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Abstract

The calculation of seismic waves in complex media is an area which
still contains challenges to be met. When considering Cagniard’s prob-
lem, where a plane interface separates homogeneous isotropic media,
high frequency asymptotic representations are known to break down
at critical angles of incidence. Formulae have previously been derived
to correct this, to be used in conjunction with regular asymptotic ex-
pressions. We present formulae which are more generally applicable,
since we account for the contribution of leaky modes, which can be
asymptotically significant. We therefore arrive at a series of approx-
imations based on the ray approach, which model seismic waves in a
plane layered system.

The diffraction of seismic waves is also a stumbling block for regular
asymptotic expressions until relatively recently. There now exist ap-
proximations that smooth abruptly truncated wavefields calculated by
zero order Asymptotic Ray Theory, which play the role of diffractions.
We present an example of how to compute these diffractions for a com-
plex model. The question as to whether diffracted waves calculated
in the aforementioned manner can actually cross additional interfaces
has not been addressed until now. We show that these waves do in fact
satisfy boundary conditions, and point out some limitations of their

applicability.
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Preface

While broadly classified as an investigation of asymptotic descriptions
of seismic waves, the thesis really has two distinct parts. Chapters 1
through 3 deal with waves in the specific geometry of plane layered
homogeneous media. New formulae are derived and applied to charac-
terize the different seismic phases. In Chapter 4 we change gears quite
a bit and look at diffracted waves, the descriptions of which can be
applied in far more complicated media. We follow the results of oth-
ers (mainly K.D. Klem-Musatov), providing numerical examples and
covering a small theoretical point that has been overlooked in the liter-
ature. The latter topic was carried out at the beginning of the Ph.D.,
and has been published in two papers. The results found in the first
three chapters have only recently been submitted for publication.

J.B.G.
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Chapter 1

Asymptotic Techniques

1.1 Introduction

The seismic response of a single plane interface separating homogeneous, isotropic
media (Cagniard’s Problem) has been extensively studied, with analyses being car-
ried out using both Fourier and Laplace transforms. The former usually result in
high frequency asymptotic approximations, while the latter can be used to find
the exact time domain response (see Aki and Richards, 1980 for a summary of
techniques). Regular asymptotic approximations have a rather limited applica-
bility, as they are invalid for some angles of incidence (close to critical angles).
Cerveny and Ravindra (1971) and Brekhovskikh (1980) derived similar high fre-
quency solutions that are valid near critical angles, for elastic and acoustic waves
respectively. Smirnova (1966) also studied this problem. However, these formulae
prove to be inaccurate for a large suite of geologic models. Previous derivations
have neglected the presence of leaky wave singularities close to branch points,
and we give formulae for more generally valid asymptotic expansions. The latter
combined with regular asymptotic formulae are less costly to compute than a nu-
merical integration of the exact formula. They also generalize to a (homogeneous)
multi-layered structure, when one desires a ray-based solution. When curved in-
terfaces and inhomogeneity are modelled, one must use the more elaborate results

of Thomson (1990), who has arrived at corrections to ray theory near critical an-
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gles for acoustic waves.

There has, in the past, been some resistance to the notion of lower Riemann sheet
contributions to seismograms for the simple plane layer case (Gupta, 1970). How-
ever, Chapman (1972) utilized the exact nature of the Cagniard-deHoop method
to demonstrate the role of leaky poles’ contribution to seismograms for Lamb’s
Problem. We also aim to clarify the effects of leaky waves, including their influence
upon the reflected P-wave, using an asymptotic frequency domain approach.

1.2 Exact Seismic Response in Cagniard’s Prob-
lem

We are going to investigate the response of a layered system to a far-field point
source. To make use of high frequency asymptotic approximations, we must con-
struct a ray-based solution in its exact form. Ray solutions have the advantage
that frequency is a factor only in the exponent (see for example Chapman, 1985),
and this allows us to make use of a proper steepest descents approximation. The
disadvantage of a ray decomposition is that an infinite set of rays is required to
characterize the exact seismic response, and hence practically we are only mod-
elling a partial wavefield (although this has interpretational advantages). Since we
are looking at piecewise homogeneous media, potentials are adequate to describe
the wavefield.

Aki and Richards (1980) show that for cylindrical symmetry we need only the
scalar potentials ®, ¥ and X, such that

u=Ve+VxVx(0,0¥)+Vx(0,0,x) (1.1)

in cylindrical coordinates (see Figure 1.1), and each potential must satisfy a scalar
wave equation in order for the displacement u to satisfy the basic vector elasto-

dynamic equation:
&*u

oz = A+ p)V(V - u) + uVy, (1.2)
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where A and u are the Lamé parameters and p is the density. The representation
given in equation (1.1) also has the advantage in that each potential represents a
particular type of wave, namely P, SV and SH from left to right. The potential
x decouples and propagates independently, while & and ¥ couple at horizontal

interfaces. We use a spherically symmetric source potential
e—iu(t-R/a;)
5
which approximates the displacement of a far-field P-wave located in the first

Qo =o (1-3)

medium. We shall set up the solution for the reflection from a single interface,
and then later generalize to the multi-layered problem. Our coordinates are set
up in Figure 1.1. Each potential must satisfy an equation of the form

AVin=— (1.4)

where we need not consider the source term, since the incident wave has been

prescribed in equation (1.3). We can use separation of variables in cylindrical

R receiver at (r,z)

source at z=hl

o, B

a, B,

interface at z=0

Figure 1.1: Model geometry.
coordinates to find the general solution for either side of the interface:
o0 00 poO ; . . N
n=3 [~ [ F@)[An(k)e* + B(k)e™**] et+imb ] (kr) dkdw  (1.5)
m=0 7~ 70

where v = y/w?/c? — k*. The harmonic dependence of our source allows us to

dispense with the inverse fourier transform. We can later use superposition to find
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the result for an arbitrary source time series, noting that we are assuming w > 0
throughout, and for negative frequencies we must take the complex conjugate of
any results derived (see Cerveny and Ravindra, 1971; we shall hereafter refer to
this book as C & R). The symmetry of the source allows us to discard all but
the mode m = 0, and clearly the SH potential is identically zero. Potentials
for upgoing and downgoing P and SV waves on either side of the interface can
be written using a form similar to that in equation (1.5), choosing appropriate
velocities. The source can be written in the same form (Aki and Richards, 1980):

— ® ivxlz-hxl__alk
&, /o Jo(kr)e —dk (1.6)

where Im(14) > 0, and ¢ = a;. Using this and equation (1.1) and Hooke’s Law
in cylindrical coordinates, one can equate displacements and traction across the
interface and to find the coeflicients A and B. The algebra is tedious and has
been carried out in many places, so we do not repeat it here. The resulting
exponents show the relative phase delay of the different rays, and the coefficients
of the exponents are similar to the plane wave reflection/transmission coefficients,
generalized to complex angles of incidence (where k = wsin8/c and @ is the angle
of incidence). Explicit expressions for the coefficients can be found in C& R. We
will only quote the result for the reflected P-wave, which we shall primarily be

studying.

&l — a et

dk (1.7)

o ; kdk
[) R(k)Jo(kf)e'n(z+h1)—Vl—

is the reflected wave potential, and one needs to make several manipulations before

it is in a form that can be easily approximated. One uses the identity
Jo(kr) = (1/2)[HV (kr) + HP (k7)) (1.8)

and the fact that R(—k) = R(k) along with H? (—kr) = —HS? (kr) to get the

form

LLL¥T (1.9)
n

—wt o0
ore/ — ae R(k (1) ivi(z+hy
—— [ REYH (kr)e
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We also work in the complex ray parameter (p) domain so we must substitute
k = wp.! By taking the gradient of the potential we get the displacement, and
then we approximate the Hankel functions by the far offset approximation. This
assumes |wpr| is large, and is appropriate for the region that we are interested in
studying (critical angles). To approximate the integral for near offsets one must
use another expansion of the Hankel function. The result that we need is

Uy ref = o ei*/ 4wt /i / R(p)ewé(p) p'/? d (1.10)
u, - 2rr Co palzy‘—l P .

where the exponent is ¢(p) = i[rp + (hy + 2)11]. The contour is shown in Figure
1.2 along with a sample pre-critical angle steepest descents contour. The contour
must avoid the origin due to the far offset approximation already made. The

reflection coefficient is rather complicated and is given by
R = -1+ 21D Y2521, X? + Brazprpavs + PP 1avsvy) (1.11)
where

D = a1026130*Z? + a2e112 X% + a1 B Y?
+p12(Brainy + a1 Brrars) + ¢ P2V1V2V3V4
g = 2pBi—pB), X=p—ap® , Y =pr+ap’, Z=p2— p» — qp*

n = vl/af-pz) V2=V1/ﬂ12—p29 V3=v1/a§-p21 V4=v1/ﬂ§—P2

Most frequency domain formulations choose Im{v;} = 0 for branch cuts; we
choose Re{v;} = 0, noting that the choice of branch cuts does not affect the
results. We also use the notation of Phinney (1961) to denote positions on the
eight sheeted Riemann surface. As we shall mainly look at the case for which

az > 3 > ay > [, our sheets are represented by

(sgn(Re{1s}), sgn(Re{v4}), sgn(Re{11}), sgn(Re{12}) ).

1We note that such a substitution eliminates the frequency dependence from the coefficient
R(k), since we are using a ray-based expansion (normally the frequency dependence would
remain).
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Im {p}
—on [ 3
Cs
Luuu BnnchCul]

Co _ \ Va; B, la, 18
Ny BT TRTITITTRTITTT v rsrvarssssmrtssstssssssmosss RE (p)
~UR -la, -UB, -l/a, L

on

Figure 1.2: The contours of integration in the complex ray parameter plane. Cp and
C, are the initial and steepest descents contours, respectively. Point pg represents the
saddle point of the exponent.

The initial contour, Cp, must lie on the top Riemann sheet (4 + ++) so that the
reflected wave is travelling away from the boundary. In addition, Cp must lie in
the quadrants for which Im{v;} > 0, to assure boundedness of the integrand for
|z| — oco. (We relax this slightly to avoid the singularity at the origin, arising
from our far offset approximation). This contour can be deformed to the equivalent
steepest descents contour, C,, so long as one is careful to avoid points where R(p)
is not analytic. This may include excursions into other quadrants and Riemann

sheets, and will not violate the boundedness condition, as we shall see.

1.3 Steepest Descents Approximations

This is a method for finding an approximate value for complex integrals of a cer-

tain type. One requires that the integral contain a large parameter, which in our
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case is the frequency.? The method of steepest descents is well known, and we
shall not re-capitulate the theory here (see Bender and Orszag, 1978 for a good
summary). Rather we shall assume some general knowledge of the method, and
proceed to applying it to our particular problem.

1.3.1 Dominant Points in Ray Parameter Plane

The main observable seismic phases arise from an asymptotic analysis about dom-
inant points in the integral in equation (1.10). There is one saddle point at which
¢'(po) = 0, 0 < po < 1/, producing a reflected wave. The branch points at
P = 1/az and p = 1/3; cause regular head waves, whereas the branch point at
P = 1/, gives rise to an inhomogeneous head wave. Depending upon the material
parameters, there may exist top sheet poles on the real axis past p = 1/4,, and
these represent Stoneley interface waves. Finally, there are always a variety of
lower sheet (leaky) poles present (Gilbert and Laster, 1962). In this thesis we
shall not consider inhomogeneous head waves or Stoneley waves.

The steepest descents contour is shown in Figure 1.3 for a post-critical angle of
incidence. Since the saddle point is now located on a branch cut, the contour must
continue onto the lower sheet (— + ++). The contour must also loop around the
branch point at p = 1/a2, and this loop has one leg on the (+ + ++) sheet and
the other on the (—+++) sheet. Also shown is a possible leaky pole location (p.)
which forces a residue to be taken, if the contour is to be deformed continuously
from Cj. A second and similar loop contour would be drawn if py > 1/3;. We
assume that py, p. and 1/a; are sufficiently ’far apart’ so that each contribution
may be calculated independently. Later we shall make precise the meaning of ’far

apart’. Below we give a brief review of the asymptotic contributions (for verti-

2Rigorous treatment requires the definition of a dimensionless parameter, such as w/a; xsome
intrinsic length scale. However, this is equivalent to proper interpretation of the results when
using w as our large parameter. It is common to use the latter method and we shall follow it
throughout.
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cal displacement only), where each dominant point is considered independently.
We shall give a slightly more detailed description of the leaky wave contribution,
as this has not been documented satisfactorily in the frequency domain, in the

litarature

Im (p} ey

S X Leaky Pole
. rerrir Branch Cut

v eesees Contour on (- + + +)
kY Riemann Sheet

Figure 1.3: The steepest descents contour for a post-critical angle of reflection, which
must loop about the branch point at p = 1/az. Sample leaky poles from the (— + ++)
sheet are shown, one of which requires a residue.

1.3.2 The Reflected Wave

The well known reflected wave contribution looks like

R(PO)\/P—O —iwt+wd(po) — | 4" 1/2
—\/Te ’ p = |¢"(po)l
R(po)LCOS oo e_"u(g_r) (1. 12)

u;‘f ~ o

where L = \/r2 + (h1 + 2)? is the geometrical spreading, R(po) is the plane wave
reflection/transmission coefficient and 7 is the travel time. Note that we have
used the fact that pp = sinfy/a;. This is the zero order approximation, and the
amplitude is frequency independent. The geometrical spreading is characterized
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by y/sin 6o/r and 1/1/|¢"(po)|; the first factor is the root of the radius of curvature

of the wavefront perpendicular to the plane of incidence, and the second factor
is proportional to the root of the radius parallel to the plane of incidence. (This
is true for the multi-layered case as well). This result agrees with the zero order
term of Asymptotic Ray Theory, which is not derived from an exact (closed form)
representation of the wavefield. Details of the latter theory can be found in Hron
and Kanasewich (1971).

1.3.3 The Head Wave

The head wave contribution can be written

uhead o ST e~ Wit+wd(py)+in/2
: N =
arlin

—_— 8 ei¥/2-iw(t-)
NN (1.13)

where r. is the critical offset (r. = (h; + z)tan6.), and Iy is the head wave
coefficient whose relationship to R(ps) will be shown later (the Case 2 asymptotic
formulae). If k = 3 or 4 then this is the head wave corresponding to a critically
refracted P-wave or S-wave, respectively. The first and third numbers are 1 since
we have specified an incident and reflected P-wave. There are 26 possible head
wave types, and for these we refer to C&R. There are many properties of head
waves documented in C& R, so we just point out the relevant major issues. Firstly,
we see that the head wave term is O(1/w), and would thus normally be considered
negligible in the zero order approximation. However, the above expression is also
singular at r = r¢, due to the confluence of the branch point with the saddle point
in the complex-p plane. Thus there is a region surrounding the critical offset
where special methods must be used to calculate the asymptotic behavior of the
head and reflected waves.
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1.3.4 The Leaky Wave

Leaky waves are less well known than the usual body phases, so we offer some
introductory comments. A complete description can be found in the classic paper
by Phinney (1961), and others (Gilbert and Laster, 1962). The leaky wave is a
diffraction phenomenon associated with P and S-wave coupling at an interface.
It arises from a singularity in the complex ray parameter plane (a zero in D in
equation (1.11)). When the steepest descents contour crosses the simple pole sin-
gularity, a residue must be taken and this gives us the amplitude of the leaky
wave. This is clearly similar to the Rayleigh and Stoneley waves, whose contribu-
tions also arise from a pole singularity. However, there are important differences.
The Rayleigh and Stoneley poles lie on the real axis to the right of 1/3; in the
complex plane, so that the saddle point never interferes with the pole. Also, since
their pole lies on the real axis, these waves propagate along the interface (decaying
only geometrically) and are exponentially decaying in the direction perpendicular
to the interface. Thus they are of little interest in reflection seismology, save for
the Rayleigh waves propagating along the free surface. Leaky waves on the other
hand, have complez pole locations lying on lower Riemann sheets. Thus they may
decay or grow exponentially in the perpendicular direction from the interface,
and decay exponentially parallel to it, so may be regarded only as quasi-interface
waves. The pole is often located close to branch points, where the saddle may
interfere. The real part of the pole location is associated with the propagation
velocity of the pulse, although these waves are rarely observed independently, as
they are low amplitude (and frequency) waves which often interfere with the reg-
ular reflected and head waves. Due to the fact that they travel faster than some

body phases® (and slower than others), their energy may be radiated as the slower

3Stoneley (Rayleigh) waves travel slower than all body waves, and their energy is trapped
along an interface. Hence their amplitudes decay exponentially only away from the interface,
and not along it.
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body phases,* which means that they 'leak’ energy, and accounts for the fact that
they decay exponentially along the interface. Thus their influence on reflected and
head waves can be significant making them important in reflection or refraction
seismology.

We next look at the mathematical description of the leaky waves from asymp-
totic analysis to show how the properties mentioned above come to be. From the

residue contribution (as shown in Figure 1.3) we find

o 1/2
uleoky o o, g—twt+idn/A+uwé (pr) (_21:«;) P},lz Ry (1.14)

with
Ry = Resy—p, {R(p)}-
The condition for which the residue need be evaluated is derived from the fact

that Im{#(p)} is constant along a steepest descents contour. Hence the residue
is included if

Im{¢(1/az)} < Im{¢(pL)} < Im{¢(po)},  Im{pL} >0 (1.15)

Since Im{#(po)} = 7, the reflected wave travel time, and Im{¢(1/az)} = 74, the
head wave travel time, we see that the leaky wave arrives between the head wave
and reflected wave on the seismogram. Given that the residue was added when
crossed by the steepest descents contour, and remains in a descent region after
the contour has passed, it follows that Re{¢(p.)} < 0. Thus, ules*v is itself negli-
gible when considering the leading asymptotic behavior, since it is exponentially
small as w — co. However, as we shall see in the next section, the leaky pole
produces an asymptotically significant contribution to the seismogram when it is
located sufficiently close to the branch point or saddle point. The two general
characteristics of the leaky pulse mentioned above are identical in the work of
Chapman (1972), and Gilbert and Laster (1962), who did not use a frequency
“This can be seen through the use of Snell’s Law.
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domain method to compute seismograms. They found the leaky pole contribution
to be a broad and low amplitude pulse arriving between the reflected and head
waves.

Since the pole lies in the first quadrant (on the sheet (— + ++)) it is clear that
I m{\/l/af——pi} < 0, making the real coefficient of z positive in the exponent.
From a plane wave perspective, this leads to an apparent violation of the bound-
edness condition for the integrand, for z large. However, for the spherical wave
we see that z — oo = py — 0, removing the residue. One would expect an
initial increase followed by a decrease in amplitude of the leaky pulse when mov-
ing away from the interface, as has been touched upon by Brekhovskikh (1980).
The real coefficient of r in the exponent is negative, making the leaky pulse decay
exponentially with epicentral distance. We therefore conclude that the leaky pole
will have maximum influence upon the seismogram when the pole has just been
crossed by the steepest descents contour, which corresponds in the time domain
to the leaky pulse interfering with (emerging from) the front of the reflected wave.
Poles located to the left of the steepest descents contour which loops the branch
point will not contribute a residue, and their greatest influence will be exerted
upon the interfering head and reflected waves near (and just past) the critical
angle.

We can view a typical leaky pulse given by equation (1.14) in the time domain,
since it is possible to carry out the inverse Fourier transform exactly. We can

write for a general input time series f(t) & F(w),

2
ezt ~an (B) R fe-m o 6)
where
inr/2
(t) — a e o 39"(“’) wagn(w) Iulo-—lwtdw (1.17)

ot 27 —mm
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Figure 1.4: Time domain picture of leaky pulse. See text for explanation of parameter

and « denotes convolution. Above we have collected the phase into two terms,
namely,

0 = arg(\/pPLRL)+3r/4 (1.18)
. = Im(¢(pL))

(1.19)
where the latter can be though of as a leaky wave ’travel time’. Also we have used

Re(¢(pL)) = —a, a > 0, which quantifies the attenuation of the pulse (a depends
upon 2 and r). After some manipulation one finds that

) = —— " sgn(t) cos8(a — 1/2v/a% + %)
= 2\/2_“(62 + t2)3/2 (m_ a) 1/2

sin 8(a + 1/2Va? + 83) .
(V@& +a)"

(1.20)
The phase of the pulse is usually non-zero, and depends upon the pole location.®
We plot g(t) in Figure 1.4 assuming zero phase, for two different attenuation

6 =~x/2).

®It is not fixed for all cases like the pre-critical reflected wave (6 = 0) and the head wave
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constants. We see that the leaky pulse gets larger for smaller a, and approaches
a delta function in the limit.

1.3.5 Generalization to Many Layers

The formulae for displacement given in equation (1.10) can be extended to rep-
resent a ray that has travelled along a specific path in a layered structure. In
this case one must identify the path of interest and then change both R(p) and
#(p) accordingly. We can use the same geometry as in Figure 1.1, and denote the
thickness of the j** layer by kh; (j > 1). The primary P-wave reflected from the
n** interface (at the bottom of the n*® layer) can be written using equation (1.10)
using the following substitutions:

d=ilpr+ (R + 207 +2 izu;-’h,) (1.21)

j=

where we must now define 1§ = ‘/l/aT?. We us the notation of Aki and
Richards (1980) which describes the upgoing and downgoing reflection and trans-

mission coefficients:

n-1
R(p) = PP, ] PP;PP;, (1.22)
=1

where the reflection transmission coefficients are functions of vf and 1/,’ , J =
1,..,n+1. The P and P symbols represent upgoing and downgoing P-waves,
respectively. Labelling the Riemann sheets now becomes a little awkward, as
there are now 4(n + 1) sheets describing the surface. Similar substitutions can be
found for a ray with any number of legs (i.e. multiples) and conversions. Again
there is only one saddle point where ¢'(py) = 0, since we are dealing with a single
ray. We have assumed that the P-wave is not evanescent, otherwise we cannot
use a ray description to show its path (i.e. it would be a non-geometrical arrival).
Therefore our offset is restricted so that the saddle point is situated where ¢(py)
is purely imaginary. This means that

0<po <1/aj, 1/8;, j=1,..,n. (1.23)
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However, it is still possible for p > 1/an+1,1/8n+1, which would give rise to
loop contours and hence head wave contributions (similar to the single interface
problem). Although we see that the branch point or leaky pole which may interfere
with the saddle point are contained in the factor Pﬁ,., the entire term in equation
(1.22) is used in evaluating residue and branch point contributions. This accounts
for the particular seismic phase’s diminished influence at the surface, after passing
through multiple interfaces. We shall continue to focus on the reflection from a
single interface, noting that with the above substitutions our method is valid for

a ray in a layered structure.

1.4 Non-Uniform Approximations

This section serves to demonstrate how to generate a non-uniform expansion that
is accurate as critical points in an integrand coalesce. We use a very general nota-
tion, so that the nature of the approximation is made clear without cumbersome
detail. In contrast to the steepest descents method, this is not commonly used,
and hence it is worth looking at closely. Even so, we relegate any proofs needed
(although they may be intuitively reasonable) to Appendices A and B, as they are
not essential to understand the result. We then illustrate the method for a pole,
branch point and saddle point in proximity, to go from the general to the specific,
for one possible case. In the next section we shall present the specific formulae for
different cases that arise in the study of our reflected P-wave, without derivation.

We assume an integral of the form

I= /c F(p)et ) dp (1.24)

where C, is the steepest descents contour through the saddle point, py. Since f
and ¢ are frequency independent, and ¢ contains a saddle point, this method is
restricted to finding ray-based solutions. We truncate C,, keeping only the portion
in the vicinity of the saddle point, C,. This introduces asymptotically negligible
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errors,® and we can now approximate ¢(p) in a Taylor expansion (to second order)
about the saddle, and we call this ¥(p; pp). We label the region surrounding the
saddle point for which this expansion is valid D. Thus

I~ /é J(p)e? &%) dp. (1.25)

We point out that this differs from the method of Bleistein and Handelsman
(1986) who transforms ¢(p) to a canonical exponent, instead of approximating it;
our result applies only when critical points in f(p) lie close to the saddle point.
As the saddle point moves past the critical point a contour must necessarily loop
the latter, and the above approximation of the exponent shall introduce errors.
Therefore it is important to use more than one asymptotic expansion depending
upon the saddle point’s proximity to the critical point (i.e. this is a non-uniform
approximation).

We next identify a set of critical points of f(p), namely {px} k¥ = 1,2, ..., N, which
are assumed to be ’close’ in the complex p plane. By this we mean that the sum
of the first terms of the regular asymptotic expansions calculated for each point
independently are inaccurate. The function f(p) can be written as a product of
functions, one of which is locally smooth in the region D.7 Specifically,

f(») = C(p; p)S(p) (1.26)

where S(p) is the smooth function in D. As an example of this, the reflection
coefficient in the vicinity of the branch point 1/a; could be expressed as

R(p) = A(p) + B(p)y/1/az — p (1.27)

where A and B are smooth in some region surrounding p = 1/a;. The same can
be done in the vicinity of a pole, or a combination of poles and branch points. The

See Appendix A; this is only strictly valid for the contour passing through the saddle (and
not those looping branch points).

"The integrand only contains branch points and poles of finite order, so one can always
multiply and divide by the appropriate function to create a product of smooth and non-smooth
functions.
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next step is to expand S(p) using the well known Lagrange interpolation formula,
making the polynomial exact at the N +1 points {p;}, £ =1, ..., N and the saddle
Po- Thus

S(p) = Ln(p) + en(p) (1.28)

where

N N P —p;
Ln(p) = L@)S(p) L=]JI—""L,i#k
k=0

j=o0 Pk — Pj
and ey is the remainder from an N*® order interpolating polynomial, having the

form .
en(p) = nn(p) I_]‘;(P - pj)-

The above formula requires that py, £k = 0,1..., N all be distinct, which is not
always the case (e.g. for pp — 1/a2). The coefficients of the powers of p can be
re-arranged into forms which exist in the limit as critical points coalesce. This
also puts the integrals in a form that is more easily recogniiable in terms of special
functions. If we write
N
% =3 S(n) [, Coipia(p)e? o) dp (1.29)
then an asymptotic sequence of functions, {®;}, may be found by repeating the
above process, where the functions ny(p) are interpolated to find higher order
terms in the sequence. One would need to include the neglected part of ¢(p) for
the higher order terms in the asymptotic sequence to have any relevance. Finally,
it can be shown® that for [w¢"(p)/a}| — oo,
o
I~ JE:;@,-. {45} (1.30)
where {¢;} is an appropriately chosen auxiliary asymptotic sequence of functions.
One can see that because C(p; px) cannot be expanded in a series, ®o will consist

8This is fairly difficult for such a general formulation, and can be dealt with more easily on a
case by case basis. In the example we shall derive specific formulae for one case, and prove the
asymptotic nature of the series in Appendix B.
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of a sum of integrals with parameters depending upon the distance between the
points pg, k = 0, ..., N. These integrals may in some instances be related to known
special functions; otherwise they must be tabulated.

1.4.1 Example: a pole-saddle-branch point interference

Our starting point is the vertical component of the displacement of the reflected
P-wave for a single interface, which was given in equation (1.10). We then re-

cast the integrand using equation (1.27) and then expand the two functions as

polynomials via
(= P)AE) = ao—F- + A(po)(p— pr) +ealp) (1.31)
_ _ (p- Po)(P Ps) (P — po)(p — p1)
C=rIBE) = Ao i —p * PP o~ )
+B(po) 2= "")(‘;)”’)+e3(p). (1.32)
where
a0 = Respp, A(p),  fo = Resy—p, B(p). (1.33)

The above equations are exact, and the error in the polynomial approximation
is represented by e, (p) and ep(p). We see that since A and B each contain
a pole, the functions to be approximated by polynomials are (p — p.)A(p) and
(p — p.)B(p). Due to the uniqueness of polynomial representations we can recast
the above polynomials in the form

(P—pL)A(P) = ao+ai(p—pL)+ealp) (1.34)
(P—pL)B(p) = bo+bi(p—pL) +b(p—pL)p—p) +ep(p) (1.35)

which simplifies the integral representations.

Claim 1 An asymptotic sequence of functions can be found

1
&, = / wé (p) 4 / wé(p) g
(] Qo0 c.p-p:,e P + a0 c, P
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VP =P s (p) 1/2,06 )
& Y d - e d
oo [ LE—"e P+510/;.(Pb p) p

+bao [ (s — 2"/ dp (1.36)

and

w)
baj 3/2 w6 (5) -
+55 o, P e Pdp j21 (1.37)
and we claim that
o0
ul ~ Y @, |wé"(po)] = o0 (1.38)
n=0

with respect to the auziliary asymptotic sequence

@ = G (|, 0+ [ -1 e
| [ on =P a)

There should be no confusion between the ezponent ¢ and the sequence of functions
{#;}, the latter always having a subscript.

Proof 1 We relegate the details of this to Appendiz B.

We take the zero order term as our approximation and can carry out some ad-
ditional manipulation to put it in a form more amenable to calculation. The
contour C, may be truncated, and the exponent (¢) can be replaced by its Taylor
expansion about the saddle,? as has been discussed earlier. Next the substitution

P = po + 3"/ /(\/wp) (1.40)

is made where p = (/|¢"(po)|- This puts the saddle at the origin, and rotates
the contour. The contours can now be re-extended again without introducing

significant errors. If we define

%% (p; po) in our previous notation
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Figure 1.5: Transformation of steepest descents contour in complex plane (see text).

y = Vwpe™*(po—pL)  z= /wpe™*(po — ps) (1.41)

then we quickly arrive at

3w /4
ref W ix/4—iwt+wé(po) / —s2/2 ) _Go a,e
ul 01‘/—21"_e - dse {3 — + Vo (1.42)

bo e—'*/8 \/s—_z by e'5*/8 e—i5%/8 32
+wl/4p1/3 s~y +ws/4ps/zv"-z+m(3-z) ’

(1.43)

The roots in the above integrals are carried out on the top Riemann sheet, arg(s —
z) € [-3nr/4,5n/4); we chose the signs to agree with this arrangement. We next
make the change of variables t = s — z for the last three integrals,and t = s — y
for the first integral. We then employ the identities

/c; Ve /5 dt = —\/2xe* /4D, o(iz) (1.44)
/c: 3260125t gt — _\/2meP A+ A Dy o (iz) (1.45)
/c' e ?ds = —\2x (1.46)

/;': %e—"/z_"‘ dt = V2me™ /> /AD_, (iy) (1.47)

where the D, are parabolic cylinder functions. The final contour C) is shown in
Figure 1.5 (substitute t-plane for p-plane). which leads to the final form of the

Case 1 formula, given in the next section.
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1.4.2 Case Formulae

We identify several cases in which two or three dominant points are sufficiently
close in the complex ray parameter plane that standard asymptotic formulae be-
come invalid. In each case we provide an asymptotic expansion which is accurate
when the specified dominant points are 'close’. One might wonder why we find
several different formulae, when one very general one would suffice. For example,
a pole close to a saddle point could be modelled with a pole-saddle-branch point
formula, putting the branch point far away. The goal of any asymptotic analysis is
to seek the simplest possible representation for each case, which in turn increases
the speed of computation. There is always a trade-off between simplicity and
accuracy, the extreme being the original integral in equation (1.10), which is ob-
viously accurate but cumbersome to compute. We therefore provide the simplest

formula for any particular case that might arise.

Case 1: A simple pole, saddle point and branch point in proximity

u;e! ~ ale—l'w(t—f) {ao (E)/ 131/4-y’/4D (1y)+

1/2 P
wl/4 es:/S—-z’/2 eiv/8-23/4
+bo— THLE F(z,w)+b lelz (iz)
e—i5%/8-2%/4 ]
+63WD3/2(12)} (1.48)

Above, D, for u = —1,1/2,3/2, are parabolic cylinder functions (see Magnus and
Oberhettinger, 1954), whereas F is not identifiable as a standard special function.
It has the integral definition

F(z,w) = / » t_ e~t/2-3t 4y (1.49)

where the contour of integration passes above the singularity at ¢ = w as well as
the branch point at the origin, and Re{vt} > 0 for ¢t € R*. The variables in
equation (1.48) are

p=¢"(B)I"*  z=e"Vup(po - ps)
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w=e""Vup(py—p) y=e""Vwp(po —pL).
We have used, of course,
vPR(p) = A(p) + B(p)VDs — P, (1.50)

which relates our coefficients (below) to known quantities. The coefficients are

a0 = Respep, {A(P)}  bo = Respp, {B(0)} a1 = A(po) — —=

Po—PL
— _ b _ B(po) — B(ps) _ bo
b1 = Blp) Po—PL b2 = Po— Dy br=bs+ (Po —pL)(Ps — p)’ (1.51)

and are continuous in the limit pg — p;. Equation (1.48) expresses the interference
between the reflected wave, a head wave and a leaky wave, although the individual
form of each of these waves is not apparent in the above formula. It can be further
augmented in a similar manner to incorporate a second distinct pole location;
this situation arises often close to the smallest branch point, where two complex
conjugate poles are nearby, without being separated by a branch cut. We note that
B(ps) = ~V2Twu, k = 3,4, where I';j; are the well known head wave amplitude
coefficients (C&R).

Case 2: A saddle point and branch point in proximity

e A(Po) B(pb)eiar/s-z’/( ] bze-isr/a—z’/l ]
u*f ~ agemlt=") 1/2 Taaaa Dia(iz) + siapiasya Dsyaliz)
ri/2p wl/4rl/2p3 w3/4rl/2p5

(1.52)
and all symbols are identical to Case 1. We have approximated A and B directly

with polynomials, which are exact at p = pp and p = p,. Note that this is
a variation of the result given by C&R, describing the interference between a
reflected and head wave. In their formula it is assumed that b ~ % N~ o,
leaving only the D,/ term.
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Case 3: A branch point and simple pole in proximity

This case describes the loop contour around the branch point for post-critical
angles.

WY/ 2e=iw(t—ma)+ix/4

ri/2z3 {bz/ V2 - b°‘/§2§ (1 - 1133"3/ ‘D—l(yS)) }
+ saddle point contribution (1.53)

u;" ~

where several new variables need to be defined:

ps =0’ (B)[*? w3 = e/ \/wps(ps — pr)
z=e"upy ys=V=2wsz.

Equation (1.53) expresses the interference between a head wave and a leaky wave.
The coefficients are the same as defined for Case 1, but there is no contribution
from A since the contour loops the branch point (and A does not have a branch
point at p = p). For this case a polynomial approximates (p — p.)B(p), and is
exact at the points p = py and p = p;. Implicit in the derivation of the above
equation was the assumption that | argy;| < 37/4, which serves to determine the
sign of /—2wj32;5. The saddle point contribution is not specified because it can
take more than one form. Above, we have only specified that a pole is close to
a branch point, and the saddle point may be described by a regular asymptotic
formula or another one of the case formulae, depending upon its position in the

complex ray parameter plane relative to other dominant points.
Case 4: A saddle point and simple pole in proximity

The interference between the reflected wave and leaky wave is given by

u ~ agewtt-n L P R(po) - PRy (1.54)
VT Po—PL

1/2 _
+py/ zRL:Te‘”’/“""/ ‘D_l(iy)} + branch point contribution.
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Again we do not give the precise branch point contribution, as we have made no
assumption about the location of poles relative to branch points in deriving equa-
tion (1.54). The function we approximated by a polynomial was \/FR(p)(p — pr),
and this was made exact at p = p; and p = py.

More case formulae could be found, depending upon the media under study. The
distance between branch points is a function of B2 /a2 and o /a;, and it is conceiv-
able that two branch points (as well as a saddle point and poles) could interfere.
Under Case 1 we mentioned that the formulae can be extended to accommodate
more than one distinct (simple) pole. If we are to model rays in a multi-layered
structure, multiple reflections from an interface near critical angles would give rise
to poles in the integrand of order greater than unity; the methods used to derive
these formulae would still apply, however the result would require new functions
to be found, in addition to F.

In equation (1.50) we have isolated the radical of interest, /ps — p, which has
made A(p) and B(p) functions of (p, — p). An individual asymptotic analysis is
carried out on each term. It is important to see that this division of ,/pR(p) brings
lower sheet poles to the top sheet in both A and B, forcing residues to be taken
separately as the steepest descents contour crosses them. (Before bringing poles
to the top sheet only a small subset required residues - see equation (1.15)). If a
pole is situated such that no residue is warranted from the perspective of \/pR(p),
it should cancel upon summation of the asymptotic terms from A and B. Cancel-
lation errors can be catastrophic when carrying out the numerical computations,
depending upon the locations of the poles. For Im{p.} < 0, the residues be-
come exponentially large, and due to the finite precision of floating point number
representation, cancellation is imperfect and the other terms in the formula are
swamped. It is best to calculate both F and D_, without any residues (so they

are discontinuous functions) and as a final step in computation add in required
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residues according to equation (1.15). The following identity is useful:
D_y(~y) = —=D1(y) + V2rer'/4 (1.55)

which we can use to find D_, for a restricted range of argument, such that no

residue is taken.

1.4.3 Relative Importance of Terms

We have seen that asymptotic expansions can be found when dominant points
coalesce in the complex plane, if we use the methods outlined in Appendix B. The
leading order terms are given as Case formulae, but one immediately notices that

each term has a different frequency dependence.

Conjecture 1 Can we truncate the Case formulae, retaining only the terms with

the highest (positive) powers of w?

We illustrate using the Case 2 formulae, but the results apply to all. For Case 2,
we might want to drop the term

by e-t’Sr/S-z’ /4

2572 Dsz(iz) (1.56)

due to the presence of the w~3/* factor. Since the overall series was shown to be

asymptotic in Appendix B, we need only show that
-“'/'—3:/‘ .
h‘m'e Dso(iz
lim R = Lim Pl 2liz) |, (1.57)

w—0 w0l A B(py)eiv/8—3%/4 N
2 + BB s Dy ja(iz)

For the original leading order term ®¢, we had similar functions (integrals) in the

numerator and denominator in the above ratio (see Appendix B). Thus the fact
that lim,,_,oo R = 0 was easily seen. More precisely, one could say that when using
our original ®y, the above limit is approached uniformly: for any € > 0 there is a
delta such that for 1/w < § and any point z, R < € (§ only depends on €). This is

not necessarily true in equation (1.57); assuming that the limit is zero Vz, we see
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that there is a pointwise convergence to the limit: for any ¢ > 0 and any point z
there is a § such that whenever 1/w < 4, R < € (in this case § depends on ¢ and
z).

The upshot is that one needs to investigate the above ratio of functions to make
sure it is well behaved for the range of z for which Case 2 is required (see Bound-
ary Layers). So long as the ratio is bounded one can make the truncation, but
the result will be of varying quality over the range of z (due to the pointwise
convergence mentioned above) and the overall quality will be determined by the
peak value of the ratio. C&R took advantage of the size of the coefficients in Case
2, and showed that b; is often very small, making R small in turn. For the models
they looked at the truncation proved adequate, although we prefer the generality

of the Case formulae in their complete form.

1.4.4 Boundary Layers

We have, so far, made use of the concept of dominant points being ’close’ in the
complex ray parameter plane. In this section we clarify the exact definition of
closeness, which involves defining boundary layers for our Case formulae, each
with specific numerical limits in terms of known quantities.

The case formula in equations 1.48, 1.52 and 1.54 depend upon variables w, y, and
z, of which only two are independent. These variables are, in turn, functions of the
separation of the points py, ps and p;, in the complex ray parameter plane, as well
as frequency and [¢"(po)|, which is proportional to the radius of curvature of the
wavefront in the plane of incidence. If the variables have a large magnitude, the
case formulae may be replaced with simpler expressions which match the regular
asymptotic expansions. Thus for a given geologic model and signal spectrum,
only a subset of the receivers and signal frequencies require the use of the case
formulae, and we shall refer to these subsets as boundary layers.

For practical computation it is desirable to have a numerical estimate of the size
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of the boundary layers. As a rough guide we mark the boundary as the point at
which the special function, of a given case formula, can be replaced by the leading
term of its asymptotic expansion, such that the difference does not exceed some
maximum percent of the original function. This, of course, is only an estimate as
it does not bound the error in the overall formula, which clearly depends upon
other factors.

Starting with Case 2, we look at replacing D,/2(iz) and Ds/s(iz) for large |z
by their leading terms, with one exception: for argz = w/4, we include the
higher order term representing the head wave. Figure 1.6 shows that we expect a
maximum error of about 10% if we make the boundary |z| = 2. Case 4 depends
upon e¥’/4D_,(y), which can be replaced by its leading term for |y| > 4, with an
error between 5% and 10%, depending upon arg(y). The error boundary is plotted
in Figure 1.7, where we only need consider Re{y} > 0 due to equation (1.55), and
Im{y} > 0 due to the fact that e#/4D_,(g) = e¥’/*D_,(y) (the bar indicates
complex conjugate). Case 3 has the same dependence on D_;(y), although it
must be approximated by the leading two terms to provide the proper head wave
contribution. This means that the boundary for Case 4 would overestimate the size
of this layer (see Figure 1.7), since two terms can approximate the function better
than one. We next make the assumption that the above boundaries in general
reflect the limits of pole-saddle point, branch point-saddle point and branch point-
pole influence. Using the above assumption (as well as w3z3 =~ wz), we defined

the following tentative regions to represent the boundary layers:

CG={lzl<2}n{lyl<4u|w| < 4}
Cz ={|zl <2} n{lyl > 4U |w| > 4}
Cs = {e™™/*2 > 2} N {|V2wz| < 4}

Ci={e ™z > 2} {ly| < 4}.
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where the C are the regions for the k** case formula. The domain of regular

asymptotic expansions is the complement of the set C; U C; U Cs U Cg.

| % error |

0
exp(-in/4) z

Figure 1.6: The error introduced by replacing the parabolic cylinder functions D, 12(i2)
and Dj/3(iz) with their leading order asymptotic terms. For post critical angles (i.e.
e~**/42 > 0), we include the next term corresponding to the head wave contribution.

1.4.5 Phase Corrections for the Non-Uniform Expansion

The non-uniform expansion was found by approximating the exponent (¢) in the
vicinity of the saddle point (py). We would expect this to be a poor approximation
for the contour looping the branch point p,'® unless the saddle point is close
by. Of course, for the non-uniform expansion we replace the formula by regular
asymptotic expressions when the saddle is not close to the branch point. Here
we conjecture that it is possible to have an unacceptable level of error within
the boundary layers (obviously towards the edge) before we are able to replace
the non-uniform expression with the regular asymptotic expressions. It should
be pointed out that this situation has not been observed for any of the examples
10We are speaking of post-critical angles of reflection.




CHAPTER 1. ASYMPTOTIC TECHNIQUES 29

10% error for 1 term approx.
5% error for 1 term approx.
5% error for 2 term approx.

Im(y}

o 05 10 15 20 25 30 35 40 45 50

Figure 1.7: The boundaries at which D_;(y) can be replaced by one or two term
approximations, for a given % error bound, labelled inset.

studied by the author, although a rather qualitative error tolerance was used. We
have spoken only of the contour looping the branch point, but when a leaky pole
is properly placed, a contour must loop this too (a residue is taken). However,
the leaky pole contribution decays exponentially with offset, and so we find that
at the edge of the boundary layer the residue is small enough that any errors
from approximating the exponent locally are negligible (this is not so for branch
points). To solve the problem for branch points, one can either engage a uniform
approximation or try to correct the non-uniform one. In this section we look
at the possible corrections, and in the following section we look at the uniform
approximation. We shall focus on the pole-saddle-branch point problem as it is
the most intricate, and all other case formulae may be treated in a similar manner.
The way to correct the non-uniform approximation is to re-derive it, isolating each

steepest descents contour. Thus, for post critical angles, referring to equation
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(1.10) we can split the steepest descents contour as follows: C, = Cy + C, and

ref ., —iwttin/a [ @ VP — P we(p) wi(p)
ul e ‘/21”_ {/c. B(p)e + /;o VPR(p)e }

P— DL

= —wttin/4 | Y
ae ‘/ - I+J) (1.58)

where C; is the contour looping the branch point and Cj is the contour passing
through the saddle point (the two join sufficiently far from the saddle).!* We see
that when rewriting the \/pR(p) as in equation (1.27), only the portion with the
radical +/py — p is non-zero for the loop contour C,. Clearly the non-uniform ap-
proximation made in section 1.4 always applies to the second integral (J), because
the contour Cy always passes through the saddle point. Thus we concentrate on
the integral I, and will put the entire result together with J at the end.

Near the branch point we make the approximation

é(p) ~ ¢(p) + ¢'(p)(p — ) + (1/2)¢" (o) (P — ps)? (1.59)

and we also expand the smooth function B(p) in a polynomial, exact at the critical
points as before in equation (1.32). If we introduce the transformation
ei3n/4
P=p+38 Jor

where py = [¢"(ps)|*/2, then we get

(1.60)

¢ (ps) . ei5*/8
I ~ ————ew 7z {boe"'/' ‘/; "’/2“" ds + by —— 1/2 / Ve * ”“"ds

w1/4p G 8s— wb
+by e f 83202 2—5e ds} (1.61)
wpy Ic ' ’

Above we have introduced the variables which are similar to previous definitions
except they are local to the branch point. As py — py they become identical to
the old definitions. Specifically, they are now

wy =™ *Vup(ps —pL) 7 = eV (s)/ ps. (1.62)

11We shall make the additional loop contour about the pole (if it is warranted) implicit in C,.
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We now employ the identities, taken from Bleistein and Handelsman (1986):

/c:' Ve /3% ds = — /1A D_y/5(2) (1.63)
/c-. 8*/%e=" 17145 = —(3\/7/2)e%/*D_g/2(2). (1.64)

In addition, we modify the results of equation (1.48), to represent the contribution
of J, which applies only to the contour C}. Figure 1.8 shows the three transformed
contours Cj, Cy and the original transformed steepest descents contour C,. We

Im {s}
A

\§/
Vil\
v
&

Figure 1.8: Transformation of the steepest descents contour using equation (1.60).

must use

- Vae /32 4g — _\/oxei/ 24Dy a(iz) + VT AD_5/5(z)  (1.65)

/ 8330 /350 — \[ope-in/A+s?/ ‘Dyj2(iz) + (3V/7/2)e*"/*D_g/2(2).  (1.66)

Similarly, we must introduce a notation which differentiates F evaluated along
the branch point and saddle point contours. Thus

Fo(zs, wp) = _\/]é=1r - 3—:‘/;—'“8-"/2-“' ds (1.67)
s
Fo(z,w) = L Ve e*’/2-%8 dg (1.68)

v2rnJcy s —w
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and we point out for comparison that
F(z,w) = Fo(z, w) + Fy(z,w). (1.69)

Using these identities we can write a final result which has corrected the phase

error introduced by the local approximation:

. W . . . e‘“"
u ~ aget {ao\/:e‘“"*""""”‘u-l(aw + 2

vre

1/4 6% /8 [ iwTy e-'w-z’/z
bow \/; [e\/ﬁ .7'-5(25, w,,) + T}'o(z, ‘ID)]
b eiwr—z’/4+ir/8 ) eiam.+z,’/4-ir/s
+u1/4\/7'- [ p,/2 Dl/z(iz) + ﬂp:/z D_3/2(z.)
el’arr—z’ﬂ—a‘t/s
o Do)
ba [eiw-z’ﬂ-s's:/s . 3eiw‘n.+z.’/4+o'51/8
+— Ds/o(iz) + D_s/2(2
w3/4‘/; ps/z 3/2( ) 2ﬁp:/2 5/2( b)
3ea‘w-z'/4+isc/s
2\/2=p"’/2 D_s/g(z)] } . (1.70)

We see in the above formula that corrections are applied through the terms
D_3/2(z) and D_g/3(z), which, as z — 2z, disappear. Similarly, from equation
(1.69) we see that corrections to F also disappear for p — p (i.e. pp — p3).
In summary, we can correct for the phase errors introduced by truncating the
exponent, by using a more cumbersome formula that contains functions that are

similar to ones used in the original non-uniform formula.

1.5 Uniform Asymptotic Approximation

In this section we look at the result from a uniform approximation of the exact
integral expressions. The result is said to be uniform with respect to the angle of
incidence, and conveys that the approximation is valid for arbitrary angles. Note
that this contrasts with regular asymptotic expressions (valid only away from

critical angles) and our previous non-uniform approximation (valid only close to
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critical angles). This may sound like a superior result, and perhaps it is, in the-
ory. However, we shall see that the added computational complexity involved
is not worth the gain in universality (and elegance) of the expression. A better
approach is to use a combination of non-uniform and regular asymptotic expres-
sions to model the seismic wavefield. There is conceivably one instance in which
the uniform expansion would be desirable. This would occur if the local approxi-
mations already developed contained unacceptably large errors near the edges of
the boundary layers, caused by the truncation of the exponent (i.e. before we
are able to use regular asymptotic formulae), as has been first pointed out in the
last section. We shall go into some of the details of the derivation of the uniform
expansion, as it has not been carried out in the literature for the case of a pole
and a saddle and a branch point in close proximity. More formulae representing
the other possible cases can be derived in a similar way, and we do not carry this
out because the uniform approximation was not needed for our practical compu-
tations.

Again our integral is of the form (to simplify notation)

I= /(-:. f(p)e*® @ dp, w — oo. (1.71)

where f(p) is defined to have a branch point at p = p;, and a pole at p = py.
The exponent ¢(p) has a saddle point at p = py and C, is the steepest descents
contour. We have assumed that ¢”(p) # 0. The above integral is meant to be
one part of the total seismic reflection response, which can be related to previous

notation via
f(p) = B(p)vps — P (1.72)

(The A(p) term can be treated similarly). The idea behind uniform expansions
(see Bleistein and Handelsman, 1986), is to make an exact transformation of the
exponent (@) to a canonical exponent. The canonical exponent should retain the

essential character of the original (in our case it must contain a saddle point).
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Thus a natural choice for the transformation is
¢(p) = —t*/2 — zt + p, (1.73)

where we have the freedom to define the constants z and p (we have already
specified the coefficient of the 2™ order term, anticipating relating our results to
Parabolic Cylinder Functions). Following Bleistein and Handelsman's choices,

t=—2 & p=po

t=0 & p=p, (1.74)
Substitution leads to
p=9¢m)  z=—y/2(6(po) — $(ps)) (1.75)
and
t = —z — /2((po) - 4(p))- (1.76)

The negative root is taken to make it easier to relate the result to our non-uniform
approximations. (The branch cut is taken along the nagative real axis). We want
the transform to be conformal in some region D surrounding the saddle point,!?
so that the transformation is a one to one mapping. The condition that the
transformation is conformal is that

i ___ 4

4P \/2(4(r0) — $(p))
be finite and non-zero in our region D. That this is actually so can be seen by

(1.77)

applying 1I’'Hospital’s rule at p = py:

dt _9"(»)
7‘;L’:m =29 (1.78)
which leads to
d
2£ = ~/=¢" (). (1.79)
P lp=po

12We also truncate the contour C, keeping only that part which lies in D, introducing asymp-
totically small errors.
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We can arrive at the same result a different way, and this provides some insight

into our formulae. If we expand for small |p — pg| then

dt —=¢"(po)(P — M)
—_— . (1.80)
dp  —\/-¢"(Po)(p — m)?

The above reduces to equation (1.79), if Vp

(P —po) = /(P — Po)>. (1.81)

While this may seem a trivial result, it is of consequence from a computational

point of view (i.e. actually finding z). For we see that

2 2 p» < Po
- = 1.82
el -] = { 5 PSP (182)
so that taking the square root we get a difference of sign.!® Thus for the reflected
seismic wave we may equivalently write 14
o= ] FEV2b) — )l <o
—ei*/4,/2|¢(po) — ¢(ms)| Ps > po-

The above result, which we recognize as the root of the difference between the

(1.83)

reflected and head wave travel times, makes sense as it preserves the geometry of
our problem (the saddle point now passes through the branch point continuously
in one direction in the complex ¢ plane). Although the reflected wave travel time
is always greater than the head wave travel time, our parameter z differentiates
between the pre- and post-critical zones by a change of sign. All of this followed
from the condition that the transformation must be conformal. It is interesting to
note that this formula employs the head wave travel time in the pre-critical zone
where no head wave actually exists - often we see asymptotic formulae depending
upon mathematical constructions, which are analytic continuations of physical

quantities into regions where they have no physical meaning.!> We shall see this

13A computer would assume arg{(p; — po)?] = 0 always.

14Since arg[¢(po) — ¢(ps)] = x/2 + arg[(ps — po)?]

15This phenomenon is not restricted to asymptotics, but rather can be seen throughout math-
ematics. For example, at the most basic level one may ponder as to the possible meaning of -1
eggs in a basket. This does not, however, detract from the great utility of negative numbers.
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again in Chapter 4 when we study diffracted waves.

Thus we have (if C; is our truncated, transformed contour)
I~ e / G(t)e—#/23+0) 4y (1.84)
Ct

where

G(t) = f(p) - dp/dt. (1.85)
Now G(t) has a branch point at ¢t = 0 (or p = p;) and a pole at ¢t = t; =
—z — 1/2(é(po) ~ #(pL)) (or p = pr). Thus we can write

I~ e /; ‘ t—%H(t)e“"“’/""“’ dt (1.86)
and
H(t)= f(p)%%t;\/;£ (1.87)

where H(t) is a (locally) smooth function, which we may approximate by Lagrange
polynomials that are exact at p = p;, p = pg and p = p,. The coefficients must be
re-arranged, and it turns out that it is equivalent to expanding in the following

series:
H(t)=ho+hi(t—tL)+ ho(t —tL)t+ J(t)- (£ — tr)(t+2)t (1.88)

where J(t) is another smooth function. The coefficients are

H(t+0)-H(t=t
ho=H(t=ty) k= (+)tz.( )

_H(t=-2)-H(t=t;) Ht=0)—H(t=t;)
he = z(z+¢tL) =+ te(z+tL) = (1.89)

Our result stands at

e Pl ~ hy / _‘/_z_e-'v(t’/uzt) dt + hy / \/t'e—w(t’/z-f-n) dt
é‘ t - tL é‘

+hy /é t3/2e=w/2+30) g¢ 4 ‘/; t3/2(t + z)J(t)e w(E /3+20) gg (1.90)
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At this point we extend the truncated and transformed contour to +o00, again only
introducing asymptotically small errors. If we integrate by parts the last term we
get

1 3/2 dJ —-w(t?/2+21)

which, if J is smooth, is asymptotically negligible when compared to the three
previous terms. One might worry about the existence of dJ/dt at p = po (and
hence the smoothness in this vicinity) in view of that part of J found in equation
(1.77). However it can be shown that

&p
i

1
=m0\ —¢"(Po)
remembering that we assume ¢"(py) # 0. We see that the last term in equation
(1.90) has a form similar to the original integral in equation (1.86) being studied,

(1.92)

in the sense that the integrand contains the product of a smooth function and a
function that cannot be approximated. Thus the above approximation process can
be continued, generating an asymptotic series, the dominant three terms of which
are given in equation (1.90). We can now relate the above integrals to special
functions, once the direction of the transformed contour has been nailed down.
Part of the steepest descents contour in the complex p plane can be parameterized

local to the saddle point as (where we are considering direction)
P =po+ se /4, seRt (1.93)

so that
2(¢(po) — ¢(p)) = —¢"(po)s’ (1.94)
and since arg[¢"(pg)] = —7/2 we have

tx=x—z-3 (1.95)

near the saddle point. Thus for pre-critical angles our contour extends from +oco

to —oo above the branch point at ¢ = 0. This is enough to discern the following



CHAPTER 1. ASYMPTOTIC TECHNIQUES 38

relationships:
/; 7 :/-tt,, —O2-VOR dt = 2xF(Vwz, VwtL)
/c ‘ Vie—t/2—Vast gy — _ . [orein/A+wi?/a Dy j2(iv/@z)
. t3/3e=0/3-Vort gt — _\/2meBd /4w A Dy o (i /@2). (1.96)

If we redefine 2 to include the /w factor and let w = /wt, then we arrive at the
result

I ~ V2revd) { i —2_F(z,w) - ’;‘ ei*/A+32 /4 D, 3(iz) - i:/_‘_ ei3x/4+22/4 Dy (iz)
(1.97)
This bears a strong resemblance to the corresponding portion of the non-uniform
formula for Case 1 derived previously. However, a great part of this similarity
is notational, since the underlying variables z and w and the coefficients hq, A,
and h; have a much more complicated form than did the originals. We shall now
explore the connection between the uniform and the non-uniform results.
The variables may be approximated for small |py — p,| and small |[py — pz| to give

z = Vwy\/—¢"(po) (Po — Ps)
w = Vwy/—¢"(po) (ps — pL) (1.98)

which are exactly the ones found using a non-uniform formula. The coefficients
are fairly complicated, and so we only look at the example of hg:
— dpt—
h=, b, {12l (1.99)

If we assume |py — po| is small, and remembering that in the seismic problem

f(p) = /ps — PB(p), then we can find
ho = W ) =B —¢"(o)l*/* - lim (pz — P)B(p) (1.100)

which is not yet recognizable, and has a removable singularity to boot. We do
point out that

lim (pz. ~ p) B(p) = —Respep, B(p) = (1.101)

PPL
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where by was originally defined back in equation (1.34) Also, in our previous
notation

—¢"(po) = ip®. (1.102)

If we evaluate this using dp/dt at p = po (assuming it varies slowly), we get

ho = boe™™/%//p (1.103)

Putting this into the original reflected wave integral we find

ay bow/4e*/8
—\/—r—p_
which is exactly the contribution found in the non-uniform expansion (see equa-
tion (1.48)). A similar simplification can be carried out for all the coefficients

I~ F(z,w) (1.104)

in equation (1.97) (and for other integrals making up the uniform approximation
to the reflected wave, if we derived them). In summary, the non-uniform expan-
sion is the uniform expansion simplified for small |py — p.| and |py — ps|.® Since
we shall see that the non-uniform expansion in conjunction with regular asymp-
totic expressions is capable of modelling the reflected wave properly, the added
complexity of the uniform expansion makes it of theoretical interest only.

1.6 Method of Cerveny and Ravindra

Cerveny and Ravindra (1971) derived a non-uniform asymptotic expansion in the
vicinity of the critical angle of a reflected wave. Their result is not generally appli-
cable because they failed to account for the leaky pole singularities. Rather than
dismissing this outright, we shall examine some of the aspects of the derivation,
which has the unique property of being valid for near grazing angles (recall that
generally non-uniform expansions are not valid at grazing angles, due to the pres-

ence of a branch point in the exponent). This is achieved through a combination

16Since p is not dimensionless, it would be more accurate to say laipo — a1pr| € 1 and
[a1po — a1ps} K 1.
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of exact transformation of the exponent, and local approximation.
The vertical component of the displacement of the reflected P-wave has been given
as

u; ~ ageitin/ “/-2—% / ) R(p)e“*® dp, (1.105)
where we are looking at the reflection from a single interface. C&R then change
from the steepest descents contour, C,, to a new one which provides a convenient
parameterization of the terms in the exponent. This new contour, €2, must coincide
with C, in the vicinity of the saddle point. One can still make steepest descents
approximations provided that the contour still lies on a path of descent (although
not the steepest). The two contours, C, and Q are considered asymptotically
equivalent, meaning that the asymptotic expansions using either contour differ

by, at most, an exponentially small amount. The contour chosen by C&R is given

V1/at —p? = \/l/af -p+ze ™, zeR (1.106)

We have not used p, to represent the branch point, as this referred to one of

by

several possible branch points in R(p); here the radical we are considering is also
in the exponent and the branch point represents grazing angles (for the P-wave

case pp = 1/a;). Clearly for the new contour z = 0 < p = py, and

dp —in/4 1/0% - pﬁ
hol 4 =AY 1.107
dz|,_ Dé ( )

so that the contour runs parallel to the steepest descents contour near the saddle
point. Figure 1.9 shows a comparison of the contours in the complex ray parameter
plane for an angle of incidence of 37°. Also shown is the path along which Re{¢} =
0, which is the path of neutral ascent. For the transformation of C& R to be valid,
the transformed contour must lie between the steepest descents contour and the

path of neutral ascent. The transformation makes the exponent

#(z) = ir‘/ P} +iz? — 2ze"'/‘m + i(hy + 2) (ze""/‘ + M) .

(1.108)




CHAPTER 1. ASYMPTOTIC TECHNIQUES 41

10 ¢
08t
08 ¢
04t

02+

Im{pa,}

02 +¢

06t

©8 t

104

Figure 1.9: The descent contour of Cerveny and Ravindra near the saddle point. The
boundary of descent (line of neutral ascents) is also shown for comparison. The saddle
is at pa; = up = a1 po, and grazing incidence is at pa; = 1.

This has a more complicated form than ¢(p), but we can now approximate it by
é(z) =~ $(0) + 1/24"(0)=? (1.109)

which doesn’t lose accuracy for pp — 1/ay, in contrast to approximating ¢(p)
by its two term Taylor expansion.!” Thus, this method is particularly suited
for studying waves near grazing angles (for small contrasts in velocity across the
interface, the critical points approach grazing rays, i.e. 1/a; = 1/a;). It combines
elements of uniform expansions with non-uniform expansions. The rest of the
derivation is fairly pedestrian and can be found in the book by C&R, so we do
not repeat it here.

A limitation of this method is that it applies in its present form only for restricted

angles of incidence. This can be seen by examining the behaviour of the contour

17Note that the transformed exponent has a saddle point, preserving the essential character
of the original exponent.
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far from the saddle point. We have for large |p|
% =~ e'*/4 (1.110)

so that the contour makes an angle arctan(1) = 45° to the real axis. The path of

neutral ascents can be parameterized as follows:

Re{¢} = 0 (1.111)
(1.112)

SO
7—172——;?___;+\/1/a§—p’ = 22, =zeR (1.113)
ey <}

where we have omitted the constant factor of (h; + z). For large |z| we can find
that

% ~ 2z (po‘/l/af -p3+i(l/ad - pg)) (1.114)

which forms an angle of arctan(@) with the real axis. The condition that

Q follows a path of descent the comes down to

ylei-r _, (1.115)

Po
or, @ > 45°, where 0 is the angle of incidence. Thus for an angle of incidence
of 45° the contour for this method ascends, and so the method of steepest de-
scents doesn’t apply. This is a drawback of the method, and is one reason why
we originally opted for using purely non-uniform derivations. The drawback is
actually not as serious as it seems, since for all angles of incidence the contour
is in a region of descent near the saddle point, and can be truncated introducing
only negligible errors (much as we did when deriving the uniform expansions).
The portion retained is all descents, and can then be re-extended to +oo, again
introducing only negligible errors. Of course, only the first term in the expansion

is of use after such a procedure.
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1.7 Chapter Summary

We have described the exact closed form solutions for a wave reflected from a
plane interface separating homogeneous, isotropic media, and shown how it may
be extended when considering a wave following a particular raypath in a homo-
geneous, isotropic system of layers. To avoid computing these integrals exactly
(using some numerical technique) we have employed the method of steepest de-
scents. Near critical angles the regular steepest descents approximation (which
coincides with ART) is no longer valid; we have proceeded to use a modification
of the steepest descents method to arrive at several non-uniform approximations
to be used in conjunction with ART. These formulae are non-uniform in the sense
that they are only valid for a particular range of offsets and frequencies, precisely
in the regions where regular ART fails (boundary layers). In the next chapter we
shall evaluate our approximation through comparison with numerical integration
of the integrals representing the exact reflected waves.

For comparison, we have also looked at the uniform approximations of Bleis-
tein and Handelsman (1986), which are valid at all frequencies and offsets. The
uniform formulae had a rather complicated form which is masked by the simple
notation. We shall see in Chapter 2 that the non-uniform formulae provide an ad-
equate solution, making the uniform approximations of theoretical interest only.
Briefly we summarized the technique of Cerveny and Ravindra, which contained

an interesting combination of uniform and non-uniform formulae.



Chapter 2

Numerical Results

2.1 Introduction

We have derived asymptotic approximations for seismic waves, and would now like
to test the results. We shall compare the amplitudes from our derivations with
a numerically derived solution both in the time and frequency domains (we look
at harmonic incident waves). A specific geology is chosen to base the comparison
upon, which brings out the different interference phenomena that we are trying to
model. We also take a limited look at the location of leaky poles in the complex
ray parameter plane, as this has (to the best of our knowledge) only been carried
out by Chapman (1972) for Lamb’s Problem (i.e. a free surface).

2.2 Location of Poles

It is useful to gain a qualitative idea of the movement of the leaky poles for various
geologic models, so we can gauge which types of media have important leaky wave
considerations. In Chapter 1 we saw that from a strict high frequency asymptotic
point of view, leaky waves are negligible unless they interfere with a body phase.
Thus their importance is measured by the distance of the pole to the closest branch
point or saddle point in the complex ray parameter plane (keeping in mind that
this is only true for post-critical angles, so this is valid when the saddle point is to

44
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the right of the branch point). We also point out that the closer the pole is to the
real axis (to the left of the particular branch point representing grazing rays), the
smaller |Re{¢(pL)}| in equation (1.14), and hence the less attenuated the pulse.
The location of leaky poles in the complex ray parameter plane is a function of the
material properties of the two media, ay, az, 51,5, and p1/p2.! If we introduce
a dimensionless variable pv, where v is one of the four wave velocities, then the
poles vary only as functions of a; /a2, 01, 02, and p;/p2, where o is Poisson’s ratio.
The velocity v can be chosen to normalize the pole location relative to the branch
point of interest. Since the distance from the saddle point and branch point to
the leaky pole approximately determines the magnitude of the leaky pulse, this
choice of normalization allows us to quickly assess the relative importance of pole
locations from a diagram where velocities are not fixed. We need to narrow the
field of enquiry, as there are many possible pole locations. There is a possible
leaky pole associated with each type of head wave, of which there are 26. This
depends upon which phase we are looking at (P and/or S), whether we have
upgoing or downgoing waves, and the different velocity distributions. Ultimately
one would like a map of all poles on all eight Riemann sheets for all possible
velocity combinations. This would fill volumes, and so we restrict ourselves to one
of the more common situations. We shall look for the poles that affect the upgoing
reflected P-wave, when the P-wave velocity in the lower medium is greater than
or equal to the P-wave velocity in the upper medium. (Reasonable since velocity
generally increases with depth). The reflected wave in this situation is influenced
by the head wave associated with the transmitted P-wave (branch point is at
P = 1/a3, and the code is 131 according to C& R) and the head wave associated
with the transmitted (and converted) S-wave (branch point at p = 1/8;, and
code 141 according to C& R). For poles near p = 1/a; we must look on the
sheet (— + ++), both above and below the real axis, as was shown in Chapter

1See equation (1.12).
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1. When we look for poles near the branch point 1/3, we need to search the
sheet (— — ++) above the real axis, and (+ — ++) below the real axis. The
reason why this is so is shown in Figure 2.1, where we see that any poles on
the (— — ++) sheet below the real axis are much farther away (in terms of a
continuous Riemann sheet) from p = 1/43; than poles on the (+ — ++) sheet.
Even so, we found that poles on the (+ — ++) sheet to be generally far away

Im {p}
A

b////u Branch Cut

>Re
18, ( B )lla. (e}

(+-++)

(—++)

Figure 2.1: A description of the distance from the saddle point to poles on the different
Riemann sheets.

from 1/3; for the models studied, and so do not investigate them further. In
the following, we map out only the poles that are close to the branch point in

question, even though more leaky poles are present.? Due to the above mentioned

normalization arguments, we use the complex pa; plane, when mapping the leaky

2How many poles are there in total? This is a tough one, since it would involve expanding
D in equation (1.12) into a polynomial and then observing what order polynomial we are left
with. The algebra would be immensely tedious for such a marginally useful result. One can
obtain an upper bound by recognizing how many times the expression D = 0 would need to be
squared to get rid of the square-root terms. This gives us an upper bound of 48 poles, but is
likely considerably less. For the simple case of Lamb'’s problem where a; = 8; = 0, one can use
the above method of estimating to give a maximum of 8 poles, and doing the algebra results in
actually only a 6'* order polynomial (due to some cancellation).
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poles from the (— + ++) sheet, and the p3; plane, when mapping the leaky poles
on the (— — ++) sheet. Pole locations are shown only for the 1* quadrant,
keeping in mind that corresponding complex conjugate poles are to be found in
the 4 quadrant. The latter poles’ existence follows from the fact that R(p)
coincidentally obeys the 'reflection principle’ on a given Riemann sheet, from the
theory of complex variables. The poles have not been represented when they lie
on the real axis, where they are generally isolated. In Figures 2.2 and 2.4 we have
contoured pole locations by varying n = a;/a; and o, while holding o, = .315
constant at a value typical for limestones. The density ratio is not held constant,
but varies according to p; = 0.31a}/* (Sheriff and Geldart, 1983). (The actual
values plotted had p; very slightly deviate from this relationship). In this way
we can change n to model varying velocity contrasts, and o; to reflect different
top media lithologies, while keeping the densities at realistic values. Figures 2.3
and 2.5 map the pole locations as a function of n and o,, while keeping 0, = .25
constant.

Both Figures 2.2 and 2.3 show that the poles move closer to the branch point
P = 1/a; for lower n. Therefore, the need for Cases 1, 3 and 4 arises from
a combination of small [w¢”(pp)| and large velocity contrast across the interface.
This is in agreement with the observations of C&R, who found that their formulae
(Case 2) were not applicable for strong contrasts in velocity, and recommended
its use only for .75 < n < .95. Changing Poisson’s ratio tends to rotate the poles
about the branch points. Increasing o; moves the poles to the left of the branch
cut, while the opposite holds true for changes in ;. Thus for low o;® (high 05*)
it is more likely that a residue will need to be evaluated, whereas for high o, (low
o2) the pole will likely avoid the steepest descents contour. However, as we shall
see, poles that do not require a residue may still have a significant influence upon
the reflected wave. Figure 2.4 is not quite a contour map, since the pole locations

3'harder rocks’
4'softer rocks’
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Figure 2.2: The locations of poles on the (— + ++) sheet plotted as a function of
n = ay/az and o, the latter being Poisson’s ratio in the upper medium. The contour
interval for n is .1, unless otherwise labelled. The contour interval for o is .05, unless
otherwise labelled. The branch point is located at paz = 1.

Figure 2.3: The locations of poles on the (— + ++) sheet plotted as a function of
n = a1/az and o, the latter being Poisson’s ratio in the lower medium. Other parameter
values are described in the text. The contour intervals for n and o is .1 and .05,
respectively.
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Figure 2.4: Here we plot poles oa the (— — ++) sheet as a function of n = a; /a; and
o (upper medium). A contour map is not possible, so representative poles are plotted
and labelled. The branch point is located at p3; = 1
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Figure 2.5: Again we plot poles on the (— — ++) sheet, this time varying n = ay/az
and o (lower medium).
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are not single valued functions of n and o, (contour would cross). Thus we have
Jjust plotted curves of poles for varying n, and on n = .5 we have placed dots
which represent the different values of o;. We cannot plot all values of n and o,
and o3; we need the branch point 1/3; to lie to the left of 1/a; (the grazing ray
for our reflected P-wave), for the poles to have any significance. Both Figures 2.4
and 2.5 show that the poles move in a clockwise rotation about p = 1/83; as n gets
smaller. It would also appear that extreme values of o; (high or low) and high
values of o3 lead to the most prominent leaky pole effects.

2.3 Harmonic Wave Amplitude Curves

We apply our results to a system of homogeneous layers, taking the parameters
from Ogilvie and Purnell (1996). This model is particularly suitable as it consists
of a salt bed beneath layers of sediment, providing both high and low velocity
contrasts across interfaces. Table 1 summarizes the salt model. We assume the
source presented in Chapter 1, and only model primary P-wave reflections. The
receivers are located in the first medium, and the free surface effects are ignored.
We calculate amplitude vs. offset curves, and compare the results from using a
patchwork of non-uniform approximations (see Chapter 1) to a numerical integra-
tion, for a 20Hz incident wave. The numerical integration is carried out using an
integrand similar to equation (1.10), but for pressure, since the first medium is
water. We integrate along a complex contour in the ray-parameter plane®, and do
not include contours which represent the inhomogeneous head wave and regular
interface wave contributions.

The contrast in velocities across the first interface is not great, which suggests that
the leaky poles are not important for an asymptotic description of the reflected
wave. Figure 2.6 shows the amplitude calculated by zero order ART, which is
sharply peaked about the critical offset. For the most part, only Case 2 is needed

5See Chapter 3 for details.
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Table 2.1: Salt Model Parameters
Material o (m/s) B (m/s) p(g/cc) thickness (m)

water 1500 0 1.01 1036
sediment 2040 772 2.05 464
sediment 2106 850 2.10 542

salt 4481 2530 2.14 884

according to the boundary layers described earlier, and the result is plotted in

Figure 2.7. The oscillatory nature of the curves arises from the in-

|Pressurel
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Figure 2.6: The zero order ART approximation to the reflected P-wave from the first
interface. The triangle marks the critical offset, corresponding to the angle at which the
transmitted P-wave is critically refracted. These conventions are adhered to in Figures
2.7 through 2.12.

terference between the reflected and head waves for post critical angles, keeping
in mind the source is monochromatic. We see a slight jump in amplitude at the
edge of the Case 2 boundary layer, and this is a result of using a non-uniform
expansion. That is, as the saddle point moves away from the branch point, am-
plitude discrepancies increase, and are a maximum at the edge of the boundary

layer. This accumulation of error is then abruptly corrected as we pass back into
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Figure 2.7: Comparison of numerical and asymptotic results for the P-wave reflection
from the bottom of layer 1. The range over which the case formulae are used is shaded.
Where no labels (or shades) exist, regular leading order asymptotic expressions are used,
except for post-critical angles where first order head wave terms are included.
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Figure 2.8: The zero order ART approximation to the reflected P-wave from the third
interface. Note the second critical offset, corresponding to the angle at which the trans-
mitted (and converted) S-wave is critically refracted.
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Figure 2.9: Comparison of numerical and asymptotic results for the P-wave reflection
from the bottom of layer 3.

| Pressure |

Figure 2.10: Comparison of numerical and asymptotic results for the P-wave reflection
from the base of layer 3. Here the asymptotic label implies the use of the Case 2 formula
only, in conjunction with regular asymptotic expressions.
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Figure 2.11: Comparison of numerical and asymptotic results for the P-wave reflection
from the bottom of layer 3. In this instance Poisson’s ratio in layer 4 has been adjusted
to 0 = .35. The upper triangle refers to the offset at which a residue from a pole on the
sheet (— + ++) first need be included (it is included for all subsequent offsets as well).
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Figure 2.12: Comparison of numerical and asymptotic results for the P-wave reflection
from the bottom of layer 3. Here the asymptotic label implies the use of all case formulae
where needed, except that poles with a negative imaginary part are neglected.
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using the regular asymptotic formulae. The contrast in velocities across the third
interface is large, and one expects the leaky pole influence to be greater. The zero
order ART amplitude curve is shown in Figure 2.8, where now two critical offsets
exist. Figure 2.9 compares the results for this interface, and shows where each
case formula has been used. The match is imperfect at offsets of 2.4-2.6 km. This
is actually where we pass from Case 1 to Cases 3 and 4. A better match can be
found by extending the boundary between Case 1 and Cases 3 and 4 to |z| = 3,
for post-critical reflection. Poisson’s ratio for layers 3 and 4 is .40 and .266 respec-
tively. This is high in layer 3, and as a consequence the leaky poles are situated
to the left of the steepest descents contours, so no residues are evaluated in the
asymptotic calculation of the wave amplitudes. Yet we see they have a significant
influence when we compare Figures 2.9 and 2.10, the latter using only Case 2 to
find amplitudes. If a branch point were the only dominant point influencing the
saddle, then Case 2 would suffice. It is easy to see that within the Case 1 region,
Case 2 provides completely inaccurate results, while in the region where Cases 3
and 4 apply, we see that regular asymptotic expansions (Figure 2.8) are also not
adequate. In order to provide an example where a residue needs to be evaluated,
we change the model by increasing the value of Poisson’s ratio in the fourth layer
to .35. Figure 2.11 shows the numerical and asymptotic results, and indicates
at what offset a residue is first needed from the (— + ++) sheet. We see a good
agreement, although it decreases somewhat again in the transition from Cases 1 to
3 and 4. The transition seems to occur where the residue is first taken, although
this is merely coincidental; one can show this for higher frequencies, where the
boundaries (since they are frequency dependent) shift inwards and the residue
location remains the same. In Figure 2.12 we look at the effect of omitting poles
below the real axis on the (- + ++) and (— — ++) sheets, hypothesizing that
they might have a marginal influence, especially after adjusting the original model

(poles have moved more to the right in the complex ray parameter plane). We see
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that this has no effect near the second critical offset, while it invokes a significant
change near the first critical offset. The former is no surprise, for the pole below
the real axis on the (— —++) sheet is separated from the steepest descents contour
by the branch cut originating at p = 1/a5, and is therefore distant in terms of
a continuous Riemann surface. In contrast, the pole below the real axis on the
sheet (— + ++) is relatively close to the steepest descents contour (see Figures
2.1 and 1.3).

2.4 Seismograms

We have shown that our Case formulae are asymptotic solutions applicable at
high frequencies. For the case of a 20Hz monochromatic wave, they have been
shown to be reasonably accurate representations of the reflected wave. However,
it is not entirely clear that the results will be applicable to a seismic pulse, which
is composed of a continuous spectrum of frequencies. Thus we construct a pulse

that is the first derivative of a Gaussian, namely,
f(t) = 2¢te=<* (2.1)

where the parameter { can be chosen such that the spectrum of the pulse has
a specified peak frequency (wpeat = v/2{). This pulse has no energy at w = 0,
which is a characteristic of seismic waves in general. The reflection seismograms
appear phase shifted because the source is formulated in terms of displacement (as
defined in Chapter 1), but we measure pressure in the top medium (they are /2
out of phase). We start out by looking at a pulse whose peak frequency is at 20Hz.
In Figure 2.13 we see the reflected P-wave as computed by zero order ART (this
implies that the head wave is omitted). The seismograms have been shifted in time
by the difference in the reflected wave travel times between a given offset and the
nearest offset. This makes the reflected wave appear to arrive at the same time,

which allows us to more clearly observe the phase and amplitude changes from
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trace to trace. One can view this as using a reduced time ¢t — 7; + 7, on the vertical
axis, where 7; is the arrival time of the reflected wave at the j** offset. A phase
change in the reflected wave is readily visible across the critical offset. Figure 2.14
shows the exact response, which includes a head wave. Due to the time shifting,
the head wave emerges from the reflected wave with a non-linear arrival time
vs. offset. No leaky pulse is present, due to the pole location for this interface.
We see from Figure 2.16 the difference between the exact and ART seismograms
is concentrated about the critical offset, and of course must include the head
wave. Figure 2.15 contains the seismograms computed using the non-uniform
asymptotic formulae of Chapter 1, and Figure 2.17 shows the error in the result.
As expected, the error is much smaller than for the ART seismograms, as was seen
in our harmonic analysis. We also compute seismograms for the reflected wave
from the third interface, with the model adjusted so that a residue is evaluated (i.e.
Poisson’s ratio is increased to .35 in the fourth layer). This way we can compute
a leaky pulse in the time domain to confirm its properties. Figure 2.18 shows the
ART reflection for the modified third interface. Seismograms have been scaled by a
constant factor for plotting, so the absolute amplitude cannot be compared to the
reflection from the first interface. However, we still see the large amplitude buildup
near the critical offset, which is decreased somewhat in the exact seismograms
(Figure 2.19). The latter contain only one set of head waves since changing the
Poisson ratio in the fourth medium moved the second critical point to much larger
offsets. The case formulae perform well, and the result is shown in Figure 2.20,
and the error is plotted in Figure 2.22. For comparison, we compute the error in
the ART seismograms (Figure 2.21), which in this case is quite large. We also
see some significant error at the smallest offset trace in Figures 2.22 and 2.21,
but this is actually due to our ’exact’ seismograms being computed with the far
offset appraximation and so are slightly in error for near offsets (see Chapter 1 for
more details). Figure 2.23 shows the isolated leaky pulse from the third interface,
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arising from a residue contribution. The pulse is displayed at a magnification of
20x the reflected wave’s scale, as it would otherwise be too small to be seen. This
supports our analysis in Chapter 1, which suggested that acting alone the leaky
pulse is an asymptotically negligible arrival. However, we have witnessed the large
change in amplitudes brought about by the presence of a leaky pole, leading us to
the conclusion that the leaky pulse nevertheless does have a pronounced influence
which cannot be quantified through a simple linear superposition of time domain
arrivals, near the critical offset where phases interfere. We see that the leaky pulse
rapidly decreases in amplitude with increasing offset, as we previously surmised.
The pulse is also low frequency (compare with the reflected wave in Figure 2.19),
arrives roughly between the reflected and head waves, and is entirely absent at
pre-critical offsets. Overall, we can say that the non-uniform formulae provide a
good match with exact seismograms for the pulse whose dominant frequency is
20 Hz.



CHAPTER 2. NUMERICAL RESULTS 59

OFFSET (KN)
s.ge | 9.48

s, e tqr 10 ot | e ML RE R S S R Y Y

(8) 3l
L M} "0l L3} "
A e A J

L M
i A

»l
A

e e

"t
A

181
A

Figure 2.13: Zero order ART approximation to the reflected wave from the first inter-
face. The seismogram at each offset has been time shifted so that the reflection arrives
at the same time as the smallest offset arrival. Thus the vertical axis is the reduced time
t — 7+ 71, where 7; is the travel time of the reflected wave at the j*# offset. The critical
offset is marked by an arrow. This convention is used for all following seismograms.
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Figure 2.15: The reflected P-wave from the first interface as calculated by the non-
uniform asymptotic formulae derived in Chapter 1.

OFFSET (KN)
se 3.0

LUE SN C T 2 N X N RPN (S E Y Y

o "
A 3

(2 4]
e

o
A i "

ﬁ,<

[ A
M A

000

"
re

"
A
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Figure 2.17: The difference between the exact and asymptotic (non-uniform formulae)
reflections from the first interface.
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Figure 2.19: The exact reflected wave from the third interface (adjusted model).
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Figure 2.20: The non-uniform asymptotic reflected wave from the third interface (ad-
justed model).



CHAPTER 2. NUMERICAL RESULTS 63

OFFSET (KM)
8. 948 9

.10 0 Iz 140 2.7 . 298 . S5.8¢ RN S BN T Y

”"-3: [ 132
A A J

3
'y

a3
A "

{8) Wl

»n3
i
.

[T 2]
Al

p

Figure 2.21: Error in ART seismograms for reflection from third interface (adjusted
model.

(13
A A

A2 ]
L A g

OFFSET (unM)
LUBNCE ST U T N X A D XN RS Y S Y Y

[ 152
A J

133 ez
e S

(S) Uil
AL L

“®3
i Ao d
o~

Figure 2.22: Error in asymptotic (Case formulae) seismograms for the reflection from
third interface (adjusted model).



CHAPTER 2. NUMERICAL RESULTS 64

OFFSET (xM)
S0 0 L Ui® L tqe Q7 YR LW 340 L Q) , eqe ,efn S8 3@  pe

[ 12 ]
hd

"s
A

s
Lk

ol
Aod A

18) 2L

Figure 2.23: The leaky pulse for the reflection from the third interface (arising from
the residue contribution). The pulse is quite low amplitude, so in the above figure the
pulse has been magnified by a factor of 20.

It is instructive to have some quantitative measure of error in the seismograms,
rather than simply looking at the scaled traces. One could look at the peak
amplitude error (as a % of the exact peak amplitude); however, this doesn’t tell
us much about long duration amplitude errors in the time domain. To remedy

this, we define the normalized average error (NAE) for a seismic trace as
(&) - f@)" at
OV
o (£) - £(t9)
1 (FE&)T

where f(t) is the trace computed using exact numerical integration, and f(t) is

E(r)

(2.2)

the trace computed using a chosen approximation. The above measure of error
represents the overall performance of a particular approximate waveform. The
NAE is still a relative measure, but we can at least say that for NAE > 1

then the approximation is completely invalid, and we would hope for NAE < 1
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(of course NAE > 0). We have calculated the NAE for the reflected P-wave
from the third interface of the salt model, for both zero order ART and the non-
uniform asymptotic approximations (Figures 2.24 and 2.25). We use 250 Hz as
our sampling frequency, and the peak frequencies for the pulses are labelled. In
both figures we see an increase in the NAE for small offsets, which is actually due
to the 'exact’ seismograms being calculated using the far offset approximation.
Starting with Figure 2.24, the first thing we notice is that error is peaked about
the two critical offsets, as one would expect. Also, error is greater in post-critical
regions since the head wave is not included in zero order ART. We also note that
there is no convergence to a constant error for higher frequencies. Presumably,
there are higher order terms in the ray series® (if higher order terms did not exist
we would stop getting improvement and remain at a small constant error level
attributable to numerical computational differences). These higher order terms
are body wave terms, because we can observe error changes with frequency even
for pre-critical angles. Turning our attention to Figure 2.25, one can see a general
improvement when we use the non-uniform asymptotic formulae over the zero
order ART, by a factor of about 10-100. Two things are apparent: firstly, for
pre-critical offsets our Case formulae actually degrade the solution (r < 2.0km
offset), and secondly, the peak level of error seems to converge near 2.5 km offset,
with all frequency curves (f, > 4H z) attaining the same approximate NAE. The
first artifact is probably due to our overestimating the size of the boundary layer
for pre-critical offsets. In fact, you can actually see at what point we switch from
ART to another boundary layer in the non-uniform patchwork by the change in
character of the lines with offset (it is different for each frequency). The second
artifact is a little more disturbing; one expects from the proof of the asymptotic
nature of the non-uniform approximation that for higher frequencies the error must

SWe have established this near the critical offsets back in Chapter 1, but have not shown this
to be true for regions of standard reflection. It is intuitively true since zero order ART is only a
leading term of a series that follows, but one needs to do the algebra to show the higher terms
are actually non-zero.
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continually approach zero as w — oo (and not halt as it has at &~ 4Hz around 2.5
km offset). On either side of the first critical offset it appears that everything is
working properly, since the errors generally get smaller for each frequency increase.
The error peak (at about NAE =~ 10~2) actually moves inwards (towards the
critical offset) at each frequency doubling, for frequencies greater than 4 Hz. This
indicates that the error is moving like the edge of a boundary layer, which gives
us a clue to the cause of the problem. What happens is that error builds up
towards the edge of a boundary layer because we are using non-uniform formulae.
It not only accumulates, but increases in proportion to the frequency, to offset
our asymptotic convergence to zero. The source of the error can be traced to our
derivation of the non-uniform formula, where we approximated the exponent as a

Taylor series about the saddle point. We assumed that only the leading term in
e’ @) 1 + O(w($ ~ ¥(p; po))) (2.3)

was significant, where 1/3(p; Po) is the two term Taylor expansion of ¢ about the
saddle point. Now, for post-critical angles part of the steepest descents contour
loops a branch point, and the above approximation gets worse towards the edge
of boundary layers (where ¢ —1(p; po) is no longer small on the loop contour). We
see that the neglected term on the RHS of equation (2.3) indeed has the frequency
dependence that our error in Figure 2.25 clearly has. This also explains why the
error peak is located at the edge of a boundary layer for only post-critical offsets,
since for pre-critical offsets there is no loop contour.

Based on the convergence of the error to a fixed quantity we can actually make
conclusions regarding the accuracy of our non-uniform approximation. We see
that the peak error in Figure 2.25 is consistently close to the error in zero order
ART for a 4Hz wave under ’clean’ conditions, i.e. non-zero reflection coefficient
far from a critical offset, which, for us, is .5 < r < 1.5km. If we denote the radius
of curvature of the wavefront (returning to the surface) in the plane of incidence

by Tcurve, and the wavelength in the top medium by A;, then we conclude the
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following: if a seismologist were satisfied with the result that zero order ART

produced for

Tcurve __
N ~ 13 (2.4)

for their particular situation (even though they may be using a higher frequency),

then the non-uniform approximations could be expected to produce adequate
results when head waves and leaky waves come into play. The above ratio was
calculated for a 4Hz wave reflected from the third interface at zero offset.

2.5 Chapter Summary

We have plotted contours of leaky poles on the (— + ++) and (— — ++) sheets
by varying the ratio a; /a2 and Poisson’s ratio in both the top and bottom media.
This has provided us with an intuitive picture of the situations when leaky poles
are of importance; that is, when they move close to branch points. Generally
speaking, strong contrasts in velocity across an interface tend to generate leaky
pulses which interfere with head and reflected waves.

The non-uniform formulae derived in Chapter 1 have been visually compared to
exact results, using amplitude vs. offset curves at 20Hz and seismograms whose
peak frequency is located at 20Hz. The formulae appear to work satisfactorily,
although some fine tuning of the size of the boundary layers may further improve
the results. It is clear that the formulae of Cerveny and Ravindra fail when leaky
poles approach a branch point in the complex ray parameter plane, and that our
new formulae correctly account for the poles’ influence. The AVO curves also
showed that a pole may have a pronounced influence, even though it has not
been crossed by the steepest descents contour (so no residue was taken). Finally,
we carried our a numerical comparison of the integrated, normalized mean square
error in the time domain, for a variety of peak frequencies. It was found that errors
in our non-uniform approximation accumulate at the edge of the boundary layers,

and are frequency dependent. This implies that our formulae are not arbitrarily
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Time Domain ART Accuracy

10!

102

103

Normalized Average Error

T T T T T T T ¥ T T

05 10 15 20 25 30 35 40 45 50 55 60
Offset (km)

Figure 2.24: The normalized average error for zero order ART and exact seismograms.
The wave modelled is the P-wave reflected from the third interface of the salt model.
There are 50 receivers at which comparisons are made, and frequencies are measured in
Hertz.
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Figure 2.25: The normalized average error for non-uniform asymptotic and exact seis-
mograms. The setup is the same as in Figure 2.24.
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accurate as w — oo (unlike zero order ART), but rather have an approximately
fixed peak error. By comparing with the errors in ART, we found that the error in
the non-uniform approximation is consistent with that of zero order ART (away
from critical angles) at about 10 wavelengths from the source. Since ART is
considered applicable for anything over 3 wavelengths from the source, we can

safely say that our results are valid.



Chapter 3

Numerical Techniques

3.1 Introduction

This chapter is devoted to outlining the techniques needed to carry out calculations
that arose in our exact and asymptotic characterization of seismic waves from
Chapters 1 and 2. We have previously derived a high frequency approximation to
an integral of the sort

I= /_ : F(p)e**® dp. (3.1)

To evaluate the accuracy of the asymptotic formulae, it is necessary to compare
the results to those of an ’exact’ method. That is, we desire a numerical estimate
of I, no matter how computationally inconvenient this may prove. In this chapter
we shall look at two general approaches for calculating the exact solutions. We
assume that f contains no Hankel function, so that the far offset approximation
has already been made (this is why we put exact in quotes). A good summary
of techniques can be found in Chapman and Orcutt (1985). It is also necessary
to evaluate some special functions connected with the asymptotic expansion of
equation (3.1). We have found that suitable routines are often not available, and
we therefore present methods to calculate these functions. We also briefly look at
the technique used to locate our poles in the complex plane.

70
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3.2 Real Contour Method

The contour of integration is taken along the real axis in this case. This is the
simplest choice, and coincidentally is also the path for which the method of sta-
tionary phase applies, if one were interested in approximating I in this manner.
We shall demonstrate this below.

Assuming an n layered medium, that the response is a P-wave along every leg of
its path, and that the source and receivers are a height k; above the first interface,

then we can write

() = i(rp+ 3 2hey/T/al - 77) (3.2)

k=1
as was shown in Chapter 1. The point of stationary phase (or saddle point for

that matter) is given by ¢'(pe) = 0. The path from the stationary point along
which Im{¢} changes most rapidly is that for which Re{¢} is constant! Thus the
stationary phase path is characterized by

Re{4(p) — é(po)} =0 (33)

and po is a point on the positive real axis. For p € R and Ipl < 1/ax, k < n,
then we see from equation (3.2) that ¢ is purely imaginary, and so the stationary
phase path lies along the real axis in this range of p. We point out that po should
lie in this range too, otherwise we are describing waves that decay exponentially
in depth (we would like to consider homogeneous waves only).

Now that we have shown that this contour is the path for stationary phase, it so
happens that this makes it one of the more challenging types of integral to tackle,
from a computational point of view. The problem lies in that highly oscillatory

integrands must be sampled rather intensively to prevent aliasing. Most terms in

'If ¢ = u + iv is an analytic function and p = z + iy, then it satisfies the Cauchy-Riemann
equations, u; == vy and uy = —v,. The direction and magnitude of the maximum variation in
these functions can be represented in vector form: Vu and Vv. It is immediately clear that
Vu-Vv =0, as a consequence of the Cauchy-Riemann equations. Thus u = constant along the
path for which v is most rapidly changing.
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the sum (except around the point of stationary phase) should cancel, but alaising
builds up error. This can be put more precisely if we look at some of the work
of Frazer and Gettrust (1984), who examine error bounds for various quadrature
schemes. These arguments are also necessary to understand the advantage of the
Generalized Filon’s Method (GFM), also introduced by these authors.

Approximating an integral using an N*® order interpolatory quadrature scheme

consists of the following:

i, 9)
9(2) = 3 o@a(a) + TgrpytE 2 - z)(e—2n)  (34)

[[orde = S taten + [ L ED o o -z (o - em)de (35)

where &, are the weights, z; are the nodes and [;(z) are the well known Lagrange

Polynomials. Thus an upper bound on the error expressed as a fraction of the

original integral is

(b — a)N+1 sup[g (N+1)]
(N +1)!suplg] °

where sup(] acts upon the closed interval [a, b]. So when considering integrating a

function of the sort

En = (3.6)

g9(z) = f(z)e“*, w — o0 3.7)

then we see that since f(V+1) ~ fN+1 that

(b - @)N+1yN+1

En ~ (N +1) (3.8)
This leads to a reasonable maximum size for the interval size (assuming a 8%
error),
Bsuplg)(N + 1)\ ¥
(b—a)max ( sup[g (V1] (3.9)

for regular integrands, and

(b — a)aax = BN + 1) ¥¥T (3.10)
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for exponential ones. We can see from the above formula that the stepsize is
controlled by the large parameter (w). Thus for higher frequencies the quadrature
scheme becomes more unwieldy, requiring a large number of function evaluations.
We have assumed that an interpolatory quadrature method is best for evaluating
the integral. In the ’Complex Contour’ section we shall be using the Runge-
Kutta method, and we shall delay our explanation until then, as to why it is not
appropriate for highly oscillatory integrals. For now we implement a common

Numerical Methods: 20 Hz Signal
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Figure 3.1: Comparison of reflected P-wave from the third interface of the salt model,
for the 129 pt trapeziodal numerical integration.

trapezoidal scheme (Press et. al., 1992), to the integral representing the pressure
of the wave reflected from the third interface in the salt model defined in Chapter
2. This is done to have a comparison with other methods. We need endpoints for
the integration (a and b), and have found that p € [0,1/a3] seems to work. This
implies that the reflected wave can be well represented by a sum of homogeneous
plane waves with positive angles of incidence. ( For p > 1/ay the exponent ¢(p)

would not be purely imaginary, meaning that the wave decays exponentially in
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the 3" medium.) Dividing the interval into M subintervals

I = A/2[g(a) + g(b)] + A El g(a + Ak) (3.11)

=1

where we have applied the trapezoidal rule to each interval. One can see in Figure

Numerical Methods: 20 Hz Signal
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Figure 3.2: Comparison of reflected P-wave from the third interface of the salt model,
for the 256 pt. trapezoidal numerical integration.

3.1 the result for a 20 Hz monochromatic wave. The computation was carried out
for 200 receivers. The number of intervals used was 128 (129 points). The accuracy
is poor, and in Figure 3.2 we use 256 intervals, and get an improvement, although
it is not perfect. For comparison we have used the 'complex-p’ method where we
integrate along a complex contour, a discussion of which is given in a later section.
We see a degradation of the quality of the integration at near offsets. This is a
result of the far-offset approximation, as well as having fixed the endpoints of
integration at p = 0 and p = 1/a3. At near offsets the stationary point (po)
moves closer to the boundary p = 0, and the lower endpoint should be moved
to the negative real axis if we are to gain near offset accuracy. When computing

seismograms one needs to evaluate many frequencies, and generally they are higher
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than 20 Hz. We therefore look to another quadrature scheme which has often been

used in seismology in connection with the reflectivity method.

3.2.1 Filon’s Method

This method is based upon exactly integrating some oscillatory portion of the
integral, while expanding the rest in the usual Lagrange polynomial. Specifically,

/:f(z)e“" dr = g,f(zk)ﬂk + /: e‘""f%(zl(;))(z ~Zo)(z — z1)...(z — zn)dz

(3.12)
where now the weights, 7, are moments of the exponential term (previously they

were polynomial). From the previous error expressions we see that now

By = (b - a)N+l sup[f (N+1)]
N= (N + 1)t sup[f]

(3.13)

so the interval size is independent of the large parameter (frequency). This method
rests on being able to calculate 7 easily, which requires a simple exponential
function (it is simply z in this example). Unfortunately, our integrals contain a
more complicated exponent, as was shown in equation (3.2). One could split the
exponent, using Filon’s method on iwrp and using the interpolatory polynomial
on iw Y ¢, hi m. However, this was found to produce negligibly better
results. We therefore turn to the method introduced by Frazer and Gertrust
(1985), which works for a general function in the exponent.

3.2.2 Generalized Filon Method

To apply this method one need only rewrite our integral in the form
b b~
[ f@)e*@ az = /o ® h(g)e*t dg (3.14)
where ¢ = z — a, 0 = w[¢(b) — ¢(a)]/(b — a) and

h(g) = f(g + a)e“#la+e)-oe,
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This is an exact transformation. Next, Filon’s method is applied to the RHS of
equation (3.14). Using our error bounds from before, we find that

N3
(b—a)max = (ﬂg:,p_i;,l])') w2, (3.15)
since
N+1
suplhW+V] ~ NHlgyp [h (¢r _ w) * ] (3.16)
= wN+l sup[h(¢")"“](b _ a)N-f-l (3.17)

due to the Mean Value Theorem. Therefore this method does not require so
stringent a restriction upon the maximum interval size, when compared with a
regular interpolatory quadrature scheme (contrast the dependence on w above
with that in equation (3.10)). Ultimately, however, the interval size still depends

upon the frequency of the wave, making it unattractive computationally.

Conjecture 2 We could make the ezact transform t = ¢(z) to obtain a simple
exponential function, and then apply Filon’s Method to the resulting integral.

This turns out to be a bad idea, since

dz _ 1
dt ~ ¢(z)

and there is always a saddle point at which ¢'(z) = 0. Thus the integrand is now
singular, and we have merely exchanged one set of problems for another. If we
transform to a second order polynomial to alleviate the singularity, we introduce
unwieldy integrals as 'primitives’; that is, the weights themselves become special
functions.

Here we shall derive the exact formulae used in implementing GFM. Firstly we
need to calculate the weights for the Filon Method. We shall use a three point or
parabolic interpolation of the integrand, the points being equally spaced. Let the
original integral be of the form

I= /o ' (z)e* dz (3.18)
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where A is a constant, and I'(z) is some function to be interpolated. An expansion
of the form given in equation (3.5) is clearly exact (Enx = 0) if g(z) (or I'(z) for the
above equation) is an N** order polynomial (or less). We have chosen a parabolic
interpolation, so N = 2. That this must be exact for a polynomial of degree two
or less allows us to find the weights from the solution of the following system:
1
So+H+& =W = /o e** dz
1
Ofo+1/2£1+fz =W, = A ze**dz
1
06 +1/46+ & =Wa = /o 226 dz. (3.19)
The result is easily evaluated, and we can use the weights to approximate the
integral given in equation (3.18). Now, our integral that we want to calculate has

limits of integration [a, b], and we divide this into M subdivisions, each of width
A. Each subdivision contributes to the integral and looks like

a+A+jA
= wé(p) .
an=[" " f(p)e*® dp (3.20)
to which we apply the transformation in GFM to get
a wé(p(a))-0q) o0
AL = [ (fp(a)e ) et dg (3:21)

where p =g+a+jA, and 0 = w[g(a+ A+ A) — ¢(a+3jA)]/A. Next we need to
transform this to the range [0,1] to make use of our weights calculated in equation
(3.19). Thus let s = g/A and then

1 .
AL; =A /o [f (a+jA+ sA)e“"‘("*’A*"A)] e*® ds (3.22)

and if we identify A = 0A and I'(z) — I'(z, j) as being all terms in square brackets

in equation (3.22), then we can write formula approximating the integral as

M-
I~A g:: &GIT0,5) + 6GIC1/2.5) + LGILF).  (323)
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We have expressed explicit dependence upon the index j, where it occurs. There is
some redundancy in the above formula, in the sense that if one uses this directly
as an algorithm, there sometimes will be two function evaluations at the same
spot. This reduces efficiency when we have complicated integrands to compute.?

Let’s split apart the function in the integrand as follows:
I(s,5) = ¥(s,5) - e7*70%,
and we see by inspecting earlier expressions that
7(0,5) = (1,5 - 1).
Therefore we write

I =~ A {50(0)7(0’ 0) + £(0)7(1/2,0)e°(@4/2 4

&(M —1)7(1, M — 1)e~oM-D8}
M-1

A X {[60) + &6 ~ D04 20,)+
& (j)7(1/2’ j)e-a(j)Alz} . (3.24)

Figure 3.3 illustrates the result of applying the GFM to our model, when 129
point evaluations are used. We see that generally the match is better than for the
trapezoidal result, even when using one half the number of points. Of course, for
a fixed number of points, there is somewhat more computation required for GFM
than the trapezoidal rule (one can see by inspection of the formulae). However,
for a certain desired accuracy, the savings in time using GFM is very significant,
due to the lower number of points needed to achieve the desired accuracy. The
decreased performance at near offsets in Figure 3.3 is again a result of our choice
that the lower limit of integration be at p = 0. As a final note on GFM, we point
out that there are instances for which |A| in equation (3.19) can be small, and a
straightforward evaluation of the integrals giving the weights Wy, W; and W; can

2Remember the number of multiplications needed to produce reflection coefficients!
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Numerical Methods: 20 Hz Signal
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Figure 3.3: Comparison of reflected P-wave from the third interface of the salt model,
for the 129 pt. GFM numerical integration.

produce very large errors. This is due to cancellation errors, and can be alleviated

by using an alternative series expansion of the integrals, for small |)|.

3.3 Complex Contour

Our troubles with oscillatory integrands can be cured if we deform the contour of
integration away from the real axis. Instead of following the path of stationary
phase, we follow the path of steepest descents. Along this path Im{¢} is constant,
and Re{¢} < 0. (Recall that this means that the integrand will have minimum
oscillation). Although it simplifies the numerical integration, we now have the
added complication of calculating the steepest descents contour. For a single
interface this can be done in closed form (Aki and Richards, 1980) but for a series
of layers this must be computed numerically. Let’s use the exponent given in
equation (3.2), and use the fact that Im{¢(p)} = Im{¢(po)} along the steepest
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descents contour. Then,

rp+i2hg\/l/ai—p’ =
k=1
rpo + 2": 2h\/1/a} — p} +iX? (3.25)

k=1
where X € R. We have introduced a parametric variable X, which describes the

steepest descents contour, and has initial point X = 0, p = p,. By differentiating

both sides we get
dp _ 21X

= —
dX r—Zi':lm

It should be pointed out that equation (3.26) can describe the increment of steep-

(3.26)

est descents path from any point, not just pp. When used from py though, there
is a (removable) singularity at X = 0. We can resolve this by using I’Hospital’s
rule to get

dp _ e-it/(
x|, = * 5 (3.27)

= st

where the sign depends upon which way one is going along the steepest descents

contour. We can now use a quadrature scheme to calculate
1= [ @ dp 2 ax (3.28)

where the integrand is evaluated at the discrete points, X, and it is understood
that p = p(X). To find p(z;) another quadrature must be applied:

P =p(X5) + [ L (3.29)

J-l
which starts from X = 0, p = py and continues outwards. Another way to

formulate the problem is by writing

ar _ wé(p) 9P

so in combination with equation(3.26) we have a system of the form

d [17_[ f(Xp)
K[p]‘ H(X.p) | (3:31)
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where the initial conditions are

HeH

and we must sum the contributions from either side of the saddle point (i.e. solve
the system twice, once in each direction). Actually, we split this into real and
imaginary parts and thus must solve four equations simultaneously. To solve this
system we engage the fourth order Runge-Kutta driver with adaptive stepsize
control of Press et. al. (1992). The Runge-Kutta method is well known, and
hence we shall not derive the formulae here. However, we shall look at the nature
of the algorithm to bring to light its strengths and weaknesses when applied to
our particular problem. The basic idea can be traced to Euler’s method, where

given an equation (or system thereof)

B = o), vl =10 (3:32)

then a recursive algorithm is defined

Yi+1 = ¥j + hf(y;, z5) (3-33)
where z; = j(z — z9)/N, N being the total number of steps. It is then ex-
pected that yy =~ y(z). Convergence and stability of the algorithm (assuming
existence and uniqueness of the solution) is related to the response of f(y,z) to
perturbations in y.> The concept of ’absolute stability’ (Gear, 1971) is perhaps
of more practical interest, which relates whether an algorithm amplifies or damps
errors that creep into any numerical procedure when using floating point number
representation. That is to say, stability implies that the output (y) depends con-
tinuously upon the input y, for all stepsizes, but absolute stability implies that
a perturbation of the input causes a similar (but not larger) perturbation in the

output. One can see that to first order

Loy= %&y (3.34)

3The RHS of equation (3.32) must satisfy the Lipschitz condition - see Stoer and Bulirsch
(1993) for details.
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or for a matrix ils o o 5

alm]- 8 B[] 539
where the matrix on the RHS is the Jacobian. 3f/8y is a parameter, which we
call A, that is important in the growth of §y. The above matrix equation can be
reduced to a sequence of equations of the form similar to that given in equation
(3.34) if it is diagonalizable (i.e. we must find its eigenvalues and eigenvectors).
For any particular algorithm, the region of absolute stability is the combination of
stepsize h and parameter(s) A, such that each step does not increase errors (dy).

Now, for the system we are considering,

an

PR 3[F3 —
Clearly d(6I)/dx doesn’t depend upon éI, and so we say that this calculation
is absolutely stable. In addition, dp need not be absolutely stable since analytic
deformation of the contour does not affect the value of the integral. Thus our
system in equation (3.31) can be considered absolutely stable.
It is natural to wonder why then, if the Runge-Kutta method is absolutely sta-
ble for different paths of integration, does it produce poor results for real axis
integration? (We referred to this earlier, and it is one of the reasons we used
a quadrature scheme for real axis integration). The answer lies in the fact that
we are using equation (3.31) to approximate our function (I) locally. Use of this

equation implies that for any numerical step routine
dy

hY — ~ h—

vz +h) —y(z) = ho

to leading order (or some combination of the above at points interior to [z, z + h]
to achieve 4th order accuracy). However, for a highly oscillatory integrand such
as is found using the real axis integration, the function itself y is rapidly varying
(here we view I as a function of p) and the higher order derivatives are important

in determining the dynamic behavior of y. In other words, there are many places
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for which dy/dz — 0, and the above approximation is poor. This may seem odd
at first based on the form of the integrand in equation (3.28) (where is it zero?),
but remember we integrate the real and imaginary parts separately. Therefore the
overall result proves to be unreliable, and we only use the Runge-Kutta method
in conjunction with the steepest descents contour method.

Adaptive stepsize control allows the numerical routine to quickly jump across
smooth function 'territory’, while being careful in regions that the function is
rapidly varying. This is particularly useful for steepest descents integrals,* since
the contour length can be fixed at some overestimate, without losing much effi-
ciency. The results of using a complex contour and an ODE solver to evaluate
our original integrals has been shown in Figures 3.1 to 3.3, where it really sets the
standard for accuracy. Clearly it is more stable than the quadrature methods, at
all frequencies, and approximately requires the same computation time as GFM
(for the 20 Hz signal studied). The singularity at near offsets is again due to the
far offset approximation rather than any instability of our method. It should be
pointed out that while we have gained a seemingly superior method, it is more
complicated to code, and requires a greater knowledge of the media parameters.
For example, when the steepest descents contour crosses a leaky pole (for increas-
ing offsets) the algorithm must recognize this, and add a residue. Otherwise the
amplitudes become discontinuous. Similarly, at post critical angles, we need to
introduce descents contours from branch points. From this point of view, real axis
integration is easier as it requires one contour and no knowledge of the positions

of saddle, branch and pole points in the complex ray-parameter plane.

4The integrand is concentrated at the saddle point, and the length of the contour needed to
properly characterize the total integral is frequency dependent. This is in contrast to the real
axis integration, where the length of the contour is fixed.
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3.4 Special Functions

The asymptotic approximations of Chapter 1 require several parabolic cylinder
functions as well as the new function F. Very often one can find existing subrou-
tines for evaluating special functions (IMSL or NSWC compilations). However,
we found that parabolic cylinder functions of arbitrary argument and order are
not among them. We therefore derived computational schemes, relying heavily on
the work of Press et. al. (1992).

3.4.1 D1/2(Z) and D3/2(Z)

These could be calculated from their integral definitions, much as we reduced our
integral I into solving a system of 1** order ODE’s. However, we choose to take
their defining differential equation and do the same thing:

‘ig’ +(p+1/2-22/4)D, =0 (3.37)
can be rewritten
d | Cp | _|0 22/4—p—1/2 C,
AN Fr a1 o5

where C, = dDp/dz. The initial vector is given at z = 0 by

r(1/2)2/3

r({(1-p /2)

r(—1/2)20-1/3
r(-p/2)

where I'(z) is the gamma function. Again, we actually end up splitting equation
(3.38) into a system of four equations, to integrate the real and imaginary parts
separately. For the functions D,/;(z) and Dj/2(z) we only need z for a fixed
argument, namely z = se~**/4, 3 € R. The above system can be solved using the
Runge-Kutta single step routine as before, starting from s = 0 and progressing
outward to the desired s. We have problems determining the stability of the

stepping routine, since

dgl-rerllg] o
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and the RHS is a function of z. Unfortunately the coefficients are functions of the
independent variable, so we cannot obtain the form d(6D,)/dz = A6 D,. However,
we found through experimentation that the result was absolutely stable when
compared to the tables of Kireyeva and Karpov (1961). While the ODE integra-
tion leads to an accurate result, we can devise faster methods without much loss
in precision. We constructed an algorithm which computes a reasonable approxi-

mation to D,(z) in three regions:

Zone 1: |2l €1 = Taylor Expansion
Zone 2: |z| > 1 = Asymptotic Expansion
Zone 3: Other values of |z| = Interpolating Polynomial

The first two zones have formulae described in Kireyeva and Karpov (1961). For
Zone 3, we find the coefficients for two polynomials which mimic the behavior of
Re{D,(z)} and Im{Dp(z)} over intermediate ranges of |z|]. We employ Chebyshev
polynomials, using the subroutines of Press et. al. (1992). There are two prop-
erties which make Chebyshev polynomials particularly attractive: the coefficients
fall off in amplitude rapidly for higher terms in the series, and the polynomials are
oscillatory, so the error in truncating an expansion is spread out over the interval.
The exact boundaries for |z| can be found through comparison with the ODE

integration, keeping some error bound in mind.

3.4.2 D_l(z)

Magnus and Oberhettinger (1954) provides the following relation:

dD_,
dz

= 2/2 - Do.

Using the above as well as G(z) = e*'/AD_,(z),5 we find

dG
E =2G-1 (340)

SNote that the Formulae in Chapter 1 actually all require G(z), so this is not an inconvenience.
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We have a more complex problem now because z no longer has a fixed argument
(see Chapter 1). This makes interpolation more unwieldy, and so while we divide
our algorithm into the zones mentioned previously, we actually carry out the ODE
integration in Zone 3. Absolute stability becomes an issue here, so we look at the
result of applying Euler’s method to equation (3.40).% Putting z = se®?, s € R+,
and integrating outward from z = O along the ray arg{z} = 6 to a destination in
Zone 3, we find

d(6G)/ds = e®(e¥sG — 1). (3.41)

Euler’s method produces the recursion
6Gj41 = 6G; + he?(e®36G; — 1)
so for absolute stability we require
|hse’® +1] < 1. (3.42)

For our ODE integration to be absolutely stable, we require the above condition
to hold for real and positive h and s. Actually we have

0=0,r<>-2/s<h<0 0=n/2,3n/2 <0< h<2/s

and a continuum for intermediate values of . In practice this means that errors
will accumulate whenever we are trying to find G(z) for z near the real axis. Nu-
merical experimentation has shown the above conjecture to be true. However, the
errors remain at an acceptable level up to the outer edge of Zone 3, and past this
we use an asymptotic expression. Thus we are spared from having to engage more

complicated implicit difference techniques.

®We assume that similar results hold for the Runge-Kutta driver, and this is appropriate
since we are looking only at general error trends (and not specific boundaries).
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3.4.3 F(z,w)
We actually calculate F(z, w) from its integral definition,

_=lre Vo
F(z,w) = 2—"‘/:“’ =t dt (3.43)

although better schemes could perhaps be devised (we were unable to do s0). Any
type of interpolation seems unlikely, due to the fact that it is a function of two
variables, and there is no restriction on the argument of w. However, it is possible
to find a differential equation to describe this function, and we include this for
completeness.

We can differentiate under the integral sign in equation (3.43) since the integral is
uniformly convergent (the contour never crosses the singularities). Carrying this
out and using the integral definition of parabolic cylinder functions from Bleistein
(1986), we find

oF eiT/4+s/4 :
%5 T vF = —=Disliz). (3.44)
Similarly, o sty
f af ei3‘l’ 4+z°/4 .
327 tW5, =~ or Dy/s(iz) (3.45)
and 5 Py
F | BF St
323 +w 922 \/-2—1}- Ds/g(tz). (3.46)
Magnus and Oberhettinger (1954) provides the relationship
Ds/2(y) — yDsj2(y) + 3/2D142(y) =0 (3.47)
which, when combined with equations (3.44), (3.45) and (3.46) gives
FPF 2 \8BF 2 OF 2
55 + (w-— 52)-52—2- - 5(1 + zw)E- - sw}' = 0. (3.48)

This can then be solved as a system of first order ODE'’s, if we know F, &F /dz and
d’F/dz? at some initial point. From the form of the above equations, we know all
these terms if we know F at the initial point. Choosing z = 0 we have

. +00
-1 Ve e“/2dt

FO,w) = 27 Jooo t—w

(3.49)
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which, unfortunately, is again an unknown function. Perhaps if the integral could
be tabulated, then this might be a useful way to find . However, we do not
pursue this option further.

One immediately supposes that it would be better to find a differential equation
with w as the independent variable, since w = 0 would be an easily evaluated
initial condition (in terms of a parabolic cylinder function). However, we have
been unable to find such an ODE.

Another method of approximating F may lie in the use of Padé approximants.
These could appoximate F7 over small and intermediate ranges of w, leaving
only the asymptotic region. The approximations have proven very effective in
other applications, far outperforming simple power series expansions (see Press
et. al., 1992). To find the Padé approximant, one only need know the Taylor
series expansion of F about w = 0. Formally differentiating under the integral,
the Taylor series can be expressed in terms of parabolic cylinder functions (for
arbitrary z), which are easily found. Thus we would arrive at an approximation
for F valid for small and mid-range values of w, expressed in terms of parabolic
cylinder functions. One would need to experiment to identify how many terms

are needed, in the rational approximation, to obtain a desired accuracy.

3.5 Finding Roots

We have had occasion in the course of our investigation of leaky waves, to find
the locations of poles in of the reflection coefficients in the complex ray-parameter
domain. This is equivalent to finding the zeros of the denominator, which is

common to all reflection-transmission coefficients:

D(p) = a1a261520* 22 + azB1115 X2 + a1 fivsvY?

+p1p2(Bra2tn Ve + a1 Batnvs) + ¢ PP avsyy (3.50)
7We could also use this for D_;(z).
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where the variables are defined in equation 1.10 in Chapter 1. There are a large
number of ways to find roots of a real function, however there is considerably less
attention in the literature spent on finding roots in the complex plane. We adopt
Muller’s method (mentioned in passing in Press et. al., 1992). The idea is that
given three initial points in the complex plane, one can find a local interpolatory
polynomial. The root of the polynomial can be found as an approximation to the
root of the original function. Iteratively, the three points can be updated, the
point with the largest corresponding value of the function being discarded. In
this way the solution is updated until the magnitude of the function is found to
be beneath a threshold value, and we take the final point to be the root. We see
that three initial points are needed since we must find a polynomial of minimum
degree 2. If it were less, then roots would only be found if they were located along
the line in the complex plane joining the points. With three or more, we are able
to move around freely in the complex plane. Naturally this is a local method, and
assumes that the initial three points are sufficiently close to the true root that
the function in the region can be approximated by a second order polynomial. (It
is also important that the function itself is smooth near the root). If the initial
guesses are not close to the true root, then the polynomial will most probably
find a local minimum, and no root will be found. Thus the results are dependent
upon finding appropriate starting values for the program. Also, since the function
D(p) contains branch cuts, one expects difficulties if branch cuts are close to the
desired roots. This is due to the function being discontinuous if we seek roots on
a single Riemann sheet. We found that fixing our three points so they all have
an identical imaginary part helps with this problem, since then the interpolation
never crosses a branch cut (for the branch cuts defined along the real axes). Thus
when a new ’zero’ is located, we simply take the neighbouring points to the left
and right in the complex plane to find the new interpolating polynomial. In our
program, we use the regular Lagrange polynomials to interpolate the three points.
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3.6 Chapter Summary

We have examined several ways of computing the integrals which provide us with
the exact forms of the reflected waves given in Chapter 1. The integrals are of
a challenging type, due to the frequency dependence of the exponent. Real axis
integration using the Generalized Filon’s Method can handle the lowest frequen-
cies best, but still requires intensive sampling at high frequencies. The complex
contour method was found to be relatively quick, and very stable at all but the
lowest frequencies (< 1Hz), and was thus our method of choice throughout the
calculations in Chapter 2. It should be noted that the complex contour method
did require a detailed knowledge of the pole and branch point locations (the con-
tour needed to be adjusted accordingly) making the real axis integration a simpler
method to implement. We have also summarized the techniques used to calculate
the special functions needed in Chapters 1 and 2. Finally, we looked at the algo-
rithm used to locate zeros of a function in a complex domain (for our purposes

the function was the denominator of our reflection coefficient).



Chapter 4
Edge Diffracted Waves

4.1 Introduction

The lack of a useful description for diffracted waves in Asymptotic Ray Theory
(ART) has been a drawback of the method for many years. Keller (1962) origi-
nally proposed the geometrical theory of diffraction which corrected some of the
shortcomings. However, these diffracted waves depend on a diffraction coefficient
(essentially a directivity pattern) which is singular at the shadow boundary, the
surface dividing the illuminated and the shadow zones. They also do not rectify
the discontinuity in the geometrical wave (the zero order ART solution) located
at the shadow boundary. Boundary layer techniques (see for example Zauderer,
1990) can be applied in the narrow region surrounding the shadow boundary.
Klem-Musatov (1984) and Bakker (1990) have successfully derived the shadow
boundary layer solution for seismic diffracted waves (edge waves) in a convenient,
general form to be used in conjunction with ART. Klaeschen et. al. (1994) have
developed a scheme to incorporate these diffracted waves into existing automatic
ray tracing programs. Any useful diffraction theory must be valid in media with
multiple interfaces, yet it has not been shown that the diffracted waves themselves
satisfy the the relevant boundary conditions, when using the above mentioned for-
mulae. We shall show that for 2-D inhomogeneous media the boundary conditions
are actually satisfied, provided the interface is smooth. The application of the the-

91



CHAPTER 4. EDGE DIFFRACTED WAVES 92

ory of edge waves to a particular model can be complex, so we present an example
here to examine some of the details. In this way we can appreciate the useful-
ness of edge waves in models that generate significant diffractions, and also look
at some of the limitations of the theory, keeping in mind more general geologic

situations.

4.2 Review of Theory

For complete review of ART see, for example, Hron and Kanasewich (1971). Let
us represent the zero order ART contribution to a given model as u = U,e*"e.
Here we are working in the frequency domain where the angular frequency is w
and 7 is the eikonal which satisfies

Vr.Vr= 1—}1; (4.1)

where v is the speed of the isotropic, perfectly elastic medium. Uj is the geomet-

rical wave amplitude and obeys the transport equation
2Vr-VU, + U,V3r = 0. (4.2)

Unit vector e denotes the polarization of the wave displacement; this is parallel
to the ray for P-waves and perpendicular for S-waves. If the medium contains
interfaces, then the above formulation must satisfy the continuity of stress and
displacement across these. When these interfaces are not smooth or two or more
interfaces intersect at a point, then discontinuities arise in the zero order solution.
The surface defining the discontinuity in U, is the shadow boundary, and this
divides the illuminated and shadow zones (see Figure 4.1). ART is not applicable
in the region surrounding the shadow boundary. = Klem-Musatov (1984) and
later Bakker (1990) have derived a formulation for diffracted waves valid in the
vicinity of the shadow boundary, known as the shadow boundary layer. These
diffracted waves smooth the discontinuities in zero order ART providing a valid
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A

£
2 Dluminated Zoae
Shadow Zone
Shadow Boundary Layer

Figure 4.1: An example of the diffraction of a seismic wave. The shadow boundary ray
is the ray located at the centre of the shadow boundary layer (shaded). A reflected wave
exists (with another shadow boundary layer) but this has not been shown for simplicity.

twice differentiable solution throughout. The formula in the shadow boundary
layer is
u = U,e“"é + W(w)U,e“™é + O(1//w), (4.3)

where 74 is the diffracted wave eikonal, and

1 1 inw?\ _xe?
W(w)=:i:ml‘ (5,———2—-)8 i.l¥_,

2w(tg—T1)
w= ‘/+ (4.4)

The incomplete gamma function is represented by I'(3, z). The positive and neg-

where

ative signs are for the shadow and illuminated zones respectively. The variable w
is a measure of distance from the shadow boundary (w = 0); since it is a function
of the two eikonals, we must continue the geometrical wave eikonal 7 by some

method into the shadow zone, as it does not exist there according to the standard
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ray theory approach. It is worth remarking that the set of all points in space
that satisfy 7 = 714 defines the shadow boundary; the shadow boundary layer is an
asymptotically small region surrounding the shadow boundary ray, and is defined
by

w(T - 14) = 0(1). (4.5)

The factor U, does not exist in the shadow zone, being abruptly terminated at

Amplitude of the Corrected Geometrical Wave Near the Shadow Boundary

1.8

1.8 4

1.4 4

nommalized amplitude

:
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. 3 2 1 0 1 2 3 P
lluminated Zone w Shadow Zone

Figure 4.2: Modulus of the normalized geometrical amplitude with diffracted waves in-
cluded. The dashed line represents the geometrical amplitude without diffracted waves.
The shaded area represents the shadow boundary layer, usually taken as w < 2.

the shadow boundary, w = 0. U, represents the amplitude continued into the the
shadow zone, and is continuous across w = 0. Zero order ART has an accuracy
of O(1/w), however one can see from equation (4.3) that the error is of O(1//@).
We note in passing that this is the order of magnitude of the diffraction terms
resulting from the geometrical theory of diffraction, which are not included in
this equation. A graph of equation (4.3) is the solid curve in Figure 4.2, which
shows the modulus of the amplitude of u using w as the independent variable.

This can be contrasted with the dashed curve, which represents the amplitude
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of the geometrical wave, terminating at the shadow boundary. One can see that
the diffracted wave contribution decays with distance from the shadow boundary,
and is essentially negligible outside the boundary layer (shaded). The oscillations
in the illuminated region are due to the interference between the geometrical and
the diffracted waves.

4.2.1 Polarization

The direction of displacement (polarization) of the diffracted wave is parallel to
that of the body wave it smooths. However, as Klem-Mustatov (1994) notes, we
can actually take the polarization parallel (or perpendicular, if we are dealing
with S-waves) to the diffracted ray, as the difference is very small in the shadow
boundary layer. We shall outline why this is true. Inside the boundary layer,

T = 74+ (1/2)(m — ma)p’ (4.6)

where p is the distance normal to the shadow boundary, m and my are the second
partial derivatives in the direction normal to the shadow boundary, and p =
O(1//w) defines the boundary layer. We can write the gradient of 7 and 74 in
ray coordinates, and from equation (4.6) we find that

VT — V14| = O(1/Vw) (4.7)

and hence it follows that
le — eq| = O(1/Vw). (4.8)
This shows that the difference is negligible, since we have an error of O(1/1/@) in

the solution anyways. In our numerical example we take the polarization parallel

and perpendicular to the diffracted rays for P-waves and S-waves, respectively.

4.2.2 Continuation of the Geometrical Eikonal

We noted before that 7 doesn’t exist in the shadow zone and must be continued

there so we can make use of equation (4.3). One might at first be attracted by the
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simplicity of a plane wave continuation; however, this leads to significant errors.
Technically this is incorrect since it is required that the solution be twice differen-
tiable everywhere, and we can show that a plane continuation of the geometrical
eikonal leads to a discontinuity in the first derivative at the shadow boundary.

Specifically, for a proper solution we require

[%] =0 (4.9)

where the large brackets denote the jump in the quantity across the shadow bound-
ary, located at p = 0. After some expansion using equation (4.3), it becomes clear
that this is equivalent to

dW da
E%l =0 (4.10)
where a = —irw?/2. Using a plane wave continuation gives
o= (1/2)iwp?(m — my) in the illuminated zone, (4.11)
| —(1/2)iwpPmq in the shadow zone. .

Using equation (4.11) combined with the integral definition of the incomplete
gamma function in equation (4.4), we quickly find that equation (4.10) is not sat-
isfied for the plane continuation of the geometrical eikonal into the shadow zone.
Although the solution itself is still continuous at the shadow boundary and the
jump in the derivative may be quite small, the consequence of using a plane con-
tinuation of the eikonal turns out to be numerically significant. One can calculate
the wave amplitude and compare it to the solution using a properly continued
eikonal. The mismatch increases with distance from the shadow boundary, and
exceeds 100% within the shadow boundary layer. Therefore the plane continua-
tion of the eikonal is not suitable.

The simplest way to continue the eikonal is using equation (4.6); the wavefront
curvature needs to be calculated at each point for the geometrical spreading, so
this poses no additional burden. This was the method used in the Numerical
Example section.
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4.2.3 Continuation of the Geometrical Amplitude

Unlike the geometrical eikonal, a plane wave continuation of this parameter is
valid. This is due to the fact that changes in U, within the shadow boundary
layer are of O(1/+/w). Bakker (1990) derived equation (4.3) using the paraxial
approximation, where U, is the amplitude along the central ray, equivalent to a
plane continuation of U, in the shadow boundary layer. What is worth noting is
that U, contains a plane wave reflection/ transmission coefficient for waves having
encountered an interface during the course of their propagation. This thea means
that within the boundary layer differences in geometrical amplitude perpendicular
to the shadow boundary are of O(1//w), providing the reflection/transmission
coefficient is not too rapidly varying (that is, we’re not near critical or grazing
angles). It can be shown that! equation (4.3) satisfies the boundary conditions at
a smooth interface to O(1//w), when a plane wave continuation of the amplitude
is used. If the interface is not smooth, then the edge wave formulation given in
equation (4.3) is no longer valid for all the diffracted waves leaving the interface.
A particular case of this will be shown in the Numerical Example section.

4.3 Diffracted Waves at Interfaces

Under normal circumstances, boundary conditions are satisfied in ART in the
frequency domain by matching terms with corresponding powers of frequency in
the ray series on either side of an interface. Such a treatment may be found in
Hron and Kanasewich (1971). In the presence of diffractions, u is to be specified
everywhere to O(1//w), so that at an abrupt discontinuity in the elastic param-
eters of a medium, the diffracted amplitudes must satisfy the relevant boundary
conditions to this order of accuracy. Consider the interface shown in Figure 4.3.
Naturally the first term of equation (4.3) will satisfy the boundary conditions as
has been outlined previously for conventional ART, for example by Cerveny and

17This is the subject of the next section.
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Figure 4.3: Geometry of the smooth interface £ between 2D inhomogeneous media.
Symbols Hp, H; and H3 stand for the paths of the incident, the reflected and the trans-
mitted shadow boundary rays respectively (originating from some previous diffracting
obstacle). Point M is the point of incidence of the shadow boundary ray on the interface,
and N is a point on the interface lying within the shadow boundary layer. Symbols p;
and p; represent the distances from P; and P, to N, perpendicular to the respective
rays. To avoid clutter, H3, Hy and pg have not been depicted.

Ravindra (1971). However, it is not immediately obvious that the second term of
equation (4.3) will also satisfy the boundary conditions. Our function W(w) is
O(1) only inside the shadow boundary layer, hence this is where we must investi-
gate.

Consider two media separated by an interface, ¥. For simplicity we require that
the media be isotropic, and contain no inhomogeneity perpendicular to our plane
of incidence, making all geometrical and diffracted rays plane curves. The inter-
section of the plane of incidence with the interface can be expressed as a vector
function X(o), where o is arc length measured from point M (See Figure 4.3).
The following relationship holds by differentiating the Frenet formulae describing



CHAPTER 4. EDGE DIFFRACTED WAVES 99

the space curve X(o) (see for example Guggenheimer (1977)):
(o) = B|, +t40 + xinl0® + (S| ng, — K35 ) 20" + (4.12)
- M M M M2 do M M M "M 6 R g

where t” and n? are the unit tangent and normal vectors, respectively, and x° is
the curvature. Note that the superscript o here is a label, and this is true for the
superscript h in equation (4.13). At any point along £(o), the directions parallel
to unit vectors t,n” and the binormal b form a local orthogonal coordinate
system.

In this Figure 4.3 the shadow boundary ray (Hp) from some previous unspecified
obstacle is incident upon E. The resulting reflected and transmitted shadow
boundary rays are represented by H, (v = 0,1, 2, 3, 4 correspond to the incident
(P or S), reflected P, transmitted P, reflected S and transmitted S, respectively).
It is unimportant in the following discussion on which side the illuminated and
shadow zones are located, the main point being that we are inside the shadow
boundary layer. We can expand the rays as a function of the arc length, A,,
measured from point M:

dxh

1
H, (k) = H|,, + theh, + nhenle3h] + (G

2 1
|, e — Kk th)ght +- - (413)

For notational brevity we have not included a subscript v on t®,n® or x*, but
it should be kept in mind that these quantities are different for each ray. The
interface ¥ (o) is a welded contact. Let U} e“"e* be the zero order term for the
geometrical body wave along the shadow boundary, which at point M satisfies the
continuity of stress and displacement boundary conditions. Referring to Figure
4.3, point M is where the shadow boundary ray strikes the interface, and point
N lies within the boundary layer. At N we need to satisfy the continuity of
displacement for all diffracted waves, so

> (05 W(w"))j = .Z;‘,. (ﬁ:W(w"))j (4.14)

v=0,1,3
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where subscript j refers to the scalar component of the displacement in the di-
rection specified by the unit vectors of tangent, normal and binormal to X at N.
The equation to be satisfied for continuity of stress at N is:2
> [ ubas (U"W(w")) e (af" ([Gsw ("), + 3% (U"W(w")) )
= 5 hab (W), % + (52 (Grw(w), + 22 (Gwwn),).
(4.15)
where subscripts 1 and 2 differentiate between elastic parameters on each side of
the boundary (1 is the medium containing the incident ray) and subscript n refers
to the direction normal to the boundary. We are using the Einstein summation
convention for the subscript i. First we need to examine W(w*). To expand
W (w") at point N we see from equation (4.4) that w” depends on the travel times
T and 74, which can be approximated in the boundary layer using equation (4.6).
This means finding expressions for both m and m? at point P, (see Figure 4.3),
as well as relating the distance p, to the arc length along the interface. Using
equations (4.6), (4.12), and (4.13) and assuming small A, and o, one can find that
to leading order

po = (K3 /K%) cos 8,0 =~ (kb /Kh) cot O, h,. (4.16)
Next, along each of the rays H, both m and mq4 obey the Ricatti equation
m -2 _
I vm? + v, v % =0, (4.17)
derived by Cerveny and Hron (1980). Hence

(m—ma)|, =(m-ma.|, +& , (4.18)

where
£ = /: v(m? — m4®),dh, (4.19)
%It can be shown that we are using the leading (asymptotically largest) term for the traction.

We also are using fixed cartesian coordinates, which is possible due to the ’principal of locality’
(see C& R for details).
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and (m — md),l e € proportional to the post reflection/transmission wavefront

curvatures at point M. Clearly,
€] < 1(m? — mg?), |y v°hs (4.20)

with v* representing the maximum velocity on the ray segment M P,, the length of
the latter being h,. Next, to elicit a common factor from the wavefront curvatures
above, we make use of

Vir= %i (%) + % % + % (4.21)
where s is the distance along a given ray, and r; 2 are the principal curvatures of
the wavefront, and then the Gel’chinsky formula (Gel’chinsky, 1961). The latter
describes the change in the radius of curvature of a wavefront after encountering
the interface at M. If ry and r, are the radii of curvature of the wavefront in
the plane of incidence before and after reflection/transmission respectively, {;, is
the direction tangent to the wavefront at M in the plane of incidence and [ is
the direction tangent to the interface at M in the plane of incidence, then for the
situation we are considering the Gel’chinsky formula reads

r, rovpcos?f, + cos? @, (vv/vocosép £ cosb,)

tanf, dv, = sinfy (v, /vp) _ vy 8in 26, dvo
v, 8, cos?, Ol 2vd cos 8, a0’

The upper and lower signs correspond to to the reflected and transmitted waves

+ v#0. (4.22)

respectively. Note that there is only one term in equation (4.22) that contains the
radius of curvature of the wavefront prior to its reflection/transmission, and that
the directions I, are identical for the geometrical body wave and the diffracted
wave since point M lies on shadow boundary. Combining equations (4.6), (4.21),
(4.16), (4.18) and (4.22) we obtain

: ) % \? cos? 6y o cos? 6,
wir—rdy = ot () SR (1], 1/, + 620 1 0

a+f, (4.23)




CHAPTER 4. EDGE DIFFRACTED WAVES 102

where a is common to all waves at the interface, and 8, is not. From equation
(4.16) we can see that k, and o are O(1//w) provided cosf, = O(1),? ie. 6, is
not near the critical angle. This further implies that

a=0(1) and B, =0(1/Vw) (4.24)
provided x%/x% is O(1). Appendix C shows that this situation results in
W (w*)/W(w°) = 1+ 0(1/Vw). (4.25)

This simplifies equations (4.14) and (4.15), since the term W (w") cancels from
both sides, leaving residuals of O(1//w). Therefore we are left to deal with the
amplitude term 170" . It is worthwhile re-emphasizing that this holds while the
incident boundary ray does not approach a critical angle. It can easily be shown,
using the approximations already presented, that inside the boundary layer 175’
can be approximated by the body wave amplitude calculated at point M. This
then satisfies equations (4.14) and (4.15) to O(1//w).

While this accounts for the majority of cases, it is conceivable that the boundary
layer will intersect an interface that is not smooth during the course of its prop-
agation through diffracting media. Indeed, the ray tracing scheme of Klaeschen
et al. (1994) encounters this situation in the first example of their paper. When
this happens, the arguments presented in this section become invalid.

4.3.1 Interface Complications

When the interface is not smooth, we can no longer use the previous section’s
approximations. Consider Figure 4.4, an identical model to that in Figure 4.3,
except that there exists a discontinuity in the tangential derivative of (o) at
point Q. We previously showed that for a smooth interface, W (w*) is identical to

3This is a bit vague; we really just mean that the shadow boundary layer must not intersect
the interface more than a few multiples of 1/v/X away from the point of incidence of the shadow
boundary ray (A=wavelength).
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W(w®) to O(1//w) at point N (equation (4.25)). However, in the present case
the discontinuity at Q invalidates the approximation in equation (4.16). Hence
neither o nor h, can be shown to be O(1//w), implying iw(rT — 74), and thus
W (w") are distinct at NV for all v. Therefore the boundary conditions will not be
satisfied using conventional diffraction terms for the case depicted in Figure 4.4.
We have assumed that the reflected and transmitted diffracted waves leaving the
interface to the right of Q in Figure 4.4 have the form given in equation (4.3).

Below we explain why this is not appropriate. The amplitude of a diffracted wave
Hi

D
H2

Figure 4.4: Geometry of the interface £ with discontinuous tangential derivative at
point Q. In all other respects this model is identical to that in Figure 4.3.

in the boundary layer is tied to the amplitude of the geometrical wave, through
the factor U, in equation (4.3). This link is attributed to the diffusion of energy
from the illuminated zone to the shadow zone across the shadow boundary (Klem-
Musatov, 1994). Outside the boundary layer the geometrical theory of diffraction
applies (Keller, 1962) and energy is transported parallel to the diffracted rays.

With the presence of interface complications, the point Q in Figure 4.4 becomes
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the source of secondary diffracted waves, which smooth the discontinuity of the
reflected and transmitted primary diffracted waves leaving the interface to the left
of point Q. These secondary diffracted waves now account for the energy being
diffused from the illuminated zone to the shadow zone. We must conclude that
after reflection/transmission, the primary diffracted waves leaving the interface to
the right of point Q no longer receive energy diffused from the illuminated zone,

and hence cannot have the form given in equation (4.3).

4.4 Numerical Example: The Amoco Model

The example we present employs the Amoco model used earlier by Hron and Chan
(1994), who studied SH diffracted waves. It is a simplified version of a tar sands
deposit in northern Alberta, which was used by Amoco researchers to determine
the experimental and theoretical role of diffracted waves in field records (Hron
and Covey, 1988). Here we investigate the P-SV case rather than the SH case.
The model itself (Figure 4.5) is two dimensional and is composed of a box shaped
low velocity zone embedded in a constant velocity layer between two half spaces.
The vertical component receivers and the impulsive source are buried to avoid free
surface effects. The ratio of P-wave to S-wave speeds is v/3. The source wavelet
is described by:

f(t) = Asin(2rt)e- (¥’ (4.26)

where A is constant. Multiples and head waves were not calculated in the seis-
mograms. Figure 4.6 (top) contains the zero order ART results for this model.
There are 12 geometrical body waves calculated here (each with a different type of
raypath), and the dominant six are labelled. Figure 4.7 contains the ray diagrams
corresponding to these arrivals. Many discontinuities are present in Figure 4.6
(top), and it is clear that standard ART provides a very unsatisfactory solution.
The wavefield with diffractions included (Figure 4.6, bottom) has all discontinu-
ities smoothed using 30 unique diffracted wave contributions (each one is defined
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by the geometrical body wave discontinuity it smooths). The advantage of the
Amoco model is that it presents several different cases of diffraction and we can
use these to study the application of diffracted waves. We shall look at two ar-
rivals in a detailed manner.

The first is a P-wave reflection from interface L2, labelled (2) in Figure 4.6. The

% Source
A
102 km
n“r' ............. Recoivers = _ R
12.5 km
v=2.0 kmv/s
Lt v A -]
3.1km| v=25km/s v=1.6 krv/s v=2.5 knvs
L C 1]
“-—>» —>
4.7 km 5.6km v=3.5 knvs

Figure 4.5: The so called Amoco model used for computation of synthetic seismograms.
The vertical axis is depth and densities are equal to unity everywhere. The speeds indi-
cated are for P-waves. The line RR’ represents 60 equally spaced vertical displacement
geophones.

geometrical rays (Figure 4.7) are completely truncated by the vertical interfaces
AC and BD. The corner which terminates the reflections (A or B) gives rise to
diffracted waves which smooth the transition from the presence to the absence of
a reflection. The geometrical eikonal and amplitude are discontinuous across the
shadow boundary, which divides the illuminated and shadow zones. The shadow
boundary is represented by the last ray in the geometrical set of rays which ap-
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proach the diffracting corner from a particular direction. In Figure 4.8 (bottom)
we see the effect of adding the diffracted waves (labelled 2a) generated when the
shadow boundary ray is the last geometrical ray whose path lies to the left of
the vertical interface. Figure 4.8 (top) is a ray diagram illustrating this. The
geometrical reflection is still incomplete, and more diffracted waves are needed.
The last geometrical ray lying to the right of the vertical boundary (top of Figure
4.9) is a shadow boundary ray, and when we include the diffractions caused by
it (labelled 2b) the zero order approximation reflection becomes nearly complete
(bottom of Figure 4.9). There still exists a small discontinuity in the
wavefield, located around 23 seconds at an offset of 4.7 km. It is here that the
diffracted waves (2b) are themselves truncated by the vertical interface AC. We
can introduce secondary diffracted waves at point A corresponding to the rays in
Figure 4.10 (top) to smooth this. The shadow boundary ray in this case is a pri-
mary diffracted ray that travels vertically down from the point of diffraction (A),
reflects at the interface L2 and travels upwards striking point A again causing sec-
ondary diffracted waves. The result is shown in Figure 4.10 (bottom) and labelled
(2c). Although these particular secondary diffracted waves seem to complete the
wavefield adequately, we expect some additional error has been introduced. This
is because the shadow boundary ray travels along the interface AC, and boundary
conditions are not satisfied here without the presence of another wave travelling
along the left side of AC. In our numerical example this is a relatively small defect,
since the amplitude along the boundary ray in Figure 4.10 is low (it is near the
edge of the shadow boundary layer). However, this represents one of the limits
from the theory of edge waves; specifically, when an interface runs nearly parallel
to a shadow boundary ray, boundary conditions are not satisfied and equation
(4.3) is not correct to O(1/\/w). (Equation (4.3) gives the formula for geometric
and diffracted waves in the boundary layer).

The second case we shall consider is the P-wave reflection from the top interface
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Figure 4.6: (top) The zero order ART response to the Amoco model. No multiples
or diffractions are included. The six largest contributions are labelled here and de-
scribed in the text. Their raypaths (using corresponding labels) can be found in Figure
4.7. (bottom) The zero order ART solution to the Amoco model with diffracted waves
included.
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Figure 4.7: Ray diagrams containing sample rays for the six dominant arrivals of zero
order ART for the time frame shown in Figure 4.6. Diagrams are not to scale. All
arrivals are P-waves except (6), where the dashed ray segment indicates conversion to
an S-wave. The numbers shown correspond to the labels in Figure 4.6.
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Figure 4.8: (top) Ray diagram (not to scale) showing the diffracted rays (dashed) from
point B that smooth arrival (2), the P-wave reflection from the bottom interface (L2).
The boundary ray is shown as the solid line. Note that diffractions of the same type
occur at corner A. (bottom) Seismograms of the geometrical arrival (2) with diffracted
waves from corners A and B, labelled (2a).
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Figure 4.9: (top) A ray diagram for the diffracted waves (dashed) originating at point A
that smooth arrival (2). The boundary ray is shown as the solid line. Similar diffractions
originate at corner B. (bottom) Seismograms of the geometrical arrival including the
diffracted wave (2a) and the above type of diffracted wave, labelled (2b).
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Figure 4.10: (top) Ray diagram of doubly diffracted waves. The geometrical ray (solid)
is diffracted at point A and travels vertically downwards (long dash). It then reflects
at the bottom interface, travels upwards to point A creating secondary diffracted rays
(short dash). (bottom) Seismograms including the geometrical wave (2), diffracted
waves (2a) and (2b) and the above doubly diffracted wave, labelled (2c).
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Figure 4.11: (top) Seismograms of the geometrical arrival (1), the P-wave reflection
from the top interface (L1), for the group of rays reflecting to the left of point A.
Included are diffracted waves from A which smooth this arrival and decay to the right
(the shadow zone for this group). (bottom) Seismograms of the geometrical arrival (1),
for the rays reflecting to the right of point A including the diffracted waves from point
A which smooth this arrival and decay to the left (into the shadow zone for this group).
(Diffracted waves from point B have been used to make the bottom seismograms fully
continuous.) The arrows indicate the position of the shadow boundary being examined.
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L1 (labelled (1) in Figure 4.6). The shadow boundaries are defined by the rays
reflecting from interface L1 at the points A and B. Unlike reflection (2), across the
shadow boundaries the eikonal for reflection (1) is continuous and the amplitude
of the wave wave doesn’t vanish (it changes amplitude according to its reflection
coefficient). The solution offered by equation (4.3) decays to zero in the shadow
zone (see Figure 4.2), where no geometrical wave exists. In Figure 4.6 we see that
a geometrical wave is present on both sides of the shadow boundary, the latter be-
ing visible in the seismograms where there is a reversal of polarity in the reflection.
Hence to use equation (4.3) we need to break up the reflection into reflected ray
groups lying to the left and right of each corner. Each of the two groups is defined
by the continuity of its reflection coefficient. Kinematically each group is identical
at the shadow boundary, leading to a continuous eikonal. Focussing on corner A
(which produces the leftmost discontinuity in reflection (1) in Figure 4.6), we can
use equation(4.3) by first making U, the geometrical amplitude associated with
the rays reflecting from interface L1 to the left of point A. The diffracted ampli-
tude decays in the shadow zone to the right of the shadow boundary ray (Figure
4.11, top). Similarly, for the other diffracted wave we make I, the geometrical
amplitude associated with the rays reflecting to the right of point A (see Figure
4.11, bottom). We can now appeal to the principal of superposition and combine
the two as shown in Figure 4.6 (bottom), where there is a smooth transition from
one reflection coefficient to another across the shadow boundary. In our model
the change in polarity emphasizes this transition.

The previous two examples demonstrate that the presence of diffracted waves can
be identified by sharp changes in geometrical wave amplitude or travel time. This
fact was recognized by Klaeschen et. al. (1994), and used in their automated 2-D
ray tracing scheme which augmented standard ray theory with diffracted waves.
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4.4.1 Interface Complications

The model we have used contains no significant interface complications as defined
in the previous sections. However, we can adjust the model to consider how these
complications might arise. Consider the shadow boundary shown in Figure 4.9,
which is due to the reflected P-wave from interface L2. If we move the vertical
interface BD closer to AC the result would look like the situation in Figure 4.12.
The shaded area represents the boundary layer, where the diffracted waves are of
significant amplitude. The model without adjustment had no diffracted rays in
the boundary layer intersecting BD. One can see that for the rays intersecting the
vertical interface BD the amplitude cannot be continued from the shadow bound-
ary ray (the solid ray in Figure 4.12) as they have, for example, very different
reflection transmission coefficients if boundary conditions are to be satisfied on
BD. Also the description of diffracted waves given by equation (4.3) is no longer
valid for the primary diffracted rays passing through BD, once they have trans-
mitted through the top (L1) interface. The secondary diffracted waves from point
B smooth the discontinuity in the primary diffracted waves that transmit through
L1 to the left of B; hence the primary diffracted waves that transmit to the right
of B no longer smooth any discontinuity, and cannot be represented by the form

given in equation (4.3).

4.5 Chapter Summary

We have summarized the theory of edge-diffracted waves as set out by Klem-
Musatov (1984). In so doing we focussed on several points of practical interest for
implementing these diffracted waves: the polarization of the diffracted wave, the
continuation of eikonal and the continuation of the geometrical amplitude into the
shadow zone. The problem as to whether the diffracted waves satisfy boundary

conditions when crossing further interfaces (in the formulation of Klem-Musatov,
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Figure 4.12: A ray diagram illustrating where boundary complications might arise.
Interface BD has been moved to the left to intersect the boundary layer (shaded) caused
by the diffraction of waves at point A. The solid ray represents the shadow boundary
ray.

1984) was addressed. It was found that boundary conditions are indeed satisfied,
so long as 1) the interface is smooth within the shadow boundary layer and 2) the
shadow boundary ray is not close to the critical angle. We ended up by looking
in detailed at the use of edge waves on the Amoco model, which consists of many
subsurface edges (truncated layers). This highlighted how modelling P and and
SV waves using zero order ART can benefit from the inclusion of edge diffracted
waves, which smooth the wavefield. In practice one would need to derive an
automatic scheme for such calculations, as has been done by Klaeschen et. al.
(1994). Any such algorithm must encompass the steps carried out in detail on
the Amoco model, while also alerting the user of potential violations in boundary

conditions (where amplitudes would be unreliable).



Conclusions

This body of work has focussed on two areas of seismology in which standard
Asymptotic Ray Theory fails: incorporating diffracted waves, and zones of inter-
ference between head, reflected and leaky waves. We have derived local formu-
lae that correctly describe the interference of any of the above waves when our
medium is rather ideal: layers are both homogeneous and isotropic, and inter-
faces are plane. We have also explored the size of the regions throughout which
interference arises. More general formulae have been derived by Thomson (1990)
which account for curved interfaces and inhomogeneous media, but only for the
acoustic waves, which lack the complexity of elastic waves. Therefore this work is
important for several reasons: i) it explains the complications involved when deal-
ing with seismic waves reflected near critical angles, which should be useful when
deriving more complex formulae involving inhomogneous media with curved inter-
faces, ii) it provides a rapid way of computing partial wavefields (corresponding
to rays) when the assumption of homogeneous layers is valid, and iii) it com-
pletes the theory surrounding Cagniard’s Problem of classical seismology, when
using frequency domain methods of analysis. While reflection seismograms have
been calculated quite accurately using the Cagniard-de Hoop method (see Aki and
Richards, 1980), it fails to take advantage of possible asymptotic approximations
making it less efficient than frequency domain methods.

Future work should include looking into exact transformations of the special func-
tions used in our asymptotic (non-uniform) formulae into the time domain. This

would enable us to use a simple convolution operator in the time domain when
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we are modelling the interference between waves. This should be contrasted with
the present situation where the solution must be calculated for each frequency,
and then an inverse Fourier Transform is performed.

The use of diffracted waves has been shown to be very useful when confronted with
a model containing discontinuous interfaces. We have looked at relatively simple
media, but the theory of edge diffracted waves (derived by K.M. Klem-Musatov,
1984) is actually much more general. To be useful one needs to incorporate the
theory of edge waves with zero order Asymptotic ray Theory in an automatic
fashion, and studying the Amoco model provided us with insights that can be
(in the future) used to this end. We have also provided proof that the diffracted
waves given by Klem-Musatov actually satisfy boundary conditions when crossing
additional interfaces, provided that the interface is smooth and that there is no
critical refraction. This is really an important point in the theory that has been

assumed to be true, until now.



Appendix A

Proof that Truncation of the Steepest Descents
Contour Introduces Asymptotically Small Errors

Let
I= wé (p)
/c_ f(p)e“*® dp
Then if C, is the truncated contour,
1=/é‘+ [ o =I1+Er

Claim 2
~ wé(p)
I /é. f(p)e dp, W — 00.

Proof 2 Thus we must show that

fc,-g f(P)e”“’) dp

Er|_
5= Iz, f(P)e"* @1 dp l”“’ w e
Let’s use the transformation
_ _ dp _ -1
bE)=dm)—t, P =

which clearly puts t € R*. Thus,

+
Eyp = ew$®) /T * gt)e—t dt

and
T
[ — v (Po) —wt
I /; g(t)e “tdt
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where g(t) = f(p)dp/dt and T is the endpoint of the truncated contour. Nezt, let
us assume bounds on the g(t), which contains no exponential terms or singularities
along it, save at t = 0:

lgit)| <e*, t>T, (A.8)

where a is a frequency independent constant. We may therefore write

IBrl < |ewt®0) [Teoetay) (A.9)
a—wT
- ew(po): — (A.10)

Nezt we may invoke Watson’s lemma upon [ (Bender and Orszag, 1978) which
states that provided we can represent g(t) by

9(t) ~ 12 3 antn (A11)
n=0
then
~ vt ..E=o aaT (:afﬂffl"' 2y (A.12)

We can assume the form given in equation (A.11) since the singularity at t = 0,
arising from dp/dt, is integrable (proportional to t=1/2). We may now write

(B 0w 50, woren (A13)

Thus our error is asymptotically negligible, so long as we choose T to be non-zero
and frequency independent. However, we are restricted by the next step in the
asymptotic analysis, which is to approzimate the exponent by the first two terms
of its Taylor ezpansion about the saddle point. We require then that pr = p(t = T)
be sufficiently close to the saddle py so that this replacement generates errors that
are asymptotically negligible. This presents a frequency dependent upper bound on
the size of T. (A variation of the following argument can be found in Bender and

Orszag, 1978). Thus the two competing conditions we want to satisfy are:

{ (4) wRe{$(po) — ¢(pr)} = asymptotically large
(B) wlé(pr) — ¢(pv) — (1/2)¢" (po)(pr — Po)?] = asymptotically small
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If we let pr — po = O(w?) then (B) gives us the relation (using the next higher

term in the Taylor series)

1+3¢<0 (A.14)
and condition (A) gives us
1+2¢>0, (A.15)
leaving us with
-1/2<¢< -1/3. (A.16)

The two conditions are compatible, and T can be found such that equation (A.13)
i3 asymptotically negligible:

T = O(w™), -1/2<¢< -1/3. (A.17)

Therefore we have found that the contour can be truncated and that the exponent
can be replaced by its two term Taylor ezxpansion, only introducing asymptotically

negligible errors into the solution. O



Appendix B

Proof of Asymptotic Nature of Approximation

Claim 1 An asymptotic sequence of functions can be found for the case involving

a pole-saddle-branch point in prozimity,

& = e“*?P dp 4 g / e“??P g
(1 Qo0 C. P —PL P 10 c. 14
+boo A Vp — wé(p) dp + by / (Pb )l/2euw(p) dp

+bao [ (ps — p)*/e*4®) dp

and

= %[ ey / 1/2 wé (p)
® = I /;,. dp+— [ (pp—p)'/°€ dp

Z’,’ (s — p)?e**Pdp 21

and we claim that*

ef . Z@"’ |U¢"(Po)| — 00

with respect to the auriliary asymptotic sequence

O} = G (L, 0 i+ | [ n =220
+| [ o - py2e* @1 dp|}.

(B.1)

(B.2)

(B.3)

(B.4)

'In actuality it is |w¢"” (po)|/a?| = oo to keep things dimensionless, but this is just constant

factor.
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There should be no confusion between the exponent ¢ and the sequence of functions
{#;}, the latter always having a subscript.

Proof 1 Since the above sequences of functions {®;} and {¢;} are asymptotic,
we only must establish that

ue — TN, ®;

(7Y

We start by recognizing that the functions (p — pL)A(p) and (p — pL)B(p) are
smooth (continuous and infinitely differentiable) in some region D surrounding
the saddle point.2 That this is true follows from the fact that we have factored out
any nearby branch point or pole, while leaving distant critical points implicit in A
and B. We see that the use of the approzimations in equations (1.32) and (1.34)

= lim |%¥| = 0. (B.5)

R= lim T W ¢~

W00

leads to errors of the form

ex®) = (p—po)(p— pL)ESY(P)
ex(®) = (p—po)(p— )P — Ps)ER(p) (B.6)

where E%(p) and E}(p) are smooth in D. This leads to an error in approzimating

the integral of
&= [ BAp-m)e*Pdp~ [ EY(p—pm)m—p) P dp  (BT)

where the factor (p — pr) has cancelled out. We now see that there is one domi-
nant point in the first integral (py) and two in the second integral (po,ps). If we
repeatedly ezpand the smooth terms about the dominant points,®

E} a1;(p — po) + &5

Ej = bi+bilp—m)+e5" i1 (B.8)

?See Appendix A for an estimate of the size of D.

3The expansion in equation (B.8) looks a little cryptic. Since there is only one dominant
point for E), we need to expand in a power series about this point, rather than using the
Lagrange polynomial which requires two or more distinct points.
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where the top expansion is ezact at py and the bottom is ezact at py and py. The
above ezpansion leads us to the terms in the asymptotic sequence ®;. The error

in the j*» term is then
ey =(p-pL)(p - Py E}
e = (P—pL)(P— Py’ *' (p — po) ' E} (B.9)
and so we can ezpress the error in the partially expanded integral as
& = /c Ei(p — po)’*'e**® dp + (-1)* /; E}(p — poy’*'(ps — pY+3/%e»* @ dp.
’ | (B.10)
Nezt we need to estimate the size of £;. One can see that upon integration by parts

j+1 times,‘
a7+ EA evé ) d’+t ’] j+3/2 é(p)
81 = |w¢"(po)|’“ {l/ dp"“ dpl + I/;v. dp’+1 (EB(p’ —-py )eu‘ dpl
(B.11)
There also ezist constants for the bounded region about the saddle D, such that
dit! EJ’
ITPJ‘F—IAl < &, preD

d o, . )
|55 (Bh s — 2V )| < &l(ps — p)*?| + &l(ps — p)**, p € D(B.12)
P
We can bound the size of £; with these constants, introducing asymptotically neg-
ligible errors (think of truncating and re-eztending the contour C,). Thus,

& < Wéo—w—ﬂ- {fll /c. e“$ ) dPI + Ez| /;. (ps — p)'/2e>4®) dP|
+&| [ @ -0 gl } 1 0@, g>0,  (B13)

the last term arising from the use of the bounding constants £, (and it can be
neglected for large w). It follows that

< lim 1 x frequency independent factor

R=lim, ,» Jim ~

g
?;

‘Here we assume that the exponent is replaced with the first two terms of its Taylor expansion
about pg, ¢ = ¢. To make the resulting series valid for terms other than the first, one must

include the truncated part of the exponent in the integrand exp(w(¢ — ¢)) as a slowly varying
factor and expand it like the other smooth terms.
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= 0.

124

(B.14)



Appendix C

Effect of small perturbations on the function
W (w)

Given that
wr—1)h=a+p, B = 0(1/\/“7)' a= 0(1) (C'l)
and
W (w® e‘w’ e’ C2)
we can rewrite the integral in equation (C.2) as
o eatBr [ oo e“ a+By gt
W(w ) = m ( A ‘/- /a ‘/-dt) (C.3)
Using the substitution s = ¢ — a, and then expanding the integrand for small s/a
we get
ww) = 5= ([ Spae - Soa) +oed), (C4)
w’) = y .
27 \Ja \/' \/_
from which it follows that
W(w") _
W(wd) 1+ 0(1/Vw). (C.5)
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