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ABSTRACT

+
Mamy of the testirg methods are forms of path analysis strategies whaeh
-

require the selection of wset of paths along whidh testing will be conducred. Tdeally,

.

one wonld Mhe 1o canstruct aoset of tests whieh will deteet all evrors i a0 progriau

)
In general, the problem of finding such o set of test paths is'hnown'to be unsolvable,

However, Zeil has developed o vector space measure which indieares those paths
4 . . . PRI
which best detect errors ina selected program predieate. This measure has to e
. . > : . .
applicd 10w set of paths post hoer wnd <o the problem < to hearistieadly
characterize those paths which will provide mpximal test information about the
seleeted predicate: the problen of seleetime the optimal ser of paths s NI-haed
Fxperiments are conducted which utilize.the vector space criterion to indicate those
characteristies of paths which can best be used to test a given predicate. These
' : : N
characteristics will then provide a selection mechanism for an appropriate set of
paths. A larger question involves the selection of those paths whiclsufficiently test
* . . . .-
all thé program predicates, and will also be addressed by these experiments. A
. . s . i .
further issue i« to experimentally characterize those program properties which lead
to an irreducible error spacd for a predicate, and canunot be ehiminated by any path

v

through that predicate . /
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Chapter 1

Introduction

1.1. Why Testing?

The woal of provean testing as to oun contidenee i software Tdeadivy one
would Trke to construct aset of tests which will detect all error< i W program. In

: .

conetals the poced bene of fodimey suele woer o e s bnowr to he une b able
#

Manna and Waldineer [12] have clearly summarized the theorenieal barrers to

complete testing

"We can never be sare that the specilications are correcy.”

H .
"Noverfication systemh can verify every correct progriun.”
, o

"We can never beeertign that woverntfication sysmvin s correet

Not only are all known approaches to absoluty demonstration of correctness
tnpractical, but they are impossible as well Therefore, our objective must shift
from an absolute proof to a suitably convinciwr demonstration of program

correctness. The word suitable, of it v to hive the <ame meamns to eversone,

“tnplies aoquantitative messnre. which o turn smphes o statistieal mewsare of

software rehabibity . Our ol then, should be to provide «‘uﬂi(‘i«tnl testing sehemes

to assure that the probability of failure due to hibernating bugs s suﬂicivntlyﬂ low to

be acceptable. What s suflicient for u videogame 15 not sxlffirit"xl! for o niclear

reactor application. We e evpect that el apphieation area will eventuadly

evolve 1ty own software reliabihity standards. Concurrently, testing techmques will
i

evolve tothe point where it will he possible, on the basis of test results to provide o

quantitative prediction of the routine’s rehabihity. %’nut this s <tllan the future. For



now ot et b teenmes i mest pple o vtonss maet besobetany inere coed
. -

Loofoore aeh e e o he “‘l’l"‘l g |§Mr'[">lwl1w] with contidenes fnothe o

. A
decade there s o vrowiny arreement o the role of teatineg e a woftw are goadity

assuranee diserphine

The parpose of this research s to develop hearisnes Tor selectime test patlhe for

path-onented testing strategies

&

1.2. Pre osed Methodology

In recent yvears a number of wmethods for automating portions of the <oftware

testrner oAl hoove heen ;wrr)[’w‘-«l‘(l \1.1!1'\ ol these methods are form of gwfl!

v

analyvais strategies [;"T,H.I?\’]. where the process of testing s treated as two
operations:

1) selection of a path or set of paths along which testing s to be conducted,

2

wt .

2] selection of input data to serve as test cases which will canse the chosen

paths to be <-Mntv<l.

Currently, the second stage of path analysis testing appears to be hetter
anderstood  For general programs, the problem of generation of relinble test data s
hnown to be undecidable. This means that ot can be proven that no alconthm can
be found in the general case for its solution. The test data seleetion problem

involves the selection of o finite set of test data which reliably determines the
"’;:‘l‘\\ 4
correctness of a program over its entire input space. Howden [8] has shown the

x

probley of econstructing ~uch a <ot for an arbitrary computer prozram o

nndecrd able For certaan chasses of procrons, howesers e oo te fonn s e

research [16-128] has shown that it is possible to implement rehable methods of
-

selecting test data for a given path to detect specified types of errors,



R

éd.

with exactly two variables. {n this

1.2, Proposed Methadology ' 3
/ ‘

! '

jo o

r . .
A setfof test data for testing

a program construet for given path will be
t ] \ AL . e

Y
Y
3

i K X : . } Ll
considdered reliableaf whenever thatcomstruet hehaves meorrectly wong thar putl,

{
v

the test set guarantees: that tncorrect output will be o'lwg"rw(l by the tester, A

testing strategy is considered reliableif it wenerates only reliable test se
‘ . : ‘

"The work which has been done on the second stage of path analvsis testing
permits us the luxury of assumingthat areliable method of testing a selected path
is available to us. This research is therefore concrrned with the first stage of path

.
\

analysis testing, the selection of test pathe . ‘ S

IS

[ : . . .
Computer programs contatn two types-of errors which have beenadentificd as
; e ' .

4 .

computation errors and domain errors by Howden [®]. A path .contains a

3 . . : . DN . . - ] B .
computation error when aspecific input follows the correct path, but an error in

. . ¢ . : !
some assignmedqt statement causes the wrong fun_(‘tlonto- be computed for ope or
more of the output- variables.

a : N
. {

', : L
-A_domain error occurs when a specific input follows the wrong path due to

-

“an error in the control flow of the program. Figure 1.1 explains this for a program

case the set of possibie inputs to the program
: ‘ o ,

"

bl

" form@N flat plane. The bold line represents the correct border, and the dashed line

1

indics

the border actually generated hy the (mcorrect) program. lnput data

points which fall within the regions between the two lin are associated with the
: e B . -

wrong domain, causing the wrong path to be executed, creating a dom...n error.
. P » S . .

Domain errors can occur due to ar error in the program predicate, or due to an
. . - oo . * N ’

error in some assignment statement which subsequently affects the interpretation of
. . A . N

N &l . ,

a later predicate. The term predicate error hus been employed to deseribe the
former {7]. Stmilarly, errors i assignments will be terwed assignment errors i
this thesis, These are particularly interesting in that an assignment error might

.

eenerate cither a domain error ora computation error. RN
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Figure 1.1 Domain Error
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1.2, l’ropo.\("(’l Methodology o 5

J

A inal possibility s that a funetion and itsosubdomain may be nissing

/

altovether 2 This wenerally occurs when w prosrammer Torcets that cortun values
oo .

. « .
are to bettreated as separate or special cases. Inothe program this means that o

vorresponding predicate is missing and heuwee no constrant s generated to split
. ARY : e, . ° .

som« subdomain. These are called missing path errors [5].

i . + e . . N

~ -

+ This ('rr<)> (‘l.’l}h;“i(‘.'lfi()ll 1s by no means extianstive, Clearly, there exist other
’ / R * ,
. .

/ i . .
types of grror snch as syntax errors, errors in 10, ete. which do not fudl fnto these

- 1 s
r;

classes and do not bear a natural relational with the functiothl model of computer

progeany, Here we are attempting to capture the probleiis commonls thonght of us
rin-time” errors, faults which are not normally detectable by static checks such as

comptler dingnostics nor by common hardware/software monitoriyg such as checks
ot . -

-

for division by zero or range checks. ’ o T

Ry

Zell h:x;s developed a vector space analysis technique called pcrturba‘t‘ipn
testing, and has applied it to both _d()rﬁ:xin errors [‘.."_’-1;’-1] “ind computation errors
[25]. Howeveérphere his model is utilized for predicate vvrrors (a subset of domain
error), ()l)tuAininf_: answers to the followling kind of questions:

1) After asnumber of paths have been tested; what is the marginal advantage

of .choosiins vet another path?

ot

2y s there a point at which we may say that no more paths need jo be

chosen through some program construct to be testrd e that s hus been t

sufficiently tested -

A set of paths shall be considered to be a sufficient set for a program construct if
the failure to detect some error in that construct, usine a reliable method of
selecting data points for those paths, implies that this error would go undetected

r

for any path through the program.



1.2 Proposed Methodology ‘ ' G

1.3. Thesis Organization

. Chapter Two summarizes Zeil’s model for perturbation testing. In order to

¢

“obtain a suflicient set of paths, a reliable test selection strategy must be utilized - If

.

the errors are domain errors, then under certan conditions {3018, the dowam

testing strategy can be shown to be reliable.

In Chapter Three, the details regarding the design and implementation of o
computer system for selecting set of test paths for testing computer program

predicates is elaborated. This system is based on the Zeil's model.

Chapter Four outlines the experimentation using the system described 1o
[ - . K

thapter Three,
. . i ~ -
- . . i : ) .
Chapter Five presents the rpsults from the experiments and discusses the

v

issues involved in path selection.
Chapter Six draws conclusions from the experimental results. A discussion of
, i

possible further work follows the conclusions.

%



Chapter 2

~ ‘s
- |
A Model for Sufficient Path Testing and Perturba'tion Testing

.

[ this chapter we shall summarize & model for predicate testing This nodel
was developed by Zeil and White [16,22] for predicate testing. It deseribes aeluss of
programs whase'damain:borders are portions of linear hyperplanes. Zeil [24,25] has

. \\ . ’
extended his model for pertiurbation testing.

N

2.1, Background . . ' .

There are two major classes of vatiables used in o program. If o vanable

. ’ o
appears in a READ statement, it is classified as an input variable; all the other
variables are called program variables. If a variable appears in a WRITE

statement, it is classified as'an output variable. An output variable caun be either

an input or a program variable. s E ) .
' : . o
The major components of most. programs are computations and predicates.
o : s R

Computations assign new values of program variables, some of which may be sent

directly as output while others are cmployed as intermediate resubts. Predicates are

the decision functions of o program. cotnmonly seen tn "7 statements or as the
control statement-of a loop.
Predicate functions often make use of program variables whose values have

been determined by a previous compfTation along a particular path. The process of
substituting for these program variables i terms of inputsvariables along thae pach
is called interpreting the  predicate © function, * resulting 1n i predicate

“interpretation.



S Rackeround ‘ =

\icinterpretation of o simple predicate i linear o the input varables of and

e
onlyvaf s of the form
(']\'l + -('3\'2 + + ‘.IH"VIH q) l'\

Y)y
where vy ooy are the dnpgt variables, oo o0 e and K are constants,
. ‘e t

) 7 ‘ /
& repredents one of the reldtional operators (<. >7=,. 5, =, #)
»

2.2. Basic Concepts

Tlhe central element in this model is the environment. The cnvironment of o
program represents the vabues of all inputs and variables at any point in the

program’s execution. The environment may be represented as the following vector:
N . ’ . ' . ]
)T

L’“‘(Xl...‘,x

. ,
m'}l"""’

- N

The v, represent _the program variables, whose values/are established by the
computations along a chosen path through the program. The Xjirepresent the
' s

- ' . . . ’
values of input variables. For reasons of primarily notational ‘convenience, the
< . . . \

number of input variables is treated as a constant. Initially, only the input

variablgs are considered to be deffned. The program must define the program
. Y
« as Tunctions of the input vahies and cohistants,

» P

viriabt

the kurrent environment to generate the n’v\% environment and Tois a predicate

J

dgtermine the index of the next (O, lj) pair. These predicates may be either

daualities or inequalities. In eflect, this means that @ program is composed of



22 Rasie Coneepts i . 0

statement pairs of theform ) . -

oG
: L

and
if IJ()_) D0 then goto )
ehse goto )’

where' P s any relation operator. Note that a single ' can correspond to an entire

}

block of assignment statements.

We shall tet (Ch0Ty) desianate the start of the program An example of
p:s‘rtiti()n‘iu'g a program into (('j. 'l‘j) pairs for an Integer Division Remainder
Program is gn’«"n“l’n Figure 201 i . .

FFor example, in a program with three mput variables: X Y and 7, and two
program variables A and B, 'th(‘ environment vector would contain five eutries
corresponding to

£ = (XYL 7 A BT
P .

The computation corresponding to fhe progrim fragment,

'

ﬁ\=l§—/+3*\ (
B=Y+5
IF A S BTHEN ‘ : '
is the function
vy
A

| ot




B

)

Laste Claneepts

\ 10
READ, X. Y
R 0
A ] ‘('n l‘m
PFOOX O Gh0) THEN. DO
IF (Y .GT. 0) THEN DO S ST
R - X (Co Ty,
WHILE (R GE Y) DO (Cy. Ty
Ay (€4 T,
1 .
WHILE (R GE  A) DO \\ (Co Ty
ROR A ]
A A+ A (Cg. Ty
FND WHILE
END WHILE (¢ Ty
END IF
FND. IF (Cy. Ty
PRINT, “"Remainder ‘{s *, R -
STOP
END

4 o
Figure 2.1 An Example of Program Partitioned into (Cj, T)-) Pairs



. N : "\
D0 e Claneepts . \ [

The predicate fongtion for the b statement ending that frozment wonld™ he

S .
IR v Ny rw.»nll of ths CNpree oL wantd e vullll'\l""l lev 7o o
choose the subsegnent path \

\ provream can he r«-pr('m‘nh'(i as aghirected !(r,\[)fl (= (\ \) wlhere Vs aoset

of nodes and A s the set of ares ordirected edges between nodes, The directed
j.:r.\pll r('prvw'nl:ll'lnn of a pru;_(r':un will contatn o node for (‘;\(‘ll acenarrence ()f a4

(¢ VI‘J) parr, aud anoare for each possible flow of control betwern these pars. A

example of the directed graph representation for the tuteger Division Remainder

"\

J

) f

procrai s wiven i bagaree 200

A walk oo digraph is defined as an alternating sequence of vodes and ares

o 1o node vy

(Vo Voo o iy g Vil such that eacli are a8 from node
A path is then defined to be a walk in the directed graph which hv;ﬁins at (Cy. T)
and ends at aovalid HALT statement. Two walks which differ only in the number of
times of o particular loop in the program s excented are differentiated as two
distinet paths. Thus the number of paths in a program can be infinite {17) The
term subpath will be used to destgnate a path which -bemins at (O, 'l\(‘]) and does
not end at a valhid HALD statement.,

The process of exeenting o progriam will therefore consist of choosing
coquence of ((';. '|‘J) pairs constituting a Jeeal path throush the procram. and

applving the suecessive transformation to the enviromment. For example,
Yep 7 Cpojo 00l (xy)
where vy v the initid cinvironment and o denotes the composition of funetions
rmﬁu-nll_\ we shall cronp these computations tozethier aond define © o the 1o
. y
computation along a path Py

.

o Cpoly o 0Coly
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Figure 2.2 An Example of Directed Graph Rgirﬁ‘
. (u, a

?



Do e Clancepts :

Phen, the cuviranmment Cfter executing the proceam adona some parh P gowonld he

TV e l)).. Vo { \'\4.«‘\

An evecutton of a0 provean proceeds along sonme paths every predicate
crcountered plaes restrtions on the subdonran of tnpat pornes whichowall eane e
st |):\lh to tw eveceuted  However, the constrants Ilnpn«ml |») (-qu.\||l‘\ pr:-(||r.\lrw
are fundanentally ddferent from those nmposed by nequabities, sinee a0 vadid
predicate reduces the dimension of the spaee of dewal input pomts Frquality
Festrictions can ariee from sources other than canality predicates. Combinations of

Lw o ar fore thedgh thities anay cotnede 1o i pose m|ll,|lll_\ restpietiop on thie thp!

of these predicates are taken as trues then the condition "\ B s implied.

Equality conditions arising from such combinations will be referred to as

coincidental equalities. Since a path can actually involve g Squality
‘ .

restrictions, it will be necessary to collect aset of equality restrictionecrors, {r}.

for cach path.

The path in question is feasible if there exists some input data which canses

-

that path to be exeeuted.

2.3. BasicAssumptions

»

[
A set of limiting assumptions abont both paths and programs are necessary an
order to formulate reliable testing strategies. We will be concerned with f-asible

(~ub) paths leading from the bewinning of the program up to and iz the

' N ?
v

. 1o no . e
prionrati constrage 1wx.1,; T to \ i ‘l ! ! to

N " ! . | . .
AR PR S PR T SR SRV testable S

there exists,a path 7 such that

1. P ends with a valid HALT statement;
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P Thiee exists some anput salue o the o P (1) o be

e |)t'c";
In' thes model the prograns are represented o terms of
comput dtion |'I'<'«ll< ate podrs ((‘J’ vl‘)] with cavecteon adoner o |‘.1’]1 b

dewerihed e terms of the environment v and the equadiy restrictions {r )0 The

conditions on proceams which we shallanady ze i tlos researeh are s Tollow s

-

(1) missuee path errors do not oceur,

Ch ol e e b contion
‘.
{4 ')['('l“('fl't‘\ are \nnplv, not combined with NDooln or other |m:i(‘:l]

up('r:nur\;

(1) adjacent domains compute different functions

The first assumption is reguired beemise no testiimg stritewy based only on the
provram text can guarantee detection of missing '[)Jll hoerrors. The assumption of
continuity permits the use of standard mathematical tools. I practice this should
canse hittle difficulty as fong as the size of the domaimn s not comparable to the
diverete resolution of the spuce {16]. The third assumption s convement,
stmplifving the functional forms of the predicates, but need not actually restrice the
<ot of acceptable programs, since any program can be easly transformed to
eliminate compound predicates. The final assumption simply states that, if a
domain error occurs, there must exist some point in at least ().nv of the affected

donrns whieh produces incorrect ontput.

Foven given these assumptions, the problem of determining the correctuess of
program predicates remains unsolvable. Some knowledge of the class of permissible

functional forms for the predicates is required. Therefore the next assumption is:
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Pwao propertoe of*vector wpaeces are parteenfarly cvonheant here Bea one b
A o vecrar e s be deerrbied by speafvie e e e e
vectors. wuch tha vy member of the veetor —pace can be formed Trom o live a
T
combinatton of these (‘ll:\r;u‘tvrl‘\lng veothps Hw‘nn(l. Avector space e Aored undes
the operations of wddition and sealar mattiphication Suppose that some correct
predicate T has been replaed by an "FI‘HMI'« form, V7 Then the expresaon
" T represents the error term an the mceorrect predicare e the vector
spaee containing T oand T s elosed wnder subtraction, the error term " "'7'1""

et oo ey the same veetor Sl
Rl
Define the function e as an errag term for which

1 T+ ae a # 0

Then the interpretation of the incorrect Predicate T along an subpath ending at

T with finad environment ¥ as given by

Ty o Fla) + ae(y)
If a rehable method of testing o given path is employed, then a predicate error s
T . .o . . ‘
detectable wheneverTheagterpretation of the incorrect predicate 1< not a maltiple
:’0 ! : '

of the correet predicate’s anterpretation. Thos o predicate “error s undetectable

alony agiven path af and only 1f there exists i positivessealar hosueh that
Ty hl iy
for all v 0 the path domain. Define Null(C) as the set

€ {T) and ¥y o Cly) 0
By

the set of all error terms o {1} which are identicadly sero on the path where €0 s

computed. Null{(") consists of the set of functions which evaluate to zero when the

expressions computedin (0 are mlmt‘\ir#nm{ for the program variables For example,



S eac N ptrons

[ 4] pre .||«‘ b anterpret gty e e an the et oy hile

Vv procean satisfying these five construnts will be cddled o linearly domained

thewe tope of prove o which will be soadied o thoe thesr

yrog rar Jlllll ol he
I 4 '
N

One charetenstie of Tinearly domcaned proerane v thar the feasibility of pache
can be determimed

Jerk has generalized the el of prosreams for wheh b moded «‘,m.iw apphed,
conwtder the Tollowine three constraints

(6)  all prosram compntations Tl swithon e el (O whiel e elosed

ninder functronal composition
. N - N R . w
(7) all predicates fall within ~ome class {T} which ix closed under

composition with {C"}.

(&) {'I}is a vector space of dimension k over |

o
) The class {CF represents the set of possible computation functions for use in the
i3 ) . cnt
)._[.,f¥1>r<)‘;r:«111. The set of possible predicate interpretations is represented by the elass of
~},, = fupetion {ry . ’ X
%

Programs satisfying the conditions (1) thronsh (1) sud {(8) through (X)) will be
called vector bounded programs. Pxamples of useful vector spaces of functions

inelude the set of all tinear functions, the set of p'vuomial functions of degree k.
and the set of multinomials of degree k. Thus hnearly domained programs are a
specral ense of vector bonnded procrams

The prvotal concept of this model s the defimnon of the set of predicare

. . .. . N . '
interpretations o< a finite-dimensioned vector space. A vector space provides o

powerful way of describing and manipulating an wfinitely targe set of functions
~
“
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‘

after the assignment statement' X = f(x), the expression N = {(x) can beadded to
N ) » L 0 . . . v ’
a predicate without detection Of course if w dilferent dest parhis selected, N oma

be assigned a different expression and the error term X = f{yfi being nonzero, could
be detected. "This behavior, associated with the values currently assigned to each
program variable. 1s.called assignment®blindness. ‘An example is show i in Figure

2.3, where the two versions of test predicate are indistinguishable as long as the
. . \' .
%

assicnment A = 1 is unchanged.

o
.

'- . . . Al « " . . . . -
A similar behavior is associated with equality restrictions on a selected path:

RiY

An example s shown in Frgure 2.3, where the two versions of cecond predicdite are

-

indistinguishable as long as the first predicate is true. Hence, the set of equality
oo Lo . ‘ N . .
restrictions {r;} is included in the set of undetected errors to acknowledyge equality

bli_n'dnEsz .

e The final component of the set of undetectable predicate errors ix the }{\odirato
T and is termed self-blindness. It is an interesting property of predicate testing

3 .

lll‘:xtf/zx predicate can never be distinguished from its multiples, since T(x) compared

with zero and a'l'(x) compared with zero are identical for all positive real numbers
a. An example of this is given is Figure 2.3.

-

" For convenience. the set of expressions denoting the assignment, equality, and

sell-blindness spaces for any path P o will be denoted by BLIND(D 4).
" ‘ TR Ly " Vi
I'he vectors vy vo,. Vi'ing vector space V oare sai®to spanV il every vector

in Vois expressible as a linear combination of v, vo,... . v.. That is, for.every vEV”
. e | S A ‘ ,
there are sealars ay, ao,....a

¢ such that

4 - . ) -
H / ) s . R

L ’
R ER T SR AN & +

a
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‘Assignmént Blindness . /

Correét_ ' / - . Incorrect

; .
B ) /
A = 1 . : : - ’/’ . - U=
IF B > 0 THEN o _ IF B+ A > 1 THEN
Y

~

- Equality Blindness

Correct o R ' » " Incorrect .
IF D = 2 THEN S .. IF'D =2 THEN
TIEC+ D >}3 THEN . " IF C > 1 THEN
» . % .
Self-Blindness ) - o 4
_ Correct - L ' ' Incorrect
I | X<
L
IF X - 1 >0 L L IF X+ A=2>0

! 4 i
ess, Self-Blindness

Figure 2.3 ExahuﬂesofASﬁgnxnentandl?qua“ﬂyl)ﬁndn

o . O}
L . R
. '{};Jd
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2.3 Basic Assumptions,

RS
2.4. Zeil’s Model

I reference [223]0 Zeil then demonstrates the following faur results: -
\ ' i
N ;
(1) Let Py be avtestable sabpath in o vector bounded progri ' be
«the function computed along that path, T' be the final predicate in Py,
and {r;} be the set of equality restrictions on the domain of I’y Then an
. | e
. + crror e in T will be undetectable on Py if and only if
. . iy
e € span[ Null(C) {r} T ] (1)
‘ ' :
(b) If a set of testable subpaths {P;}, all ending at séme predicate T has
. been reliably tested, then a subpath 'y also ending at T need not be
tested if an only if

) N N\
AN \
[ r] BLIND(*;) | € BLIND(P ) (2) ‘\\\
. ’ ) }

-:‘:l' (c) A set of testable subpaths {P;}, all ending at some predicate T is
: sufficient fort%‘sting—'[ il
’ ¢
[ M BLIND(P,) ] = {T"} (3)

() A mimmal set of subpuaths <uflicient for testing a given predicate in a

vector bounded program will contain:at most. k subpaths, where k is
the dimension of {1}

This Tast result involving the minimal set of sufficient subpaths can b
choraldy armphifed for oL REE S IPFTTIEY

o

Coprodrans.

A minimal set of subpaths sufficient for testing a given predicate in a lincarly

domained program will contain at most m+n+1 subpaths, where m is the number
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of input variables and n the number of program varinbles,

To demounstrate these results, consider the program shown o Frgure 240 This
program computes the greatest common divisor of any two positive integers. The
predicates are Tabeled™in order to provide reference points for deseribing paths,

Paths will be specified by listing the predicate names in the order in which they are

. . 4 .
cencountered, followed by t or f to indicate the branch chosen wecording to the truth

or falsehood of the predicate. Subpaths will be denoted by listing all predicates up
to and including the ending predicate. with the ending predicate muarked with ?

-~

since no branch has yet been chosen following that predicate.

The  enviropment  vector for this proveam’ will have  five elements
corresponding to (1. X, Y, A, [i)’l"]/ot's start the test puath selection process for
predicate Ty by examining the shortest possible test path {T1:7) leading up to T,

The subpath P (T:?) consists of the first four program statements. The symbolic
] 1 1 prog A

execution alone the subpath s
) 1

B=Y

The assicnment -blindness vectors are therefore given by the expressions "No— A"

and YT = BT The ~elf blindness veetor for this subpath s based on the expression

"3 — A" and its interpretation tn terms of input variables is Y = N7, There are
»

no equality restrictions. Therefore  BLIND(P ) consists of the expressions

"N = A"T"Y = B” and " = X" Hence if testing along the subpath (T:7) does

“not reveal an error. the predicate Ty, whose functional part here s "Bo— A7 may

be tncorrect with the correct forim being N ATy - BTTY - N o aiy of
the infinite expressions which can be obtained from combinations of the three

chiaracteristic errors which cannot be detected using this test path.
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(T

PROGRAM GCD
READ, X, Y
A= X

host ‘{

WHILE (A .NE- B) DO

WHILE (A GT B) DO
A=A -8B

END WHILE

WHILE (B .GT A) DO
B P A

END WHILE

END WHILE
PRINT, X Y, A B
END GCD

Iouclid’s Algorithm for GCD

FFor this program the following set. of paths are sufficient to test predicate T

® 2 (Tt Tot. 1

STyl Ty

3Tyt Tof, Ty Tyl Ty

F‘-i-g.u‘re 2.4 An Example for Zeil's Results
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»

Neavt consider the subpfith o (1t T Tof Py 07717 The svmbolie

execution alone this subpath cives
R

With no equality restrictions, the predicate interpretation for the ending predicate
is "2Y = X" Therefore lil,l\l)(l’g) consists of the v\;’)rvwinna‘ .N‘\'. - Y - \
\ - B and "‘_’b\' = X" The set of undetectable error nusing these two paths s
Ceiven l)‘\.'r the intersection of BLIND(P,) and BLIND(P,). \\"hivh is given by the
expressions A = Y Tand B YT |
Next consider the subpath Py (770t Tof o Tart, Tyt :!y‘]:'f). The .\_\"mlmlic
w ’
execution along this subpath gives
A=X
B= -X+Y

. AN . . . .
are no equality restrictions and the predicate interpretation for the ending

Sy

predicate is 'Y — 2X". Therefore BLIND(P3) is given by the ex;>rcsxi<fxns'"y\\j AT,

There

*

Y — X = B" and "Y = 2X". The intersection of BLIND(P4) with the toral
3
undetectable space after the first two paths is given by the expression "B — A"
Therefore the total nndetected space has been rediiced to the self blindness vector
and from Zeil's third result we know that this error term can never be eliminated
from the undetected space. So paths Py o, Pyare sufficient %t(-st predicate T
‘
Testing predicate T is now guite simple. There are no assignment statements
] 51 2 , | g
between T and Ta. so the assignment blindness for both predicates are the same.
! 2 R |
Porh prodicares have the Cone fanetion ] form. "I = A7 <o the <o Blindness

vector is unchanged. As with T, there are no equalities to be concerned with. The

net result is that extending each of the test pathis for Ty by assuming T1 s true
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Do el s Model ' ) o R

-

wives o path o with the same bhindness space for T as for 'y so the same et of

I vhe form o sullicient test et for l_

-~

Stmilarly by extending each of the test paths for Ty by assuming T s true
and T false gives wopath with che same blindness space for Ty as for T So the

samne set of pathsis also sufficient for testing Ty

b Chapter Four, experiments will be conducted entirely on linearly domained
programs. Associated with cach predicate ;() be tested will be an error space of
mesvitnn dimension fmrn dh) \~‘ cacl sobseqnent subpath throueh that
predicate is chosen for testing, the r('sultb:\nl error space 1s reduced in dimension (or
else thu snhp:nvh 1> discarded ;n;(l not tested). e speettically the purpose of this
research to develop heuristics for the choice of paths to effect rapid reduction of
predicate error spaces. In order that these paths be viable for pathvt(‘ﬂting, it 1y
understood  throughout that the selected p:sth_s.‘ must be feasible. in the next

chapter a system for selecting a set of test paths for testing program predicates will

be discussed.



Chapter 3

The Suflicient Path Testing System

The computer system whieh obranns suthicernt test paths for selected prodicates
tocadled SPTENT. The purpose of SPTEST is to evaluate w proposed path for
testing amiven predicate by obtaining the reduetion in the predicate error space due
to that path. SPTEST does not depend upon the domain testing strategy (16-18]
nor does 1t asvume that domain testing \\il]‘ be used to test program predicates T
stmply s(-lf‘(‘l.\ a set of test paths :tppr‘oprl.:x!(‘ for testing computer programs. Ouce
nooset of paths s seleered then any relinble tocting Sirateuy can he el for

preforming the actual testing along the selected paths,

The ()\'('r:;!l structure of SPTEST is given in Figure 3.1, The input for this
system s an ANSEFORTRAN program. The input program is assumed to be syntax
crror free and linearly domained; any number of predicates can be non-linear, but
these cannot be involvvd in a path to be analyzed. This system is written in
FORTRAN 77 and presently runs on UNIX and MTS (Michigan Timesharing

System, similar to IBM 370 VM) The system is about about 6000 lines.

Inorder to evaluate the usefulness of a path, SPTEST requires some

inform:ﬁli(,)n about the path just selected. This ineludes the total number of
program and 1nput variables, the test prv(ii(‘:xl‘tj mterpretation, program variable
mmterpretations and any equality rvs‘tric(i(ilv‘i&f\: endountered along the path. This
information 1s provided using the first tyo ph:\\’(‘-\‘ of DOMAIN TESTING

- ! ' K ' ! .

SYSTEN = 0TS B0 The fieer phoee of DTS 1] 00y ey b o1

Compile) was not altered for this purpose, but in the second phase (Path Selection

’
s

and Symbolic Execution) a slight modification was needed in order to interface
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e Dot Flow
fnput
FORTRAN

Provram Control Flow

LY e
//D
Parse
Procram ‘ and
Tuble Compile
\ .
N 7 . ’ ! !
e D i
N 1
R ]
]
; . 1
()
e Y
. Sclect Test Tredicate,
Path ~ Sywmbohe
Informa- Fxecution 7
tion " nelect Test Path. rf User
at level 2

N

N

Selected Sufficient - User
S
Iest-Pathy ”l’:ﬂ_h SPTEST Control at level 3
and ['esting
\Vector . . )
Data ' !
}
® - 1
1
]
[}
]
1

. Forror Space s Reduerble

Error Space is Irreducible

Figure 3.1 An Overview of the SPTEST System
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with PR The whole system consists of three pheees

1) Proceam Parse and Comple
) Poach selection and Symbolie Fxeention

21 sadlierent Pach Testing

3.1. Program Parse and Compile .
34

N

The first phase of this systemois w parse of the submitted pragpam One aspect
of the parse relates to anput varables and progriam varables: from the declaration
dara fl'Hll procram syntav. csvmbol table s construeted where these two cateanries
of variables are dilferentinted. Critical aspects of the control flow are obhtiuned by

' .t
parsing for true or false predicates (from T THEN or GOTO constructs), for Labels,
and for iteration loops (from DO LOOP or \\'Hll,}ﬁ_l)() constructs). Predicate lists
and other ('unlrulvinfurm:uion is ~ecured from these parses. \I‘l"llll"'li(‘ exXpressiofns
for cither assignment statements or predicate expressions are stored as binary trees,

All of this data from the parse is referred 1o as a proceaan table file yn Figure 3.1

The compilation program determines the linearity of all assigmment and

predicate expressions Non-linear expressions and program Careables are dhgeed for
future reference, whereas linear expression and procram varimbles are put o oo
~tandard form for later processing

&

3.2. Math Selection and Symbolic Execution

This is the sccond phase of the system. A the beciomng of this phase the user

is asked which predicate is to be tested. The user indicates the desired predicate.

Then the user i~ asked to select a path for testing that predicate. This is specified



S bath election and Symbolie Paecnnion "
interactively by ndeedine 0 true ar falee deeraon whenever o predyeate
cncoantered .x|nl1v( the [\.\'||‘ v the e e o lu(»[»\ the mnmber of von
anateration toop should be executed i specificd The collection of all these decistons

then specifies the path Tor che systen

Uhe symbolic execution of this path o carmed out by evaluatine the sequence
of wotgnment statements and predicates occuremg v the path and substituting for
Al program variables and aesionments in terms of symbolte vuput variables o the
path s traversed, This s an effect execution without dat:c where read statements
mrevely defime the vasble ro beoread e mpas v anbbe aad sl prosra \b.|r1‘xl»|@-~\ ‘
and predicate expressions are given symbohieadly o terins of input variables and
constants

.-\\n example of svmbolic execution follows:

A .

READ(H,10C) VART . VAR?, VAR3
100 FORMAT (3F10 2,
SUM! = VAR! + VAR2
SUM2 = VAR2 + VARS3
SUM3 = VAR1 + VARS3
RESULT = 2.0 * SUM!I + SUM2 - SUM3
WRITE(6,110) RESULT

110 FORMAT (' Result - .OF1o9)
TT D -

When the first Line s exeented, VAR VARY and VARS are defined as tnpud
varmbles and their symbolic values are defined ws just their variable name: The
second  line s ignored. The third tine  causes SUMT to be  defined  as

O ARy LON AR The f(»}lr(h and tifeh hies define »U N2 v;m(l SUNMS stmnlarly

The searho bine widl detine TS0 0T as TLooy Aol - 0\ Ao

[

So what as needed i the system is o method of keeping track of values of

prograum variables n terms of the input variables. There are three diferent wavs of
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ro.
i/
S0 Pach selection and ymbolie Faecntion » U
e

\
o thos The e ot keep ostaeh of all e e s o e they ocour st hot

reolvme e b fetoey oo speak ) and then perfor he cperatton owhen
m(:'rprt'l.\lmn e oneeded [he second :lp[lr():l(‘h N Lo r(-(||1(‘v cach new assrnment
wsineg reverse Poleshe motation and store that syibolic expression v tree Torm e
two techmgues are ceneradly used when the assicnment statements have non-bioear
expressions A thyed techimgue, and the one need i this svatem. s to moant a et
of tables which wall bave cither the coeflicient of the tnput variables and o« eonstan
or a4 non-linearity flag for every active progrim variable. The non-linearity g is
st wlieres o peorr e vredhle o to be aesined on e o thiat e o0 b
reduced 1o the form XNt eoXng bt e X o+ e Therefore, any

asstgnment anvolving thos progesm varable s antomatieally Haceed as non-lnear

At tlli;?poinl constraints are added which bound the tnput variables, related to
limits their values may assumne. These are parameters which are set once wnd f(,:xll
given the storage and othefsoftware characteristics of the host inaallation All
these constraints are then submitted to a linear programming package. where
redundant constraints are identified and eliminated. Now 1t can be determined
whether tlie selected path s feasible or not. This decision can be made in general
becanse we have aavmed that we are working with linearly domained procrams If
the pathoas not feeesables the user s so mformed, and selects another path I the
selected path as feasibles the system proceeds to the next stage of sulficient path

testing.

3.3. Sufficient Path Testing

Opce w path s selected, then path information is passed to SPTEST. SPTEST

also uses interactive input from the user to control the flow of the model. The user
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vooeched ol ths e the e pach for the celecred predie e vo e rested il s then o
po b ey s construeted of the transform o et ed adone thic pah There
i 4 row an the marey Mfor each provran varable detined an the program wineh
dewerihes the assignment bhindness for thes pach for :*;u"h cqualits restrietion
cunconntered along the path to inelude the mlu:.ht‘\‘ blhindness, and a row for the
Ctareet predicate to inelude the sell bhindness for this parhe Tn s manri, there son
column for o constant, a column for .-:u‘h‘inpn!, and aocolumn for each progeam
- V
variable defined n the program. Figure 22 allustrates apath watniy for o speeific
T exatnple The o e nt Bl Veetores for ~ubpath
(Tt Tort, Tyt T ?) corresponds to the fiest fonr rows of the path |||:1frl\‘ The
cquality restriction enconntered along this suppath corresponds to the fifth row of
the path matrix and the self = blindness corresponds to the last row. Therefore, the
undetectable error space for this subpath is given by the rows of the this matrix. In
order to evaluate this path we need to ~olve the equation (1) from Chapter 2;
cquation (1) requires the calculation of the restriction equations for the spuace
spanned by the path matrix, after which this set of restriction equations are written
out to an external file. The control of the system returns to the symbolie part of the

svstem, and the nser s asked o select another puth.
4

If thes as not the first path for abe clioeen predicare. then the stored
information regarding previously selected test paths for this predicate s read from:
an external fileo The path matrix for the new pach is constructed as deseribed
above, and the restriction ('qu:xtionﬁ for the space spanned by the path matrix is
(“\!(‘Hlil““(], and added to the independent restriction equations from all previousds

'

Peslesd paths turoush Dhe predicate as inaicateod by condaon c 21 frow s Thapter 2 dn

;
order to accomplish the intersection operation in equation (2), an independent set of -
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( 0
Do
SR
1 0
Iy IF (X T Y)Y THEN DO
C oY o+
FLSE DO
c oy 1
END IF
(') " 1F (€ EQ D) THEN DO,
D DeX o+ Y g
FND It
1o
J WHILE 1 :
" E - B + 2%1]
[ = 1 + 1
FND WHILFK
PRINT, E
P STOP
e END

[n this program, after the execution of subpath (T, Tort, Tyt Ty?) the
program variables, equality restriction (ry) and the fingl predicate ('1‘3) will have the
following  symbolic  valwes: =Y + 1. D=2X+Y, LE=2 1=2

b=y = Loand Ty Y = 2

Const . N Y ¢ I 1 . F |

« I O 1 -1 0 0 0 0
R 0 2 ! 0 -l 00 0
I 2 O 0 0 0 -1 0 0
! 2 0O 0 0 0 0 0 -l
r I O -t 0 0 0 0 0
Ty -2 o b0 0 0 0 0

Figure 3.2 An Example of a Path Matrix for a Selected Path



evaluating the resulting error spaces.
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restriction equations is obtained. If there is no increase over the number of

restriction equations from previous paths then the path under considernnion does

. . ' . A o
not. effectively reduce the error space further, and should be discarded. If there s an

increase in the number of independent restriction equations. then the error spiee s

correspondingly reduced, and this new set of restriction-equations is written out to

the external file. 1If the resulting fndetected error space s irreductble, then &
message s written out to the user indicating the construction of a sufficient set of”

test paths. The v user is asked either to_select unother predicate for testing or to

aé¢tually mever be elimimated, so the minimum dimension of a final error space 15 at
. ' e - .
least one but du general can be darger (see cquation (3) from Chaprer )0 We can

>

determine the irreducible error space of a predicate to be that which canunbt be

b
'

reduced further by any path through that predicate. Another objectivé of the

experiments in Chapter 4 will be to characterize this irreducible error space, so as

to provide a better stopping criterion for the procedure of selecting paths and

-
s

In the next chapter experimentations will be odtlined using this system.
¢ . . Yy

-



Chapter 4

|
{

Experiments with Sufficient Path Testing on Linearly Domaiﬂned Programs

f

Fxperiments using SPTEST with the supporting ‘I)'l'.\’—lli system have been
conductvd‘ w‘ith a number of lino:xrly domained Programs in order to obtain greater
imsight into p:nh-orivnl('d testing methods. Since Sl"I‘I:f.\"l"provid:@ 4 vector spice
metric which (‘v:xlu‘:xlvs‘ the effectiveness of a set of paths for testing a predicate pm"
hoc. these ('xp("rim(-nts could provide informution as to the ilnit'ifll .‘~<<'lvrti‘oyn of the
p:xths.u.l‘"or example, with l,)'l‘h‘-_lll'thiﬁ information could be used to aid thv'vu.\vr"i?”‘i
the interactive selection of p:nhf. or 1o prm'idn' ni-option of :1v‘nfn;m atic selection of
paths with this system. Another overall oijcli\'v‘ of t)h‘g»‘_ir‘,;atu.d_\” 15 t‘n‘ better -
characterize the irreducible error space for cach prvdic:\tv; This wm]ld not only
improve our conceptual understanding of the [):x“t h téstin;; pro(‘vv"%s,,,, but pro,vidv 4

substantially improved stopping criteria for using SPTEST (o select a suflicient set.

W
i

of paths to test a given predicate or all the predicates in a-program,
The specific questions we have attempted to resolve with this study ‘are:
(1) I<it possible to find o minimum set of paths for testing a given predicate?

(2) The upper bound on the nnmberof paths for testingga predicate is (1m+n).

’ £ .
~where m and n are the numbeg of imput and  program variables

respectively. How many paths are required to test cach predicate in-
‘practice? —
(3) 77T what extent is it possible to reduce the number of paths for testing o

predicate by earcfully choosing the first pach” A o0 how cnnewe decide

il

which path to select first?
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-

(1) The apper bound on the mimber of paths for testing adl the predicates in
A oprovran i~ ploe ) paths where poas the namber of ])rvlwlu':nv-\ How
many paths are required to test all of the predicates in o program in
practice’

(7)) To what extent is it possible to reduce the number of paths for testing all
the predicates by carefully (‘h(\)().\il.)); the first predicate? 1 so. how can we
decide which predicate to select f‘ll‘,\l..’ |

{5) In practice, how large is the irreducible error space for a predicate after o
sufficrent set of paths have been chosen?  To o what cextent Tcun we
characterize both the vectors in this space and the corresponding program

features so as to be able to u priori predict its dimensionality?
!

Table 4.1 shows the characteristics of the linearly domained programs upon which

.

the SPTEST experiments were conducted. Note from the functionalities of these
programs that they are diverse and non-trivial, iHustrating that lincarly domained
programs are an important class and worth investigating as a first step. The

complexity of these programs is also quite diverse, with five different and commonly
' 3

accepted complexity measures given for each program. i

.

MaCabe's evelomatic complexity measnre, V(G) s defined as follows:

V(G) = o= 0+ 2 ' (1)

A

where nis the number of nodes and ¢ is the number of edees in a directed graph G

[13]. In Chapter 2 we have shown that a program can be represented as a directed

eraph. Therefore using a directed wraph representation of programs given in Table

E . . . \ - . .
4.1 and equation (1), MaCabe’s eyclomatic complexity measure is calcutated.
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Frror Spaee Ttervn Longe AS BRIt
g l # ¢ ' l!‘ "ty
ey 1t . ¥
oo [y @ Pre Neltiny,
4 L Moy e
m n fovel .
1 FuclilGoh 13 2 2 ’ 5 3 3 I 4
2 Foteoer 1H | 3 5 2 1 3
IFTRTR S
3 15 J 1 1 3 0. ' 4
I ol -
by}
1 Integor [ f’ﬁn@# 2 ) 1 e I 5
Drive ia
Remmnder
o Pttt 14 2 3 f 3 ] {
) Conditional 27 2 b b 4 i H
Serje-
St oo
7 Sorted Set 31 <R 5 14 ) 2 | B
Intersection
TR Binary Search 12 11 5 17 7 1 9
9 Sorted Set 65 A2 ] 21 9 3 10
Unton

“J

\

Table 4.1 Programs Uporn Which SPTESTIExperiments Were Conducted .



~ Chapter H -

Analytical and Experimental Results

3
tn this chapter analytical and  expertmental results obtained  from  the
experiments done with SPTEST will be discussed” These results have provided

greater insicht into the path selection process

[ will pot be possible to obtain minimun set of paths throdsh o predicate in
general. If iteration loops are involved, there are potentially an infimte number of
paths 1o examine  Fven withont loops. this problem 1o sull NP-hard, as the

number of paths can crow exponentially, and a minimum set cannot in general be
- . [a]

\4'luw‘l(‘(],

In the course of this research we learned thiat if one carefully selects the first
path through a predicate, one can considerably improve the bound on the number
of the paths required to sufficiently test that predicate. This can be stated formally

by the following theorem:

Theorem 1:
.
The minimum suflicient set of subpaths required for testing a given predicate
i a linearly domained program will contain at most (n+e+1) paths, where nois the
number of program  variables and ¢ s the number of independent equality

restrictions encountered along the fiest path chosen for that predicate.

.

Proof:

Thesinitial dimension of the error space for the viven predicate s {m+n+1) for

T Nl i proers: ] ol e ey e
Ao ltheay doliatiosdd prograiibe W e e Ll i B RGee Do it v alhainies o

path has been chosen, the remaining error space due to assignment blindness is of

dimension at most n, the space due to equality blinduessis of dimension at most ¢,
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i

B
and the space due to self-blindness is of dineenson one Therefore the torad nutested
crror space after testing the fiest path will beor most dimension nee o b Here of

a

ez m then this path would be rejected under cquation (2) from Chapter 2o sinee it

does ot reduce the initial dimension - Tn constructine s suflicient set of test fuths,
any subpath whirAh fails to reduce the dimension of the error space by at least one
wonld be rejected. Thus after testing two paths the dimension of the error space

A
will he at Lost nde. Continuing in this fashion it s clear that after choosing the
Airst path the number ofy paths required to test a predicate is at most n+e+1 minus
the dimfension of the arredneible error spaee. wnd from equation (3) from ('}l.'l[)ft'lr Y

the irreducible error space for the predicate is of at least dimension one. Thus the

total number of suflicient paths will be no wore than (nee v 1)0

Both analytical work and experiments have established that there will be three

soutces of vectors in the irreducible error space other than the self-blindness of the

predicate itself:
1) unused variables,

?) equality restrictions, and b

3) invarkant expressions.

A
[e—y

Unused Variables

I'n SPTEST all the variables (both input and program variables) should be
defined in the besinning of the program. [t might be possible that 1o testing some
predicate some of the variables will be defined but not used. o these cases one

would like to know how this affects the final dimension of the-error space.
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Now constder the program flowehart in Figure 51

I thas program consider a variable X whichos anly used tn "eonrputation hloek
11" Now when we are testing predicate P, thenn all paths chosen for 5 variable

N will be defined but not used. This feads to the followine two cases:

Case one: X is an input variable.

In this case there will be a ;('r() column in the path mformation matrix for
input variable N, Sinee N is an input variable, it will not add anvthing to the
blindness space for any of the predicates, therefore this variable will not allfect the

CrTOr Space.

Case two: X 15 a program variable.
In this case there will be a row p and column q in the path information mateix

corresponding to the program variable X.
Where,

A=~ 1,

= 0, Isk=rand k#p,

1,;=0, I=j=cand j#q

ris the number of rows and ¢ is thenumber of columns in the path matrix. Due to
“this there will be an assignment. blindness vector given by expression "X". In order
to elimnate this asstgnment blindness vector from the error space we have to find a
~
path where the expression "X" does not evaluate to zero. It'is obvious that no
. I~
matter which path we choose for testing predicate PP; the expression "N7 will always

evodiuate to zero. Therefore this vector cannot bhe eliminated from the errar spuce

As aresult this will increase the dimension of the final error Space by one.
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T

’ ‘ Q'I‘;\H'l‘)

Computation
block 0

'
\

' l [’rvdic:m-\

e N
l)l r
s

——

N )
("or nutation : \/ Computation
block 1.T , . block L.F

T T
] [}
| |
| |

Computation Computation Computation Computation

block 1.T block 1.}~ block J.T "~ block J.F

Figure 5.1 An Example Program Flowchart
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The ssune explunation holds if the number of vnused variables s more than one

. . . .
oraf the procran varrable Noas used and s value before the prodieare s vero

65.2. ILquality Predicates:

Every predicate encountered along a path places restrictions on the fegal set of
mpnut values for that path. During the course of this research weveral experiments
have .bvvn conducted in order to suvestigate the effects of equality restrictions,
After performing several expertments i, was found that i weneral of v(l.u:xlily
restrictions were encountered wlong o path then there s o possibility that some

predicate error might ¢o undetected. Clearly any hinear combination of these
.

predicate errors will also g()_lll](l(‘l(‘;‘l(‘(i. In some cases these (‘qu:ﬂit_\' restrictions
. ,
might increase the dimension of the error space and in some cases this will not
affect the irreducible error space at all. The following example can be used to
explain this, |

This program given in Figure 5.2 has two tnput variables and one program

variables Tn this example the following are the possible control paths for testing

predicate T3:

4 (Pt Tl Tye?)
Here there s an equality restriction along paths 1and 3. (ve., predicate Ty s

truec). In the case of pat hed atcdoes not merease the domension of the error Space due

“to this equality restriction, because the expression for both the equahity restriction
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READ - X, Y

A 0
('Ty) IF (Y GT  X) THEN DO
A X
ELSE DO
A Y
END IF
(1) IF (A Q. 0) THEN DO
PRINT, "A 15 zero’
END IF
("1'4) IF (Y GT. 0) THEN DU
PRINT, 'Y is positive'
END IF
sSTor
END

Figure 5.2 A Example Program (Program #3 in Table 4.1)

1)
\



A0 Fqguahity ],l'l'(“('.ll&‘&"' . 11

and target predieate are the same (re "0 Y 7)) O the other hand, s the cane of
lt‘lf || .'i, (ll(' 4‘(‘111||l_\ Fovt et To I Cre ey ‘(hl' IIHJI«'H‘\I()H Hr ”It‘ H‘l"W!llf IM" crrar
space I))' one. ) ~

vy

In this example of we choose path 3 as the fiest path for testing predieate 10
then o order to achieve the irreducible error space {dimension 1 orie), we have to
test path 4 plus one more (either path Tor 2} On the other hand of we choose any
othier path as our fiest path then we only need to test one more path in order to
reduce the dinenston of the errar space to one. In Table 51 four ditferent set of
test paths which are suthicient 1o test predioa 100 wre wivens Here the annnad

dimension of the error space is 1,

-0

In concludion, if a path with equality restrictions s selected, theo 1t might be
possible that some predicate errors will go undetected along that path. Therefore,
in such cases we would like to find a path without those equality restrictions, If

sich a path eannot be found then the dimension of arreducible error space s

increased by ones

5.3. Invariant Expressions

The third category of vectors in the final error space s doe to nvarant
expressions, and have constituted a bit of & surprise i the way they have been
manmfested in the experiments; these will be disenssed more fully  after the

expestmental results are deseribed.
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Hl’ntlhlw Und(-tv(-t(-‘(‘i» vr:;‘()r spm:(-

N : -; —
Set #1 { J
1 1
_____ T )

Set #02 3 does not reduce
1 1
‘ I 2

@ does not reduce

Set # 3 3 does not reduce
{ 1
2 2

1 does not reduce

Set # 4 3 *  does not reduce
4 1

Table 5.1 Summary of Sufficient Set of Paths for Testing Predicate T,
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5.4, Program Loops

Here we will consider programs of the followine form:
<inftiallzation statements>
1O <loop predicate>
<loop body statements>

END [LOOP

These programs tend to oceur frequently an programming in order to
accom phsh some specific task, eooosorta table, traverse w data structnre calenlate

some arithmetie function. ete.

Is

A program owith loops s the most ditlicalt type of program to rest The
presence of a simple WHILE loop in a program may generate an infinite number of
paths. Even when this is not the case. the number of paths for even simple
procrams can be prohibitively-large. The program flowchart-in Figure 5.3, for
example, can casily be shown to ¢ontan over at- paths even though each loop cun
be executed no more than 12 times,

There are two types of loops which can occur i u p;o;;r:nn. Fiest consider a
loop which is tteruted a fixed number of times. In ()lhvlr words, whenever we reach
sitch i loop the very first time we know how many times we are going to iterate that
foop. For example, o DO-loop

<initvialization statements>

DO stn { = mt, m2 [,m3]
<loopmbody statements>

stn CONTINUE



O
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Y=<12

Figure 5.3 An Example Program Flowchart with 2'2 Paths
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stn

»

« - s the number of an executable statement appearing after the DO stitement o

- sthe program unit containing the DO.

is an integer, real, or double precision variable (not “an array element) called
, R ) ,

«

the DO )U':L,riill)l(‘.

ml, m2, and m3
B ' , ER S
are integer, real, or double precision arithmetic expressions. m1 . m2 and m3

are tntial value, test value and incremental value respectively. w3 s optional
. . o
)

“and cannot have a value of zero: if it is omitted. its value is assumed to be 1,
]

and the preceding comma must be omitted.

‘The statements in the range of the DO are executed only if:

m1l is less than or equal to m2, and m3 is greater than 0
or,
‘m1 is greater than or equal to m2, and m3 is less than 0.

If one of the above relationships between mt, m2, and m3 is true, the first time

the stagements in the range of the DO are exccuted, 115 initialized to the value of
X D y . . - - ]
. . . . .- . .. - ; : . T \
ml: on cach succeeding iteration, i1s modified ,bay the value of m3,  The number of
. | N : 35

iterations that can be executed, also c:xlyvd the iteration count, 1s the*value of;

)

MAN (INT((m2 - ml + m3) / m3),.0). ‘

TRe first time i exceeds m2 at the end of the iteration, control passes to the

<tatement following the statement numbered.stn.
: |

. y \ I ) . - .
If at the first time one of the r(‘lilll()llé-;lll])ﬁ 1s not true, then the statgients 1
J ~
, : \ L : s
the rangé of the DO- are executed and execution continues with the statement
Ie a . ! . . ,
following the last statement of the range (‘H the DO (1.e. the DO loop is executed
\ : .

-
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exactly one time).

The DO vartable should not be redefined within the range of the DO-loop.

However, any variables in the expressions for the initial value, test value, or

<

incremental-value may be redefined in the DO-loop without changing the iteration

count as established for th 0 statement.

The second type of loop is a WHILE loop, andis of the following form:

<initialization statements>

O |

WHILE <loop predicate> DO .

‘ < | &

<loop body statements> ) :

END WHILE

The WHILE loop is a type of loop which can. generate an infinite number of

paths. The meaning of a WHILE-loop is: "while some condition is true, repeat this

o

group of statements”.

In order to invcstig;\te the iteration limit of a WHILE-loop a number of

experiments with SPTEST were done. Theé program given in Figure 5.4 computes
the greatest common factor of two integers. In this program, there are two mput
vartables and three program variables. The following four paths are suflicient to

’ 83

L ry .
test predicate T - - o ¥

LT

2 (Tt Tait, T
3 (Tt Tl Tt Tt T?)

o (Tt Tl Tt

~

Toit, Tyt Tort [ T4:7)
. v .

lfere path one requires no iteration, path two one iteration, path three two™

o

o
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3

Ay
(Ta)
&
(wa
' £

S —

WHILE (s

A 4

PROGRAM GCF
READ, A, B
S = A :

T = B

Ue 0

NE

S
-
LSE
U =)
S

w

-

El

9 wm

L AT =
END IF
END WHILE
IF (5 .EQ.
PRINT, A,"
ELSE
PRINT,

. T DO
IF (S .GT. T) THEN

T

and

1) THEN

*.B," are relatively prime

*The Greatest Common Factor of * -

A" and ®.B."'is *, S

END IF
END GCF

Y

s

A ()»

Figure 5.4 Euclid’s Algorithm.for GCF

by

8

R



S0 Program Loops 4%

. -
iterations and path four threeiterations. After 1@ these four paths the irreduci-

ble error space for predicate 'l‘, Wil he

Here the total undetected space is just the self = blindness vector. Nince this error

term can never be eliminated, this set of test paths forms a suflicient set of test

paths for testing predicate Ty,

In order to test predicate Ts a set of paths on which tests can be performed is

selected by simply extending each test path from T, to Ty. The irreducible error 1s

the same as for predicate T

If we continue testing Tq by simply extending each of the four test paths for
o 3 A Pl . 5 ¥
T, (i-e. assuming the last interpretation of T to be false so that Ty is the next

predicate to be chosen), the total space of undetectable.errors for T3 will be:

[ 0-1]
0 0
0 0

1
10
0 0

Here the second vector is still the self blindness vector which cannot be
chiminated, The secoud vector s the equality Fostriction (5= 1) Sinee this relation
must hold for any halting path for predicate Ts, the set of test paths for Ty is

sufficient. Table 5.2 summarizes the-results of the experiment conducted with the
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~Path Undetected Error Space
] 1
For predicate R b 3
T, and T, 3 2 L )

1 )

1 5 H

\

For predicate 2 1
Ty 3 3

1 2

Table 5.2 Summary of Sufficient Set of Test Paths for the GCF Program
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’
,

GO program. Here the'initial dimension of the error spage is 6. In the GOF pro-
pram if wne of the input variables s o m-::ni\(- nimber :\n<l.t|1r- other s a4 positive
number, “u-n the program computes an incorrect functions For examplenf,
A = - O.l
B = .01
then-the GCEF of A and B should be .01, But when we test any of paths 2, 3, or 1,
the answer is .02, which s i‘lf.(‘orrvrl. Therefore, the ‘;):th hs approved by SPTEST for

testing a program is a good set of paths to detect this error.

. .. .. Sy .
I'he program shown in Figure 5.5 15 4 more complicated one. In this program
: . 4
there is one nested loop. Here there are two input variables and two program

vartiables. .
In this proé.:mm the f(')l,lowing paths are sufficient for testing predicate T:

1. (T4

2. (Tt Tot ,'I‘-u;tf,'l‘g:f.'l‘,:'.’ J

<

3. (Tt Tl Tait [ Is:fT:7)
In the first path there is no iteration of any of the loops, in t.}l(‘ second path there is
one iteration for each of predicates Ty and To. and in the third path there 1s one
iteration f()‘r each of predicates Ty and Ty After testing these three paths the total

’

undetected space for predicate T will be:

"

There are no assignment statements between Ty and Ty, and between T and

T'5. All of the predicates in this program have the same functional form, and also
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Pl P
1S -

—_——

(Ts)

PROGRAM GCD

READ, X, Y
A= X
B =Y

WHILE (A .NE. B) DO
WHILE (A .GT B) DO
A= A-B ‘
END WHILE
WHILE (B .GT. A) DO
B =z B - A
END WHILE
END WHILE
PRINT, X, Y, A, B
END GCD

Figure 5.5 Euclid’s Algorithm for GCD
. ,

13
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there are no equalities. Therefore the same set of paths are also sufficient to test
preducates T and Ty Table 5038 summarnizes the vesules of the experiment done with

the GCD program. ere the mitial dimension of the error space 1s 5.

-

Stiilar results are obtained from other experiments Buased on these results

the following loop heuristic is proposed.

.

For any loop in the program. test only those paths which perform that loop no more

/

than m +n iterations for testable subpaths.

5.5. Iix pcrir‘r\ien\tal Results

Table 5.4 shows the results of the experiment~ on the mne programs deseribed
in Table 4.1 in> Chapter 4. For each program, the initial dimension of the error
space 1s given together with the value of n. and the number of paths necessary to
test all the predicates in the program. For each predicate T, the number of

Y ’ .
suflicient paths are given together with the reduction in the error space for each
path; the dimension of the final irreducible error space is specified. When this
dimension 1s larger than one, the vectors in this space are identified as unused

L 4
variables, equality restrictions and invariant expressions,

Theorem 1 provides a bound of (n+e +1) for the sufficient paths; since the first
paths are all chosen such that e=0. notice what a tight upper bound (n+1) provides
for these programs, with this bound being achteved for some predicate in four of the

g g ,
nine programs. Note that in most cases, the number of paths required to test all
predicates in the program is equal to that for testing the predicate requiring the
Largest mamber of paths: the only exceptions are proceans #1 and #9, and even

4 I A | t

then only one more path is needed. Of course, in the experiments, paths were

chosen so as not only to give a minimum number of sullicient subpaths for each
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PPath  Undetected Error Space

| 3
I'or prw(lir:u(-‘x 2 9
'l‘l, ’l‘.“. and 'l‘_'; 3 |

Table 5.3 Summary of Sufficient Set of Test Paths for the GCD Program
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l)l't‘(il('ilf(‘_ bat also o that these subpaths conld be extended to paths wihneh 1o 2l

predicates in thie prosram

These experiments have shown that e w0 unusual for predicate arreducible
error spaces to have dimension greater than ane the most common reason for thewe
additional veetors s duae to unnsed variables Yet there a nunber of occurrences of
veetors rnrrowpnn(iing to both equality restrictions and invanant expressions

B =

From program #6 (miven i Floure 3.2), notice from Table 5 4 that there s an
tnvariant expression in the irreducible error space for predicates To, Ty and T4 In
Figure 5.5, here the irreducible error space for Tyas of dimension three, The second
column vector represents” an unused variable Foand the third column vector
represents the self-blindness vector for predicate Ty, [ = Y: the first column veetor

represents the tnvariant expression
D= 2*X + Y, | (5)

which occurs as line 12 of program #6. However, if we examine the irreducible error
space for predicate Ty also shown in Figure 5.6, we might get confused. We can

identify the second column vector as 1) = 2, the self-blindness vector for Ty, and

the third column again as the unused varniable F. The first column vector

corresponds to an expression
KN+ Y = o0 , {ts)

which scems confusing. However, recall that this as a vector space, and if we
subtract the vector (D — 2) from cquation (6). we will generate the invariant
expression (H). the same’as 1n 'l‘;;,' This illustrates the ehallenge o detecting and
identifying invariant expresstons or equality restrictions.

Fienre 5.7 shows another interesting case of an invariant expression, o this

case aloop invariant. The irreducible error space for predicate T} contains
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Ll e ble error space after testing predicate Ty

Const 0 0 0

X -2 0 0
Y -0 l
( 0 0 0
D 10 0
! 0 0 0
! 0 1 0
| 0 0 1
7
[y ariant expression D=2+ Y iy

Irreducible error space after testing predicate T

Const =2 -2 0
X 2 0 O
Y -1 0 O
C 0 0 O
D 0 1 0
. I 0 0 O
I 0 0 1
| 0 0 0

. Figure 5.8 Example of an Invariant Expression for Pragram #8
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‘rp

(T

I 0

J N

R 0

WHILE (1 G 1 0) DG
IR S
J N 1

END WHILE

R~ N - ¢

IF (R .. O H0) THEN DO
I j

UND OIF

PRINT, N, 1

END

Procram 2: Intecer Round - Up.

trreducible error space after testing two paths for predieare T s

Clonst 1 -1 0
N 1 0 0
[ 1 0 0
J 0 1 0
R 0 0 1
L
. \

.
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)
- self-blindness vector J = 1 as'the second column vector, and the third column vee-
L ) s
tor is the unused variable B The first column vector corresponds to the expression

‘ N AN . . -,‘
(I = N — 1), which is_a loop invariant corresponding to Iy, :md%s not occur

PR o4 . . '
explicitly us any expression within the program, S w
T ] . .

These observations .and experience have allowed us to formulate some,

-

guidelines as to how a-sufficient set of paths to tedt predicates should be chosen. It
is 1mportant that asstatic analysis should be done so as to assure th'g{..all variables
arc defined before being used, and after being defined, are actually used. If cither

condition is violated, certain contradictions will show wp'in the predicate eredr
TR - : a
space analysts. - o S

+

4,

If a small number of sufficient paths are desired for a givcn predicate, then the

first'path should be carefully selected. Theorem 1 has indiéatéd that one guideline is

rd

to choose the first path-with the fewest possiib‘l'c equality restrictions. In selecting

subsequent paths for that predicate, the vectors in the remaining error space should

‘

be carefully analyzed, and paths selected which tend to eliminate those vectors; for
example, in the case of unused viriables in this error space, try to select a path

which will use those “variables. With other vector expressions or equality
restrictions, try to select a path where those expressions or restrictions do net hold.

As for the sclection of predicates to test, Spr(wiicat,os&j’tll the fewest paths’

leading to them should be chosen first; these tend to be predicates near the

' .ginning of the program. In order to obtain a small overall pumber of paths to test
: ) : ,

all the predicates, the paths should be considered which are extensions of subpaths
previously selected for carlier predicates. This should still be done so as to eliminate

as many vectors in the error space as possible. The experiments in Table 5.4 showed

o

‘that this approach was quite successful. It can be observed that the same vectors

tend to appear from one predicate error space to another, and illustrate w Ly this
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«

strategy is reasonable and successful.

[teration loops pose special problems, because there may be aninfinite nnmber

of paths to consider; a stopping condition for path testing is needed. Here is where

analysis of the remaining vectors'in the predicate error space can either indicate an

" appropriate path t8 .choose or a stopping condition. If no-path can be found to

eliminate vectors in the error space, the example from Figure 5.7 illustrates that we

oy,

should look for invariants which will terminate this scarch for additional paths:

In summary, we can give either partial or complete answers to the questions

posed in Chapter +4:

(1)

It is not possible to find a minimum set of paths for testing o given
predicate because of the potentially infinite number of paths to

examine with iteration loops and also because the problem 1is

: cs‘scntially NP-hard.

Both analytical and experimental results have shown that the number
of paths required to sufficiently test a predicate is far less than the

bound of (m+n); a good bound has been shown to be-(n+e+1}, where ¢

is the number of equality restrictiéns associated with (i first path

.selected for that predicate. ' .

It would appear that it 1s possible‘to reduce the number of paths for

testing a predicate by carefully choosing the first path. This path

. LY
o

should be associated with the fewest equality restrictions. Subsequent

paths should be chosen so as to eliminate as many vectors as possible
~ - o

in the remaining errorgd
It appears that we can ¥®85tantially reduce the number of paths to test

all the predicates far below the upper bound &f p(m+n). As a matter of
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fact, by utilizing common subpaths for testing subsequent predicates,

and by, choosing predicates which occur early in the program  to

evaluate first, our experimeiits have shown that the total number of

.- pathx for testing -all the predicates is either equal to the maximum of
(n+e+1) pver all predicates, or only sightly larger. [t remains for

o

further experimentation or analysis to show if this wil‘!‘hold in general.

\

We have foyndgexperimentally that it is not unusual for an irreducible

I3

error space to have dimension well beyond one, and this ranges up to

13 for predicate Ty in program #9. \We have been able fo characterize
vectors other than the self-blindness vectors as those corresponding to
. .' l . - - L ‘. . ' -.‘. . - -

unused variables, equality restrictions, and invariant expressions. To a
‘great extent we should be able (@cdict a priori the first two types of

vectors. (except possibly for “coincidental equalities), but invariant

expressions will require further study.




Chapter 6
.

Conclusions

8.1. Overview

This research makes the following contributions to knowledge ‘on program

S N

testing: /

- . A 4

1) a computer system for selecting a sufficient set of test paths for testing a :J,

0 \ ) . ;

computer program predlcnt‘c; !

\
2) aset of experiments to show that it 1s possible to select a set of test paths .

W " for testing a restricted but powerful class of programs; ' :

3)  heuristics for selecting best test paths for testing computer program.

. ' ‘
”6{‘? . . 6.2. Summary )
; ’ ) .
Over the years there have been many approaches proposed for program

testing. Many of these proposed testing methods fall within a class of strategies

called path analysis testing, where the actual testing process is conducted in the

[

fqllowinlg two steps: -’*v”

S | 1. selection of a path or set of paths alon.g which testing is to be conducted,:
and ,

2. . selection of inpuvt, data to sorv’e as test cases which wi!l cuue;o the chosen

‘paths to be executed.

This research is concerned with the first step of path analysis testing, i.e., the

selection of test paths. In reference [22,23] Zeil and White have dcveiopqd a model

~
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C. . 7 . . .

for predicate testing: In this model they have demonstrated that the class of
’ . ey
-~

possible errors forms a vector spuace; by using this vector space gprasure ios

‘

possible to characterize undetected predicate errors. In this research we have used

this model to tnvestigate the following issues:

'
.

1). After a number of paths have been tested, what is the marginal advantage
of choosing yet another path?

2) Is there a point at which we may say that no more paths need be chosen
through some program construct to be tested, i.e.. that is has been

sufficiently tested ’

A computer system based on this model s implemented on UNIN and MTs.
This_system can be used to select test paths for testing a Fortran program. Once a
set of paths are selected then any reliable testing strategy can be used to conduet

the actual testing along these selected test paths.

In order to better understand the path selection process, a series of
experiments using this system were conducted. Based on the results obtained from

these experiments the following heuristics for selecting test paths are proposed:

.  For testing any [')'r('dic:tt(", carefully choose the first path such that the

first path has fewest equality restrictions.
‘ L
; . ™y ) .
2. By utilizing common subpaths for“\-tcstmg subsequent predicates and by

[
W/

choosing predicates which occur carly in the program to evaluate first, the
total number of paths required for testing all the predicates in a program

can be substantially reduced.

3. If possible after selecting the first path, select those paths as subsequent
. ) ' g

paths which employ unused program variables.
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1. For any loop in the program, test only those path< which execute that

loop no more than m-+n iterations.

5. The next path can be chosen by carefully examining the spanning vectors
g of the error space for the previously selected paths,
6. By carefully examining the spanning vectors of the error space for all’

sclected paths, one can determine whether or not there 1s a need to select
yet another path.

These experiments have also shown that it s not wnusual for an irreducible

.

" ld
error space to have dimension well beyond one.

. . e
In summary, this research has made an attempt to better understand the puath
selection process. One of the prime objectives of this research has been to design

and implement a path selection system. However, many of the related issues need

further research. Some of these issues are described in the next section.

68.3. Further Research

It is clear that further experimentation is needed; it has been interesting to us
that small programs, such as programs #2 and #6, can give considerable insight
rather than very large programs. We need to better understand loop invariant

?

expressions, and why they appear in some irreducible error spaces and not in others.
: ’ . , g
It would be desirable to extend the experiments to programs with ¢ompounc
predicates.

In further experimentation the system needs to be extendeéd in several wayvs

One considerable extension would be from linearly domained programs to vector-

bounded programs; this will pose extra problems for determining path feasibility for
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this class of programs, becanse path feasibility could always be «h'lt'rmin(‘(‘l for
Linearly domiamed programs Another objective wmlh‘l be to modify the system o as
10 be able to accommodate Zeil's ("xt‘(‘ns\ionﬂ for computation errors and assignment
errors (which complement predicate errors as the other type of domain vrror)..Z(‘il'.\
techniques for perturbation testing [11-12] can be ('xplor\v(l for this extension,

together with the error spaces ayl paths required to test these constraints.

At present this system is ood in a research context, and as suchis impractical
in its use of CPU time, requirts. +~onds of supermini (VAX 11/780) computation
tie. This is unaeceptable in o o rional setting, and path generation will have

to be generated much more efficientt.

SPTEST is now only available as an aid to the user in selecting paths.
Extensions as those suggested above can then lead to an automated system for
selecting paths for path - oriented testing techniques, including domain testing. It 1s

possible that some of these testing ideas can be applied to other testing approaches

as wclbl.
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Appendix 1

Current Implementation of SPTEST

Implemented

ACCEPT
ASSTGNMENTS STMTS
AT END DO

CASE

COMPUTED GO TO
CONTINUE .
Doy oy s

ho

IND

END AT END

END BLOCK

FEND CASE

END IE

END WHILE

ELSE DO

EXECUTE

FORMAT

GO TO

IF(..)<EXLE STMT>
[ NONE DO

(.. )THEN DO
PRINT
READ(FORMATTIED)
READ{UNFORMATTED)
REMOTE BLOCK
STop

WHILE(...)DO

WRITE

Not Implemented

ASSIGN
BACKSPACE
BLOCK DATA
CALL
CHARACTER
COMMON
COMPLEX
DATA
DIMENSION
DUNPLIST
DOUBLE PRECISTON
IENDFILE
ENTRY
EQUIVALENCE"
EXTERNAL
FUNCTION
NAMELIST

ON ERROR GO TO
PAUSE

PUNCH
RETURN
REWIND
SENSELIGHT
TYPE

IMPLICIT
INTEGER
LOGICAL

REAL

s

(4%
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Append N Carrent Iimplementstion of SPPTEN

-

Moavimun numcher of lines ina program = 150

Lrestrictions on constructions:

Type Maximum Number
Arithmetic Statements 100
Assignment Statements 50
Computed Go To 3
Do Loops 20
Input Variables ‘ 20,
Output Variables 20
l.abels 40
Predicates <100
Read Statements 20)
Write Staterments 20

Remote Blocks 10
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Appondix 2
Using the Suflicient Path l(‘%hh[., Syéiblﬁ

I
EN

[

Rdth the Domain Testing System and rﬁllhi«(‘i(‘ll'i ‘.’n(h\.”
Sy ,
'\) il B

located in UNIX on Cavell wnder directory /ul/grad\
the University of Alberta. The source code for the figst Dy a:

, ,
under the directory domain/src and for the secofic

code is located under sptest/srec. %"’” *,
:\ o SH “v‘;‘zl !
: LWt o ‘ >
“In order to use the Suflicient Path Testing SWtad™ fhe osér has to go to thre
.f,, M~ 22’ L , Do .

\-
‘ 3
\ f

files which huave been set up to allow the user of (‘)p(ibns 'l,‘ll;“““'l”,‘—', the

&y . .
system. By typing "takeab <input file>" both pi_l‘r( » systein, will be executed,

%"
At first the system prints "Compiling <input fife
i

g

program compiles, the system prints "Linc XX

. L ’ :
as each statemeny of the:

I TR I
ted”. After the program is

'< . .\ “ LA
compiled the system prints "<anput file > ('()mpg}(‘

the 1nput program.

Cllyg s

the l:srgct predicate; Once a subp:xih is selected (hcn SPTEST i cails d Ih@'uscr i?’

¢

-.\ ® i

Ao
asked to indicate whether or not this path is the f]rst p‘;th for that pr(‘dlc.u?’“ lhx .

the user is either asked to select another path for that predicate or notificd that

‘a

system evaluates the usefulness of that path and the user is notified. At this

F}

cflicient wot of paths for teating that predieare has heen obtaned s
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- . M d. t’
4 \Q
\ List of aptions. .- i
taheah « nput fibe s
takea Zinput file >
: taheb '
. The information generated by the dystem about the input program are located

nnder directory ful/grad/sahay /program.testing/File and are listed below

" Type File Name Generated By
) k : .
Fast of Progriaan program.lst First Phase ’
List of Predicates program.prd  Second Phises o s\
List of Decisions program.dcec  Second Phase
-

Spanning Vectors  span.vector second Phase

¢

If a program is new and has not been tested on the system then the user
should check the list of restrictions on FORTRAN programs (Appendix 1). To make

sure that the program has compiled correctly the user should use command "takea”

: - . . . ,
» % cand compare progr:un.lxt to the tnput program.
Nt - .
i N




Appendix 3

Input Programs

The input programs‘used for the experimentation in Chapters 4 and 5 ar¢

listed in this appendix.

Program 1: Euclid GCD

i _READ, X,Y

A =X )
B =Y

" WHILE (A .NE. B) DO
WHILE ( A .GT. B) DO
A=A-B
_ END WHILE S “
WHILE ( B .GT. A) DO :
B=B-A .- : :
END WHILE :
END WHILE
PRINT, X,Y,A
- STOP
-END



Appendix 3: Ilnput Programs

Program 2: Integer Round-up

READ, N \
1 =0
J =N
. =0 : .
' WHILE (J .GE. 1.0) DO
I =1+ 1
J=N-1
END WHILE
R=N-1
IF (R .GE. 0.50) THEN DO
I =1+ 1,
END IF
PRINT, N, 1
STOP
. END
3 S o
T
° 4 g
Q.
e
&
‘ ' .‘
&

S

»'//
!
o %ﬂ D
& “ﬁ«
S
i P

a-

-

v
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x\pp(‘n(li,‘\&f%: lnput Programs

» ’ ' '

Program 3

READ, X, Y
A=0
IF* (Y .GT. X) THEN DO
WA =X ’
ELSE DO
A=Y
END 1F

TF (A .EQ: 0) THEN DO’

c PRINT, A
' " END IF ‘
CIF (Y .GT. 0) THEN DO
PRINT, Y
\ END IF
STOP
END !

Rl

5

=1

s |

C‘?,’



Appendix 3: Tnput l’rogr:m'm

‘Program 4: Integer Division Remainder

READ, X, Y
R=0
A= 0

IF (X .GE. 0) THEN DO «

IF (Y .GT. 0) THEN DO

R = X :
WHILE (R .GE. Y) DO

WHILE (R .GE. A) DO
_ - R =R - Av -
B : ATz ALE A
i SN
JEND WHILE “fff’
END WHIEEE: ' »
END IR U
END. IF ¥
PRINT, R, X, Y
. STOP g
’  END . o

. g e
] G .8: K

' -
6
[
.
[y
»
9

u
i3

>

o
L4
*
&
\ :
> N il
&
’
»

{

2
%
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.

" Program 5: Euclid GCF

A& ACCEPT A, B
. S=A
T=B
U=0
WHILE £S .NE. T) DO
IF (S .GT. T) THEN BO
S=S-T
".ELSE DO
U=§
S=T
T=U
END IF
END WHILE
- IF (S 5Q 1) THEN DD
e PRINT, A,B ’
v ELSE DO
’ . AR14T, A ,B,S
END I
STOP
END

R
A \q
N
/
@
—_
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Program 8: Conditional Series Summation

READ, A, B
C =0
D=0
E'= 0
F =0
Y1 =0 ,
IF (A .GT. B) THEN DO
C =B +1
ELSE DO
cC =B -1
END IF
D=2 % A+ B
IF (C GT. 0) THEN DO
T =
WHILE (I _LE. B) DO
"E = E+ 2 %1
I = 1 + ¢t
RO WHILE: po
END IF
IF (D .LE. 2$$‘
FsE A _ 2
ELSE DO
F=E-A
END IF N
PRINT, F -
STOP .
END '

v‘ﬁg

'3
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Program 7: Sorted Set Intersection

RFAD, M,N . ?
DO 10 I = 1, M
| READ. S1(1) » |
10 CONTINUE , : o .
DO 20 1 =1, N = . ' _ ‘
READ, S2(I) '
20  CONTINUE ‘ *
“DONE = 0 :
I =1
J =0 ‘. .
- X =0 ‘
3 Yy 20

¢ WHILE (I LE. M) DO - , . R
. IF (!"} GT . 0) THEN DO . . ¢ '
e | R | ;
- DONE = O . .
’ . - WHILR (DONE .EQ. 0) DO

) ... Xri~s((1)' g :
‘i Y ERS2() gy o
. ~#lF (X .EQ. Y)<'THEN DO .¥* Yo

Cow T Ter PRINT, B1(D)F o0 o

.4/ DONE 3°1 : : SRR

- END IF: 4 ‘

e =Ty o ,

CIF (J EQ. N).THE® DO ,

'DONE = 1 N e

- . END IF g - T ' N S
. END ‘WHILE - » ' o .

ELSE DO . &

END IF R

I =1 + 1 } I ‘ o

END WHILE: ﬂﬂk' . L N
' STOP v - :

END

-¥

S
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0

Program 8: Binary Search

10

READ, N
DO 10 I =1, N
READ, B(D)
CONTINUE -

READ, A
I =0

HIGH = 0
LOW = ©
MID = O
TEMP = 0

IF (N GT. 0) THEN DO
HIGH = N + 1
LOW = 1
MID  (HIGH + 1.OW)
1 =0
_TEMP = B(MID)

IF (A EQ TEMP) THEN DO
-

,‘ I -
END

'WHILE (I ._NE. 13 DO

TEMP = B(MID)

IF ( A _EQ. TEMP) THEN DO

I =1
ELSE DO

IF (A LT TEMP) THEN DO

HIGH = MID
ELSE DO

LOW = MID
END IF

MID = (HIGH + LOW) / 2

END IF

IF (LOW .EQ. MID) THEN DO

I =1
END IF

END WHILE

TEMP = B(MID)

IF (A .EQ. TEMP) THEN DO

PRINT, A
END IF
END IF
STOP \
END

14

X0
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Appendic B hnput Prograns

Program 9: Sorted Set Union

READ, M, N
DO 10 1 = 1, M°
READ, S1(I)
10 CONTINUE
D5 201 - L, N
READ. S2(I)
20 CONTINUE
J M+ N
DO 30 I = 1, J \
A(L) = 0
30 CONTINUE
S
L

4
N

Ll - S

-0
= O ‘
DONE - D

IF (h i 0) THEN DO - %

DONE - 1
END IF :
IF (M LE. 0) THEN DO
DONE = 1 '
END IF
WHILE (DONE .NE.
X = s1(1)
Y = 52(1)
IF (X .EQ. Y) THEN DO
AK) = X .
I =1+ 1
J= 3o+ 1 .
EL.SE DO
X = S1(I)
Y =+82(J) -
TE (X LT Y) THEN DO
A(K) = X '
I =1 +°¢
FLSE DO
AK) = Y
J= 3+t
END IF
END IF
K = K +.1
I+ (1 .GT.

1) DO

N) THEN DO

IF (J .GT. M)- THEN DO
DONE = 1
END IF
END WHILE

>




Appendin 3 Tnpat Progeaams

40

lad Ko+ 1
J J o+ 1

END WHILE

WHILE (I LE. N) DO
A(K) S1(1D)
K @ K + 1 '
I =1+ 1

END WHILE

K=K -1

DO 40 I = 1, K
PRINT, A(D)

CONTINUE

STOP

END



