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ABSTRACT

(3-amyloid (A|3), a 39-43 amino acid peptide deposited in the brains o f Alzheimer’s 

patients, disrupts synaptic function through mechanisms that are not fully understood. 

Nicotinic acetylcholine receptors (nAChRs) are potential targets for the actions of A|3 in 

the brain. This thesis examines 1) the role of nAChRs on basal forebrain neurons in Ca2+ 

signaling and excitatory neurotransmission and 2) if  A|3 influences these functions via 

nAChRs.

Intracellular calcium levels ([Ca2+]0 in acutely dissociated rat basal forebrain 

neurons were measured with the ratiometric dye fura-2. Focal applications of nicotine, 

evoked increases o f [Ca2+]i mediated via Ca2+ entry via nAChRs and intracellular Ca2+ 

release. Nicotine-evoked [Ca2+]j rises were inhibited by a-bungarotoxin, and dihydro- 

beta-erythroidine (DH|3E). Nicotine-evoked increases were irreversibly potentiated by 

A|3i_42, while focal application of A(31 .4 2  alone did not alter [Ca2+];. A (31 .4 2  also 

potentiated caffeine-mediated, but not KCl-evoked rises o f [Ca2 +]j. A(3i_4 2  potentiation of 

nicotine-mediated rises of [Ca2+]i was blocked by either the SERCA inhibitor 

thapsigargin or CGP-37157, an inhibitor o f the mitochondrial Na+/Ca2+ exchanger. Thus 

A(3]_ 4 2  potentiation of repeated release o f Ca2+ from intracellular stores by multiple 

nicotine challenges is due to overfilling of caffeine sensitive stores by mitochondria.

The effects of A (31.4 2 , nicotine and acetylcholine (ACh) on cholinergic basal 

forebrain neurons prelabeled with Cy3-IgG192 or identified by electrophysio logical 

criteria were examined by recording miniature excitatory synaptic currents (mEPSCs) 

using whole-cell patch clamp recordings in brain slice preparations. In 54% of neurons, 

A|3i_42 significantly increased mEPSC frequency while in 32% of neurons, APi_4 2
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significantly decreased mEPSC frequency. DH|3E blocked A [31 .4 2  mediated increases of 

mEPSC Ifequency, but did not block A(31 .4 2  mediated decreases of mEPSC frequency. 

Nicotine or ACh in the presence o f atropine, increased the frequency of mEPSCs in a 

dose-dependent manner. No changes in peak amplitude were observed in any treatments. 

These data suggest that in a subset of cholinergic neurons, A(31 .4 2  increases mEPSC 

frequency by activating pre-synaptic a4|32 nAChRs, while another unknown pre-synaptic 

mechanism mediated the decrease of mEPSC frequency. As the regulation of [Ca2+]j and 

synaptic transmission are important for cognitive functioning, these results may be 

important to understanding the pathophysiological mechanisms underlying Alzheimer’s 

disease.
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General Introduction 

Chapter 1
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Overview

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that affects 

elderly individuals and is characterized by a progressive decline in memory and other 

cognitive functions such as language and perception (McKhann et al., 1984). The 

majority o f AD occurs in a sporadic form, with an average age o f onset of 70 years of 

age. Apolipoprotein E gene, which regulates the transport of cholesterol, has been 

identified as a susceptibility gene for the common late-onset form of AD (Poirier et al., 

1993; Saunders et al., 1993). In a small subset of AD individuals, the onset of symptoms 

begin at approximately 50 years o f age and these cases are associated with familial auto

somal dominant mutations in transmembrane proteins regulated by genes located on 

chromosomes 21 (Amyloid Precursor Protein, (APP), 14 (Presenilin 1) and 1 (Presenilin 

2)(Goate et al., 1991; Levylahad et al., 1995; Sherrington et al., 1995). Key 

neuropathological findings in individuals with AD include extracellular and neuritic 

(intracellular) plaques composed of (3-amyloid peptide (A|3), neurofibrillary tangles 

composed of abnormally phosphorylated tau protein, and selective loss o f acetylcholine 

(ACh) synthesizing (cholinergic) neurons o f the basal forebrain (Yankner, 1996; Mayeux 

and Sano, 1999). The loss of cholinergic neurons, which are one o f the most vulnerable 

neuronal populations in AD, is associated with severe memory and learning deficits, 

which are the hallmarks o f the clinical symptom complex of AD. The role of A|3, a 39- 

43 amino acid peptide) in the pathogenesis of AD is controversial, i.e. whether it is a 

cause or consequence of the disease. However a large body of experimental evidence 

indicates that it may be a critical determinant of synaptic dysfunction and cell death that 

has been observed in many animal models of AD and the human condition (Hardy and

2
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Allsop, 1991; Selkoe, 2002b). For example, A|3 has also been demonstrated to be 

neurotoxic to rat hippocampal and human cortical neurons (Mattson et al., 1993). 

Despite its wide-ranging effects, however, no definitive “receptor” has been identified for 

A|3. Several candidate receptors have been proposed to mediate the biological actions of 

A(3, including plasma membrane receptors for advanced glycation end products (RAGE), 

tumor necrosis factor receptor, and the p75 neurotrophin receptor (Rabizadeh et al., 1994; 

Barger et al., 1995; Yan et al., 1996). A[3 has been demonstrated to bind to nicotinic 

acetylcholine receptors (nAChRs) in nano- and picomolar concentrations and these 

receptors are important for mediating many cellular processes such as calcium (Ca2+) 

signaling and neuromodulation. However, the interactions of A|3 with nAChRs are only 

beginning to be investigated and have not been studied in the basal forebrain, a region 

which is at the epicenter o f the chemical pathology observed in AD (Castro and 

Albuquerque, 1995; Wang et al., 2000b; Wang et al., 2000a). Therefore, the overall

objective of my thesis was to 1) examine the role of nAChRs on basal forebrain

2+
neurons in Ca signaling and neuromodulation 2) examine how A{3 influences 

nAChR mediated neuromodulation and Ca2+ signaling 3) examine the effects of A(3 

on nAChR modulation of excitatory synaptic transmission in a cholinergic basal 

forebrain nucleus.

I. Anatomy of the Basal Forebrain Cholinergic System

The basal forebrain nuclei are the major sources o f cholinergic innervation to the 

brain in rats and humans (Mesulam et al., 1983a; Saper and Chelimsky, 1984). These 

nuclei are located ventral to the anterior horn of the lateral ventricle and the striatum and 

extend from the base of where the cerebral hemispheres unite and extend to the cerebral

3
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peduncle. In coronal sections of rat brain, the anterior portion of the basal forebrain 

resembles an inverted “Y”. The dorsal stalk o f the Y is composed of the medial septum 

and the vertical limb of the diagonal band of Broca (DBB), while the horizontal arms of 

the Y comprise the horizontal limbs of the DBB (Harkmark et al., 1975). The most 

posterior sector of the basal forebrain is the nucleus basalis of Meynert, which can be 

further subdivided into anterior, intermediate, and posterior segments (Mesulam et al., 

1983b; Mesulam et al., 1983a).

A. Neurochemical Characteristics o f  the DBB

DBB neurons are heterogeneous and contain many different neurotransmitters and 

neuropeptides. The two main populations o f neurons in the DBB are the cholinergic and 

Y-aminobutyric acid (GABA) synthesizing cells (Brashear et al., 1986). There is also a 

local population of glutamatergic neurons (Sotty et al., 2003; Manseau et al., 2005). The 

cholinergic and GABAergic neurons can be divided into a population o f large and a 

population o f small diameter neurons. The large neurons are believed to be projection 

neurons, while the small neurons release neurotransmitters locally within the nucleus 

(interneurons).

1. Acetylcholine

Within the DBB, it is estimated that between 34-45% of neurons are cholinergic 

using staining methods for detecting either choline acetyltransferase (ChAT), which is an 

enzyme involved in ACh synthesis, or acetylcholinesterase, an enzyme that breaks down 

ACh in the synaptic cleft (Eckenstein and Sofroniew, 1983; Mesulam et al., 1983a). The 

morphology of these ChAT immunoreactive neurons can be divided into two types based 

upon their cell diameter (Milner, 1991). The first type is the magnocellular neurons,

4
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which are 20-30 pM in diameter and are either elongated or round. They have an 

abundant cytoplasm with a small indented nucleus and may contain lamellar bodies and 

are the principal projection neurons of the DBB (Mesulam and Van Hoesen, 1976). The 

second population of neurons is the parvocellular (15-20 uM) neurons, which are round 

and do not have lamellar bodies. These neurons are responsible for local release o f ACh 

(Metcalf et al., 1988).

The magnocellular neurons of the DBB provide cholinergic innervation to many 

CNS regions (Mesulam and Van Hoesen, 1976). Cholinergic DBB neurons project to the 

olfactory bulb, the hippocampus and to many areas of the neocortex (Mesulam et al., 

1983 a). They play an important role in a number of physiological functions including 

memory (Waite et al., 1994) and theta rhythm (Gaztelu and Buno, 1982) which shall be 

discussed more fully in later sections. In AD, it is the cholinergic projection neurons of 

the basal forebrain that preferentially undergo neurodegeneration (Whitehouse et al., 

1982).

2. GABA

Immunohistochemical labeling for GABA and the GABA synthesizing enzyme L- 

glutamate decarboxylase in the basal forebrain identified a population of GABAergic 

neurons (Panula et al., 1984; Onteniente et al., 1986). This population of neurons was 

estimated to comprise between 34-54% of the neuronal population in the basal forebrain 

(Griffith, 1988; Kiss et al., 1990). The morphology of GABAergic neurons in the DBB is 

multiform and variable (Onteniente et al., 1986). When compared to other GABAergic 

neurons of the basal forebrain, GABAergic neurons o f the DBB are larger, with a 20 to 

30 pm diameter versus 10-20 pm in the lateral septum (Onteniente et al., 1986). The
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aforementioned observations of the DBB GABAergic neurons suggest that this 

population of neurons is distinct from other neurons in the basal forebrain and may 

consist o f mainly projection neurons (Onteniente et al., 1986). Based on anterograde and 

retrograde tracer studies, GABAergic neurons of the DBB have been identified to project 

to the neocortex and the hippocampus (Freund, 1989; Freund and Gulyas, 1991).

3. Glutamate

Recently, a population of glutamate releasing neurons was identified in the basal 

forebrain (Gritti et al., 1997; Manns et al., 2001). Based upon retrograde tracer analysis 

and single cell reverse transcription polymerase reaction for vesicular glutamate 

transporters, glutamatergic neurons are medium in size with an average diameter of 17 

pm and consist of neurons that project to the neocortex and the entorhinal cortex (Sotty et 

al., 2003; Wu et al., 2003). There are also local glutamatergic intemeurons that synapse 

onto both GABAergic and cholinergic neurons (Wu et al., 2003; Manseau et al., 2005).

4. Other Chemical Phenotypes within the DBB

Neurons in the DBB express other neuromodulatory compounds including 

galanin, nerve growth factor (NGF), nitric oxide (NO), and vasopressin. Galanin is a 

polypeptide which is co-localized in a subset of cholinergic neurons of the DBB that 

project to the hippocampus (Melander et al., 1985; Skofitsch and Jacobowitz, 1985; 

Senut et al., 1989). It has been shown that galanin inhibits the release of ACh onto 

hippocampal neurons via a presynaptic mechanism (Fisone et al., 1987). However, 

electrophysiological data show galanin to inhibit a suite of potassium conductances on 

cholinergic basal forebrain neurons resulting in hyperexcitabiliy o f these cells 

(Jhamandas et al., 2002). NO synthase, an enzyme responsible for the synthesis o f NO

6
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has been found to colocalize with the ChAT and nerve growth factor receptor, however, 

further studies need to be done to examine the role of NO role in the DBB (Kitchener and 

Diamond, 1993).

B. Afferent and Efferent Connections and their Relation to Function

The DBB has many afferent and efferent connections in the brain, which are 

important for theta rhythm, arousal, learning and memory. The following sections will be 

divided into a section outlining the anatomical connectivity o f the DBB and another 

describing the role of DBB in theta rhythm, learning and memory.

1. Efferent Connections o f  the DBB

Projections from the DBB extend to many areas o f the brain. Anatomical studies 

utilizing anterograde and retrograde tracers have shown that the DBB projects to the 

hippocampus, olfactory bulb, neocortex, hypothalamus, amygdala, dorsal raphe, and 

locus coeruleus (Divac, 1975; Conrad and Pfaff, 1976a, 1976b).

Both cholinergic and GABAergic DBB neurons project to the hippocampus, 

olfactory bulb and neocortex and these projections have been studied in great detail 

(Mesulam et al., 1983a; Senut et al., 1989; Kiss et al., 1990; Freund and Gulyas, 1991).

The neurons projecting to the hippocampus reside in the vertical and horizontal limbs of 

the DBB, while neurons projecting to the olfactory bulb and the neocortex mainly reside 

in the horizontal limb of the DBB (Mesulam et al., 1983a; Gaykema et al., 1990). 

Ultrastructural characterization o f cholinergic DBB neurons has yielded more 

information about the synaptic connections of neurons projecting to the hippocampus and 

the neocortex. Cholinergic fibres projecting to the hippocampus have en passant axon 

collaterals that synapse with local somata and dendrites in the DBB (Henderson et al.,

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2001). Electrophysiological experiments suggest that these collateral projections exert a 

modulatory effect on DBB neurons (Henderson et al., 2005). The main cholinergic fibres 

project to the hippocampus via the fornix and synapse onto hippocampal neurons 

(Nyakas et al., 1987). These hippocampal synapses terminate in the CA1 and CA3 

regions onto pyramidal and granule neurons (Nyakas et al., 1987). GABAergic neurons 

of the DBB project along the fornix and synapse upon GABAergic neurons in the stratum 

oriens o f the CA1 region of the hippocampus (Gulyas et al., 1990).

The cholinergic neurons of the DBB also project to the cingulate, visual, and 

olfactory cortices (Bigl et al., 1982; Luskin and Price, 1982; McKinney et al., 1983). 

GABAergic neurons of the DBB mainly project to the cingulate cortex, however, the 

projection to the visual cortex is sparse (Freund and Gulyas, 1991). The GABAergic 

terminals from DBB neurons form en passant synapses on GABAergic cell bodies and 

dendritic spines in all layers o f the cortex (Freund and Gulyas, 1991).

The DBB projections that are important for cardiovascular regulation include 

projections to the supraoptic and paraventricular nuclei o f the hypothalamus and the 

amygdala (Meibach and Siegel, 1977; Oka and Yoshida, 1985; Kovacs and Versteeg, 

1993). DBB projections to the amygdala are also involved in memory and learning 

(Gallagher et al., 1977; Stock et al., 1981; Hostetter et al., 1987).

The DBB also projects to the dorsal raphe and the locus coeruleus which are areas 

with high concentrations of biogenic amines (Lee et al., 2005). The dorsal raphe nucleus 

contains somatostatin expressing neurons and receives a non-cholinergic, inhibitory 

innervation which is believed to be important in REM sleep (Kalen and Wiklund, 1989; 

Guzman-Marin et al., 2000). Little is known about the projection to the locus coeruleus,
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except that a few identified neurons projecting from DBB to the locus coeruleus, also 

project to the dorsal raphe (Lee et al., 2005). The functional implications of this 

collateral branching connectivity to these two nuclei remain to be elucidated.

2. Afferent Connections to the DBB

The DBB receives inputs from many o f the areas to which it projects. The 

reciprocal connectivity of these projections has implications for how the DBB functions 

in physiological processes. Anatomical studies have demonstrated that afferent input to 

the DBB originates from the cerebral cortex, hypothalamus, amygdala, the brainstem 

locus coeruleus and dorsal raphe.

Autoradiography and anterograde tracer techniques have shown glutamatergic and 

GABAergic neurons project from the hippocampus to the DBB (Freund, 1989; Carnes et 

al., 1990). Most o f these projection neurons are GABAergic and form a reciprocal 

septohippocampal connection with GABAergic neurons of the DBB, however, some of 

the neurons also synapse onto the cholinergic neurons (Toth et al., 1993). There is also a 

minor glutamatergic projection from the hippocampus to the DBB (Carnes et al., 1990). 

The orbital, prefrontal, insular and olfactory cortices also provide some glutamatergic 

innervation to both the vertical and horizontal limbs of the DBB (Carnes et al., 1990; 

Zaborszky et al., 1997). These glutamate fibres cannot account for all the cortical 

projections to the DBB and the remaining fibres contributing to the cortical input to DBB 

are believed to be GABAergic.

The DBB receives significant input from all areas o f the hypothalamus. 

Retrograde labeling has shown that there is significant glutamatergic innervation of the 

DBB from the medial and lateral aspects of the hypothalamus (Carnes et al., 1990). In
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addition to glutamatergic innervation, vasopressin releasing neurons project to the DBB 

from the medial hypothalamus, the bed nucleus o f the stria terminalis and the amygdala 

(Sofroniew, 1985; Caffe et al., 1989; Insel et al., 1994).

Catecholaminergic innervation of the DBB has been observed from the locus 

coeruleus and the dorsal raphe nuclei (Swanson and Cowan, 1979; Semba et al., 1988; 

Zaborszky and Cullinan, 1996). Although the precise chemical phenotype of these 

projections has not been definitively identified, they are most likely noradrenergic and 

serotonergic projections.

II. Physiological Functions of the DBB

Due to its extensive connectivity, the DBB is involved in a wide array of 

physiological functions in the central nervous system. The involvement o f the DBB in 

theta rhythm, learning and memory are well characterized and important in the context of 

understanding how the loss o f basal forebrain neurons causes cognitive dysfunction in the 

context of AD.

A. Theta Rhythm

Theta rhythm is a synchronized, low frequency (4-12 Hz) oscillation that is 

recorded in limbic structures (Leung et al., 1982). Initial studies associated theta rhythm 

with an arousal state. As theta is associated with a wide variety of physiological 

functions such as active exploratory sniffing (Forbes and Macrides, 1984), vibrissae 

movements (Semba and Komisaruk, 1984), eye movements during immobile visual 

exploration (Kemp and Kaada, 1975), and rapid eye movements in paradoxical sleep 

(Monmaur, 1981), it has been hypothesized that theta allows the hippocampus to
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selectively receive inputs from sensory systems and voluntary motor systems to monitor 

performance in tasks (Vinogradova, 1995; Bland and Oddie, 2001; Buzsaki, 2002).

The involvement of the medial septum in the generation o f theta rhythm was first 

observed in experiments in which lesioning o f the DBB resulted in the loss of theta 

activity (Petsche et al., 1962). Electrophysiological experiments characterizing DBB 

neurons demonstrated that DBB neurons switch between firing bursts o f actions 

potentials either in phase or out o f phase with theta (Gaztelu and Buno, 1982; Sweeney et 

al., 1992). Bland and Colom (1993) hypothesized that theta frequency modulation is 

determined by the balance of septal GABAergic and cholinergic inputs to the 

hippocampus. As theta frequency rhythm decreases below 5 Hz, there is less inhibitory 

input from the DBB to the interneurons of the hippocampus, so that these interneurons 

are disinhibited. Consequently, the interneurons decrease the activity of neurons in phase 

with theta rhythm. As theta rhythm rises above 5 Hz, cholinergic-mediated EPSPs in the 

pyramidal neurons begin to dominate, resulting in a feed-forward increase in theta 

rhythm. The role o f the DBB in theta suggests that these neurons may be important in 

maintaining an aroused state.

B. Learning and Memory

A central role for DBB in functions related to learning and memory is supported 

by several lines o f evidence. Lesions to the DBB result in impairments in spatial 

learning, visual memory tasks and olfactory learning tasks (Hagan et al., 1988; Ridley et 

al., 1988; Paolini and McKenzie, 1993). Bilateral lesions of both GABAergic and 

cholinergic projection neurons in the DBB reduce the performance o f rats in the Morris 

water maze suggesting that DBB projections are important in spatial memory (Hagan et
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al., 1988). Subsequent studies in which cholinergic neurons were selectively lesioned 

demonstrated that although the loss o f cholinergic neurons does not affect spatial learning 

when measured by the Morris water maze, rats with cholinergic lesions used different 

learning strategies to negotiate these tasks (Janis et al., 1998; Janisewicz and Baxter, 

2003). The results of non-selective lesioning of the DBB and selective lesioning of 

cholinergic neurons showed that both GABAergic and cholinergic neurons play a role in 

spatial learning and memory.

The horizontal DBB connections to the olfactory bulb are involved in memory 

and learning as bilateral lesions o f this region results in significant impairment in odor- 

reward associations and odor habituation (Paolini and McKenzie, 1993; Roman et al., 

1993). These studies suggest that the horizontal DBB acts as a relay station between the 

olfactory bulb and the olfactory cortex. The DBB also plays a role in visual 

discrimination as excitotoxic lesions which reduce cholinergic activity in the cingulate 

cortex, an area where there is significant DBB projections, reduced performance in a 

visual discrimination test (Marston et al., 1994). These studies demonstrate that the DBB 

plays an important role in many different modes o f learning and that loss o f these 

projection neurons can significantly impair cognitive function.

C. DBB Neuronal Loss in AD

Post-mortem examination o f brains from individuals with AD established a link 

between the preferential loss of basal forebrain cholinergic neurons and cognitive 

impairment (Whitehouse et al., 1982). The most severely affected regions in the basal 

forebrain were the medial septum which lost 50% of its neuronal population, and the 

DBB which lost 65% of its cholinergic neurons (Henke and Lang, 1983). Lesions o f the
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DBB in rats produce disruptions in spatial memory and these changes can be attributed to 

the loss of cholinergic neurons (Janis et al., 1998; Janisewicz and Baxter, 2003) In 

addition, to the depletion of cholinergic neurons, there is also accumulation of soluble 

A|3, the deposition o f insoluble amyloid plaques and the presence of neurofibrillary 

tangles in the basal forebrain (Saper et al., 1985). Given the importance of DBB 

cholinergic neurons in memory and learning, the significant degeneration o f basal 

forebrain cholinergic neurons in AD may be responsible for the cognitive decline and that 

treatments designed to protect the loss of cholinergic cells may protect individuals against 

cognitive decline observed in AD.

III. Cellular Properties of DBB Neurons

A. Intrinsic Electrophysiological Properties

Initial examination of the electrophysiological properties o f individual DBB 

neurons performed in guinea pigs identified 3 populations o f neurons o f this region 

(Griffith, 1988). The first neuronal cell type exhibited a slow afterhyperpolarization 

(AHP) of 600 ms with an amplitude of 10-20 mV which was attributed to a Ca2+ -  

activated potassium (K+) conductance. Cells with the 600 ms AHP comprised 40% of the 

neurons recorded from and were called SAHP neurons. The second cell type identified 

exhibited a fast AHP (duration 5-50 ms) and comprised 53% of the cells recorded. The 

final cell type comprised the smallest population o f neurons (7%) and fired in a burst 

pattern. Staining for AChE in cells that had been recorded from demonstrated that only 

SAHP neurons expressed AChE, suggesting that these were cholinergic neurons, while 

FAHP neurons were GABAergic. These findings were confirmed later on in slice 

preparations (Markram and Segal, 1990; Wu et al., 2000).
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DBB neurons exhibit many voltage-activated and ligand-activated currents. A 

transient outward current (A-current) that was blocked by 4-aminopyridine and a suite of 

Ca2+ channels were described in acutely dissociated DBB cells (Griffith and Sim, 1990). 

Cholinergic neurons possessed both high voltage-activated and low voltage-activated 

Ca2+ channels, while non-cholinergic population only expressed high voltage-activated 

currents (Griffith and Sim, 1990). Further pharmacological analysis of cholinergic 

neurons demonstrated that N and L-type channels were the predominant population of 

Ca2+ channels, while the P/Q-type and T-type channels made up a small component of 

the population of Ca2+ channels (Murchison and Griffith, 1995, 1996; Easaw et al., 1999; 

Chin et al., 2002). These channels are modulated by many different ligands, suggesting 

that DBB neurons are influenced by a variety of neurotransmitters and neuromodulators 

(Chin and Jhamandas, 2002; Jhamandas and Mactavish, 2002).

B. Receptors Expressed on DBB Neurons

Slice recordings from the DBB demonstrated that there are many receptors 

systems involved in the regulation o f neurons. Initial whole cell recordings demonstrated 

the presence of glutamate receptors on horizontal DBB neurons as perfusion of a-amino- 

3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) increased inward currents during 

voltage ramps, which were blocked by the AMPA receptor antagonist 6-cyano-7- 

nitroquinoxaline-2,3-dione (CNQX) (Easaw et al., 1997). In addition, stimulation o f the 

DBB evoked excitatory postsynaptic currents (EPSCs) that were blocked by CNQX, 

indicating the presence o f a glutamatergic input onto DBB neurons. In the absence of 

magnesium, application of A-methy I - D-aspartate (NMD A) onto the slices also evoked an 

inward current that was inhibited by (-) 2-amino-7-phosphonopentanoate (APV). Further
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examination of EPSCs showed the presence o f a NMDA component on some cells 

(Easaw et al., 1997).

•) I
C. Intracellular Ca stores

Ca2+ is an important intracellular ion, with many physiological functions ranging 

from involvement in release of neurotransmitters at synapses to regulation of neuronal 

death. Given the wide variety o f functions that are influenced by intracellular Ca2+ 

concentration ([Ca2 +]i), it is not surprising that it is very tightly regulated within 

individual neurons.

As discussed earlier, the basal forebrain neurons possess a suite of voltage gated 

Ca2+ channels and neurotransmitter gated channels that gate extracellular Ca2+ entry 

(Murchison and Griffith, 1995, 1996; Chin et al., 2002). The endoplasmic reticulum 

(ER) and the mitochondria are intracellular sources of Ca2+ release in the DBB 

(Murchison and Griffith, 1999, 2000).

The ER is a continuous endomembrane structure that extends throughout the 

neuron from the nuclear envelope to the distal dendrites (Martone et al., 1993). The ER

accumulates intraluminal Ca2+ via the sarco-ER Ca2+ ATPase (SERCA) located on its

2+ .
membrane (Verkhratsky, 2005). Ca is released from the ER by the activation o f either 

inositol 1,4,5-phosphate receptor (InsR) or the ryanodine receptor (RyR), which are 

tetrameric Ca2+ channels that look remarkably similar under electron microscopy (Prentki 

et al., 1984; McPherson et al., 1991; Verkhratsky, 2005). Ca2+ is the endogenous ligand 

for RyRs, and in the DBB, these receptors amplify VGCC mediated [Ca2̂  increases 

(Murchison and Griffith, 1999). A useful pharmacological tool used in the study o f RyR 

is caffeine, which is a membrane soluble agonist o f the RyR and an antagonist o f the
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InsR (Verkhratsky, 2005). At millimolar concentrations, caffeine is capable o f raising 

[Ca2 +]i, and depleting intracellular stores (Murchison and Griffith, 1999). The signal for 

release of Ca2+ from InsRs is transduced from the activation of a cell surface 

metabotropic receptor linked to the enzyme phospholipase C. Phospholipase C then 

cleaves phospholipids to generate inositol 1,4,5-phosphate (IP3), which diffuses to the 

ER and activates InsR (Berridge, 1993).

In addition to their role in energy production, mitochondria also play an important 

role in the regulation of Ca2+ in both pathophysiological and physiological states (White 

and Reynolds, 1996; Murchison and Griffith, 2000). Initial studies focusing on the role 

of mitochondria in excitotoxic neuronal death found that excess accumulation o f Ca2+ in 

the mitochondria from influx of Ca via glutamate receptors plays a key role in neuronal 

death (White and Reynolds, 1996; Stout et al., 1998). In DBB neurons, depolarization of 

the mitochondria has been shown to be capable o f releasing Ca2+, which suggests that 

mitochondria may play a role in the regulation o f Ca2+ (Murchison and Griffith, 2000). 

Given the importance of these intracellular Ca2+ stores in regulating Ca2+ and apoptosis, 

they may be important targets for A(3 in mediating neurodegeneration in AD.

IV. Nicotinic Acetylcholine Receptor in the Central Nervous System

A. General Properties

Nicotinic acetylcholine receptors (nAChRs) are part o f a superfamily of 

pentameric ligand gated channels that includes the serotonin, GABA, and glycine 

receptors. The properties of the nAChRs such as ligand affinity, opening probabilities, 

and cation permeability are dependent on subunit composition. The genes cloned for
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neuronal nAChR subunits are divided into two subfamilies. The a  subunit subfamily has 

9 members (a2 -a l0 ), while the (3 subunit subfamily has 3 members ((32-[34).

The division of neuronal nAChR subunits into 2 subfamilies is based upon the 

homology of the neuronal a  subfamily with the muscle a  subunit, which both have 

consecutive cysteine residues at positions 192 and 193, while the (3 subunit subfamily 

does not have consecutive cysteine residues (Boulter et al., 1987). Two of the most 

commonly expressed nAChRs in the brain are the heteromeric a4|32 and homomeric a  7 

nAChRs. The subunits which form the a4|32 receptor along with the a3 subunit were 

initially discovered by low stringency DNA-DNA hybridization (Boulter et al., 1986; 

Boulter et al., 1987; Goldman et al., 1987). Electrophysiological studies performed on 

oocytes established that a4  and [32 subunits assemble to form functional nAChRs as 

cotransfection of these subunits yielded a greater current response to ACh than if  the a4  

subunit was expressed on its own (Boulter et al., 1987).

The initial pharmacological characterization of the a4|32 nAChR revealed that 

this receptor was not sensitive to blockade by a-bungarotoxin, a well established blocker 

o f muscle nAChRs (Boulter et al., 1987). This suggests that there were additional 

nAChR subunits to be discovered as it was well established that there were a- 

bungarotoxin binding sites in the brain (Wang and Schmidt, 1976; Wang et al., 1978; 

Conti-Tronconi et al., 1985). Eventually, a new a  subunit with a significantly different 

nucleotide sequence and splice sites from the a 2 - a 6  subunits was cloned and termed the 

a l  subunit (Couturier et al., 1990; Schoepfer et al., 1990). Expression of the a l  subunit 

on its own in oocytes resulted in the formation of a nAChR channel with a rapidly 

desensitizing, a-bungarotoxin-sensitive inward current (Couturier et al., 1990).

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The a4(32 and a l  channels display a significant degree o f permeability to Ca2+, an 

important second messenger in intracellular signal transduction pathways. The

2 ”bpermeability of the a l  nAChR to Ca is comparable to that o f the NMDA glutamate 

receptor (Castro and Albuquerque, 1995). The a4|32 nAChR is not as permeable to Ca2+ 

as the a l  nAChR as the fraction of Ca2+ ions passing through a4|32 nAChRs is 2.6%, 

while the fraction of Ca2+ ions passing through a l  nAChR is 11% (Lax et al., 2002;

Fucile et al., 2003). The significant Ca2+ permeability o f nAChRs suggests that they play

2_|_
a role in Ca regulation o f DBB neurons and second messenger signaling.

B. NAChRs in the DBB

A recent report examining nAChRs in the DBB has shown that focal application 

of ACh onto medial septum/DBB neurons, elicits inward currents that can be blocked by 

mecamylamine, a a l  nAChR selective antagonist and dihydro-|3-erythrodine, a non-tx7 

selective antagonist (Henderson et al., 2005). Of the neurons recorded from, a 

mecamylamine sensitive response was present in all cholinergic neurons examined and 

10% of GABAergic neurons. However, 50% of GABAergic neurons displayed non-a7 

nicotinic responses (Henderson et al., 2005). This data should be interpreted with caution 

as mecamylamine is not a pure a l  nAChR antagonist as it blocks both a l  and a|3 

heteromeric nAChRs in the micromolar range (Chavez-Noriega et al., 1997). This leaves 

open the possibility that other nAChRs could be expressed on cholinergic neurons. This 

data suggest that the nAChR receptor system plays an important role in the modulation of 

neuronal activity in the cholinergic basal forebrain system.
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C. Physiological Functions o f  nAChRs in the Central Nervous System

1. Modulation o f  Transmitter Release

NAChRs play an important role in modulation o f neurotransmitter release in the 

brain. Dopamine release from substantia nigra nerve terminals in the striatum was one of 

the first neurotransmitter systems found to be modulated by nAChRs (Westfall, 1974; 

Rapier et al., 1990). Initially, when brain slices containing the striatum were perfused 

with nicotine, an increase in dopamine release was observed which was attributed to 

activation of presynaptic nAChRs (Westfall, 1974). Pharmacological and molecular 

characterization of dopaminergic synaptic terminals established that activation of 

presynaptic a4|32 nAChRs increases dopamine release in the striatum (Rapier et al., 

1990; Sacaan et al., 1995; Sharpies et al., 2000; Zoli et al., 2002). The first 

electrophysiological evidence for presynaptic modulation o f neurotransmitter release was 

found in the medial habenula nucleus o f the hypothalamus (McGehee et al., 1995). 

Activation of a l  nAChRs was found to enhance glutamate release in a Ca2+ dependent 

manner (McGehee et al., 1995).

Neurons in areas involved in learning and memory such as the cortex and 

hippocampus are also modulated by nAChRs. In cortical interneurons, a4|32 and a l  

nAChRs mediate both post-synaptic and pre-synaptic responses (Alkondon et al., 2000). 

Additionally, there are presynaptic a4(32 nAChRs that increase the release of GABA onto 

cortical interneurons (Alkondon et al., 2000). In the hippocampus, a4|32 and a l  nAChRs 

are found to mediate postsynaptic currents in CA1 pyramidal neurons and interneurons, 

however, a l  nAChRs are also found to increase presynaptic release o f GABA (Alkondon 

and Albuquerque, 1993; Alkondon et al., 1997).
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2. NAChRs and Second Messengers

Given that nAChRs have high permeability to Ca2+, studies have established these 

receptors to be involved in signal transduction pathways crucial to cell survival. In 

pheochromocytoma cells, activation of nAChRs depolarizes the cell resulting in Ca2 

influx that activates Protein kinase C (PKC). PKC then phosphorylates Rafl, a mitogen 

activated kinase kinase kinase, starting a cascade that leads to the eventual 

phosphorylation of CREB which then activates gene transcription (Tang et al., 1998). In 

the prefrontal cortex, a4|32 nAChR activation leads to activation of intracellular Ca2+ 

stores, which then activates PKC, leading to increased dopamine release through the 

dopamine transporter (Drew and Werling, 2001). Activation of a l  nAChRs has been 

shown to cause Ca2+ entry via voltage gated Ca2+ channels, which leads to activation of 

intracellular Ca2+ stores via activation o f InsRs (Dajas-Bailador et al., 2002). Release of 

Ca2+ from intracellular stores has been shown to activate the extracellular signal receptor 

kinase pathway (ERK1/2) which is important in learning and memory (Dajas-Bailador et 

al., 2002; Tomizawa and Casida, 2002). There are additional pathways to be discussed 

below.

3. Age-Dependent Alteration o f  nAChRs

In both rats and humans, nAChRs are present during the early moments of life. In 

rats, the a2 , a3 , a4 , a5 , a 6 , (32 and (34 subunits are localized in the diencephalon, 

brainstem, spinal cord and telencephalon (Gotti and Clementi, 2004). However as the 

individual subunits need to combine with other subunits in order to form receptors, 

variations in the temporal expression of the subunits also varies the expression of 

functional nAChRs, for example, the (34 subunit precedes the a3  subunit by 2 days,
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which combine to form a3|34 nAChRs (Zoli et al., 1995). In the human brain, nAChR 

expression starts at 12 weeks of gestation and reaches an apex at 27 weeks of gestation. 

During the perinatal period and early infancy, nAChR concentration decreases in all brain 

areas except for the cerebellum, where concentrations remain constant. Interestingly, the 

highest concentration of nAChRs during fetal development was observed in the nucleus 

basalis o f Meynert, a basal forebrain nucleus (Cairns and Wonnacott, 1988).

During ageing, nAChR binding sights decrease in both rats and humans. Both a  7 

and a 4  subunit mRNA and protein levels were lower in aged humans (60-90 years of 

age) in the DBB, medial septum, and frontoparietal cortex which may contribute to 

cognitive decline (Tohgi et al., 1998). Declines in nAChR receptor expression has also 

been observed in rats, however, the level o f nAChR loss is not associated with decreased 

performance in learning and memory tasks (Smith et al., 1995).

4. NAChRs and AD

NAChR expression in certain areas of AD brains is significantly reduced when 

compared to age-matched controls (Flynn and Mash, 1986). Removal of cholinergic 

input in rats by selectively lesioning cholinergic neurons in the basal forebrain leads to 

decreased performance in learning and memory task (Steckler et al., 1995). Furthermore, 

nicotinic agonist treatment improves performance in memory and learning tasks (Levin 

and Simon, 1998).

Studies measuring nicotinic radioligand binding comparing age-matched control 

brains with AD brains have established that there is a significant decrease in nAChR 

binding sites (Whitehouse et al., 1988; Warpman and Nordberg, 1995). These decreases 

in nAChR have been localized to mainly those areas of the brain associated with
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cognition such as the frontal cortex, temporal cortex, and the hippocampus (Rinne et al., 

1991; Warpman and Nordberg, 1995). Immunohistochemical examination o f the 

subtypes of nAChRs frontal cortex revealed a 30% decrease in a4|32 and a l  nAChR 

neurons (Wevers et al., 1999). In the temporal cortex, a4|32 nAChR binding sites and a4  

subunit expression were decreased, while there was no change in a3  and a l  subunit 

expression (Martin-Ruiz et al., 1999). In the hippocampus, there was a decrease in 

nAChR binding sites in the dentate granular layer, the presubiculum, and the 

parahippocampal gyrus, however, no changes in nAChR binding sites were observed in 

the CA1 or CA3 layers (Perry et al., 1995). The loss o f specific nAChR binding sites in 

brain regions involved in memory and learning may play an important role in mediating 

the cognitive impairment observed in AD.

V. General Properties of Amyloid

A|3, a 39-43 amino acid peptide, which was isolated from amyloid plaques, plays an 

important role in the AD pathophysiological process (Glenner and Wong, 1984; Masters 

et al., 1985a; Masters et al., 1985b). Initial studies of AD individuals detected no 

correlation between dementia and insoluble A|3 load, however, when both soluble and 

insoluble forms of A|3 were measured, the A|3 load in these areas correlated with the 

extent of cognitive decline (Terry, 1999; Naslund et al., 2000).

The amyloid hypothesis postulates that an increase of A|3 production is the 

primary pathophysiological mediator o f AD (Selkoe, 2001). Three lines of evidence 

support the basis for this hypothesis. The deposition of A|3 in the brains of AD 

individuals is a major pathological finding. Secondly, application o f A|3 onto a variety of 

animal and human neuronal preparations is neurotoxic (Mattson et al., 1992; Yan et al.,
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1996; Nakagawa et al., 2000; Jhamandas and MacTavish, 2004). Finally, mutations 

associated with early onset AD increase A|3 production (Citron et al., 1992; Borchelt et 

al., 1996). These mutations are located either on proteolytic processing sites of APP, 

which is the precursor of Afl or on the genes of proteins responsible for APP cleavage 

(Chartierharlin et al., 1991; Stgeorgehyslop et al., 1992). Individuals afflicted with 

Down’s syndrome, who have an extra chromosome 21, which is the chromosome that 

APP is located on, exhibit severe mental retardation and developmental delay along with 

significant deposition of A|3 in their brains (Masters et al., 1985c).

A. A (5production

A|3 is a cleavage product of a larger precursor protein, the APP (Kang et al., 1987; 

Kitaguchi et al., 1988; Ponte et al., 1988; Tanzi et al., 1988). There are 8  known isoforms 

of the APP gene that are formed by differential splicing, however the major iso forms of 

APP are 695, 751 and 770 residues in length (Sandbrink et al., 1996). The 751 and 770 

residue form of APP are different from the 695 residue form in that they have a Kunitz- 

type serine protease inhibitor domain (Kang et al., 1987; Kitaguchi et al., 1988; Ponte et 

al., 1988; Tanzi et al., 1988).

APP has multiple cleavage sites and is processed either by a non-amyloidogenic 

or amyloidogenic pathway (Figure l)(Selkoe, 2001). a-Secretase cleaves APP to 

generate a long fragment termed aA PPs and an 83 amino acid carboxy-terminal peptide 

(Esch et al., 1990; Sisodia et al., 1990). Proteolytic cleavage of APP by a-secretase is the 

first step of non-amyloidogenic cleavage as it precludes the formation of A|3 (Buxbaum 

et al., 1998; Lammich et al., 1999). If APP is not processed by a-secretase, APP is 

cleaved by an enzyme termed [3-secretase to generate |3APPS, a fragment that is slightly
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smaller than aA PPs and a 99 amino acid carboxy-terminal fragment that begins at residue 

1 o f the A|3 protein (Vassar et al., 1999; Selkoe, 2001). The carboxy-terminal fragments 

produced by a- and (3-secretase cleavage are subsequently cleaved by y-secretase. y- 

Secretase cleavage of the 83 amino acid COOH-terminal fragment yields a NH 2 -terminal 

fragment terminal peptide termed p3, while cleavage of the 99 amino acid carboxy- 

terminal fragment yields the 39 to 43 amino acid forms of A|3 (Selkoe, 2001). The 

proteolytic enzyme responsible for y-secretase activity is composed of 5 proteins, which 

are termed presenilin-1 , presenilin-2 , alphl, nicastrin and pen - 2  that form an 

intramembrane complex to facilitate carboxy-terminal cleavage (Selkoe, 2002a).

B. Conformation o f  A ft

After A|3 is secreted, it forms different conformations which determine its effects 

on neurons (Pike et al., 1993; Lambert et al., 1998; Walsh et al., 2002). The simplest 

forms of A|3 are the soluble monomeric and small oligomeric forms that are found in the 

cerebrospinal fluid (Hilbich et al., 1991; Seubert et al., 1992). The small oligomeric 

forms have been shown to inhibit long term potentiation, while the monomeric forms 

exhibited no effect (Walsh et al., 2002). In addition, small oligomeric forms are 

significantly more neurotoxic than either fibrils or monomers and the toxicity is specific 

to the aggregation of A|3 (Pike et al., 1993; Lambert et al., 1998; Dahlgren et al., 2002). 

Over time, oligomeric forms o f A|3 eventually aggregate into non-soluble fibrils that are 

in equilibrium with soluble forms of A|3. These are the major constituent of neuritic 

plaques (Hilbich et al., 1991). However, prior to the formation o f fibrils, a transient 

proto-fibril conformation is observed (Harper et al., 1997; Walsh et al., 1997). The 

proto-fibril is 6-10 nm in diameter and between 30 and 500 nm in length, while fibrils
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exhibit a beaded appearance, with a maximal diameter that is larger than the proto-fibril 

and extend for over 1 pM (Harper et al., 1997; Walsh et al., 1997). A(h - 4 2  is significantly 

more fibrilogenic than Af31_4 0  (Harper et al., 1997). The fibrillar form of A(3 is 

neurotoxic, although it is significantly less neurotoxic than the soluble oligomeric forms 

(Dahlgren et al., 2002). The work on the different conformations of A|3 highlights the 

importance of soluble conformations of A|3 in mediating neuronal effects.

C. Effects o f  A (3 on neurons

A(3 has been shown to disrupt neuronal function and mediate neurotoxicity in 

many neuronal systems, however, its definitive role and receptor that mediates its actions 

remains unknown. Several pathways have been proposed to mediate A|3 neurotoxicity. 

One hypothesis is that A (3 mediates neurotoxicity by causing oxidative stress on neurons 

(Behl et al., 1994). Generation o f free radicals results neuronal damage and activation of 

a pro-inflammatory transcription factor NF-kappa-B, which is believed to further 

contribute to neuronal death (Kaltschmidt et al., 1997). Another possible mediator of A|3 

mediated neurotoxicity is the disruption of Ca2+ homeostasis (Mattson et al., 1992). The 

exact mechanism whereby A|3 affects Ca2+ homeostasis is unknown and many theories 

have been suggested. Evidence for A|3 peptides forming plasma membrane channels that 

pass Ca2+ ions have been observed in lipid bilayers, however there is no convincing 

physiological data in neurons demonstrating the passage o f Ca2+ ions through these 

channels (Arispe et al., 1993; Rhee et al., 1998). Aggregated A|3 inhibits Ca2+ current

9+through voltage-gated Ca channels, while unaggregated A|3 inhibits this current 

(Ramsden et al., 2002). A (3 has been shown to disrupt the functioning of the ER, an

9+important regulator o f Ca and results in the activation o f caspases, the proteolytic
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cascade which leads to apoptosis (Nakagawa et al., 2000). A|3 has also been shown in 

slice preparations to enhance glutamate release, which would lead to increased Ca2+ entry 

into neurons via glutamatergic receptors (Kar, 2005). These studies support the 

hypothesis that A fi disruption o f  Ca2 ' homeostasis is an important step in mediating 

neurodegeneration.

D. A/3 and nAChRs

A major conceptual advance in the role o f the nAChR in neurodegeneration was 

the discovery that both the 40 and 42 amino acid forms of the A|3 protein could bind to 

nAChRs (Wang et al., 2000b; Wang et al., 2000a). Further studies have shown that A|3 is 

capable of functional modulation o f the nAChR (Liu et al., 2001; Pettit et al., 2001; 

Dineley et al., 2002; Fu and Jhamandas, 2003; Grassi et al., 2003). In their original 

studies on Ap-nAChR binding, Wang et al. (2000a) showed that A|3 were capable of 

competitively displacing a l  nAChR selective antagonists from synaptic membranes 

produced from guinea pig and rat cortex and hippocampus with picomolar affinity. A|3 

was also found to be able to bind to a4|32 nAChRs with nanomolar affinity (Wang et al., 

2000a). Additional evidence for the A|3 interaction with nAChR was obtained from co- 

immunoprecipitation data (Wang et al., 2000b). A [3 binding nAChR could potentially 

activate apoptotic pathways and the A|3-nAChR complex may seed the development of 

amyloid plaques (Wang et al., 2000b). The nAChR-A(3 binding studies have been very 

interesting, however, it is problematic that other laboratories have had difficulty 

reproducing the original findings of Wang and co-workers (2000a, b).

Electrophysiological experiments examining the effect o f Af3 on nAChR in the 

CNS have focused on two subtypes o f nAChR, the homomeric a l  nAChR and the

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



heteromeric a4|32 nAChR. Initially, studies showed that in CA1 stratum radiatum 

intemeurons, 100 nM Api . 4 2  blocked a  7 nAChR responses (Liu et al., 2001; Pettit et al., 

2001; Grassi et al., 2003). Studies o f the A|3 interaction with a l  nAChRs in Xenopus 

oocytes expression systems suggest that A|3 i_4 2  weakly activates nAChRs resulting in 

desensitization of the a l  nAChRs (Dineley et al., 2002; Grassi et al., 2003). Dougherty 

et al. (2003) examined the effect of A|3 on presynaptic terminals and found that A|3 

antagonizes homomeric a l  nAChR at picomolar concentrations by blocking agonist 

binding.

Further examination of A|3 actions at a cellular level also revealed that it has 

effects on a 4  nAChRs (Fu and Jhamandas, 2003; Wu et al., 2004). In basal forebrain 

neurons, A|3 i_4 2  activated a4|32 nAChRs in a dose dependent manner and this activation 

lead to depolarization o f these neurons (Fu and Jhamandas, 2003). Another study 

examining the effect of A|3 on oc4|32 nAChR expressed in a cell line revealed that A|3 

blocks a4|32 nAChR in a non-competitive manner, however, when the cell line was 

transfected with functional a l  nAChRs, A|3 m 2  was unable to block these receptors (Wu 

et al., 2004). Given the conflicting data with regards to A|3i_4 2  and nAChRs interactions, 

two issues remained to be resolved. Firstly, the nAChR subtype that A|3 interacts with is 

unclear and secondly, whether A|3 acts as an agonist or antagonist at such receptors 

remains to be resolved.

The consequences of these A|3 actions on nAChR interactions are undoubtedly 

wide-ranging but from a pathophysiological point of view, the effects o f such interactions 

on Ca2+ homeostasis in the cell are perhaps the most intriguing. A potential consequence 

of the A|3-nAChR interaction would be the excessive entry o f Ca2+ into presynaptic
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terminals resulting in inappropriate desensitization o f nAChR and activation of second 

messenger pathways that may lead to neurodegeneration (Dougherty et al., 2003). 

Alternately, the interaction of A|3 and the nAChR may lead to internalization of the 

receptor and A|3i_42, where A|3 may mediate additional effects (Nagele et al., 2002).

Activation of the a l  nAChR also activates second messenger systems important 

in neuroprotection. The effect of A|3 has been examined on the Janus kinase 2 (JAK2) 

and the mitogen activation protein kinase (MAP2) pathways, which are two 

neuroprotective pathways that the a l  nAChR activates (Dineley et al., 2001; Shaw et al., 

2002). Activation of the JAK2 pathway results in the JAK2 enzyme phosphorylating 

itself and activating downstream mediators phosphatidyl inositol and akt to prevent 

activation of apoptotic pathways (Shaw et al., 2002). It was found that a l  nAChR 

mediated neuroprotection via this pathway in cultured neurons was inhibited by AP 1 .4 2  

(Shaw et al., 2002). Another possible mechanism via which AP 1 -4 2  mediates its effects is 

via excessive activation of a l  nAChR, which would down-regulate the MAPK2 pathway 

and reduce the phosphorylation of its downstream target, the cAMP regulatory element 

binding protein (CREB). This cascade may lead to derangement of the signaling pathway 

(Dineley et al., 2001). These data demonstrate the importance of second messenger 

systems mediated by nAChRs and the ability of A|3 to modulate these systems. As A f  has 

been implicated to both disrupt synaptic function and disturb Ca2+ homeostasis, the 

studies on nAChR-Af interactions would shed light on the effect o f  A f  on two important 

cellular functions; the tight regulation o f  [Ca2+]i and synaptic function.
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VI. Objectives and Rationale

Given the recent data showing that A|3 binds to nAChRs, I examined the effect of

A|3 on basal forebrain neurons in two ways. In the first part of my thesis, I examined

2_|_
nAChR mediated Ca rises in acutely dissociated DBB neurons using the fluorescent 

ratiometric Ca2+ dye fura-2 and investigated the mechanisms whereby A|3 may modulate 

[Ca2+]i. In the second part of my thesis, I examined the actions of A|3 on nAChR 

modulation of excitatory synaptic neurotransmission in cholinergic DBB neurons using 

brain slices, an experimental preparation where the neuronal connectivity is intact.
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Chapter 2

P-Amyloid Enhances Intracellular Calcium Rises 

Mediated by Intracellular Calcium Stores and Nicotinic 

Receptors in Acutely Dissociated Rat Basal Forebrain

Neurons

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that affects 

elderly patients and is characterized by a progressive decline in memory and other 

cognitive functions such as language and perception (McKhann et al., 1984). Key 

neuropathological findings in patients with AD include extracellular neuritic plaques 

composed of (3-amyloid peptide (A|3), neurofibrillary tangles composed of abnormally 

phosphorylated tau protein, and loss of cholinergic neurons o f the basal forebrain 

(Yankner, 1996; Mayeux and Sano, 1999). A|3, a 39-43 amino acid peptide, plays an 

important role in the AD pathophysiological process as total A|3 content in the brain 

correlates with cognitive decline (Naslund et al., 2000). Although the precise mechanism 

of A|3 toxicity has not been established, A|3 and other peptide fragments derived from 

amyloid precursor protein may destabilize intracellular calcium (Ca2+) homeostasis via 

modulation of specific ion channels (Mattson et al., 1992; Fraser et al., 1997). An 

intriguiging class of candidate receptors for A|3-mediated actions is the neuronal nicotinic 

acetylcholine receptors (nAChRs), a family o f ligand-gated cation permeable channels 

with multiple subtypes that are widely distributed in the human brain. nAChRs are 

involved in a number of physiological and behavioral processes and post-mortem studies 

o f AD individuals demonstrate that reduced numbers of nAChRs in brain regions are 

associated with AD (Nordberg and Winblad, 1986; Whitehouse et al., 1988; Paterson and 

Nordberg, 2000).

A(31 -4 2  binds to a l  and a4|32 subtypes o f nAChRs with high affinity in the 

picomolar and nanomolar range respectively (Wang et al., 2000b; Wang et al., 2000a). In 

the rat basal forebrain, A|3 directly activates a4|32 or a3 postsynaptic nAChRs in the
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diagonal band of Broca (DBB), a basal forebrain nucleus (Fu and Jhamandas, 2003). 

Based on previous data this A|3-non-o.7 nAChR interaction appears to occur on 

cholinergic rather than GABAergic basal forebrain neurons (Jhamandas et al., 2001).

Interactions of amyloid peptides with cholinergic neurons are considered to be a 

basis for the modified cholinergic tone observed in AD (Auld et al., 2002). Both a  7 and 

non-a7 nAChRs are abundantly located within the rat basal forebrain cholinergic system 

(Dominguez del Toro et al., 1994; Rogers et al., 1998). Although the exact functional 

consequences o f A (3 interaction with nAChRs remain unknown, nAChRs regulate many 

neuronal processes. They play an important role in neurotransmission, synaptic 

modulation, and second messenger signaling via intracellular Ca2+ stores (Tsuneki et al., 

2000; Dajas-Bailador et al., 2002; Henderson et al., 2005). Thus, A|3 disruption of 

synaptic transmission and Ca2+ homeostasis could be mediated via an interaction with 

nAChRs (Mattson et al., 1992; Kamenetz et al., 2003).

The main sources o f intracellular Ca2+ stores in the DBB are the endoplasmic 

reticulum (ER) and the mitochondria (Murchison and Griffith, 2000). These stores have 

been shown to be important in both the release and buffering of Ca2+ (Murchison and 

Griffith, 2000). Accumulation of Ca2+ in the mitochondria and endoplasmic reticulum 

has been associated with apoptotic cell death in pathophysiological conditions and A|31 . 4 2  

has been shown to mediate apoptosis via an ER-dependent pathway (White and 

Reynolds, 1997; Nakagawa et al., 2000). Thus examining Ca2+ regulation in these 

organelles is important to understanding A|3 neurotoxicity.

I examined the effect o f A(31 .4 2  modulation of nAChRs mediated Ca2+ rises and

2+ - 2+  
the associated intracellular Ca stores by performing ratiometric Ca imaging in acutely
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dissociated DBB neurons. nAChR activation was demonstrated to be associated with 

activation of intracellular Ca2+ release. I also demonstrated that A(3 m 2  modulates the 

repeated activation o f nAChRs by facilitating the release of Ca2+ from intracellular Ca2+ 

stores through overfilling of thapsigargin-sensitive stores.

MATERIALS AND METHODS 

Dissociation Procedures

Ratiometric fura-2 imaging was performed on acutely dissociated rat DBB 

neurons. The protocol for preparation of tissue was reviewed and approved by the 

University of Alberta Health Sciences Laboratory Animal Services (Protocol number 

154/04/05). Details o f the procedure for acute dissociation o f neurons from the DBB 

have been previously described (Chin et al., 2002). Briefly, brains were quickly removed 

from decapitated male Sprague Dawley rats (21-25 day postnatal) and placed in cold 

artificial cerebrospinal fluid (ACSF) that contained (in mM) 140 NaCl, 2.5 KC1, 1.4 

CaCf, 5 MgCB, 10 HEPES, and 33 D-glucose (pH 7.4). Brain slices (350 pm thick) 

were cut on a vibratome, and the area containing the horizontal and vertical limbs of 

DBB was dissected out. Acutely dissociated neurons were prepared by the enzymatic 

treatment of slices with trypsin (0.65 mg/ml) at 30 °C for 16 min, followed by 

mechanical trituration for dispersion o f individual cells. Cells were then plated on poly- 

L-lysine (0.005% wt/vol)-coated cover slips and viewed under an inverted microscope 

(Zeiss Axiovert 35). Neurons were identified based upon previously established visual 

criteria (Chin et al., 2002). Basal forebrain neurons could be differentiated from glia 

based upon the presence of truncated dendrites. In addition, neurons were larger than glia. 

All solutions were kept oxygenated by continuous bubbling with 100% oxygen.
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Calcium Imaging

Neurons were incubated with 10 pM fura-2 AM (Molecular Probes, Eugene, 

Oregon, USA) in 1 ml of oxygenated ACSF for 20 min and perfused for 20 min prior to 

imaging. All experiments were performed at room temperature (20-22 °C). 

Measurements were collected every 8  seconds for 2 minutes to establish a baseline. 

During focal application of drugs, the image collection rate was increased to 1 Hz for 15 

seconds and then returned to its baseline o f rate of 1 image every 8  seconds. Fura-2 

loaded neurons were exposed to 340 and 380 nm light emitted by a Polychrome IV 

monochromator (T.I.L.L. Photonics GMBH, Pleasanton, CA, USA) controlled by 

Metafluor 5.03 software (Universal Imaging Corporation, Downingtown, PA, USA) and 

emitted fluorescence was collected by a CoolSnap HQ CCD camera (Roper Scientific, 

Duluth, GA, USA). A three-point calibration was performed on acutely dissociated cells

94 -loaded with 100 pM fura-2 and EGTA/Ca buffered solutions via patch pipette with a 

final concentration of 0, 224 nM and 5 mM of Ca2+ (Grynkiewicz et al., 1985). [Ca2+]j

for the pipette solutions was determined with MaxChelator 2.32 (Stanford, Chris Patton).

The values obtained from the calibrations were used to convert background

2+
subtracted experimental fluorescent intensity ratios into [Ca ] over the physiological 

range of [Ca2 +]i. using the following equation: [Ca2+]; = Kd(R-Rmjn)/(Rmax-R), where Kd 

is the dissociation constant for fura-2, Rn,jn is the background subtracted 340/380 ratio

9 +  9 +when [Ca ]i was 0, Rmax is the background subtracted 340/380 ratio when [Ca ]i was 5 

mM and R is the experimentally measured background subtracted 340/380 ratio 

(Grynkiewicz et al., 1985).
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Immunohistochemistry

DBB cells were chemically and mechanically isolated from 14-21 day old 

Sprague Dawley rats as described above. The DBB cell suspension was centrifuged for 5 

minutes at 500 rpm onto glass slides. Cells were not fixed. Cells were first blocked with 

1% bovine serum albumin (Sigma, Oakville, CA) for 1 hour and then incubated overnight 

with primary rabbit antibodies for vesicular choline acetyltransferase (vChAT: 1:2500 

dilution) a4  (1:250 dilution) or a  7 (1:500 dilution; Santa Cruz Biotechnology Inc., Santa 

Cruz, USA) and then washed 3 times in 0.1 M phosphate-buffered saline (PBS), pH 7.2. 

Cells were then incubated with biotinylated goat anti-rabbit antibodies for 1.5 hours and 

washed again with PBS. Next, cells were incubated with the fluorescent dye Alexa 546 

streptavidin to yield red fluorescence (1:400 dilution Molecular Probes, Eugene, Oregon). 

Cells were then washed 3 times in PBS and incubated with 1% BSA then incubated 

overnight in a different primary antibody. The following day they were washed 3 times 

in PBS and incubated with Alexa 488 chicken anti-rabbit antibody to green fluorescence 

(1:400 dilution) and washed 3 times in PBS. Slides were allowed to air dry and 

dehydrated by ethanol and xylene before being coverslipped with Cytoseal (Canada Wide 

Scientific, Ottawa, ON). Slides were examined with a Zeiss Axioplan 2 at 400x 

magnification and images captured with Zeiss Axiocam MRc camera and MGrab 

software. For each colocalization study, regions o f 1 mm2  were randomly counted on 3 

slides. Confocal images were collected at 900x magnification on an Olympus FV1000 

(Olympus, Canada) and optimized for brightness and contrast in Corel Draw 9 (Corel, 

Canada).
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Drugs

Drugs were applied by a 4-channel gravity feed focal applicator controlled by a 

Master- 8  pulse generator. All chemicals were purchased from Sigma except for the 

following chemicals. AP 1 -4 2  and reverse peptide AP4 2 -1 , which were purchased from 

American Peptide Co. (Sunnyvale, USA) and 7-chloro-5-(2-chlorophenyl)-l,5-dihydro- 

4,l-benzothiazepin-2(3H)-one (CGP-37157) was purchased from Calbiochem (San 

Diego, USA). AP 1 .4 2  was prepared from aliquots stored at -  80 °C and used on the day of 

the experiments. Nicotine was prepared from 100 mM nicotine in ACSF stock solution 

stored in the dark at room temperature on the day o f the experiment. Nicotine was

• • • 2 " b  •applied via focal applicator. During Ca imaging experiments, Af31 _4 2  was applied both 

through the focal applicator and in the bath solution.

Statistical Analysis

[Ca2+]i measurements under control conditions and during drug applications were 

compared using Student’s paired t-test to detect differences between treatments. 

RESULTS

2 |
Nicotine-Evoked Ca Responses in DBB Neurons: Modulation by A [5

The average basal [Ca2+]j for all cells measured was 99.4 ± 5.5 nM (n = 115). 

Doses and duration of applications o f nicotine were examined to establish an optimal 

dose that produced a reproducible response o f a sufficient amplitude. Figure 2-1A shows 

a DBB neuron exposed to 10 and 20 mM nicotine for 5 s and Figure 2 -IB shows the 

dose-response relationship between 5 s applications o f varying concentrations of nicotine 

and the corresponding rise in [Ca2 +]i. Nicotine has previously been shown to desensitize 

receptor subtypes, especially the a7  nAChR, however we did not observe desensitization
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in our experiments. Control experiments were performed to exclude the contribution of 

osmolarity-related changes in [Ca2+], and to ensure that nicotine applications did not 

cross-react with muscarinic receptors to alter [Ca2 +]j. Neither focal application o f iso- 

osmotic sucrose solutions nor o f 500 uM muscarine elicited any change in [Ca2+]j (Figure 

2-2A, B respectively).

Next, the effect of soluble A|3i_4 2  on the focal application of nicotine was 

examined. In 16 o f 18 cells examined, 100 nM A(3i_42 significantly potentiated nicotinic 

mediated [Ca2+]j rises (p<0.05; Figure 2-3A). Control nicotinic responses were 63 ± 12 

nM, while responses in the presence of 100 nM A|3 | . 4 2  increased to 137 ± 25 nM 

representing a 98 ± 12% increase over controls. The potentiation of nicotinic responses 

by A|3i_42 was maintained during washout o f APi_4 2  and was dose dependent (Figure 2-4). 

The A|3i-4 2  potentiation of the nicotine evoked [Ca2+]j had an EC50 of 10 nM when fitted 

with a sigmoidal dose-response curve, although the maximum response could be at a 

higher dose. We observed no significant change in nicotine mediated [Ca2+]j rises in 

response to A(31 .4 2  in 2 of 18 cells (Figure 2-3B). 100 nM A|3i. 4 2  also caused a rise in 

baseline [Ca2+]j o f 54 ± 14 nM when stimulated with nicotine. Application of 2 

concentrations of A(3 i_4 2  alone either via rapid 5 s focal application or by bath application 

(100 nM, n = 6  and 1 pM n = 5;/?>0.05) did not change basal [Ca2+]j (Figure 2-5A, B). In 

the presence of the reverse peptide, A(34 2 -i, neither nicotine-evoked [Ca2+]j nor baseline 

[Ca2+]i changed significantly (p<0.05; n = 5; data not shown).
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Af3 Potentiation o f  nAChR-Induced Elevation o f  [Ca2 ] l is Not Mediated by Voltage 

Gated Ca2+ Channels

• 2+Previous studies have reported that A|3 may modify Ca entry via modulation of

Ca2+ channels (Silei et al., 1999; Ramsden et al., 2002). Therefore, in the next set of

experiments, I bypassed the nAChRs by applying depolarizing concentrations o f KC1 at

2+ , .
doses evoking equivalent rises in [Ca ]i as nicotine. A dose-response relationship for

2_|_
KCl-induced elevations in [Ca ]i was established and on the basis o f this, 1 s 

applications of 8  mM KC1 were used to depolarize the cell. Application o f 8  mM KC1 

yielded an average rise of [Ca2+], o f 53 ± 10 nM (n = 7) which is similar to that evoked by 

nicotine (see Figure 2-3). Concomitant application of A(3i.42, with repeated challenges by 

8  mM KC1 resulted in no significant change in KCl-induced [Ca2+]i elevation (59 ± 13 

nM; n = 5;/>>0.05; Figure 2-6).

A f  Potentiates Release o f  Ca2+from  Intracellular Ca2+ Stores

The increases o f [Ca2+]i evoked by nicotine may originate from extracellular Ca2+ 

entry via the nAChRs and/or from the release o f intracellular Ca2+ from stores (Tsuneki et 

al., 2000; Dajas-Bailador et al., 2002). Thus in the next set of experiments, I examined 

the source of the nicotine-mediated [Ca ]i rise. When cells were perfused with 0 

Ca2+/200 uM EGTA, there was a 79.4 ± 5.5% reduction in the nicotinic response 

(/?<0.05; n = 7; Figure 2-7A), suggesting that the majority of the nicotine-mediated rise in

[Ca2+]i is mediated by extracellular Ca2+ entry. This also demonstrates that there is an

2_|_

intracellular Ca component to the nicotine-mediated response. Application of 10 pM of 

di-(tert-butyl)-l,4-benzohydroquinone (BHQ), a SERCA inhibitor, in perfusing solution 

containing 0 Ca2+/1 mM EGTA resulted in an initial rise in [Ca2+]j due to a transient net
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efflux of Ca2+ from intracellular stores and then completely abolished the nicotine- 

mediated [Ca2+]i rise as the intracellular stores are depleted. In fact, at times greater than 

1500 s in Figure 2-7B, each application of nicotine caused a small decrease in [Ca2 +]i, 

which may be due to Ca2+ efflux via nAChRs due to the reversal of the Ca2+ 

concentration gradient (p<0.05; n = 7; Figure 2-7B). In order to test this possibility I 

performed the same experiment in the presence o f non-a7 nAChR antagonist dihydro- 

beta-erythroidine (5 uM DH|3E) and the a l  nAChR antagonist a-bungarotoxin (aBTX). 

Application of nAChR antagonists did not block the small decrease in [Ca2+]j observed 

with nicotine in the presence o f BHQ and 0 Ca2+/1 mM EGTA (data not shown). 

Another possible explanation may be due to the fluorescent properties o f nicotine. I 

observed that focal application o f nicotine increased background 340 nm and 380 nm 

fluorescence, which resulted in an overall decrease in the background ratio. This is

unklikely an osmotic effect as previous applications of iso-osmotic did not result in any

2_|_
deflection of the baseline [Ca ]i.

Previously, nAChR receptors have been shown to be linked to intracellular Ca2+

stores via the PLC pathway in SE1-SY5Y cells (Dajas-Bailador et al., 2002). In order to

?+determine mechanisms underlying nAChR coupling to intracellular Ca stores in DBB 

neurons, I examined the effect o f xestospongin on nAChR responses. Xestospongin has 

been reported to be an antagonist o f IP3 -mediated (inositol 1,4,5-triphosphate) Ca2+

release (Reviewed in Verkhratsky, 2005, See Discussion). In the presence o f 5 uM

2 |
xestospongin, nicotine-mediated [Ca ], rises were reduced from 82.9 ± 13.1 nM to 21.8 

± 12.0 nM, which represents an inhibition of 82.3 ± 7.1% (n = 14; p<0.05; Figure 2-8A, 

B). Application of xestospongin also increased the basal [Ca2+]i from 138.8 ± 13.5 nM to
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188.3 ± 19.7 nM, an increase of 38.4 ± 12.7% (n = 14; /?<().05). I explored the effect of 

A (31-42 on the intracellular Ca2+ component of the nicotine-mediated [Ca2+]j rise further by 

applying caffeine, an agonist of intracellular Ca2+ stores. Focal application o f caffeine 

for 5 s caused an average rise in [Ca2+]j of 175 ± 17 nM. In the presence of 400 nM 

thapsigargin (TG), a SERCA pump inhibitor, the caffeine response was abolished 

(p<0.05; n = 5; Figure 2-9A). As with the other SERCA inhibitor BF1Q (Figure 2-7B),

2_p
the application of TG  caused a slow and transient elevation in [Ca ]j (Figure 2-7A ), 

which can be attributed to transient net efflux from and eventual emptying of intracellular 

Ca2+ stores. In the presence o f 100 nM A|3i_42 there was a potentiation of caffeine- 

mediated [Ca2+]j rises o f 137 ± 37 % and a reversible rise in baseline [Ca2+]i of 42.0 ± 8.5 

nM. In 3 of 5 neurons, no caffeine-mediated [Ca2+]i rise was observed during washout 

(p<0.05; n = 5; Figure 2-9B).

Application of TG significantly inhibited A (3 mediated potentiation of nAChR

2_j_
mediated [Ca ]i rises. In the 5 cells examined, A(3 potentiated the nAChR mediated 

[Ca2+]i rises from 37 ± 8  nM to 89 ± 17 nM (141 ± 22%; p  < 0.05; Figure 2-10A). 

Application o f TG inhibited this response to 29 ± 7 nM, which represents a 6 8  ± 4 % 

inhibition. The next set of experiments examined the effect o f a mitochondrial release 

inhibitor CGP-37157 on A|3 potentiation. In 5 cells, with an average potentiation o f 97 ± 

18%, 25 uM CGP-37157 significantly inhibited this potentiation by 73 ± 7% (n = 5; 

j?<0.05; Figure 2-10B). Previously, CGP-37157 was reported to inhibit voltage gated 

Ca2+ channels (Baron and Thayer, 1997). In our experiments, 25 pM CGP-37157 did not 

inhibit 8  mM K+ mediated [Ca2+]i rises. In 4 cells, 8  mM K+ evoked a 64 ± 18 nM 

increase, while in the presence of 25 pM CGP-37157 8  mM K+ evoked a 70 ± 27 nM
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[Ca2+]j rise (/?>0.05). Furthermore, C G P-37157 did not inhibit 10 mM caffeine mediated 

responses (n = 4; />>0.05). In 4 cells, 10 mM caffeine elicited average responses of 117 ± 

37 nM, while in the presence o f 25 uM C G P-37157 10 mM caffeine response was 111 ± 

27 nM.

Pharmacology ofNon-a.7 and a7  nAChR Receptors on DBB Neurons

I then elucidated the pharmacology o f the nicotinic response with the non-a7 

nAChR antagonist DH|3E and the a l  subunit containing competitive nAChR antagonist 

aBTX. DH(3E (5 pM) inhibited nicotine-mediated rises of [Ca2+]j in 7 of 12 neurons by 

42.8 ± 6.0 (p<0.05 Figure 2-11 A). In the presence of 100 nM aBTX, the nicotine 

response was decreased by 35.8 ± 7.7 % (n = 10), suggesting that nicotine also activates, 

in part, a l  nAChRs (Figure 2-1 IB). In the presence of 5pM DF1|3E and 100 nM aBTX, 

blocked 70 ± 12 % of the nicotine evoked response (n = 5; Figure 2-12A, B). The 

residual nicotinic response is similar in amplitude as that observed in the experiment 

when extracellular Ca2+ was removed suggesting that the residual response reflects 

activation of intracellular Ca2+ stores that are not activated by Ca2+ influx.

Examination of acutely dissociated cells from the DBB using double-labeling 

immunohistochemistry revealed the presence of a4  or a l  nAChR subunits on vChAT 

positive neurons (Figure 2-13A-D). Co-localization of a4  and a l  nAChR subunits on 

the same DBB neurons was also observed (Figure 2-13 E-G). Cell counts of slides 

double labeled for a4  and a l  subunits revealed that of the neurons counted expressing at 

least one type o f nAChR subunit, 36.0% were labeled only for the a4  subunit (27/75 

neurons), 16.0% were labeled only for the a l  subunit (12/75 neurons) and 48.0% co

expressed both a4  and a l  nAChR subunits (36/75 neurons; Figure 2-13H). Furthermore,
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46.5% of ChAT labeled neurons expressed the a4  nAChR subunit and 57.0% of ChAT 

labeled neurons expressed the a  7 nAChR subunit.

DISCUSSION

In this study, focal application of nicotine to acutely dissociated rat basal 

forebrain neurons increased [Ca2+]i through a combination of enhanced extracellular Ca2+ 

entry via activation of a4  subunit- and a7-containing nAChRs, and also Ca2+ release 

from intracellular stores with repeated challenges of nicotine. A|3 potentiated the 

nicotine-mediated [Ca2 +J, rise in the DBB neurons irreversibly, although applications of 

A(3 alone at concentrations up to 1 uM did not increase [Ca ]j. A|3 potentiation of 

nicotine-evoked [Ca2+]i signals was not due to an enhancement of voltage-dependent Ca2+

2_j_
conductances since A|3 did not potentiate Ca entry due to KC1 induced depolarization. 

It appears that the nicotine-evoked rises in [Ca2+]j involved the release o f Ca2+ from 

intracellular stores as such elevations in [Ca2+]j could be significantly attenuated by both 

BHQ and xestospongin, a putative IP 3 receptor blocker, which may also inhibit SERCA 

pumps (Dajas-Bailador et al., 2002; Verkhratsky, 2005). A|3 also potentiated caffeine- 

mediated rises in [Ca2+]i suggesting that A|3 increases the release o f Ca2+ from at least 

some intracellular stores. Furthermore, A|3 potentiation o f caffeine-evoked increases in 

[Ca2+]i could be abolished by the SERCA inhibitor TG. T G  was also able to block A|3 

potentiation of nicotine mediated rises suggesting that A (3 potentiates nicotine and 

caffeine [Ca2+]; via overlapping SER CA  sensitive stores. Additionally, application of 

CG P-37157, a mitochondrial N a+/C a2+ inhibitor also inhibited A|3 potentiation o f nicotine 

mediated rises.
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Activation o f  nAChRs on Basal Forebrain Neurons

nAChRs are present in the basal forebrain and in acutely isolated basal forebrain 

DBB neurons, and previous studies suggest that nicotinic effects appear to be 

predominantly mediated via the a4|32 subtype of nAChRs (Fu and Jhamandas, 2003). In 

the brain slice preparation, application o f nicotine increases basal firing rates in 

GABAergic basal forebrain neurons likely via indirect effects on local circuit glutamate 

interneurons that express a4|32 nAChRs (Wu et al., 2003). In cells where I studied 

alterations in [Ca2+];, the chemical phenotype o f the DBB cells (i.e. cholinergic versus 

GABAergic) was not determined, but a significant number o f such neurons showed A|3 

potentiation of nicotine-evoked increases in [Ca Based on previous data showing the 

effect of A|3 to be limited to cholinergic DBB neurons, I surmise that the nicotinic effects 

are likely predominantly on cholinergic cells of the basal forebrain (Jhamandas et al., 

2001). Our pharmacological and immunohistochemical experiments demonstrated 

colocalization of a4  and a7  nAChR subunits in a majority of DBB neurons. 

Additionally, there was significant colocalization of these subunits with the cholinergic 

marker ChAT. These data correspond well with a recent study examining 

electrophysiological responses following activation o f these receptors in basal forebrain 

neurons, which demonstrated the co-localization of both non-a7 and a l  nAChR 

mediated responses (Henderson et al., 2005). Henderson et al. (2005) also performed 

immunohistochemistry to demonstrate that the a l  nAChRs were correlated with ChAT 

positive neurons. Given the high proportion o f neurons in the present study that 

displayed sensitivity to aBTX, this suggests that a significant number of DBB cells that 

were studied were cholinergic neurons. The doses of nicotine that I used were higher than
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other studies. However, the use of acutely dissociated cells (where dendritic processes 

containing nAChRs may be lost) would require a higher concentration o f nicotine to 

activate a sufficient number of nAChRs on the soma. Additionally, trypsin treatment 

may decrase the binding affinity of nAChRs on the soma. The high doses were blocked 

by the nicotinic receptor antagonists. The binding affinity reported for aBTX in 

competition binding assays for the a l  nAChR is between 0.35-3.5 nM and the binding 

affinity values reported for DH|3E binding to the a4|32 nAChR is between 13.9 and 1900 

(Sharpies and Wonnacott, 2001). However, in my experiments, these antagonists were

capable of inhibiting 10 mM nicotine at 100 nM for aBTX  and 10 uM for DH|3E. The

2_|_
discrepancy between the binding data and the Ca data may be explained the differences 

in application. In binding studies, the antagonists were applied for hours o f incubation 

and then the nicotine ligand is applied over the course of minutes. However, in my 

experiments, the antagonists were applied for minutes and the agonists were applied over 

the course o f seconds. These differences in application technique could explain why the 

observations in my experiements differ from what is expected from the binding affinity 

of the antagonists.

NAChR Coupling to Intracellular Ca2+ Stores

The effect o f A(3 on nicotinic receptors has been highly controversial as some 

studies have shown that A (I directly activate nAChRs, while others have shown that A|3 

inhibits nAChR (Liu et al., 2001; Pettit et al., 2001; Dineley et al., 2002). In addition, 

whether A|3 affects a l  or non-a7 nAChR subtypes has also been a subject of debate, 

since initially the effects of A(3 on nAChRs were attributed mostly to a l  nAChRs (Liu et 

al., 2001), but more recently, non-a7, probably, a4|32 nAChRs, have been shown to be
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affected by A|3 (Fu and Jhamandas, 2003; Wu et al., 2004). These studies exclusively 

examined the effect o f A(3 on nAChR currents. In synaptosomes, pretreatment with A|3 

inhibited nicotine-mediated Ca2+ entry via both non-a7 and a l  nAChRs (Dougherty et 

al., 2003). In acutely dissociated DBB neurons, both a4  and a l  nAChR subunits have 

been functionally identified to be present on DBB neurons (Fu and Jhamandas, 2003). 

This observation was further confirmed in the present study where I identified, using 

immunohistochemical double labeling, the presence of a4  and a l  subunits on cholinergic 

DBB neurons and the colocalization o f these subunits. The source o f [Ca2+]j rises evoked 

by nicotine comes from a combination of extracellular activation of both moieties of 

nAChRs, and also from an interaction between nAChR receptors and intracellular Ca2+ 

stores. The effect o f 100 nM A|3i.42 in potentiating nicotine-induced responses is specific 

to nAChRs as no potentiation was observed with KCl-mediated rises in [Ca2 +]i. 

Activation of VGCC by KC1 in DBB has previously been shown not to activate any TG- 

sensitive stores as simultaneous voltage clamp and Ca2+ imaging experiments have 

demonstrated that [Ca2+]j rises are not changed in the presence of TG (Murchison and 

Griffith, 1998).

A  (land [C a 2+]i Homeostasis

Previous studies have shown that A (3 alters Ca2+ homeostasis (Mattson et al., 

1992). Mattson et al. (1992) reported that A|3 fragments enhance glutamate-mediated 

[Ca2+]i rise and excitotoxic neuronal death, however, sole application of A|3 fragments 

did not raise [Ca2+]i entry. On the other hand, Brorson et al. (1994) also showed that A|3 

fragments enhances glutamate-mediated Ca2+ and A|3 fragments evoked [Ca2+]i rises. In 

our preparation, focal applications o f A|3 alone at concentrations up to 1 pM did not alter
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[Ca2+]j as some other studies have reported (Brorson et al., 1995; Kawahara et al., 2000). 

However, neither o f the aforementioned studies examined actions o f the isoform A(3i.42, 

which is the more pathophysiologically relevant o f the A|3 species. Moreover, the study 

by Kawahara et al. (2000) utilized an immortal hypothalamic cell line where A|3 formed 

de novo Ca2+-permeable pores, a finding not observed in preparations other than planar

lipid bilayers (Arispe et al., 1996). Recently, application of A(31 .4 2  for up to six hours was

2_|_
shown not alter [Ca ]i in cultured hippocampal neurons (Abramov et al., 2003).

Although I did not observe that application of A(3-induced Ca2+ rises, I did 

observe that A[3 was able to potentiate nAChR and caffeine-evoked increases in [Ca2+]j

which involves the repeated release o f Ca2+ from intracellular stores. Moreover, the

2_|_
potentiation with repeated nicotine applications became larger as the baseline [Ca ]j rose 

gradually during and after A(31 .4 2  application. A|3i_42 application also potentiated repeat 

activation of intracellular Ca2+ stores by caffeine, however, during washout o f A(3i.42, 

caffeine no longer mediated [Ca2+]j rises. A[3 potentiation of both caffeine and nicotine- 

induced [Ca2+]i rises could be blocked by thapsigargin. Furthermore, A|3 potentiation of

I 2 “bnicotine responses could be blocked by the mitochondrial Na /Ca inhibitor CGP-37157.

The phenomena that nicotinic responses are potentiated irreversibly by A|3 

whereas caffeine responses are transiently potentiated may be related to differences in the

total load of cytoplasmic Ca2+ and saturation o f Ca2+ buffers. Repeated application of

2_|_
nicotine results in a significant entry of extracellular Ca , which would result in an 

increase in baseline [Ca2+]i and transient [Ca2+]i elevations from repeated activation of 

nAChRs. Additionally, each activation o f nAChRs by nicotine also results in the release 

of Ca2+ from intracellular stores (Dajas-Bailador et al., 2002). When intracellular stores

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of [Ca2+]i are repeatedly released and eventually depleted, a mechanism whereby A|3 can 

potentiate nicotine-evoked [Ca2+]i rises could result from progressive overfilling of the 

nicotine-sensitive stores. Our study shows that A|3 is mediating the overfilling o f TG- 

sensitive stores by increasing Ca2+ release from the N a+/C a2+ exchanger in mitochondria 

located in close proximity to TG-sensitive stores. The exact mechanism of A|3 action is 

not known, however, I propose that A|3 could be acting upon mitochondria to cause 

overfilling resulting in the excess release of Ca2+ via the N a+/Ca2+ exchanger, resulting in 

overfilling of TG sensitive stores. Saturation of the buffers may also play a role in 

maintaining the elevation. Previous studies have demonstrated that ER-mitochondrial 

interactions are important for continued filling of the ER (Arnaudeau et al., 2001; 

Csordas and Hajnoczky, 2001; Smaili et al., 2001).

Repeated application o f caffeine activates release o f Ca2+ from caffeine-sensitive 

stores via ryanodine receptors. In the absence of any additional entry of extracellular 

Ca2+, the overall result of repeatedly activating Ca2+ stores would be the gradual overall 

loss of cytoplasmic Ca2+ via plasma membrane pumps or exchangers. The transient 

enhancement of the caffeine response by A (3 is consistent with the idea that there is only 

a transient overfilling o f caffeine-sensitive stores and no net increase in the total 

cytoplasmic Ca2+ load (which also suggested that there was no persistent activation o f a 

Ca2+ release activated -like channel).

Functional Implications

2_j_
In our study, I showed that A|3 potentiates nicotine-evoked [Ca ], rises via 

overfilling of mitochondria. This effect is only prominent with repeated activation of 

intracellular Ca2+ stores and on a large cytoplasmic Ca2+ load via extracellular Ca2+ entry.
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Given the tight regulation of Ca2+ signaling in neurons, the increase in [Ca2+]i triggered 

by nAChR activation may cause dysfunction in the basal forebrain neurons prior to 

deposition, but not necessarily in the absence o f amyloid plaques due to the presence of 

soluble forms of A|3. There is general agreement that the neurotoxic effects of A (3 may,

in part, occur via its dysregulation of intracellular Ca2+ homeostasis, thus Aft-induced

2 _|_ ,

enhancement of [Ca ]i via nAChRs on basal forebrain neurons may render them 

vulnerable to neurodegeneration in AD. Further studies examining the role of 

overloading endoplasmic reticulum Ca2+ stores and its role in neurotoxicity in the basal 

forebrain may lead to treatments to protect against the degeneration of basal forebrain in 

AD.
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Chapter 3

Synaptic Effects of P-Amyloid on Glutamate 

Neurotransmission in the Rat Cholinergic Basal

Forebrain
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INTRODUCTION

Alzheimer’s disease (AD) is disease characterized by a progressive decline in 

memory and other cognitive functions such as language and perception in elderly 

individuals (McKhann et al., 1984). (1-amyloid peptide (A|3), a 39-43 amino acid peptide, 

is a critical pathological mediator of the synaptic dysfunction, synaptic loss and neuronal 

death observed in AD (Small et al., 2001; Selkoe, 2002). The pathology of AD starts 

with mild synaptic dysfunction and eventually progresses to neuronal death, however no 

receptor has yet been identified to mediate the effects of A|3 on synaptic activity (Small et 

al., 2001). A potential candidate is the nicotinic acetylcholine receptor (nAChR) as 

studies have suggested that A(3 binds to this receptor and mediates electrophysiological 

effects (Wang et al., 2000a; Dineley et al., 2001; Pettit et al., 2001; Fu and Jhamandas, 

2003)

Several lines of evidence suggest that the cognitive impairment observed early on 

in AD is mediated by A|3 induced synaptic dysfunction. Pathological examination of AD 

brains has revealed that specific neurotransmitter systems are targeted in AD. The most 

well studied system is the cholinergic basal forebrain neurons, which are especially prone 

to neurodegeneration (Whitehouse et al., 1982). Additionally, examination of brains 

from AD individuals 2-4 years after diagnosis reveal significant reductions of synaptic 

density in the temporal and frontal lobe (Davies et al., 1987; Hamos et al., 1989; Masliah 

et al., 1991). In individuals with mild cognitive impairment or very mild AD, there was a 

significant reduction in synaptic density when compared with control individuals 

(Masliah et al., 2001). Furthermore, studies examining the cognitive decline in AD and 

neuropathology reveal that the reduction o f synaptic density is more closely correlated
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with the decline in cognitive function o f AD individuals than the deposition of A|3 

plaques (Terry et al., 1991). Studies examining the level o f insoluble A|3 demonstrated 

either a weak correlation or no correlation between A|3 plaque load and cognitive decline 

(Katzman et al., 1988; Morris et al., 1991; Terry et al., 1991). However, a correlation 

between A|3 and the degree of cognitive decline was found when both the insoluble and 

soluble forms of A|3 were measured (Lue et al., 1999; Naslund et al., 2000). These 

studies demonstrate that both the accumulation o f A (3 and synaptic loss occur early on 

AD and may be responsible for the initial mild cognitive decline observed.

Deficits in basal synaptic transmission and long term potentiation (LTP), a form a 

synaptic plasticity, prior to the development of A|3 plaques have also been observed in 

transgenic mice that overexpress A|3. These mice express mutant forms o f the human 

amyloid precursor protein that result in overexpression of A|3. In the V717F transgenic 

model, there is a significant reduction in synaptic excitatory postsynaptic potentials and 

rapid decay of LTP compared with control animals at 4-5 months of age prior to the 

formation of A|3 plaques, suggesting that soluble A|3 isoforms mediate this action (Chen 

et al., 2000). Although such transgenic mice do not display all the features of AD 

pathology such as neurofibrillary tangles consisting of hyperphosphorylated tau protein, 

the synaptic loss observed early on in these animals fits well with the pathological 

observations made in brains from mildly cognitive impaired individuals. Furthermore, in 

vitro experiments have shown that soluble oligomers of A [3 are capable of inhibiting LTP 

(Walsh et al., 2002). Taken together, these data demonstrate the importance of soluble 

forms of A|3 in mediating synaptic dysfunction. However, there is at present little 

information on how A[3 may influence normal synaptic transmission in the brain,
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particularly in structures such as the cholinergic basal forebrain, that are at the epicenter 

of the chemical pathology seen in AD.

Currently, no receptor has been definitively identified to mediate A|3 actions on 

synaptic function, although many have been proposed. One possible candidate receptor 

is the nicotinic acetylcholine receptor (nAChR), which has been demonstrated to be 

involved in neuromodulation (McGehee et al., 1995). There are very few examples of 

primary nicotinic mediated EPSC in the brain and these include hippocampal 

interneurons, the medial vestibular nucleus and the nucleus ambiguous (Phelan and 

Gallagher, 1992; Zhang et al., 1993; Frazier et al., 1998). In this project, I examined the 

DBB for nAChR mediated EPSCs, but did not find any and thus I focused on nicotinic 

modulation of glutamate EPSCs. A|3 has been shown to exhibit significant affinity to 

these receptors and electrophysiological experiments have shown that A|3 is capable of 

influencing the function of these receptors (Pettit et al., 2001; Fu and Jhamandas, 2003). 

I will examine the effect o f A|3 i_4 2  on synaptic transmission in cholinergic neurons o f the 

basal forebrain identified with the fluorescent dye Cy3 192IgG or with 

electrophysiological criteria. The aims of this project are 1) to examine the effect of 

soluble A|3i_42 on spontaneous miniature post-synaptic excitatory events (mEPSCs) in 

cholinergic basal forebrain neurons and 2) to determine if A|3 effects on spontaneous 

excitatory events are mediated by nAChRs, and if so, what specific subtypes of nAChRs 

are involved.
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MATERIALS AND METHODS

Cy3-192 IgG Neuron Labeling

The majority of neurons used in this study (43/50) were identified with Cy3-192 IgG 

(Advanced Targeting Systems, San Diego, USA) which is an inert fluorescent dye 

conjugated to an antibody that binds to the p75 neurotrophin receptor expressed only in 

cholinergic neurons of the basal forebrain. Following intracerebroventricular injection, 

Cy3-192 IgG retrogradely labels only cholinergic neurons o f the basal forebrain that 

project to the hippocampus (Hartig et al., 1998a; Wu et al., 2000). Injection of Cy3-192 

IgG was performed based upon a previously described protocol (Wu et al., 2000). 22-27 

day post-natal Sprague-Dawley rats (50-70 g) were anaesthetized with an intraperitoneal 

injection of sodium pentobarbital (50 mg/kg; 0.05% Somnotol, MTC Pharmaceuticals, 

Hamilton, Canada) and then injected subcutaneously with 0.02% of atropine. The rats 

were then placed in a stereotaxic frame (Narishige, Tokyo, Japan) and 5 pi of 1:1 diluted 

Cy3-192 IgG was injected into the left and right ventricles (1.1 mm posterior to Bregma,

1.2 mm lateral from the midline, and 2.6-3.7 mm below the dura). All procedures were 

approved by University of Alberta Health Sciences Laboratory Animal Services (Protocol 

number 154/04/05).

Diagonal Band o f  Broca Slice Preparation

Brain tissue was removed from Sprague-Dawley rats previously injected with 

Cy3-192 IgG between three and seven days after injections based on previously described 

procedures (Easaw et al., 1997). Briefly, animals were anaesthetized with halothane and 

decapitated. The brain was quickly removed and placed in a 3-5 °C bicarbonate buffered 

solution that contained (in mM): 140 NaCl, 2.5 KC1, 12 MgCl2 , 1.2 NaHiPCL and 2.4
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CaCl2 , 25 mM HCO3 and 11 mM D-glucose (pH 7.4). All solutions were oxygenated by 

bubbling with a mixture of 95% O2 and 5% CO2 . 300 uM thick longitudinal brain slices 

were cut with a vibratome (Slicer HR2, Sigmann Elektronik, Germany) and then 

incubated for one hour at 32 °C in artificial cerebrospinal fluid (ACSF) prior to recording 

(in mM; NaCl 126, 2.5 KC1, 1.2 MgCl2, 1.2 NaH2 P 0 4, 2.4 CaCl2, 25 N aHC0 3 and 11 

mM D-glucose; pH 7.4).

Recordings from DBB Slices

DBB slices were bath perfused with ACSF (23-25°C) at a rate of 1 ml/min and 

visualized under an Axioscope 2 Fs microscope (Zeiss, Germany) at 60x magnification. 

Cy3-192 IgG labeled neurons were selected using the appropriate filter for Cy3 (546 nm 

excitation and 575-640 nm emission). Individual neurons were then visualized under 60x 

magnification using differential infrared contrast optics. Cells were recorded using whole 

cell patch clamp technique. The internal pipette solution was composed of the following 

(in mM): 140 K+-gluconate, 2 KC1, 5 HEPES, 5 MgATP, 0.5 NaGTP, 10 EGTA and pH 

was raised to between 7.2 and 7.3 with potassium hydroxide. The internal solution had 

an osmolarity of 280 mM. Patch clamp electrodes (World Precision Instruments, 

Sarasota, USA -  Thin Wall with Filament, 1.5 mm) were pulled with aNarishige (PP-83) 

puller to yield electrodes with resistances of 4-8 MQ. Recordings were made from the 

DBB, where seals of 1 G£2 or greater were obtained using a Siskiyou Design Instruments 

4 axis motorized micromanipulator (MX 831; Grants Pass, Oregon). Using an Axopatch 

200B amplifier (Molecular Devices, Sunnyvale CA), Cy3-192IgG labeled cells were 

initially held in voltage-clamp mode at -60 mV. Recordings were made at a bandwidth of 

10 kHz and filtered with a 2 kHz low pass Bessel filter.
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Prior to performing voltage-clamp recordings, in 7 o f 50 neurons, neurons were 

held in current clamp and 2 second current injections of 0.2 nA steps from -0.6 nA to + 

0.6 nA were performed in the absence of tetrodotoxin (TTX; Figure-3-lA). The average 

resting membrane potential for these cells was -53.9 ± 5.1 mV (n = 7). Cholinergic 

neurons were identified based upon previously described criteria such as lack o f a 

hyperpolarizing sag and the presence of burst firing upon depolarization (Wu et al., 

2000). A gap free protocol was used to hold cells at either -60 or -80 mV and recordings 

were performed in the presence of 1 uM TTX and either 10 pM of bicuculline or 50 pM 

picrotoxin, GABAa receptor antagonists. Baseline recordings for 5 minutes were 

observed to ensure stability of the cell. Each recorded treatment was between 5 and 7 

minutes, with a 2  minute interval between treatments so that at least 1 0 0  events were 

recorded. Seal and voltage ramp protocols were run between treatments. Seal tests were 

performed between treatments to monitor cell access was maintained. Voltage ramps 

consisted of hyperpolarizing the cells to -110 mV, and then depolarizing them to +30 mV 

over the course of 8  seconds (Figure 3-1B).

Statistical Analysis

Miniature excitatory post-synaptic currents were recorded using pClamp 9.0 and 

analyzed with Clampfit 9.2 using a template search for events (Clements and Bekkers, 

1997). A template was created based upon the average of 10 recorded events. The 

template search parameter was set between 4.0 and 5.0 and events were then inspected 

visually for removal o f extraneous events. Student’s paired and unpaired t-test was used 

to compare treatments and parameters between cell populations respectively. The 

significance level for the t-tests was set at p<0.05. Kolmogorov-Smirnov (KS) testing
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was also used to examine differences and the significance level o f this test was set at 

/K0.0005. The mEPSC parameters illustrated in Figure 3-1 were measured. Peak 

amplitude o f the mEPSC was measured (Figure 3 -1(a)). The rise time from 10% of the 

peak amplitude to 90% of the peak amplitude was measured (Figure 3-1(b)) and the 

decay time from 90% of the peak amplitude to 10% of the peak amplitude was measured 

(Figure 3-1(c)) and the area between the baseline and the event was also measured 

(Figure 3-1(d)). The conductance of was calculated from voltage ramps by taking 

perfomring linear regression of the current-voltage relationship between -110 mV and -60 

mV.

Immunohistochemistry

Rats previously injected with Cy3-192 IgG were anaesthetized with halothane and 

intraperitoneal urethane was administered. Animals were then exsanguinated with 

phosphate buffered saline (PBS) and infused with 4% formaldehyde in 0.1% PBS that 

was kept at 3-5 °C. Brains removed from the animals were incubated for 1 hour in 4% 

formaldehyde in PBS and then placed in 10% sucrose solution. 50 pm coronal DBB 

brain slices were cut using a cryostat and then blocked with 1 % bovine serum albumin 

for 1 hour. Slices were then incubated overnight with primary rabbit antibodies for 

vesicular choline acetyltransferase at 3-5 °C (vChAT; 1:2500 dilution; Santa Cruz 

Biotechnology Inc., Santa Cruz, USA). Slices were then washed 3 times in PBS and 

incubated with Alexa 488 chicken anti-rabbit antibodies for 1.5 hours to yield green 

fluorescence (1:400 dilution) and washed 3 times in PBS. Slides were allowed to air dry 

and dehydrated with ethanol and xylene before being coverslipped with Cytoseal (Canada
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Wide Scientific, Ottawa, Canada). Slides were examined with a Zeiss Axioplan 2 and 

images captured with Zeiss Axiocam MRc camera and MGrab software.

Drugs

APi-4 2  and A|3 4 2 -i were purchased from American Peptide Co. (Sunnyvale, USA). 

A|3]-42 was freshly prepared on the day of the experiment from aliquots stored at -  80 °C. 

All voltage clamp experiments were conducted in the presence of 1 uM tetrodotoxin 

(TTX) and either 10 pM bicuculline or 50 pM picrotoxin. All chemicals were purchased 

from Sigma except for the following. TTX was purchased from Alamone Lab 

(Jerusalem, Israel). All drugs were bath applied through four-way valve system and the 

average time to the onset of drug action was 30 sec.

RESULTS

Cy3-192 IgG Labeling Colocalizes with vChATLabeling in DBB Neurons

Immunohistochemical experiments demonstrated significant co-localization of 

Cy3-192 IgG labeling with vChAT labeling (Figures 3-2A, B), confirming previous 

studies suggesting Cy3-192 IgG-labeled cells are indeed cholinergic (Hartig et al., 1998b; 

Wu et al., 2000). Figure 3-2C shows a Cy3-192 IgG labeled cell viewed under a water 

immersion lens at 60x magnification and Figure 3-2D shows the same neuron being 

patched under differential infrared contrast imaging. The average capacitance of neurons 

was 18.9 ± 0.5 pF and the average access resistance was 6 . 6  ± 0.2 mQ (n = 50). The 

average conductance of the cells was 2.85 ± 0.25 nS (n = 50). No significant change was 

observed in the conductance in any of the treatments recorded.
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CNQX Abolishes mEPSCs in DBB Neurons

The character o f these mEPSCs was examined with the AMPA/kainate receptor 

antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In the presence o f 1 pM 

TTX and 50 uM picrotoxin, 2 pM CNQX abolished all synaptic activity in 3 

electrophysiologically identified cholinergic neurons (Fig. 3-3). These data demonstrate 

that the recorded events were glutamatergic events mediated by AMPA and kainate 

receptors.

A (3 Modulates Frequency o f  mEPSCs in Cholinergic DBB Neurons

In 12 Cy3-IgG 192 labeled neurons and 3 electrophysiologically identified 

cholinergic neurons, bath application of 100 nM A|3i_42 increased mEPSC frequency in 

54% of neurons tested (15/28 neurons tested; Figure 3-4A; /><0.05). KS testing of 

individual cells demonstrated that in all 15 neurons, there was no significant change in 

amplitude, while the interevent interval was significantly decreased (p<0.0005; Figure 3- 

4B, C). The average mEPSC frequency was 0.89 ±0.16 Hz, which increased to 1.21 ± 

0.28 Hz in the presence of 100 nM A|3i_42 and recovered to 0.92 ± 0.28 Hz which 

represents a 29.6 ± 5.4% increase in frequency (/?<0.05; Fig. 3-4A, 3-5). The peak 

amplitude of mEPSCs did not exhibit any significant change in these neurons as the 

control peak amplitude was -  37.1 ± 1.7 pA and the peak amplitude in the presence of 

100 nM A(31_42 was -  36.8 ± 1.9 pA (Fig. 3-4B, 3-5). Examination of specific kinetic 

parameters o f the mEPSCs revealed that there were no significant changes in rise time, 

decay time, and area between control conditions and 100 nM A (31 -4 2  treatment (Table 3- 

1). Linear regression o f the current from -110 mV to -60 mV revealed that there were no 

significant difference between control conductance, which was 3.08 ± 0.32 nS and
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conductance in the presence of 100 nM A|3m2, which was 3.19 ± 0.45 nS (p>0.05). In 7 

Cy3-192IgG labeled neurons and 2 electrophysiologically identified cholinergic neurons, 

bath application of 100 nM A(3i_4 2  significantly reduced mEPSC frequency from 0.97 ± 

0.21 to 0.68 ±0.18 Hz, which represents a 31.8 ± 4.8% decrease o f frequency (Figure 3-6 

and 3-7; p<0.05; 9/28 neurons). In all 9 neurons, no change in peak amplitude was 

observed with KS testing, however, there was a significant decrease in the interevent 

interval (p<0.0005). The peak amplitude was -34.7 ± 2.7 pA under control conditions, 

while in the presence of 100 nM A (31 .4 2  the peak amplitude was -31.4 ± 2.3 pA (Figure 3- 

7B; p>0.05; n = 9). Examination o f specific kinetic parameters of the mEPSCs revealed 

that there were no significant changes in rise time (10%-90%), decay time (90%-10%), 

and area between control conditions and 100 nM Af3| _4 2  treatment o f cholinergic neurons 

(Table 3-2). In 14% of neurons (n = 4), no change in peak amplitude or frequency o f 100 

nM A(31 -4 2 was observed. Comparison of neurons did not reveal any difference in 

amplitude, frequency, or kinetic parameters between neurons that demonstrated an 

increase in mEPSC frequency and those that demonstrated a decrease in mEPSC 

frequency.

Application of the reverse peptide A(3 4 2 -i did not significantly change either the 

peak amplitude or mEPSC frequency in Cy3 IgG192 labeled neurons (p<0.05: n = 4; 

Figure 3-8). In these 4 neurons, KS testing did not detect a change in either peak 

amplitude or interevent interval during the application of A(3 4 2 -i. In neurons that 

exhibited increased mEPSC frequency in response to A(3 i_4 2, application of 100 nM A(3 4 2. 

1 did not elicit any change in either frequency or peak amplitude. In the presence of the 

reverse peptide 100 nM A(3 4 2 -i, the frequency was 0.69 ± 0.27 Hz, which was not
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significantly different from the frequency under control conditions, which was 0.71 ± 

0.29 Hz (/j>>0.05; Figure 3-9A; n = 4). The average peak amplitude under control 

conditions was -41.1 ± 3.9 pA, while in the presence of A(34 2 -i, the peak amplitude was - 

40.0 ± 5.6 pA (p>0.05; Figure 3-9B; n = 4). No significant differences in kinetic 

parameters were observed between control conditions and application o f 100 nM A(342-i .

A ft Mediated Increase in mEPSC Frequency is Inhibited by DHflE

The effect of the a4|32 nAChR selective antagonist DH|3E on APi_4 2  mediated 

increases in mEPSC frequency was examined. Application of 100 nM A(3i _4 2  to 5 Cy3 

IgG 192 labeled neurons resulted in an increase in frequency from 0.64 ± 0.13 Hz under 

control conditions to 0.84 ± 0.15 Hz in the presence of 100 nM A|3 i4 2 , which is a 25.4 ± 

7.9% increase (Figure 3-10A; /?<0.05;n = 5). As previously observed, there was no 

significant change in peak amplitude which was -37.4 ± 1.7 pA under control conditions 

and -36.2 ± 0.09 pA in the presence of 100 nM A(3i-42. Subsequent application of 100 

nM A|3 i4 2  in the presence o f 10 pM DH[3E blocked the increase by 100 nM A|3i42- Prior 

to co-application of 100 nM A(3 ] 4 2  and 10 pM DH|3E, the frequency was 0.65 Hz ± 0.17 

Hz. In the presence of 100 nM A(3] _4 2  and 10 pM DH|3E, the frequency was 0.67 ±0.17 

Hz, which represents a 2.4 ± 5.6% change (p>0.05; n = 5; Figure 3-10B). Under control 

conditions, the average peak amplitude was -36.0 ± 0.07 pA, while in the presence of 100 

nM A(31_4 2  and 10 pM DH|3E, the average peak amplitude was -35.6 ± 1.8 pA (p>0.05; n 

= 5). Additionally, no significant change in kinetic parameters was observed (Table 3-3). 

KS testing of the individual neurons also demonstrated that A|3i4 2  mediated increases of 

mEPSCs were inhibited by DH|3E (Figure 3-11).
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Control experiments demonstrated that AP1 .4 2  mediated increases of frequency in 

electrophysiologically identified cholinergic neurons were not time dependent as in 3 

cholinergic neurons, consecutive application o f 100 nM A|3]_42 7 minutes apart yielded 

significant increases of mEPSC frequency of 27.3 ± 4.5% and 29.8 ± 3.5% (p>0.05). 

There was no significant change in peak amplitude. KS testing of the individual neurons 

also showed that the effect of A (31 -4 2  was not time dependent. Application of 10 uM 

DH|3E on electrophysiologically identified cholinergic neurons did not significantly 

change mEPSC frequency or peak amplitude when examined with KS testing (p>0.0005; 

n = 2 ).

A Mediated Decrease in mEPSC Frequency Persists in the Presence o f  DHfiE

In Cy3-192 IgG labeled neurons, 10 pM DH|3E did not block the A(3i. 4 2  mediated 

decrease in frequency. In the neurons tested, application o f A|3i_4 2  on its own 

significantly decreased frequency from 1.75 ± 0.51 Hz to 1.25 ± 0.36 Hz, which 

represents a 27.5 ± 3.7% decrease (Figure 3-12; n = 5, p<0.05). As previously described, 

there was no significant change in the average peak amplitude in the presence of 100 nM 

A|3i.42. Subsequent application o f 100 nM A(3i_4 2  and 10 pM DH|3E did not significantly 

inhibit the decreased frequency observed. The average frequency under control 

conditions was 1.50 ± 0.45 Hz and in the presence of 100 nM A|3)_ 4 2  and 10 uM DH|3E, 

the frequency decreased to 1.15 ± 0.37 Hz, representing a 24.5 ± 2.8% decrease (p<0.05: 

n = 5). After washout, the frequency recovered to 1.46 ± 0.46 Hz. The peak amplitude 

was -31.5 ± 4.2 pA under control conditions and -32.4 ± 3.5 pA in the presence o f 100 

nM A(3i_4 2  and 10 pM DM (IE (p<0.05; n = 5). Additionally, no changes to kinetic 

parameters were observed between treatments (Table 3-4). KS testing of the individual
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neurons also demonstrated that A(3m 2 mediated decreases of mEPSCs were not inhibited 

by DH(3E (Figure 3-13).

Nicotine Increases mEPSC Frequency in a Dose-Dependent Manner

To further examine nicotinic receptors on cholinergic basal forebrain neurons, 

various doses of nicotine were bath applied to Cy3-192IgG labeled neurons. Application 

o f 1 pM  (n = 7), 10 pM  (n = 5), and 100 pM  (n = 5) nicotine revealed that Cy3-192IgG 

labeled neurons exhibited a dose-dependent increase in frequency in the majority of 

neurons (19/22) (Fig. 3-14A, B). mEPSC frequency increased from 0.66 ± 0.19 Hz to

1.02 ± 0.25 Hz in the presence o f 100 pM  nicotine and recovered back to 0.71 ± 0.23 Hz 

after washout. No significant changes in amplitude, rise time, decay time or area were 

observed (Tables 3-5 to 3-7). In 3 of 9 neurons, bath application o f 100 pM  nicotine did 

not significantly change mEPSC frequency. No significant changes in amplitude, decay 

time or area were observed, however there was a significant increase in rise time (Table 

3-8). KS testing of individual neurons, demonstrated that in all 9 neurons, there was no 

change in peak amplitude during the application o f 100 pM  nicotine (Figure 3-15). In 6 

of 9 neurons, KS testing demonstrated that 100 pM  nicotine significanty decreased the 

interevent interval (p<0.0005). while in 3 of 9 neurons, KS testing did not show any 

change in the interval event interval (p<0.0005).

Acetylcholine Increases mEPSC Frequency in a Dose-Dependent Manner

In the next set of experiments, the endogenous neurotransmitter ACh in the 

presence of 1 pM atropine, a muscarinic receptor blocker, was applied to Cy3-192 IgG 

labeled neurons. Application of ACh demonstrated, in a dose-dependent manner, an 

increase in mEPSC frequency (Figure 3-15). For 1 mM of ACh, mEPSC frequency
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increased from 0.49 ± 0.03 Hz to 0.76 ± 0.05 Hz and then recovered back to 0.44 ± 0.05 

Hz, which represents an average increase o f 54 ± 12%. No significant changes to peak 

amplitude, 90%-10% decay time or area were observed (Tables 3-9 to 3-11). KS testing 

of individual neurons demonstrated that 1 mM ACh significantly decreases interevent 

interval in cholinergic neurons (/K0.0005) without significantly changing peak 

amplitude.

DISCUSSION

In this study, the effect o f A(3j.42 and nicotine on fluorescently labeled cholinergic 

DBB neurons were examined. In the majority o f cholinergic neurons, bath applications 

of A|3i-42 significantly increased the frequency of mEPSCs without any significant 

change in amplitude or kinetic parameters of EPSCs. Furthermore, mEPSCs recorded 

from DBB neurons were mediated by the AMPA and kainate subtypes of glutamate 

receptors as application of CNQX, an AMPA/kainate receptor antagonist, completely 

abolished the spontaneous mEPSCs. This effect of A|3m 2 could be blocked by a non-a7, 

a4|32 selective nAChR antagonist, suggesting that soluble A[3i_42 is able to modulate 

presynaptic glutamatergic neurotransmission via activation o f a4|32 nAChRs.

In another subset of cholinergic neurons, A|3i_42 decreased the frequency of 

mEPSCs without changing any kinetic parameters. The decrease in frequency was not 

inhibited by DH|3E suggesting that A|3i_42 is mediating a presynaptic effect via a different 

receptor. No differences in kinetic parameters could be observed between the two 

populations of neurons.
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Applications of nicotine and ACh (in the presence of atropine) resulted in a dose- 

dependent increase in frequency, without a significant change in amplitude o f the 

mEPSCs that mimicked the effects of A|3 m 2  .

Soluble A/3 Modulates Synaptic Transmission onto Cholinergic DBB Neurons

There is significant controversy regarding the interaction of A(h -4 2  and nAChRs. 

Initial binding studies demonstrated that A(31 .4 2  binds to both a l  nAChRs with picomolar 

affinity and a4|32 nAChRs with nanomolar affinity, although these studies have been 

difficult to replicate in other laboratories (Wang et al., 2000b; Wang et al., 2000a). 

Nonetheless, a number of electrophysiological studies have demonstrated that A (11 -4 2  can 

exert its effects through both a l  and a4|32 nAChRs in a variety of in vitro preparations 

(Pettit et al., 2001; Dineley et al., 2002; Fu and Jhamandas, 2003). However, the effect 

of A|3i_42 interaction with the nAChR remains controversial as some studies suggest that 

A|3]-42 activates a4|32 nAChRs, while other studies suggest that A|3 ] _ 4 2  inhibits nAChRs 

(Fu and Jhamandas, 2003; Wu et al., 2004). In this study, AP1 .4 2  was demonstrated to 

mediate an increase in the frequency o f spontaneous glutamatergic mEPSCs in a subset 

of cholinergic DBB neurons via activation of non-cx7 nAChR, which is probably o f the 

a4|32 nAChR subtype. This A|F|_ 4 2 activation o f a4|32 nAChR is in agreement with 

single channel recordings from DBB neurons which demonstrated that A(3 i_4 2 was able to 

act as an agonist at a4|32 nAChR in DBB neurons (Fu and Jhamandas, 2003). However, 

the effects of A(3i_42 observed in this study were localized to a presynaptic locus o f action, 

whereas Fu and Jhamandas (2003) reported post-synaptic a4|32 nAChR-mediated 

responses. This difference may reflect the topographical differences in the location of 

glutamate terminals and nAChRs in that post-synaptic nAChRs may not be in close
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proximity to glutamatergic presynaptic terminals in order to mediate a recordable effect. 

Alternately, mEPSC recordings may not be sensitive enough to detect the level of change 

in the kinetic parameters that could result in subtle post-synaptic modulation mediated by 

nAChRs.

In another subset of cholinergic neurons, DH|3E did not affect the A|3i_42-induced 

inhibition of mEPSC frequency, suggesting that such effects of A|3i_4 2  are mediated by 

another mechanism. As there are a plethora of receptors in the basal forebrain and the 

cholinergic neurons receive innervation from many different areas of the brain, further 

experiments need to be conducted in order to elucidate the possible receptor that could 

mediate this aspect of synaptic modulation.

Activation o f  nAChRs Modulate Synaptic Transmission onto Cholinergic DBB Neurons

These experiments demonstrated that both nicotine and ACh in the presence of 

atropine were able to modulate spontaneous mEPSCs via a presynaptic mechanism in a 

dose dependent manner. The increase in mEPSC frequency without any change in peak 

amplitude observed is similar to that observed to the effect that A|3i. 4 2  had on a 

population of neurons. Studies in other areas of the brain such as the cortex, 

hippocampus, and striatum have demonstrated that presynaptic nAChRs can modulate 

synaptic transmission (Alkondon et al., 1997; Girod et al., 2000; Cao et al., 2005). These 

studies have examined nAChR modulation o f dopamine, GABA, and glutamate release 

and found that activation of both a l  and a4|32 nAChR on presynaptic terminals can 

increase neurotransmitter release.

Studies examining nicotine in the basal forebrain neurons did not reveal any 

changes in cholinergic neuron firing in the presence of ACh or nicotine (Wu et al., 2000;
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Wu et al., 2003). However, one recent study demonstrated that nAChRs could modulate 

the excitability of cholinergic DBB neurons via a4|32 and a l  nAChRs (Henderson et al., 

2005). We were unable to observe any changes in conductance or in the kinetic 

parameters o f mEPSCs to suggest that there was post-synaptic modulation of the 

glutamate response by nicotine or ACh.

Future Experiments

Two key issues regarding nAChRs need to be resolved. First, the identity of the 

receptor involved in A|3i„42 decreases of mEPSCs needs to be examined. This decrease 

may be mediated by A (31 - 4 2  effects on another neurotransmitter system in the DBB or 

possibly by the a l  nAChR. An experiment the a l  nAChR antagonist aBTX was applied 

in the presence of A|3 would resolve this issue. Secondly, pharmacological experiments 

need to be performed on DBB neurons to elucidate if a4|32 or a l  nAChRs are involved 

in mediating the effects nicotine and ACh. Furthermore, it would be of interest to 

examine the link between A|3 and nicotine effects on synaptic function. Experiments in 

which A(3 and nicotine were applied concurrently after application o f a single dose would 

elicit whether A|3 and nicotine were acting on the same receptor to mediate their effects 

on mEPSCs.

Functional Implications

This study demonstrates that A(31 . 4 2  is capable of modulating synaptic 

transmission in septo-hippocampal neurons of the basal forebrain, an important pathway 

for learning and memory via a4|32 nAChRs in cholinergic neurons of the basal forebrain. 

Thus the implications of this research are twofold. First, this study suggests that 

modulation of synaptic transmission by soluble forms of AP1 . 4 2  may be a potential
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pathological mechanism for the cognitive decline observed early on in AD. A|3i_42 

augmentation of glutamate neurotransmission could lead to excitotoxicity over the long 

term, while Afh . 4 2  reduction of glutamate neurotransmission, would weaken cholinergic 

tone and lead to impaired cognition. Secondly, as the detection o f AD becomes more 

sensitive, the nAChR system is a potential therapeutic target in the treatment of AD.
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Table 3-1. Kinetic Parameters of Cholinergic Neurons that Demonstrate an Increase of 
mEPSCs in the Presence of 100 nM A|3i_42-

Statistic Control lOOnM A(3i. 4 2 Recovery
Peak Amplitude (pA) -37.1 ± 1.7 -36.8 ± 1.9 -35.9 ± 1.7
10%-90% Rise time (ms) 0.73 ± 0.09 0.80 ± 0 . 1 0 0.81 ± 0 . 1 0

90%-10% Decay time (ms) 2.84 ±0.80 2.88 ±0.31 2.86 ±.32
Area (nA ms) -0.068 ± 0.007 -0.068 ± 0.007 -0.068 ± 0.007

Table 3-2. Kinetic Parameters of Cholinergic Neurons that Demonstrate a Decrease of 
mEPSCs in the presence of 100 nM AP1-4 2 .

Statistic Control 100 nM A|3i_42 Recovery
Peak Amplitude (pA) -35.0 ±2.9 -31.4 ±2.3 -33.3 ±2.7
10%-90% Rise time (ms) 0.65 ± 0.04 0.64 ± 0.06 0.63 ± 0.06
90%-10% Decay time (ms) 2.56 ±0.34 2.53 ± 0.34 2.51 ±0.31
Area (nA ms) -0.063 ± 0.006 -0.056 ± 0.006 -0.058 ± 0.006

Table 3-3. Kinetic Parameters of Cholinergic Neurons that Demonstrate an Increase in 
the Frequency of mEPSCs in the Presence o f 100 nM A|3i_42 that are Subsequently 
Exposed to 100 nM A [11 -4 2 and 10 pM DH(3E

Statistic Control 100 nM A|3i_42 + 
10 pM DH(3E

Recovery

Peak Amplitude (pA) -36.0 ± 0.7 -35.6 ± 0.2 -34.8 ± 0.9
10%-90% Rise time (ms) 0.77 ± 0.06 0.80 ± 0.07 0.78 ± 0.06
90%-10% Decay time (ms) 2.27 ±0.17 2.28 ± 0.23 2.26 ± 0 . 2 0

Area (nA ms) -0.052 ± 0.007 -0.053 ± 0.007 -0.053 ± 0.007

Table 3-4. Kinetic parameters of Cholinergic Neurons that Demonstrate a Decrease in 
the Frequency o f mEPSCs in the presence of 100 nM A(Bi. 4 2  that are Subsequently 
Exposed to 100 nM A|3i-42 and 10 pM DH|3E

Statistic Control 100 nM A|3i_42 + 
10 pM DH|3E

Recovery

Peak Amplitude (pA) -33.3 ±4.5 -32.7 ±4.1 -31.5 ±4.2
10%-90% Rise time (ms) 0.67 ± 0.04 0.66 ± 0.05 0.69 ± 0.05
90%-10% Decay time (ms) 1.77 ±0.36 1.69 ±0.39 2.08 ±0.17
Area (nA ms) -0.054 ± 0.007 -0.051 ±0.006 -0.051 ±0.007
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Table 3-5. Kinetic Parameters of Cholinergic Neurons that Demonstrate an Increase in
the Frequency o f mEPSCs in response to Bath Ap plication of 100 pM Nicotine.

Statistic Control 100 pM Nicotine Recovery
Peak Amplitude (pA) -27.3 ±4.6 -22.6 ± 2.5 -24.0 ± 4.0
10%-90% Rise time (ms) 0.62 ± 0.07 0.72 ± 0.07 0.74 ± 0.08
90%-10% Decay time (ms) 2.12 ±0.19 1.99 ±0.17 2.31 ± 0.22
Area (nA ms) -0.047 ± 0.006 -0.041 ± 0.04 -0.045 ± 0.006

Table 3-6. Kinetic Parameters of Cholinergic Neurons Demonstrating an Increase o f 
mEPSC Frequency in Response to Bath Application of 10 uM Nicotine. * denotes 
(p<0.05)__________________ _________________ __________________________________

Statistic Control 10 pM Nicotine Recovery
Peak Amplitude (pA) -27.4 ± 5.7 -27.2 ± 4.5 -25.7 ± 5.4
10%-90% Rise time (ms) 0.61 ± 0.05 0.93 ± 0.20* 0.98 ± 0.23
90%-10% Decay time (ms) 2.03 ±0.16 1.99 ±0.19 2.07 ±0.16
Area (nA ms) -0.054 ± 0.001 -0.051 ±0.010 -0.048 ± 0.010

Table 3-7. Kinetic Parameters of Cholinergic Neurons Demonstrating an Increase of 
mEPSC Frequency in Response to Bath Application of 1 pM Nicotine. * denotes
(p<0.05)

Statistic Control 10 pM Nicotine Recovery
Peak Amplitude (pA) -27.3 ± 3.2 -26.8 ± 2 . 6 -27.6 ± 2.6
10%-90% Rise time (ms) 0.60 ± 0.07 0.62 ± 0.06 0.61 ± 0.05
90%-10% Decay time (ms) 2.06 ±0.16 1.91 ±0.11 1.96 ±0.10
Area (nA ms) -0.050 ± 0.006 -0.049 ± 0.005 -0.05 ± 0.005

Table 3-8. Kinetic Parameters of Cholinergic Neurons Demonstrating no Change of 
mEPSC Frequency in Response to Bath Application of 100 pM Nicotine. * denotes 
(p<0.05)__________________ _________________ _________________ _____________

Statistic Control 100 pM Nicotine Recovery
Peak Amplitude (pA) -29.9 ± 4.6 -29.7 ± 5.0 -26.9 ± 2.2
10%-90% Rise time (ms) 0.79 ±0.18 0.93 ± 0.20* 0.98 ± 0.23
90%-10% Decay time (ms) 2.25 ± 0.40 2.53 ±0.38 2.49 ± 0.45
Area (nA ms) -0.048 ± 0.03 -0.057 ± 0.02 -0.053 ± 0.02

Table 3-9. Kinetic Parameters of Cholinergic Neurons in the Presence of 1 mM ACh. * 
denotes (p<0.05)___________ _________________ _________________________________

Statistic Control 1 mM ACh Recovery
Peak Amplitude (pA) -29.4 ± 3.5 -22.7 ± 2.8 -23.3 ± 2.4
10%-90% Rise time (ms) 0.51 ±0.05 0.67 ± 0.08 0.70 ± 0.07
90%-10% Decay time (ms) 1.62 ± 0 . 1 2 1.60 ± 0 . 1 0 1 . 6 8  ± 0 . 1 0

Area (nA ms) -0.043 ± 0.003 -0.034 ± 0.002 -0.036 ± 0.003
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Table 3-10. Kinetic parameters of Cholinergic Neurons in the Presence of 100 pM ACh. 
* denotes (p<0.05)_________ _________________ __________________________ _______
Statistic Control 100 pM ACh Recovery
Peak Amplitude (pA) -23.0 ± 4.4 -20.5 ±4.8 -22.1 ±5.8
10%-90% Rise time (ms) 0.56 ± 0.04 0.63 ± 0.05 0.57 ± 0.07
90%-10% Decay time (ms) 1.60 ±0.17 1.52 ±0.18 1.54 ±0.17
Area (nA ms) -0.035 ± 0.008 -0.032 ± 0.009 -0.032 ± 0.008

Table 3-11. Kinetic Parameters of Cholinergic Neurons in the Presence of 1 pM ACh. * 
denotes (p<0.05)___________ _________________ _______________________

Statistic Control 1 pM ACh Recovery
Peak Amplitude (pA) -25.5 ± 3.4 -23.4 ± 1.1 -24.3 ± 2.0
10%-90% Rise time (ms) 0.67 ±0.11 0 . 6 6  ± 0.06 0.62 ± 0.03
90%- 10%o Decay time (ms) 1.65 ±.010 1.63 ±0.07 1.82 ± 0 . 1 0

Area (nA ms) -0.042 ± 0.006 -0.039 ± 0.002 -0.043 ± 0.004
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General Discussion
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This thesis demonstrates that the sum of the actions o f A|3 in the cholinergic basal 

forebrain are expressed through nAChRs. In the first part of this study, the effect o f A(f_ 

4 2  potentiation on repeated activation of nAChR mediated [Ca2+]j rises was examined. In 

the second part, A(31 .4 2  was demonstrated to modulate glutamate-mediated synaptic 

transmission in fluorescently labeled cholinergic DBB neurons of the basal forebrain via 

nAChRs. As the cholinergic neurons in this area o f the brain play an important role in 

memory and learning and undergo early neurodegeneration in AD, A|3-nAChR 

interactions that result in changes to Ca2+ homeostasis and alteration o f synaptic function 

in these cells may provide insights into the pathology responsible for the cognitive 

impairment in AD (Ridley et al., 1988; Paolini and McKenzie, 1993). The findings 

reported here illustrate the role of nAChRs in DBB neurons and suggests that nAChRs 

are an important receptor target for mediating the effects of A|T-4 2  that may have 

important implications in processes such as neurodegeneration and synaptic dysfunction. 

A{3 Potentiates Repeated nAChR Mediated [C a2+]i Rises

AP, - 4 2  potentiated nicotine-mediated [Ca ] 1 rises in acutely dissociated DBB 

neurons and was associated with a rise in basal C a2+. Some studies have suggested that 

in certain preparations, AP 1 .4 2  is capable of forming Ca2+ ion channels, however the 

majority of these studies have either been in membrane bilayer systems or have only 

demonstrated the presence of AP 1 .4 2  insertion onto the plasma membrane (Arispe et al., 

1993; Rhee et al., 1998; Kawahara et al., 2000). In DBB neurons focal application of 

A|3, . 4 2  did not cause any observable change in intracellular [Ca2+]j. Previous studies have 

demonstrated that A(31 .4 2  is capable of modulating activity o f voltage gated Ca2+ channels 

(Price et al., 1998; Ramsden et al., 2002). The potentiation of nicotine-mediated [Ca2+]j

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rises in acutely dissociated DBB neurons was not mediated by A|3i_42 effects on voltage- 

gated Ca2+ channels as [Ca2+]j rises evoked by focal application o f KC1 were not 

potentiated by A(3i_42. Both extracellular and intracellular sources o f Ca2+ contributed to 

nicotine-mediated [Ca2+]i rises. Pharmacological characterization o f the nicotine-induced 

Ca2+ rises revealed that both a l  and a4|32 nAChR subtypes mediated Ca2+ entry, 

however, there was a persistent component of Ca2+ rise that was not blocked by nAChR 

antagonists. The distribution of a l  and a4  nAChR subunits on DBB neurons was 

heterogeneous, which corresponded with the pharmacological data, with some cells 

displaying co-localization of the subunits on the same cell whereas others displayed 

labeling for either the a l  or the a4-subunit. These results are in line with previous 

studies examining nicotinic modulation of DBB neuron properties (Henderson et al., 

2005). Additionally, anatomical evidence suggests that there are collateral ACh 

terminals from cholinergic neurons projecting to the hippocampus that mediate synapses 

onto DBB neurons (Henderson et al., 2001).

Further examination of the nicotine induced [Ca2+]j rise revealed that emptying of 

intracellular Ca2+ stores by inhibiting the SERCA pump, which is responsible for filling 

of Ca'2+ stores, inhibits nicotine mediated [Ca2+]j rises. The nicotine response could also 

be inhibited by xestospongin, an IP3 receptor blocker. This antagonist was previously 

used to demonstrate that a l  nAChRs were coupled to IP3-sensitive stores, although given 

the data that xestospongin may also serve to inhibit SERCA pumps, this conclusion 

should be viewed with caution (De Smet et al., 1999; Castonguay and Robitaille, 2002; 

Dajas-Bailador et al., 2002; Solovyova et al., 2002).
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9+  94-A(3i_42 was also able to modulate Ca -induced Ca entry. Repeated application

of caffeine to DBB neurons activated intracellular Ca2+ stores that could be inhibited by

TG, which has been previously reported (Murchison and Griffith, 1999). In the presence

of A(3i_42, the release o f Ca2+ from these caffeine-sensitive stores were temporarily

potentiated. This suggests that A(T_ 4 2 was overfilling these caffeine-sensitive stores to

the point where caffeine-sensitive intracellular stores were unable to buffer [Ca2 +]j.

However, unlike in the case of repeated nicotine-activation o f intracellular Ca2+ stores,

caffeine does not allow extracellular Ca2+ entry and thus there was no refilling of

caffeine-sensitive stores. With no exogenous source o f Ca to replenish caffeine

sensitive stores, the caffeine induced Ca2+ rise did not remain potentiated as with

nicotine-evoked Ca2+ responses. It appears somewhat paradoxical that A|3 m 2  was able to

potentiate caffeine mediated Ca2+ rises, given that it could not potentiate Ca2+ rises

mediated by KC1 activation of voltage-gated Ca2+ channels. However, previous studies

examining voltage-gated Ca2+channels in DBB neurons revealed that Ca2+ entry via these

channels is significantly buffered by the ER which prevents Ca2+ from activating Ca2+

2+
release channels on intracellular Ca stores (Murchison and Griffith, 1998).

<y>

A(3i.42 potentiation of nicotine-evoked [Ca ]* was mediated by its actions on TG 

sensitive intracellular Ca2 +stores. Blockade o f these stores by CGP-37157, an inhibitory 

of the mitochondrial Na+/Ca2+ exchanger after A|3 m 2  potentiation o f nicotine-mediated 

Ca2+ resulted in the blockade of the A[3i_4 2  potentiation. The decrease in the potentiation 

by Na+/Ca2+ exchanger blockade was of similar magnitude to that observed with TG 

inhibition of the SERCA ATPase, which suggests that most o f A|3 m 2  potentiation of

9 +  •intracellular Ca stores originates from overfilling o f the TG-sensitive stores by
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mitochondria. Thus we propose that A(3i_42 acts on mitochondria by causing the 

mitochondria to overfill with Ca2+, which results in the excess release o f Ca2+ via the 

Na+/Ca2+ exchanger, which, in turn is taken up into the TG-sensitive stores by the action 

o f the SERCA pumps (Figure 4-1). It has been demonstrated that mitochondria 

positioned close to these ER stores are responsible for buffering and refilling intracellular 

Ca2+ stores (Rizzuto et al., 1998). These observations are in line with previous studies 

which have demonstrated that blocking the Na+/Ca2+ exchanger impairs Ca2+ release and 

that the Na+/Ca2+ exchanger is localized in close proximity to SERCA pumps on the TG- 

sensitive stores (Arnaudeau et al., 2001; Csordas and Hajnoczky, 2001).

In this portion of experimental studies we have demonstrated that A|3i_42 alters 

Ca2+ homeostasis in DBB neurons via its effects on mitochondria (Figure 4-1). The 

effect of A(31_42 on these mitochondria may be due to A(31_4 2  interaction with a surface 

receptor such as the P75 or RAGE receptor (Yan et al., 1996; Yaar et al., 1997) or occur 

in a two step process with A(3i_4 2  entering the neuron by endocytosis, perhaps via the a  7 

nAChR (Wang et al., 2002) and then binding to an intracellular receptor. Modulation of 

mitochondrial Ca2+ is important in the regulation of neuronal apoptosis. A(3 modulation 

of mitochondria by A(3i. 4 2  has previously been shown to potentiate glutamate 

excitotoxicity and to trigger an apoptotic pathway involving the ER and caspases 

associated with this cellular organelle (Mattson et al., 1992; Nakagawa et al., 2000). 

Additionally, A|3 i_4 2 modulation o f the mitochondrial enzyme, A (3-binding alcohol 

dehydrogenase, has been shown to impair the function o f this enzyme in AD patients and 

to increase oxidative stress in AD transgenic mice (Lustbader et al., 2004).
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A|3 Modulates Synaptic Transmission in Cholinergic DBB Neurons

In the second part of my project, the effect o f Api . 4 2  on spontaneous synaptic 

transmission in cholinergic neurons of the DBB was examined. Recordings of glutamate- 

mediated mEPSCs from fluorescently labeled cholinergic neurons in the DBB were 

examined. Application of A (11 .4 2  revealed cholinergic neurons of the DBB respond to 

A|3i_42 in two different ways. In the majority of neurons, A(31 _42 increased the frequency 

o f mEPSCs. In a second population of neurons, A(3i. 4 2  decreased the frequency of 

mEPSCs. In both groups of A(3-responsive cells, A(11 .4 2  did not significantly change 

kinetic parameters such as rise time, decay time or amplitude, suggesting that Afh -4 2  

modulation o f synaptic activity occurs via a presynaptic effect (Figure 4-2).

The increase in mEPSC frequency induced by A (11 .4 2  could be blocked in the 

presence of DH|3E, a non-a7 nAChR antagonist, suggesting that A(31 _4 2  mediates this 

effect on synaptic transmission via a non-a7, a4|32 mechanism as the dose o f DH(3E used 

is in the low enough range to affect a 4(32 nAChRs and not the other subtypes (Sharpies 

and Wonnacott, 2001; Figure 4-2A). Previous electrophysiological studies examining 

non-a7 and a  7 nAChR-A|3i.42 effects have been performed on expression systems and 

acutely dissociated neurons, and thus unable to assess the effect of modulation of 

synaptic activity. This study is the first to demonstrate that A|3i. 4 2  is capable of altering 

spontaneous synaptic activity. As the basal forebrain plays an important role in learning 

and memory, alteration o f synaptic function would interfere with cognition (Ridley et al., 

1988; Paolini and McKenzie, 1993). Based upon this electrophysiology data, A(3i. 4 2  can 

increase glutamate neurotransmission in a population of cholinergic neurons, while 

decreasing glutamate neurotransmission in another population o f cholinergic neurons.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Although this would lead to an increase o f ACh release from some cholinergic neurons, 

the increase in ACh would not necessarily be able to compensate for the loss of 

cholinergic tone from A|3i_42 inhibition of the other population of cholinergic neurons, as 

these neurons would synapse on different hippocampal neurons. Thus alteration of 

synaptic function in cholinergic neurons of the DBB by soluble AfJi- 4 2  may provide the 

pathological basis for the mild cognitive dysfunction observed at the beginning o f AD 

prior to the deposition of A(31 .4 2  plaques.

Application of other nicotinic agonists onto cholinergic neurons demonstrated that 

both nicotine and acetylcholine were able to modulate synaptic transmission in a manner 

similar to that observed with A [31.4 2 . This modulation is presynaptic in nature as only 

increases in mEPSC frequency were observed in this group of cells. It has been 

previously reported that nAChRs mediate post-synaptic actions, although these studies 

did not specifically rule out pre-synaptic modulation. One study examined the effect of 

nicotine application on acutely dissociated DBB neurons and whereas another examined 

single channel currents, thus these studies were not specifically looking for presynaptic 

modulation of neurotransmitter release (Fu and Jhamandas, 2003; Henderson et al., 

2005).

Future Experiments and Conclusions

In my thesis, two separate A(31 .4 2  effects were demonstrated. Firstly, A(31 _ 42 was

2+
shown to alter and possibly disrupt Ca homeostasis via mediating overfilling o f SERCA 

stores through the release of Ca2+ via the Na+/Ca2+ exchanger. Secondly, A [31 .4 2  was able 

to modulate excitatory synaptic function in the basal forebrain. With regards to the first 

set of experiments, significant questions remain as to the role o f experiments measuring
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mitochondrial membrane potential and mitochondrial Ca2+ may provide more 

information about the effect of AP 1 .4 2  on mitochondria and the relationship of this to ER 

stress which has been postulated to be a major player in neuronal death evoked by A|3

and other similarly misfolded proteins. Further experiments examining mitochondria will

2 _|_

provide additional insights into how A(3i_42 may overfill mitochondria Ca . Examining 

potential targets through which A|3 i_4 2  mediates a decrease in mEPSC frequency also 

need to be performed. Furthermore, pharmacological characterization of the nAChR 

responses in the DBB needs to be examined as targeting specific subtypes of nAChRs 

may become important to AD therapy.
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