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Abstract — The current study investigates the interaction of a 
piezoelectric dislocation with a multi-layered coated fiber 
inhomogeneity embedded in an infinite piezoelectric solid. In 
our study, three dissimilar material phases are involved: the 
matrix, the inclusion and the multi-layered coating layers. By 
applying the complex variable method and the series 
expansion technique, close-form solution for the stress field 
and electric field due to a piezoelectric screw dislocation near 
the coated inclusion is obtained. The image force acting on the 
screw dislocation is determined by using the generalized 
Peach-Koehler formula. A positive value of the image force 
indicates that the coated inclusion repels the dislocation, and a 
negative one implies that the dislocation is attracted by the 
coated inclusion. Finally, the influence of material properties 
and geometric size of the coating layers on the screw 
dislocation has been examined and discussed. 

Keywords- piezoelectric composite material; multi-layered 
coated inclusion; screw dislocation; image force 

I.  INTRODUCTION 

Because of the intrinsic electromechanical coupling effect, 
piezoelectric materials have been widely used in sensors, 
actuators and transducers for a variety of applications. Various 
types of defects embedded in piezoelectric materials, such as 
cracks, dislocations, cavities, and inclusions, can adversely 
influence the performance of the piezoelectric devices. Due to 
the brittleness and low fracture toughness of piezoelectric 
materials, fracture and damage analysis of piezoelectric 
materials has drawn considerable attention [1]. Investigation on 
the electro-elastic interaction of dislocation and inclusion is 
thus significant in studying the electric-mechanical behavior of 
piezoelectric components. 

Deeg [2] considered the electro-elastic field of piezoelectric 
media with inclusions, and investigated the effect of a 
dislocation, a crack and an inclusion on the coupled response of 
piezoelectric solids. Ru and Schiavone [3] studied the anti-
plane shear problem of an elliptic inclusion embedded in an 
infinite, isotropic, elastic medium, subjected to a uniform stress 
field, and proved that the state of deformation in the inclusion 

is a simple shear if and only if the curve enclosing the inclusion 
is an ellipse. By using the complex variable method, Wu et al. 
[4] derived the electro-elastic field of an infinite homogeneous 
piezoelectric medium with two piezoelectric circular 
cylindrical inclusions. Pak [5] studied the problem of a screw 
dislocation in a piezoelectric solid subjected to extend loads, 
obtained closed form solution and derived the generalized 
Peach-Koehler forces acting on the dislocation. The interaction 
between a screw dislocation and an elliptical piezoelectric 
inhomogeneity has been investigated [6]. Huang and Kuang [7] 
applied Green function to give out the generalized electro-
mechanical force when the dislocation is located inside, outside 
and on the interface of an elliptical piezoelectric inhomogeneity 
in an infinite piezoelectric medium. The problem of a screw 
dislocation interacting with a coated inclusion embedded in an 
infinite solid was solved by Xiao et al. [8] by using the method 
of complex variable and series expansion technique. 

In the current study, the interaction between a screw 
dislocation and a multi-layered coated piezoelectric inclusion is 
investigated. The three kinds of material phases involved in the 
problem are: the matrix, the fiber inclusion and the multi-
layered coatings. All these three kinds of material phases are 
assumed to be piezoelectric and with different material 
properties. An analytical solution for the stress field due to a 
screw dislocation located in the matrix, inclusion and coating 
layers has been derived. The image force acting on the screw 
dislocation is calculated by using the generalized Peach-
Koehler formula. The influence of the material properties of the 
coating layers on the dislocation is examined and discussed. 
The multi-layered coating model developed in this paper may 
be used to study the functionally graded materials (FGMs).   

II. PROBLEM STATEMENT 

The physical problem considered in this work is shown in 
Fig. 1, in which a circular piezoelectric inclusion with multi-
layered coatings is embedded in an infinite piezoelectric 
material. A generalized screw dislocation is located at the point 
( 0,e ), be  . It is noted that b  is the electro-potential 

dislocation and zb  is the screw dislocation. The materials 



   

occupy the regions, I, M and nk ,...,2,1 , respectively, 

correspond to the inclusion, the matrix and the k -th coating 
layer. All the phases are assumed to have the same material 
orientation poled along the z-direction with an isotropic Oxy -
plane. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. A multi-layered coated piezoelectric inclusion in an 

infinite matrix. 

For the current boundary value problem, the deformation 
involved is independent of the spatial variable z , i.e., only the 
non-vanishing antiplane displacement and inplane electric 
fields are considered: 
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where zu  is the component of the displacement vector and   

is the electric potential. 
According to the elasticity theory and considering the 

piezoelectric effect, the constitutive relations for the present 
antiplane problem are 
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where 44C  is the elastic constant, 15e  is the piezoelectric 

coefficients and 11  is the dielectric permittivity. ij  and ij  

are the stresses and strains, respectively; jD  and jE  are the 

electric displacement and electric field, respectively. The 
subscripts stand for the coordinate x  or y  or z . 

The governing equations for the anti-plane problem of the 
piezoelectric materials can be obtained as 
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where 22222 yx   is the two-dimensional 
Laplacian operator in the variables x and y, zu  is the out-of-
plane displacement and   is the electric potential. 

From (3), it can be seen that zu  and   satisfy the 

Laplacian equation, so the solution of zu  and   can be 

expressed as the real parts of the analytic functions )(zU  and 

)(z  as: 
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where z  is the complex variable and the over-bar refers to 
the complex conjugate.  

Following the procedure in [8], the holomorphic complex 
functions )(zU  and )(z  may be taken as 
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where the superscripts I and M denote the inclusion and the 
matrix, respectively, and the superscript (j) denotes the 
corresponding fields and variables of the j-th coating layer.  

Assuming that the interfaces between the coating layers, 
the interface between the inclusion and coating layer (1), and 
the interface between the coating layer (n) and the matrix are 
all perfect, it implies that the normal components of the 
electric displacement and the tractions are continuous across 
the interfaces. The boundary conditions may be expressed as 
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where the interfaces ),...,1,0( njL j   denotes the circular 

planes ,0 ar  brrr n ,...,, 21 , respectively. 



   

The substitution of the complex functions )(zU  and )(z  
into the constitutive equations leads to the components of the 
stresses and electric displacements, and the detailed 
expressions are omitted here.  

Writing  )sin()cos(  irz  , and applying the 
continuity boundary conditions, by comparing the coefficients 
of )sin( k  and )cos( k , we obtain linear equations to 
determine all the coefficients of the complex functions in (5-7). 

The solutions can be obtained as 
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It is noted that the coefficients of the (j+1)-th layer and 
those of the j-th layer are related to each other which can be 
obtained by applying the transfer matrix method  
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where jr  is the outer radius of the j -th coating layer and the 

matrices  1A ,  2A   )(
1

jB ,  )(
2

jB , and  E  are related to the 
material properties, the geometric sizes and the loading 
conditions. The detailed expressions of these matrices are 
defined as 
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III. CLOSED FORM SOLUTIONS 

By substituting (5-7) into (4) and (2), the field components 
in the circular cylindrical inclusion, the coating layers and the 



   

matrix can be obtained. The closed form solutions of the shear 
stresses and the electric displacements inside the inclusion and 
the matrix can be given as follows 
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The corresponding solutions of the shear stresses and the 
electric displacements inside the coating layers can be easily 
obtained in a similar manner and detailed expressions are 
omitted. 

It is noted that when there is only one coating layer, i.e., 
1n , the solutions obtained is the same as the result of [8]. 

When the number is big enough, the current model can be used 
to simulate the functionally graded coating. 

IV. IMAGE FORCE 

It is of great interests to study the image force acting on the 
dislocation when the dislocation problems are discussed. 
Following Pak [5], the generalized Peach-Koehler forces acting 
on a screw dislocation can be expressed as 
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where the variables T
zx , T

zy , T
xD  and T

yD  can be obtained 

by subtracting the corresponding fields generated by the 
dislocation in a homogeneous matrix.  

When the dislocation is located at the point )0,(e , the 

expression of T
zx , T

zy , T
xD  and T

yD  can be given as  
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Substitution of (27-30) into (26) leads to the expressions of 
the image forces as  
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V. EXAMPLES AND DISCUSSIONS 

In this section, some examples are given to illustrate the 
application of the closed form solutions obtained in previous 
sections. The screw dislocation is assumed to be located at the 
point ( 0,e ), and the screw dislocation and electro-potential 

dislocation are assumed to be m101 9zb  and V1b , 

respectively. 

To study the image force more explicitly, we allow the 
dislocations to have only one nonzero strength characteristic, 
i.e., either zb  or b . The following normalizing factors are 

introduced respectively for the case 0，m101 9  
bbz  and 

0，V1  zbb , respectively 
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Assume that the material properties of the j -th layer 

coating are j  times of the material properties of the inclusion, 

i.e., 
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In the following calculations, it is assumed that the 
material properties of the matrix is two times of those of the 
inclusion, i.e.,  
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Figure 2. Normalized shear stress 0 zx  in the coated piezoelectric 

composite when V1b , 2,4,5.0 21  M . 

 

 

 

 

 

 

 

Figure 3. Normalized shear stress 0 zy  in the coated piezoelectric 

composite when V1b , 2,4,5.0 21  M . 

 

Fig. 2 and Fig. 3 show the normalized shear stresses 

0 zx  and 0 zy  when the electro-potential dislocation 

V1b  ( 0zb ) is applied at the point ( 0,e ), 

beabr 5.1,4.12  . The value of 0  is defined as 
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which is the value of the shear stress of ),(  rI
zy  when 

1r a  and 0 . The material properties of the composite is 

characterized as 2,4,5.0 21  M . 

The dotted lines denote the interfaces between different 
phases. It is observed that the shear stresses and across the 
interfaces are discontinuous (except at some special points), 
and the magnitude of the stresses in coating layers are 
dependent on the material properties of the coating layers and 
the value of the dislocation. As the dislocation b  is located on 

the x-axis, the shear stress zx  is anti-symmetric about the x-

axis and the shear stress zy  is symmetric about the x-axis. 

 

 

 

 

 

 

 

 

 

Figure 4. Normalized hoop stress 0 z  on the interface between 

inclusion and coating when V1b . 

 

 

 

 

 

 

 

 

 

 

Figure 5. Normalized hoop stress 0 z  on the interface between matrix 

and coating when V1b . 

 

The normalized hoop stresses 0 z  on the interface 
between the inclusion and the coating layer are displayed in Fig. 
4 versus the angle   when V1b  ( 0zb ). Fig. 5 shows the 

angular variation of the normalized hoop stresses 0 z  on 
the interface between the matrix and the coating layer. It is 
observed that the hoop stresses on the interface are not 
continuous at the contact point, except for the two particular 
angles. The maximum magnitude of the hoop stresses on the 
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coating layer side is larger than that on the inclusion or matrix 
side for the current composite material combination 

2,4,5.0 21  M . 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 

Figure 6. Normalized image force xbF  versus the distance be . 

 

 

 

 

 

 

 

Figure 7. Normalized image force xbzF  versus the distance be . 

 

The influence of the distance on the image forces xbF  and 

xbzF  are displayed in Fig. 6 and Fig. 7, respectively. It is noted 
that a positive value of the image force indicates that the coated 
inclusion repels the dislocation, while a negative value of the 
image force implies that the dislocation is attracted by the 
coated inclusion. It is seen from Fig. 6 that when the  three 
coating layers have the material properties as 

4,5.0,1.0 321   , when the distance e  increases, 

the image force xbF  increases from negative value to a 

positive maximum, and then decreases to a minimum of 
positive value. It implies that the dislocation is attracted by the 
inclusion when e  is small and it is repelled when e  is big. The 
other three material property combinations indicate that the 
dislocation is repelled by the coated inclusion. Fig. 7 displays a 
totally contrary trend of the image force xbzF  when the 
distance e  increases. 

VI. CONCLUSION 

A closed-form analytical solution is obtained for a 
piezoelectric screw dislocation interacting with multi-layered 
coated inclusion by using the complex variable method. The 
results indicate that the coating layers play an important role in 
the problem of the interaction between dislocation and 
inclusion. The analytical solution obtained can be used as 
Green functions to solve related inclusion-crack interaction 
problems in piezoelectric composites. 

ACKNOWLEDGMENT 

This work is supported by National Natural Science 
Foundation of China for Creative Research Groups (Grant No. 
51921003) and the Joint Fund of Advanced Aerospace 
Manufacturing Technology Research (Grant No. U1937601). 

REFERENCES 
[1] K. Q. Hu, Z. T. Chen, “Size effect on crack kinking in a piezoelectric 

strip under impact loading,” Mech. Mater. vol. 61, pp. 60-72, 2013. 

[2] W. F. Deeg, The analysis of dislocation, crack, and inclusion problems 
in piezoelectric solids. Ph.D. thesis, Stanford University, Stanford, CA: 
1980. 

[3] C. –Q. Ru, P. Schiavone, “On the elliptic inclusion in anti-plane shear,” 
Mathe. Mech. Solids, vol. 1, pp. 327-333, 1996. 

[4] L. Z. Wu, J. Chen, and Q. G. Meng, “Two piezoelectric circular 
cylindrical inclusions in the infinite piezoelectric medium,” Int. J. Eng. 
Sci. vol. 38, pp. 879-892, 2000. 

[5] Y. E. Pak, “Force on a piezoelectric dislocation,” ASME J. Appl. Mech. 
vol. 57, pp. 863-869, 1990. 

[6] W. Deng, S. A. Meguid, “Analysis of a screw dislocation inside an 
elliptical inhomogeneity in piezoelectric solids,” Int. J. Solids Struct. vol. 
36, pp. 1449-1469, 1999. 

[7] Z. Huang, Z. B. Kuang, “Dislocation inside a piezoelectric media with 
an elliptic inhomogeneity,” Int. J. Solids Struct. vol. 38, pp. 8456-8479, 
2001.  

[8] Z. M. Xiao, J. Yan, and B. J. Chen, “Electro-elastic stress analysis for a 
screw dislocation interacting with a coated inclusion in a piezoelectric 
solid,” Acta Mech. vol. 172, pp. 237-249, 2004. 

 

 

 


