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Abstract

This thesis focuses on the measure algebra M(S) of a locally compact

semitopological semigroup S. In particular, we consider the analog of the

group algebra L1(G) of a locally compact group G on S and the topological

amenability of S. Among other results which shall be explained further in the

introduction, the thesis answers the following open problems.

1. Baker 90’ and Dzinotyiweyi 84’ [6, 18]

Let L(S) = {µ ∈M(S); s 7→ δs ∗ |µ| is weakly continuous}. It is known

that if S = G, then L(S) = L1(G). Is L(S) a norm closed ideal of M(S)

that closed under absolute continuity in general? We shall answer this

question in the positive in Section 3.3 and 3.4.

2. Day 82’ [15]

We say S is strong topological left amenable if there is a net of probability

measure (µα) such that ‖ν ∗ µα − µα‖ → 0 uniformly for all probability

measures ν supported on a compact subset K of S. Does strong topo-

logical amenability implies non-trivial L(S)? The background for this

question will be explained fully in Section 4.1, along with a counterexam-

ple that answers this problem in the negative.

3. Wong 79’ [50]
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We say S is topological left amenable if there is a net of probability

measure (µα) such that ‖ν ∗ µα − µα‖ → 0 for any probability measure

ν on S. It was shown that when S is a discrete semigroup or a locally

compact group, a locally compact Borel subsemigroup T is topological left

amenable if and only if (1) S is topological left T -amenable, that is, there

is a net of probability measures (µα) on S, such that ‖ν ∗ µα − µα‖ → 0

for any probability measure ν on S that is supported on T , and (2)

limα µα(T ) > 0. Does similar result hold for locally compact semitopo-

logical semigroups? We shall prove this result in Section 4.2.
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Chapter 1

Introduction

Throughout the thesis, S is a locally compact semitopological semigroup,

that is, a semigroup with a locally compact topology such that the multiplication

is separately continuous. If the multiplication is jointly continuous, we say S

is a locally compact topological semigroup. We write M(S) as the Banach

algebra of complex Radon measures on S with the total variation norm.

Abstract harmonic analysis is rooted in the study of topological groups.

One of its primary goal is to extend Fourier analysis to non-commutative and

locally compact groups. In the process of studying locally compact groups

G, the Banach algebra L1(G) of complex-valued, integrable Borel functions

with respect to Haar measure plays an important role. It allows us to use the

functional analytic technique to study the underlying group structure. In the

case of locally compact semitopological semigroup, there is no direct extension

of L1(G) due to the lack of a Haar measure. However, it is well-known that

L1(G) is isometrically isomorphic to the closed subalgebra of M(S) consisting

of measures that are absolutely continuous with respect to a Haar measure.

These measures are precisely those complex Radon measures µ that are (left)

translation continuous, i.e., the translation map G → M(G) : g 7→ δg ∗ µ is
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weakly continuous. Based on this characterization, Baker and Baker generalized

L1(G) to locally compact topological semigroup in a paper series [3, 4, 5].

They defined the semigroup algebra L(S) to be the set of complex Radon

measures µ such that the translation maps S → M(S) : s 7→ δs ∗ |µ| and

S → M(S) : s 7→ |µ| ∗ δs are weakly continuous. Note that if S is a locally

compact group, L(S) is exactly L1(S). Among other things, Baker and Baker

proved that L(S) is a norm closed two-sided ideal of M(S) that is closed under

absolute continuity. Subspaces of M(S) that have this nature are sometimes

called L-ideals follows the notation of [41]. In literature, the closure of the

union of supports of all measures in L(S) is called the foundation of S. When

S is a locally compact topological semigroup, the foundation of S is a closed

two-sided ideal of S that could be empty. We call S a foundation semigroup

if its foundation is the whole of S. It is natural to expect L(S) to reflect

properties of the foundation of S, like L1(G) reflects that of G, when G is a

locally compact group. Because L(S) is closed under absolute continuity, a

foundation of a semigroup is always a foundation semigroup. Thus we can

always restrict our attention to the foundation semigroups.

Many authors have extensively studied L(S) for topological foundation

semigroups. For example, Dzinotyiweyi [17] studied L(S) for topological semi-

groups that are not necessarily locally compact; for locally compact topological

semigroups, Sleijpen [39] studied the algebra of right multipliers of L(S); Bami

[7] studied the relationship between the representations of S and the represen-

tations of L(S) on reflexive Banach spaces; Amini and Medghalchi [1] studied

Fourier algebras on locally compact topological semigroups with continuous

involutions. However, it is not obvious to consider L(S) for semitopological

semigroups because most of the structure theorem of L(S) depends heavily on

the jointly continuous multiplication assumption of S. As mentioned in the
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survey papers of Dzinotyiweyi [18] and Baker [6], they expected the extensively

studied theory of L(S) for locally compact topological semigroup to hold for

locally compact semitopological semigroup, but to prove that L(S) is an L-ideal

in the semitopological case remains a barrier. We shall give a proof of their

conjecture in Chapter 2.

Unlike that of locally compact groups, the existence of L(S) is not guaran-

teed for locally compact semigroups. There has been many attempts to find

the existence a non-trivial L(S), i.e, L(S) 6= {0}, for example, in the treatises

of Sleijpen [37] and Dzinotyiweyi [17]. We shall give a characterization of L(S)

when S is a compact semitopological semigroup with a left invariant measure

in Section 3.8. A compact semigroup with a dense subgroup is an example for

such semigroups.

Another topic in this thesis is the topological left amenability of S, which

will be introduced in Section 2.3. In short, topological left amenability can

be characterized as the existence of a net of probability measures of left

invariance under different topologies. Along with the studies of different types

of topological amenability for locally compact semitopological semigroups,

Day [15] inquired if a strong type of topological left amenability implies the

existence of non-trivial L(S), since the existence of non-trivial L(S) implies

the coincidence of the strong and the weak topological amenability. We shall

discuss the background of this question in details in Section 4.1 along with a

counterexample to the question.

In analysis, one often cares when we can preserve a property of a substructure

and when we can extend the property from a substructure. For topological

left amenability of a locally compact semitopological semigroup S, we consider

the topological left amenability of its locally compact Borel subsemigroups

T . Wilde [44] and Wong [50] proved respectively that when S is a discrete
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semigroup or a locally compact group, T is topological left amenable if and only

if (1) S has a net of probability measure of left invariance under the translation

of probability measures supported on T , and (2) the net of probability measure

does not vanish on T . However, as Wong [50] pointed out, the proof for locally

compact topological semigroup is left open. We shall give a proof of this result

for locally compact semitopological semigroup in Section 4.2.

This thesis is organized as follows:

In Chapter 2, we provide preliminaries needed for this thesis, including the

introduction of measure algebra of a locally compact semitopological semigroup

and a representation of its dual. Then, we describe the origin of topological

amenability and its characterizations in Section 2.3. Section 2.4 - 2.5 are

materials closely related to the hereditary property of topological amenability.

Section 2.6 lists some notations that we frequently use throughout this thesis.

In Chapter 3, we define L(S) to be the set of all complex Radon measures

µ, such that the map s 7→ δs ∗ |µ| (∗) is weakly continuous. Such measures

are called left translation continuous measures in this thesis. Recall in Baker

and Baker’s original definition for the topological case, they also require the

right translation map s 7→ |µ| ∗ δs to be weakly continuous. Since the thesis

does not involve results that require this kind of symmetry, we only use the

left translation to define the semigroup algebra L(S). However, it should be

clear that the results in this thesis also work for the two-sided definition. In

Section 3.1 and 3.2, we look at the equivalent definitions of L(S) and discuss if

the total variation |·| is removable from the definition. In Section 3.3 and 3.4,

we prove the conjecture that L(S) is an L-ideal of M(S). In Section 3.5, we

consider the foundation of S, or in another word, the support of L(S), where

we mainly focus on the algebraic and topological properties of the foundation.

In Section 3.6, we study when L(S) has a right identity, and when it has a
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bounded left approximate identity. As a corollary, our result shows L1(G) has

a right identity if and only if it is discrete. In Section 3.6, we prove that in

the presence of a non-trivial L(S), there are abundant measures such that the

left translation map (∗) is norm continuous. Then in Section 3.8, we give a

characterization of L(S), when S is a compact semitopological semigroup with

left invariant measures.

In Chapter 4, we answer the open problem raised by Day in [15] by providing

a counterexample to show that the strong topological left amenability does not

guarantee a non-trivial L(S). In Section 4.2, we give a proof on the hereditary

property of topological amenability, which answers an open problem raised by

Wong [50].

In Chapter 5, we list some problems that are closely related to the thesis

and are believed to be still open, along with some motivational remarks.
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Chapter 2

Preliminaries

A semigroup S is a locally compact semitopological semigroup if (1) it is

a locally compact space; (2) the multiplication on S is separately continuous.

Throughout this thesis, S is a locally compact semitopological semigroup unless

otherwise stated.

2.1 Measure Algebras

Let C0(S) be the set of all continuous functions on S that vanish at infinity.

It is known that C0(S) is a Banach space under the supremum norm. Let

M(S) be the Banach space of complex Radon measures on S with total

variation norm. By Riesz-Markov Theorem, we can identify M(S) with C0(S)∗.

Let ν, µ ∈ M(S). One can define convolution of the two measures through

〈ν ∗ µ, f〉 =
∫∫

f(st)dν(s)dµ(t) for f ∈ C0(S). It is not hard to check that

M(S) with this convolution is a Banach algebra. Wong [48] showed that the

order of this integration is interchangeable. In fact, for f ∈ L1(|ν| ∗ |µ|),

∫∫
f(st)dν(s)dµ(t) =

∫∫
f(st)dµ(t)dν(s) (∆)
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Moreover,
∫
f(st)dν(s) ∈ L1(|µ|) and

∫
f(st)dµ(s) ∈ L1(|ν|). The result is not

trivially implied by Fubini’s theorem since the map f ◦ π is not measurable on

S × S in general. Here π : S × S → S : (s, t) 7→ st. One may find the details

for the argument is in [48, p. 608].

The Banach algebra M(S) is often referred to as the measure algebra of

S, which is the main topic of this thesis. Let µ ∈ M(S), the support of µ is

the set suppµ := {s ∈ S; |µ| (U) > 0 for any open neighborhood U of S}. It

is shown in [48, 4] that for ν, µ ∈ M(S), supp |ν| ∗ |µ| = suppν · suppµ. It

is also worth noting that a set might be |ν ∗ µ|-measurable but not |ν| ∗ |µ|-

measurable (see e.g. [26, 19.25]).

The convolution on M(S) introduces Arens product on M(S)∗∗. Let m,n ∈

M(S)∗∗, f ∈M(S)∗, ν, µ ∈M(S). Then

m ∗ n ∈M(S)∗∗ m ∗ n(f) = m(n ∗ f)

n ∗ f ∈M(S)∗ n ∗ f(µ) = n(f ∗ µ)

f ∗ µ ∈M(S)∗ f ∗ µ(ν) = f(µ ∗ ν)

Remark 2.1.1. 1. Symmetrically, we define µ ∗ f ∈ M(S)∗, such that µ ∗

f(ν) = f(ν ∗ µ). We can see that M(S)∗ and M(S)∗∗ are both Banach

M(S)-bimodule.

2. Let A be a Banach space. One can naturally embed A into A∗∗. In this

thesis, we constantly treat A as a norm closed subspace of A∗∗ whenever needed.

3. Let n ∈ M(S)∗∗. The map M(S)∗∗ → M(S)∗∗ : m → m ∗ n is weak*

continuous. However M(S)∗∗ →M(S)∗∗ : m→ n ∗m is not weak* continuous

in general. The map is weak* continuous if n ∈ M(S). For details on Arens

product, one may refer to [11, 2.6].
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We can introduce a natural order on M(S) by letting µ ≥ 0 if µ(E) ≥ 0 for

all Borel subset E of S. Then M(S) is a Banach lattice under this order. Let

ν, µ. We say ν is absolutely continuous with respect to µ, denoted as ν � µ, if

for any ε > 0, there is δ > 0, such that whenever |µ| (E) < δ for some Borel

subset E, there is |ν| (E) < ε. Note that if ν � µ, then ν = lim
n→∞

ν ∧ n |µ| (see

e.g. [41]).

The following is a list of properties that characterize the weakly compact

subsets of M(S). We shall refer to this result frequently.

Theorem 2.1.2. [25, 16] Let X be a locally compact space. Let A be a subset

of M(X). Then the following are equivalent.

(i) A is relatively weakly compact.

(ii) For each pairwisely disjoint sequence (Oi) of open subsets, µ(Oi) → 0

uniformly for µ ∈ A.

(iii) Let ε > 0. Then,

a. there is a compact subset K of X, such that |µ| (X\K) < ε for

µ ∈ A;

b. for each compact subset K of X, there is an open subset O ⊇ K,

such that |µ| (O\K) < ε for µ ∈ A.

(iv) There is a positive measure λ in M(S), such that A is uniformly absolutely

continuous with respect to λ. That is, for each ε > 0, there is δ > 0, such

that if λ(E) < δ for some Borel subset E, then |µ| (E) < ε for µ ∈ A.
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2.2 Dual of Measure Algebra

In this section, we identify M(S)∗ as a subspace of
∏
{L∞(|µ|); µ ∈M(S)}.

The details of the theory can be found in [47] and [42]. Let µ ∈ M(S), we

equip L∞(|µ|) with the essential supremum norm ‖·‖µ,∞ with respect to µ.

Recall for h ∈ L∞(|µ|), ‖h‖µ,∞ = infµ(N)=0 sups6∈N |h(s)|.

A function f = (fµ)µ∈M(S) ∈
∏
{L∞(|µ|); µ ∈M(S)} is a generalized

function, if

1. sup
µ∈M(S)

‖fµ‖µ,∞ <∞

2. If ν, µ ∈M(S) and ν � µ, then fν = fµ |ν|-a.e.

Let GL(S) be the set of all generalized functions. For f ∈ GL(S), let

‖f‖ = supµ∈M(S) ‖fµ‖µ,∞ to be the norm of f . It is not hard to check that

GL(S) equipped with this norm is a Banach space.

In the previous section, we have shown that M(S)∗ is a Banach M(S)-

bimodule. Let f = (fµ)µ∈M(S) ∈ GL(S), define

f ∗ µ = (f|µ|∗|ν| ∗ µ)ν∈M(S) µ ∗ f = (µ ∗ f|ν|∗|µ|)ν∈M(S)

where

f|µ|∗|ν| ∗ µ(t) =

∫
f|µ|∗|ν|(st)dµ(s) µ ∗ f|µ|∗|ν|(t) =

∫
f|µ|∗|ν|(ts)dµ(s)

From last section, we know that f|µ|∗|ν| ∗µ and µ ∗ f|µ|∗|ν| are |ν|-measurable.

By using the fact that f|µ|∗|ν| ∈ L∞(|µ| ∗ |ν|) and supp |µ| ∗ |ν| = suppµ · suppν.

It is not hard to check that both of them are in L∞(|ν|). Therefore, GL(S) is

also a Banach M(S)-bimodule.
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Theorem 2.2.1. [47] Let T : GL(S)→M(S)∗ : Tf(µ) =
∫
fµdµ. Then T is

an isometric order preserving isomorphism that commutes with translations of

M(S), i.e., T (f ∗ µ) = T (f) ∗ µ, T (µ ∗ f) = µ ∗ T (f).

Remark 2.2.2. 1. As the double dual of the commutative C∗-algebra C0(S),

M(S)∗ itself is a commutative von Neumann algebra. Let F,G ∈M(S)∗. Let

f = T−1F , g = T−1G. The Arens product of F and G, induced by C0(S),

is F · G = (fµgµ)µ∈M(S). Then T is an isomorphism between unital Banach

algebras if we equip GL(S) with the coordinate-wise multiplication. The

identity of M(S)∗ is 1, where 1(µ) = µ(S) for µ ∈ M(S). The identity of

GL(S) is e, where eµ = 1 |µ|-a.e.. It is clear that T (e) = 1.

2. Let BM(S) be the set of bounded Borel measurable functions on S. One

can view BM(S) as a subspace of GL(S). It is known that BM(S) is a Banach

space with the supremum norm ‖·‖sup. From the definition, ‖·‖sup coincide with

the norm on GL(S) and equivalently the dual norm on M(S)∗, when consider

BM(S) as a subspace of GL(S) and M(S)∗. Moreover, if i : BM(S)→M(S)∗

or GL(S) is the natural embedding, one has i(lsf) = i(f) ∗ δs for s ∈ S.

2.3 Amenability

The theory of amenability arose in finding finitely additive positive set

functions on discrete groups that are invariant under group translations. In

1957, Day [12] extended the idea to discrete semigroups and named discrete

semigroup with left invariant positive finitely additive set functions as left

amenable semigroups. His formal definition involves the concept of left invariant

means. Suppose S is a discrete semigroup. Let l∞(S) be the Banach space

of all bounded functions on S with supreme norm. An element m ∈ l∞(S)∗
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is a mean if m(1) = 1 = ‖m‖, where 1 is the constant 1 function on S. Note

that a mean is always positive. We say a mean m ∈ l∞(S)∗ is left invariant if

m(lsf) = m(f) for all f ∈ l∞(S), s ∈ S. Here lsf(t) = f(st) for t ∈ S. The

discrete semigroup S is left amenable if there is a left invariant mean on l∞(S).

Later, amenability was extended to locally compact groups. Let G be a

locally compact group with a Haar measure λ. It is well-known that λ is unique

up to scalar multiplication. Let L∞(G) be the Banach space of essentially

bounded functions on G, with respect to λ, with the essential supremum norm

‖·‖∞. Let L1(G) be the Banach space of integrable functions with respect

to λ, with the L1 norm ‖·‖1. We say G is topological left amenable if there

is m ∈ L∞(G)∗, such that ‖m‖ = 1 = m(1) and ν ∗m = m for all positive

ν in L1(G) with norm 1. The operation ∗ here is the Arens product on

L∞(G)∗ = L1(G)∗∗ introduced by the convolution on L1(G). As suggested by

Day [12], we may also consider to define amenability on CB(G), the set of

continuous bounded functions on G. In this case, we say G is left amenable

if there is m ∈ CB(G)∗, such that ‖m‖ = 1 = m(1) and m(lsf) = m(f) for

s ∈ S and f ∈ CB(G). For locally compact groups, topological left amenability

on L∞(G) is equivalent to the left amenability on CB(G). For details, one can

see [23, Section 2.2].

2.3.1 Topological Left Invariant Means

There has been many efforts in literature to extend amenability to semi-

topological semigroups, especially in the locally compact case. Researchers

studied amenability on closed subspace of CB(S) (e.g. [20], [30], [34], [53]),

and on M(S)∗ (e.g. [15], [35], [45], [52]). This thesis mainly focus on the later.

As we saw in Remark 2.2.2, CB(S) can be considered as a closed subspace of

11



M(S)∗. Thus amenability defined on M(S)∗ can be viewed as a generalization

of amenability defined on CB(S).

Let P (S) be the set of all probability measures on S. We say m ∈M(S)∗∗

is a mean on M(S)∗ if ‖m‖ = m(1) = 1. Recall 1(µ) = µ(S) for µ ∈ M(S).

Then the set M(S) of all means on M(S)∗ is a weak* closed subsemigroup of

M(S)∗∗. By Goldstine theorem, the embedding of P (S) in M(S)∗∗ is weak*

dense in M(S). We say a mean m ∈ M(S)∗∗ is topological left invariant, if

µ ∗m = m for all µ ∈ P (S). Let n ∈M(S). If m is a topological left invariant

mean, then by Remark 2.1.1, n ∗m = m, while m ∗ n is again a topological

left invariant mean. We let Ml(S) denote the set of topological left invariant

means on M(S)∗. It is easy to see that Ml(S) is a weak* compact right ideal

of M(S) consisting of right zeros.

Let A be a Banach algebra, X is a Banach A-bimodule. A bounded linear

map D : A → X is a derivation if D(ab) = aD(b) + D(a)b. A derivation

D : A→ X is inner if there is x ∈ X, such that D(a) = ax− xa.

B. E. Johnson proved in [29, Theorem 2.5] that locally compact group

G is (topological) left amenable if and only if and only if for any Banach

L1(G)-bimodule X, any bounded derivation D : L1(G)→ X∗ is inner. This is

a groundbreaking result for abstract harmonic analysis and is the motivation

to define amenability for Banach algebras. We say a Banach algebra A is

left amenable if for any any Banach A-bimodule X, any bounded derivations

D : A→ X∗ is inner.

However, this result does not hold for semigroups. The reason for the failure

not only lies in the lack of proper definition for L1 functions in general. For

example, the discrete semigroup N with addition is a left amenable semigroup

since N is abelian ([12]). However, l1(Z) is not left amenable as a Banach

algebra.
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A. T.-M. Lau [31] generalized the result of Johnson to make sure similar

result holds for locally compact semitopological semigroups. Actually, Lau’s

result works not only for M(S) but also for a class of Banach algebras called

F-algebras or Lau-algebras in some literature. A Banach algebra A is an

F -algebra if A is the predual of some W ∗-algebra with an identity e and e

is a character of A. An F -algebra A is left amenable if for any Banach A-

bimodule X such that a · x = e(a)x for a ∈ A, x ∈ X, any bounded derivation

D : A→ X∗ is inner. The group algebra L1(G) is an F -algebra since it is the

predual of L∞(G). By Remark 2.2.2, we see that M(S) is also an F -algebra.

Similar to topological left invariant means defined on M(S), we can define

topological left invariant means on any F-algebra. Lau [31] showed that for

any F-algebra A, A has a topological left invariant mean if and only if A is left

amenable as an F-algebra. We say this is a generalization of Johnson’s result

because of the following theorem.

Theorem 2.3.1. [32, Corollary 2.3] Let G be a locally compact group. Then

the following are equivalent.

(i) G is (topological) left amenable.

(ii) L1(G) is left amenable as a Banach algebra.

(iii) L1(G) is left amenable as an F -algebra.

(iv) M(G) is left amenable as an F -algebra.

The following gives a list of characterizations of topological left amenability

on M(S)∗ that appeared in the literature.

Theorem 2.3.2. [31, 46, 47] Let S be a locally compact semitopological

13



semigroup. Then the following are equivalent.

(a) M(S)∗ has a topological left invariant mean.

(b) There is φ ∈ GL(S)∗, such that ‖φ‖ = φ(e) = 1 and φ(f ∗ µ) = φ(f) for

f ∈ GL(S). Recall e is an identity of GL(S).

(c) There is a net µα in P (S) such that ‖ν ∗ µα − µα‖ → 0 for each ν ∈ P (S).

Such a net is called an (LSP) net (see [15]).

(d) For each F ∈M(S)∗, {µ ∗ F ; µ ∈ P (S)}
weak∗

contains a constant func-

tional.

(e) M(S) is left amenable as an F -algebra

(f) For each µ ∈M(S), |µ(S)| = inf {‖µ ∗ ν‖ ; ν ∈ P (S)}.

Proof. The equivalence of (a) and (b) is proved in [47]; the equivalence of (a),

(c), (d), (f) is proved in [46]; the equivalence of (a) and (e) was proved in

[31].

Remark 2.3.3. 1. Actually, a mean on M(S)∗ is a topological left invari-

ant mean if and only if it is the weak* limit of an (LSP) net. Suppose

m ∈ M(S) is the weak* limit of an (LSP) net (µα). Then v ∗ m − m =

weak- limα (v ∗ µα − µα) = 0 for all ν ∈ P (S). Thus m is a topological

left invariant mean on M(S)∗. On the other hand, suppose m is a topo-

logical left invariant mean on M(S)∗. By Goldstine theorem, there is a

net (µα) in P (S), such that weak*-limα µα = m. Then let f ∈ M(S)∗,

F (ν ∗ µα − µα) → ν ∗ m(F ) − m(F ) = 0. Thus ν ∗ µα − µα
weakly−−−→ 0 for

all ν ∈ P (S). Fix ν ∈ P (S), let Nν = co‖·‖{ν ∗ µα − µα}. Then 0 ∈ Nν . Hence

there is a net σβ ∈ co{µα} ⊂ P (S), such that ‖ν ∗ σβ − σβ‖ → 0 for each
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ν ∈ P (S). Note that σβ
weak*−−−→ m. By applying the ideal of the proof of [12,

Theorem 1], we know that there is a net νγ, such that weak*-lim νγ = m and

‖ν ∗ νγ − νγ‖ → 0 for all ν ∈ P (S).

2. The condition (e) in the above theorem is known as topological right sta-

tionary property, which is important in the theory of amenability in general.

Besides (LSP) nets, the nets that converge to left invariance uniformly are also

studied in [15]. Such nets are called (LSU) nets, as in uniformly convergence to

left invariance on compact sets. We say a locally compact semitopological semi-

group is uniformly topological left amenable (U-TLA) if it has an (LSU) net.

The following gives two equivalent definitions of (LSU) nets, whose equivalence

was proved in [15].

A net (µα) in P (S) is an (LSU) net if for each compact sets K in S, either,

(a) ‖δs ∗ µα − µα‖ → 0 uniformly over s ∈ K; or

(b) ‖ν ∗ µα − µα‖ → 0 uniformly for ν ∈ P (S) supported on K.

Theorem 2.3.4. [15] (i) If (µα) is an (LSP) net, then convoluted on the left

by any probability measure or on the right by any net of probability measure

still returns an (LSP) net.

(ii) If (µα) is an (LSU) net, then convoluted on the left by any point mass

or on the right by any net of probability measure still returns an (LSU) net.

(iii) Suppose there is ν ∈ P (S) such that the map s 7→ δs ∗ ν is norm

continuous. If (µα) is an (LSP) net, then (ν ∗ µα) is an (LSU) net.

It is interesting to note that the condition in (iii) is automatically satisfied

for locally compact groups. Let G be a locally compact group. Let Ma(G) =

15



{µ ∈M(S); g 7→ δg ∗ µ is norm continuous.}. Then Ma(G) is a closed ideal in

M(G) and Ma(G) is isometrically isomorphic with L1(G) ([26, Theorem 19.18]).

Later we shall study such left translation continuous measures in Chapter 3.

2.4 Lumpy Subsets

In this section, we look at Borel subsets that approximately supports (LSP)

and (LSU) nets and their translates. To be precise, we say a Borel subset T is,

(a) topological left lumpy (TLL), if for each ε > 0 and ν ∈ P (S), there is

µ ∈ P (S), such that ν ∗ µ(T ) > 1− ε;

(b) topological left thick (TLT), if for each ε > 0 and compact subset K ⊂ S,

there is µ ∈ P (S), such that ν ∗ µ(T ) > 1− ε for all ν ∈ P (S) supports

on K, i.e. suppν ⊆ K.

Day [15] extensively studies the equivalent definitions of TLL and TLT. Here

we only include the extreme ones to use exchangeable with our definitions

above. A Borel subset T is,

(a′) TLL, if for each ε > 0, ν ∈ P (S), there is s ∈ T , such that ν∗δs(T ) > 1−ε.

(b′) TLT, if for each ε > 0 and compact subset K ⊂ S,there is µ ∈ P (S)

with compact support and µ(T ) = 1, such that ν ∗ µ(T ) > 1− ε for all

ν ∈ P (S) supports on K.

Theorem 2.4.1. [15, Section 5 and 7]

(i) Suppose S is topological left amenable, then a Borel subset is TLL if and

only if there is a topological left invariant mean m on M(S)∗ such that

m(χT ) = 1. Here χT is the characteristic functional of T on M(S), that

is, χT (µ) = µ(T ) for µ ∈M(S).
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(ii) Suppose S has an (LSP) net, then a Borel subset is TLL if and only if

there is an (LSP) net (µα) in P(S) such that µα(T ) = 1.

(iii) Suppose S has an (LSU) net, then a Borel subset T is TLT if and only if

there is an (LSU) net (µα) in P(S) such that µα(T ) = 1.

(iv) If S has an (LSU) net, then a Borel subset is TLL if and only if it is TLT.

(v) If there is µ ∈ P (S), such that s 7→ δs ∗ µ is norm continuous, then a

Borel subset is TLT if and only if it is TLL.

Remark 2.4.2. 1. When S is discrete, it is easy to check that a subset T is

TLL if and only if T is TLT if and only if for each finite subset F ⊆ S, there is

t ∈ T , such that Ft ⊆ T . The last condition is actually the definition of left

thick subsets, from which Day [14] and Wong [49] generalize the concept to

define TLL and TLT subsets respectively. In general, if a Borel subset is TLL

or TLT, then it is left thick. Left thick subsets for discrete semigroups were

studied in [33] and is shown to be closely related to the hereditary property of

left amenability. We shall see the hereditary property in details in the next

section.

2. The set of TLL or TLT subsets is closed under union by definition. It is also

clear that any Borel left ideal of S is a TLT subset and hence a TLL subset.

When S is compact, we have the following closed relations between left thick

subsets and left ideals.

Proposition 2.4.3. Let S be a compact semitopological semigroup, a closed

subset T ⊆ S is left thick if and only if T contains a left ideal.

Proof. By the above remark, we know that if T contains a left ideal, then T is
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a TLL or TLT subset, hence T is left thick.

Assume T is left thick, then by definition {s−1T ; s ∈ S} has finite intersection

property. Since T is closed, we know that {s−1T c; s ∈ S} cannot form an open

cover of S. Otherwise, by the compactness of S, there is a finite subset {si}ni=1

in S, such that S = ∪ni=1s
−1
i T c. Hence ∩ni=1s

−1
i T = ∅, which is impossible.

Hence there is a ∈ S, such that Sa ⊂ T .

The relationship between left ideals and left thick subsets of discrete semigroups

is studied in [44].

Theorem 2.4.4. [44, Lemma 5.1] Let T be a subset of a discrete semigroup

S. Let βS be the Stone-Čech compactification of S. Then T is left thick in S

if and only if the closure of T in βS contains a left ideal of βS.

Wong [51] later generalizes this result to locally compact semitopological

semigroups.

Theorem 2.4.5. [51] Let S be a locally compact semitopological semigroup.

Let T be a Borel subset of S. Recall M(S) is the set of all means on M(S)∗.

Let MT (S) = {m ∈M(S); m(χT ) = 1}. Then the following are equivalent.

(i) T is TLL.

(ii) MT (S) is a left ideal of M(S).

(iii) MT (S) is left thick in M(S).

We see that Proposition 2.4.3 gives an alternative proof for (iii)⇐⇒ (ii) in the

above theorem.
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2.5 Locally Compact Subsemigroups

In literature, we often care if a property can be passed down to a subset or

if a property on a subset can be extended to the whole set. In our case, we look

at locally compact subsemigroups to see when left amenability of the original

semigroup can be passed down and when we can extend it from subsemigroups.

The theory was first studied in [12, 33, 44] for discrete semigroups.

Theorem 2.5.1. (1) [12, Theorem 2] Let T be a subsemigroup of a discrete

left amenable semigroup S. Suppose if there is a left invariant mean m

on l∞(S), such that m(ξT ) > 0, then T is left amenable. Here ξT is the

characteristic function of T .

(2) [33, Theorem 9] Let S be a discrete semigroup and T is a left thick

subsemigroup of S. Then T is left amenable if and only if S is amenable.

Let S be a discrete semigroup. Let T ⊆ S be a subsemigroup. We say S is

left T -amenable if l∞(S) has a left T -invariant mean m, i.e., m(ltf) = m(f) for

t ∈ T , f ∈ l∞(S). C. Wilde and K. Witz generalized (1) in the above theorem

as follows.

Theorem 2.5.2. [44, Theorem 3.1] Let T be a subset of a discrete semigroup

S. Then T is left amenable if and only if there is a left T -invariant mean m

such that m(ξT ) > 0.

In literature, Wong [50] is the first to consider hereditary property for

topological left amenability on locally compact semitopological semigroups. He

completely generalized (2) of Theorem 2.5.1 in a later paper.
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Theorem 2.5.3. [51, Theorem 5.2] Let S be a locally compact semitopological

semigroup. Let T be a locally compact Borel subsemigroup S that is TLL.

Then T is topological left amenable if and only if S is topological left amenable.

However, as he points out in the remark on [50, p.309], the complete

generalization of Theorem 2.5.2 is left open. We shall give a proof of the

complete generalization in Chapter 4. The author has published the result in

[27].

2.6 Some Notations

Throughout the thesis, we shall adopt the following notations depending

on the context.

Suppose A,B are subsets of a semitopological semigroup S.

M(S): the Banach algebra of complex Radon measures on S;

δs: the point evaluation measure at point s ∈ S;

suppµ: the support of a measure µ;

A: the closure of A in S;

AB = {st; s ∈ A, t ∈ B};

A−1B = {t ∈ S; st ∈ B for somes ∈ A};

ξA: characteristic function of A on S;

χA: characteristic function of A on M(S).

Suppose A is a subset of a locally convex space with topology τ .
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A: closure of A with respect to τ ;

co(A): convex hull of A;

coτ (A): closed convex hull of A

Suppose E is a Banach space.

E∗ : the continuous dual of E.

〈x, f〉 = 〈f, x〉 = f(x), where x ∈ E, f ∈ E∗.
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Chapter 3

Structure of L(S)

3.1 Introduction

In this section, we look at the left translation continuous measures. Through-

out the section, S is a locally compact semitopological semigroup, G is a locally

compact group unless otherwise specified.

A measure µ ∈M(S) is left translation continuous if the left translation

map s 7→ δs ∗ |µ| of S into M(S) is weakly continuous. Let L(S) to be the set

of left translation continuous measures. If S is a locally compact group, L(S)

is exactly the group algebra L1(S). When S is a locally compact topological

semigroup, L(S) has been studied extensively in the literature, especially in

[3, 4, 5, 17, 37]. Their approaches depend heavily on the joint continuous

multiplications on semigroups. We generalize their results on the structure of

L(S) to separately continuous setting.

We begin with the equivalent definitions of left translation continuous

measures that we shall use interchangeably later. We discuss a particular

case when the total variation in the definition can be removed. In section 3.3,

we show that L(S) is closed under absolute continuity, that is, if µ ∈ L(S)
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and ν � µ, then ν ∈ L(S). The result leads to the decomposition of M(S)

into L(S) and its orthogonal complement. In section 3.4, we see that L(S)

is a closed two-sided ideal. These two properties of L(S) are crucial in the

study of group algebras. Baker mentioned in his survey paper [6] that unable

to show these two properties is the main hurdle to argue L(S) is a suitable

generalization of group algebra for semitopological semigroups. In Section 3.5,

we look at the support of L(S), a subset of S that we call the foundation

of S in literature. The structure of the foundation is believed to be closely

related to the structure of L(S). We study when L(S) has an identity and

bounded approximation identity in Section 3.6. In Section refnormcts, we

shows the convolutions of any two measures in L(S) is left norm translation

continuous, i.e, the map s 7→ δs ∗ ν ∗ µ is norm continuous, given ν, µ ∈ L(S).

Finally, in Section 3.8, we characterize L(S) for a particular class of compact

semitopological semigroups and list some examples.

3.2 Equivalent Definitions

Lemma 3.2.1. [22] Let X and Y be locally compact spaces. Suppose f is a

complex valued bounded separately continuous function on X × Y . Then for

µ ∈M(S), the map y 7→
∫
f(x, y)dµ(x) is continuous.

From this result, we have a direct corollary that is very important in this

chapter.

Corollary 3.2.2. If S be a locally compact semitopological semigroup, the

map s 7→ δs ∗ µ is weak* continuous. In particular, if K is a compact subset of

S, then the set {δs ∗ µ; s ∈ K} is weakly closed.
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Lemma 3.2.3. [19, 4.22.1] Let X be a locally compact Hausdorff space. Then

a bounded sequence µn in M(X) is weakly convergent if and only if µn(F ) is

convergent to a finite limit for each closed set subset F of X.

The following theorem is adapted from [4]. This result offers four equivalent

definitions for L(S) that we use interchangeably later.

Theorem 3.2.4. Let µ ∈M(S). The following statement are equivalent.

(i) If K is a compact subset of S, {δs ∗ µ; s ∈ K} is weakly compact.

(ii) If U is an open subset of S that is relatively compact, then {δs ∗ µ; s ∈ U}

is relatively weakly compact.

(iii) The map S →M(S) : s 7→ δs ∗ µ is weakly continuous.

(iv) If F is a closed subset of S, the map S → C : s 7→ δs ∗µ(F ) is continuous.

Proof. Clearly, (iii) =⇒ (i) and (iii) =⇒ (iv). Since S is locally compact, (i) is

equivalent to (ii).

(iv) =⇒ (i) Assume the map s 7→ δs ∗ µ(F ) is continuous. Let δsn ∗ µ be a

sequence in {δs ∗ µ; s ∈ K}. By Eberlien’s Theorem, it sufficed to show δsn ∗µ

is weakly convergent. Since sn is a sequence in K, there exists s ∈ K, such

that sn → s. By (iii), δsn ∗ µ(F ) → δs ∗ µ(F ) for each closed subset F of S.

Hence by Lemma 3.2.3, we show δsn ∗ µ is weakly convergent.

(i) =⇒ (iii) Let sα → s be a net in S. Let K = {xα}. Then K is compact.

By (i), {δs ∗ µ; s ∈ K} is weakly compact. By Corollary 3.2.2, {δs ∗ µ; s ∈ K}

is weak* compact and Hausdorff, which implies weak topology and weak*

topology coincide on the set. Therefore, δsα ∗ µ
weak−−→ δs ∗ µ.
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Corollary 3.2.5. If µ ∈ L(S), then the map s 7→ δs ∗ µ is weakly continuous.

Proof. If µ ∈ L(S), then the set {δs ∗ |µ| ; s ∈ K} is weakly compact. Hence

by Theorem 2.1.2, there is a positive measure λ ∈M(S), such that δs ∗ |µ| � λ,

hence δs∗µ� λ for s ∈ K. That is, {δs ∗ µ; s ∈ K} is weakly compact. Hence,

the map s 7→ δs ∗ µ is weakly continuous.

When S is a locally compact group, it is well-known that s 7→ δs ∗ µ is

weakly continuous if and only if s 7→ δs ∗ |µ| is weakly continuous. Thus we

can remove the |·| in the definition of L(S) given that S is a locally compact

group. However, it is generally not true for semigroups. Baker [5, P692] gives

an example such that s 7→ δs ∗ µ is weakly continuous but δs 7→ δs ∗ |µ| is

not. The same paper also shows that if S is two-sided cancellative and with

jointly continuous multiplication, then the weak continuity of the two maps

are equivalent. We give another condition when the equivalence holds.

Proposition 3.2.6. If S has a dense subgroup, then

L(S) = {µ ∈M(S); s 7→ δs ∗ µ is weakly continuous.}

Note that a semigroup with a dense subgroup might not be two-sided

cancellative. It is known that a compact semitopological semigroup is two-sided

cancellative if and only if it is a group (e.g., [8, 3.14]). It is also known that a

compact semitopological semigroup with a dense subgroup is not necessarily a

group (e.g., the weakly almost compactification of a group is such a semigroup).

Thus our result complements that of [5].

Proof. Let G be a dense subgroup of S with identity e. Let U be an open subset

of S. Let x ∈ U , for each open neighborhood Ox of x, we have Ox ∩ U 6= ∅.
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Let y ∈ Ox ∩ U 6= 0. In particular, Ox ∩ U is a neighborhood of y. Hence

Ox ∩ U ∩G 6= ∅, since G is dense in S. Thus U = U ∩G.

Now let g ∈ G, µ ∈ M(S). Since the multiplication on S is separately

continuous, e is an identity of S. Hence {gFi}ni=1 is a partition of a Borel subset

E, if and only if {Fi}ni=1 is a partition of g−1E. Then,

δg ∗ |µ| (E) = sup
{∑

|µ(Fi)| ; Fi is a partition of g−1E
}

= sup
{∑

|δg ∗ µ(gFi)| ; Fi is a partition of g−1E
}

= |δg ∗ µ| (E)

Suppose U is relatively compact and the map s 7→ δs ∗ µ is weakly contin-

uous. Then {δs ∗ µ; s ∈ U ∩G} is relatively weakly compact. By Theorem

2.1.2(iv), the set {|δs ∗ µ| = δs ∗ |µ| ; s ∈ U ∩G} is also relatively weakly com-

pact. Recall the map s 7→ δs ∗ |µ| is always weak* continuous. Then by the

fact that weak* and weak topology coincide on relatively weak compact sets,{
δs ∗ |µ| ; s ∈ U

}
= {δs ∗ |µ| ; s ∈ U ∩G}

weak
is weakly compact. Therefore

µ ∈ L(S).

3.3 Absolute Continuity

In order to prove L(S) is closed under absolute continuity for a locally

compact semitopological semigroup S. We need the following measure theoretic

results. For a Borel subset A of S, let ξA be the characteristic function of A.

Lemma 3.3.1. [26, §11] Let µ ∈M(S)+. Then for any open subset U ⊆ S,

µ(U) = sup

{∫
gdµ; g ∈ Cc(S)+, g ≤ ξU

}
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For any Borel subset E ⊆ S,

µ(E) = inf

{∫
gdµ; ξE ≤ f and f is lower semicontinuous

}

Lemma 3.3.2. Let µ ∈M(S)+, let F be a closed subset of S, then

µ(F ) = inf

{∫
fdµ; f ∈ C(S)+, f ≥ ξF

}

Proof. By Lemma 3.3.1,

µ(F ) = µ(S)− µ(S\F )

= µ(S)− sup

{∫
fdµ; f ∈ Cc(S)+, f ≤ ξS\F

}
= inf

{∫
(1− f)dµ; f ∈ Cc(S)+, f ≤ ξS\F

}
≥ inf

{∫
fdµ; f ∈ C(S)+, f ≥ ξF

}
≥ inf

{∫
fdµ; f ≥ ξF is lower semicontinuous

}
= µ(F )

Lemma 3.3.3. Let µ ∈ M(S)+, let F be a closed subset of S, then s 7→

δs ∗ µ(F ) is upper semicontinuous.

Proof. By Lemma 3.3.2, δs ∗ µ(F ) = inf
{∫

f(st) dµ(t); f ∈ C(S)+, f ≥ ξF
}

.

Then by Lemma 3.2.2, the function s 7→ δs ∗µ(F ) is the pointwise infimum of a

net of continuous functions. Hence s 7→ δs ∗ µ(F ) is upper semicontinuous.

Lemma 3.3.4. Let µ ∈M(S)+, let F be a closed subset of S. Then for any
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convergent net sα → s0,

|δsα ∗ µ(F )− δs0 ∗ µ(F )| → 0 ⇐⇒ µ(s−1
α F∆s−1

0 F )→ 0

Proof. “⇐” is clear. Assume |δsα ∗ µ(F )− δs0 ∗ µ(F )| → 0. Let ε > 0, there

exists α0, such that
∣∣µ(s−1

α F )− µ(s−1
0 F )

∣∣ < ε whenever α > α0. By Lemma

3.3.3, there exists α1 > α0 such that,

µ(s−1
α F\s−1

0 F ) = δsα ∗ µ
∣∣
s\s−1

0 F
(F ) < δs0 ∗ µ

∣∣
s\s−1

0 F
(F ) + ε = ε

Therefore

µ(s−1
α F∆s−1

0 F ) = µ(s−1
α F\s−1

0 F ) + µ(s−1
0 F\s−1

α F )

= 2µ(s−1
α F\s−1

0 F ) + µ(s−1
0 F )− µ(s−1

α (F )) < 3ε

Now we are ready to prove the main result of this section.

Theorem 3.3.5. Let µ ∈ L(S), let ν ∈M(S). If ν � µ, then ν ∈ L(S).

Proof. Since µ ∈ L(S) if and only if |µ| ∈ L(S). Thus without loss of generality,

we assume µ is positive.

Let ν � µ. Then for each ε > 0, there exists δ > 0, such that |ν| (E) < ε

whenever µ(E) < δ for some Borel subset E of S. Let sα → s0 be a net in S.

Since, µ ∈ L(S), by Lemma 3.2, |δsα ∗ µ(F )− δs0 ∗ µ(F )| → 0. Then by Lemma

3.3.4, µ(s−1
α F∆s−1

0 F )→ 0. Hence there exists α0 such that µ(s−1
α F∆s−1

0 F ) < δ

and |ν| (s−1
α F∆s−1

0 F ) < ε. Therefore, δsα ∗ |ν| → δs0 ∗ |ν|. Since sα is an

arbitrary convergent net in S, we have ν ∈ L(S).
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A direct implication from the absolute continuity of L(S) is the restriction

of a left translation continuous measure is still left translation continuous. Let

µ ∈M(S), let B be a Borel subset of S. We denote the measure µ restricted

on B as µ|B, that is, µ|B(E) = µ(B ∩ E) for Borel subsets E ⊆ S.

Corollary 3.3.6. Let B be a Borel subset of S. If µ ∈ L(S), then µ|B ∈ L(S).

If we equip M(S) with the natural order, that is, ν ≤ µ if ν(E) ≤ µ(E)

holds for all Borel subset E in S, then the measure algebra M(S) is a Banach

lattice under this order.

Lemma 3.3.7. L(S) is a sublattice of M(S).

Proof. Let ν, µ ∈ L(S), let a, b ∈ C. Then from definition of L(S), it is clear

that |aµ|+ |bν| ∈ L(S). Since aµ+ bν � |aµ|+ |bν|, by Theorem 3.3.5, L(S) is

a subspace of M(S). Let ω = |ν|+ |µ|. By Radon-Nykodym Theorem, ν = fω,

µ = gω for some f, g ∈ L1(ω). Note that ν ∨ µ = (f ∨ g)ω, ν ∧ µ = (f ∧ g)ω.

By Theorem 3.3.5 again, ν ∨ µ, ν ∧ µ ∈ L(S).

Since L(S) is closed under absolute continuity, it is easy to see that L(S) is

also closed under ≤, that is, L(S) is an order ideal in M(S). Since M(S) is

order continuous, if we can show L(S) is norm continuous, we may decompose

M(S) in terms of the direct sum of L(S) and its orthogonal complement L(S)⊥.

For details on the theory of Banach lattices, please see [36].

Theorem 3.3.8. L(S) is a norm closed order ideal of M(S) and M(S) =

L(S)⊕ L(S)⊥.

Proof. From the previous remark, it suffices to show L(S) is norm closed in
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M(S). Let µα be a net in L(S) such that µα
‖·‖−→ µ for some µ ∈ M(S). For

each ε > 0, there exists αε such that ‖µ− µαε‖ < ε.

Let F ∈ M(S)∗. Suppose sβ → s0 is a net in S. Since µαε ∈ L(S), there

exists βε such that
∣∣F (δsβ ∗ µαε − δs0 ∗ µαε)

∣∣< ε whenever β > βε. Hence

∣∣F (δsβ ∗ µ− δs0 ∗ µ)
∣∣ ≤ ∣∣F (δsβ ∗ µ− δsβ ∗ µαε)

∣∣+
∣∣F (δsβ ∗ µαε − δs0 ∗ µαε)

∣∣
+ |F (δs0 ∗ µαε − δs0 ∗ µ)|

≤ 2 ‖µ− µαε‖+
∣∣F (δsβ ∗ µαε − δs0 ∗ µαε)

∣∣
< 3ε

The last inequality hold when β > βε. Therefore µ ∈ L(S), hence L(S) is a

norm closed order ideal of M(S).

When S is a locally compact group, it is known that L(S)⊥ contains all

discrete measures unless S is discrete. For locally compact semitopological

semigroup that is right cancellative, we have the following result.

Proposition 3.3.9. Suppose L(S) contains a discrete measure µ, then there

exists s ∈ S such that |µ| ({s}) 6= 0. For each t ∈ S, there exists a neighborhood

Ut of t, such that Uts = ts.

Proof. It is clear that δs � µ, thus δs ∈ L(S) since L(S) is closed under

absolute continuity. Let 0 < ε < 1/2, then for every t ∈ S, there exists

a neighborhood Ut of t such that |δz ∗ δs(ts)− δt ∗ δs(ts)| < ε. Note that

δz ∗ δs(ts) = δzs(ts) = 1 if zs = ts and 0 otherwise. Therefore Uts = ts.

Corollary 3.3.10. If S right cancellative, then L(S) contains a discrete mea-

sure if and only if S is discrete.
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Proof. If S is discrete, the statement is trivial since L(S) = l1(S) = M(S).

Assume L(S) contains a discrete measure µ. By Proposition 3.3.9 and the fact

that S is right cancellative, we know every point in S is open, which means S

is discrete.

3.4 Ideal Structure

In this section, we show that L(S) is a two-sided ideal of M(S). The results

in this section can be found in [5] and [47]. Even though S is assumed to be

topological in these papers, the ideas can be modified to suit the semitopological

case. We include the proofs here for the sake of completeness.

Lemma 3.4.1. Let µ ∈ L(S), then δt ∗ µ for every t ∈ S, µ ∗ ν ∈ L(S) for

every ν ∈M(S).

Proof. Since δt ∗ (µ + ν) = δt ∗ µ + δt ∗ ν for each ν, µ ∈ M(S), it suffices to

show the statement holds for positive measures. Suppose µ is positive.

Let K be a compact subset in S. Since multiplication in S is separately

continuous, Kt is compact. Hence {δs ∗ δt ∗ µ; s ∈ K} = {δs ∗ µ; s ∈ Kt} is

weakly compact. Thus δt ∗ µ ∈ L(S).

For each F ∈ M(S)∗, we know ν ∗ F ∈ M(S)∗. Since µ ∈ L(S), the map

s 7→ F (δs ∗ µ ∗ ν) = ν ∗ F (δs ∗ µ) is continuous. Hence µ ∗ ν ∈ L(S).

Lemma 3.4.2. [47, 4.1] Suppose µ ∈ L(S), then δt ∗ |µ| � |ν| ∗ |µ| for each

t ∈ suppν.

Proof. Suppose the statement does not hold, there exists t ∈ suppν and a Borel
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subset E of S, such that |ν| ∗ |µ| = 0 but δt ∗ |µ| = δ > 0. Since s 7→ δs ∗ |µ| is

weakly continuous, there exists a neighborhood U of t, such that δz∗µ(E) > δ/2

for each z ∈ U . Then

|ν| ∗ |µ| (E) =

∫
δz ∗ µ(E)dν(z) > δ/2 |ν| (U) > 0

which contradict the fact that |ν| ∗ |µ| (E) = 0.

Theorem 3.4.3. L(S) is a two-sided ideal of M(S).

Proof. By Lemma 3.4.1, it suffices to show for each µ ∈ L(S), ν ∗ µ ∈ L(S) for

all ν ∈M(S). Note that ν ∗ µ� |ν| ∗ |µ|, it suffices to show |ν| ∗ |µ| ∈ L(S),

since L(S) is closed under absolute continuity. If L(S) = M(S), the proof is

obvious. Suppose L(S) 6= M(S). Since L(S) is a norm closed, there exists

some nonzero F ∈ M(S)∗ that vanishes only on L(S). The restriction of F

on L1(|ν| ∗ |µ|) is L∞(|ν| ∗ |µ|). Thus there exists f ∈ L∞(|ν| ∗ |µ|) such that

F (σ) =
∫
fdσ for all σ � |ν| ∗ |µ|. In particular,

F (ν ∗ µ) =

∫
fdν ∗ µ =

∫∫
f(ts)dµ(s)dν(t) (3.1)

=

∫
suppν

f(z) dδt ∗ µ(z)dν(t)
3.4.2
==

∫
F (δt ∗ µ)dν(t) (3.2)

Since F vanishes on L(S) and δt ∗ µ ∈ L(S), we have F (ν ∗ µ) = 0. Therefore

ν ∗ µ ∈ L(S).

Actually, by using the proof of Theorem 3.4.3, we can prove a more general

result.

Corollary 3.4.4. Let A be a closed subspace of L(S). Then A is a two-sided
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ideal of M(S) if and only if for µ ∈ A, δs ∗ µ, µ ∗ δs ∈ A for all s ∈ S.

3.5 Support of L(S) and Foundation Semigroup

Assume L(S) is non-trivial. In this section, we look at the subset of S that

“supports” left weakly translation continuous measures. Recall for µ ∈M(S),

suppµ = {s ∈ S; |µ| (U) > 0 for any open neighborhood U of S}. We define

the foundation of S to be

F(S) =
⋃

µ∈L(S)

suppµ

From the definition, we can see that t ∈ F(S) if and only if there exists some

µ ∈ L(S), such that |µ| (U) > 0 for all open neighborhood U of t. This is

because if t ∈ F(S) and U is a neighborhood of t, then there is µ ∈ L(S), such

that U ∩ suppµ 6= ∅. Thus µ(U) > 0, since U is an open neighborhood of any

element in U ∩ suppµ.

Proposition 3.5.1. Let t ∈ S. Then t ∈ F(S), if and only if for any neigh-

borhood U of t, there is ν ∈ L(S), such that suppν ⊆ U .

Proof. The only if case is trivial. Assume t ∈ F(S). Let U be a neighborhood

of t. By the previous remark, there is µ ∈ L(S), such that |µ| (U) > 0. Since

S is locally compact, there is a compact subset K such that t ∈ K ⊆ U . Let

ν = |µ| |K . Then suppν ⊂ U . We have ν ∈ L(S) since L(S) is closed under

absolute continuity.

The following result is due to Baker [4].

Proposition 3.5.2. F(S) is a two-sided ideal in S.
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Proof. Let t ∈ F(S), s ∈ S. Let U be an open neighborhood of st. Then

s−1U is an open neighborhood of t. Thus there exists µ ∈ L(S), such that

|µ| (s−1U) > 0. Hence δs ∗ µ(U) > 0. Since δs ∗ µ ∈ L(S), by the remark in the

beginning of this section, we know that st ∈ F(S).

We say S is a foundation semigroup if F(S) = S. Then any locally compact

group and discrete semigroups are foundation semigroups. To obtain structural

information of the underlying semigroup S from that of L(S), foundation

semigroup seems to be a reasonable assumption. But how to find foundation

semigroups? By Theorem 3.3.5, we know that the restriction of any left

translation continuous measure on a closed subsemigroup is still a left translation

continuous measure, thus as long as L(S) is non-trivial, F(S) is a foundation

semigroup. The following is a simple corollary of the above remark and

Proposition 3.5.2.

Corollary 3.5.3. 1. If S is simple and has a non-trivial L(S), then S is a

foundation semigroup.

2. Suppose S has an identity e, then S is a foundation semigroup if and only

if for each neighborhood O of e, there is µ ∈ L(S), such that |µ| (O) > 0.

Later in Section 3.8, we shall see every compact right simple semigroup is a

foundation semigroup.

Proposition 3.5.4. Let O be a Borel subset of S. If there is µ ∈ L(S) such

that |µ| (O) > 0, then for each s ∈ S, (sO)O−1 is a neighborhood of s.

Proof. Without loss of generality, assume µ is positive. Let ν =
µ|O
‖µ|O‖

. Then

v ∈ L(S), and ‖ν‖ = ν(O) = 1. Hence δs ∗ ν(sO) = |ν| (s−1(sO)) = 1. Since
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the map s 7→ δs ∗ ν is weakly continuous, there exists a neighborhood U of s,

such that δz ∗ ν(sO) > 0 for z ∈ U . Thus z−1(sO) ∩ O 6= ∅, whenever z ∈ U .

Otherwise ν(z−1(sO) ∪ O) > 1. Hence z ∈ (sO)O−1 for z ∈ U . Therefore

(sO)O−1 is a neighborhood of s.

With this result, we can have the following result which was shown in [37]

for topological semigroups.

Corollary 3.5.5. Let S be a foundation semigroup. Let O be a subset of S

with nonempty interior, let s ∈ S, then (sO)O−1 is a neighborhood of s.

Proof. Since S is a foundation semigroup, if O is a subset of S with nonempty

interior, there is µ ∈ L(S), such that |µ| (O) > 0. Then by Proposition 3.5.4,

(sO)O−1 is a neighborhood of s.

We say a point x ∈ S has property α if, for any neighborhood O of x and any

s ∈ S, the set (sO)O−1 is a neighborhood of s. If x ∈ F(S), then automatically

x has property α. The following result is an interesting application of property

α adapted from [40, 4.2].

Proposition 3.5.6. Let x ∈ S. Suppose,

(1) x has property α;

(2) there is µ ∈M(S), such that the map s 7→ δs ∗ µ is norm continuous at

x.

Then the map s 7→ δsx ∗ µ is norm continuous on S.

Proof. Let sα → s0 be a net in S. From (1), there exists nets (xα), (yα) that
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converge to x, such that sαxα = s0yα. Then

‖δsαx ∗ µ− δs0x ∗ µ‖ = ‖δsαx ∗ µ− δsαxα ∗ µ‖+ ‖δs0yα ∗ µ− δs0x ∗ µ‖

≤ ‖δx ∗ µ− δxα ∗ µ‖+ ‖δyα ∗ µ− δx ∗ µ‖

By (2), the map s 7→ δsx ∗ µ is norm continuous on S.

One might wonder if the property α can be removed from the above result.

The answer is negative as we can see from the following example.

Example 3.5.7. Let S = [0,∞) with st = max(s, t) and the usual topology.

Then S is a commutative locally compact semitopological semigroup. Let

0 < a < b < c, then c[a, b)[a, b)−1 = c. By Proposition 3.5.4, |µ| ([a, b)) = 0, for

each µ ∈ L(S). However, since [a, b) are arbitrary and the union of such sets

can cover S. We know that L(S) = {0}. In particular, there is no left norm

translation continuous measures on S.

On the other hand, let ν be a positive measure in M(S) with norm 1. Let

p = inf suppν. Since suppν is closed, p ∈ suppν. If p > 0, we claim that the

map s 7→ δs ∗ µ is norm continuous on [0, p). To see this, let s < p and E ⊆ S

be a Borel subset.

If s ∈ E, then ν(s−1E) = ν([0, s) ∪ E)) = ν(E);

If s 6∈ E, s ≤ inf E, then ν(s−1E) = ν(E);

If s 6∈ E, inf E ≤ s ≤ sup E, then ν(s−1E) = ν((s,∞) ∩ E) = ν(E);

If s 6∈ E, supE ≤ s, then ν(s−1E) = 0.

Let tα → t0 < p. Without loss of generality, we may assume tα < p. If

E ∩ suppν = ∅, then ν(s−1E) = 0 for all s ∈ [0, p). If E ∩ suppν 6= ∅, then
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p ≤ supE, hence ν(s−1E) = ν(E) for all s ∈ [0, p). Therefore in both cases,∣∣ν(t−1
α E)− ν(t−1

0 E)
∣∣ = 0. Since E is arbitrary, s 7→ δs ∗ ν is continuous on

[0, p).

3.6 Identity and Bounded Approximate Identity of L(S)

It is well-known that for a locally compact group G, if L1(G) has an identity,

then G has to be discrete. We generalize this result to foundation semigroups

in this section as a consequence of the following theorem.

Theorem 3.6.1. Let S be a foundation semigroup. Then L(S) has a positive

right identity σ if and only if ‖σ‖ = 1 = σ(x−1x) for all x ∈ S.

Proof. Assume L(S) has a positive right identity σ. Then µ(S) = µ ∗ σ(S) =

µ(S)σ(S) for all µ ∈ L(S). Thus ‖σ‖ = σ(S) = 1. Suppose there is x ∈ X,

such that σ(x−1x) < 1. By the outer regularity of δx ∗ σ, we may find an

open neighborhood O of x, such that σ(x−1O) < 1. Since s → δs ∗ µ is

weakly compact, there is an open neighborhood U of x, such that U ⊂ O and

σ(s−1O) < 1 for s ∈ U . Since S is a foundation semigroup, by Proposition

3.5.1 there is a positive measure µ ∈ L(S), such that suppµ ⊆ U . Then

µ(O) = µ ∗ σ(O) =

∫
suppµ

δs ∗ σ(O)dµ(s) < µ(O)

Therefore, σ(x−1x) = 1 = ‖σ‖ for x ∈ S.

On the other hand, assume ‖σ‖ = 1 = σ(x−1x) for all x ∈ S. Let E ⊆ S

be a Borel subset. Then µ ∗ σ(E) =
∫

suppµ∩E δs ∗ σ(E)dµ(s) = µ(E).

The above theorem directly implies a well-known result: for a locally

compact group G, the group algebra L1(G) has a (positive) right identity if and
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only if G is discrete. One might wonder if the similar result holds for locally

compact semitopological semigroup. We shall give an affirmative answer in

Corollary 3.6.5.

Corollary 3.6.2. If S is a foundation semigroup. If L(S) has a positive right

identity σ, then S has a right identity.

Proof. By Theorem 3.6.1,
⋂
x∈S

x−1x 6= ∅, which is the set of right identities.

Actually, suppσ ⊆
⋂
x∈S

x−1x.

Corollary 3.6.3. If S is a foundation semigroup and has finitely many right

identities, then L(S) has a positive right identity if and only if S is discrete.

Proof. Suppose σ is a positive right identity of L(S). By Theorem 3.6.1, the

support of σ lies in the set of right identities. Thus if S has finitely many right

identities, there is a right identity e, such that σ({e}) > 0. Hence δe ∈ L(S).

By Theorem 3.3.9, for each t ∈ S, there is a neighborhood Ut of t, such that

Ut = Ute = te = t. Therefore S is discrete.

Note that in the previous results, we assume L(S) has a positive right

identity. The reason is we do not know if all right identities of L(S) are positive

unless S has a left identity.

Proposition 3.6.4. Let S be a foundation semigroup. If σ is a right identity

of L(S), then σ(x−1E) ≥ 0 for x ∈ S and Borel subset E ⊆ S. In particular,

if S in addition has a left identity, σ is positive. Actually in this case, S is a

discrete semigroup with an identity.

Proof. The proof for this proposition is similar to that of Theorem 3.6.1.
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Suppose σ(x−1E) < 0 for some x ∈ S and Borel subset E. Then there is an

open subset U of x, such that σ(s−1E) < 0 when s ∈ U . Since S is a foundation

semigroup, there is a positive measure µ ∈ L(S) such that suppµ ⊆ U . Hence

0 ≤ µ(E) = µ ∗ σ(E) < 0. Therefore σ(x−1E) ≥ 0 for arbitrary x ∈ S and

Borel subset E.

Suppose S in addition has a left identity e, then for any Borel subset E

of S, σ(E) = σ(e−1E) ≥ 0. Thus σ is positive. However, the existence of left

identity implies that S has only one right identity, which is the identity of S at

the same time. By Corollary 3.6.3, S is discrete.

By using a previous result of this section, we have the following result which

was first shown in [5] for locally compact topological semigroups.

Corollary 3.6.5. If S is a foundation semigroup with an identity, then L(S)

has an identity if and only if S is discrete.

Proof. Let e be the identity of S. If S is discrete, then L(S) = M(S), hence

δe is an identity in L(S). Assume L(S) has an identity σ. By Theorem 3.6.1

and Proposition 3.6.4, ‖σ‖ = 1 = σ(e). Thus σ = δe. Then by Proposition

3.3.9, there is a neighborhood Us of each s ∈ S, such that Us = s. Thus S is

discrete.

Approximate identity is a weaker sense of identity. A net (eα) is a bounded

left approximate identity of L(S) if it is norm bounded and for each µ ∈ L(S),

eα ∗ µ
‖·‖−→ µ. It is known that L1(G) always has a bounded approximate

identity. The existence of bounded (left) approximate identity is crucial in

the study of group algebra L1(G). The result was generalized for topological

semigroup in [17, 2.10]. Their proof works in the semitopological case. We
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include the proof here for completeness.

Proposition 3.6.6. If S be a foundation semigroup with left identity e, then

L(S) has a bounded left approximate identity.

Proof. Let Uα be a decreasing relatively compact neighborhood of e. Since

e ∈ F(S), by 3.5.1, there is a positive net eα in L(S), such that suppeα ⊆ Uα

and ‖eα‖ = 1. It is clear that eα
weak*−−−→ δe. Let µ ∈ L(S) and F ∈ L(S)∗. Then

F (eα ∗ µ)
(3.2)
== 〈eα, F (δs ∗ µ)〉 → 〈δe, F (δs ∗ µ) = F (µ)

Thus eα ∗ µ
weak−−→ µ. By [9, P58], there is a net bounded fα ∈ L(S), such

that fα ∗ µ
‖·‖−→ µ.

3.7 Norm Continuity

As is well known, if S is a locally compact group, the map s 7→ δs ∗ µ is

weakly continuous if and only if it is norm continuous. However, this is in

general not true for locally compact semigroups. Let

Ln(S) = {µ ∈M(S); s 7→ δs ∗ |µ| is norm continuous.}

Sleijpen [38, 2.3] construct a locally compact semigroup with jointly continuous

multiplication, such that Ln(S) ( L(S) and Ln(S) is not closed under absolute

continuity.

We shall see later that if ν, µ ∈ L(S), then s 7→ δs ∗ν ∗µ is norm continuous.

The same result for the topological case can be found in [37, 5.4]. However,

their proof depends on joint continuity. We modified their proof to bypass the
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joint continuity requirement.

Let X and Y be Banach spaces. Let BX be the unit ball of X. A linear

operator T : X → Y is weakly compact if T (BX) = {Tx; x ∈ BX} is weakly

compact.

Theorem 3.7.1. [13, 4.4.5] If T : M(S)→M(S) is a weakly compact operator,

then T maps relatively weak compact sets to relatively norm compact sets.

Lemma 3.7.2. Let K ⊂ S be compact. Suppose s 7→ δs ∗ µ is weakly

continuous, then the map ρµ : M(K)→M(S) : ν → ν ∗ µ is weakly compact.

Proof. Let (Oi) be a sequence of open and pairwisely disjoint subsets. Since

{δs ∗ µ; s ∈ K} is weakly compact, by Theorem 2.1.2, for each ε > 0, there

is i0 ∈ N, such that whenever i > i0, we have |δs ∗ µ(Oi)| < ε for s ∈ K.

Take ν ∈ BM(K). Then |ν ∗ µ(Oi)| =
∣∣∫
K
δs ∗ µ(Oi)dν(s)

∣∣ < ε if i > i0, which

implies
{
ν ∗ µ; ν ∈ BM(K)

}
is relatively weak compact. Therefore ρµ is weakly

compact.

Theorem 3.7.3. Let ν, µ ∈ L(S), then the map s 7→ δs ∗ ν ∗ µ is norm

continuous.

Proof. Let sα → s0 be a net in S. Let K = {sα}. Without loss of generality,

we may assume K is compact. Let ε > 0. Since {δs ∗ ν; s ∈ K}, there is a

compact subset C of S, such that |δs ∗ ν| (S\C) < ε for s ∈ K. Then

‖δs ∗ ν ∗ µ− (δs ∗ ν)|C ∗ µ‖ ≤ ‖δs ∗ ν ∗ −(δs ∗ ν)|C‖ ‖µ‖ ≤ ε ‖µ‖ (∗)

By Theorem 2.1.2, the set {(δs ∗ ν)|C ; s ∈ K} is weakly compact, since it
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is uniformly absolutely continuous with respect to some positive measure.

Since ρµ : M(C) → M(S) is weakly compact by Lemma 3.7.2, the set

{(δs ∗ ν)|C ∗ µ; s ∈ K} is relative norm compact by Theorem 3.7.1. Thus

by passing {sα} to a subnet, ‖(δsα ∗ ν)|C ∗ µ− (δs0 ∗ ν)|C ∗ µ‖ ≤ ε for α > α0.

Therefore by (*),

‖δsα ∗ ν ∗ µ− δs0 ∗ ν ∗ µ‖ < (2 ‖µ‖+ 1)ε (α > α0)

Thus the map s 7→ δs ∗ ν ∗ µ is norm continuous.

Since L(S) is closed under total variation, we show |ν| ∗ |µ| ∈ Ln(S), given

ν, µ ∈ L(S). However, it is not known if ν ∗ µ ∈ Ln(S). Below are some direct

implications of the above theorem.

Corollary 3.7.4. If µ is a positive idempotent in L(S), then µ ∈ Ln(S).

Corollary 3.7.5. If L(S) has a bounded left approximation identity, then

L(S) = Ln(S). In particular, if S is a foundation semigroup with left identity,

then L(S) = Ln(S).

Proof. If L(S) has a bounded left approximation identity, then by Cohen

Factorization Theorem (e.g. see [11]), for any ν ∈ L(S), there is µ, σ ∈ L(S),

such that |ν| = µ ∗ σ. Then by Theorem 3.7.3, ν ∈ Ln(S). The second part of

this result follows Corollary 3.6.6.

3.8 Compact Semitopological Semigroups

In this section, we focus on compact semitopological semigroups S. Compact

semitopological semigroup naturally arises from one point compactification and
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weakly almost periodic compactification of a group. As an application, our

result gives a characterization of L(S) on such semigroups. Before that, we

introduce another decomposition of the measure algebra.

Let Minv(S) = {λ ∈M(S); δs ∗ λ = λ}. Measures in Minv(S) are called

left invariant measures. Note that if λ is an invariant measure, so is |λ|. This

is because δ ∗ |λ| ≥ |δsλ| = |λ|. Thus ‖δs ∗ |λ| − |λ|‖ = (δs ∗ |λ| − |λ|)(S) = 0.

Let

Mab(S) = {µ ∈M(S); µ� λ for some invariant measure λ}

Ms(S) = {µ ∈M(S); µ ⊥ λ for all λ ∈Minv(S)}

Proposition 3.8.1. The sets Minv(S) and Mab(S) are norm closed ideals

of M(S), while Ms(S) is norm closed and invariant under translation of S.

Moreover, M(S) = Mab(S)⊕Ms(S).

Proof. As we mentioned in the earlier, Minv(S) is closed under total variation.

It is also clear that Minv(S) is a norm closed subspace of M(S). Let (µn) be a

Cauchy sequence in Mab(S). Then there is µ ∈M(S) such that µα
‖·‖−→ µ, since

M(S) is norm closed. Meanwhile, there is a norm 1 sequence (λn) in Minv(S)

such that µn � λn. Since Minv(S) is norm closed, the series λ =
∑∞

n=1
1

2n
|λn|

exists. Then µn � λ for all n, hence µ� λ. Therefore Mab(S) is norm closed.

To see Minv(S) and Mab(S) are ideals, it suffices to see them closed under

left and right translations under positive measures in M(S). By the definition

of Mab(S) and the fact that Minv(S) is closed under total variation. It suffices

to show Minv(S) is an ideal. Let ν ∈ M(S) and λ ∈ Minv(S). It is easy to

check that ν ∗ λ = λ and λ ∗ ν are left invariant measures. Therefore Minv(S)

and Mab(S) are norm closed ideals of M(S). As a particular consequence, it is
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easy to check that Ms(S) is closed under both left and right translations of S.

As for the decomposition, since norm closed order ideals in M(S) are

protective bands complemented by their disjoint complements. As the disjoint

complement Mab(S) in M(S), we have Ms(S) is norm closed and M(S) =

Mab(S)⊕Ms(S).

Of course the above decomposition is trivial if Minv(S) = {0}. When

Minv(S) is non-trivial, we can identity L(S) with Mab(S) as we show in the

next result.

Theorem 3.8.2. If Minv(S) 6= {0}, then L(S) = Mab(S).

Proof. The direction Mab(S) ⊆ L(S) is obvious since every left invariant

measure is automatically left translation continuous.

Let µ ∈ L(S). By Proposition 3.8.1, µ = µ1 + µ2 where µ1 ∈ Mab(S)

and µ2 ∈ Ms(S). If µ2 = 0, the proof is trivial. Suppose µ2 6= 0, since

µ2 ⊥ µ1, we have µ2 � µ. Hence {δs ∗ |µ2| ; s ∈ S} is weakly compact. Further,

K = cow {δs ∗ |µ2| ; s ∈ S} is weakly compact by Krein-S̆mulian theorem. At

the same time, the set is contained in Ms(S), since Ms(S) is norm closed and

closed under translation of S.

On the other hand, if Minv(S) 6= 0, C(S) is left amenable. By Lemma 3.2.1,

it is easy to check the map S ×M(S)→M(S) : (s, µ)→ δs ∗ µ is separately

continuous when M(S) = C0(S)∗ is equipped with weak* topology. Thus by

[34], there is a fixed point λ of S in K. By the fact that K ⊆Ms(S), we have

λ = 0. Note that |µ(S)| = δs ∗ |µ2| (S). Thus 0 ∈ K implies |µ2| (S) = 0.

Therefore µ2 = 0 and µ ∈ L(S).

Proposition 3.8.3. If S is a compact semigroup with a dense subgroup, then
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L(S) = Mab(S).

Proof. [8, 4.2.15] showed that if S be a semitopological semigroup with a dense

subgroup, then WAP (S) is left amenable. When S is compact, WAP (S) =

C(S). Hence Minv(S) is non-trivial by Riesz representation theorem. Therefore

by Theorem 3.8.2, L(S) = Mab(S).

The previous result is based on the assumption that non-trivial left invariant

(Borel regular) measure exists. Invariant means on compact semitopological

semigroup has been thoroughly studied in the literature. The following gives

some characterizations of the existence of left invariant measures on S.

Theorem 3.8.4. Let S be a compact semitopological semigroup. Then the

following are equivalent.

(i) S has a left invariant measure.

(ii) C(S) is left amenable.

(iii) S contains a compact left invariant subset F , i.e, sF = F for all s ∈ S.

(iv) S has a unique minimal right ideal.

(v) S is left reversible, that is, the intersection of any two closed right ideal

is non-empty.

Proof. (i) and (ii) are equivalent by Riesz representation theorem. The equiva-

lence of (i) and (iii) was shown in [2, 2.2]. The equivalence of (i) and (iv) was

shown in [8, 3.14]. The equivalence of (iv) and (v) is trivial.

As an application of the above results, the next result gives an algebraic

description of F(S) for compact semitopological semigroup S.
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Theorem 3.8.5. If Minv(S) is non-trivial, then F(S) = K(S), the minimal

ideal of S. Moreover, F(S) is a closed right simple subsemigroup with left

identity that is a union of disjoint closed groups.

Proof. From Theorem 3.8.4, we know S has a unique minimal right ideal. Then

by [8, Theorem 2.7 and 2.11], K(S) is the minimal right ideal and a union of

disjoint closed subgroups, each of which is a minimal left ideal of S. Then the

Haar measure on each subgroup canonically extends to invariant measures on

S. Hence by Theorem 3.8.2, K(S) ⊆ ∪{suppλ; λ ∈Minv(S)} = F(S).

On the other hand, let λ be a positive non-zero left invariant measure on S,

then λ(S) ≥ λ(aS) = δa ∗ λ(aS) ≥ λ(S) for all a ∈ S. Hence suppλ ⊆ K(S).

As λ is arbitrary, F(S) ⊆ K(S).

Since F(S) is a minimal right ideal, it has a left identity. Let a ∈ F(S), then

aF(S) ⊆ F(S) = aS. Since F(S) is the disjoint union of minimal left ideals, a

might falls in one of them. Since each minimal left ideal is a group, suppose

the one that contains a has an identity e. Then F(S) = aS = aeS ⊂ aF(S).

Therefore F(S) = aF(S) for all a ∈ F(S) and thus F(S) is right simple.

Corollary 3.8.6. Let S be a compact semitopological semigroup with non-

trivial left invariant measures. Then S is a foundation semigroup if and only if

it is right simple. In this case, S is topological.

Proof. This result is a direct consequence of Theorem 3.8.5. By [8, 4.6], such

S is topological.

One might wonder if non-trivial L(S) implies the existence of left invariant

measures. We do not know the answer, but we were able to loosen the existence

of left invariant measures to the existence of left invariant mean on LUC(S)
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in the presence of non-trivial left translation continuous measure. When S is

a locally compact group, the equivalence of left invariant mean on C(S) and

UC(S) is a convenient result for the study of amenability on locally compact

groups.

Theorem 3.8.7. If L(S) is non-trivial, UC(S) has a left invariant mean if

and only if C(S) has a left invariant mean.

Proof. By Theorem 3.7.3, since L(S) is non-trivial, there is non-zero µ ∈ Ln(S).

Let F ∈M(S)∗. Define f(t) = F (δt ∗ |µ|) on S. Suppose sα → s is a net in S.

‖rsαf − rsf‖ = sup
t∈S
|F (δt ∗ δsα ∗ µ− δt ∗ δs ∗ µ)| ≤ ‖δsα ∗ µ− δs ∗ µ‖ → 0

Thus f ∈ RUC(S). Since S is compact, UC(S) = RUC(S).

Let φ be the invariant mean on UC(S). Thus there is a net of finite means

να =
nα∑
i=0

λαiδsαi such that να
weak∗−−−→ φ. Then let t ∈ S,

φ(f) = lim
α

nα∑
i=0

λαi〈F, δsαi∗µ〉 = 〈F, lim
α

nα∑
i=0

λαiδsαi∗µ〉

φ(ltf) = lim
α

nα∑
i=0

λαi〈F, δtsαi∗µ〉 = 〈F, δt ∗ lim
α

nα∑
i=0

λαiδsαi∗µ〉

Since K = co {δs ∗ |µ| ; s ∈ S} is weakly compact, by passing to a subnet,

there is σ = lim
α

nα∑
i=0

λαiδsαi∗µ ∈ K. Thus 〈F, σ〉 = 〈F, δt ∗ σ〉, because φ(f) =

φ(ltf) for all t ∈ S. Since F is arbitrary in M(S)∗, we have δt∗σ = σ. Therefore

σ is a left invariant measure and C(S) has a left invariant mean.

Remark 3.8.8. For a compact semitopological semigroup S, UC(S) has a

right invariant mean if and only if C(S) has a right invariant mean (see [20,
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Corollary 4.11] and [8, Theorem 3.14]). However, the author does not know if

the result is true in general for left invariant means.

Example 3.8.9. (a) Let G be a locally compact group. Let S = G ∪ {∞} be

the one-point compactification of G. Suppose λ ∈ Minv(S) is a positive left

invariant measure on S. Then λ(G) = δg ∗ λ(G) = δ∞ ∗ λ(G) = 0. Thus λ

has to be a multiple of δ∞. It is easy to check that λ = cδ∞ is indeed a left

invariant measure. Thus L(S) = Cδ∞.

(b) Let G be a locally compact group. Let S = Gw be the weakly almost

periodic compactification of G. Let R : G→ Gw be the canonical embedding

of G to a dense subset of Gw. R is injective since C0(G) ⊆ WAP (G). Then

R∗ : C(Gw) → WAP (G) : F 7→ R∗F (x) = F (Rx) is isometric and bijective.

Hence R∗∗ : WAP (G)∗ →M(Gw) : φ 7→ R∗∗φ(F ) = 〈φ,R∗F 〉 is bijective and

is invariant under left translations of s. Then S has a left invariant measure

λ if and only if (R∗∗)−1(|λ| / ‖λ‖) is a left invariant mean on WAP (G). Note

that a left invariant mean on WAP (G) is actually an invariant mean and there

is a unique invariant mean on WAP (G) (see e.g. [10]). Therefore, Minv(S) is

spanned by a unique probability invariant measure λ. Thus F(S) = K(S) =

suppλ is a compact group by [8, 3.14] and L(S) = {µ ∈M(S); µ� λ}. Note

that K(S) as an ideal of S is disjoint with R(G).

(c) Let G = (C,+) o (T, ·), the 2-motion group.

The open sets Uδ = {(z, w) ∈ G; |z| < δ, |arg w| < δ} forms a neighborhood

basis of the identity (0, 1) in G. Since G is minimal weakly almost periodic,

WAP (G) = C0(G) ⊕ AP (G). It can be shown that AP (G) ' C(T). To be

specific, if f ∈ AP (G), there exists g ∈ C(T), such that f = g ◦ q, where q

is the natural projection from G to T. Thus wG ' G ⊕ T with semigroup

operation “·” defined as
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1) If x, y ∈ G, x · y = xy in G.

2) If x, y ∈ T, x · y = xy in T.

3) If x ∈ G, y ∈ T, x · y = q(x)y in T, y · x = yq(x) in T.

Therefore T is an ideal in wG. Thus the canonical extension of normalized Haar

measure on T to wG is the unique probability measure that spans Minv(wG).
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Chapter 4

Topological Left Amenability

4.1 (LSU) nets and L(S)

Previously in Chapter 1, we have seen the following results.

1. (Theorem 2.3.4) If there is ν ∈ P (S), such that the map s 7→ δs ∗ ν is

norm continuous, then S has an (LSU) net if and only if it has an (LSP)

net.

2. (Theorem 2.4.1 ) If S has an (LSU) net or there is µ ∈ P (S), such that

s 7→ δs ∗ µ is norm continuous, then a Borel subset T is TLT if and only

if it is TLL.

Because of these results, Day[15, p.84] inquired if the existence of an (LSU)

net implies that of µ ∈ P (S), such that s 7→ δs ∗ ν is norm continuous. From

Chapter 2, we know that such a measure exists if and only if L(S) is none

trivial. If L(S) is non-trivial, there is µ ∈ L(S)∩P (S), since L(S) is a two-sided

ideal of the Banach algebra M(S) that is closed under absolutely continuity

(Theorem 3.3.5 and Theorem 3.4.3). Then by Theorem 3.7.3, µ ∗ µ ∈ P (S)

is such a measure. We answer Day’s question in the negative by giving a
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counterexample.

Example 4.1.1. Consider S = [0,∞) with max operation and subspace

topology deduced from the natural topology of R. Then S is a commutative

locally compact semitopological semigroup with identity. Let xn → ∞ be

a sequence in S. Then for each compact subset K, there is nK ∈ N, such

that sxn = xn for n > nK , s ∈ K. Hence ‖δs ∗ δxn − δxn‖ → 0 uniformly on

compact subsets and δxn is a (LSU) net.

Suppose L(S) is non-trivial, let ν ∈ P (S)∩L(S). Let x ∈ suppν. Consider

E = [x + a, x + b] with a, b > 0. Then (x + a)−1E = [0, x + b], while

(x + a− 1
n
)−1E = E for any n ∈ N. Hence δ(x+a) ∗ ν(E)− δ(x+a− 1

n
) ∗ ν(E) =

ν[0, x + a) > 0 independent of the choice of n ∈ N. Therefore, s → δs ∗ ν is

not continuous at s = x+ a, which is a contradiction.

Remark 4.1.2. When consider the one-point compactification S̄ of S = [0,∞),

it is not hard to see δ∞ is the only normalized (left) invariant measure on S̄.

Thus by Theorem 3.8.2, we know L(S̄) = Cδ∞. The above example shows that

the existence of nonzero left translation continuous measure on the S̄ can’t

even pass down to its open dense subsemigroups S. The reason is that L(S̄)

vanishes on S. Thus as we mentioned earlier, it is more reasonable to expect

L(S) to reflect properties of F (S), rather than that of the whole semigroup.

Proposition 4.1.3. Suppose L(S) is non-trivial. Then,

(i) S is TLA if and only if there is an (LSU) net (µα) in L(S) ∩ P (S).

Actually, every topological left invariant mean m on M(S)∗ is a weak*

limit of such a net.

(ii) M(S)∗ has a topological left invariant mean if and only if there is m ∈

L(S)∗∗, such that ‖m‖ = m(1) = 1 and v ∗m = m for all ν ∈ L(S).
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Remark 4.1.4. Let G be a locally compact group. It is well-known that M(G)∗

has a topological left invariant mean if and only if L∞(G) has a topological

left invariant mean (eg. [31, Corollary 4.3]). In the previous proposition, (ii) is

a generalization of this result.

Proof. (i) If L(S) is non-trivial, there is ν ∈ P (S) such that s 7→ δs ∗ ν is

norm continuous as we argued at the beginning of the section. Then by

Theorem 2.3.4 (iii), (ν ∗ µα) is an (LSU) net in P (S). Since we have

shown in the previous chapter that L(S) is an ideal of M(S), the net is

actually in L(S) ∩ P (S).

(ii) Let φ ∈M(S). Since L(S) is a left ideal of M(S), then φ is topological left

invariant if and only if it is invariant under left translation of L(S)∩P (S).

Consequently, S is TLA if and only if there is a net (σα) in P (S) such

that ‖σ ∗ σα − σα‖ → 0 for σ ∈ L(S) ∩ P (S). Let µα = ν ∗ σα. Then

µα is a net in P (S) ∩ L(S) such that ‖σ ∗ µα − µα‖ → 0. Let m =

weak*- limµα ∈ L(S)∗∗. It is easy to check that ‖m‖ = m(1) = 1 and

v ∗ m = m for all ν ∈ L(S). Conversely, assume there is such an m

in L(S)∗∗. Then by Goldstine theorem, there is µα ∈ L(S) ∩ P (S),

such that µα
weak*−−−→ m. Consequently, σ ∗ µα − µα

weak−−→ 0 for σ ∈

L(S) ∩ P (S). Hence 0 ∈ {σ ∗ µ− µ; µ ∈ P (S) ∩ L(S)}
weak

. Since the

set {σ ∗ µ− µ; µ ∈ P (S) ∩ L(S)} is convex, there is fα ∈ L(S) ∩ P (S),

such that ‖σ ∗ fα − fα‖ → 0.

4.2 Hereditary Property

Throughout this section we let T be a locally compact Borel subsemigroup

of S, for example, take T as an open or closed subsemigroup of S. As we

52



mentioned in Section 2.5, the generalization of Theorem 2.5.2 is still open

for locally compact semitopological semigroups. We shall give an affirmative

answer to this question in this section.

Define i : M(T )→M(S) : µ 7→ iµ, where iµ(E) = µ(E∩T ) for Borel subset

E ⊆ S. Define p : M(S) 7→ M(T ) : ν 7→ pν, where pν(F ) = ν(F ) for Borel

subset F ⊂ T . Then p ◦ i is the identity map on M(T ). Thus in this section,

we let ν, µ to denote measures in M(S), while νT = pν and µT = pµ to denote

their corresponding restriction on T . We know that M(T ) = {µT ; µ ∈M(S)}

by previous argument. For each Borel measurable function h on T , we define

h̄(s) =

{
h(s) if s ∈ T

0 otherwise

Let µ ∈M(S). If h ∈ L1(|µ|), then clearly
∫
hdµT =

∫
T
h̄dµ.

Before we prove the main theorem, we need the following result, which is a

generalization of Wong [50, Lemma 3.1].

Lemma 4.2.1. Let ν, µ ∈M(S). Then

‖(ν ∗ µ)T − νT ∗ µT‖ ≤
∫
|µ| (s−1T ∩ T c)d |ν| (s) +

∫
T

|ν| (Tt−1 ∩ T c)d |µ| (t)

Proof. Let h be a bounded Borel measurable function on T . Note that rth(s) =

h(st) = rth(s) for all s, t ∈ T . Since complex Radon measures are bounded,

h is integrable against any positive measure in M(T ). Thus by (∆) on p.1,
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∫
h(st)dνT (s) =

∫
T
rth̄(s)dν(s) is |µT |-integrable for all µ ∈M(S). Hence

∫
h dνT ∗ µT

(∆)
==

∫∫
h(st)dνT (s)dµT (t)

=

∫ ∫
T

rth̄(s)dν(s)dµT (t)

=

∫
T

∫
T

rth̄(s)dν(s)dµ(t)

=

∫
T

∫
T

h̄(st)dν(s)dµ(t)

On the other hand,

∫
hd(ν ∗ µ)T =

∫
x

h̄(x)dν ∗ µ(x) =

∫∫
st∈T

h̄(st)dν(s)dµ(t)

Thus,

∣∣∣∣∫ h dνT ∗ µT −
∫
hd(ν ∗ µ)T

∣∣∣∣
≤
∣∣∣∣∫ ∫

s−1T∩T c
h(st)dµ(t)dν(s)

∣∣∣∣+

∣∣∣∣∫
T

∫
Tt−1∩T c

h(st)dν(s)dµ(t)

∣∣∣∣
≤ ‖h‖

(∫
|µ| (s−1T ∩ T )d |ν| (s) +

∫
T

|ν| (Tt−1 ∩ T )d |µ| (t)
)

By letting h runs out of C0(S), we have the desired result.

Corollary 4.2.2. Let T be a Borel locally compact subsemigroup of S. Let

ν, µ ∈M(S) such that suppν and suppµ are contained in T . Then (ν ∗ µ)T =

νT ∗ µT .

Let m ∈M(S), we say m is topological left T -invariant if ν ∗m = m for

ν ∈ P (S) with suppν ⊆ T . We say S is topological left T -amenable if there is a

topological left T -invariant mean on M(S)∗. Equivalently, there is exists a net
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σα in P(S), such that ‖ν ∗ σα − σα‖ → 0 for each ν ∈ P (S) with suppν ⊆ T .

The argument is similar to that of the proof of Proposition 4.1.3. Like earlier,

we say T is uniformly topological left T -invariant, if for each compact subset

K ⊆ T , there is a net µα in M(S) such that ‖ν ∗ µα − µα‖ → 0 uniformly for

ν ∈ P (S) with suppν ⊆ K.

Theorem 4.2.3. Let S be a locally compact semitopological semigroup. Let

T be a Borel locally compact subsemigroup of S. Then the following are

equivalent.

(i) T is TLA [resp. U-TLA].

(ii) There is a topological left T-invariant mean [resp. uniformly topological

left T-invariant mean] m on M(S)∗ such that m(χT ) = 1.

(iii) There is a topological left T-invariant mean [resp. uniformly topological

left T-invariant mean] m on M(S)∗ such that m(χT ) > 0.

Proof. The equivalence of (i) and (ii) was shown in [50, Theorem 4.1]. (ii)

implies (iii) is trivial. Thus it suffices to prove (iii) implies (i).

Assume m is a topological left T-invariant mean on M(S)∗ such that

m(χT ) = c > 0. Then there is a net (µα) in P (S) that weak* converges to

m and ‖ν ∗ µα − µα‖ → 0 for ν ∈ P (S). Without loss of generality, we may

assume µα(T ) > c
2
> 0. Let φα = (µα)T/µα(T ). Then for each ν ∈ P (S) with
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suppν ⊆ T ,

‖νT ∗ φα − φα‖ =
1

µα(T )
‖νT ∗ (µα)T − (µα)T‖

≤ 1

µα(T )
‖νT ∗ (µα)T − (ν ∗ µα)T‖+ ‖(ν ∗ µα)T − (µα)T‖

≤ 2

c

∫
µα(s−1T\T )dν(s) + ‖ν ∗ µα − µα‖

Since T is a subsemigroup, for s ∈ T , T ⊂ s−1T . Therefore,

∫
µα(s−1T ∩ T c)dν(s) =

∫
µα(s−1T )− µα(T )dν(s)

= ν ∗ µα(T )− µα(T ) ≤ ‖ν ∗ µα − µα‖

Therefore ‖νT ∗ φα − φα‖ → 0. That is, T is TLA. The proof of uniform

case is exactly the same.
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Chapter 5

Some Open Problems

In the chapter, we continue to let S be a locally compact semitopological

semigroup. The following lists some questions that are closely related to the

thesis and believed to be open.

1. We have seen that if either S has an (LSU) net or has non-trivial L(S),

then a Borel subset is TLL if and only if it is TLT. In particular, when

S is a discrete semigroup, or a locally compact group, or a compact

semitopological semigroup with a left invariant Radon measure, the two

definitions coincide. Are the two definitions equivalent in general?

2. We have characterized L(S) for compact semitopological semigroups with

left invariant Radon measures. In this case F(S) is the minimal right

ideal of S and is a topological semigroup. Till now, all examples of foun-

dation semigroups are topological semigroups. Is there a semitopological

foundation semigroup?

3. We have shown in Corollary 3.5.5 that if S is a foundation semigroup,

then (α) for any subset O of S with nonempty interior, (sO)O−1 is a

neighborhood of s for any s ∈ S. Does (α) imply the existence of a
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non-trivial L(S)?

4. A semigroup S is called a Clifford semigroup if it is the union of algebraic

subgroups of S. It has been shown in [37, Theorem 11.5] that every

Clifford semigroup with an identity and a “stip” structure is a foundation

semigroup. However, not every Clifford semigroup with an identity is a

foundation semigroup, for example, the weakly almost compactification

of the 2- motion group in Example 3.8.9 (c). Is there always a non-trivial

L(S) for a Clifford semigroup?

5. In literature, one say a Banach algebra (A, ∗) is right (left) weakly

completely continuous, if the map ρa : b → ba (λa : b → ab) from A

to A is weakly compact for any a ∈ A. A Banach algebra A is weakly

completely continuous (w.c.c) if it is both right and left weakly completely

continuous. The study for w.c.c. Banach algebras arise from the study

of the group algebra L1(G), where G is a compact group. It has been

shown that a Banach algebra A is right (left) w.c.c. if and only if A is a

left (right) ideal of A∗∗ (see [21]). It is also known that L1(G) is w.c.c.

if and only if G is compact (see [43] and [24]). When S is a compact

semitopological semigroup, it is obvious that L(S) is a right w.c.c.. Does

the converse hold?
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