June �
� ���
� June �
� ���
�� Since a time interval is represented

by two anchored instants� it is su�cient to show how a time instant is represented within the context

of a calendar� The representation of time intervals is merely the representation of its two anchored

time instants�


�� Representation of Time Instants

Figure � shows the structural representation of a time instant�

Calendric Element

Calendric Element

Instant

Calendric Element

members of 

n

2

1

Calendar

Calendar

Figure �� Structural representation of a time instant�

Every time instant belongs to a speci�c calendar and is composed of calendric elements which

belong to di�erent calendric granularities of the same calendar� Table � gives examples of time

instants� the calendar they belong to� the calendric elements they are composed of and the respective

calendric granularities�

Instant Calendar Calendric Elements Calendric Granularities

June ��	 �

� Gregorian �� Day

June Month

�

� Year

Fall	 �

� Academic Fall Semester

�

� AcademicYear

Table �� Examples of time instants�


�	 Operations on Time Instants

A wide range of operations can be performed on time instants�

�� A time instant can be compared with another time instant with the transitive comparison

operators � and �� This comparison operator forms a total order between time instants�

�� A time instant can be subtracted from another time instant to �nd the elapsed time between

the two�
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�� A time span can be added or subtracted to �from	 a time instant to return another time

instant�

Operands in the operations between time instants may belong to di�erent calendars� Similarly�

operations between spans and time instants may involve spans composed of calendric granularities

belonging to di�erent calendars� Therefore� to carry out operations on time instants� it may be

necessary to convert time instants from one calendar to another� In the following section� we give

the detailed conversion functions which enable an instant to be converted from one calendar to

another�

�	�	� Conversion of Time Instants

To convert a time instant from one calendar to another� the time instant is �rst mapped to a real

value on the global time axis �Gtl	� This value is then mapped to a time instant in the calendar of

interest� Therefore� functions are de�ned to convert a time instant to its respective value on Gtl�

and inverse functions are de�ned to convert a value on Gtl to an instant in a particular calendar�

To simplify the description� we �rst give the functions for a simple calendar and then generalize

them for any given calendar�

Derivation �	� Mapping a time instant to Gtl � Simple calendar� Let C be a calendar with the

calendric granularities year� month and day� The following functions are de�ned in C�

f�C�y	 � Nmonths

f�C�y�m	 � Ndays

f�C�y�m� d	 � R

where y�m� and d are ordinal values of calendric elements in the calendric granularities year� month�

and day� respectively� Since a time instant is represented in terms of the calendric elements of a

calendar� we can write any time instant in C using the ordinal values of calendric elements as

�y�m� d	� For example� the time instant September ��� ���
 is written as ����� �� ��	�

Now� to map the time instant �y�m� d	 to Gtl the R value for all days up to year y is �rst

calculated� This is given by the summation�

y��X
a���

f�
C
�a��X

a���

f�
C
�a��a��X
a���

f�C�a�� a�� a�	 ���	
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Formula �� calculates the R value up to year y by summing R for every day� in every month� of

every year up to year y� Next� the R value for all days in all months up to month m in year y is

calculated�
m��X
a���

f�
C
�y�a��X
a���

f�C�y� a�� a�	 ���	

This formula calculates the R value in year y by summing R for every day� in every month up to

month m of year y� Lastly� the R value for all days up to day d in month m is calculated�

d��X
a���

f�C�y�m� a�	 ���	

Formula �� calculates the R value in month m by summing R for every day up to day d in month

m of year y� The R value corresponding to the time instant �y�m� d	 is then obtained by summing

Formulas ��� ��� and �� to the origin of calendar C� We now consider the mapping of a time instant

belonging to any general calendar to Gtl�

Derivation �	� Mapping a time instant to Gtl � General calendar� Let C be a calendar with

origin OC � and conversion functions f�C�i�	� f
�
C�i�� i�	� � � � � f

n
C�i�� i�� � � � � in	 �see De�nition ��� in

Section ���	� Additionally� let �i�� � � � � in	 be a time instant in C� Then� R�i�� � � � � in	� the R value

for the time instant �i�� � � � � in	 is given by�

R�i�� � � � � in	 � OC�

nX
k��

�
B�
ik��X
ak��

fk
C
�i������ik���ak�X
ak����

� � �

f
n��
C

�i������ik���ak�����an���X
an��

fnC�i�� � � � � ik��� ak� � � � � an	

�
CA ���	

Formula �� �rst calculates the R value of the time instant up to the calendric element in followed

by the R value in in� up to the calendric element in��� This procedure is repeated up to the �nest

calendric granularity� i�e�� up to calendric element i�� We now show how a real value on Gtl is

converted to a time instant in any given calendar�

Derivation �	� Mapping a real value from Gtl to a time instant � Simple Calendar� Let C be

a calendar with origin OC � calendric granularities year� month� and day� and r be a real value on

Gtl� Then the following formulas calculate a time instant in C corresponding to r�

Y � max
y�Z

fy j R�y� �� �	� r� OCg

M � max
m�Z

fm j R�Y�m� �	� r �OCg

D � max
d�Z

fd j R�Y�M� d	� r �OCg
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The above formulas �rst �nd the maximum year Y which when mapped to Gtl gives a real value

which is less than or equal to r � OC � The trick here is to vary the year value �y	 in R�y�m� d	

�Formula ��	 and keep the month �m	 and day �d	 values constant at �� After having found Y �

the maximum month in year Y which when mapped to Gtl gives a real value which is less than or

equal to r � OC is then calculated� In this case� the year value in R�y�m� d	 is kept �xed at Y �

the month value is changed� and the day value is kept constant at �� Finally� the maximum day in

year Y and month M which when mapped to Gtl gives a real value which is less than or equal to

r �OC is calculated�

Derivation �	� Mapping a real value from Gtl to a time instant � General Calendar� Let C

be a calendar with origin OC � and calendric granularities G�� G�� � � � � Gn� where G� is the coarsest

calendric granularity and Gn is the �nest calendric granularity� Additionally� let r be a real value

on Gtl� Then the following formulas calculate a time instant �i�� � � � � in	 in C corresponding to r�

i� � max
a�Z

fa j R�a� �� � � � � �� �z �
n��

	 � r �OCg

���

ik � max
a�Z

fa j R�i�� i�� � � � � ik��� a� �� � � � � �� �z �
n�k

	 � r � OCg

���

in � max
a�Z

fa j R�i�� i�� � � � � in��� a	 � r �OCg

Having de�ned the conversion functions necessary to convert a time instant from one calendar

to another� in the following sections� we �rst show how the di�erent operations on time instants

are carried out when both operands belong to the same calendar� and then give algorithms to show

how the operations are carried out when the operands belong to di�erent calendars�

�	�	� Comparison between Time Instants

We �rst assume that the instants belong to the same calendar� Let I�GA � �i�� � � � � im	 and I�GB �

�i
�

�� � � � � i
�

n	 be two time instants� with �nest granularities GA and GB� respectively� We also assume

without loss of generality that m � n� Then� the following algorithm checks if I�GA � I�GB �
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Algorithm �	� Comparison of instants belonging to the same calendar�

I�GB �� �i
�

�� � � � � i
�

n� �� � � � � �� �z �
m�n

	

I�GA � I�GB i� ij � i
�

j �j j � � j � m

The algorithm basically compares the time instants by comparing each of their calendric elements�

The instant I�GB is adjusted by adding the calendric element with the ordinal number � until its

�nest granularity is the same as that of I�GA � This is reasonable because a time instant refers to

the beginning of the time period it denotes�

Example �	� Suppose we have the following time instants and the ordinal values of their respective

calendric elements�

June 
� ���� 
 ����� �� 
	

June �
� ���� 
 ����� �� �
	

June ���� 
 ����� �	

���� 
 ����	

Then�

June 
� ���� � June �
� ���� because ����� �� 
	� ����� �� �
	�

June ���� � June �
� ���� because ����� �	
 ����� �� �	� and ����� �� �	� ����� �� �
	�

���� � June �
� ���� because ����	 
 ����� �� �	� and ����� �� �	� ����� �� �	�

We now look at the case when the two instants belong to di�erent calendars� Let �i�� � � � � in	

and �i
�

�� � � � � i
�

m	 be two time instants belonging to calendars C� and C�� respectively� The algorithm

to compare �i�� � � � � in	 and �i
�

�� � � � � i
�

m	 is�

Algorithm �	� Comparison of instants belonging to di�erent calendars�

r� �� R�i�� � � � � in	

r� �� R�i
�

�� � � � � i
�

m	

Compare r� and r�

Algorithm ��� makes use of the global time axis which provides a homogeneous underlying platform

on which time instants can be mapped� The two time instants are �rst converted to their respective

real values on the global time axis using Derivation ���� These real values are then compared�

��



�	�	� Elapsed Time between Time Instants

Let �i�� � � � � in	 and �i
�

�� � � � � i
�

n	 be two time instants belonging to the same calendar� Then�

Elapsed��i�� � � � � in	� �i
�

�� � � � � i
�

n		 �
nX

j��

�Kj �Gj	�where Kj � i
�

j � ij

The following examples illustrate the various cases that can take place�

Example �	� Elapsed��June �� ����	� �July ��� ���
		 � �
 years� � month� �� days	

This is the simplest case in which both instants have the same �nest granularity� The calendric

elements of the �rst time instant are simply subtracted from the corresponding calendric elements

of the second time instant�

Example �	� Elapsed��June ����	� �July ��� ���
		� Elapsed��June �� ����	� �July ��� ���
		

� �
 years� � month� �� days	

Here� the �nest calendric granularity of June ���� is coarser than that of July ��� ���
� Thus�

June ���� is �rst replaced by the time instant June �� ����� its equivalent time instant with the

�nest granularity of days� The elapsed time between June �� ���� and July ��� ���
 is then

calculated as shown in the previous example�

Example �	� Elapsed��June ����	� �June �
� ����		� Elapsed��June �� ����	� �June �
� ����		

� �� days

This example is similar to the one above in that the �nest calendric granularity of the �rst instant

is coarser than that of the second�

We now look at the case when the instants belong to di�erent calendars� Let �i�� � � � � in	 and

�i
�

�� � � � � i
�

m	 be two time instants belonging to calendars C� and C�� respectively� The algorithm to

�nd the elapsed time between �i�� � � � � in	 and �i
�

�� � � � � i
�

m	 is�

Algorithm �	� Elapsed time between instants belonging to di�erent calendars�

Convert �i
�

�� � � � � i
�

m	 to �i
��

� � � � � � i
��

n	 using Derivations ��� and ���

SN �� Elapsed��i�� � � � � in	� �i
��

�� � � � � i
��

n		

The algorithm �rst converts the time instant �i
�

�� � � � � i
�

m	 to its equivalent counterpart in calendar

C�� �i
��

� � � � � � i
��

n	 using Derivations ��� and ���� It then �nds the elapsed time between �i�� � � � � in	

and �i
��

� � � � � � i
��

n	� The result is a time span� SN � which is of the form shown in formulas ��	 or ��	

�see Section ���	�
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�	�	� Operations between Spans and Time Instants

In performing arithmetic operations that involve both spans and time instants�� if all the calendric

granularities of the span belong to the same calendar as the instant� then there are two cases to

consider�

If the �nest calendric granularity of the span is coarser than or the same as the �nest calendric

granularity of the instant� then each component of the span is simply added to the corresponding

calendric element of the time instant�

Example �	� If the span is � months and the instant is June �
� ���
� then adding � months

to June �
� ���
 simply results in the time instant August �
� ���
� Similarly� adding the span

�� days to June �
� ���
 results in the time instant July �� ���
�

If the �nest calendric granularity of the span is �ner than the �nest calendric granularity of

the time instant� then the time instant is �rst replaced by an equivalent time instant whose �nest

granularity is the same as that of the span� and the addition is then carried out�

Example �	� If the span is � months � 
 days and the time instant is June� ���
� then the

time instant is �rst replaced by its equivalent time instant June �� ���
� The addition of the span

� months � 
 days to this time instant results in the time instant August �� ���
�

Now consider the situation when the calendric granularities of the span do not belong to the

same calendar as the instant� Let S be a span of the form�

S �
NX
i��

MX
j��

�KCi
j �GCi

j 	

�
MX
j��

�KC�
j �GC�

j 	 � � � ��
MX
j��

�KCN
j �GCN

j 	

� SC� � SC� � � � �� SCN

Basically SCi is a span composed of calendric granularities belonging to calendar Ci� The algorithm

for adding span S to a time instant ICA �a time instant belonging to calendar CA	 is as follows�

�We only consider operations in which the span is determinate� If the span is indeterminate� the arith�

metic operation results in an indeterminate time instant� An example of an indeterminate time instant is

July� � ���� � July� 	� ���� which denotes any time between July� � ���� and July� 	� ����� Indeterminate

time instants are discussed in detail in �GL�OS����

��



Algorithm �	� Addition of a span to an instant�

I
�

CA
�� ICA

repeat for i �� � to N

Convert I
�

CA
to ICi using Derivations ��� and ���

I
�

Ci
�� SCi � ICi

Convert I
�

Ci
to I iCA using Derivations ��� and ���

I
�

CA
�� I iCA

return I
�

CA

For each span component� SCi � the algorithm converts the time instant belonging to calendar

CA to a corresponding time instant in calendar Ci� adds it to SCi and converts the resulting instant

back to an instant of calendar CA� The algorithm for subtracting span S from a time instant ICA

is similar� That is� ICA � S � ICA � ��S	�

� Incorporating Calendars and Temporal Entities in an Object

Model

In this section we describe how the calendar model� and the anchored and unanchored temporal

primitives introduced in Sections ��� are incorporated into an object model� Our work is done

within the framework of the TIGUKAT� � �OPS��
� system which is under development at the

University of Alberta� however� it is applicable to any object DBMS with similar characteristics�

In the following sections� we �rst give a brief overview of TIGUKAT and then show the actual

mapping between various temporal notions introduced so far and TIGUKAT types and behaviors�

Types relevant to the representation of temporal information are depicted in Figures ���� along with

their subtyping relationships� Likewise� every operation de�ned in this paper has a corresponding

TIGUKAT behavior� These behaviors �along with their signatures	 are given in Tables ��
� The

detailed time type system can be found in �GL�OS�
��

�TIGUKAT 
tee�goo�kat� is a term in the language of Canadian Inuit people meaning �objects�
 The Canadian
Inuits� commonly known as Eskimos� are native to Canada with an ancestry originating in the Arctic regions of the
country�

��



��� The TIGUKAT Object Model Overview

The TIGUKAT object model �Pet��� is purely behavioral with a uniform object semantics� The

model is behavioral in the sense that all access and manipulation of objects is based on the ap�

plication of behaviors to objects� The model is uniform in that every component of information�

including its semantics� is modeled as a �rst�class object with well�de�ned behavior� Other typical

object modeling features supported by TIGUKAT include strong object identity� abstract types�

strong typing� complex objects� full encapsulation� multiple inheritance� and parametric types�

The primitive objects of the model include� atomic entities �reals� integers� strings� etc�	� types

for de�ning common features of objects� behaviors for specifying the semantics of operations that

may be performed on objects� functions for specifying implementations of behaviors over types�

classes for automatic classi�cation of objects based on type�� and collections for supporting general

heterogeneous groupings of objects� In this paper� a reference pre�xed by �T � refers to a type�

�C � to a class� �B � to a behavior� and �T X� T Y �� to the type T X parameterized by the type

T Y� For example� T person refers to a type� C person to its class� B age to one of its behaviors

and T collection� T person � to the type of collections of persons� A reference such as David�

without a pre�x� denotes some other application speci�c reference�

The access and manipulation of an object�s state occurs exclusively through the application

of behaviors� We clearly separate the de�nition of a behavior from its possible implementations

�functions	� The bene�t of this approach is that common behaviors over di�erent types can have a

di�erent implementation in each of the types� This provides direct support for behavior overloading

and late binding of functions �implementations	 to behaviors�

The model separates the de�nition of object characteristics �a type	 from the mechanism for

maintaining instances of a particular type �a class	� A type de�nes behaviors and encapsulates

behavior implementations and state representation for objects created using that type as a template�

The behaviors de�ned by a type describe the interface to the objects of that type�

In addition to classes� a collection is de�ned as a general grouping construct� It is similar to a

class in that it groups objects� but it di�ers in some respects� First� object creation cannot occur

through a collection� only through classes� Second� an object may exist in any number of collections�

but is a member of the shallow extent of only one class� Third� classes are automatically managed

by the system based on the subtype lattice whereas the management of collections is explicit �

�Types and their extents are separate constructs in TIGUKAT�
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meaning the user is responsible for their extents� Finally� the elements of a class are homogeneous

up to inclusion polymorphism� while a collection may be heterogeneous in the sense that it may

contain objects of types that are not in a subtype relationship with one another�

��	 Calendars

We start with a description of how our model of calendars is incorporated into the TIGUKAT

object model� The type T calendar models di�erent kinds of calendars� It is a direct subtype of

the T object type as shown in Figure �� Behaviors de�ned on T calendar are shown in Table ��

Supertype

T_object

Subtype

T_calendar

Figure �� The calendar type�

Behavior B name returns the name of a calendar e�g�� Gregorian� Academic� B origin returns

the origin of the calendar in terms of a span� B calGranularities returns a totally ordered collection

of the calendric granularities of the calendar� For example� B calGranularities of the Gregorian cal�

endar shown in Figure � returns fGY ear� GMonth� GDay� GHourg� Finally� behavior B convFunctions

returns a list of the conversion functions described in Section ��

T calendar B name� T string

B origin� T span

B calGranularities� T orderedCollhT calGranularityi
B convFunctions� T listhT functioni

Table �� Behaviors de�ned on calendars�

��� Spans

We now look at the types related to spans� These are shown in Figure 
� The various behaviors on

time spans together with their signatures are shown in Table ��

T_span

Supertype

T_indeterminateSpan T_discreteSpan

Subtype

Figure 
� Span types�
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The type T indeterminateSpan is introduced to model indeterminate time spans� Behaviors

de�ned on T indeterminateSpan include B lessthan and B greaterthan which model the compar�

ison operations on time spans� Behaviors B add and B subtract allow determinate spans to be

added to and subtracted from indeterminate spans� respectively�

T indeterminateSpan has the subtype T span which models continuous determinate spans�

This subtyping relationship has the following justi�cation� Every determinate span can be treated

as an indeterminate one �with identical lower and upper bounds	�

T indeterminateSpan B lessthan� T indeterminateSpan� T boolean

B greaterthan� T indeterminateSpan� T boolean

B add� T span � T indeterminateSpan

B subtract� T span � T indeterminateSpan

B lowerBound� T span

B upperBound� T span

T span B add� T span � T span

B subtract� T span � T span

B calGranularities� T collectionhT calGranularityi
B coe�cient� T calGranularity� T real

B multiply � T real � T span

B divide� T real � T span

B convertTo� T calGranularity� T indeterminateSpan

T discreteSpan B add� T discreteSpan� T discreteSpan

B subtract� T discreteSpan� T discreteSpan

B coe�cient� T calGranularity� T integer

B multiply � T integer� T discreteSpan

B succ� T span

B pred� T span

Table �� Behaviors de�ned on time spans�

Behaviors B add and B subtract are re�ned in T span to take a continuous determinate span as

an argument and return a continuous determinate span as the result� Behaviors B calGranularities�

B coe�cient� B multiply � B divide and B convertTo in T span are used in the conversion process

of a time span to a speci�c calendric granularity as shown in Section ���� B calGranularities

returns a collection of calendric granularities in a time span� For example� the behavior application

�� month�
 days	� B calGranularities returns fGday� Gmonthg� The behavior B coe�cient returns

the �real	 coe�cient of a time span given a speci�c calendric granularity� For example� �� month�


 days	� B coe�cient�Gday	 returns 
��� Behaviors B multiply and B divide are basically used in

the conversion process� The B convertTo behavior is derived from the rest of the behaviors in

T span and essentially converts a determinate time span to an indeterminate time span with the

speci�ed calendric granularity�

The type T discreteSpan is de�ned as a subtype of the T span type described above� Behaviors

B add and B subtract are re�ned in T discreteSpan to take a discrete determinate span as an

��



argument and return a discrete determinate as a result� Behavior B coe�cient is re�ned to return

the integer coe�cient of a discrete time span and the B multiply behavior is re�ned to multiply

an integer by a discrete time span� Behaviors B succ and B pred are de�ned in T discreteSpan

to return the next or previous discrete time span of a particular discrete time span� For example�

�� months � �
 hours	� B succ returns the time span � months � �� hours while �� months �

�
 hours	� B pred returns the time span � month � �� hours�

��
 Calendric Granularities

Recall that a calendric granularity in our framework is a special kind of a determinate span�

Therefore� we de�ne the type T calGranularity as a subtype of T discreteSpan as shown in

Figure ��

Supertype

T_calGranularity

Subtype

T_discreteSpan

Figure �� Calendric Granularity types�

Instances of T calGranularity represent the di�erent kinds of calendric granularities� e�g��

year� hour� semester� Behaviors on calendric granularities are shown in Table 
�

T calGranularity B calendar� T calendar

B similarCalGran� T collectionhT calGranularityi
B calElements� T listhT calElementi
B lowerBound� T calGranularity

B upperBound� T calGranularity

B exactlyConvertibleTo� T calGranularity� T boolean

B i�lbf � T integer� T calGranularity� T integer

B r�lbf � T real � T calGranularity� T real

B i�ubf � T integer� T calGranularity� T integer

B r�ubf � T real � T calGranularity� T real

Table 
� Behaviors de�ned on calendric granularity�

Behavior B calendar in T calGranularity returns the calendar which the calendric granularity

belongs to� Behavior B similarCalGran returns the set of calendric granularities that have similar

duration as a particular calendric granularity� Behavior B calElements returns an ordered collec�

tion of the calendric elements of a calendric granularity� For example B calElements applied on

the calendric granularity semester returns hFall�Winter� Spring� Summeri� The B lowerBound

and B upperBound behaviors are re�ned accordingly to return a calendric granularity as the
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lower and upper bound of a calendric granularity� Since the calendric granularity is determi�

nate� these behaviors return the same value� The behavior B exactlyConvertibleTo checks if a

calendric granularity is exactly convertible to another calendric granularity� For example� Gday�

B exactlyConvertibleTo�Ghour	 returns True� while Gmonth� B exactlyConvertibleTo�Gday	 returns

False� T calGranularity also de�nes new behaviors� B i�lbf � B r�lbf � B i�ubf and B r�ubf � B i�

lbf and B i�ubf return the lower and upper bound factors �see Section ���	 of two calendric granu�

larities with integer coe�cients� Similarly� B r�lbf and B r�ubf return the lower and upper bound

factors of two calendric granularities with real coe�cients� For example� Gmonth� B i�lbf ��� Gday	

returns �� while Gmonth� B i�ubf ��� Gday	 returns ���

��� Time Instants

In our framework� every instant can be treated as an interval with identical lower and upper

bounds� Therefore� the T instant is de�ned to model time instants and is a direct subtype of the

T interval type which models time intervals�

Supertype

T_interval T_instant

Subtype

Figure �� Instant types�

Behaviors de�ned in T instant as shown in Table � are the comparison behaviors B less�

B greater� B leq and B geq �these are essentially the ����� and � operators� respectively	� the

B elapsed behavior which returns the elapsed time �duration	 between two time instants� and

the B add and B subtract which are used in arithmetic operations between time instants and

time spans� Behavior B calendar returns the calendar which the instant belongs to and behavior

B calElements returns a list of the calendric elements in a time instant� For example� B calElements

applied to the instant June �
� ���
 returns the list ����� �� �
	�

� Related Work

Although there have been a substantial number of proposals on adding time to object models �RS���

RS��� KS��� WD��� DW��� SC��� CG���� it is quite surprising to note that none of them provides

comprehensive support for modeling multiple calendars and handling multiple granularities� Most

of these models assume the presence of an underlying calendar �usually Gregorian	 which has

��



T instant B less� T instant� T boolean

B greater� T instant� T boolean

B leq� T instant� T boolean

B geq� T instant� T boolean

B elapsed� T instant� T span

B add� T span� T instant

B subtract� T span� T instant

B calendar� T calendar

B calElements� T listhT calElementi

Table �� Behaviors de�ned on time instants�

a pre�xed set of granularities� For example� in �RS��� the presence of the Gregorian calendar

with granularities Year� Month� Day� Week� Hour� Minute� and Second is assumed� Translations

between granularities in operations are automatically provided� with the default being to convert

to the coarser granularity� It is not clear how these translations are carried out though�

Most of the research on temporal relational models has concentrated on modeling temporal

information with a single underlying granularity� There have been some recent proposals however�

that handle multiple granularities�

Cli�ord and Rao �CR��� introduce a general structure for time domains called a temporal uni�

verse� A temporal universe consists of a totally ordered set of granularities� Operations are de�ned

on a temporal universe� which basically convert di�erent anchored times to a �common	 �ner gran�

ularity before carrying out the operation� Wiederhold et al�� �WJL��� also examine the issue of

multiple granularities� An algebra is described that allows the conversion of event times to an

interval representation� This usually involves converting the coarser granularity to the �ner granu�

larity in light of the semantics of the time varying domains� �WJS��� extend this work by providing

semantics for moving up and down a granularity lattice� In �BP�
� the issues of absolute� relative�

imprecise and periodic times are discussed� Multiple granularities are supported for each time�

Operands �which are anchored	 in operations involving mixed granularities are converted to the

coarser granularity to avoid indeterminacy� In a more recent work �MPB���� the existence of a min�

imum underlying granularity �quantum of time	 to which time is mapped� is assumed� Montanari

et al�� �MMCR��� examined the issue of multiple granularities� but considered exact granularity

conversions only� In �CSS���� structured collections of time intervals are de�ned and termed as

�calendars�� Corsetti et al�� �CMR��� deal with di�erent time granularities in speci�cations of

real�time systems�

None of the above works considers granularity conversions in terms of unanchored durations

of time �this includes TSQL� �Sno�
b�� discussed below	� To the best of our knowledge� this

��



feature is novel to our work� In the above works� granularities are treated as partitionings on the

timeline whereas in our work� granularities are treated as unit spans� Hence� while we consider

both anchored and unanchored granularity conversions� other proposals only consider anchored

granularity conversions� Furthermore� none of the above works address the issues of integration of

granularities from multiple calendars�

Our work is closest to that of TSQL� �Sno�
b� in that TSQL� supports multiple granularities

and multiple calendars� However� there are some di�erences between our approach and theirs�

� A notable problem in TSQL� is that a granularity is an anchored partitioning on the timeline�

whereas a span is an unanchored duration of time� Consequently� conversions between spans is

not possible� More speci�cally� all conversions of spans �from both �ner to coarser granularity

and vice�versa	 gives rise to indeterminate spans as a default� For example� the span � day

when converted to the granularity of hours results in the span � � �� hours� On the

contrary� in our approach a granularity is a special kind of span with unit duration� Hence�

we allow both exact and inexact conversions between spans �see Section �	� For example� the

span � day when converted to the granularity of hours results in the span �� hours in our

approach�

� Before every binary operation involving spans they convert both operands to a common gran�

ularity� Our approach allows us to avoid these conversions� thereby preventing information

loss� For example� TSQL� cannot represent time spans like � month and � day� This would

have to be represented as days �assuming the underlying base granularity is a day	� necessarily

leading to an indeterminate span and thereby losing information�

� TSQL� treats all instants as indeterminate� In contrast� we treat our instants as indeterminate

only in certain operations as shown in Section �� In all other operations� especially those

involving operands having granularities belonging to di�erent calendars� we treat instants

as determinate� This is because we use the calendric functions de�ned in Section � to map

instants to their respective values on a global timeline when performing operations that have

operands of di�ering granularities belonging to possibly di�erent calendars�

��



� Conclusion

In this paper we have gone back to the basic modeling of temporal entities� We have identi�ed

the various issues which arise when trying to accommodate the various characteristics of temporal

entities and shown that they have not been resolved comprehensively� In light of this� we have

provided a model for supporting calendars and have shown how multiple granularities are integrated

within calendars� We have further shown how anchored and unanchored temporal entities are

represented within the context of calendars� We described a calendric granularity as being part of

a calendar and represented it as a special kind of span � a span with a unit duration� We then showed

how conversions between spans of mixed granularities is carried out� The semantics of operations

involving anchored and unanchored information were then given by utilizing appropriate algorithms�

Finally� we showed how the model of calendars� and anchored and unanchored information can be

implemented within an object model�

Modeling multiple granularities also results in temporal indeterminacy� For example� if the

condition of a patient is checked on an hourly basis and it was noticed that a patient�s condition

was signi�cantly worse at a particular hour� say �am May ��� one can only reasonably conclude

that his condition deteriorated sometime between 
 � ��am May �� and 
 � 
�am May ���In this

paper� we have concentrated on modeling multiple granularities and giving a comprehensive solution

to the issues that arise therein� In �GL�OS�
� we discuss our model of supporting indeterminate

temporal entities�

In conclusion we emphasize that modeling of the basic anchored and unanchored temporal

entities is an essential ingredient in the design of temporal models and temporal query languages�

It is our position that assuming a simplistic view of the underlying temporal entities and thereby

avoiding the inherent issues which arise will only make the resulting temporal model and temporal

query language very restricted for real�world temporal data usage�
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