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- .. .. ABSTRACT

It is often desirable to sinpliffymultivariable feedback
controllersqdesiéned using modern comtrol theory so‘that they will be.
easier and more practical.t9 apply to the control ot industrial;pr07
cesses. Typical‘simplifications include linearization, assumption

of time-invariant models, and reduction of the order of the govern-
ing equations. This thesis is concermed primarily!with:

<

1. The simplification of linear time-invariant state space

. models using modal analysis techniques to eliminate selected
Y ' state variables followed by the design of multivariable con-

trollers based on these'reduced models.
2. The use of modal ana1y51s techniques to eliminate selected

state variables from a "high order control law designed'

-x Do )

using the original'process'model:
3 Ihe.uselof least squaresgtechniques, instead of -the modal

analysis.uentioned aboue to fit the:ldd:order'sySteu (model:
or control law) to data generated by exc1t1ng the high order
"system with a sequence of random numbers.
4. The development of computer programs‘to implement;thetabove-

techniques plus ‘examination of" related theoretical points

' such as the equivalente of different reduction techniques.

A1l of the techniques developed in this work were applied' .WR
to the ‘computer controlled pilot plant evaporator at the University

of Alberta that was used in previous multivariable control studies..'

[
e
‘e

Simnlated andlor experimental data are déesented tolshou the'relativel'

—1iv -
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“'performance of different process models and cqntrollers. 'Specif%c

,'contrlbutlons and conclusions are:

x|

1. Existing modal approaches to the reduction of:continuous—(

i

time models are extended for use with discrete-time models.

_ Several of the basic modallresults:presented in the;litefa—

2.

ture are. shown to be equivalent.
In calculating a reduced order discrete-time wmodel irom a high

order continuous-time model_using the'modal approach, the

relatlve order of the model reductlon and tne model discret-

ization steps is unlmportant, since the same reducea ‘order

" model results. However, using the least squares approach

and the same sequence of random numbers dlfferent reduced

' order dlscrete time models result when the order of the

o .
‘reduction sgep and- the discretizatlon step is 1ntercnanged. B

3 Control ,laws designed by ellmlnating selected state varlaoles

N
:

from,a high order control law'using the modal'analysis'were

" the only controllers to give consistently good’ control of the.

v

evaporator. a ' e, .

4 When the least squares approach w1th random data is used to

51mp11fy control laws the result obtalned bv n1n1m121ng

the sum of the squares of the dirterence betueen the orlg—

~

inal control vector and the de51red reduced order control

' vectOr is the same as that obtained by mlnlmlzlng the Sum of

\

of the high order model uhen controlled bv the hlgh order

»controller and by the de51red reduced order controller.'

,},_\

,é the squares of the ditference between the closed loop responses

4,
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In general, it was concluded that a multivariable control -

law,'sucﬁ as the'ten;hlorder optimalvcoﬁtrollér de§ighed.fQ§,the'pilot

plant eyaporator, can-be simplified by the éliminatioh‘of selected
. _state variables and that the resulting control schemes can be easily
and successfully implemented on actual process units. | b
T y .
T - '*v\»-/ '
. . -
"
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) { . ' CHAPTER ONE :
* INTRODUCTION

1.1 GENERAL

Accordtnz.to the Enc&clopedia Br1tann1ca, a coutrol s}stem '
is any means natural or. art1f1c1a1 by which a varlable quantity or"
set of varlable quantities is caused 5 conform more or less,.to

.some:prescrxbed norm [29]. The most common type of control system

'_,presently implemented in the chemlcal and petroleum 1ndustry ls a ;

’single variable feedback system applied through the use of electronlc\\

- and pneumatic 1nstrumentat1on.' The theory and application of these
‘single loop controllers has been d1scu3sed in detall in many text-

books [5,6, 11 ,22]. They are relatively easy to apply to. the process

.and can provide good control of the variable of interest._ However,

- difficulties can deve10p uhen process variables 1nteract or’ when the’ -

control variable for one section of the plant is a- feed variable for
’another section Some modificatzons, such as feedforward control

help to overco.e this problem. A mofe recent approach to e11m1nat1ng

these interact-ons is the use of a multivariable control schenme.

Optinal multivariable control and its theoret1ca1 potent1al

_has -been discusaed at length (3, 13 14 21] Houever, its applicatlon

to the control of a physical process 13 more difficult than the
'application of single variable controllers. Thls is because each
control value 18 calculated as a functxon of many process values_

(states). This practical application has becoue feasible vxth the»

‘ﬁldevelopnent of the control conputer capable of performing the requxred-'

N
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on~line calculations. Also, in the applrsation of‘optimalfmultivariable
control, values must beiobtainedafor-each of - the process variables that

.~ are in the state vector of the-process model. Usually, these cannot

all be measured so that estimated values must be obtained. This, in
turn, requires more on-line computer calculation time and so increases .

the loading on the computer. An alternate approach for dealing with*

~

\unmeasurable states is to eliminate them from the control law.='It is

this approach which is treated in thls thesia, using two general tech-

~ !

niques. In the flrst the unmeasurable states are el1minated'from=

theiprocess model .and -the resulting model is usedlto cateculate the:

e

optimallmultivariable»cOntrolllaw (model reduction); in the second,
the unmeasurable states are eliminated from_tbe optimal control law -

itaelf (controlvlaw reductlon).

Prev1ous contrbl stud1es at the University of Alberta include
the following Andre [2] built a pilot plant evaporator and controlled. |

T~ ~

’it with conventional single loop feedback electronic instruments
VA
Wilson [25] controlled the pilot plant with electronic feedforward ‘

plus feedback controllers. Jacobson [12] ,and Fehr [7] performed

»

' similar studies using direct digital control on ‘the newly vauired
IBM 1800 Data- Acquisition and Control Computer [8 28]. _ They. also

o studied inferentlal control of the product concentration,_controlling

iz
I

the concentratlon using calculated values tnstead of meaaured values

e

Z'Newell [17] applied optimal multivariable control with” proportional\\\
ufeedback integral feedback feedfor'ard and setpoint control modes. I'k‘f
‘fAdditional advanced control techniquea have been applied to the.

evaporator by Nieman [18] (optimal state driving control), Oliver



[19] (model ‘reference adaptive control), Alevisak1s [L] (time delay

.compensation) and’ Hamilton [10] (Kalman leters and Luenberger

_observers).

Control studies az the University of Alberta using a pilot

A——

plant d1st111ation column [4;16,20,23] and 1dent1f1cat10n studles on

- .
- .-

a heat exchanger [15 24] have also been dOne

1.2 SCO?E,AND STRUCTURE OF THE THESIS .

k2

Tnls thesis treats the general problem of controlllng a'pro-
cess which has unmeasurable states in the process model The Basic
model.for this study is altenth-order linear modelvof a pilor plant.

; evaporator which was obtained by a numerical 1inearization of che
. 4 e

'.nonlinear model. developed by Newell [17] ‘The general form‘of the.

_model 15 in. one of two forms; the continuouthime form as

-

x=Ax+Bu+Dd (1.1)
or the discrete-time'form as
SR X3+ se x(3) +aud) +@aq) . (1.35
wegy o

i s

where x is the n*dimensional state

e

is the m-dimensional control vector l

]9

"i8 the qadimensional disturbance vector _

M

is the p-dimensjional output vector e



N

A, B, G, D, ¢, 4, © are constant coefficient matrices of approp- |

~

" . riate dimensiomns
J is a counter such that x(J) = x(t) when .t = jT and

T is the discrete-time 1nterva1 .

D

The b351c c0ntrol law used is a linear’ proport{onal feedback .

1ntegral feedback feedforward plus setpoint controller which results

from calculations u31ng dynamic progranndng techniques to minimize
'a quadratic performance criterion. Unless otherwise stated the con-

" trol laws are discrete time controllers so that they can be applied

‘to the control of the pilot plant evaporator usxng a d1gita1 computer.

The topics discussed .in this thesis can be outlined as part

of -the general scheme presented in Figure 1. l. The model reduction,'

steps represented by path one for a continuous-tiue model and by
Upath four for a discrete-time model are treated in Chapters Three;

Four, and Six;‘ Procedures for control lav reduction represented

'.,by path eight are developed in Chaptess Five and Six., The other

' :topic discussed in the thesis is the calculation of a reduced order

control law as the optimal controller for a‘:educed order model whichﬁv

L

/

' had been obtained by model reduction techniques (Part of Chapter 6)

'uThis is shown in Figure 1. 1 by path four - followed by path seven

The thesis is structured in the general form of a series
of publications dealing vith the nethods outlined in Figure l l.:
Earlier versions of several chapters have been published as. noted

in the discussion vhich follous.

4

e

.

i
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In'ChapterVTwo a GEneral yhltipurpose Simulation/and

COntrol PackagE (GEMSCOPE) is presented. For ease in simulation
and design calculations, a collectidn of computer programs was

assembled into ome integrated package This package all s'the’con-

/.’.

trol system de81gner to specify a model, perform various»calculations

" on his model (model reductlcn, calculate the discrete—the model

calculate a discrete time model w1th .8 different sampli g 1nterva1),

de51gn or spec1fy a control law and calculate a time domain response

-

~ An earlier version of this chapter,has appeared_in~the111terature-[9].

" In Chapter Three, several existing approaches to model reduc--
tion for continuous time models are extended for use in reducing the '

order.of diacrete-time models.- The resulting reduced{order discrete-f

‘ |
time models calcukited usfﬁg the m dal approach from a high order
: *

continuous time model along two paths of Figure 1 1. (Path one followed
"by path three and path two followed by path four) are compared. An-v»x

earlier version of this paper appeared in reference [26] E*f\l

‘% - o

E N

The subJect of model reduction using least squares to fit

the response of the reduced order model to that of the high order

-'model is discussed in Chapter Four, where an alternate method of

obtaininguthe data used by least'squares is presented. e

'
1

A modal‘approach to contrdlwlaw reduction (path eight of

Figure 1 1) is presented in Chapter Five. An earlier uersion'of this
"-paper appeared in reference [27]

st

Chapter Six includes several aspects of both model reduction

'and control law re‘uction The modal approsch to model reduction is/

S . R



discussed in more-detail and several of the resules presented in khe

Lo , ;
.

‘literature are compared Three approaches to reduced order control

law design are discussed and applied to the control offaipilot:plant‘
+ CoT
evaporator. .

Flnally, some overalﬁ conclusions and recommendatlons for .-

future work are presented in Chapter Seven.



CCHAPTER TWO o

DESCRIPTION OF A COMPUTER PACKAGE

S ' 7 FOR CONTROL' SYSTEM DESIGN

§

ABSTRACT

A GEneral Multipurpose Simulation and COntrol PackagE
(GEMSCOPE) is described which assists with the de31gn, analysis, and
digital simulaticn of linear, time-invariant dynamic systems. The pro—
- cess model ‘may be defined: as transfer functions or in the form of a-

standard. state space model in either the continuous—time form or the
discrete-time form. Options are included for generatinéi*he optimal
control’ matrices, determining the state feedback ‘matrix for non—inter—.ﬁ
"action, reducing the order of the model and of the control law and
',calculating the open or closed-loop system response. -GEMSCOPE was

used for all the model and control law calculations used in this

hthesis.



2:1 INTRODUCTION

~

. GEMSCOPE (a GEneral, .Multipurpose, Simulation and;COn*rol

Packa gE) is an integrated series of computer programs to aid in the

e

31mulation of linear models and in the design of control systems for ;,

>

these mf°dels. It has been deslgned to run, either as a batch job, or,f N

from a time sharing terminal, on an IBM 360 model 67 computer operating

a

-.under the UniverSity of Michigan, time~sharing terminal or1ented system

‘_(MTS) lt has been set up in order to make use of some of *he file man-.

ipulation programs available with the MTS system. Some of the'programs

]

in GEMSCOPE were used in recent studies by Newell [20 21] and’ most of
_dthe programs were used in the de31gn and s1mulation calculations to be -

houtlined in this thesis.

.
S

The basic data used in GEHSCOPE as well as some of- the basic

B

.‘programs (data input and output calculation of a state space model ‘ ‘:m

- '

ifrom a transfer function model, calculation of a discrete—time model

7

from a continuOus time model, calculation of & time domain reSponse}

. are those which made up the Continuous §ystems Analysis Progtam (CSAP)

described by’ Agostinis and Fisher [1,2 3] ; GEMSCOPE itself is des-.

' cribed in a series of research reports. The GEHSCOPE User's Manual

~

a[29 ]describea the use of the existing programs ‘as wel 5 the required

\data. Other reports summarize the file structure and Lne subroutines
?? LT "“
used in- GEHSCOPE [30] P indicate the required steps to add a new prow

gram to GEHSCOPE [31] , and’ outline a: sample proble- using GEMSCOPE [29]
! . '. ' - : i ) ' N S ! ‘ . |
i S, . . :
Hany other digital simulation and design programs exist. One

o of the first was’ developed by Kalman and Englar [15] and others are des-

i

cribed in textbooks by Franks [9£;hnd Melsa [l9]; Severalrcompaniesvly

' O
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~and organizatiqhs also have their own programs for internal use. This

chapter, therefore describes an example of such programs, not a unique
1'program, by discu%sing the'basic philosphy used to set up GEMSCOPE and

»

briefly outllning the -main programs in the package

2.2 csascops PROGRAMS:
— —

GEHSCOPE is a series’of separate programs which share.common
,disk storage files‘and_can be executedveither singly or sequentially to
perform operations_suth as model definition,'control calculations or
/(simulation ofvtime domain responses. From the point of Qieovof simula-
_tion the inportant proérams‘are:'
4 1 Specification of the programs to be executed ‘
2. Definition of the state ‘space model B T S o
3. Calculatxon of the state difference equation |
| 4 Calculation of the time domain response
These programs ‘are shown in the center column of Figure 2 1. However
;the usefulness of GEMSCOPE is increased significantly by the functions‘
sw»represented by the blocks in” the right most column of Figure 2.1 which
N~ w :

'1nc1udes,

4

5. Generation -of an- equivalent state space form for models entered

as transfer functions’ | . '/// TS S A . AR
. ) - / , . b /.’..,: ‘ L _1 ‘
6. Reduction of the order,cf/the state space model

- 7L-Generation of state/feedback required for non-interaction’

8. Calculation _of the control matrices for optimal regulatory .
pd N , .

:,control/-<
c'9;531mplification of high order control laws. T ‘ o o

S RS
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MAINLINE SEQUENCING
EXECUTLYE

ENTER MODEL AS,,
X(H1)= gxt))v u(y)

INITIALIZE FI,LESv]

T

@

ENTER MODEL AS
TRANSFER FUNCT] 10MS

4 8
» - B
g

R
+
T B
l=>c

GCENERATE EQUIVALENT

- AA S
X=Ax+3Bu

r

—

-t OUTPU_T, INPUT DATA'" .

CONTINUOUS - TIME
MODEL REDUCTiON

- GENERATE
weFxegy.

¢
Lpge-

GENERATE STATE
DIFFERENCE 0

E(3+ 1) = ¢x(3) + Sa(s)

CALCUGIATE DIFFERENCE

EQUATION WITH LARCER

TIME BASE

"DISCRETE-TIME | .

1 moom. aevucTion

CALCULATE . OPTIMAL

e CONTROL MATRICES
e L T s |
x- ,
A
CALCTATE R EaTER-
&S DISCRETE 2OINTS
CONTROL LAW
REDUCTIOR
CALCULATE

OPEN OR CLOSED. LOOP

TIME DONAIN RESPONSE

LIST OR PUNCH RESULTS

STOP - OR SELECT

ADDITIONAL OPTIONS

- \

FROM OUTPUT FLLE
.'/J ) ‘

. FIGURE 2.1 ° SIMPLIFIED FLOW BLAGRAM OF GEMSCOPE
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10. Utilization of‘a discrete control vector'for'open-Ioop or

optimal state-driving.
: g

These methods areldiscu§§agjin the folloving sections. Some of t e

of storage. Core memory requirements vary because the I
“dynamic memory paging but,a typlcal average would be 30 000 words.
[ 3

. Central Proce531ng Unit cime requirements vary with each run ‘but

- ,average ‘about 40 seconds.

2 2. 1 Job Specification

It should be emphasized that each program in GEHSCOPE is a‘
separate mainline program and’ ‘can be executed 1ndividua11y or in any
'sequence that the user specifies; The mainline sequencing executive
permits the user to spec1fy which program blocks he ‘wants executedvbf
simply entering a seriee of 1nteger code numbers either via punched
:cards (if he is running GEHSCOPE as a batch program) or via a key-'f
'.board on'a time sharing terminal The executive then generates the
appropriate series of job control statements and stores them in.a file.
Special files of job control statements can be retained for frequently

. ]
used combinations of programs The computer monitor system will then

'execute the GEMSCOPE programs in accordance with the job control state-

ments in this file and then exit, or return,to'the executive. This

RS

12




aﬁpfoachimaximizes fLexibiiity, facilitates reassignment of input-
output devxces and files for each program block, and makes it a sxmple
matter (since each block is a self contained mainline program) to add
'*~modify or delete'programs. ;Ihls approach also allqwed the full usefof
the éomputer gystem support pfograms;ﬂsu;hvés“file manipuiatign rou-

tines; which are specified by the use of jobvcontrol-sﬁatemeqts.

S 2.2.2 Stafe’Space-Modél Specification-

The system to be simu ted canmbé specified in standard state -

-space form (oxder5€30) or, as descrlbed later, in the cla581ca1 transfer-

function and block dlagram form For matr;x input the'cogfficient

e

.matrices are entered by the user or obtained from previously established

input files in-“the form of a cqntindous-time system aﬁ;_;

x = g+’§_@ . - . @
Y=L +Ew S . (2.2)
‘or in the form of a discrete-time system as_Equatiop‘(Z.Z) and R

where: . = state vector

le> Ix

= input vector

imtp_ut vector

n

input plus delayediveCCOr'

g
"

A : N S - L
- e,ug, E, E*; ¢, L= constant coefficient matrices of approp-

P

‘-tiate dihehsidh'
j is a counter for time intervals such that x(J) denotes

x(t) at t - jT where T is the d1screte time 1nterva1¢ ‘

i(j,#» 1) = oxtj) +g“./_\(_.j)‘v - S (2.3

13



©2.2.3 State Difference Equation

When a state space model in the continuous-time form of

{Equation'(Zil)vis available, the equivalent'discrete-timeimodel of\ﬁ

» 1'-" i

Equation (2.3):may be needed'for some epplications.' Thys, a program ':

is available to calculate Equation (2 3) from Equation (2 1) s Voo

Equation‘(z 3) agrees exact1§ with Equation (2 1) at.each
qsampling p01nt 1f the 1nput vector, Q,'is constant 0ver the sampling
interval (which is true:whenfg originates from a_digitel_control»com—
puter) otheroise an~aoproximation‘ie involued This diocrete form‘
is particularly convenient for digital calculation and ¢ and A.are

"available for use by other programs.

power series expansion or the Cayley—Hamilton technique as described
by Agostinis [1] or in textbooks such as Ogata [25] and Saucedo and

Schiring [28] Implementation of qhe 1atter technique includes

, algorithms for determining real complex and/or repeated eigenvaluee

I}

v 'of non< symmetric A matrices. The A matrix is obtained by numeric

'integration of ¢B over the interval T

This program to calculate the discrete-time model ‘was orig-”

-inally part of CSAP [1 2,31.

The specification of the time interval T; - has a pronounced

effectlon the numerical stability of some of the algorithms is uaually

o

 the’ dominant factor affecting simulation time and determinea the resol-

_:ution or"precision of the time.domain response. Therefore,rto provide :

The fundamental'matrix; ?, can'be'eveluated uSing either a.

14



_additional flexibility, a program ‘has been 1nc1uded to modify the pre-
v1ously calculated/coefficieut matricea in Equation (2 3). so that they

apply to an 1nterva1 mT (uhere m. is an integer) 1nstead of T and

~“ar
e

o(aT) = gNT) S (2.4)

.-

“In general, 51nce use of Equations (2.4) and (2 o) is con51d-‘i

A ]
erab1y~faster than recalcula ing 0 and L, 1t is most expedient to spec1fy

. A -
:‘«a small interval T)for/the first evaluation of ¢ and pavs Relatively .

.

large multiples mT, can be used for exploratory studies and then m
can be reducediuntil satisgactory"results are obtained.

‘2.2.4 'Time'ﬁgmain‘kesponse o .',vc

.

The time domainbresponse 1s evaluated directly u51ug

Equations (2 2) and (2 3) The initial state vector, if not supplied

by the user, is 1n1tialized to zero. The elements of the 1nput vector,
A v . : _
~u, can be defined by selecting standard options as step, ramp, 51nu501d

-or pulse functions or defined_by a discrete-time series of p01nt values.

J The control Variables'can also be specified as originating~from a»control’
lau as discussed in the section on optimal multivariable control (Section

2.2.8). FQr each.time domain response\‘this program also calcuiates the

T

: numerical value of the quadratic performance index J vhich is Optlmlzed-

K}

\\ in the calculation of . the optimal multivariable control matrices: .This

performance index is also discussed in- Section 2 2.8.

15 .
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The basic form of this program was part of CSAP [1 2 3] and -

| has. been rev1sed slightly for ‘use 1n GEMSCOPE.‘

2:2.5 Transfer Function Hodel

~Most of the current research work in areas such as optimal
>‘contr01 is‘performed using state space techniques However, a great
deal of practical de51gn and:’naly31s of control systems is st111 done

'u51ng classical techniqués based on transfer functions,and'block dia-

grams. Thisfapproach has been the subject of many texybooks Such'as

‘that by Coughanowr and Koppel[5]. fTherefore to serve as a convenient -

11nk betveen the two. approaches, a program was written which would
bacéeét,a problfm‘defined in terms of transfer functions and a coded
equivalent of the'userls;blOck'diagram, and produce.an equivalerv -ate
’space representationiin the form of Equatibns (2.1) and (2 2) There
':are n? arbitrary restrictions on the form of the block diagram except
the dlmen81ons specified for ‘vectors and matrices in the digital pro-
- gram. . Pure- time delays 1solated differentiation terms‘and isolated
1ntegra1 éirms can be handled. This program also can - specify control.
constants for. standard single loop control laws using the transfer‘
v_functlons, the block diagram and several different criteria such as
the Ziegler-Nichols frequency’ response technique, the Cohen and Coon
response cur€> technique and others. lhe program then rearranges
.these control constants into a matrix.form s0 that it can be
'used in the same form as the optimal multivariable control law dis-;s

'i,cussed in Section 2.2.8.

This program was originally part of _CSAP [1,2,3] and .was

added to cmscorn by Park 20

16
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©2.2.6 Model Reduction

Model reduction is frequently desirable to reduce the compu-
'tational requirements when a large’ series of Simulations is to be done

.

or to eliminate states*which. are not of interest and/or are not phys-
ically measurable. Also, when the model or control strategiesvbased -
on it _are to be implemented on a computer controlled process then
model reduction will reduce‘the amount of real time calculations
Therefore two programs have’ beenkincluded in GEMSCOPE to reduce the
_order of a.state space model by calculating a reduced order model whose
state vector is a subset»of the vector x. Each'of theée programs permit

the user to reduce the order of either the continuous time model of

Equation (2 1) or the discrete time model of Equation (2. 3)

In the “first. program model reduction is accomplished USing a.

- modal analysis of the high. order model by eliminating the least Signif-

icant eigenvalues : The user has the: option of speCifying the continuous-
time. reduction approaches of Marshall [18] DaVison [6] Fossard [8] and
'-Graham [12] as well as the equivalent discrete time extensions of these

approaches which are. discussed in Chapter Threg It is also shown in

R oy

Chapter Three ‘that using these modal approaches, the continuous -time.
'model reduction folloved by conversion to the discrete time form is

-equivalent to discretization of the high order model followed by dis-

;crete time model reduction.. Model reduction using‘the modal analySis is

iscussed,in detail in Chapters Three and Six.

-

‘.-‘

- of uniformly distributed random numbers are used to calculate the reduced

order model Least squares is used to "fit“ia reduced order model to

17

In the second program, a least squares analysis,'and a sequence‘



’ .::\ . .
| the hlgh order model u51ng data uh1ch are calculated from the high’ order
.'model and the random numbers. This approach is discussed in detail in .

'Chaprer Fohr. o L -

o

2.2.7 Non~interaction

For the control of multivariablevprOCesses it is fre
RV . .
not. the dynamic relationship between a given pair of 1nput and output

R S

varlables that causes difficulty but rather the 1nteraction between
. these variables and other state variables. One-design approach 1s~tof&;
develop an augmented plant model such that there.is no interaction

between the 'new reference variables and the output variabies;

]

The’ decoupling program 1nc1uded &n GEHSCOPE is a modlfled
version of ome developed by Gilbert and Pivnlchny [11] : The program
first tests to.see whether the model meets: the necessary and sufficieot
conditions4for nonéinteracrion by state feedbaok'as described by Falb
-v.end Wolovich‘[7]; \varhe oodel, éiveﬁ-ip the forﬁ ofvKoations‘(Z.l)'
‘and (2.2) can be made popfinteraetiog3thevprogram synthesites:a control

. law in the following form:-

|

u=FEx+0Nv N ¢ 1))

The reference input vector v is related to the original ptocess'outputs-

by the following equAtiods”vritten in terms of Laplace cransforms.

A

18

=g ¥ en .

The‘rransfer matrix W(s) is diagonal ahd the elemehts are
specified by the user, as functions. of tvo vectors, so that the sys-

tem defined by Equation (2 7) has the desired dynamic response. _Ihis



19
'fixes the elements of F and N. The ba51c theory behlnd the algorlthm -

has beew described by Gilbert [10] The user then spec1f1es the aug-

mented model in the state space form of Equat1on (2. l) and (2 2) and

re-enters GEMSCOPE for further simulation and/or control-'

\

¢
~

- Thls approach to decoupllng control has been applled to a

f1fth order dxstlllatlon column model by Newell [20 21]

. 2.2.8 Optimal Mnlti'ﬁa.riable Control_lers'

\

Optimal mnltlvarlable controllers with proportlonal plus-in-

tegral feedback feedforward compensatlz? for constant dlsturbances

d, and provision for drlving the process from 1ts current position to

setpoint values, Y ,‘can‘be implemented using\a control law of'the form

N '

. o ‘ _ : : B o B
. j-1 t ‘
‘ ¥ SP S B
Cu(h) =K x(_]) +X Y ¥ +K Fasy + FF (2.8)
" ' i=0 o . i '
S L : . . . A B g
where u and d are defined as partitions of vector u as ./
ouE LA oo T (2.9)
L g 4. :‘—: L

: ‘'SP . . : : ,
andeFB, 5;, EFF, K P are the controller matrices. For the special
case of dxagonal control mattices, Equation (2 8) represents. a set of

' conventional single variable control laus

- A'progremlis'included in GEMSCOPE to allow the user to supply
|’/.\
these controller matrices or to calculate them for the part1tioned form

of Equation (2 3) as. v -._ R u R 4
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xG+ 1) = ¢ x(D.*pui) +04G) 2.10)

where A= Q@ =).. This calculatioh-uses recur51ve relations developed
by applying the concepts of discrete dynamic programming to the model

of Equation (2. 10) and a quadratic performance cr1terion of the follow~

‘ing form
=8 - SH s am -
4 :E: g' 3(5(i) - T 9 (x(i) —IZSP) + ET(i—l)gji(i-l)“
oi=1 : . . S o

where B, a time welghtlng factor, and 9, 5 and S, state or. conttol
weighting matrices, are: spec1f1ed by the user. The dynamlc program—
ming solutlon calculates the proportional feedback feedforward and

setp01nt controller matrices: directly from the model in Equation (2.10),

- and evaluates the integral matrlx, from an augmented state space model

. T R 1 B
where the or1g1na1 state vector, X is augmented by X where X is

A
defined by ‘
, ‘ 3 : : _ - , -
: I .. ® - . . ) . . .
EGYRT Yy (2.12)
. - ‘v-‘_ i=0 N : . . » -

‘and where y(i) is defined by Equation (2 2) with E* = 0 Newell et al
[20 22 23] showed that this method of generating control matrices is
relatively straightforward practical, easy to implement and has given l
outstanding results in both simulated and experimental control studies.

'Optimal control laws, ‘calculited by this method .are used in Chapters'

Five and Six

2.2;9 "Control Law  Reduction”

' When'optimal control'theory is%uSed.to obtain a multivariable



control law for a linear state space model in the form of Equation (2.1)
or (2. 3), the resulting control law is a.function of the entire state/
vector. This is shown by the control law in Equation (2.8). In many

cases the state vector contains so many elements that the reSulting

control law is too expen31ve to apply to the{Ebntrol of the actual

S

process using a control computer Thls expense is due to the large
on- 11ne computer time required to measure all the elements -of thlS

large state vector, or to calculate any which cannot be measured.

o":“'
In order to redu%e the complexity of- the control law, GEMSCOPE'

contains two programs to calculate low order control laws which are a

function of a subset of the original state vector. Each of these pro-

grams make use .of the high order control law The resulting reduced

order control law, being a function of fewer state variables requires

-~ less on-line computer time for measurement or estimatlon, of the
is

required process variables They also include the proportional feed-
E

:back integral feedback feedforward and/or setpoint control modes

: )

which were present in the high order control‘law.

The first program uses a modal analysis of the high order
system to approximate the states which are not wanted in the reduced
order control laa, ‘as a function of the process inputs and the states

o’
to be retained in the reduced order control law. This approach is

'developed in detail in Chapter Five In the second program, a least.
squares analysis is used to fit a reduced order control law to the
-'high order control law using- data which are. calculated from the high

‘order control law and 'a sEquence of uniformly distributed random num-

,-‘bers This approath is. discussed in Chapter Six.-

o~
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T jorder makes use of two of the GEHSCOPE programs already

‘a time domaln response e

.22

A thlrd approach for calculatlngiiﬁv ,law“of reduced
Q’W "'; i
W 'ﬁ

“ ] . ) ‘“ ¢

S
o ) 2

Each of these three approaches to neduced order control E&w

s
o

de51gn are dlSCUSSEd in Chapter Six, where 1t is shown that the ap- ®

‘I

‘proach u51ng the modal ana1y51s to reduce the high order control law o

gives the best results when applied to the control of the pilot plant

“evaporator outllned in. Appendix A.

2 2. 10 Utllizatlon of a D1screte Control Vector

Prov181on has been made within GEMSCOPE to carry out time
N

AN

dom31n simulatlon ‘using control varlables, u, specified by a)dis4'
crete time series stored in a computer file. The ualues for u
can be supplled by the user or calculaged by another program - Nieman

2 . e

[24] developed programs which use quasilinearization and/or linear

. programmlng techn1ques to.generate the optimal control policy to»drive‘

a process from one state to anather in such a manner as to minimize
a . . - . B ‘ . / . ~ . . . /
a criterion.such as minimum time, or minimum sum of the absolute

errors. These programs can be used to generate a dlscrete series of

control values, which can be read into GEMSCOPE and used to generate

-

2.3 DISCUSSION

3

The programs discussed abo@ form a useful package of simu-

<

1at10n .and design programs for linear systems However, there is



w still a need for further development of control and numerical tech-

»niques that wfll make the package more flexible and will extend the

- Cen

applications to larger‘systems, non—linear systems, stochastic svs-
| tems,.etc.- Some p0531b1e future additions to GEMSCOPE 1nc1ude
a) Programs to design state vector observers and filters. This
was studied by Hamilton [13] and could include the Luenberger
' observer [16] and the. Kalman Filter [14] | »
b)‘Altering the time domain response program in conjunction. with
) the design of state estimators to 1nc1ude the prov1sions for
filtering measurements and for adding random noise to 1nputs
and/or states so noisy processes could be simulated
‘c) Programs to include time delays in the multivariable feedback
'control law, ‘as ‘was studied by Alevisakis [4] |
d) Programs to calculate an adaptive control algorithm along with
the calculation of the time domain response of”the system. .One
~such - algorithm was considered by Oliver [26] v |
:“é?,Programs to design multivariable control laws by techniques .

other than the ‘dynamic programming approach described above.

.Some p0351b1e schemes 1nc1ude closed loop pole placement and h
the newer.frequency domain techniques‘de5cribed by'MacFarlane

'(17].

[

_the linear state ‘space model in the/form of Equation (2 l)

from a non- linear model - provided by the user in the form of a‘

subroutine. - L

- £f) A general numerical linearization program which could" calculate g

23



2.4 CONCLUSIONS

5 et . T

GEHSCOPE forms the base of an eas11y expandable package of sim-

ulation -and de31gn programs for 11near systems It is designed to fac-’

'111tate the addltlon modlflcatlon or deletlon of 1nd1v1dual programs

" and to make full use of the support programs supplled as part of the

computer operatlng system Several possible additions to GEMSCOPE have
2 ) .' “{WA ‘ 5 :

been discussed. o ’

Y. oa
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CHAPTER THREE |
MODEL. RECTION FOR DISCRETE-TIME DYNAMIC SYSTEMS
ABSTRACT

The model reductlon tecnniques‘of Marshall Dav1son and Fossard
»_‘for linear continuous-time models are extended for use in reduelng the
order of linear discrete—time nodels. Two approaches for the reductlon
of high order” contlnuous tine models to low order discrete-time models
~are.presented and evaluated. The. re8u1t1ng Teduced order, dlscrete-,'
time'models obtained by the two approaches are. shown to be equivalent.;‘

A simple numerical example is solved to demonstrate the technlques

presented



3.1.. INTRODUCTION

“Linear state space models have been\extensively'used to,math--'

\

ematlcally descrlbe a wide variety of physical systems, such as air-

craft chemlcal plants and ref1ner1es. In many 51tuat1ons dynamic

- model’s- con51sting of a large number of dlfferentlal or - dlfference
‘ equatibns can be ‘derived from theoretical considerationms. 0£ten,
suCh models are so large as to be inconvenient or impracticalvfor many

purposes, rncludlng simulation and control system des1gn and 1mp1emen— :

tation. Consequently, a need ex%sts for systemat1c procedures for

deriving reduced,order»dynamic,models from high order models..

Model reduction techniques for continuous-time‘.state'Space\”

. «l!
'LAr_,

models have been the subJect of many recent 1nvestlgat1ons with modal

P

approamhes by Marshall [14], Davison [9], Chidambara and Davison [S,,-

» )71, o@h :

contrast, on

5.
[12] and.Fossard [10] recelving the most attention. . By

y a few investigations have considered the model reduc-
T o A
5 .

tion of~discre§e-time systems. Anderson [4] pre:"nted a method for ~

AN

deriving a discrete—time reduced order system'based oé)a.leastv
squares f1t of the response of the reduced ordér model to that of
'the origlnal hlgh order model.v He has also presented revisions to his

method to reduce computatlonal diff1cu1ties (Anderson [3]), to account

for- pre specmfled elements of the reduced order system (Anderson (2])

and. to produce hﬁtter agreement -at the final steady ‘state (Anderson

Q[l}) In thls investigation the modal methods of Marshall [14]

Davison [9] and Fossard [10] are: extended to discrete-time models.:‘

B

The discrete-time model reduction'techniqhes'uill be,derived‘

-

d,~in Section '3.2. 1In Section‘3.3, the problembof reducing a high order

>

26
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continuous-time model to a low order discrete-time model is considered.
Finally,'a numerical example illustrating the model reduction techniques

. is presénpea”in Section 3.4.

3.2 MODEL REDUCTION FOR DISCRETE-TIME SYSTEMS -

3.2.1 Problem Formulation

Consider the stable,'time-invariﬁét, discrete-time mdédel:

N A

i

x(5*1) = @ x(§) + L Qi)

a

‘'which can be partitioned as: i
: - , ) : 5
. . ) an ) ) A
x, (j+1) ¢ 2, x, (1) £ n .
=l 4l A (W@ L (3.2)
x,G0]) | e s |y, o
. . N . . . \ .
where x = n-dimensional state vector. AR . L o

:v§1_='[fdiﬁepsibnél.vegﬁgf'of s#&té#Itg»be ?etainedain.th

-,Lbrde;;mééel, ' -
52 ='(n-l)-§imepsionai ;ector of stéﬁgé‘éo\be,elimi.
i Q =‘(m+q)jaim¢n510n§1'vec;or &f'inputs whiéh wiil“;néludé Ehe.

) . - L . K . '.
" 'm-dimensional control vector and the q-dimensional disturbance

vector.
\

Il

2 and X = constant coefficient matrices of appropriate dimensions.

j=a EOunter,er time‘intervaIS’Subh.that.ﬁ(j)‘denOCes x(t) at

°

St o= jT, where T is the disérete time interval.

The objective is to determine a reduced orderwymodel of
*fspecified orde?:\[, which is of the form S L ]/¥

A 7 SN
(O = D e 3-3)

X




where QR.and éR are ‘constant matrices of appropriatezd;men51onsrand..

must, be determined.

—

Since the’ model reduction techniques to be considered are based

on a modal analysis the requ1red preliminary material will be presented.
As n xﬂn'matrix, M, ex1sts which transforms Equation (3 1)

into the Jordan canonical form. (Gantmacher (111 ) Define, .

L " ,z(j),=§.g_(j) L ee

Ly

.or3in'partitioned.form, f -

-".

,_ | R ENE) - ;11 r=42 ,' .gl(j.) _ B (3;5)

i

hl

where 2z is the canonicalhstate vector, 51 is an /-dimensional Vector,
and z2 is an (n-[) d1mensiona1 vector. It is assumed that matrix M

:is arranged so that its columns ‘are ordered from left to- right, in

\,
order of decreasing significance of the corresponding eigenvalues of ¢

(This can always be achieved by appropriate column interchange ) Since
fﬁthe system in Equation (3 1) is assumed to be stable, all the eigenvalues
' of ¢ lie in the ‘unit circle Q¥uo¢ [13]) Thus the columns of M on the '

left correspond to the eigenqﬁlues of ¢ which affect xl the most, and

Pl

$ .
those on the right correspond to eigenvalues of 2 which affect x1 the,

least. ' If matrix ¢ has n“distinct eigenvalues the columns of M are
P P

. ' 2&
‘"‘then the eigenvectors ofu¢ and M is referred to as the Modal Matrix.

When Equation (3. S) is substituted into Equation (3 2) the Jordan can- '

onical form results




* /\ \
: 2O 5 2 W] [3)
o = : P H A e (3.6)
52(J+1<) Qg 52(3) LS,
- _ . A
where a, a block diagonal matrix, and §, are defined. as
. a 2 '—1 ) ~
g = : = i{ 9‘:{ (3.7) .
R L & 2, '
By : A ’
L . rg
A \
: = |a =va © (3.8)
g R | =2 -
. v : . : bl
anci_Vﬂis'defined as, . - S » S L ' o -
. '. ‘. | o ,l !1 ZZ 5 . | . .
g s V= =¥ . (3.9) -
y : .
vy ¥, .

'f~Because}o£_the'weybthegcolnmns of_g,ﬁavé been arranged, the Jore
dan‘cdnoﬁical matrix; a' has the'eigenvalues of O which'mnst affect-§i=
in the fx/ matrix, o x> and: those which least affect x1 in the nz[ﬂxr n{l‘

=1
the modes which most affect xl, and z2 represents the modes whlch least

:matrix, 'aé.. Hence, it follows from Equatxon (3 6) that z représents

'.5 affect xl. It is- also apparent from Equatlon (3 6) that the modes rep-

resented by zl nnd‘£2 are non1nteracting.~ For systems vlth n linearly
1ndependent eigenvectors' g_is a diagdnal matrixtend z and 22 w111 ok

‘4r;a1ways be noninteract1ng.' However, for systems w1th Less than n llnearly

independent eigenvectors, the partitionlng of the orxglnal system in
Equation (3 2) must be such that it does. not sp11t a Jordan block in a,

so that zl and z}fwill remain non-1nteract1ng.
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»3.2.2 Marshall's Anelysis

In Marshall's analysis for continuous-time systems (Marshall

' [14]), the reduced model is derived by neglecting the dynamics of the

fom e,

modes of the original high,or&er modelvteptesented by’g;. This approach
‘retains the significant system modes and offers the advantages ofvsim-"
~plicity end zero steady state error for constant inputs. Graham [12] has

shbﬁn.that the model reduction method developed independently-by o

Chidambara (Chiﬁa;bara’and DaQiSon [6]) is equivalent to MArShall's
- method (Marshall [14]). 1In this 8ect10n, Marsharl\s ana1y31s will be

extended to the reductlon of discrete time models

‘Equation’(3-2) implies the relation;_t»

- 4. s

S N t.~" nOAL L '

x,(5+1) = &) ;I(J) + e, EZ-CJ) + 4, uli) | - (G.10)
'An.exptession for gé(j) ga& be dbteinedinyfcembining'Equatipns (3.4)

" and (3.9) to give 7 } , _‘ )

E (J) =y, @ (j)/ 3‘ x (j)) e (3',11%

<
———
[

As an approximation,‘assume that zz(j) immediateiylattains.the new

=2
'j.affect x significantly, -the, effect of this approximation on x is fﬁ

_steady state value‘(i'e instantaneous nesponse) Since z, does mnot

=1 1
small. Thus from Equation (3. 6),

3

E‘(j+1) =z, (j) = -(I'-a) 6 u(j) (3.12)

Now, combining Equations (3. 10), (3 11) and (3 12) gives the teduced»

order. system of Equation (3 3) with | o S vﬁn;:

0



=2 . I

’ > . .
. -1 , | »
"2 %I Yy CRED
. A A g | . -1 . -1 A ! (3.14)
=4S Y, Q) 8 4

Thus,bMershall's analysis'for continuous-time models can be

extended to provide a stralghtforward method for reduc1ng the order of

'dlscrete time models. For constant xnputs ‘the reduced and original

¢

systems reach the same steady state value of x.. For other types of

-1

sustained 1nputs (e g., a ramp or a 31nu501d) there is a cont1nu1ng

error between the responses of’ the reduced and original systems

%

(Graham le]) : However, this error is often small

$3.2:3 ‘Davison's Analysis
| | Davison 8 analysis for: continuous t1me systems (Dav~'0n [(91)"
is. based on the assumptlon that the contribut1 n.of the 1n51gn1f1cant
eigenvaluesvof the orlginal system to‘the system response is small and .
;may be neglected. “In Davison s analy81s, a redueed sydtem results in
which the dominant modes are exc1ted in the same pr0port10n as in the

‘i
or1ginal.system.

oy

"The solution to'EQUation-(3.l)”canvbelwritten as, .

k=0 L& .

il o . A

where x(O) is the 1nitial condition for vector X Followingjbavison E9];

' consider the case with x(O) = (. Then,.

Py . X . -

T _'5'(3+1‘)' = o x(O) + Z gj k/\u(k) R (371_5)’,

31



Using the theorem in Appendix D.1 and Equation 3.7,

can be written as,

[

_Equatioﬁ (3.17) becomes, after partitioning;

xGHDf Iy N 23: el oy
"352(5!*’1) 1454, k=0 Y 3%- ¥y

As an approximation, assume th

a x(¥) =M Y7 Iy
S k=0

A
1

ne>

)

Equation.(3716)

G.17)

1 ’Q(k)“ (3.18)

at the eigenvalues in a, have no effect

. on the'system-reéponse,_and therefore can be neglected (i.€., a, = 0).

Equatioh (3¥l8) becdﬁes,

n G| [

3 i D R P AAY:

|5 G+D} Iy

k=0 §
Defing_#n fx1 vector ﬁfas'
o : ; :4:;
:o_ jk, n AN
CE=30 Loy ¥ 8800
k=0 .
and Equation (3.19)_bé§om¢s;‘
o] )
LG K]
-vReArranging:Equation'(3720) gives =

Eemlman

;z(jﬂ)-- =j;r_13§1"1 _151(Vj+1»)

=2

wlf 319

~(3:20) ,

(3.21)
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. As in Davison 91, ¢ and AR are calculated by the followlng analysis
Equation (3.21) is substltuced into. the unforced form of Equation (3. 10)

(i.e., U(J) = 0) to nge,

,,,,,,

v

:51(j+1)' @ + 2wy RERON

- (3.22)

’ - . | -1
so that, - - g Tg e, MM

To calculate “R’ the solutions. of the orlglnai model and the :

reduced order model are compared w1th x(O) = 0.

Sy

The'solution of “the criginal model in Equation (3.1) for x

is,

lgnoring az,

x(J+1)=M 2 _1“‘(41 v,5,) 8w @23

k=0

- The solution of the:reduced'order model is,

S,

x (J+1) - Z 2;1 “QR B0
k=0 U - '

' However,jusihg‘the equations, ¢ = MoV and !g' = I, it ‘can be
~ shown that : S A
so this reduced ordefiéolutioh bécomes,

i

| 51“*” - M 2 H‘ - QR- seoft (3:24) s

l.tl-
k=0 :

Equating Equations (3L23)'and-(3.2&) givéé”the fbllowing’expression’for»

1'_)”

33



A

A L& + VzAz) M

'(3.25)

o>

Thus, a simple, reduced order, discrete-time system has been derived
. using Davison's modal approach. This anaiysis cauld also be extended

to includé the various modlflcatlons ‘of Davison's Method. (Dav1son [8],A

Chldambara and Dav1son [6])

It can be shown, using the perfitionedfform of the expression
Zy = I, that the transition matrix in Equation (3.22) is'equivalent to

the trehsitioﬁ matrix in EQuatioﬁ (3.13), obteined by MgrehallfsvanalySis,

3.2.4 ‘Fossard's Anélyeis: ,. : o F

| : Fos;érd [10].preeented adrevision to Davison's ceptinuous-tiﬁe
result to certect ehe eteady‘seate,erro;:&hicﬁ\;esults eeteeen the’
._feddced.ordef model and ‘the original high‘drdex model after a stee‘change
in ;he.inputf' This'cofrectien is‘developed.hete for the discrete?time

: form of the model. | - -

| iConsidef‘the;veiue of.ﬁl(j) from'EduatienA(i;S) ae'

o

R »'5l<j) =4 z,0) + M4, 2,0 S . (3.26)
The steedy state valpes-ef z, andg_2 are calculated frOmVEqdaﬁion (3.6)
as v . -

Zygs = (=f21) 9) Yy (3'127_,) o
R | AA ‘ .
2yge = T2 & 8, (2
"Thus,‘the steady staté%glﬁyectdg ean Bgﬁexpressed:ds
-1 | A Y -1 A A
Eigs © E‘==11(£'-fu=”1) 61 g +,§2(£’g§) éz Yss (3.29)
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i P
»

The steady state vector, x, ., evaluated using Dav1son s ;

resultlng reduced order model can be obtalned in a 31m11ar manner.

51(1) =
Thus, B X

To have the steady

Equatlon (3 29) the term

M,

LR

must be edded'to Ednatidn (3.

i
i

51451(j) | (3.30)
-1 AN )

Qrg) 7 4y b (3-3D)

-1 A A k

M) 8 (3.32)

state in Equatlon (3. 32) agree wlth that in

Y

AA
TN

(g

32).

2

This. is accomplishedrin the'folloﬁing

reduced order discrete time model whlch corresponds to: the contlnuous-

'time result presented by Fossard - < - . o &

ggum
"zi(j)

where

. .G - /\ A - B
= % X)) + L WD) - (3.33)
Ty ST Py |
= zf(q) + Ep u(d) (3.34) .
oyl 4 3.35)
=4 (o) g, o835
= the results of Daylson 'S analysxs and .,

‘are ngen in Equatxons (3. 22) and (3 25)

respectlvely.

3.3 REDUCTION OF HIGH ORDER

- DISCRETE MODELS

e ‘Models of physffel

 of linear differential equations

CONTINUOUS MODELS TO LOW ORDER

systems are often represented as large sets_*. '

in the general fqrm, :



T

X = Ax + Bu i . (3.36)

: SN ' A
~where.x and u are defined in Section 3.2.1, and A and B are matrices

of appropriate dimensions. For both simhlation studies and the design
and 1mplementation of computer ‘control systems, it may be de31rable to.

have available a low order discrete time model

 Two. general approaches for deriv1ng a low order:. discrete time

“model from a h1gh order continuous time model are shown in Figure 3.1.

The high order model can first be reduced and then the resulting low

order model discretized (Approach I), or alternatively, the high.order

-/
model can beg¥%gcretized and this discrete time model can then be

- reduced (Approach II) The continuous time reduced order ‘methods of

| Marshall [14], Davison [9] and Fossard [10] will be needed for Approach

I and w1ll now be summarized

[

36

The transformation matrix M exists (see the theorem in Appendix

-D.l).nhich transforms Equation (3.36) into the Jordanvcanonical“form as,

x=M | | - B343)
- 5.0 G SO !

= = ’ E . = \ k
i=Jz +"§f_1.g. é Mt z; -+ el o \ (3.3\8\

T =2 =232 & '

: \
_where - o e \

_ g=vtay O \3139)

.. N e _ A A ) '--_' ) ' : '.“
G-w'tB-vB .0

v v : . \
' To calculate the continuous time reduced order model the high

- order model in Equation (3. 26) and the transformation matrix M must be

arranged and partitioned as &Qs discussed in Section 3.2. l

y

\
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b,

- .presented in Equation (3.35) is identical to the continu0us-timETform‘!

'and (3.47) are 1dentica1 in form and must hold for all time

v;,paths w111 result in an identical reduced order discrete time model

. 38
The reduced—order model'isgof the form,

A AN N
= A% R » N

-

Cw g owm L. R i
N Y o
- R8I, LH 5 L Geey
and Davieon's method [9] yields, -
A=A +a wm b ' : (3.44) |
=3 8 B4 o p
Ly Remy o 6w
 Fossard's hethodmproduces a reduced order model in the form
L e A A | . |
- .}S‘e = éR 52 + ER‘ u o (‘3-_46)
oy 4+ E (3.47)
B A o | -
where,éR and ER are given in Equationms (3¢44) and” (3.45) ‘and
l 2 ' -1 A ! S B
CEp = -EZ_QZ : SZ' ) S : (3.48) :

i . Co

It is shown in Appendix B.3 that the discrete-time form of*ER o

presented,in quation (3.48). This is expected since qugtvons (3 34)

- ‘--”

¢ Approaches I and II dlffer Jn the order in which the indivfd— .
ual steps of -model reduction and discretization are carried out. From ‘

the nature of theae operations, intuitively one expects that both
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~

o~ A -

This equivalenee is shown analytically in Appendices B.1, B.2 and B'3

A A
by maklng use of the definitions of ¢ and /. in terms of A and B as,

()

¢ = exp(éT)‘ . -
~ (T Ao .
&= exp(A(T-7))Bdr . (3.49)
=)o o o
' N , N
. and @p"and £, in terms of Ap and B as,
gk = exp(éRT) 5
R T o FR
Sl =1 exp(A (T-1)) i_i ' v (3.50)
B 0 =R . -

ey . : . . .
i
- ;

The equivalence of Approaches I and II will also be demonstrated by the

nuoerieal example in Sectioh'QeA.

Since the order of model reduction and discretization does not

kjgfééé£ the resultlng reduced'orderddiecreteftime model,'one Should_eon-‘
eider which_approech is tﬁé goet:eonvepient for ;'p;r;icular épplice;

-\tiod,' lf'the only‘requirementvia-the derivétioo of ; loq order diserete~
time model from the oriéinal'ﬁigﬁ-order_continooue—time?;odel, thenh

" Approach I ‘should be followed, since its computational requirements

are less. The'continuoos?tlme reduction and the discrete-time reduction

1nvolve the same number of matr1x operatlons. However, the derivation:

‘ of the high order d1$crete-time system using Equatlon (3 49) requires

many more calculations than the derivat1on ‘of th%}low order dlscrete-
' time system .in Equation (3}50). Thus, Approach Iis computationally

R . T Y S
more efficient than Approach II “waever, if the avallablllty of a

high order, discrete time model is desirable, perhaps for the evalua-
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&
tion of proposed controi systems, .Approach 11 shomld“be used since the

" high order, discrete-time model must be derived in any event.

RN -~y

it is interesting to compare the results of the discrete-time
model reduction with the results of the continuous-time reduction. It
can be shown by elementary matrix algehra, using the pay. .tioned forms

of the expressions =M a V and‘MV'= I, that the dlscrete transrtlon

_’/////;;thtf~:n Equation (3. 13) resultlng from Marshall's ana1y51s is -

equivalent to the follqwlng,- o S o C

3 . ! .
. =1 =1

v

R f 22 24

A=)

Thus; by comparing Equat1on (3. 51) wlth (3 42) Equatlon (3 14) with
(3. 43), Equatlon (3. 22) w1th (3 44) and Equatlon (3 25) with (3 45),
it can be seen that there 1s a dlrect term—by—term correspondence

between the’ dlscrete—tlme and the continuous—time results.

3.4 EXAMPLES

L'_ 3.4;1_ Second Order Example'vv
" A ~simple problem considered by Chxdambara and Davxson [6] and
by Graham [12] will be used to demonstrate both the:discrete-time model‘
"reduction'techniquestamd the equivalence'og thebtvo approaches shown rn
Figure 3:1. ;Con51der the second order contxnuous-time system in '

Equatlon (3. 52), which is to be reduced to a flrst order discrete-

~ time system in x,. :

LN

WA
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The eigenvalues of Equation (3.52) are -1 and -4 so that,

-1 0

I=1
‘ I 0 -4
. g
“and ' :
' s S 1/3 -1/3 ) 4 1
= = . «“! = .
-1/3 4/30 7 {1 1
‘ .
-; The equivalent‘discrete-timg system, with samplfng period T is °
T CatT T v poomT o 24T
) : '4€-T -e 4T , 8-34“_&‘[61' ENEITR .: ‘ 3Llf~.e _ +1/4e‘ v
2D =B | x@ w3 o ey
c , che T e T e T e 4T T -aT

Equation.(3.53) has éigen?alueé.of;e;T and e-hT.‘

o . . C

ad - oS ) .
A t. . -
~ " Marshall®s Analysis
L oaEsnAn S Analy

PR AN

' iMarshall's analysis for Approach I, using Equations (3.42) and °

. 2P
o

3R
MemayTo |
Boeh cay Ut
=R =] . .22-6 EIZ xc=;2 - .' i ‘ .
Ihns; the low order cor nous-time model is
. = - . .54
Xpo= x4 u/& \ (3.54) )
with';he cdrrespdnding'discretegtime_model as b o

-

e QG = T x (1) + (1-e™D) wie (3:55)

S o g ‘ ‘ B
For .Approach I1I1; using Equations»(3.13),'(3,14),.and (3.53)



A N =1 =1 AN T
= -+ : - = -
BRTA QY Tre)T 8, = (e Thya
.and theireducedv0r49r,_discreteitime model from Approach II'is;
. ST AT o
*GH) = e 7 x (3 + (e Hu(j)/4 ~ (3:56)
which is identical to Equation (3.55).

" Davison's Analysis . = S £

S

- . Davison's analysis, for Approach I,,using‘EquationS_(3.44) and . -

(3.45) gives,

M1 G =1/3

-The low order, continuous-tlme'model is,"
o ng‘$iv= sxp tu/3 0 : - (3.57)
Gl Coe . ’ l ‘ '- )

" with' the cdrreipondiﬁgidisggete-time modellas

fog .
4 : S

K G = e T (J) + (1-"T u(§)/3 : (3.58)

: Fé: Apprbac@ II,AEJing’Equétions (3.22),‘(3.25){;and (3.53)

-T

R o -1
D o T Y e
‘ A A R
Chtm b sy - G-

.énd"the reduced ordér,,diséréte-time model from Approach 11 is,

&

g =T+ aeh s 0 sy

42 -
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which is identical to Equation (3.58). .

Fossard's Analjsisg . T S

N ‘
2R and éR as does

Fossard's analysis produces the same éR"ER’

Davison's analysis above. §k can be calculated using two results. The"

discrete-time result can be obtainedjusing Equation (3.35) as

| Ey = M, (;—gk)fl'gz = - 1/12 :

and the continuous-time result;‘Equation (3.48), produces

3

E = -1 A

A

These are identical results as is expected.

3.4.2 Evaporator'HodeI‘ ﬁfi

As’ a check of the computer program the tenth order continuous-
"txme ~evaporator model presented "in Appendix A was reduced to a thlrd

;order dlscrete-tlme model by the two approaches of Figure 3. 1 us1ng

Harshall s analvsxs. In both cases, Hl W2 ang c2 vere the states retained

in” the reduced order model and xl ‘= [Hl w2, CZ] The elgenvalues

retalned in the reduced order model were the three closest to zero in

>

the continuous- t1me case and the three closeSt to one in the dlscrete—p

‘time case. /Flgure 3. 2 shows that the response of the two resuﬁgrng thlrd

’order models are identlcal when forced by a +201 change in feed flow

vrate. _‘The third order evapotator models calculated by "a hall s analy51s_,_7°

are shoun -in Table 3 1, Hhere the 51m11ar1ty of the two diserete-time

results can be observed.
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3.5 CONCLUSIONS-

- Existing model téduction.techhiques of Marshall, Davison, and
fbssard fof'céntinuous-timé gystems havévbeen éxfeﬁded forbuse with .
discrete-time systems. TVO.appr;aches_for reducing a high order
continuoushﬁime model to ; low ordér.discrete-time modgl have been
;evaluatéd. The redgcfionbof a continuous-time mbdel_folloued by
dis;retization i§ computational}y;gdre efficient, but analytically
eqﬁivalent ;o; disc:etizing the high order system and thén redﬁéing
the high Qrdér diséreté-time-modé1 using the methods outlined invthis

chapter.
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WL . CHAPTER FOUR

.. MoDsLﬁtDUCTmN BY LEAST SQUARES USING RANDOM DATA

~ABSTRACT

A least squares analy51s is applied to model reduction u51ng‘
‘data which is specified by the high order model and a sequence of
uniformly distributed random numbers. This approach produces a
reduced order model‘tnat is better than tne model. calculated by ‘

the traditional trajectory fitting approach to least squares when

applied to the reduction of a tenth order evaporator model ~ This
approach also eliminates some of the difficultieS'found in,the

- trajectory'fitting application of least squares to model reduction.

This least squares approach is applied to. the reduction of

“both the, @onﬁ}nuous time and the discrete-time evaporator models.,

The problem ofhcalculating a reduced‘order discrete—time
model.frOm a high order continuous time model is considered 'lt
1s shown that, using the same sequence of random numbers different
y L
reduced order discrete-time models will be calculated depending up0n"
whether the model reduction or the model discretization step is B

-

calculated first,.
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4.1 INTRODUCTION . iy,
Sy S gl e

£ at

Many physical systems such as chemical plants have been

mathematicarly described by linear, state space models which con-

sist of large numbers of differential or difference equations. These,

models ,often contain so many equations that they cannot economically

be used for 51mulation studies or for control system de31gn Thus

a need- exists for procedures to ellmlnate _some of the:- less important

variables firom the high order model to obtain a dynamic model of

reduced oxder. L , .
e L | o

4.1.1  Previous WOrkv

Many different approaches to.model reduction‘hape.been'con;
sidered. I: the derivation of most complexrchemical‘process models,
an intuitive reduction procedure isvapplied when the modeller assumes
that a particular variable reSponds fast, and SO uses-a steady state

relation. This approach relies upon experience with the particular

process being modelled

‘ Mathematical approaches to model reductionlusing’a‘?f*'
analysis and a leaSt squares analysis haue~been considered 'Marshall
{13] Davison [6], Fossard [7] and others used a modal analysis of
the high order continuous timelmodel in order to calculate reduced
'order models. These methods vere’ extended for ‘use with discrete-

time models in Chapter Three.
. . \

As an alternative mathematical approach Anderson [4] cal—
‘fculated a. reduced order, discrete—time model using a least squares.

'analysis to fit the response of the reduced order model to that of

48
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the original high order model.,bThis.approach was extended for the

1reduction of continuous- time models by Anderson and Kwan [5]. Anderson

. ’

[3] reformulated'his original procedure in order to reduce the com-
pute-r storage requ1rements. _Anderson, [Z]Q/élso disc@d the applica—
_tions of least squares to model reduction when some of the elements
in the reduced order model matlices can be prespec1f1ed In addition,
Anderson [1] con31ders improving the. agreement between the high order
» and reduced order models in.specific regions of the reSponse, by add-
ing extra data points in the regi f. interest. This however
would be at the expense of poorer'agreement in other regions of the
response, Graham et al [8,9] use ieast squares along with quasi-
llinearization for-the reduction of high order, nonlinear models.
They apply a parameter significance test described by Rauch [17]
| to determine any of the-unknown parameters which can be neglected H

.and set equal to zero. Their method is also applicable to linear

‘modeis.

ié.ifZ_.Difficulties in:Previous LeaSt Squares Approach

. An important aspect of the use of the least squares approach '
lto model reduction is the type of data which is useg. Anderson [4]
:uses data obtained from a time domain response of the high order_

model, but he does not indicate for what conditions this data should

o
4

be generated 'As was discussed by Nicholson and Anderson [15], if a
time domain response is obtained by input forcing, the inputs must be
‘linearly independent to avoid a linearly dependent set of equations
‘in the least squares solution; Thus, a step_in each input cannot

~be used Anderson [15] pointsﬂout that a separate reduced order model



7[ results argﬁnot meanIyif?

ful,”

could be- calgglated@or each input%t adds ‘that " ... while such

s ° [N

M are neither desir% rior use-—-

d in deriving reduced -

reduced order (2 x 2) transition matrix for each of his five inputs.
Then, by trial and er;gi ‘he was able to find a transition matrix

that gave satisfactory results for all his inputs.

& . .
If a reduced order modelvis calculated for good agreement‘

with a particular response caused by one set of input conditions, it

would be biased towards that particular set of conditionms. 'The

vresponse of the resulting reduced order model would then have poorer

agreement with the response of the high order model generated by any

~other set of inputs.

The following sections of this chapter summarize the least_~

) -

squares approach to model reduction and discuss the use of random

numbers as data for the least squares solution,_to eliminate the

v problems discussed in this section,r

4.2 LEAST SQUARES WITH RANDOM DATA

.lhe fittiné.technique used in this‘work ishthe classical
least squares technique as described in numerical analysis textbooks T
for example by Lapidus [12] and as' used for model reduction bw
Anderson {2 - 4]. - The only difference between Anderson's work and‘

that presented here, is the method of specifying the data which is

used in the least squares fit. Ihe least ~squares approach will be

'outlined for the reduction of discrete-time models and will be sum—'



~ under various conditions. 'Sectiohs.A.Z.l, 4.2

e v

‘mari;ed in Sectian 4.2.5 for the reduction of contintious—time models.

The linear, timg;;nvariantxdiscrete-time model is in the

‘ form
\'. . B - . . NA . . ' - '
: Cx@G +1D) =2 x(3) + 3 uj) = - (4.1)
where X = n~dimensional state vector
A e ) .
u = (m + g)-dimensional input vector which includes the ‘m-
dimensional control vector and the g<dimensional dis-
- & . ’
turbancgjvector.
" R . - . .
¥ ¢, 3 = constant coefficient matrices of appropriate dimen-
sions. ,

The- state vector can be partitioned as

X

1 A L o
X = : ‘ B (4.2)
X ' : w :
- =2
where 31 = f-dimensional vector of states to be retained in the
reduced order model
X, = (n-/)-dimensional vector of the remaining states.’

The desired reduced order model is in the form of .

U .
S G+ D =g x @+ A

¢

-. R A‘v : N ) ) ~ . . . . .
where QR and éRvare constant coefficient matrices of appropriate .

-

: - S : - . - A .
dimensions. This section will discuss the evaluation Qf-gk and QR -

-l

.2 and 4.2.3 will deal

'with the caSe_when the high order system is stable. Tﬁis is the case



when the eigenvalues cf ¢ lie between aero and one. ‘Seétion 4.2.4

will discuss the case where.the model contains integrating states cor-

‘a

responding to eigenvalues of one. Section 4.2;5 outlines the results
for continuous-time systems while Section 4.2.6 discusses other appli- \
cations of the theory.
N - co R v
4.2.1 Calculation of gk for a Stable System . "‘
To calculate ®y» consider the following unforced, partitioned
forms of Equationéf{&,l) and (4.3)'
B ' 1 ' ‘
| 2G+D) | &|fm®
B ‘ ) : ' (4.4)
LUV |23 & \xG)
and N . ' ‘ ey
G+ =g x. () | o (405)
i»An.expressiqn EOr'QR can be written as the least Squares solution of
T . -
=i gR (46) e
That'ié,
= oty | @
where ‘ : VA ‘ . }'
: ‘ ' or » v - s T : s
. - T . T . L
| A Eaietl NN LW T
- o w=lv@| and z- %(2) . s
. T o ' ‘T
I AN e | % 00

and where k is the number of data vectors. The jth vector w(j) is

" defined as
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S

e = x G D =8 () + e, %) (4:9)

v

The solution in Equation (4.7) is identical to the result“
presented by Anderson [4] when the latter is‘applied to an unforced
model. However, thevnethod of épecifying the data which fé repre—
sentedvby Z and W is different. Anderson.fitted the reduced'order
model to an open.loop respOnse~of the high order model. He did not,
nowever, speéify‘the disturbance used to.generate this response.

Thus,. in his presentation, the véctors which make up the rows of
pA (51(1),_51(2),_51(3), etc.) are consecutive points along a partic-= .

ular open-loop response. In thejwork outlined here, the elements of -
the véctors X (j) and x, (i), but not x (j +'1), used in Equations (4.8)

'and (4.6) aré uniformly distributed random ndmbers. This was done

7'°in order to overcome some of the difficulties with the tra;ectory
. ) ',) S : RN
A1 X -

fitting aﬁbﬁa%gh With the use of random numbers it is not nec-

‘.essary to obtain a 1inearly independent set of 1nputs to use in the
- . L 5 - )
calculatlon of the time, domain response Also, using the random

" !-" -

hv numbers data from the entire range of poss1b1e states is used. This
will ellminate the bias towards a particular set of inputs whlch is

found in the trajectory fitting approach.

. :2_ C . A | - R
4.2.2 Calculation of éR for a Stable System

Once @ has been"obtained,‘gi is calculated to provide
steady state agreement between the high order model and tie reduced

order model for step changes in u. This results in the following

~ expression



R=C-e la-97t8, .10)

where the @iptation [Ea? represents a matrix formed by:the\first'I rows

Id

of E.

4.2.3 Calculatlon of Both ¢ and AR Us1ng Least Squares

An alternate approach for calculaglng a reduced order model

using least squares, is to evaluate both 0 and AR at the same time

To do this, the general approach outllned in Section 4%2 l is followed

-

except that both ¢ and AR are calculated by Equation (4 7) as

- 7y Gl
| 4
i”where ‘ X
[-x'f(l), taten)
z=|x@, 4" @ S wap
ey g _ S :
T L ' o T
LET e S .,__100 u (k) |
and the rows of W arevcalculated,using _
G) = % +'1)-‘ X ) + o x(G) +4 2 ) (4..15)
-2y =0 253 42 530+ WG @
e L : : A ' '
Here, all the elements-of_ﬁi, 52 and u are specified _as random:

i

numbers.

The reSulting reduced order model, as calculated by Equa-

‘ tlon (4 11) is not guaranteed to provide steady state agreement .
L 3
‘between the high order and the reduced order models. A reduced

. order model with better steady state agreement can be calculated by
. e X B .

- 54_
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‘reduced order state vector x, can be partitioned as. ¥ -

55
adding steady-’state points to matrices Z angd w as is discussed by
Anderson- [1], but this will be at the, expense of: poorer transient

agreement between the two models. A second approach to prov1de steady -,

state agreement is to recalculate A using Equation (4. lO)

4.2.4 .Reduction of Systems with Integrating‘States

For systems with at least'one integrating state (with at _..

. least one eigenvalue of ¢ equal to one);’the model reduction approach

outlined in Sections 4.2.1 and 4.2.2 must be revised slightly. The

B, x,={ )" _ L (4.14)

B TS et P
P v

corresponding to the integrating, ZI‘ and non-integrating,'fx, state

s ) 5

1

- variables of x,. Matri#fg%ican be'simiLarly partitionedtas

"specified as

,.\_,

= ‘21'21« - L )
The partition corresponding to the 1ntegrating states can be pre-

& . . '

£

(]

e = (=) N Wv.(-’o'.l‘6)'.

I 1=

. _ o
The dimension of the identity matrix. in—Equation (4. 16) is the same
as - the number of integrating states. The- partition of ¢ corres— &

ponding to the non-integrating states is calculated using Teast

squares as

‘1%4’i7)'



’ 56
in-this case
(4.18) .
/ r
} 18
th / R «
and the 3" wow gt W is defined as -
- '\_' J . o . 0 . ‘ . \—\.,/’ ¢
W) = 9 X (G) + g5 x, () L (4.19)
where @, has been partitiqnedtas . S o oo ;ﬁg
;1 = (¢lI, glN) ” ‘ - . (4020) .
correspondlng to the partitioning of X in Equation (4. 14) The
: j e
B elements of vectors EN and x2 are specified’ as random numbers. P
Once ¢ has been calculated A is obtained by columns
for agreement at: large times, as a
’X(j+l)—¢> (j) '
A =R S . ..
~es . ) . -~ . i . . )
R el o e —
Ao th e | '
where : QR ! -column ot QR "
A l . A A v B ) . ) <
u, = ith element of u , o = “

. o
o . & ’
3& = X for large values of, the counter i for a step change

FURH (uk-o k#1)

Thefvalues of the elements of % (j + l) and X (j) corresponding to

the non—integrating states are equivalent and are the steady state

values of these states for a non—zero vaer of ui (Gk =0, k # i).

) B __n;l ) Pl
~.
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n“ﬁgf' » S
- .
! ' L & A
. ° o ‘1 ‘1 n\u B "":f;?p?' o]
The values of the elements of x (j + 1) CorreSPOBdlng e
grating states are calculated“as : _ é A
. 1 9
Y +1) . ()+o 5 +As T (4.22)
RSN Ta1nd 52,3 =1 % :
e AL N
5§%where 41 = ith column of 4,.3nd the- elements of X (J) correspondlng B

=1

to the integratlng states are spec1f1ed by random numhe;s and the

.

. _ ., ‘

elements of x (j) correspondlng to -the non-lntegrat g statesgate'the

above mentioned steady state values for the same nonfzero'value of

Cu ‘ . :
it " : G

Equatlon (4 21) provides for steady state agreement of the

non—integrating states, and agreement of the rate of change of the

2 integrating states after the transients d1e cut.
o

'

4, 2 .5 Least Squates Reduction of Continuous—'hm Models

’

The above procedures can be applied to the reductlon of”

.continuous-time models in the formr

33 &/\%/ \E&/ NS

to givela’redﬁced-otder model in”the form:

3>
[
r'i?'
e
o>
it
>

X
HeD>

.: , . .‘ : A /\ /\., , :
o o aTRA TR (4.20)
B For the case of a stable system, vith 811 the elgenvalues of A
i . negative B 2
é;‘;- -(gr 5)‘1 ‘z}'_g ' L (4.25)5 .
ehete E.and are defined as in.gqaatiba'(é.B)rexcept that ‘

o

y :
= A - I o L = : C,



T . 1 i § T
!,‘J) = XA 5 G) + 4, x,(3) : (4.26)
Also, for agreement between the responses of the high oHder and the

low order models at steady state
‘ - A 1A
, bR [, ew

lFot‘the-reduction ofﬂtontinnous—time nodelékyhich contain’
] 1ntegrat1ng states (at least one eigenvalue of A equq;s zero), this
'ptocedure can be modlfied in a 51milar manner as the discrete-time
- - procedure was modified in Section 4.2‘4. |

I o . o .
4.2.6 Other Applications of, Least Squares with Random Data

' The use of random data with_the‘least squares analysis
could be used whenever the data to be fitted cén‘be generated from a

% pathematical relationship.  For example, this would be the case if
oon , ) . :
- a polynomial'epprokimation to a part of aitrigonometric,functionl

was needed. This approach is deégrlbed in Chapter Six, where it is
" used to generate incomplete state feedback control laws when the
. o . . . ) . -
 more complex, high order control law is known.

4.3 APPLICATION TO THE TENTH ORDER EVAPORATOR MODEL

The 1east squares reduction method using random data, as
: described above has been applied to the reduction of the tenth
order evaporator model in its open-loop form, as- presented in
Appendix A, and in a closed-loop form, with Bl controlling w1 and

BZ‘controlling'WZ,n The closed—loop fgrm wes obtained,using
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TLa BL = 0.9203 W1
. B2 = 2,768 W2
' s

These two feedback relations change the unity eigenvalues of ¢ and'?,;
- i , Y VS N
- change W1 and W2 from integrating states tq}non-integrating states.

This closed-loop model is also shown in Appendix A. All the reduced

- order models are presented in Appendix F.
N\

4.3.1 Computational Aspects B :;
Thé7random numbers required for the approach of this chap—

’ ter were calculated using the IBM Scientific Subroutine Package (ssp)

’,

program RANDU, as described by IBM [10 lﬂ] The numbers calculated

by RANDU " are referred to as random nuubers even though they are
'really only pseudo random having been calculated by a mathematical

'algorithm and not by a truly random proCess.v However since these
numbers are generated syste&atically using a computer routine it

is possible to duplicate any sequence for purposes of c0mparison.

\\\\\\_}he random numbers vete uniforhly'disrributed,between —l and +l, '

) - B . (f“." : ) »»}( '—‘ .1‘ . - . » .
which‘corresponds"to:process v’lueswofyfrom_zerolto twiée the
process steady'state, sirce thegyariables inﬂthe model ar in

normalized'perturbation form, .

.

" The computer storage requirements for the least squares

)

prog7am was’ reduced by using the Yf:::;ioned approach to theaevalu_.

. dtion of Equation (4 7) suggested by\Anderson [3]. In this approach
, matrices zZ and w are partitioned ‘as R o S ’ './// '



r “ M
z, [ v
Y B o - : . .
zZ={2, and ¥=l 9  (4.28)
t§3' . ‘ : 23.

s .uﬂew§~the Z are square matrices of order £ and the Wi matrlces have

Z rows each. Equation (4.7) can now be writteu as - e 7, o

N I T T, N R T T, ‘
o = [z Z, + 2, 2, + 53 + ..,_] [él.wl +Z, W, + Z; W+ ..]
oy

N o ) o (4:29)

IIN

This reduces the computer storage requirement by a great deal since

each of the terms on the right hand side of Equation (4 29) ZI Zi

and Zf Wi can be evaluated as . the data is collected. Furthermoré

a Q matrix can be calculated for each ZI Zi term.uhich is_obtained.

'now defined to 1nc1ude 3 terms»in each,of the sums in Equa-

tio‘n”(lo 29) as S . 5 ‘ S
o v'.. = A T !
R Zza 244 430

1=1 , CLi=1

FI

-~ Now, new values °f~2h are calculated until’gk(j).and gk(ji—‘l)

.

become sufficiently close as

'g-R('j)”,, - “gRu -1 “
kel

wnere { 'is a convergence criterion parameter specified by the user

3

<t . G

tand‘

: 1:1 3=1



' same.non-zero initial state. This ¢omparison.is Shqwnvin;Figure*é.i\\

where E is any (n x m) matrix and e_, 'is an element of E.  For most

ij

models calculated, a value of = 10—6;was used. This resulted in

values of k, in Equation (4.8), 0! between 151 and 516.

F3

4.3.2 Evaporator Model Results . , A

The method of least squares réduction using'fandom datd'jf-
has' been applied to the tgﬁth ordef evaporator model. Each of the -
reduced‘orde:;models calculated was thifd ordér qith thedthree most
importan£ éfateé,.WI; W2 and:.C2 in their state vector. fhe:tesults
'will be discussed ih thisisection.

°

Unforced Response-of QR

N ) R
§ i

In the proposed reduation method, only ¢ is. calculated

‘ using leasc squares. Thus, the unforced, open—loop reSponse of. QR

‘to a non-zero initial state should be compared to\that oer_foq_che

~

.for'the initial conditions of W1(0) = +20Z and C2(0) =:+152. Bdth  §\;
o » . . ! S o ¢§.;‘ : v ) - . \\'
holdups, Wl and W2 remain at their .initial values (except for a 2%

Y ;
B

error in WZ). This 1is eXpectéd since theée arg\integrating states

w

~and are only slightly affected b§ thesefinitialnstate Values, The

- C2 responses of the?%wb-hodeisﬁégree #ery‘gell.' However, the: response

of'C2'for’thé reduced‘ordgr model is. delayed beﬂind that of tﬁéztenth
order mbdel,' This is not observed in any of:the-input'forcingv;iﬁuf
lations.

N2

e

Diffetent'Random Numbeér Sequences

The: IBM, SSP. routine, RANDU, “that uas used to calculate ‘the

random numbers, requires an odd integer as input é%ta to 1nitiallze
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the random number sequence;ipEach‘odd“integer.starts a ditferent
sequence. Thus, the response of models calcuiated using different
number sequences must be compared. Figure 4.2 shows that the response
ot three different.reduced order models, calculated with different
number sequences, agree very well. In fact, t;o of these models
produce identical responses to the +20% feed,flow change. Further- .
more, allfthree‘responSes agree weli with the response'of the tenth

order model and lead the tenth order\response as would be expected;

L The reduced order models whose responses are shown in Figure 4.2,

'

Oare open—loop models with two integrating states and are calculated

using the approach outlined in Section 4.2.4.

Continuous vs. Discrete Reduction
ilreduced order'discrete—time model can:be calCulated fromfy’
a high order continuous time model along two paths, as shown in .

Figure 4 3 Path.lfobtains the discreteftime form of the‘high‘order

.:fmodel and_reduceshthis using the discrete model reductionu Path I1,

.reduceS'the order of the continuous—time model and then discretiZes

the resulting reduced order continuous ~time model to get the desired

ireduced order discrete time model When a modal approach to reduction

‘ gis used Chapter Three shoﬂ!d that the results by Paths I and II

'

v'fproduce an’ idendical reduced order discrete-time model This is not

‘the case for least squares reduction “as is shown in Appendix B. A

'Figure 4 4 demonstrates the different responses for the two. reduced
: e " 7

./,

':order discrete—time models calculated by the two paths of Figure 4. 3

fusing the same random number sequence.-‘However,'it should_be pointed

s
o . 7

out>that the difference between the two*reduced order responses in

~—
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~

Figure 4.4 1s about the sam as the difference due to different

number sequences shown in Figure 4.2.

Reduction of the Closed-Loop Model

In otdet to test the proposed method oﬁ/mddel redﬁetion on
. a model of a differéﬁt.form,dand‘also to compare‘it with Otﬁet least
squares apprdaches{“a closed-loop evaporator‘model was formed as’
noted aboveT‘ ThisAmodel did not haVe~any“idtegratiné étatesmSince the
feedback.conttol loops added changed the two”unity"eigenvaldes of ¢
to lie betweep:zerq and_one.'.Figure‘é.S shows that the proposed
method troducea a model whose tesponse is very close to that of the
tenth order mbdel. The ¢ matrix‘for‘this third order ﬁodel Qas cal-
culated by Equation (4. 7) and the A matrix was calculated by Equation
(4.10). This’ model also agrees with the tenth ‘order model at steady
state. The response of the model whose ¢ and AR were calculated
together using least squares and random data- by Equation (4 11) to {
(& 13) and whose AR was not recalculated for steady state agreement
vshows an expected 1arge steady state error in Figure 4.5. The.response
of the model_for which eR»was ealculated to fit an oped—ldob, unfo;ced
response of’the-tenth Qrdet model due to an in;tial non—aefb state and
gR,was ealculated formsteady state agfeement, showsdmﬁeh ‘aster
' dyn.’amicav than do any of the -cher models shown in .Figu're' 4.5. The
initial.state of tﬁe trajeetofy, td whicﬁ o of the last model was
fitred, was cﬁosen by random selection. This‘may have caused taeh

' difficulty by not having all the modes of Q sufficiently excited.

\

8
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4.4 DISCUSSION

There are several advantages to the method of reduction

using least squares with random data.

o

The flrst advantage is that tHe resulting model is not

blased towards any partlcular set of condltlons. Often, when a

~reduced order model -is calculated u51ng least squares, to fit a part-
: : y . R

iwell for that résponse, bUt not particulariy’

4: - An example is the model whose response

[

's in Figure 4 5. 1t gave poor agreement with
the high order model for thlS case "of +20% change in feed flow. ‘How—
. ever, as Figure 4.6 shows it agreed well with the high order model

_ under the conditions for which it was. calculated.g o ' e

-
[+

The second adVantage of the random data apprdach'is its .

’ A - h

ease’of_application. The results shown in this chapter that were cal-

: culated using this method were obtained with one computer run - .each.

o e ?" J

However, for the one model calculated by fitting the unforced response

: several computer Tuns ‘were required before it was determinedahou many

o

?
: points along the response should be considered. The conyergence test

. . . CL oy
of Equation (4.31) could not be_used because this caused the use of.

too many steady state points and the corr:Eabnding response had even

faster dynamics than theuresponse shown in Figure 4 5 by the plus 61 gns

. 3
A third advantage of the proposed approach isuin the con-
'ditioning of the matrix (Z Z) which must be inverted As 1ndicated

by Ralston [16 page. 233], a matrix is ill—conditioued if the inverse
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of the matrix-(normalizedfso_that the largestzelemeﬁt.is one) has

.‘ very lakge elementsbwith-respeca'to one. For each case run in thls
work the inverse of this normalized form of (Z Z) was calculated.
For all cases’ when the random data approach was used, the’ largest
Helement-of this inverted matrix waS'abou%ﬂ;,3;;the‘Same order of
magnitude'as'tbe largesﬂ‘element before lnuersion. ‘On the Other‘hand,

in the “open-loop response Yitting cases tried, theflargest_elemeht

of this 1nverted matrlx was at least of order ‘10 Jvand oftenymuch

- .

hlgher Thus for the examples used in thls work the approach using

random numbers produced a much better cond1t1oned set of equatlons to
Fat . B Ea
L 'solve. f °

3

, - 4.5 - CONCLUSIONS , » R e

o The approach to least squares model reduction calculates

better reduced order models of the tenth order evaporator using random
. , : ; -

. data than,usxng data from an open—loopvmodel;trajectqry. At the

same time, this random data’ approach is:easier‘to*apply. .
',; . o , - o )" | ;‘ -:’ . ‘ "

o d ’ Hhen a reduced order discrete t1me model ds calculated from

]

e ‘a hzgh order contlnuous time model dlfferent results are obdalned

K\

‘j},using least squares depend ng upon whetber the reductxon or the

discretization step is performed flrst
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CHAPTER FIVE
MODAL APPROACH TO CONTROL LAW REDUCTION

' ABSTRACT - s B s
rA'meEhod is proposed for reducing rhe complexity of state
feedba&k’control 1aws'for'high order systems. - Usihg‘a modal approach,

‘selected state var1ab1es are eliminated to glve an 1ncomp1ete state

feedback control law. The proposed method forﬂcontrol law reduction is

'
3

, applled to an optlmal control system for-a tenth order model of a pllOt ¢
. . -
scale evaporator Slmulatlon and. experlmedtal results show that this’
modal approach is pract1ca1 and results in better cdntrol than methods

' based on reduced order models or convent10na1 multlloop design techr

‘'niques..



.5.1 'INTRODUCTION - ‘

Ce
L}

. The objectbin this investigation is to develop a systematic"

approachlfor reducing the complexity of multivariable controllers for .

high order systems. It is assumed that the system to be tontrolled can

be adequately described by avlinear, time-invariagt state space model

and that satisfactory control can be achieved using a multivariable:
state feedback controller‘which may also_inclade.integral feedback,

feedforward, and setpoint control'modes. Simplification of the control
1 as¥2h “,.,eyedvby\eliminating selected state‘variables to give an

ate.feedback control law. The motivation for this design’

‘approach s ‘that in most. practical appllcatLOns any degradation in

system performance will‘be offset by the practical advantages of fewer

measorements or state estimates, being reguired and redaced demands on

o .
the -on-~ line computer. The simplified control law is determlned, a

. T Iy
¥ . M

;ffprlorl, by off- ane calculations

N

_designed by applying optimal control technlques to a linearlzed process-'{

The first step in the proposed approach is’ to select a control.

law which will give satisfactory control performance when applied to the !

[y

best available model of the process.' In this work ~the c0ntrol law 1s

13

model. ‘The resultlng controller is a linea;, time- 1nvariané\£eedback

control 1aw that utilizes the entire state vector Simplification of g

v

this control law is accomplished by eliminating selected state variables

’_'from the feedback control terms. The problem of deriving an 1ncomp1ete

state feedback control law from a state feeggack control law wlll be

R



A )

'

,of nonlinear matrix equations is required in their approach.

referred to in the study as "control law reduction", and the résulting:

>

' ’ ' ' i A L
" controller will be referred to as a reduced order control law.

P

nS.l.l' Previous Work

. ) o : o - K . L L
The designfof incomplete state feedback and output feedbecka P
_..w: z
control systems for linear systems has been the subJect of a large num-?n

ber of investigations in recent,yearsi 0pt1mal control formulatlons 1n

A : h wow

which the control configuration is consttained to be a function.of the .

“Athans [71.

) .

output vector has recelved con51derable attention by Dav1son [2], KoSut

rf6], Levine and Athans [7] and Sims and Welsa [15] However, the'cel-

culation of these’ optimal control policies often requires a s1gn1f1cant o

e
A v 4

i

computational effort* particularly for"large‘systems._ Furthermore, the
dependence of the optimal control policy on the lnltlal state must be

taken 1nto con51deration -85 dlscussed by Kosut [6]:and Lev1ne and s

T —

o

N o

An alternatlve approach eon51dered by Anderson [1] and Nichol~

‘son [11 13)° 1s to derive .a low order state space model by MOdel ncﬁuc—

-

.o

tion technlques nd then use the optlmal control pol1cy for the low

order model as a suboptlmal control law for the high ordér system

~

_'v,) . L . B . ; .

Rogers and Sworder [14] have proposed that the reduced order model
. 2%

- N

and 1ts optimal control policy be calc&;;ted 51mu1taneously with the

‘)

~

add1t10nal restriction that the low order control law is the best

suboptimal controller for the high order system An iterative solution -

<<'

’

None ofytheyahove approaches'makes“direct use of anvadditional\

: item"of information,nnamely;lthe‘optimal‘control law for the high order

74
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i .
‘system. The strategy adopted in this 1nvest1gat10n 'is to derive ‘an
incomplete state feedback law from a state feedback control law by
. B o
._using a modal analysis of\;he high order_state space model to elimin-
h . ate selected state variables. 52
) »}'. . .
5.2 ~CONTROL.LAW REDUCTION . w = R
: = - A
S diScrete-time'model in
“the :form:
x(j+1) = OX(J) + uU(J) + ed(J) SR GO
N 7 - \\' . B
Ly =cxG) L - G-
o) 7 ‘;ﬁi:‘ o . , L . ) . A .
. - . . nt:;? ) ‘A ‘\\.‘ : _‘
where x is the n-dfffensional state vector} . ’
@ ,/' : ’. o ¥ . H : B .
. ‘ L ) i - LT K
u is the @-qimensional‘cqntrol‘vectqr, - " LT
e -'d’is the q;digenéienalYaistﬁfﬁence'veétor;
C T R S
;ﬁggn, - y.is the p-dimensional-Gutput vector,
@, &, @, C ére‘constent coefficient dattiees of eppropriéte
dimenéioas; . ' o o ' o e
j-is a counter such that g(j)vdeqotes x(t) at .t = jT,
. 1;wher?tT”i§_thé”gigetetéltime:iﬁtefvai._ ';f.\tu,eTvﬁTf‘ s
;It_iS»assumed.tHatﬁthe higﬁ order coﬁtrol'law has the form:
F SP SP - PRI
u(n =K p_c(J) + g Z ¥(i) + K D RT3
' i=0 ' - " o

'\

where y~ ' 1s the constant setpoint vector such. thadt yiP;iS'thevdesired

. value of.yi;tint I, ::., p



\ ’ ' . r o .
KFB, 51, gFF,'§SP are the proportional feedback;, integral feed-

back, feedforward and setp01nt control matrices of approprlate

dlmen31ons

&

The-control law of Equatlon (5. 3) is chosen, not only because

it can stablllze the system, but also because it is a practlcal control
\,J

law which can be easxly applied using an on-line. digltal computer as was

shown by Newell [10] The control ‘matrices in Equation (5.3) can be
- A |
determined by any applicable deSign\téchnique.v In this work they were

'
)

calculated by dynamlc programmlng, m1n1m121ng a quadratlc performance'

_crlterlon, as descrlbed by Newell [10]

1 C . : - oo
. ’ y
A s ’ . - /

o The objective ofathis investigationrig/to‘simplify_the control

"law.by reducing the number of state variables such that

FB - ... 1

N N sp _sp
u(j) =Kp" x,(3) + K

X(i),.+ - d(ﬁ + KR Yy (5.4)
Si=0" < -

i
N EAE

’where x1 is the E—dimen51onal subset of X which is to be retalned in

the reduced order .control law Practical consideratxons dictatt that

the elements of X be chosen sp that the: system defined by Equation (5 1,

.. ¢an betstabilized by a control law ofnthe form of Equation (5 4,
: r. - v
Criterla for selecting the state varlg%les to be retained in x1 will

be dlSCUSSBd later

‘e .. i

5.241 Method Development ~ =~ : S,
vathe'state“yector, x, is partigldned suCh(that
o> x ; )
. Co =1 .!': i .« . - 8 o -
cx =] ‘ L &)



i',then'thépét&te‘feedﬁack‘control.1aw of Equation. (5.3) Cen’be expanded

in terms of gl'and X,, to give:

2(j)= L(fB _}51(‘]) + }g(g X (j) + K Z X(l) + K d(_]) + KSP ‘XSP

i=0

7 .
] ‘a f : . . »
- The use of an exact expression for X, in Equation (5.6), derived f;pm

7E§dafiohs (5.1) and (5.2), would'reéult‘in a complicated control law.

waeVet the use of an approx1mat10n for x in terms'qf the other

2)
: yafiabies, would‘resul; in the desired form of the.control law..

v

Several possible approaches. to this approximation'exis::'

(5.6)

1. It could be asSu'{th"t:x = 0, which simplifies the adalysis_.
, ssuged. tpat x, = 0, |

but is too extreme an assumption for most systems.

2. A;second assumption is that the resbonse of 52’is instantaneous

and henre Ko (J) is am- algebralc function of xf(j), g(j),

-dC3). However,”it is not difficult td find systems where the
response, time of 52(j) is sd* slow that it?éennoq be néglected.-

3. A third-.approximation for gzncould_be.defivedﬁueing e.ﬁadal

a%alysis of the high.order éySEeﬁ_tepresented'by Equation (5.1).

’ . ) = '

o - ' S s

The4moda1 analysis which was‘seIected »ié,analogous to chat

- oy

used in the reductlon of continuous time models orlginally proposed by

Marshall [9] aﬁd as extended to discrete- t ime systems in Chapter ‘Three.

The baéic stiﬁs are as fgllows

B f
i

An n x.n matrix .ﬁ) exists, which’ ‘transforms Equatlon (5. 1)

.o

into its- Jordan canonica‘ form,»as shown by Gantmacher [3]. This sim-

1larity transformatlon whlch also preserves the elgenvalues of Q, /

is defined by L o o . .”:_.. ) L

e

77



‘va

v

where z is the canonical state vector and

dimensions as X and Xy

results (shown here in partitioned £

z (F#T) a, 0

=]
(142 .
122,Gv2] L2 %
R r ) e
where a; 3§, and 1 are defined as:
L a = r=4'1,2 M
N = g_ll(::)Lé
- - ‘

-

An expressidh'fbr‘ﬁz

=
N

stituted into Equation (5.1), the fé

"=

and‘matrixﬂy.sﬁich-is defined as, =

=1

and z

2

have the same

¥wing Jordan canonical form

‘ Matrix « is a block diagonal matrix with the eigenvalues of g'on'its i

“each element of 5?5 associated with a bafticuléﬁ”eigenvalue of 2..

(5.7)

(5.8)

respeétivelyw*lWhen Eduation (5.8) is sub-

(5.9)

(5.10)
(5.11)

(5.12)

-~

'can bévéa1qq1gtéd using Equati®h (5:8):

78

principal diagona%. It then follows diréctly‘from Equation €{5.9) that;" Cad
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SRS N
y=| 7 =Mt i (5-13)
4y Yzl
to give g .
NORS Il ENCIES A (;)] | (5.14)

-

Equatlon (5.14) could be used to eliminate x -fram the high,orderhcon—
trol law in Equation (5.6) .. However, the resultlng ‘control law would

| ’ KX

then contain Z,- As an approximation, the“dynamics associated with

'z, can be. neglected and z (J) can be replaced by 1ts steady state
value. It will be shown later thatvthls approx1mat10n is a reasonaele

one if the columns of M are arrangedﬁin an.appropriete fashion. Thus,e‘
fef codstant inpuphyeetore,eaésumedthat z, has reached its final steady

state value; then from Equatiodr(5.9)

K

2,3 = 2,GHD) = g[8 2 + 1, 4] (5.15)

‘Equation (5.715) is then used';ith‘EqUation (5.14) to give .

the fequired epproximatidn of x : -

. ' -1 e _ N ' . ‘;}
X gﬂ) =, v [(1 a2) 3, ulj) '+ (I-gy) ,22.9(3):»,23 EL(J%]" (5.16) ik
The desired reduced order contrSi law can now ‘be obtalned by comblnlng S g
,equuatlons (5: 6) and (5 16) such that the coeff1c1ent matrlces ‘in Equa— '.é%
; “ . L : -
tlon (5 Q) are deflned as: .
(FB _ (U ((FB _ L FB -1 o S
-=R ‘ =K (K - '.Ez, v Xa) | T ‘
. BRI u 1.:
r_f? v“'§R ~*§ -5
FFu o FF | FB ol -1 e o ;
. = T G - . - 17
Ke =K. & L‘g) v, (l-g) v 15) . , (5.17)
. v ! ~



_ where o
=1 5 -1

u FB _ -
=2)

L
K f (;fgz Y (I-2

2)

Thus, a ;educed order control law has been derived in thch
the feedback con;;ibution‘is a function of ohly a selected subset of
the state vector;‘tather than the entire state vector. . It should .be
noted that the control syéteg désigner already has the freedom ﬁo
- decide what variaﬁles are included in the feedforward, integral and

setpoint terms.

!

5.2.2 Continuous-Time Systéms $ a

A similar analysis could be used to obtain a continuous-time
. ) . (£ <
reduced order control law: Consider the following linear, time-invar-

iant, continuous-time model:

x=Ax+

oo
le

+
o

[[=%

[

(5.18)

y=2Cx" o ('sl.i9)'
Ghe;e_z,‘g, d, X,_énd C are Aefined eaéliér aﬁd'é;}g, and D are con-
. Stant'coeffitieqi‘matficgs of appro§£i§£e-d§mepsiogs; 'This Systeﬁ

can be stabiiizgd by the high order'coﬁtrol law:

nx=

s . t - | o :
« gFB: 1 FF SP”_SP Lo
u= x+ K So yde + KT d+ KTy (5.20)

The resulting reduced, continuous-time, control system is as follows:
' . 1 te . FF SP Sé o
u=Kp %+ K | So xde TE 47 53 y (5.21)



where ‘
FB u , FB FB -l
A N A Ay
&
1 u I
éR - 5; K
FF u , FF FB -1 -1
f_(R =K .(i_‘ - K Xa;‘ iz H ) -
SP u . SP
K2® = K. K
K = KUK |
and ” )
LU FB i -1 -1
K f(i+§2 vy I &)

i

. ‘ e e . o
and J QZ' and H, are defingﬂgfﬁﬁm the continuous-time canonical sys-.

=y 2
tem as: o .
z il 9 2 & 21’ . :
= o + u + d v (5.22)
- - 4
PN
J = =yvax
| 2 %’2 ¢ ‘ Ij B
’ i |
¢ |
G = =yB
G ] e
H1
n=} |=vp -
4 LHZ.— ) v‘ - ’ ‘ . . oL

Matrices M and V are the same as those used for the discrete-time sy
= = A o

and can be calculated using either the continuous-time or the discrete-

time models (See the -theorem in Appendix D.1)..

81
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o

This'continuous-time control law is subject to all the re-

strictions which.were imposed on the discrete-time control law derived

earlier.

’5.2?3 Application Considerations

+ ! ’

In applying this method, two important design decisions must

" be hade: first whlch subset of X should be included in the reduced

order control law as x aqd, secondly, which subset of the e em's

'eigenvalues should be retained in a,

-1

Y

" El
4 -

. L . ! . e
f . . Lo “ ) &
The designer must first specify.which states®are tou be re-
tained in the control law. This choice may require a trial and error

approach,'but a feW‘general guidelines are available. For éxample

process varlables which are to be tlghtly controlled oﬂ constralned\j7
must be 1nc1uded in the reduced order control law. Other‘process var-

1ab1es,‘which if not controlled would.give poor system performance,

L) : . [

’ o . : . -
‘must also be included in the reduced order control law. Furthermore,

the state variables retained in X, must be able to satisfactorily stab-

ilize the_high order system by means of Equation.(Sga). A further con-

v

. \ : .
sideration in the choicé of which states variables to retain in X is

whether e'state variable is measurable or mot. It is obvious that other

considerations aside, those. state variables which can be most easily
or economically measured are the ones which should be retained. Un-

'measureble statés should,be included in 51'on1y'if they are essential

A H
&

for satxsfactory control since a state estimatxon procedure such as-

.the Kalman fllter [5] or the Luenberger observer {8] would then be

requiredv - ‘ ) B

<
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After ‘the elements of x1 have been selected the designer musg,
a551gn the elgenvalues of ® to.either @, or 02 by an appropr1ate re-
arrangement of the columns of M in Equatlon {5.7). In genetal the

elgenualues vhlch have the most 51gn1f1cant effect on the elements of
p , g
X should be placed %n a The‘tuo most 1mportant factors to con51der‘

} . . S .

in a351gn1ng these elgené%lues as’ shown by the followxng analy51s ~
B
are the magnltude of ‘the elgenvalues of ¢ and the” magnltude of the.

i‘ .
. elements of the modal matrix, §.- Equation (5.7) can be expanded for

‘ . th | ' -
- the ltﬁ element of x.as

EESEN

X, =m, . z o,z 5 L0 +m, th i =1, 2, ..., H‘; (5.235

T . . . ’ ’ _th' . |
where mij is an element of-M and x, and z, are the i~ element of.x

" and z respectively. ﬁhe'magnitnde of mij determines the effect of the

: ] th - -

< jt? mode on'the i~ 'state variable Slmllarly,’ﬁf ¢ has dlstlnct
T . E

" L1genvalues, Lhen the response of the k th qanonlcal state_of the

unforced system can be written, ffom Equation (5;9),‘as

- . -

’ . ‘ - % - . . . .
| z (J+1) & z,(j) _k=1,2, .., n o T(5.28)
A/«ﬁ_ . - e A 3

. LT

where ak is’an eigenvalue of ®.
) Ed ,

: For an elgenvalue CIOSL to the orlgln Equatlon () 24) Jddl-

cates that . the Correspondxng mode d&cavs rapidly ‘and hence ‘its effect
on-a particular element xi,Qof the state veCtor, would be'short;
lived. Thus, Equations (5 23) and (5. 24) 1mp1y that the K mode-

will most s1gn1f1cant1v affect a state varlable lxi; whenvmik is large
and & is also large. In this case, a, should be included in g -

In»bther situations,mik will beiveqy small and thus z, willmhavevaj

negligible effect on xl' In other sitdations,- an eigenvalue of ®



mo may eorrespond to'a small value of a

- .

.{\

w111 be very small in magnitude and will have only a short lived effect

‘on.xi, reaching its steady state .value quickly. 1In these two 51tua-

tions the eigenvalues should be 1ncorporated 1nto a, - vH : in

other cases the'dec1sion may be less obvious since a large value of

N
e

k]

i or v1ce versa. After the

o & .
eigenvalues have been partitioned into a, and 02’ "the columns of ¥
must be rearranged accordingly. ‘ : o :

' If the columns of M are arranged as above so that the mo§ES

which most affect x1 are in z then the modes which least affect X

will be in Z _This | means either that the mlJ values relating z

-1

2‘tO’

N

/iirare small, or:that[the eigenvalues in a, . are small. . Thus, the

=2

steady state assumption for-g2 will not significantly affect x,_, since

-1

the_canonical states’in z, either‘respond faster than those in z, or

do not affeéx 5 due to the small values of ‘their miJ elements. Thus

the magnitude of the eigenvalues in 02’ and .the associated m values

i)

- give the designer a qualitative feel for the accuracy of the reduced

order system Iterative trial and error solutions to the de51gn prob-

lem, w1th or without closed- loop simulations or experimental runs may .

S

be required to obtain a satisfactory reduced order control law

. . . A . N S
v B N . B . . . AN

One additional restriction must be imposed for systems with

repeated eigenvalues which ‘do not have linearly 1ndependent eigenvec-

tors The block diagonal matrices gl and. Q,, -gust be 8551gned so that

‘-El and z, are non-interacting as was assumed in partitioning Equation
\J(5.9). This will always be the case for systems w1th n 11near1y inde-
pendent eigenvectors, since then ais a'diagonal matrix. However fOr.

- Systems with less. than n linearly independent eigenvectors the part4
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<



\ | 85
itioning ofirne original systen must\be-suchvthat it‘does not spﬁ}t a
Jordan plock in'a, so that Zl and zz'wiil remain non-interactlng This
;might necessitate increa31ng or decreasing the size of vector x1 .
slightly However, ifvthe orlginal system cannot be satisfactorily
ﬂ partltroned to keep'gl and z, non—interacting,btnen thedparameters in n

the original model colld be changed by a.small amount so that the.

eigenvectors would be linearly independent.

'”\'-The'proposed method‘was‘evaluated_by comparing simulated and

5.3 APPﬂICATIQN TO THE 'CONTROL OF AN EVAPORATOR

. experimental response data for a pilot plant evaporator which is des—

- N

. cribed in Appendlx A. _The simulated responses were generated from a .

10th order state space model of . the evaporator'whch’was derived by ‘
. : ¥
‘Newell [10]. The following control laws were compared
. AN

(a) a third order control law designed by the proposed metnod
-u81ng a tenth order optimal Cbntrol law as . the startlng p01nt

(b) a thlrd order control law which is optimal for a’third order
_state space model and a quadratlc performance index. The thlrd order.,
' model ‘was derlved from the tenth’ order model us1ng'a model. reduction u.
-technlque based on the modal analysis of Marshall as presented in-
| Chapter Three. /

(c) a control law‘which is optinal for the.tenth order model and
a qnadratic performance index. | |

| (d)‘a conventional-mmitiloop feedback control scheme dsing con-

troller constants'which»ﬁere‘determined erperinentally,by Jaéobson”[AIn

-The first step in the application of the proposed method is

r

to determine which states to include in Xy An‘analysis of the evap-



o . . o i
\' - 2 ‘ )
orator showed that three state variables, product concentration, C2,

and the two holdupg, Wl and-W2 must be retained in LIRS CZ must be

retained since regulation'ef'CZ ig'specified to be -the primary contrqi

objective. Wl and WZ'must bé retained since these are integrating oo
. : ] ' . .
states (correspondxng to elgenvalues of ¢ of" one) which would tend to

o~

-

- exceed physica}‘operatingmlimlts if tney were~nq£ controlled.' The set-

point and integral control modes were also.chosen to be a function of
. M Lo . . ~
these three state variables, making Yy =X

-
1

The second step'in th proposed method is to cheose which
-
eigenvalues to reta1n in al by an approprlate arrangement of the

i

columms of M (W is. shown for the evaporator model in Appendlx A). If

the previous cho1ce of x, = (Wi, WZ CZ]‘ is made,fthen the“three lar-

=1

gest eigenvalues should be retaxned . This fbllowé'from an inspection

of matrix § since the three slowest modes have the most effect on tifé
“r,elements of x,- -

Once the State vectOr ahd eigenvaldes have, been’partitioned
and the'cdlumns of M’have been arrenged the hlgh order control law,
matrix V and the canonxcal sg;ce equation are partitloned as shown'

’ \
in Equations (5.6), (5.13)‘ and (5 9); respect1ve1y Thenggﬁhe

reduced order control matrices can be éalculated\USLng Equatlon (5 17).

The third order contrbl laws which were designed by the pfo;?;
. posed method axe presented in Tables S5ié 1 and 5.2. Teble_5.3 summar-
izes the values of the quadratic performanCe rndex, J,

-

N : o : '
J-Z (X(J)-x Byt Q(x(j)-x Py & uT(3- 1)52(3 -1)} - (5%25)

J=1 ‘ﬁv

|
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TABLE 5.1 ° .
- ' :

" 'PROPORTIONAL, FEEDFORWARD AND SETPOINT CONTROL
MATRICES DESIGNED BY CONTROL LAW REDUCTIO

R 2,467 . 0.02163 .  ~-4.705
Kpo = |4.288  -1.340 8.885| .
=R - 14.128 9.760 - 9.528) i
. FF 1.238 - -0.5639 - -0.4138 .

v ° Ky = |0.9815  0.2177  ° -0.001227
% lo.9978 0:9877 -0.001398
gp  |-2-468 - -0.02119 5.276
K = |-4.289 1.360  -9.100

| =4.128 -9.763 . -10.52.

_ TABLE 5.2

PROPORTIONAL PLUS INTEGRAL CONTROL -

. MATRICES DESIGNED BY CONTROL LAW REDUCTION .

FB. f2.917 0.09369 -5.408
K. = |5.066 -1.246 - 8.100
N 5.686 1229 11.58 |
D r6.4117 ~ 0.02088  -0.4861f . ‘-
Ky = |0.8398 -0.2887 - 0.8159
. ~]0.8559 1.945 ° 1.068 |
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a

'obtalned by controlllng the tenth oxrder model with three of the con- .

trol laws mentioned above (controllers (a), (b) and (c)) The.optimal

tenth order control law is shown in Appendix A and was’ calculated J

"~ using 3 d1ag (0,0, lO 0 0,0, 10 100 0 0) and’ R = diag (0 05 0 05 0. 05)4

The optimal control matr1ces for the<third order model used the same

R, with @ = diag. (10,10,- 100) and are shown in Tables 5.4 and 5.5. The

VSimnleted runs presented in Table 5.3 are:

(a) Proportlonal feedback control with a non-zero initial condi-
- : 2y +t .

tion (i.e., E(O) ¥ 0),

' (b)lProportional—integral'feedbackvcontrol uith‘a‘non-zero initial

condition,-
(c) Proportional feedback - feedforward control v1th a +201 feed

flow dlsturbance (startxng from x(O) = 0),

fd) Proport10na1 feedback—setpo1nt control with a +7Z setpoint

change in C2

The{results summarl?ed in Table Sfjfshoh that the thi+d - -der

. control--Taw calculated‘by the proposed‘method was better, as(indicated
by.the lowervvélue'of,J, than'theﬂthird order controller calculated
from the reduced order-model. The only exception to this is for the -
'case of proportlonal feedback-feedforward control where the two

thlrd order control lawsvg1ve almost 1dentical values, differing by
only 0. ZSZ In each case, the h1gh order optxmal control law gave ‘the
‘l_lowest value of J, ae Qould be expected. | | ) V"ﬁ'

The transient responses for proportional feedback control in
.‘.Figure 5 1 demonstrate that the reduced order control law calculated

by the proposed method\ gives better>control-than_the.control~lav

<
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TABLE 5.4

PROPORTIONAL, FEEDFORWARD AND SETPOINT CONTROL

Ea

MATRICES DESIGNED FROM‘REDUCEﬁ ORDER MODEL

5 -

-

TABLE 5.5 °

4.904 °~0.4013
15.784 ~1.600
4.093 9.685
~ \J .
1.238 * .  -0.5583
0.9832 .0.2231
lo.9983 09937
=4.904 0.4017 .
~5.784 1.599
1-4.096 -9.686

~11:92
4.425
19.357

-0.4128
-=0.00054 |
-0.00122}

12.47
-4.648
- -10.35

. PROPORTIONAL PLUS INTEGRAL CONTROL -

MATRICES DESIGNED FROM REDUCED ORDER MODEL

Ké .

B

5.49
6.429
5.519.. -

0.9893
1 1.156
0.8254

' -0.1903

-1.386
- 12.26

~0.05066
~0.3255
1.935°

<.

" -12.00
4.487
11.81

<1175
0.4373
1.090
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.

designed.from-the third order model " This is espec1ally ev1dent for - -

the primary controlled variable C2 where a slight osc1llat10n develops

when the control law de81gned from the reduced order model is used. o

-~ Figure 5. 2 presents a 51mllar comparison for proportional plus lntegral

controf ‘law with the same initial" state as ‘was sh0wn 1n Figure S 1
o v .
Agaln, the. proposed method is the better low order controller but the

responses are more oscillatory than for proportional feedback control

as was shown in Figure 5 1.

Flgure 5 3 and the performance 1nd1ces in Table 5. 3 1nd1cate

that the two third ordeE\{eedback feedforward control laws are quitela
€
g

simllar All three control laws 1n,Figure 5.3 corrected for. the +207%

.feed flow change with no steady state error. 1 In Figure 5.4 the closed-'

loop respbnses of" three feedback setpoint controllers are compared forv
.a +7Z setpoint change in C2. Again, the control law de31gned from the
N third order model results in a more oscillatory response than the
‘-c0ntrol law designed by the proposed method All three responses

attained the desired steady state.

K4 -

In general, the effectiveness of'the'reduced order controller
, " SP . '
matriCes, K;F, ERP and K;, depends upon therKF‘ with which they are
'used. This point was investigated for a proport10na1 plus setp01nt'

control law where KR was calculated from the reduced order model and

used with the §$P matrix which was optimat for the high order ‘model.

FOr‘the"same?+7Z setpoint 1n.CZ this approach gave J = 37 89, This “

large value ‘was due mainly to the resulting steady state CZ value oﬁ*

" 411.5% instead of the desired value of ‘7. N
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lnxprocess control‘applications, feedback control'lavs;are
primarily used tO/éorrectifor unmeasured disturbances‘which enter;the

’system.u.Thus .lJ was ofiinterest to examine_the effectlveness‘of a

controller'designed by*the»proposed method.inbsuch Situations.f'Figurer

- 5.3 shows the response of the hlgh order dvaporator model when upset
\by a ?204‘feedflow dlsturbance and controlled by the’ optlmal ‘tenth

- order proportlonal feedback controller or by the th1rd order propor-

tlonal feedback control law desxgned by the proposed method The

third order control law results 1n satlsfactory control but 1s,'of

course ~not as good as the optimal control lav

e ‘ - . N .
— .

The above examples demonstrate that the reduced order control
laws de51gned by The\proposed method give excellent results when applled
‘to:the control of the hlgh order model The exper1mental response shown
Cin F1gure 5.6 1ndicates that. the resultlng control law also performs }
‘well when’ controlllng the actual pilot plant evaporator.. The pro-
portional comntrol scheme results in satisfactory control of Hl W2, and

lC2 after two 20/ step changes in feed flou (The proport1onal feed—

back control matrlx for Flgure 5 6 is shown in Table 5.1).  This exper-

Ed

.o

imental response represents a 51gn1f1cant 1mprovement over previously
.reported results for .a convent10na1 multiloop controller [A]r A com-
parlson of control by the proposed method with control by this multl—

. loop. control scheme is presented in Chapter Sxx, for proport1onal plus

- . S
integral control e
.

o Ly

[\]

.order control law 1t appeared that a poss1ble appl1cat10n mlght be for

In the development of this new approach for designlug a reduced -
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"implied“ control. ‘Suppose, for example there is a key state variable,
k’ which cannot be measured, but must be controlled It appeared that,
1f,the optimal, high order.control law for the systemwwas designed with
heau; weighting on X, then the methods of this chapter could be

' applied to obtain a reduced order control law uhich'was not a‘function

v ‘: of x#,’but which would still:control it.satisfactorily. vThis Strategy

was attempted in the evaporator similation studies. The,variable to

be controlled'was taken as‘C2 and several feedback control.laws were

tried, all without success. It is possible that with further study -

into the structure, controllability and/or observability of the
’\

H x

. systtm, a satisfactory "implied" control scheme could be devised.

‘.§ However, this was not pursued as part of this study, : ' -
5.4 CONCLUSIONS

A method has been proposed for derivxng reduced order control n
'.'laws which eliminate selected state variables from high order control \
:1aws.‘ In effect, an incomplete state feedback control law is derived SN
'from a state feedback‘control law using_a modal analysis of\the high |
'ordermstate Space model._ Bothwthe high order-and lou order control
vlaus may contain feedforward integral _and setpoint modes.f'The.
feasibility of the proposed method has been demonstrated in simulation
and experimental studies involving a pilot scdle evaporator. Hhen :
{applied to the evaporator model the low order control laws designed
' using the proposed method gave better results than controllersA

fdesigned from reduced order models which had been obtained using

model reduction techniques, as indicated by the smaller value of the

-

2
_performance index.



'CHAPTER SIX

MODEL REDUCTION AND REDUCED ORDER CONTROL

OF. A PILOT PLANT EVAPORATOR
2 \ s

ABSTRACT '
o g2 . . ‘.- N ' . ' . .

}he literaturevdealiﬁg'wirh:fbe strdcture‘of_tbe fieldvofv
reduced order-. control law design is reviewed - The nnst promisin; _
methods were applied to the experimental control of a. pilot plant‘
evaporator.- The control law which gave. the best overall control
.of the methods tried, was designed byxthe elimination of selected _
_state variables from the feedback'portion of the high order control
law for the process using a modal analysis. The-subject of model
reduction}is briefly-treated. It is shown that most of the modal

methods of model reduction produce one of two basic results or two

:lmodifications to. one of these basic results.."

»d."
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6.1 INTRODUCTION

This chapter considers, in more detail the general problems
of model reduction and reduced order control law design which have been

dlscussed for spec1f1c topics in Chapters Three, Four, and Five.

~

The models of some processes are of such high order, and
their high order multivariable control laws so complex, thatvthey are
1mpract1cal‘for use in smmulation and control , The sxmplification of
process models and the design of control laws which reqU1re only a
small subset of the states of die model have been the topic of many
:_ 1nvestigations. These simplified models and control laws.can then be
used to. study ‘and control the process. This. chapter 8ummarizes the |
work dOne in these two general fields as well as applying some of
the methods for the model reduction and control of a pilot plant
evaporator. |

Figure 6.1 shows how a reduced orderldiscrete—time model .
'vand a reduced order control law can be deriyed frOm a high order -
cont1nu0us t1me model. The desired reduced order model and control

law are to be in the discrete-time form for ease in computer aimula-

tion and control system application using an on—line computer.,

The model reduction paths are numbered 1 and 4 in Figure

s

\ s . . i

6.1.- Hbst of the literature deals wlth the continuous time model o e

.reduction of path 1 with work being done in the following areas:
~a) Reduction of a state space model using a modal. analysis of

the system i This topic is discussed later in “this chapter.
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b) Reduction Ofvs Etatelspace model by minimizingrsome‘measure of -
‘difference between the»high-order and the low»order.models.
One of these methods involves a least squares analysis which j‘
was discussed in detail in Chapter four. _
¢) Reduction of a transfer.function model. This has been'discussed
pusing different approaches by_Chen“and Shieh [4], Gibilaro ;Qd”
Lees [201], Sinha and ﬁereznai [35];7Bsia [23] and Fellows et al

- [18].

The reduction of - discrete-time models (path 4) was d1scussed
in Chapter Three using a modal analysxs and 1n Chapter Four using a
least squares ana1y31s. One form of the least squares approach is’

4

applied to the’ evaporator model later in this chapter.

The various methods of calculating a reduced order control .
law from a high order discrete-time-model shown in Figure 6.1 are:
a) Model reduction followed by control system design based only .;
on the reduced order model (path 4+ followed by path: 7) This
‘has been con51dered by Nicholson [31 - 33] and Anderson [l]
'for state space models and Bereznai and Sinha [2] and Chen
_»“._;:and Shieh [3] for transfer function models and is also con-

"31dered in this Chapter._f' " _f; .

-~ -

‘b).Model‘reduction with the added restriction that the oPtimal\\

:v p‘ control law for this reduced order-model must be the_"best".
‘suboptimal control lav.for the original high order system.
"This involves paths 4 and 7 at the same time. _Rogera-anda

- ,»Sworder [34] utilize this approach.



_ c) Generation of the reduced order control system .directly from J
.- the high order, open-loop model without calculating a reduced
vorder model ‘\(Path 6) This approach has been considered. by

Dabke [7, 8], Levine and Athans [26], Kosut [25] and Dav1son
et al. [9,10,15-17]. o '-

' d).Calculat1on of the reduced. order control law from a high order
vcontrol system designed for the original high order model.

(Path 5 followed by path 8). Kosut [25] requires the optipal
control law for two simple forms of his controller. One i |

result using this approach was derived in Chapter Five and is-

‘compared to’ other approaches later in this chapter.>' ™~

The rest of thlS chapter is organized as follows;, Section
6. 2 disggsses the ‘modal approach to model reduction in more detail.
It also summarizes the model reduction and reduced order control law
design techniques which are applied to the pilot plant evaporator.-
' »Section 6 3 discusses ‘the model reduction results and Section’ 6 4 dlS-‘
@ cusses the application of the reduced order control lavs to the con-.

S

tdolsef the pilot plant evaporator.

2

6 2 MODEL REDUCTION AND CONTROL LAW DESIGN METHODS TO BE APPLIED TO ;

THE EVAPORATOR

This section discusses the: methods of model reduction and
' reduced order control law design which are applied to the evaporator
(described in Appendix A) later in this chapter. The general form.of

the model and control law will first be discussed :These:are'shown.

LY
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in Figure 6.la, in whlch the model and control laws have been added to

. the basic structure of ‘Figure 6.1. The nomenclature in Figure 6.la

include:
-x—=

x, =

1%
i

12>

n-dimensional state vector

. . my
frdimensional subset of x which will be retained in the low

~order model or control law

G

(n-[)-dimensionsl'subset of x
[—dimensional state vector of the.reduced order model

(m+q) dimensional input vector whlch can be partitioned 1nto

an m-dimen81ona1 control vector u,.and s q-dimensional

<_disturbance'vector d, as

p-dimensional output vector

- C

¥

>
Ie
.

- 1 e

B 1-¥

, ' SE '
a constant setp01nt vector such that yiP is the desired value

of y , 1= 1 cey P o : o B

=) =’

?, ‘ﬁ = constant coefficient matrices of appropriate dimen-"

sions representing the process The.input forcing matrices

B and A can be partitioned to agree withuthe partitioning

oi?i} as
) P . 6ay
# o T
- R O C

counter for time intervals such that x(3) denotes x(t) at,

<

t = jT where T is the discrete time interval
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gB, ‘FF;_§SP, 51’7 constant coefficient mdtrices‘of approp-
/ : : ‘ ’

R
el
=

7

riate dimensions represeniing the parameters of the control

llavf‘

o
f

integral contribution to the control law represented for
continuous-time systems as .
t } I S -
. - ‘S . . .
s = s (- y°T) dt a (6.14)
0 ‘ . o L
or for discrete-time systeﬁs as
A

V.S(J)=E ) - y° ) S 61

i=0

The subscript, R, refers to a reduced order vector or matrix

%+ -and the'matrfces ER and_eR can be partitioned (as were B and é)vinto

A R L
) ER = (ER’_ER) o N .+ (6.16)

6 2. 1 Modal Approach to Model éeductlon

The modal methods of model reduction are those which retain
‘spec1f1c modes (or eigenvalues) of the origlnal high order model in»
_the reduced order model These methods make use of the modal analysis

of the h1gh order system as follows - A matrix M exists such that

e 1=t L (6:18)
LR3I R R ST i

fwhich'will'trensformvKdetionf(6.1)‘into its Jordan canonical form - e

N
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(1. 0 | s
21 = = [ |& =1 A
: =1 + u (6.19)
z 0 'J z /G\ '
=2 = =2} %2 =2
and Equa(idﬂ'(6.3) into its Jordan cahoniéal form
N .\ ) . ‘. .A.
G+ D Iy 0][z,G) 21 A \ "
. § = N Bl P (6.20)
' 22(J>+ 1) 9 2]z, § &1 ;
. ST ¢

where z = n-dimensional canonical state vector partitioned into an

[—dimensionél‘ vector z_ and an (n - £ )-dimensional vector

1 o
. 52 |
=] 2 o
,g' eV
(6.22)
(6.23).
(6.24)
: vl.¥2' 1 R S o
y=1 | =¥ ' L (6.25)
vy X@ : ' ' -

A
andvgﬁ into

D> ; 

Matrices G and § can be partitioned (as were
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- T (6.26)

O L e

<

’Even-though theré have been many papers'uritten on the modal

. approach to mOdei*feduction, most of the. methods produce one of two
/.
basic results or two mod1f1ed forms of one of these ba51c result ;‘

Most of the modal methods calculate the. same A or ch : They dif er

only in the approach taken and in the resultlng BR and QR Most(of

the comments to follow will refer sp°c1f1ca11y to the continuous-
. tlme reductloh methods used to obtaLn Equatlon (6 6) from Equatxon
(6 1) - v o 'tL e : | , " o ~‘ R
' - . _" .
One of the bas1c modal approaches was presented in dlfferent
forms by Marshall [27] and Chldambara [5] (Chldambara s method marked
c2). The equ1va1ence of the' two fOrmnlatlons vas noted by Graham f21].
They assume that the modes whlch do not contrlbute signlflcantly to
the responses of the states of 1nterest reach the1r final steady
state values 1mmed1ate1y after a dlsturbance enters the system. The
main advantage ;of thls result is that‘1t prov1des a reduced order
model with' exact steady state agreement w1th the or1g1na1 h1gh order.

.

model for step dlsturbances.' Davison [5 11], houever, obJects to

this model because the retalned modes are not exc1ted in the same
proportlons in the reduced order model as they are 1n the high order

model. - The equ1va1ence of these results is shown in Appendix c.

The second basic modal approach was presented 1n slightly

dlfferent forms by Nzcholson [33] and Davison [13] " The equivalence
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of theirﬂformulations is-shown'in Appendix C. Their resulting reduced

‘ )

order model has its modes.exc1ted in the same proportions as they were
in the high order model The main disadvantage of thlS result is that
‘a steady state error- exists”betweeh the high order and the low order
'fresponses for‘sustained disturbances. -Davison - [11] claims chat this

" error will be small 1f the order of reduction is not large.

, SeVera1~different'formulations have been presented in .the
literature for modifications to the esult of Davison and Nicholson
;- to prov1de steady state agreement .These, however, all reduce to only )

'two different results . :

: Dav1son [12] presented one of these rev151ons, each state
+ : "‘
variable of the reduced orderymodel is adjusted by a ratio of the

3

‘de31red steady state to the ‘steady state obtained for the unmodiried

B w,
’ '

_kreduced order model For systems with a 31ng1e input Dav1son s

modified result can be arranged into the standard form of Equation
. ° A : o
(6 6) His modification alters both AR and ER‘bUt retains*the eigen-

'yalues. However,‘if there is more than one input; this arrangement

is not;possfble. Also, ‘his modificatiOn cannot . applied to models
with a singular ‘A or A (unmodified form using Dav1son s baszc method
5mentioned above) sxnce A -1 and A Vlrare required.‘ However, in'Davison's
examplel both A-and AR are singular He gets around this problem by
Jchanging the ‘parameters in his original model slightly, so that A

°

"is' no longer singular [14]

The second revision ‘to Davison s basic method has been pre—

”'sented by Davison [S 11] and by Fossard [19] ~This result was alsq ,
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¥

',obtalned by Chidambara [6] (Chidambara s ‘method marked Cl) and Graham

,[21], not -as: rev131on to Davison's basic method, but in 1ndependent

derivations.; Thé equiﬁalence of these re9u1ts is derived and discussed

in Appendixvcf This’révision can bé written .in tﬁoueduivaienf forms _

{
v,

e ) ADA . - \d‘. .
~ Xy =xptE R | (6.29)
IR e
or as : S
;iR:éR_‘iRﬂLg’éQ\»ERQ | - (6.30)
. where . Xy = a general [fdimensional vector
o .aD A ' o . o
By = gR using Davison's basic method - SR
By = ER using Marshall's basic method - .
It .can be seen ermAEquatieh (6.30) that tﬁisiresulf reduces to Mar-

" form’ presented by Davison {5, 11] cannot be used when either A or

- ~éR is singulera

shall's result for the case Aof_/g\ = 0.
< _ . : SR

Even though all four of these results are equivalent the

-

A . . - N . <

:Craham_[ﬁl]'discusses the idea of applying this‘method'

with a non-zero initial vector~£or'_:5R in Equation (6.30). His initial .

value vector is = ~

2O 1 {1 1 O 1 OO B BOD @D

' This modification provides.Becterxagreemeﬁt}ﬁith the high order

4

. model earlier in the reeponse'bUt with the diéadyantége tha:'tbere is

I [ o

111 .
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'“arlarge error at the start of the trajectory - If the model were’ to

be used for control purposes{ the initial time error could not be

' acceptedzﬂ In the formulation of Equations (6.28) and (6.29) the _.

' vector_ill;wat time zero, can be set arbitrarily._ Thus, in the
examples in Section 6;3.1, to enSure.that x (0) =% (O)

?initialvvalue'offxl will be spec1fied using Equatlon (6 29),

Cbe L ot

-

,EZ(OQ = ﬁl(O) - Eg _3(9) . k .(.6__:32)

The modal methods which are applied to the evaporator model

_in this chapter are those presented by Marshall [27], Dav1son [13] ‘and

‘ Fossard [19] for the reductlon of. continuous+time models and extended '

°

. for“use with‘discrete-time models in‘Chapter>Three..-Each of these

methods produce the Same AR and ¢ as.

=R
e ".'=-°»M Aoy L =='f‘A: - A,V ’i'v. = A ¥ A: M ih"i " (6.33)
- Ry Th - Y V=4 ra MY (6
and"v
® —'M“a s SN - ¢ T I (6.36)
=R =] =1 1 - =m]. ‘2V=42, =3 = =3 =1 .

=1 =2

v

These'equivaiences can be shown using relations in Appendlx D.

: Expressions for BR, ER and A for each of these methods are presented-

. in Table 6. .o S

In the application of these methods, xl(o) is" calculated
L, N
using Equation (6 32) Also, no reference will be made to indlcate

rs
.

' .whether the continuous time model ‘or the discrete t1me model was
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)

reduced, since, as shown in Chapter Three, the same distrete-time model .
is obtained.

6.2, 2 Least Squares Approach to Model Reduction

2

' The application of’ least squares to model reduction falls
wlthin the general category of methods which mlnlmlze a functlon of
the dif ference between the response of the high order model and that
of_the low order model.: Spec1f1cally, least squares minimizes the sum
of the squares of the dlfference between the high order model response

and resulting reduced order model response for all the states {h the

v reduced order model.

In thlS a roach the t ans1tlon matrix, ¢-, is‘calculated '
PP (5 =R :

using least squares while AR is calculated to give agreement between
the high order and reduced order models after the inltlal tran51ent
‘ d1es;out. The high order model and a sequencerf uniformly dlstrlb-.
‘iuted random numbers are used to calculate-theidata for usenwith
least squares, as discussed in Chapter Four. The results ;Qé'sumL-

marized'here for the reduction of discrete-time models with at least.

: onecintegrating state (that islﬁanieigenvalue_ofvé equal to one).

- If the reduced order state vector X is -partitioned as

N - : o .h o - X T .
==l - (6.35)
‘§N = ' S ) L

. corresponding to the integrating,-‘I,’andbthevnon—integrating,VEN, _

.state variables of 5#, then ¢ ‘can similarly be partitioned as,

. R RN

T S “ - '(_6._35)'



b | L 11y

N

'
e e

" The partitign'Sf gR'corresﬁonding to the‘integrating_étaté variables

;éan'be.pfe}specified as

(1]

(6.37)

e
[
o

‘\‘
<

. The dimension of the 1dent1ty matrix in Equation (6 37) 1s the: same

er of 1ntegrat1ng state varlaoles. The partitlon of ¢

corresponding to the non-integrating states is calculated using g
ares as )
o=@ 'y . (6.38)

where i S |

5_‘:' - T . -y . - . -
15 o w' (1)
Z= §N-(2) and W=jw (2) . (6.39)
1T : “iT
Ry () (& |
R - A _‘\\,-. ,
and where k is the number of data vectors. »Tﬂp ij_row_of W is
Co . . . | . il .
B . . i
defined as K'
S B ‘.s g ., .
¥(3) = a_cN(j) + ¢ 2(_1) | - (6.40)
. _ : _ o "
wﬁerelg has been partipionedﬁas - 1
. , ' T )
?1 = °¢11’ lN) ; R | 16.41)

corresponding to the partitioning of ER in Equation (6. 35) Th§>
velenents of vectors EN and x2 are Specified as random numbers.‘”

Hv4 Afté::gi.has.beéh théinéd;-gh 1§'éaléuiated”;o-enéu;e tﬁat
‘;ﬂ;hg reduééd‘ofder and:ﬁigh‘order mpdéls give.fhe saﬁe.responée'for_'

blarge_valﬁes 6f the_éounter;[j.‘ Thus,



qlﬁv‘ :

T N ,
N XR G+1) - =R£R'(j)" Ce R
- -R = : N . . ' . (6.'42)
5 0. . .
i
. where ’Ai = ¢th column of ﬁ
\ R : =R ‘

u, = ith'element of @

1111 = Xp for large values of the countef j for a step change in

Cuge (g =0, kA )
The values of the eleuents of- (j + l) and ER (J) correspondlng to .

the non-integrating states are equivalent and e the steady state

a

'values of these states for the non-zero value of u (ﬁi = 0, k # 1), .

v

H as calculated from the high order model . The values of the elements'"'

N

of x (j +. l) corresponding to the integrating states are caICUlated
as:
l/\
x(j+1) lxR(j)+¢x(j)+ (§43)

=% N

At ‘ o o - ‘
where éi = 1th_column of 91’ and the elements of ER(j).corresponding

(

‘to the fntegrating.states are.speCifieq by'random_nnmbers and.the

elements ofgfi(j) corresponding to the'non—integgatihg states are o

" the above mentidned steady state values for the same non-zero value

°% M

’ Equation (6 42) provides for steady state agreement of .the -

) 'non-integrating states and agreement of" the rate ‘of change of the

6.2.3 égproaches Used for Reduced Order;Control»LawiDesign

' 'integratfhg\states after the transients_die out.

The moda}fanélysis'and the least squares analysis.(using

~ 116
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random data) werevused to design reduced order control laws using the.
: tolloving paths shown in FigureAQ,I:. | ”
a) Path 4 followed by path 7 - the calculation of a reduced
‘ order model and the design of the reduced order control law.
directly from this model using standard‘techniquesg
b) Path 5 followéd by path 8 = the calculation of the high order
. optimal control law and‘the reduction or this.controller to

‘form the reduced order control law.
! o

-Invthe first approach‘vthe reduced order control lan is’
’calculated from a reduced order model. The modal'approach.to model
reduction.usedvin this step:was that of Harshalldas described in
‘Chapter Three and byﬁﬂarshall [271 and nas chosenrfrom'the modal‘
\uethods discussed in Section 6 2.1, since it was the only method

whose result could be arranged in the. standard form of Equa;ion 6. 8)

pet

~.and which guaranteed steady state agreement between the high order

: and the reduced order models.. The least Squares approach used in
this step is that outlined in Section-. 6 2.2, It.calculates gki.‘
hu51ng'random.data and QR.for agreement at large times. iOnceAthe

_ required reduced'order model is Obtained, the desired‘reduced order

control law is calculated using any. applicable method. In this work

the optimal control approach outlined by Newell [28] was used.

ln‘the:second approach, thevreduced-order controlxlaw is.
.calculated from the high order control law for the system.' A'modalj
analysis and a least squares analysis (with random data) are used
_to eliminate selected ‘'states from the high order control law. The

”modal approach is that which is discussed in detail in Chapter Five



and so‘it~will‘not be discussed further here.v‘The least sSquares ap-

'proach is similar to that applied to model reductlon in, Chaoter Four.

!

. The reduced order control law is calculated by fitting the response of

the reduced order controller to the response of the high order control—'

ﬁ

ler._ Appendix E- shows that the same reduced order(controllers can be

obtained from two different (but equlvalent) formulatlons, as:

a) Calculating the control matrices so that the control vector
u, as caICulated with the reduced order control law ‘agrees .

'with that calculated by the high order control law.

N

b) Calculating the control matrlces so- that the closed-loop

response of the high order system, when controlled by the

reduced ordér control Jlaw, agrees wlth that obtalned when
controlled;by the_high order,control law.

‘-
I

‘ Thevresultinglreduced order control matricestare‘calculated from

£

P

s KR = (& gE. - (6,'4,4?
\ where K, = the7control matrices1to'be‘ca1cu1ated. In‘the case‘of

R
v proportional feedback feedforward, setp01nt, 1ntegral

feedback control

R,

§R KR » K2) - (6.45)
;r,m'“, e Y
. -_ET ) _ f‘gr. ]
R . oy g - | E'r (2')‘_: ‘(6,-"?,6) -

T(R)J. S

" 118
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'.where k‘is the number of data'Vectors.
. T 33‘4 "'.
.up the rows.of‘Z for the case of proportional fee

“e

¢

setpoint integral feedback contrqlg represent the.. vectorsii‘f
oW . '

d(i), X.P and s(j) S0 that

;&» \
‘ X ,n' . -
. -
(6.47)
) . ‘. I :“ 4%
s’(j) ' .'7/f
L= . Ci /

The vectors w(j) whieh make. up the rows of E,-for'the case of oro—
portional,feedbaek,-feedforward,‘setpoint; and integral feedback con-

trol, are calculated as.

‘ L '\= : . o A
ECU O A AOR R L e ST L

(6.48)
i_:The values of x (j), Xy (j) d(j)V ZF and s(j) in Equations (6 47)
and (6 48) are specified as a sequence of uniformly distributed ran—:'?,

dom numbers.

'{,‘- - b, i‘ !.. - YIT v iv'J&&

In ﬁhe application of the result if a control l‘w which

‘ does not inc{ude all ‘four control modes discussed in the apove analysis

is" desired Fhen the terms in Equations (6 45), (6. 47) an (6,48)

' corresponding to the undesired control matrices are simpl: left out

fof'the anal sis.. For the example of proportional feedbaé 'control"

A

: only, Equations (6 45) (6 47) and (6 48) will appear as
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6.3.1 Modal Methods

. _ _FB
R
2(1) = 5 () (6.49)
v = 0 2 @)+ K x AN

- 6.3 REDUCTION OF AN EVAPORATOR.-MODEL

1.The"model redaction hethods-discussed ih_Sections 6.2.1

" and 6.2.2 have been-applied. to the reduction of the tenth order evap-

orator model described in Appendix A. These‘results’are.diacussed

.in this section. The various’reduced.order models calculated are

shown in Appendix F. Most of the reduced order models discussed in

this section are third\order_models in which the reduced order‘state

:Veotor X, = [w1, w2, C2]T. These are the “three processﬂvariables

R

which are of most interest since, as is'discusséd in Section 6.4,

they are the process variables which must be controlled.

; Thé modal methods applied to the reduction of the eQapor-
l\. e . ‘ » o - ' .. ~:,.\

atorémodelware those presented in Table 6.1.

Figure 6 2 compares the time domain response to a +ZOZ step

.-

l_change 1n feedflow using various third order open loop models and the »

"%'error ) Figure 6 2 also shows that the qiird order models calcu’ ted

btenth~order open loop model 1 It shows that the third order model

calculated using Davison 8 method has consideraﬁle steady ‘'state

error. (It should be pointed*out however, that the'fifth order f’“

w s

model calculated using Davison's method has negligible steady state -

s

b2

. . . el
h

‘using Marshall s metb v_and Fossard 9« net od are 1dentical lead theia'
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tenth order model SIlghtlylland result in zero steady state error.
‘The models calculated by Marshall s method and Fossard s method y1e1d
the same time domain: response since the input is constant - (+202 step
in feedflow, open loop) In order to have zero initial erroxr using
Fossard s method the. initial values of the elements of X - were set‘

~

using Equatlon (6 32) to o e
| WL(0)] [ 0.0014

g[ 0) = x, (0 - 5 A - w2(0) [= | 0.9924 . (6;50)
c2¢0)J L-0.097

Figure 6 3 compares the response of the thlrd order model
calculated using Fossard s method whenvER(O) = x @) and when (O)
is defined by Equation (6. 31) The response thh (0) # x; (0)
~ converges to the high order model response faster than the other
response. However, it has a large lhitlal error (at zero time)
in C2, which is undesirable. Also, for this example, the response

with X (0) =X (0) s satisfactory since the error is not large

anywhere along the response.

W Figure 6.4 demonstrates that the agreement. with the tenth

., order nndel becomes better as the order of the reduced order model

is increased as uould be expected The response of the . f1fth order

model with x§ = [Wl Cl, H1, HZ C2], agrees better with the response.

of the tenth order model than does that of the third order model.

Figure 6 5 demonstrates that the elgenvalues to be retained
“in the reduced order model must be carefully selected by. showing the

f'response of two fourth order models with' §R_= [w1 Hl WZ, ﬁZ] When

1227
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. N -7‘
the four eigenvalues retained in °R were those of ¢ which were closest

to one, poor agreement in the c2 response resulted. The modal matrix,

efor the tenth order model in Appendix A, shows that none of these fourv

-largest eigenvalues affect H1 (x(S)) significantly.: However the

,fifth largest eigenvalue does affect H1 significantly. Thus, when

E the fifth largest eigenvalue (0. 7354) replaces the fourth largest

eigenvalue (0 9212) much better results were obtained
5W . . . .

'6.3,2 Least Squares Method

with the modal approach of Marshall " The response of the third order

‘model obtained by the least squares approach agrees slightly better

o with that of' the high order model than does the response of. the third

'order model obtained by the modal analysis Table 6 2 shows that the

:third eigenvalue—of'¢ from the least squares model is larger than the
corresponding eigenvalue of 0 from the modal model This larger

-eigenvalue causes the slower response and the' better agreement.

6.4 REDUCED ORDER CONTROL OF A PILOT PLANT EVAPORATOR -

The reduced order control laws discussed in Section 6.2.3.

' ‘were applied to the pilot plant evaporator described in ‘Appendix A.

The objective was the lowest order control law which would still

: satisfactorily stabilize the system,' The reSult was a third order.
f.control law’ with vector xl, containing Wl WZ and C2. The product
v'concentration, C2 gmust be included in xl‘since regulation of C2 1is

the primary control objective. W1 andrw2 must be- included since these"

3,
- are integrating states (corresponding to eigenvalues of ¢ equal to
B :

......

Figure 6.6 shows the comparison of the least squares approach
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TABLE 6.2

_ EIGENVALUES OF ¢, FOR TWO THIRD ORDER MODELS

Eigenvalue Marshall's v "Leaéc Squares
Number Modal Analysis. " Analysis
T .o S ¥
2 B O
3 0.9600 0.9662



one) which uould tend to exceed physical operating 11mits if not con—'
trolled The remaining state variables are less critical” and their

values are not of direct concern.

LA

In theyﬁiscussion to‘follow,‘the control lavs will be
referred to hy’an abhreviated code for.clarity andvbrevity. The -
third order control laws which were designed by redUCing’the order
‘of~the tenth.order optimal control law, are referred’to~as'"3REDlO"
while those which were optimalvfor a third order model are referred
‘to as "3OPT" Following this designa;ion ‘is reference to the |
approach used in the inodel or the control law reduction as either h '
"(M)" if a modal analysis‘is‘used or "(LS)" if a 1east squares analy51s
is used. Thus, the third‘order control law reduced from a tenth

order controller using the' modal analysis is referred to as "3RED10(M)"

‘&

Th ‘ optimal" control laws mentioned above were calculated -

using dynamdc programming as described by Newell [28] The. weighting

matrices in the performance index used with dynamic programming are

' shown in Appendix A.. It should be pointed. out here that different

weighting matrices could have been used for the third order control-
laws which would have affetted the results. However, to be able to

: compare'the results it was felt that each state should be veighted, ‘

the samé- amount in all calculations. ' -

The control laws were applied.eipemimentally for the'con- f
‘trol of the pilot plant evaporator using the general scheme shown in'b
_Figure'6'7.‘ The pilot plant is interfaced‘to the IBM 1800 computer

through the DDC (direct digital control) monitor programs The

o S A
; -
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actual multivariable control programs,'written“b} Newell [29],:obtain='

the process neasurements fron the DDC‘loop record'table, calculate
a set of control values,.and then change the setpo1nts for these
control loops in the DDC loop record table. The state estination
step, which has been dlscussed in detail. by Haniltonﬂ[ézj’(is not
requiredvin,this appllcation since‘all theccontrol laqs used are -a

" function of measurable state variables only. The units conversion

steps are needed since the control laws require measurements as nor-

malized perturbation variables and calculate a control vector in th1s‘

same form. A more complete'description of the control programs is .

,'presented by Newell and Fisher [29] and of the appllcatlon of these

programs to the control of the evaporator by Newell [28]

o

For comparison with the multivarlable control schemes of
this: chapter, Figure 6.8 shows the response of the evaporator when
L upset by a +202 increase in feedflow and controlled by a mmltiloop,
proportional plus integral<control scheme. Each liquid‘hold up-is
controlled by the outlet.flow fron.thebparticular efrect,twhile the
product concentration is controlled.by the stean.v Thls'vas’shown‘
by Newell [28] to be ‘the best nultilbop'configuration;; The control-

' ler constants and sample timevuSed in this run are shown in Table 6.3

and are identical to the values used by Jacobson [24] for his 'Stand-

ard“lcase. The - sample time of QA seconds is’ the same as- . that used
for the multivariable controllers which will be discussed next.. The

scales in Figure 6.8 are the séhe as those in the figurea to follow
except that thewtotal time is different and the.scale of the 1evels

" is shifted &ertiéally by two inches.
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T - TABLE 6.3 }
" /

CONTROL LOOP SETTINGS FOR MULTILOOP RUNS /

|

|
Control . ' (

Integral Constant

‘Intérval - ‘ Propottionél
(sec.)

: ;qup : (sec.)_ . “Constant

BL. Wl . 64 <. 075 - o - 2048.
B2 W2 64 25 14096.

s ¢ 64 15 2728.
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Various multivariable control SCHemes' ave been applied-to

the control of the'evaporator. These‘are discuss&d in the following'
A\

\

aections. For the proportional feedback and the proportional plus
integral feedback, control sche-es, the results of using a fifth

order control law is also presented - This control law is optlmal

for the fifth order model which was derived by Newell [28]. This will
.provide a comparison between the work presented in this chapter and

the previous work by Newell [28]

6.4.1 Proportional Feedback Plus Feedforward Control
| All four third order proportional feedback plus feedforward
”(FB +‘FF) control laws which were applied to the evaporator, con-
trolled it oell with‘only‘slight differences.' The control matrices
'used are shown in Table 6.4, along with the setpoint control matrices.
to be considered later The response of the evaporator when con%
trolled by the FB + FF control law designed as
. a) 3RED10(M) is shown in Figure (6.9)
b 3RED1‘0 (LS) is shvown. in Figure (6.10)
c) 30PT(M) is shown in Figure (6.11)

d) 30PT(LS) is shown in Figure (6.12)._’

£ vb.. These reaponsee are 511 veryﬁbimilar; Houever, the con-
trollers designed as 3RED10(M) (Figure 6.9) and 30PT(LS) (Eigureb6.12)
provide'slightly steadier control than the other two, with less oscil-
latory responses;'pgfticularly in the holdups, Wl and w2, and in the
'controla, B1, BZ and St | | |

N

-The controller calculated as 3REDlO(LS) (Figure 6. 10) resultsi

~in a larger offset in the three controlled variables, W1, W2 and ca.
‘l.‘ﬁ . a
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With perfect feedforward control,_there should be no steady stage off—

set. This offset resulcs since the control law is calculated with a

‘least squares analyeis,.ﬁith no adjustment"for steady Séates”agree—

. = - ] . ‘ ,‘ - " ‘ .
ment between the system'controlled‘oppimally and suboptimally. . This
offset could be removed by designing §§B alone using least squares,

‘and then designing §§F_for zero offsets in the three controlled var-

iables, as was discussed by Newell et al. [30].

Three of the four §§F matrices' shown in Table 6.4,are very

'similar, the.only different one is-that designed as 3RED10(LS).

' However of these three similar §£F matrices, the correspondlng 5;3

'matrices are not. similar with some of the larger. elementsadlffer-

) ing by as much as a facter of thrée.

~

6. 4 2 Proportional Feedback Plus Setpoint Control
-The proportional feedback plus setpoint (FB + SP) concrol

laws were applxed to the evaporator for two setpoint changes in C2
. ! 4 ‘
,The first changed C2 from a normalized perturbated value of 0 tov

+0.1, while the,secondgreturned C2 to_O. The form,of ‘the controlﬁ

.
P .

law being used is

LT 5RA *Rox e (6«@)

AL

. Thus,fwhen 2? = 0, as it was for the seCOpd step (0 1 to 0)

" run which resulted was the same as a proportional feedback 3

' the system initially at a nog-aero state. "

The response of the’evaporator when controliedfby-the

controllers designed as



a) 3REDIO(M) -is shown in,‘Figure.(6.13)
b) 3RED10(LS) is shown in Figure (6 14) ‘ _ ]'
c) 30PT(H) is shown in Figure (6.15)

'd)v3OPT(LS)'isvshown in Figure (6.16)_

All four control systems obtained the desired +10% change in

”f7'C2L However the controller de51gned as 3REDlO(M) responded with

about half the overshoot (10%) compared with 16% - 19A for the response

‘produced by the other three control laws. Also, the response of the

process variables is less oscillatory when controlled by the control

'law designed ‘as 3RED10(M)

There is a larger difference between the control produced

»by the four results in the second part of the runs, when KR 'is con~

S .

- trolling the process with a, non-zero initial condition in C2. All

four controllers eventually’return the process to its expected steady

k4

:‘state; Once again, however, the controller designed as 3RED10(M),

(Figure 6. 13), controls the system in the smoothest manner without

i
X

excessive oscillatfon in any of the process varisb‘es The control

-

”i dalculated assﬁRED10(LS) produced a most undesirable response w1th

Sy

vy —~

very largg o?cillations. " This response is not surprising The-.

.’KR which is ‘being used alone- to provide proportional feedback control,
. o

:’gwas ﬁesigned along with a setpoint control matrix to provide for

changes in the setpoint vector. A better response would result if
FB

$§R had been designed using least squares and then KR was cilculated ’

to provide for setpoint changes. R DR : 7 . 'f ~

A

The responses for the non-zero initial c2 value of both con-

trollers designed using the third order models are very similar, as

141
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shown in Figures 6.15 and 6.16. Both allow the levels to depart by

a large amount from their initial (and desired) values. Both

responses are more oscillatory than that produced by the control '

~law designed as 3REDIO(M). . ) /

The'control matrices in;these FB;¥ SP runs'are those'shOVn
in’Table;6.A. The two §§P matrices, that were :ptimal for . the two:
reduced order\models; are'very similar. The other:two K:P matrices
.vare considerably different with some large elements differing by
. a factor of three. Each of these KR migggces are used with the same

as was used with the FF except for the controller desi ed as 4
gn :

3REDIO(LS) .

.6.4.3 Proportional Plus Integral'Feedback Control

Only three reduced order proportional plus integral (FB + I)
control laws were applied to the control of the pilot plant ‘and of
,these, only one resulted in satisfactory control. The FB + I control

matrices that were calculated are shown,in Table 6.5.

The only reduced order FB +1 control law which Successfully

controlled the evaporator was designed as- 3RED10(M) This run is shown

-0
“in Figure 6 17 The controller returned each of the controlled vari-"

'ables W1, WZ and C2 to their desired steady state ‘values.

The response'of the evpporator being'controlled»by the con-
I

\Utrol lau designed as 30PT(M) and 30PT(LS) is shown in Figures 6. 18

"and 6. 19, respectively. ‘For each of these runs, only the +202 change

in feedflow_was introduced since these runs.were tending to go un-

~



147

-osuodsai pajernuys

B

- - b
; I

9C6°T
Y8eL " 0-
S%910°0-

SE6°T
SSTE"0-9
199050°0-

TAES6°T
SBP9T’ 0-
- OTST0"0-

Y6 T
£887°0-
1 880Z0°0

X

'

. 9TZ8°0

628°0

1 6G29S°0

"6558°0
86€8°0| -

uﬂnmum:: ue

—

96T T
ﬁmma.o;

961°1
€686°0
9L19°0

L09°1|

LTT%°0
-

T

03 anp 103r10dead ayl

] 8y el
8%2°¢
08°€T-
ﬁ 18° 11
L8Y*Y
00°ZTI-
WL YT
LO°TT:

| vtroz-

[ 8s° 11
078
80%°S

b

- 03 payrdde jou sem wmmu STYL. x .

77°eT -

0wy 1-
gY6£0° 0-

9221
98¢ ‘' 1-
€061° 0~

BCIARA
162°1-

6221
9% 1~
LE60°0

ug

g4

-.0§0Z°0

—y

96%°¢
6Z%°9

, “_.OHm,mL

"61G°S

62%°9
mq.m;

656°¢ -
£LT E
mm.ﬂm

 9g9°g |

990°¢

.mmm.m;

TO¥LNOD

A<MUMHZH|mDA&IA<ZOuH&O&OMMﬂmom

c'9 m4w<9

i

(ST)1dog
. (W) 1d0€
*(ST) 0TaF¥E -

szowmm&wf

‘poyis udysag

SIOTYLVH TOYINOD -



. 148

B ; (0284/ (W) 0TAAAE /1 + 94/4%07 *a/dd) o
((W) 0TAAYE) TOYINOD NOVEAAAA TVHOAINI SNId TVNOLLY0dOYd IVINAWI¥AdXA  (T°9 AUNOIL
CSUTNIM NI WL | ‘ . Usummn N | |
ot e o3 R o ) oot s R IR 2 oo o
Bl
=
<
Z3 o
_M. K r!
m ot m
z2 2 .
¥4 z -
.v. . .A- + (5.
O
>
= .
] - I7 %
L E:
.
Z
+ - T .f . te
“ &
-

G2H “N1 Nl TATY

AN 3 NI NN



149

SIUTNIN N1 3Rl

LUT <3 (v} Cr7 . %) )
. W ) N

cat

400N RO

taa!

T T

NIWEY NI A0 WAL

<

NI ST NI 2005

(6784/ (W) 1d0E/T + H4/4x0z+ *a/dd)

.A (W) 1d0E) TOYINOD ADVEQaIA TY49EINI SN'1d jonon.mozm TYINIWIYAdXE

819 FUNO14

SUNIA NI AL _

20T forc BN “F) o oy vl
: 0 T * 0 r
. - i
| oo !
~—4

£AY

1

T b
4 E . ) f.ﬂ
: N
. N ”\ ' E
+ ) i
+— —e , —_—

TP

Gt NI NI

WY 3d NN



SRR

i
-

1 NT B

v

1

y -

Y.

‘ - CSUNI NL L

Rl o8 i o o
+ + —— : 4+

v.w - /
5]

4
~ [
q

r
w.1

— +~ + + +
-
.
.ﬁ
+
i
+

<
—+ + + +

v
A

"N

NIWED NI 29075

WY NI K75 Ay us

Qmmw\adiom: + ﬁENo? “0/dd)

:mqvhmoc Aompzoo Xovaadad Aéomth m:qm éonhmomomm ..E.Hzmzuxmmxm

SIONIN NI . 301N

619 YNOIL

oot oS ce o oo o
+ + -+ < —+

.. ! 1 +

L Lk

+

1

-~
w

© vy
P~ S

+ — +
u —+ +
A,\r
Bl ]
- s
,
B +
s -+ o
R #
- .
hE
. o
.

+

1

QT

&

<

Qt

NIAY) 0 NI NN



151

~ stable as shown by the oscillations in all the controlled and control

variables. . The céhhtrol matrices for these two approaches are ‘nearly

identical, as shown in Table 6.5.

B
The FB +' I control law designed as - 3RED10(LS) was not applled

to the pilot plant since its response was unstable in the 51mulat10n.
A comparison of thes_e matrices wlth the other matrljcesv in Table 6.5
shows the elements in the result desigled as 3RED10(LS) areiconsider- .
ably larger then the correspondlng elemnts in the other xuatr:ces.

'I'hese larger elements cause the osclllatory unstable reSponse._, A

comparison of the matrices designed as 3R§D10(LS) with the FB + I

B

"p;atri*ces O»f;:_"the ‘tenth order con;rol' law in Table A.5 is also inter-}
A o 1 | FB |

: 5R is almost the same as K'. The colums of KR are nearly

_the same as the correspondiug colums of K (colums 3, 7 and 8)

Thus, the approach 3RED10(LS) has..;;roduced a restlt which is essen-

v‘&?

Y nglally the same. as the tenth order control lav Hlth the undesired
P colunns of KFB set to zero. Cons1dering this, the unstable snnulated
...;:pw i I - . ,

'f respgnse is noe ’s’u\rprising.

8
v
I.

For purpose of conparison the control of the evaporator

4

_by a flfth order FB + 1 control law vhich was optimal for a fifth

‘ order model is shown 1n Figure 6.20. For this _control law, -

T

x = bw, c,u, w2, cz }_‘

o

the state estima'tion procedure used by Neuell [28] provided an esti—

In the application of this’ control law

}'-v:
@

mate of the meeasurable state variable, Cl The response shown in
Flgure 6.20 is sli,ghtly more’ oscillatory, but with smaller ‘maximum

' _deviations in. C2 and Hl than the responses shovn in Figure 6. l7

' . x
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: }

. (control law designed as 3RED10(M)) Tl'{us, the control prov1ded by

the: third order,control law is not mu

J

this . fifth order controller The fi th order FB + I control matrices

" in Table 6 6 ‘ 4 Lo

used for this comparison are sh
- o

6.4.4 Proportlonal Feedbapk Control ' o o .

~ To complete the comparison of the cqptrol laws obtainedJuV’
a modal analysis, ‘the proportional feedback (FB) controllers were
applied as calculated by 3RED10 (M) and'BOPT(M) These are. shown in
Figures 6.21 and 6. 22, respectively. The control matrices used/ﬁere/“
are the 5; .shown in Table 6.4. The response shoun in Figure 6.21
results “in the expected offsets after the first changehin feed
flow rate. These offsets were eliminated, as expggted after the_
feed flow was returned to its original value. All the controlled

and.control variables react very snoothly, without oscillations.:

,The response shown in Figure 6.22 13 ‘more osc1llatory than .that in

. Figure 6. 21 However, after the first step in feed flow there is a-

smaller ~offset than that shown in Figure 6 21. This is ﬁecause thlS'

/proportionalpcontroller (30PT(M)) has generally higher gains’and~

os 11latory. -/

- so has overcorrected causing the oscillatory response and the

- smaller offset. ‘ T ‘g,> . . o -

5

The feedback controller designed as’ 3RED10(M) was also used

s

. to recover the two oscillatory FB + I control runs shown in Figures

6. 18 ‘and 6. 19 These recovery runs are. shown in Figures 6.23 and .

‘,~‘ fey . ,

6{?4; In each case, after the oscillatofy FB + I run was stopped and

. this FB controller started, the evaporator responses settled out

'immediately. ThiS:demonstrates the use of.thevﬁkEDIO(M) FB controller
A ' ° ¢ i ’ . ’

~. . o N

153



g
TABLE: 6.6

CONTROL MATRICES ' FOR FIFTH ORDER

PROPORTIONAL PiUS INTEGRAL FEEDBACK CONTROL

S,
i

L) _ v S - ,n'
B . , L o
_ CL T o P

Fg |8-209 © -1.239 -3.640 1 0.1391 ©  £15.%%
K" = l4.542 " 0.3714 0.5527 ~1.2846  / 9.070
o 4.238 1.166 -0-.05915 12.26 . ' 14.22

o G

;o |re277 0.02747 -1.432
K° = 10.7931 . -0.2981 0.8948
- 0.6475 - 1.936 1.306 o
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in controlling a process at an 1nit1a1 non—zero state., The response‘

s

of the evaporator to the —202 feedflow change in Figures 6 23 and

6.24 is similar to that for the -20% feedflow change in Figure 6. 21.‘,,"

:\.. i : “’,‘bg ',.j"," . ,""." % [ “JJ T
The response of the evaporator controlled with the fifth
9 2 ‘Ni
5 : J” G

order controller as SOPT is shown in Figure 6. 25.v It shous ;maller

R

max1mum dev1ations than the responses controlled by the third order (f

: controller with smooth controller action ianl,-BZVand S. 'Thus, the

_ 4 . o o ‘ A N o
third order FB control law provides only slightly“poorer control. than

R - S C o ' R
Ve ®ifth order controller. The fifth order FB matrix used. for this

o

ucgmparison is shown -in Table'6,7{

6. 4 5 . Summary of Experimental Results

The design approach which produced the most consistent

,x S

stable, smooth acting reduced order controllers of all the types con-—

s

sidered was that which obtained the third order control law by reduc—_

. ing the order of‘the tenth order controller using the modal analysis,
(3RED10(M)) This is especially ev1dent for the case of proportional
plus integral feedback control*where e is the only reduced otder |
controller to produce a stable experimental response. This design
approach also produced control laws which resulted in- nearly as good

: control as did the fifth order contrqg laws designed from a fifth
order model and applied to the evaporator by Newell [28] ‘

Both the third order models which were used to calculate _

the control laws as 30PT, were very similar; This accounts for‘the

similarity of the resulting reduced order controllers and of the

oy (”‘

resulting controlled responses. The stmmlated comparison of pro-

ﬂfi

159
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CONTROL MATRIX.FOR FIFTH ORDER

" PROPORTIONAL FEEDBACK CONTROL .
A N /'. . . D -

o

ps | [6-598 . -1229 | V32350 -0.08719  -13.14
= [3.825  0.388 . 0.6885 = -1.378 9.708
~[3.058 © . 1.056  : : 0.1784 : T{9.750 11.56

AR
!
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The approach taken in reducing the high order control laws

with a least squares'analysis was unsatisfactory as is shown by the
results‘using thiS»method.. Also, a different 5;3 must be used in each'
, of the four types of control considered. This is undesirable. If
a.process were being controlled hy‘a feedback»feedfotward scheme’and

a setpoint‘change must be entered the entire control law must be
.changed, the new setpoint entered and~the feedback feedforward control
law put back after the new setpoint has been reached This control :
law swapping would not be necessary if the same- KR could be used for
all control types. Thus an alternate design approach would be to
bdesign KR using least squares and to design the other matrites sep=
-arately. The matrix KR can be designed to compensate for measurable
disturbances as was discussed by Newell et al [30} KR to' provide

~for setpoint control, and KR to eliminate offsets caused by unmeas -~

\.uiable disturbances.

s

The similarity between the simulated and experimental closed-
loop reSponses is shown in Figure 6 26, which reproduces the experi—
v mental run of Figure 6. l7 overplotted by the simulated response for a
single. +20% step change in feedflow. The‘one-noticeable difference'p
is the time delay in the experimental results that is not adequatelp

described by the process model.
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6.5 CONCLUSIONS

A unifying treatment for the methods of designing reduced
order control laﬁs to yield incomplete state feedback-: controllers is

presented. A modal analysis, used- to eliminate selected"state vari-

ables from a high order concrol law produced a reduced order control

law which controlled the pilot plant evaporator better than the other

methods tried. This reduced order controller also compared favorably

with the control using a fifth order control law,

The topic of model reduction is dlscussed Most of the
modal methods which have appeared in the 1iterature can be shown to
- be one of two basic results Or one of two revisions to one of these

basic results.

B
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CHAPTER SEVEN

RECOMMENDATIONS AND CONCLUSIONS

'

7.1 RECOMMENDED FUTURE WORK

As a result of this study of model reduction techniques and
different approaches to the design of»reduced order control lavg,

several areas for future work were identified.

7;1.1',GEMSCOPE
:Fer the simulations in this,thesis, GEHSCO?E was found to be
a convenient péckage of programs. All tne control-iau deeigns ‘and
simulated runs were'Calculated using GEHSCOPE., Hdwever there are
many design alds and techniques that have been developed‘that‘are
_mot included as part bf GEH$COPE._v80ne.uf these are‘discussedbin

'Chepter~qu and. include: ‘ . _ B

. . t
1. A general routine to calculate a linear state space model from

a nonlinear model by a numerical linearization procedure
2. Provision for studying'noisy processes
“31'Prov151on for de51gning mnltivariable control 1aws by methods

other than discrete dynamic programmlng -

_To make GEHSCOPE useful in a. 91der range of applications, 1t must

be expanded to. 1nc1ude these 31mu1ation and design techniques.t

7.1.2 Least Sguares Hodel Reduction Using Random Data

| i The approach to model reduction using random data with least
-'squares resulted in acceptable reduced -order continuous- time‘and dis—
ctrete-~ time models of . the evaporator.‘ Howeyer, ‘some difficulty was.

R
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<

experienced in the reduct1on of the twentieth order state space model
-of the department s dlst111at10n column. A summary of the work done
in this area is descrlbed by the author [14] A worthvh11e future pro-

ject would be to determine. the source of the’ trouble described in this:

, :

reference L
e
s

7.1.3 Least Squarestontrol Law Reduction Using Random Data

ares with“random data to calculate a.

reduced order control : high order control law gave poor

results.  Suggested. *s area is to design the réduced order

feedback: control matri®-using least squares plus random data, and
then design the feedforward, integral and setpoint matrices to account
for measurable disturbances, unmeasurable disturbances ahd’setpoint< @

chaﬁgesﬂ This approach for the design of feadforward control, given '.f

o .

a feedback matrix, is considered by Newell et al [12]

‘7ﬁ1.4 d"Implied ContrOl"ﬁ

| An important area of control theory 15 to control a parlable .
rwhich cannot be, measured on- line, and whlch requlres a lengthy labor
atory analysis One approach to solv1ng this problem could be the ; "M'
"implied control"‘technique outllned in Chapter Five. Perhaps;'bich
‘a more detailed examination of the systems controllability, obeerva— :

bility and structural characteristics a fea31b1e "implied control

L] .
- e - ’ .}

scheme designed by the method presented in- Chapter Flve ‘can be

w2

devised. _ o ‘ A .o
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s f
' “f-d
7 1.5 Controller De51gn Using a Model with Input Derivation Terms
7 ‘
- Oné of the forms of the reduced order model calculated using .

" a modal analysis contains  an input derivative in its state equation
as -

o au U
. L =A' +Bu+
. ST =— = -

EA‘:: \ ’ (7'1)

y

nem

" Marshall .and Nlcnolson (10} preéent an interesting approach «to obtain
" i i . syt . N ' .

. g; = . . . N . i L
. a simple:control law from this model._:ﬂowever, since th1s control law

' A . ! . . . . . /_‘ L .
is Calculated'from a continuous-time.model it must be applled as a

contlnuous (analog) controller Thus, it is not useful in contr0111ng

t
-

the piocess u51ng a dlgltal computer, unless the sampllng interval is <

© quite smalla

b iKY

‘. By ﬂﬁ%}nlng a new variable, “x, . Equation (7.1) can be rewritten

) . K ‘\ '\ T . = . . '\“« : . v
RS . o > _

’ x=Ax+Bu (7.2)

- x=x+Eu N ¢ 5 )

‘._/ Vo ) s o
' and these .can befWritten_in the 4}5crete-tlme form of
B :4 g _ e 1 \ . o , o
e x€3.+ 1‘)!{; ¢ x(3) + 4 uld) R ¢S B
x() = x(DAEuG) T asy

s

- An interesting project*would be to extend-the work of Marshall.
.-and’ Nlcholson [10] to gbtain a discrete ~time control law from Equa--
tions (7 4) -and (7.35), which would include the effect of E u(J) term

vln Equation (7;5)1 Lo Q_‘ - R o 4‘ -
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Z.l.b ‘OQutput Feedback
‘Most. of the approaches to outpyt feedback control {1 - 9,.13]

arée for continuous-time models, whose Yfesulting congrol .laws are also

/

continuous-time. ‘An extension of some of these approaches to design
'discrete-time‘controllers.that could be abplied t@ the controluof a
" process using:a digital computer would be usefufr? A direct compari--
son of the approaches used in thlS the51s wlth’these other output

<

feedback approaches could then be made

3

7.1.7 Choice-of Zi in Reduced brder Control Law

In the derivation of the reduced order control law 1t was

iuassumed that xl_could*satlsfactorily stabilize the system. As,was d t
pointed out in Chapter Fiuef this 13 a reasonable assumptlon for the*
‘evaporator since-ﬁ1 had been used in prevlous multi- loop control

j_.studies flljl A better theoretical.base.for choosing x, would‘be

14

»useful.

’

“

.2 CONCLUSIONS
. . 2 .
o ' The GEneral MultLpurpose Slmulatlon and COntrol Packag_A'

(GEHSCOPE) whlch was assembled for use in 51mu1at10n aud concrol sys-:

tem design studxes .proved to be a convenrent package of programs

All the 51mulations-and controlilaws used in thlS thesis were..calculated
‘ u51ng CEMSCOPE

The“general problem of obtaining a.reduced order drscrete-time
' . ~.

: model from a hlgh order continuous time model was con51dered in deta11

[

The required dxscrete t1me model can be calculated by two alternate
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approaches. These approaches were shown to be equivalent for seve -al

v

modal approaches to model reduction, but were notiequivalent'when a

least squares model -reduction approach was used.

The approach to model reduction using least squares with
random data was more satisfactory than the more conventional trajectory
. fitting approach.

.

In general, selection of the "best' approach to model reduction

depends upon the end use of the resulting reduced order model.” Both

the'least squares uith random data.aporoach'and the modal aoproach S
resulted.infreduced order models which satisfactorily approxinated

the response of the high;order modelLI'Thus, they-were-satisfacuory

in open*looobcompariSOns Furthermore proportional feedback oro—‘

port1onal feedback plus feedforward and proportional feedback plu5'
- A R 2 C‘ R .
setpoxnt control laws designed from these reduced order models gave
. N . Yoh i
adequate control of the pllot plant evaporator However ‘not all of

-

the reduCed order models were good enough for usé. in the design of

proportronal pluSgintegral\feedback.controllers; L i B e
»The‘reduced -order control, law-whlch controlfed the hLlot e

~ gt

plant evaporator the best was that’ designed by the elimination of

&

selected states from the,hlgh order control law. The controllers

calculated by thls‘approach were as good as, orlbettervthan*the-

v

. control laws calculated by other approaches when applied to the: con-

trol of the pilot plant‘evaporator. ’Furthermore, this control:law
- : e
reductxon approach was straightforward to use, requlring only a h1gh

‘order : control law and a modal dnalysis of the system l ST «

]
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NOMENCLATURE

Alehabetic
A Continuous—time state matrix (n x n)
B Continuous—-time input (eontrols) matrix (n‘x m)
A ‘ L
B = (B, D) (nx (m+.q))
C State to output matrix (p x n)
D ontinuous—time input'(disturbanéE) matrix (n. x q)
: ?‘\ - B 5 g
a Pance _vector (q x l)
o l .!_,
ER Inptt~ to Output matrix ([ X m)
"E* ~  Input plus delayed uector to‘output matrix .
F ' State feedback matrix used in decoupllng (m,x n)
, B ) ‘
,'Ql Continuous time canonical input (controls) matrix
“ (o .x m) L
o /w“. o
A . »rﬁfJ e NN
G = (G;‘H) (h“X'(m +q))
Continuous time canonical input (disturbance) matrlx-
(n x q) . ; ,
1 Identity‘matrik, f,f ,
. Continuous time canonical SCate matrix (n X. n) -
J Quadratrc performance criterion - o '
. /
. . i
Time»counter such that z(j)-denotes_ift),at‘t:= 3T
;Control matrixT

'Number-Qf data vectors.in»least squares solution

Dimension of the reduced order state vector
. rygw»

Matrix to transform system into its candnical
form (n. x n) : - :

Dimension of the control vector

L 170

Equation
where
first

used
{1.1)
(i.l)
(2.1)
(1.2)
(1.1)
(1.1)

(3.34)

.(2.2).

(2?6)

©(5.22)

“(3.38)

r
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Nomenclature (Continued)

m

[+

o

o

o

w

TR

Integer

‘Matrix used in decoupling

Discrete time interval : e

Input plus delayed vector

'Oﬁtput vector (p x 1)

i

i

!

Total number of time intervals in the quadratlc

-performance criterion o ‘
. . ! - ., /
Dimension of the state vector a i /\

. i :

. : . ‘. I (‘/

Dimension of the output vector S "

State welghtlng matrix used 1n the quadraélc per—.
formance- crlterlon - _ o

. . . ' i
Dimension of,the dlsturbanceﬁvector

Contrel weighting matrlx used in the quadratlc

performance cr1ter10n / ,
/ ‘

Final state Qe;ghting nmatrix used 4n the quadratic
performance criterion . / )

Integral contrlbutlon to the control law

Laplace transform varlable R S e

3

- Time o e L .

N k3

*Control vector (m x l)

:, ((m + q) x 1) e

Lo

»a

L P Al : M

Reference vector used ia.decoup§gng ' ,

Trahsfer matrix used in decoupling'

‘Hatrlx used 1n the 1east squares solutlon

o4
..)

Row of w used in the least squares solution

State vector (n x 1)

o . 2 ook

S 'd'*. .::"ﬁ'v..

(2.

11)

11)

11)

.11)_'
.14)

.7)

&0
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Nomenclature (Continued) »
- o . / . . .
VA - Matrix used in the least gquares solutions (4.6)
. , - ‘ . . v T o
’ ,Canonical state vectorv(n X l) (3.4) L
. Augmentpd vector used 1n least sauares control law
*eeduction -l L i : . (6.46)
o B / S
L4 ,‘:“
.",@¥ N / ‘
Discrgte—time canonng“ -matrix (o x n) (3.6)
Ilme weighting factorﬂﬁ“" e quadrat1c performance '
crlterlon : % e oo(2.11)
é Discrete;time fnput (cnntrols)'matrix (n x m)’ (1.3) ' 7
A . ! A ‘ ‘ -
a = (a, 9) (ra x (m +. q)) \ (2.3)
5 T R ' Kot N " , '
R g' ‘ .Dlscrete—tlmegéﬂnonlcal 1nput (controls) matrlx
(n X m) ' (5.9)
9 = (s, M ‘.(Tl X (m + q)) , (3.6). -
f . Convergemce crlterloh 1n ledst squares model reduc—
v tidn : : ‘ : (4.31)
b Q// Dlscrete time canonlcal 1nput (disturbance) natrlx .
(n x q) . : (5.9) ,
0. Discrete*time‘input (disturbance) matrix (n x q) (1.3)
£ Vector used in Dav1bon s Hodal reductlon . - (3 ’0)
P Dlscrett “time state 'matﬂix:(n »-n) 4 (l 3) )
b . I /, A . t " .
: ? |
Subscripts N n ’
1,2,3,4  Refer to partitfions of a matrix (3.2) E
-1 Partition_cortesponding~to‘the%integrating states (4.14)
o . PSRN . . ) . o
yi.K Elements ofla vector“or‘matrix
N *Partltion corpesponding to the non- integratlng . N
states 2 (4.14)
R ‘,Refers to reduced order. (3.3) )
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A .
- Nomenclature (Continued)

Superscripts

FB . . PfOportional feedback‘ . (2.8)

FF. | FeedfOFGaré '1‘ | . o (2.8)

I o Integrallfeedback o _ i ‘(2.8) .
S setpoint S 2.8)

T | ' franspose of a vector or matrix ) (2.11)

4 ‘ 4 } o

u -Intermediate matrix [‘ , , ~(5.12)

Nomenclature for Computer Graphs

Each cbmputer graph,isfidentified by a stting of characters.
These are in the general‘form of
(Model or Pilot. Plant/Run Cond1tlons/Control Type/

Source of Control Law/Run Vumber)

The codeSﬂuSed are: -
- Model or Pilot Plant:
PP . Pllot Plant

S

a ,‘nL(m) _W Llnear model (L) of order n ca&%ulateﬂ 1n run number m

-, . . .
« . > =
N - - . -

Run anditionsg

D =" Disturbancé"
. d - o e . : . -?
‘'SP~ -Set point ' ’ . S ) ;
l. v . N } . . \). .
xx(0) Initial'condition of variable xx
.+{ - A Positive or negative change (no sign means both) v S
. L. ) . i«-' '
x4 Step s1ze as a percentage of steady state

i«;xx"f—;,; zProcess variable dlsturbed

‘a.,
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'NOmenglatuféf(Cbnﬁihuéd) : ' ‘ a

P

;Typé:of Control :
6L: ; ‘. :Qpen loop-(no Eontrol)

'.pﬁiv‘,;t froﬁortiona} feédback controi

. fB + 1 vf;éroﬁortiohai}plus integral feedback coﬁtroi

- FB'+ FF " :Proportional feedback plus feedforward control

‘FBﬁffSP?j,PEoportional feedback plus setpoint control

Sourcé of Control Law: C

nOPT - . Optimal control law for an'nth order model

. L B ) o
3RED10 Third order COHtFOfﬁkawg%éduced from the tenth order
‘ control law . S emenn .
ppc Multiloop control - RN
. \ ) |

‘Run. Number: -

o - The simulated or experimental run'in which. the response
’ . » ‘ v ’ (. ) B ) o' K :
was calculated. R ' . I RS
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APPENDIX A

PILOT PLANT EVAPORATOR AND ITS MODELS

Al THE EVAPORATOR

The pilot plant evaporator used in thls work is a double

effect unit with the two effects operating in sequence ~It was built

7
w -

: by Andre [1]. The major pleces of process equipment are shown in the

schematic diagram in Figure A.l. The cod{rol loops shown in Figure A, l

represent ‘the multiloop control scheme. applied to the evaporator in

.‘;

previous studies (1, 6 10 11 13]

The fir&t effect has natural circulation through its 18 ﬁnch

long, 3/6 *nch 0. D. tubes. It is heated by process steam. The ‘second

- L .4

effect is a long tube vertical unit which was run in its forced c1r-
'culation ‘mode. It has three, six foot long, one inch 0 D. tubes. It

is operated at a lower pressure than the first effect and is heated by

.

~_the vapour produced in the first effect.

.

o

" The evaporator .S fully instrumented and can be controlled
by either ﬂoxboro electrcwic controllers or under Ddrect Digltal

:Control (DDC) from an IBM 1800 Data Acquisitlon and Control Com-
S

puter ooerating under MPX. Multiloop DDC can be applied directly

using the computer system control package and advanced control schemes

~

by user provided programs and a set of system programs to interface

" between Ehe user and system control programs.'

IR
0 ~

0195
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A.2' THE EVAPORATOR MODEL o T

The’évaporétor model was first described_bylhndre [1].. ﬁewe;l
: [11]'§résent§ a complete outiiné of a‘tenth‘order model in iﬁ; ﬁdnlinear,
form. The model uséd in.;his wo:k'is a linearized“form of.Newell's non-—
linear.model’ ¢a%c%iaced'us1ng.a huﬁé;ica;_linearizépj§n broce&ugg,;,if ¢ -
»Tﬁe-iinearizea ﬁodel is iﬁ.the'confinﬁqus—gimé fo?m of_

‘x=Ax+Bu+Dd LA
y=Cx | . T (AN2)

~

e R
% Or in the discrete-time form of Equation (A4.2) and
: . - ' - i
@ . - o : - : o
x(3.+1) =¢x(3) +3 u@§) +9d@ ' (A.3)
The elements of,the'vectorsAi,_g,.g, z_aré defined'as‘normaliied,"‘
' "perturbaﬁiéh'variables as -
Wl- Wl & SR
x, = ——-3% . '
37 Wl

.+ where WlsgAis'thg normal steady state value of Wl. The vectofslgi

, E,.g, andlxzére definéd as' foilowé : T
S _ . Ly . ot "Normal Steady
' State Vector, x: . .. ' ._ .. .-, - State Value

TS  Steam Témperature'(xl) D e - 244°F
“TW1 _First gffect:tube;vali tehperafufe (iz) : o 227°F

Wl - First effect holdup xp) . . 45.5 1b.

Cl 5Firs: effect'concentraxioh (x&) : 4.59% glycol
HI'  First effecc.gn:héipy;(xs).‘ o . 189.2 BIU/Ib
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Normal Steady

State Vector, x: (continued) ' ' “ __State Value
.TW2 Second effect tube wa11 tempenqture (x6).:v : © 181°F
W2  Second effect holdup. (x,) . 41.5 1b.
C2  Second effect concentratio= (xg) . - iO.llZ_egcol
H2  Second effect .enthalpy (x) T 134.1 BTU/1b -
W3 Conhense:,tube‘well‘temperature (xlo) - - 108°F
' . Control Vector, u: . " ”'_ . ."f ~ '
#—— ‘ & T
_ S  Steam flow (u;) B S 2. 1b/min
Bl: First effect bottoms flow;(uz)‘ o  3.485 1b/min f
B2' - Second effect bqttoms_flow (u3) . 1.581 lb[ﬁin
, Dieturbanee.Veetbt,'d: - -
L L : -
'F Feed flow (4) S - 7. 5. 1b/min
« CF Feed‘cohcentratibn (dz)'- o = -3.2% glycol
HF Feed enthalpy (d3) S - : 156.9, BTU/1b

v

;Output Vector, y:

¥y o= i, w2, )T
: TThe”cdefficieht matfices of'the'%ontinueus;tiﬁe.ieéel are
shown in Table A. l and those of the discrete—time model with a 64 second

time base, are, shown in Table A 2 Table A 3 shows the system modal

'-ematrix, M, a]ong with the corresponding eigenvalues of both A-and ¢

The general open—loop model contains two integrating states

_(with eigenvalues of'g of unity) . A closed loop model is also used !f'
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| ~-'l‘able A5,

o

of Equations (A.1) and (A.2) with a state vector of =

S

. 202

Bl

* which changes the unity eigenvalues of Qlto lie between zero and one.

'This is calculated, withla’discrete—time;form of the evaporator model

which has‘an-eight-second time base, and the relations n—f/

«. .. B1=0.9203 Wl

(ALG)

o - B2 =12.768 w2
to'ggt the model shown in Table Ab, Thisxﬁodél has an eight secondﬁl

time base.

The’ tenth order optimal control matrices for the model inA
Tables A 1 aqd A 2 have been calculated using dynamic programming as -

L
is outlined by Newell [11] and using the following weighting matrices.

"For proportional feedback feedforward and. setpoint’ control

kD.
"

diag [0, 0, 10, 0,70, 0, 10, 100, 0, 0] (A.5)

'R = diag [0.05, 0.05, 0.05] . (a.6)
| o S o o
and for proportional plus integral'feedback control, R lsf;he.Same as"
Equation (A.6) whlle'g'is given by
q = diag [0, 0, 10, 0, 0,-0, 10, 100, 0, 0, 0.5, o.s, 1.0] . (A7)
2

AN

'The controller mat cea for this tenth order’ model are given in

&

. A fifth order modellisvalso used. lt is 1in the general form -

o x =-[wl, C1, HL, w2,7c2]7
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and coefficient matrices as shown in Table A.6. This model is the basic

[

«

- ‘fifth order model used by'Newell_[ll]. Howevgr, the coefficient mat-~

.

- rices ate‘aifferent'since it was linearized about a different steady o

state. -
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- - APPENDIX B
CALCULATION OF A REDUCED ORDER DISCRETE-TIME

e | MODEL FROM A HIGH ORDER CONTINUOUS-TIME

MODEL BY TWO'APPROACHES - . R

A reduced order discrete time model can be calculated ‘from

a high order continuous ~time model by two approeches, as. is discuesed
A.1n Chapters Three and Four and shown in Figures 3. 1 and 4. 3 Using
the_nodal analysis the‘same result-is ca ulated while uslng the
least squaresAanalysis different results .are obtalned. These;conclu—c-
.rsiens are shown>in this Appendix. In this Appendix the elemente in
the contrel -and the disturbance vectors will both be ineluded;in :

: i ,

one vectgr,_called'g.‘ g . : A e

\

‘B)1 EQUIVALENCE OF RESULTS BY MARSHALL'S ANALYSTS

r
B

'Bil.1 ¢ Derived from Path I (gk("x))

By definition," . ¢ @ = eé

By Equation (3,42) A = M, i M ")

Thué, using thejtheoremiinﬂAppendix D.1

T . ' J T, -1 - - L]
@y Ty - e
'B'}'Z gk Derived from ?athwii ﬂgh(II))
By path II Equation (3. 13) T
e () = b, - .d*' v, Uy,
=R ) 7. =], -2" =4 . =3

9

Using ¢, and ¢, fron’Appendix\D:3

207
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- . — - ;]\T\ - RS . .
SKOD =M =10 -4, 8, ¥y
. . \»" . ! ;’
NN o . PR
. - Using Equation (D.19}--... . - N ' ._
; . gh(II) =M eal El' T (B.?) |
Thus QR by Mhrshall s analysis is the same using the two '
’ approaches of Figure 3 1 ‘ F "
B.1.3 3QR(Deriyed from Path I_(QR(I)) -

. T (T—r) ." !
By deflnition 49{'1) - s AR BR dr’

Using Equa;ipns (3.42) and (3.43) and'the theorem in Appen-

(B.3)
..B.l.é 4QR.Der1yed f:qm Path,;l.Q&R(II))-_

.~

By Path.II, ﬁdﬁstion (3;14)'giyes

| AR(II) = A + ¢2 V ,,(I - -2) §2

8

Using the telations for A and ¢ from Appendices D.6 and D. 3
and.a2 and 6 from Appendix D.7,
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VB . ,
This can be reérrange'd-using rte‘laﬁinons in Appendix D.4 to get
. gy 3 aen
o r B (T e YL B te” BB L
AR-(II) = M., M) ‘ J. . (T-1) J (T-1) , dr -
= R :1» -2' i 0 "e.2 - V' B + - =2 . . v B : .
| B | , =3-=1 " € =% =27
I T | B
. =} -1 } : : .
¢l LT\ (T 3,00 -
ot T S e Eh T B &
T .’gi(T-—'r). . ‘T";I‘I(T—r) . e
- ’-’15 e LTSRS W DhI*r*hL*h
Y T ~Jo. _ . e
- o 4
%’:;"“f ‘ &
Covhere i mhe Dl (l ) So e Eyh By

. ./.
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) [ LTf  LI\T\ (@ Lan
and'L, = 1, (5“3 I-e™ 1o (‘=’3§1+¥4§2)-d’

Expressions for V; and V in Equations (D. 16) and (D 17) give

T g (T—t) .1 o e e
'—(H)._-_s M, T (- M, V) B dr T
é? 34 os . .= '%ﬂfa xtl. . .
(T @0 1 IS
+ M) So G AR S R T T
. ) . .
=Ly-M SO e 3—.‘1 M, (3372; +V, By dr +L, + L,
, T 5 (T-D '
where‘;3 =_§1Iso e gglf B1 dr s -

:Also,'USing the expreééioh for'ngin Equation (D.lB)ngives

QR‘('II.)-= ;3 .4—1__;,4 +L ‘+_' L. +L

Lt tL
< oL@ o o
where L, = _so e LR L W3ty -‘?z) |
- (T 5D -1 -1 o o
cand Ly = So e ) bl d GERYLB @ ’

Lifd

‘ R IUREE S Ao R B R R IR PO
3-+’=‘1.“'.s e o B R-&HY I (Vs 31‘“’4-2) o

= QR(}): by‘Equatioﬂi(B{B)



- 211

Usy

5 =1

Thus '_QR(Ii) = A (D) .+ Lo + L +

”

‘Performing the integration on terms Li’and L, using the '

<}

" result of Appendix D. 9 and on term L5 using the result of Appendix D 10

glves

I
[
L
<3
m
<
<
|

r&l"‘
H
3
(<4
N
HH y
T4
0
ey
N
L)
=t
!
o
| © e
511'
Ny,
—
] v
. L Lo T
. '.v
n .
' U
N'-i
v
[
N
[
~~
<
)_a
+
<
U'J
V
N

" Therefore;
L | | o : 3.7
= S | 3T S NS R |
f cam ] v vl ALY ey, Y
L RUD =g ) M Y, ¥ My e S224 0 =17 22
) o 7J'T'; ol ' o
oM — e Yo M 2 -1
Tl (%- ef') et L2 WEh Y
e B
.’AR(II) = QR(I) - ("1 LI o Wk v N B

and using the'relatibn'for !2 in Equation‘(b.l7)
R ol QRKII) - QR(I)
Thus, the two approaches using Marshall s analysis give

kidentical reduced ~der discreteftime.modelsz

R . : . iz
T
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B:2 EQUIVALENCE OF RESULTS BY "DAVISON‘S ANALYSIS °

. B.2.1 ¢ Detived from Path I (¢ (I))

Davison s reSult for AR using Equation (3 44) is

A= 4 TA MM '

The expressions for A; and A, in Appéndix D.2 give .

'—l

§R=>v=l-£1 [vl+g =3=1 ] MZ'J [v 7R N ]

- Equations (D.5) and (Dﬂjiuallow éR to be written'as"_ . _ . (\N’//

-

~e . . ‘. i

Then, by. the definition of ¢ aqd the theorem of Appendix D.1,
. QRT “-"‘\lng‘,-l ‘ . ', . .>‘ - .
R

B.2.2 g ‘Derived’ from Path 11 (QR(II))

¢ from- path II, (Equation (3. 22)) is’

B Hl :
4’ (11) "21"'92 ,.3 .1 ‘

Using the. expressions for and in Appendix D. 3, this -
l 2

T can be written 88
;‘; BOD=he GrLhn ) tme @ “HE

. "Making use of Equations D.5 and’D,7,‘this is.written.es

TR & S

S = M e'-l_'c o



R . A
which is identical to Equatiom (B.5)

B.2.3 QR‘Defived froa Path'(f) GQRkI)j y

A (I) by definicion is .

T (T-r) T o
4y [¢9) S _ AR . Bgdr .
| 0 - TR S

" Using Equatlons (8;4);J(3.45) and'thé'theorem of Appendix D.1

’ T J (T-71) } S C
QR(I) = M S _e - (gl 1_3 + v ) : ' (B.6) .

B.2.4 A Derived from Path (II) Q.any S
SO — — BT P N
Lol '_-Eqﬁation'(3.25) gives - ;e ' . <i{
Using the definition of A in Appendix (D. 6)

. A T "-;I(T“') ‘_
QR(II)_f gl (!l, ZZ)_go Me - M~ Bd4dr o - '.. R

n

v ‘ » . E T \.I‘(.T-‘T)q —l, .
*dp B3 V1 M+ Y =4)'S e

=y

= yl (21 M
«tha;iéné-(D.S)'éng;(D.6) givé
- V_QR.(I‘I‘), - _-’-‘1_ (}.:;Q} SO' e M Bar

_so t:l?_\&t‘ﬂ . ' veR(Iml (v Bl + v B ) dr -

which is identical to Equation (B.6). e
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Thus, Dav1$on s amalysis ptoduces identical reduced order
,-disprete—tlme mdels by the two approaches.
B.3 'EQUIVALE‘NCE OF RESULTS BY FOSSARD'S ANALYSIS
Fossard s analysis produces the Same AR B g and AR as
. does Dav1son s analy31s. The equlvalence of this_ ¢ and QR by the .
- e
¢

two’ approaches in Figure 3 1 was shovn in Appehdlx B.2. The equivaléncév

of the ER matrix by the two - approaches unst now be shown
- B.3.1 Ep Deriied from‘Pach I (Ek(I)) . ' A S
~ From Equation- (3.48)

.__E_R(I)-= .}8(2".22".1 gz- L . A (Bf7) | -

B.3.2 ER Derived from‘Path II (ER(II)) . L e f_’

%I-‘rom Equation (3 35) using Equations (D. 14) and (D 15) and

R

Appendlx D. 6
. . V o -1
BUD =¥, G- g7 4

LTINS
LT
"" e.. ) (.3’ —l.) A
'3 I T J(T-r)
(V3,‘ ) Hs e v B”dr

- o 3T\ | T J(T-f) S
u - ) “1*!=3- "z” s g

_’ ’Mavking:use.'of Equations (D77) an’d ‘(D.B) '
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- o - ng r—l o T Q(T‘ho - // | »,.
CE (1) =M f1 - e7F O, D\ e. Gcdr /S - . .
=R =2 <}_ , ) =" = SO ' .= / : - :

- Ny L,
T TN (T 3,(T-7) e .
=¥, (1-e S. e g S
o . .77 / N : /}

k ﬁ»'The;integral;in Appendix D.9 is.useﬂ to obtain

L _ géT,.-l LT Y 4
- ER(II)'= gz ; - e e f; f ;J 3, ,A'Z‘f
e : R o !

Thus, oo ‘ ‘ ﬂ ; : . - _1'
ER(II)_?,:Ez =2 &

1
2]

%

e

- whieh is ideutical tdequation'(B 7) above. " ‘Thus, Fossard s analy51s
produces identical reduced order discrete—time models by the two

"approaches of Figure 3. 1

B.4 DIFFERENCE OF RESULTS BY LEAST SQUARES

v vache same data (trajectory or random riumbers) are used for

both the continuous ~time reduction and the discrete—time reduttion of -

v

the two paths 1n Figure 4. 3, the resulting ‘reduced order models w111

in general, be different.' This can be shown as follows

b,f Equation (4.25) shows that QRT‘# (gr 2) 2y

| = =

-1 = w
p

" where Ec is calculated from;the;continuous—time model, Each row of

By

ﬁ-gc.is |

r xR g g ,
;so rhat::"
A TR Y



’ where )=(2 i%s the matrix
- Thus, R g
: T 0 1 T T
4 BR=E D7z 24 +x 1) LI
s . ‘ ,
‘ T T ‘”
T -1 T 4 55
= (2" 2) "2 (2, x)] = K .
- = - Te = AT
" éz ’ ) =2
. where R _ _ i
| : T -1 ,T , .
’ ~R=@ D T2 %) .
Thus, S .
- T
éR ~ (él’ ‘A,2) 5 3 ,
‘Similarly, for the discrete-time vred'uction,' Equation (4.7) is

'.QR—' _('z‘ 5)5 ¥p k g .

where Z. contains the same data as for the continuous case aBove and
=D is calculated from the discrete time model Each t'ow.of",HD is

T - T T T T
so that S .

<



'Now-we can ‘arrange QR like we did AR to give .

@ and relations.in Appendix D.3 (@ = exp €JT))

LA

é —('21’22)1( |

1]

! .This can be expanded using the £olldwing_relation of ¢ and

:-as is shown in Appendix D. 12

Expand this‘expressionvusihg

um!

k=@t ez -, (_Z,T,p- /2)—<1 K,)
" Thus, . S
' T"‘ - Iy S 1% 'E'.(]: -y
v ML) =vlot)ag, vyl T, 1
R LY A CER FY A5
4y, . R ' k Ton

(¢, Qz) =.‘ é.fyﬁzl g l’: (g;'gzv).‘e"p_ @7 .‘—_’ : :
‘v;hus, : e . 4 | .
‘\:Thg EXpressién.fo; QR'can similarlyige expanded ipté
e - ml ”2) ‘"
The d&éctete—timeﬁmﬁdel corresponding to this AR is
‘ A'_‘g;;__::exvp <5Rr)= exp.{ M }igz)gry‘f}
This'expression oniy‘eduals tse Expregsion (B.8) 1f:X 5?‘(21% §2) =jgf

le.
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; Tﬁis is oﬁly equal to the identity matrix if

25 TEH . KM -n (B-9)
o . s S |
T st T : . ‘
_52 can be elimina;ed-from Equations (B.9) to give

“2 =Y, | -

nV'

which can be rearranged, using Equation (D.7) to give .

| fuE R
. M+ ¥4;4'% g L % (Bflo)
However, Equation (D.8) says that
“_;
SR EC T 1 R

so éhat Equation- (B 10) and thus Equation (B.9) cannot hold Thus,

o VK (Wl 12) # I “and diffetent dlscrete-tine nndels are calculated
‘ e ‘
bv the two paths sh \N)in Figure 4 3.

’
‘



APPENDIX C

MODEL REDYCTION - EQUIVALENCE OF FORMS-
- - Mény of the modal reduction résults.presénted‘in the lit- .
erature are equivalent. ‘This Appehdix,ﬁili‘show'theselequivalehces.‘
- ' N S a ;
In this Appendix, the control vector and disturbance vector will be: -
combined as one input vector, u. " The high order.Systéﬁ will be

represented as : o . _ -

| 51) (B B\E) Yy
N/ s/ ) (e

~ v , ‘ B .
o e :_:zz)(gl) ,
V. o ‘ ) (C.2)
o o 1+Y u - (C.3) .-
2N/ NG/ = R
while the low ofder model will be represenﬁed éﬁ,
Xy T 8g X tBu SRR '@Q
-.C.1 EQUIVALENCE OF NICHOLSON'S AND DAVISON'S RESULTS . f/ [y
TR ’ RN
A o i' ‘ BOth'NiCh01$on([12]'and Davison [5] present the same reauced

order model in '$1ightly different forms. The difference in their

results is in’the representation of ER'
Davison repfésents ER as
- o L o S v R
i | B =M G ST T e
L4y -3

219
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where 51 ‘=. ‘(\=Il,,_\=(2) B | o | | ) - (C.6?'
Nichelson represents B, as
N ’_ '—‘ - 'v ‘ . .' - ’ “
R=4LH %Ki o, en
_ wher’e’gl is a normali'zéﬁ form of E-V-Il’gA is the first l rows of 1;4—1 as‘
9, = @, ¥ L (c.8)
~and §A is 'equ;valent to 9, with the i*" row multiplied by
m « s o . \\
ii R . .
I ia=1, 2, 0--)[)
m. . ‘ ’
T4 :
bl
The scalérs mes and mii arg elements of,matrlces-l;ll and b—.‘-’l’ B
_res.pect ively.
A g o g

VS -

- In order to show that Eg = g;,' Equation ly(C.7,) must be e:&pandé'd

in tern‘s. qf b=11 qu QA' .
, gl is the normalized form of M. u'méb"t is, e ' colum .of 51 -

is obtained from h=(1 by some norﬁalizing m'ﬁlt_ipl“ication fact'@r.a Let *
this factor be NJ fp-r ‘the jth colum so that o
e NN . \, . . .
. m, =N, om. -~ 7 (c.9)
mi_] 3 Ij . o / )
s . “Thus, there is an N, for each column of ¥, .  letting:
,g,‘la diag (Nl’, 'NZ aes Nl) D . ’ ,_(Cf10).-_
. matrix El ‘can be written as .-
. . - : (‘. N . ,. . ‘ . \\
-~ . ¥ =M N , _ R S
L homy o Cw
1‘* 4 \
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Similarly,‘ék is obtained from gA by hultiplyidg the.ith.row'bfb

'mii/Eii; Defining - | ' .
My Tay ez -
Maﬁ%ix QA can bevw;itten as
gA;g'QA 3 : }_ B2 ‘

NeL 2

‘ Now;’Eqﬁetion (C.7) can be written as

“

| Bp = (?1 N) (8 QA)IE )

M e aLypE *
R CIONS (c.14)
S 49 X R

S my,. m,. .

‘Now, NS = diag Ni :;l,-Nz :%—, L gz :!ﬁ

o Pl T2 ™).
= ;, using Equation (C.9) .
i | R . - '-)
Thus, 8% = M. G, = B2 as desired,
PSSR TRy 2y T B 3 desired

el \

C.2 EQUIVALENCE OF RESULTS OF DAVISON, CHIDAMBARA, FOSSARD AND GRAHAM

e{As mentieeed.in Chepfer Six, ehe‘same feduced'efdef modei
is presented in: the literature £A four places in slightly revised -
"forms.. The resnlt was first presenced by Chidambara [3] as hls method
Cl in April 1967, and" aleo by Davison' [3] ‘as a rev1sion to his orig—

inal method 1n ‘the same correspondence._ Davison presented the result

-



“

‘.»C;2:l Chidambara's Method'(Cl)_

. we can write,

222

again in [4]. The equivalence of these two was stated by Chidambara

"[2].in a further correspondence in DecemBer;.l967. 'Graham {91 pre-

sented a third form in July, 1968 by a different analysis. Although - -

‘Graham referred to the correspondence by Chidambara and Davison [3 4]

< . A
he.didn t recognize ‘that his result was-identical to theirs. Finally,

¥

: ;Fossard (7] presented his form in April 1970 as an alternative result

‘to Davison s for»use-when.é‘and/or éR have zero,eigenValqes. Although .

§ome of thevequivalences have been stated before, they all will be

'.éhown'here'dué to the simplicity of_the.prodfs., Some basie‘reletionsdl. L

" will be used in this work. These are fOundvinlAppendix D.

. Chidambara presented his method, referred to as Cl1, as

Ei.g»gilfi +;f1.g L | - (C.15)
ny=hz + Myz, ‘ __(C-‘1'6) :
o eFus-3léw o an
._.From‘Eqnétione (C.16) and (C;l7),,"'“‘”“.' ‘1§l;
. - . i . - . . . . : .
' -1 i:t S
) ;= b
. S + M' ) £2 - Gpu . (C-;8)

Thus, from Equation (C.16), usmgé-@ggaum (€.15), (C.17), and (C.18),
) . _ lf - : e '
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€.2.2 Davison's Modified Method (DM)

Dévison.présentédihis rgvisiog<to;his_earlier method “as

S A TR U O )
w = x, #da Tl - A;l 5] U e «C 21)‘J7
where [Q Lg]l - are_the first [-tows of A" B

First, using Equations (D.1) and_(D.Z),7éR'canAbé written as

Ag = A+ A, ’.‘3 Mo
BRI T I R CO gt} 51_3 =2 J2 V4) M3 =1
e g (v +v )+MJ (v +v 1)'
44 3 M ) Y 222 - ER SR
. Now, using EQqacions'(D.7) 5nd (D.19) : 2

T4 @l 34 vy + b Jz (V + va My ¥ )

hm Lt BN CR 22

| ~ Now, from th&;ions (€.20), (C.21), and (C,ZZ)-



li
i} 4
e

i
=
nee

e

_Now; using

" Thus, the

n=x

-‘1 +‘ :lE
-1 -1

B - (47 4]

a

Appendix D.11, consider the term, .

: (gl'gl

e

-1

M-l
JER'— [Q

=1\ .. . : -
nt) @ e -n g

B

]

\’»--.;(c,24) o

reduced otder‘modél éan‘be‘writ;én_from thétionk(C£23) as .-

1Y

tnen (s

._1.

G, +J By

-l -1

M

3 -1

2 22

)

u -

Equation (C .25) is equivalent to Equation (C 19) and so

o Chldambara 8 Cl mechod ‘and Davison s DM method‘are equivalent

. C.2.3  Fossard's Revision

Ebésqxd,pfegéntéd the reyisionvtdinavison's"method as .~
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_;El = (A + A, H3 Hl ) x 51 2‘ ‘ (C.26),,
l M2 3, 6 © @
In Section C. 2 2, Equation (C 24) showed that
a4 [.-1 ) . H |
T = .iz Sf;)_f_= {QR Bp ~ [‘é 2]1} . <C‘_%_8) .

- so that t:he correction applied by Fossard is identical to that applled
vby Davison and ‘so this result is equivalent to the previous two

res_ults,‘ since Equations (C.2_6) and (c,27) can b‘e‘,written_as
X @y + A, -3“1 )ER ch S e

51 e +{‘3‘R-1 By - [‘&:1 E][}3~,"' - o (€.30)

‘which is iéen‘t_i_cal t‘-e Equations (C.ZO),'end :(_(_1.21_) .

-
~ P

' C.2.4  Graham's Result !

Sy

;Graham presented his result as

RSV CRE B I S B
H7HOL 5 G -H Y 5 Gu-Bhd, 6

e - (€.31)
oy | | i
This is already in the general form of Equations (C 19) and (C 25)

-

except for the representation of BR ‘ B from Equation (C 19) can be

arranged into the form as presented above. Thus, from Equation (C 19)

' _ vusing Equation (D 10)



#

o c.3 EQUIVALENCE OF RESULTS OF MARSHALL AND cﬂinAﬁn&kA'

RV A | -1 -
ER - 51 (51 + 51 51‘ Ez ﬂz. 792)
=M. G. +M J (—:6? vr‘l) 3.7 e
=] 1 =] = l S =2 =4 =2 =2
- 1

¥1w(¥1ﬁ3i f’v B - Ml 3 %Y 52’. )

Now, using Equatlons (D 2) and (D 9)

Bp=@ - ¥ B+ M) ¥zv§2 G- HLIYY 3L°6
=B - M V. B, + M, V. - A v'"l-J"l.c + M
5 Eé, a3t L4 =7 -2

L} . - : "
B+ M. V. B, +MV

=B &y e —wy URIRERCR ISR Y

2 S -2;-§A§i-+{¥1=-2

R AL AR R xl.é B
bFinally,ihslng ﬁquatioﬁ (D.id) 1
B, = B

Y

 which is the form Of‘gR above inTEQUaflon (C.3lj;

' Thus, Graham's result can also bé;vrit;en~as *‘l
P Ji4M o eM o o+I M | ‘i ) u.— M j -1 cl 6
L4l sty @G 21 M1 2 2l 58

which is equivalent to the other threefiesultéhiﬂ-gﬁpgpdix.C.Z;U

Gl g

The results presented by Marshall and by Chidambara as method

g C2 are identical Marshall preeents AR as

.2?6



e

=R
‘The form of B presented by Marshall isv ' '
‘,{-’ - _/,_.'.1. -M /"'~ - . .
= LA L -4 . L\_
Br (El LA 2; _‘.(331_31. +V,B))) ‘ A:c.33)
: X ;f-. ‘ ~. S
+ ~while that presented by Chidambara'is‘ !
S '~B-B+(A A 1M)F C(C.38)
‘ =R . AZ =2=3 1. az = : * :
: -wh re F = =] -1 C' . ; . o . .
e 2 2 - . R (€.35)

;Usiﬁg Equatibns gD.7) and (D.B).:

“+ while Chidambara ptesehts it as

o ﬁ‘R - (=Ai + amm L

i )

'Thesé~two‘forﬁs of A"aré shown"to be equivalent in Appendix C.2.2.

iEqUations;(C.Bd)_and (C.35) can be édmbinéd, and rearfangédbasifollous:

Br= By -8 @ - Ml "ML G
-.. - - = ‘1 .‘.-
By Ay - M M) 3,7t (v Bl +y, B )

so that

ER = §1:"52¥4 3o '(!32 + v B )

vwhich is identical to Equation (c. 33) Ihus,:Mérshall's_:esuit_is

 _identica1 to Chidaubara s CZ reault

A
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APPENDIX D
P oL v
- MATHEMATICAL EQUIVALENCES

'D.1 THEOREM

Gantmacher [8, p- 98] presents a theorem that _i'sn»used, in

this thesis. It states:
1f A'and B are similar and W trans forms A into B,
— B=¥ AW

=’

then the matrices 'f(é’) and f(g) are also similar and H transj

forms £(A) into £(B),
. . : -1 ’
f® -2 fA)¥

~ For the continuous-time systen of Equation 3. 36), from '

Equation (3 39),
e . !

From the above theorem and the definition (f 0 as ¢ = exp (A T), it
follows that

exp (I =¥ eip WD N-N'gu~-qa

[N
oo

, Thus, the ‘same transfomtion mtti.x H, vill transfom both the dis-.'

crete—time and the continuous—tine systens 1nto theit cortespond:lng

4‘ Jordan canonical form, and H can’ bi‘ calculated uaing either the dis-’

crete-time system or the continuous-tine systeu.
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D.2 PARTITIONS OF A

Sta;ting with A=

A [ =)

' Consequently, ) A

D.3 ‘PARTITIONS OF ¢ -

- JT

LT

¢ = Me=" V.. Thus,
¢ %\ ‘ Hl e”
[ I J T,
®; 2, "3' e”
Consequently;
LT
Ei =Me
P, = 51 e

D.4 EXPANSION OF VM =

I

Following from

=

-

By definition

MJV, it‘fqlléws tﬁét
ThHL O HRLLYBR LY
thanl BLLYYE LY
L [y, ' o
MR I PR E Rl SO O % f (D-1)
TGN 8 Iy ) (®.2)
.
= MJV, using the‘théorem in séctibp D.1,
T | 4T LT
+ M e v, Ml-e v, + H2 e v,
J,T 1T T
=2 ) -2 ;
+M e ¥3 M3 e” v, + Ma e~ v,/
LT oo Ty B
e L mMM)e | - (D.3)
T o o ‘ =3/ ‘
LT AT Y; S
f ?.12 e.. .!4" (!1152) e v (D.4)
V=M1, it follovs that VM= I and
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<
N
E\Z
T
no

<
+
Sl
&
&Z
<
.._ w
'LZ
+\
<
=X
no
N

(which implies
V.M O+ v, =1 o S . - (D.5)

L K .‘.72 ga =2 S : (D.6)
G L m Y =0 o

\

A

. | $@ "' .

-Af;p'endix D_,'4, MV = llaﬁd

Bl LT} LN Y,

[ 1]
o

Hhithn BLYYEL) N\
and -

© (D.9)

N
IS
LA
A=
(T

M Yt M, Y, =0 (0.10)
e Mt My =0 - (aD

B LTRLL o e
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' D.6 PARTITIONS OF L

Starting with A=) e= B dr and the theorem in Appendix
D.1, it follows that
) 2 of/v. v.\ /B
=2 T ® o= =1 =2 =]
S gz(T-T _ dr
/7012 e ¥y Y,/ \B
: “and». theref‘ore‘ : le(,r_r) . |
S Tt 211 Zz =1
. ‘Lfﬂ =M, N) So | 3,(T-1) | drt (D.13)
S | 9 e LB LiRy
' D.7 DEFINITIONS OF g, AND 8
. J,.T :
Since a -;egT,;then a, = e 2. ' o . (D.14)
Since g =V 4, thén 22 - (Xﬁ’ XA)‘Q, - ’ _ _ (D.15)
c . g Do -‘.1 o .
D.8 RELATIONS - FOR \_11,. Yy My, ?-'1 o
S From Equation _(9.9), !1 -;11 | a- 5-‘2 23) T (D.16)
. " . . ‘..> -1» "
vvfrom EqQét;on (D.10), !2 - !1‘ M !4 (9717)
Rearranging Equation (D.2), &(2 can -bve'call‘c'uiated‘ as
S SRR R | o
52' Aéz gz.-  da T 5‘1 51 ¥2 34 '{2 - : (D.18)
Eliminating M, from Equations (D.9) and (D.10) gives .
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. | ‘ ‘ -1 o L
M, @ -H Y v - (019)

D.9 INTEGRAL EVALUATION NO. 1

!

The following integral can be evaluated as shown here’

(T T WT (T
. e - dr = e S e dr

"43

= O o
t - .
T -Wr ST EZfZ 2313 O
e dr =\ I -Wr +—F— - —]/—+ . dr
~ o

B R T Ty vl SRR I i
B \
2 1
=1 - I-WT+-2—--?—+ !'_',

. D.10 ' INTEGRAL EVALUATION NO. 2

(T W@-D . WT T W
' S e . Wdr = e S e Wdr
JO - Jo
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~

T_E(T_;) R ET . ‘F:).. . <
. 's e Wdr =fe -1 . S . :
0 . N o . '

D.11 EXPRESSION FOR [5‘1'3]1

=

Starting with the equality A = M JV,
o aTts-ugtyg

‘ -l  Aary uAar
L 514 ey 5 21]

LS R L LY LlE

s

Now, [é- E]' is the first £ rows df g-lbg as
A SR 73.7Y o\ /e
S .‘ ' f =1 = =1
L PECST N
R T VN - T A V!
-1 N =1 -
= R 2
: L’lgl E]_ = ’;{2 SZ
. ) ' ‘ “l
~ D.12 CONDITIONS FOR WHICH EXP (A g'g)'a A EXP (B) C
Consider the power SerieS‘gkpan81on,of gxp“(é B E) as .
. v , | o
n - WBO (MBO (ABO WBO @ABO)
_exp (ABC)=1+ABC+- T T T2 +
\ - = = = = = = : 2_. . ] E 3.@ .
Y . - . ) . e N i )
' Kf C=A ; this can be writtqp as . N . : : : ;
== S . L 1 |
\ . ' A 52 C aBlc
’ exp (ABC)=A (1) C+ABC +° o+ “;, =+ ...



Thus, exp (A B C)

~—

>

T3
Nt
+

ne
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LEAST SQUARES APPROACH TO CONTROL- LAW”DEST

APPENDIX E

E.1 MINIMIZATION WITH RESPECT TO THE CONTROL LAW

. is

- or

'We want

&

The desired form of the reduced order feedback control law

#

. (. FB
to calg'(_
‘ between the left side and the right side of Equ§5396 (E.5) as

INEY N
A

or - 2

cee

235

.I FulT |

a
'L.m
-

Coﬁsidqr'oﬁly the first of these equations, that for the scalar u

N

F‘v ‘
'FBq
..l.(_R |

.KFB
=y

as

1

(R

Y(E.3);

(E.3) for the K data points used in the least sqqgges.f

(E.4)

. (E.5)

o

)in’order to minimize the sum of the Squa:gs" 

1



sz=w—z(FB) ‘_w-z(“) (E.6)
-1 = -1 = .
1 B o
T FB _T FB\ .T FB\ T
; Y M 2Rz W ( ) z' z (k )
1l - 17 = —al
, ., 2 ] 1
Minimize S” to give
. 3g2 | S Y S
- d8° . T, T FB |~ - ,
== .2 / t2z 2 gRI ‘-4g . n (E.7)

: Thus, -,

/o o S e
@13) = (gT AR AR | (E.8)
The steps from Equations (E. 2) to (E 8) can be done for

each of the equations represented 1n\Equation (E 1) and the results

will be

. T e e (RS

etc

Thus Equations (E. 8) and (E. 9) can be augmented together to give

4

one matrix equation for the resulting control law as .

: T T t‘ oy _ N
FBY" _ (.FB _FB . ¢FBY T -1 T, _
(‘én ) @.(_'_‘R,’ B> o K ) T2z e,

- 2 m

=@y cao

236



¥

where

.‘and

_and'thé'procedure is continued as above.
: . Y .

of E are as VA

FB - FB Sp- sp

. 1 .
2==R £1+I=(R _c_l_+‘l=(Rz +=I=(R§’

it can be rewritten as

In the evaluation of Equation (E. 10), the elements

If the desired reduced~drder control law is in‘the'form of

N _ | < | c o
of S \,BT.(j) - Ef(j) (gfn) + (j) ( )

.and W becomes o

237

C(E.11)

(E.12)

(E.13)

(E.14) -

of w are -

,evaluated using the high order, optimal control law 1) that the rows N




'~ ‘vNéb,.Equation (E.10) can be written as .

where

'FB

(¢

)

=@ z,r'(g(g?

: M
1 : 5?2[‘,(1)

= 55(2)

RED)

s

7/

- (&FB) + (gT g)l"l’

E.2 ‘MINIMIZATION WITH RESPECT TO THE HIGH ORDER CLOSED-LOOP MATRIX

)_'?r

Z‘T
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* (E.18) -

T . .
FB) . (E.19)

<"’ .In th
(<

i

S sécond for@hlaﬁibn, the desired resulting reduced

order contrdl law is still as in Equation (E.1) baut the minimization

is done with feSpéCt to thég§§§tém's éloséd.loop matrix. The closed

vioop fpfm is.. IS -

XA+ 1558 % 0) + 8 %)+ 2 K x (1)

LT avAe I : FB . - .

g s (21 ta Kk )11(1) +¢, %0 (E.20)
B . . |

. ‘ S

@), &) = ‘qu»g;,_r |

$120 £22 a1y




) "‘,' ,V '?'; » _"‘ N
: - l ) ‘: '.5»"&
N o ‘ i Y
e g Ca .
' "éln ' t
Also’ e = Qz ,‘
v L= ’ S "';'V) .
L% ,‘
Consider Qniy'the first eﬁuétion of :E{ZO),.fotfscalar xl(j + 1) as,
x(j+.l)‘=(£Tx(J)+ x ()
- & 2 21,—2_ -
. T .:»‘ - » T ‘ . T ‘ ’ Lo - ' "‘.f' .
TH@ 5 x50 8, oo (E22p
‘where .

Writing Equation (E-22) for k datafpoines gives )
T . B = A

P

v T, T T 3
tCRECESS R
x; (2) Q'xi(z)' c +'¥T(2) ¢T o N(E.23) - |
i CAat = TR 8y > RO
L T T, T
x ) = x) () L)+ 1K) ¢ J

Lump'Equetion,(E.ZB) to-fornfone matrix equation as

W

we'want‘to calcnlate KR by minimizing the -Sum of the Squares of the

difference between the left side and tight side of Equation (E. 24)
4
o . ‘ ] p . L ’
s?e . -2C, -2 “T);( zC, ’
R e R —~21)

#

“591+’§2.i221_ e 2R



T T TLT , T
=W &~ 28 -5 %) m 82 & -2 -4 %)
T - T | .
1 % Wy - 28 -z, 8
»with respect-to_g_1 as
o -z2lw -va'(w-zc 2. o+l zc. +28 2 0. =0
3C IR A 21" %2 £ TS &t
T -1 .T ' .
c, = ( g) Z2' W, -2, &) (E.25)

The steps from Equations (E.22) to (E 25) can be done for each of the

oequatlons in (E. 20) to give

T -1 .
22 T (z 5)“ z _Ql_ 4 g&Z)

o
|

DT ey 0 e

Tl T T
Q=@ p 2 (_Hﬁ‘fz_-iz:x)v,.- .

"‘Th ; ‘Equations (E. 26) and (E. 25) can be augmented together to form -

the resulting 3uboptimal closed loop matrix as

| ‘ lT o I S T
(_Q 3:22.’ .f"’%) (Z Z) .[(11,‘3_2. ceey !n) - EZ“(TQZ].’?ZZ" '.'v"_gzni
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.The matrix OA A)

exist is. if A has a column of

-

will usually exist.

- . 241

. ﬂ
v 2 , ’ ‘
: . B ] o T
Also _ ‘ . ~El g’sﬁ{ + (;FB) éi' W :
! ¢ = o1+ (BY ) (E.28)
—2 - =12 = éz .
v ¢ . . . :
' T
: . T FB T.
‘ - Co= e, +(_ ) a, .
: o T T FB\> T T T
C = (El’ _gz) . ’ En)z (211’ _912, .y an) + (l-(R ) (_ ’ ézy s Aﬂ)
oy T (Fs\ T 1
o T -‘“(&’) 4 (E.29)
LT . /
Using Equatione (E.27) and (E.29),
o 1 fE\ T -1 .1 T T
A (@) - - gy
'g‘? which can be, solved fer 5§B, if (AT.A)-1 exists, .'as.
° (-"53) ,{ R ET 7‘2 D - o } s Q"o @y

One'éase'where it will not

zeros, which is unlikely since then'

there‘is‘an_input which'does not‘affecc‘the system.

R

In thé calculation of Equation (E 30), the elements of W

are évaluated using the high order optimal closed loop system, so .

&

;hat the rows of E are as . .

Cxev-raam
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.J' 1. ! %
or . . - ) ‘, b ,‘av .i‘ 7 ¥ S . ) ‘ ) -
3. . . . e o .:..,:“‘:5 (‘5’»‘ v . ) . .
e ,, o A JFB.T
.L W= (Z Z ) (21.-!» 9 5_1 )‘
, . :
: FB.T.
&, TaE""
=2 @ +3K) +2z, @, +aK) - (E.31)
Now Equarion.(E.30) can be\vritten.§5' s o

fFBY _ )T -1 ].T ' O FBy~ -
) oM e D ieTg e

T o :
. al + zf 2p71 T z, (.FB) éT‘ff A..(QT‘A)-—I
= [FB 2T 1 LT FB) NPT

. whlch is 1dentical to Equation (E. 19) forned by the simpler approach

of a least squares fit of Equation (E.1).
Figure E. 1 shows a time domain response comparing the high

) order evaporator model optimally controlled vith ‘the high order model

o
vcontrolled by reduced order controllers calculated with each of these

‘ twd approaches. The reduced order-centrollers give 1denr1cal re;ults.
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o

Tables F.2 to F.16.

. o - M ,
0 . : .
. RS
3

T N . ? - ) o o *'rf‘ W, ) :
, The reduced order models used in this the&is are shown in

‘this Appendix. Table F.1l is an
N o

-/

af

index. The models are presented in

244
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' y .
A TABLE F.1
+ - INDEX TO REDUCED ORDER MODELS
. et i T 4 ) f
. Table ' Redaction Model .Cor . Run -
~ _No. ' Method* Order . D ** . No. ***. . Comments-
—— ——
F-2: MM 5 C 2020 . : S
F-3 MM 4 .C 20594  Keeping eigenvalues 1,2,3,4
F-4 . MM 4 . C 2060A Keeping eigenvalues 1,2,3,5
F-5 MM 3 C 2021 : : '
F-6 - MM 3 7 D 2050
F-7 DM 3 D - 2065
F-8 FM 3. ¢ D 2094 o e o
F-9 RLS1 3 b 2119 Start. sequence at 19653
F-10 RLS1 3 ) g& 2137 Start sequence at 9639 ”
F-11 . ".RLS1 3 D - 2136 Start sequence at 1
F-12 RLSI 3 o 2141 Start sequence at 19653
F-13  DISC 3 D 141 . , -
F-14 .  RLS1 3 D 2113 Closed-loop model
F-15. RLS2 3 D 2108 Closed-loop model
F-16 TFLS - 3 D . 2144  Closed-loop model
S * MM =‘Marshall s Modal Approach
‘DM = Davison's Modal Approach
M = Fossard's Modal Approach A
RLS]1 =

¢R by random least squares,lg for steady state

R
RLSZ’$~¢ and AR by random least squares.

>

' N ‘
+ TFLS =»2R by';rajectory fitting least squares, évaor_Steady state

'Discrete'versionvof model in Table F.12.

DISC

. k% C = Continuous-bime model D= discrete—time model

-

ckkk Simulated run- in which the model was calculated
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