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Abstract

The reflection seismic experiment results in a measurement (reflection seismic data) of the

seismic wavefield. The linear Born approximation to the seismic wavefield leads to a forward

modelling operator that we use to approximate reflection seismic data in terms of a scatter-

ing potential. We consider approximations to the scattering potential using two methods:

the adjoint of the forward modelling operator (migration), and regularized numerical inver-

sion using the forward and adjoint operators. We implement two parameterizations of the

forward modelling and migration operators: source-receiver and shot-profile. For both pa-

rameterizations, we find requisite Green’s function using the split-step approximation. We

first develop the forward modelling operator, and then find the adjoint (migration) opera-

tor by recognizing a Fredholm integral equation of the first kind. The resulting numerical

system is generally under-determined, requiring prior information to find a solution. In

source-receiver migration, the parameterization of the scattering potential is understood

using the migration imaging condition, and this encourages us to apply sparse prior models

to the scattering potential. To that end, we use both a Cauchy prior and a mixed Cauchy-

Gaussian prior, finding better resolved estimates of the scattering potential than are given

by the adjoint. In shot-profile migration, the parameterization of the scattering potential

has its redundancy in multiple active energy sources (i.e. shots). We find that a smallest

model regularized inverse representation of the scattering potential gives a more resolved

picture of the earth, as compared to the simpler adjoint representation. The shot-profile

parameterization allows us to introduce a joint inversion to further improve the estimate of

the scattering potential. Moreover, it allows us to introduce a novel data reconstruction al-

gorithm so that limited data can be interpolated/extrapolated. The linearized operators are



expensive, encouraging their parallel implementation. For the source-receiver parameteri-

zation of the scattering potential this parallelization is non-trivial. Seismic data is typically

corrupted by various types of noise. Sparse coding can be used to suppress noise prior to

migration. It is a method that stems from information theory and that we apply to noise

suppression in seismic data.
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CHAPTER 1

Introduction

1.1 Motivation

Regularized inversion can be summarized by a single equation that expresses, in mathemat-

ics, the relations between cause and effect: Bayes theorem (Bayes, 1763). Bayes theorem,

p(m|d) =
p(d|m)p(m)

p(d)
,

asks, quite eloquently, what is the chance that some cause m results in the effect d? If the

chances are good, then p(m|d) evaluates to a number close to one. If, on the other hand,

chances are slim, then p(m|d) will be close to zero. Putting Bayes theorem, as a whole, aside

for the moment, it is an understandable desire to study p(d|m), found in the numerator on

the right-hand-side of Bayes theorem. It can be used to ask the important question: given

some observed cause and effect, along with some hypothesis p(d|m) that connects cause to

effect, what is the chance that the hypothesis is true? Indeed, this is an integral component

of the scientific method. We leave a discussion of p(m) to Section 1.4. The function p(d) is

not integral to our discussion, as for any given effect d it is a constant.

If we presume confidence in a scientific hypothesis expressed by p(d|m), then we have an

opportunity to modify our question in one of two ways. 1) Given some observed event that

we assume to be a cause m, can we predict the chance of the effect d occurring? 2) Given

some observed event that we assume to be an effect d, can we predict the chance that it

was caused by m? It is the latter of these two questions that we are primarily concerned

with in this thesis, and it is the answer to this question that is expressed in the evaluation

of p(m|d) in Bayes theorem. This question, along with its eventual answer, also provides a

concise description of regularized inversion, and of which regularized migration (the primary

subject of this thesis) is an example.

1
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V

S

Figure 1.1: A schematic of the seismic experiment for a hemisphere V bounded by
the surface S. A single active source (star), and a group of geophones (triangles) are
positioned on the top surface of the hemisphere. In modelling the seismic wavefield,
we will assume that the radius of the hemisphere goes to infinity.

1.2 The reflection seismic experiment

In this thesis work, m is some property of the earth, p(d|m) contains an approximate

description (hypothesis) of how seismic energy propagates through the earth given some

corresponding seismic experiment, and d is a measure of this energy recorded at the earth’s

surface; then, to find m is regularized migration.

We now describe the reflection seismic experiment in less esoteric and more concrete terms.

The reflection seismic experiment is an active exploration technique used in, for example,

oil exploration. Examples of active sources of energy for the experiment are an air gun

(marine experiment) or a Vibroseis truck (land experiment). The energy emanating from

a source is described by a seismic wavefield, and is a function of space and time. The

wavefield propagates into the earth, reflects, and is recorded at the earth’s surface by a

collection of hydrophones (or geophones) that are distributed either in the water (marine

experiment), or across some swath of land (land experiment). The information recorded at

the geophones are seismic data, and are a function of the location of the geophone and time.

For the purpose of our experiment, we think of a small parcel of earth as a volume bounded

by a surface. The locations of the source and the geophone are each determined by two

coordinates, describing their positions on this surface. A cartoon schematic of a reflection

seismic experiment is shown in Figure 1.1.

The physics of the experiment is described by a constitutive relation (Hooke’s law) between
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the rank two tensors, stress τij and strain εkl,

τij =
∑

k,l

cijklεkl, (1.1)

along with the momentum equation. The rank 4 tensor cijkl is called the stiffness tensor.

In this thesis work, we use a form (the scalar wave-equation) derived from Hooke’s law

(equation 1.1) and the momentum equation by assuming that the wavefield propagates

through an isotropic and acoustic medium. There are many introductory textbooks that

describe these equations (for example, see Shearer (1999)). With the assumptions at-hand,

the influence of our parcel of earth on the seismic wavefield is described by a single parameter,

the acoustic wave-speed. Mapping this experiment back to the language of Bayes theorem,

m is some function of the earth’s acoustic wave-speed, d is the seismic data recorded by the

geophones, and p(d|m) contains an approximation to the relevant physics using the scalar

wave-equation. The goal of the experiment, then, is to find some value for acoustic wave-

speed (or related quantity) that maximizes its chance of being true. This chance is, in turn

and in part, influenced by the recorded seismic data, and the approximation to the physics

given by the scalar wave-equation.

As mentioned, the reflection seismic experiment locates sources and geophones on some

surface, and the location of each is described by two spatial dimensions. Therefore, in

total, the data recorded by the experiment is described by four spatial dimensions, and

one dimension in time. The reflection seismic experiment is made robust by collecting data

from multiple source locations. Moreover, it may be that the location of the geophones

will change with each new source location. It is important to note that traditional seismic

data acquisition assumes that energy recorded from any given source does not interfere with

energy recorded from any other source. A simple thought experiment should reveal that

different source/receiver configurations will sample (illuminate) different portions of the

earth. However, nearby configurations will have some intersection of illumination, and in

those regions the experiment becomes more robust to noise due to the resulting redundancy

of data. This redundancy is well known in the reflection seismic experiment, and is taken

advantage of by various established processing methods. It will also have implications for

various topics in this thesis, being taken advantage of with two different parameterizations

of the equations of interest (Chapter 2 versus Chapter 5).

1.3 Seismic data processing

Traditional seismic data processing separates the physics of wavefield propagation into a

sequence of steps. It is widely accepted that the complexity of seismic data makes it difficult
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to find a single all-encompassing processing method that turns seismic data recorded on

some surface into a map of corresponding physical properties of the volume (our parcel

of earth). We note that some authors do, indeed, challenge this assertion, and one such

challenge is found in the subject of full-waveform inversion (e.g. Pratt et al., 1998, and

references therein). This thesis does not challenge the assertion. As such, we can, perhaps

arguably, divide seismic data processing into the following roughly ordered sequence of

steps: 1) random noise suppression (e.g. Canales, 1984) and data regularization (e.g. Spitz,

1991); 2) direct-wave removal (e.g. Welford and Zhang, 2004); 3) wavelet estimation (e.g.

Wiggins, 1978; Weglein and Secrest, 1990); 4) source- and receiver-side de-ghosting (e.g.

Amundsen et al., 2005); 5) free-surface and internal-multiple elimination (e.g. Verschuur

et al., 1992; Weglein et al., 1997); 6) macro estimation of the wave-speed (e.g. Stork, 1992);

7) refinement of this macro estimation (migration); 8) inversion for various earth properties

(e.g. Ostrander, 1982). In this thesis we limit ourselves to, primarily, step 7, but also give

some attention to steps 1 and 5 in Chapters 6 and 8. It should also be noted that some

authors have suggested combining some subset of these steps. For example, Shaw et al.

(2004) and Liu et al. (2006) effectively combine steps 6 and 7 using portions of the inverse

scattering series.

The reason for the steps that precede the migration in step 7 should become evident as we

work our way through the relevant physics in Chapter 2. In short, we use an approximation

to the physics that assumes a single scatterer (linear) approximation to the wavefield. This

requires the removal of all portions of the seismic wavefield that do not follow this single

scattering approximation. Moreover, the linearization is about some macro estimate found

in step 6. This can be thought about in analogy to a Taylor series that is truncated at its

second term. We note that migration tends to be robust to the absence of steps 1 through

5, likely in part due to the already mentioned redundancy built into the reflection seismic

experiment. However, this does not degrade their importance, as success in steps 1 through

5 will improve the migration result, and in some cases their absence may obscure regions of

interest in our parcel of earth.

1.4 Regularized migration

In migration (and under the isotropic and acoustic approximation) the property that we

solve for is a scalar field occupying the volume illustrated in Figure 1.1. This scalar field

has been given different names by different authors. For example, it is routinely called the

reflectivity, the migration image, the migrated data, and the scattering potential. In this

thesis we will, where appropriate, switch between these names; but for the most part, we

will prefer to use the term scattering potential. In part this is because it seems to align
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most closely with the underlying physics (it is also a choice that is due to the influence

of my teachers). We note that scattering potential and reflectivity do not, necessarily,

resemble each other. Their relation will largely depend on information supplied to the

migration (namely, the reference wave-speed, to be defined later). For example, a simple

two-layer model and a constant reference wave-speed will give a derivative relation between

the scattering potential and reflectivity (Bleistein et al., 2001, p. 49). However, in this thesis

we rarely use a constant reference wave-speed, rather we assume a reference wave-speed that

is smooth, but that also follows the trend of the true wave-speed. In this case, the shape of

the reflectivity will more closely resemble the shape of the scattering potential.

To confuse matters, migrating seismic data (to produce migrated seismic data, i.e. the

scattering potential) can refer to a large number of related algorithms. We do not try to

give an overview here. But to avoid confusion, we make the note that in this thesis we work

within the realm of pre-stack wave-equation depth migration. Other adjectives such as (but

not limited to) post-stack, time, reverse-time and Kirkhoff apply to other algorithms. A

nice introduction to the meaning of some of these adjectives is given in Sava and Hill (2009).

To say that migration solves for the scattering potential is, perhaps, glib. Rather, we should

prefer to say that it approximates the scattering potential. Colloquially, the term migration

arguably refers to algorithms that approximate the scattering potential by its adjoint (or

in-other-words, the result of applying the adjoint of our physical operator). The terms

true-amplitude migration (e.g. Deng and McMechan, 2008) and least-squares migration (a

class of regularized migration, the primary subject of this thesis) have brought attention

to the details of the approximation. As mentioned, in regularized migration, the problem

can be cast in terms of Bayes theorem. It is generally accepted that migration is an under-

determined problem, so that an infinity of scattering potentials will satisfy the observed data.

In Bayes theorem, the prior probability density function p(m) is used to add information

to the problem such that one solution is chosen from the infinite pool. It adds information

to make this choice by asking the question: what is the chance that m is a valid solution

(scattering potential) describing our parcel of earth, independent of the experiment?

1.5 Thesis overview

In Chapter 2, we introduce the single scattering approximation to the wavefield using the

Born approximation. The Born approximation is a linearized solution for the scalar wavefield

(commonly referred to as de-migration). To linearize the solution, the Born approximation

introduces a reference wave-speed such that the true wave-speed is a perturbation on the

reference. This linearization leads to a new quantity, the scattering potential, that is our

earth property of interest in the volume. The Born approximation is built by the interaction
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of the scattering potential with Green’s functions that are, in turn, constructed from the

reference wave-speed. We review an analytic form for the Green’s function that allows

for lateral variation in the reference wave-speed (the split-step approximation). We allow

for vertical variation in the reference wave-speed, ultimately, using a Gazdag algorithm.

However, we also investigate the use of WKBJ Green’s functions to accommodate this

vertical variation. Since the Born approximation is linear, its adjoint is readily derived,

and we show this in Chapter 2. Further, we note, importantly, that the adjoint operator

has a classic interpretation in geophysics, namely that of migration. The construction of

the Born approximation and its adjoint is done with a source-receiver parameterization of

the wavefield (in Chapter 5, we use a shot-profile parameterization). With the forward and

adjoint operators for, respectively, wavefield modelling and migration at hand, regularized

migration algorithms can be constructed.

In Chapter 3 we introduce regularized migration with a smallest model constraint applied to

the scattering potential. This constraint results in least-squares migration which, in-turn,

is the solution to a set of least-squares normal equations. The solution is a smallest model

regularized approximation to the scattering potential. We use this chapter to introduce

a concept that remains important throughout much of the remainder of the thesis: the

conjugate gradient method. Moreover, we note the general necessity of an iterative algorithm

for solving the normal equations, and which is precipitated by the size of the operators. In

Chapter 3, we use eigenvalues and Ritz values to analyze the efficiency of an iterative

solution to the normal equations, and use a well known pre-conditioner to try and improve

this efficiency.

Chapter 4 exploits the expected distribution of energy in the scattering potential under

its source-receiver parameterization. In particular, we expect the energy to be distributed

sparsely. This motivates our use of a Cauchy and a mixed Cauchy-Gaussian prior to improve

resolution in the scattering potential.

Chapter 5 introduces shot-profile least-squares migration. The development in this chapter

is similar to that of Chapter 2, but for the shot-profile parameterization of the scattering

potential. In turn, this leads to an alternative implementation of the Born approximation.

The shot-profile parameterization of the scattering potential is integral to Chapter 6.

In Chapter 6, we turn our attention to step 1 of the seismic data processing work-flow.

Namely, we introduce a data reconstruction algorithm using shot-profile least-squares mi-

gration (introduced by Chapter 5). In oder to make minimal assumptions about the earth,

we build the wavefield modelling and migration operators using a constant reference wave-

speed. Our use of a constant reference wave-speed also results in more efficient migration

and de-migration operators.

In Chapter 7 we show a distributed parallel implementation for source-receiver regularized
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migration. Wavefield modelling and migration are expensive algorithms, motivating their

parallel implementation. We note that for the shot-profile parameterization of the scatter-

ing potential, a similar parallelization strategy is relatively trivial. While the shot-profile

examples in this thesis are run using, in part, parallel computer code, the simplicity of the

parallelization does not warrant discussion.

Chapter 8 applies to steps 1 and 5 of the seismic data processing work-flow. We use sparse-

coding for random noise and multiple suppression. Chapter 8 can be read independently

from the rest of the thesis.

1.6 Contributions

The contributions of this thesis can be summarized as follows. 1) We provide a full algebraic

derivation of wavefield modelling and migration operators for regularized migration under

the source-receiver parameterization. The operators are not by themselves new, but were

previously given by derivations relying on operator notation. Other algebraic derivations of

similar operators exist, but seem to stop at the WKBJ Green’s function, not allowing for lat-

erally varying reference wave-speeds. 2) We provide an analysis of least-squares migration,

and pre-conditioned least-squares migration using Ritz values. The analysis does not lead

to a new seismic data processing method, but rather assesses the value of a pre-conditioner

(proposed by other authors) for least-squares migration. 3) We introduce a novel regular-

ized migration algorithm by applying a Cauchy prior. The resolution of migrated seismic

data is always an issue in seismic data processing. In general, we can say that the coarser

the recorded data, the more onus is placed on each of the seismic data processing steps

to produce a high resolution (i.e. resolved) image. 4) We give a full algebraic derivation

of wavefield modelling and migration operators for regularized migration under the shot-

profile parameterization of the scattering potential, and use them in least-squares migration

for two different parameterizations of the model. Previously, authors have produced similar

operators; but again, derived through operator notation. This is the first time these opera-

tors have been applied to least-squares migration, and result in better resolved images. 5)

We use shot-profile least-squares migration for a novel data reconstruction algorithm. Data

reconstruction is an important subject in seismic data processing. The lack of recorded

seismic data hinders the success of various processing steps. For example, the attenuation

of free-surface multiples is data-driven, giving stringent requirements on the completeness

of the recorded seismic data. The success of data reconstruction algorithms for when the

measured data is under-sampled (aliased) or for when it requires extrapolation is an open

problem, and an ongoing research topic in the geophysical community. 6) We introduce a

novel parallelization scheme for least-squares migration under the source-receiver parame-
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terization of the scattering potential. This parallelization scheme plays an important role

in this thesis work, and enabled much of the research to proceed in a timely manner. 7) We

apply sparse-coding (an established method from information theory) to noise removal in

seismic data.

1.7 A remark on notational conventions

In this thesis, we will often use the same symbol to denote different variables, but that

represent the same physical concept. For example, the symbol ψ(x, z|xs, zs; t) is the seismic

wavefield at spatial location (x, z) and time t, due to a source excited at position (xs, zs),

and time t = 0; whereas, the same symbol ψ(kx, z|xs, zs;ω) is its three dimensional Fourier

transform over x and t. Hence, the difference between the symbols is given by the context of

their arguments. As a second example, c0(x, z) is a three-dimensional reference wave-speed,

whereas c0(z) is a one-dimensional reference wave-speed, invariant to lateral dimensions

x. We use lower-case bold symbols to denote vectors, upper-case bold symbols to denote

matrices, and non-bold symbols to denote scalar values.



CHAPTER 2

Wavefield modelling and migration within the Born

approximation

2.1 Introduction

Wave-equation migration uses a linear solution to the wave-equation to find a representation

of earth properties (e.g. Cohen and Bleistein, 1979; Stolt and Benson, 1986). In this thesis,

we consider the acoustic and non-dispersive (i.e. scalar) wave-equation so that the earth

property is acoustic wave-speed. The linear solution to the wave-equation (i.e. the scalar

wavefield) derives from the first two terms of the Born (forward scattering) series. In turn,

the terms in the Born series consist of Green’s functions and a scattering potential. The

Green’s functions describe the propagation of the wavefield through some reference medium,

and the scattering potential describes where the wavefield is scattered due to divergence of

the acoustic wave-speed from the reference medium.

The linear solution for the wavefield provides a linear operator, mapping scattering potential

to wavefield. In the language of inverse theory, the scattering potential is the model, the

measured wavefield is data, and our linearized solution provides a forward operator mapping

model to data. Within this framework, then, there is an adjoint operator (conjugate trans-

pose of the forward operator) providing a mapping from data space to model space. The

adjoint operator is, loosely speaking, migration, and the forward operator is often called de-

migration. Migration provides a reasonable representation of the scattering potential; a fact

most-often explained in the literature by the downward continuation of the wavefield (e.g.

Schultz and Claerbout, 1978). In this chapter, we analyze these forward (data modelling)

and adjoint (migration) operators, all-the-while remembering that these operators are to be

used, for this thesis, within the context of regularized inversion.

We start with a description of the forward operator (wavefield modelling) that is derived

from the forward scattering series, and is the Born approximation shown in Section 2.2. The

9
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solution makes use of a constant velocity Green’s function which we show in Section 2.3. The

Green’s function is used in conjunction with the Born approximation to find the forward

operators. First, we derive a forward operator for an earth where wave-speed varies in

depth only using Gazdag operators (Section 2.4.1), and then we find a forward operator for

an earth where wave-speed is allowed to vary in all dimensions using split-step operators

(Section 2.4.2). We describe the corresponding adjoint operators in Section 2.6. Finally, in

Section 2.7, we discuss the dimensions of the model and data spaces, in particular stating the

relation between shot-geophone and midpoint-offset coordinates. In Chapter 3 we discuss

the midpoint and ray-parameter geometry for the scattering potential.

In this chapter, we develop operators, specifically, for the source-receiver pre-stack geometry.

This means that the scattering potential is parameterized, in its lateral coordinates, by

the acquisition geometry of the seismic survey. This will have important consequences in

Chapters 3 and 4. In contrast, in Chapter 5, we develop wavefield modelling and migration

operators for the shot-profile pre-stack geometry. In the shot-profile geometry, the lateral

dimensions of the scattering potential are the lateral dimensions of the earth model. This

parameterization is itself interesting, and also leads to a new data reconstruction method

(Chapter 6).

2.2 The Born approximation

To build a forward operator for regularized migration, we begin with the perturbed

Helmholtz equation governing the propagation of a wavefield through an acoustic medium

parametrized by wave-speed c(x, z), with x = (x, y). Namely,

L(ψ, c) =

(
∇2 +

ω2

c2(x, z)

)
ψ(x, z|xs, zs;ω) = f(ω)δ(z − zs)δ(x− xs). (2.1)

The forcing term f(ω)δ(z − zs)δ(x − xs) represents a point source in space (xs, zs) with

xs = (xs, ys) and frequency distribution f(ω). For regularized migration, we want a linear

solution for the wavefield ψ as measured by geophones located at some measurement surface

(xg, zg). For this purpose, we use scattering (perturbation) theory to find the particular

solution to equation 2.1, arriving at the Born approximation (e.g. Clayton and Stolt, 1981),

ψ(xg, zg|xs, zs;ω) = ψd(xg, zg|xs, zs;ω) + ψs(xg, zg|xs, zs;ω), (2.2)

where,

ψd(xg, zg|xs, zs;ω) = f(ω)G0(xg, zg|xs, zs;ω), (2.3)
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and,

ψs(xg, zg|xs, zs;ω)

≈ f(ω)

∫∫ ∞

−∞
G0(xg, zg|x′, z′;ω)(ω/c0(x′, z′))2α(x′, z′)G0(x′, z′|xs, zs;ω)dx′dz′.

(2.4)

In equations 2.2-2.4, the details of which are given in Appendix A.1, G0 is a Green’s function

satisfying L(G0, c0) = δ(z− zs)δ(x−xs), α is a dimensionless quantity called the scattering

potential (e.g. Weglein et al., 2003),

α(x, z) = 1− c20(x, z)

c2(x, z)
, (2.5)

and c0 is called the reference wave-speed. ψs is the scattered wavefield, and ψd is the direct

wavefield. For the purpose of regularized migration, equation 2.4 is our linear forward

operator mapping α (the model) to ψs (the data).

We can ascribe a physical interpretation to equations 2.2-2.4, and the scattering poten-

tial α in equation 2.5. In particular, the scattered wavefield ψs in equation 2.4 is mod-

elled by propagating energy from the point source (forcing term in equation 2.1) through

the reference medium c0 to some scattering point (x′, z′) by way of the Green’s function

G0(x′, z′|xs, zs;ω). Then, the energy propagates from the scattering point to the geophones

at the measurement surface by the Green’s function G0(xg, zg|x′, z′;ω). For realizations of

(x′, z′) in the integral of equation 2.4, the amount of scattered energy is governed by the

scattering potential α which, in turn, is a function of the ratio of reference to true wave-

speed (equation 2.5). In addition to the scattered wavefield ψs there is energy that travels

directly from source to geophone without interacting with the scattering potential, and that

is described by the direct wavefield, ψd in equation 2.3. We assume that the contribution of

non-scattered energy in equation 2.2 can be removed from the data, making equations 2.4

and 2.5 a sufficient, albeit linear, description of the physics. Having said that, the direct

wavefield will be used in Section 2.4 to propagate energy toward or away from non-zero scat-

tering points. Our interpretation of equations 2.4 and 2.5 will prove useful in understanding

the subsequent development of forward and adjoint operators which, in turn, are employed,

in later chapters, by regularized migration algorithms.

It is important to emphasize that the solution for the wavefield in equation 2.4 is only

valid to first order in the scattering potential α. In fact, the Born approximation of the

wavefield is a truncation of an infinite series solution for the wavefield called the forward

scattering series (e.g. Weglein et al., 2003). The accuracy of this truncated solution depends

on the relation between the true wave-speed c and the reference wave-speed c0. In general,

we want c0 to be some smoothed version of c. This ensures the validity of the Green’s
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functions in propagating the wavefield to and from potential scattering points. The subject

of constructing c0 belongs to seismic exploration methods in velocity analysis and model

building which fall outside the scope of this thesis work. An alternative is to go beyond

a linear representation of the wavefield, introducing a nonlinear forward operator (Innanen

and Weglein, 2005) into the regularized migration. These nonlinear forward operators can be

expressed by series solutions that tend to be computationally expensive. This is certainly

an interesting topic, but is beyond the scope of this thesis. Additionally, we note that

the Born approximation models a subset of wavefield phenomena. In the language of the

reflection seismic experiment, it is limited to a first order description of primary events,

whereas events such as free-surface multiples require multiple scattering or, in other words,

non-linear terms in the forward scattering series (e.g. Weglein et al., 2003). For example, a

first order approximation of a free-surface multiple event requires a second order scattering

term (quadratic in α), and a first order approximation of an internal multiple event requires

a third order scattering term (cubic in α).

2.3 Green’s functions

Construction of a linear forward operator for regularized migration requires the evaluation

of equation 2.4 which, in turn, requires some form for the Green’s function G0. When the

reference wave-speed is constant there exists an exact analytic solution for G0 (e.g. DeSanto,

1992). When the reference wave-speed varies in depth z, but is constant in lateral dimensions

x, then the WKBJ Green’s function is used (e.g. Ghatak et al., 1991). But, when the

reference wave-speed varies in both depth and lateral dimensions, a Green’s function that is

both physically comprehensive and computationally efficient is less obvious, and a multitude

of attempts to produce suitable algorithms for this latter case have been proposed (e.g.

Gazdag and Sguazzero, 1984; Wenzel, 1991; Stoffa et al., 1990; Kessinger, 1992; Popovici,

1996). In this thesis, we will use the split-step algorithm (Stoffa et al., 1990) to evaluate

equation 2.4, which requires a constant velocity Green’s function.

The three dimensional constant velocity Green’s function satisfies,

L(G0, c0) = δ(x− xs)δ(z − zs),

where L is defined by equation 2.1, and c0 is constant for all space. The derivation results

in both causal and anti-causal Green’s functions. The latter is often used as a starting

point for migration algorithms. However, in this thesis work, we are interested in both data

modelling and migration. This makes it useful to proceed using the causal Green’s function.
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In particular, we find (see Appendix A.2),

G0(kgx, zg|x′, z′;ω) = − 1

i4kgz
e−ikgx·x′eikgz|z

′−zg| (2.6)

G0(x′, z′|ksx, zs;ω) = − 1

i4ksz
eiksx·x′eiksz|z

′−zs|, (2.7)

where,

kgz = sgn(ω)
√

(ω/c0)2 − kgx · kgx ksz = sgn(ω)
√

(ω/c0)2 − ksx · ksx. (2.8)

Equation 2.8 are dispersion relations relating frequency ω and horizontal wave-numbers at

source ksx and receiver kgx locations to their respective vertical wave-numbers ksz and kgz.

Equations 2.6-2.8 describe Green’s functions that can be used in the Born solution of the

scattered wavefield ψs (equation 2.4) when the reference velocity c0 is constant. That is,

when the reference velocity is constant, they can be used with the Born approximation to

construct a forward operator, mapping scattering potential α to the measured scattered

wavefield ψs.

2.4 Forward operators for variable reference velocities

To derive a forward operator that allows for the reference medium c0 to vary in space

(depth z and lateral x directions), we proceed in two stages. The first stage (Section 2.4.1)

finds a data modelling equivalent of Gazdag migration (Gazdag, 1978), and the second

stage (Section 2.4.2) arrives at a data modelling equivalent of split-step migration. In

the first stage, we take a reference velocity that varies in depth only so that c0(x, z) =

c0(z). Given such a medium, it would seem that the WKBJ Green’s function should be

used. In such a regime it is valid for high frequencies in ψ and smoothness in c0(z), or

some combination thereof. However, in the second stage we introduce lateral variation into

the reference velocity by breaking this assumption of depth only variability in c0. In this

case, it turns out to be better to approximate c0(z) with a piece-wise constant function

so that within each domain of constant velocity, the Green’s functions described in the

previous section are applicable. In the case where c0 varies in depth only, the Green’s

functions from the piece-wise representation of c0(z) and the WKBJ Green’s function from

the continuous representation of c0(z) produce loosely equivalent forward operators. But,

when we introduce lateral variation into the reference velocity through split-step modelling,

the latter choice proves to be more accurate.
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2.4.1 Gazdag modelling

Figure 2.1 illustrates the Gazdag modelling algorithm for the forward operator of regu-

larized migration. We call it such since it is, roughly speaking, based on the migration

operator described by Gazdag (1978). In Gazdag modelling the reference velocity is one

dimensional, being a function of depth only. Then, this one dimensional reference velocity

c0(z) is partitioned into nz domains (layers),

Dl = {z ∈ R|0 ≤ zl−1 ≤ z < zl} , l = 1 . . . nz, (2.9)

and within each layer there is a corresponding constant reference wave-speed c0(l) approxi-

mating c0(z) for zl−1 ≤ z < zl, and a constant velocity Green’s function G0(l). Each layer

contributes to the total scattered wavefield ψs such that the contribution from the lth layer

is denoted ψs(l). Then, by super-position it must be that,

ψs = ψs(1) + ψs(2) + · · ·+ ψs(nz). (2.10)

We proceed to describe ψs(1) and ψs(2), contributions to the scattered wavefield from the

scattering potential housed within, respectively, D1 and D2. We use these to infer a general

solution for ψs(l), the contribution from Dl.

In the first layer D1, we apply the scattered wavefield component of the Born approximation

in equation 2.4 so that upon substitution of G0(1), we find with zg = zs = z0,

ψs(1)(kgx, z0|ksx, z0;ω) = f(ω)

∫ z1

z0

up(1)(kgx,ksx, z
′, ω)

ω2

c20(1)

α(kgx − ksx, z
′)dz′, (2.11)

where ksx and kgx are the Fourier conjugate variables of xs and xg, respectively. The

function up(1) is,

up(l)(kgx,ksx, z
′, ω) = −e

i(kgz(l)+ksz(l))(z
′−zl−1)

16kgz(l)ksz(l)
, (2.12)

for l = 1, and where kgz(1) and ksz(1) are given by the dispersion relations,

kgz(l) = sgn(ω)
√

(ω/c0(l))2 − kgx · kgx (2.13)

ksz(l) = sgn(ω)
√

(ω/c0(l))2 − ksx · ksx, (2.14)

for l = 1. Equation 2.12 is constructed from G0(l), governing the propagation of energy in

Dl. The detailed relation between G0(l) and up(l) are presented in Appendix A.3. In short,

and as described previously, a Green’s function propagates the energy from the point source



CHAPTER 2. BORN APPROXIMATION 15

G0(1) G0(1)

G0(2)

(x′, z′)

(x′, z′)

xs xg xs xg
z0

z1

z0

z1

z2

+ + · · ·

ψs(2)ψs(1)

D1 D1

D2

Figure 2.1: We give a schematic description of the first two terms in Gazdag wave-
field modelling, ψs(1) and ψs(2). In general ψs(l) is built from the scattering potential
in Dl.

to all potential scattering points, and a second Green’s function propagates energy from the

scattering points back to the measurement surface. This explanation is also illustrated in

the first term (left side) of Figure 2.1.

The construction of ψs(2) is illustrated in the second term (right side) of Figure 2.1, and

depicts the following three steps used in its computation.

• First, we consider the wavefield in D1. We compute the direct wavefield (see equa-

tion 2.3) at z1 due to the source at z0. This represents the direct propagation, using

G0(1), of the wavefield from the point source at z0 to the bottom of D1 (top of D2).

We denote this wavefield as ψd(1)(x
′, z1|xs, z0;ω).

• Second, we consider the wavefield in D2. We compute the scattered wavefield at z1

due to the scattering potential within D2, and the boundary condition at the top of

D2 given by ψd(1)(x
′, z1|xs, z0;ω). Here, the energy is propagated according to G0(2),

and we will denote the resulting wavefield as ψs(2,1)(x
′, z1|x′′, z0;ω).

• Third, we again consider the wavefield in D1. This time, we compute the di-

rect wavefield at z0 due to the boundary condition at the bottom of D1 given by

ψs(2,1)(x
′, z1|x′′, z0;ω). Here, the energy is propagated according to G0(1), and the

resulting wavefield is ψs(2)(xg, z0|xs, z0;ω).

In particular, the sum total of the above three steps gives the following contribution to the

scattered wavefield from the second layer (see Appendix A.3),

ψs(2)(kgx, z0|ksx, z0;ω)

= f(ω)up(1)(kgx,ksx, z1, ω)

∫ z2

z1

up(2)(kgx,ksx, z
′, ω)

ω2

c20(2)

α(kgx − ksx, z
′)dz′,

(2.15)
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where up(2) is given by equation 2.12 for l = 2. Generalizing to the lth layer (Dl), we find,

ψs(l)(kgx, z0|ksx, z0;ω)

= f(ω)up(1)up(2) · · ·up(l−1)

∫ zl

zl−1

up(l)(kgx,ksx, z
′, ω)

ω2

c20(l)

α(kgx − ksx, z
′)dz′,

(2.16)

where, again, up(l) is given by equation 2.12. Note that in equation 2.16, the functions up(l)

falling outside the integral are evaluated for z′ = zl. In equations 2.15 and 2.16, kgx and ksx

are, respectively, the Fourier conjugate variables of xg and xs. Fourier kernels, identified

in the constant velocity Green’s function, make kgx − ksx the Fourier conjugate variable of

x′. This makes an important connection between the scattering potential α and the lateral

wave-numbers at the source ksx and receiver kgx, effectively connecting the model to the

source and receiver positions of the experiment. This is the source-receiver parameterization

of the scattering potential, and is a direct consequence of the representation of the Green’s

functions in equations 2.6 and 2.7. We discuss this point further in Section 2.7, and in

Chapter 5 we discuss an alternative shot-profile parameterization of the scattering potential.

Together, equations 2.10, 2.12 and 2.16, along with the dispersion relations in equations 2.13

and 2.14, are Gazdag data modelling for the source-receiver parameterization of the scatter-

ing potential. They are one example of a linear forward (wavefield modelling) operator for

regularized migration. The equations are constructed in lateral wave-number rather than

lateral space for the sake of efficiency. This is illustrated in Appendix A.3 where multiple

integrations in space are replaced by Fourier transforms. In the next section, we will in-

troduce lateral variation in the reference velocity model using the data modelling analogy

to split-step migration, which maintains some of the efficiency gained through our use of

Fourier transforms.

2.4.2 Split-step modelling

To allow for lateral variation in the reference velocity (i.e. a three dimensional reference

velocity model c0(x, z)), we employ the data modelling analog of split-step migration. The

method is a straight-forward extension of Gazdag modelling, but has seemingly significant

physical limitations. In particular, the resulting forward operator is only valid for near

vertical travelling plane wave components, and that the lateral variation in velocity is small,

and will be shown in the course of the derivation. Despite these limitations, the algorithm

performs remarkably well (a fact that likely deserves further investigation).

The well-known split-step algorithm (Feit and J. A. Fleck (1978), and Thomson and Chap-

man (1983), and presented for migration in Stoffa et al. (1990)) is derived by manipulation

of the dispersion relations in equations 2.13 and 2.14. In particular, we let kgz(l) and ksz(l)
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a) b) kgx

ksx

θg

θs
ω/c0

ω/c0

Figure 2.2: We illustrate plane-wave components of the wavefield for a) a plane-
wave propagating from the source toward a scattering point, and b) for a plane-wave
propagating from the scattering point toward the measurement surface. The split-
step approximation is most readily applicable when θs and θg are small.

be functions of slowness c−1
0(l) which, in turn, is allowed to vary in the lateral dimensions x.

Then, we define a constant c−1
1(l), usually taken to be the average of c−1

0(l)(x), and take the

Taylor expansions of kgz(l) and ksz(l) about c−1
1(l). Here, we consider kgz(l) which truncating

at the first term of its Taylor expansion gives,

kgz(l)(c
−1
0(l)) ≈ kgz(l)(c

−1
1(l)) + ω

[
1−

∣∣c0(l)(xg)kgx/ω
∣∣2
]−1/2 (

c−1
0(l)(xg)− c−1

1(l)

)

≈ kgz(l)(c
−1
1(l)) + ω

(
c−1
0(l)(xg)− c−1

1(l)

)
, (2.17)

where we use the notation |x| to denote the norm
√

xTx, and where we have set

c0(l)(xg)kgx/ω to 0. This is reasonable when either ω is large or kgx is small. The

physical significance of this is two-fold. First, it breaks the assumption which allowed us to

use the constant velocity Green’s function.1 Second, it means that the angle θg(l) made by

the intersection of the normal to the plane wave component of the wavefield parametrized

by this term and the vertical axis, given by,

sin(θg(l)) = c0(l)(xg)kgx/ω, (2.18)

must be small (see Figure 2.2). The same assumption is made for the angle formed by the

kgy component of the plane-wave. A similar derivation and analysis can be made for the

source-side plane-waves, and ksz(l).

The computational significance of equation 2.17 is an algorithm that can employ the fast

Fourier transform. The dispersion relation has been split into two parts in equation 2.17:

a part that depends only on horizontal wave-numbers kgx, and a part that depends only

1Incidentally, this is likely the reason why it is not beneficial to employ WKBJ Green’s functions (see
Section 2.5).



CHAPTER 2. BORN APPROXIMATION 18

×us(l)F−1
gs up(l)Fgs+ω2

c20
α(zl)vl vl−1

Figure 2.3: We illustrate the split-step modelling operator in equation 2.23. The al-
gorithm begins at depth (l = nz), and terminates the recursion at the measurement
surface, l = 0.

on lateral space xg. In particular, this split allows us to rewrite the lth term in Gazdag

modelling (equation 2.16) with its split-step correction so that if we let,

α(kgx, ksx, z
′) = α(kgx − ksx, z′), (2.19)

then,

ψs(l)(xg, zg|xs, zs;ω) =

(
1

2π

)4l

f(ω)(us(1)F∗gsup(1)Fgs) · · · (us(l−1)F∗gsup(l−1)Fgs)

×
∫ zl

zl−1

(us(l)(xg,xs, z
′, ω)F∗gsup(l)(kgx,ksx, z′, ω)Fgs)

ω2

c21(l)

α(xg,xs, z
′)dz′,

(2.20)

where Fgs denotes the four dimensional Fourier transform over xs and xg, F∗gs is its adjoint,

so that the corresponding inverse Fourier transform is (2π)−4F∗gs. In equation 2.20, us(l) is,

us(l)(xg,xs, z
′, ω) = e

iω(c−1
0(l)

(xg)+c−1
0(l)

(xs)−2c−1
1(l)

)(z′−zl). (2.21)

We call up(l) the phase-shift with us(l) being its split-step correction. As before, when

up(l) and us(l) fall outside the depth integral, they are evaluated for z′ = zl. Together,

equations 2.10, 2.20, and 2.21 are split-step wavefield modelling, and within the context of

regularized migration constitute a linear forward operator mapping scattering potential α to

the measured wavefield ψs. Importantly, it is an algorithm that allows for a reference velocity

to vary in all dimensions. The consequence of equation 2.19 is discussed in Section 2.7, and

is the source-receiver parameterization of the scattering potential.

2.4.3 Numerical implementation of split-step modelling

An efficient numerical implementation of split-step modelling is found by recognizing a

recursion in its operator. We substitute equation 2.20 into equation 2.10, re-arrange terms,
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and approximating the depth integrals so that,

ψs(xg, zg|xs, zs;ω) = ∆z

(
1

2π

)4l

f(ω)us(1)F∗gsup(1)Fgs
(

ω2

c21(1)

α(xg,xs, z1) + us(2)F∗gsup(2)

×Fgs
(

ω2

c21(2)

α(xg,xs, z2) + · · ·+ us(nz)F∗gsup(nz)Fgs
ω2

c21(nz)

α(xg,xs, znz
)

)
· · ·
)
,

(2.22)

where we have assumed that zl − zl−1 = ∆z, l = 1 . . . nz. In equation 2.22, we recognize a

recursion, so that for l = nz . . . 2,

ψs(xg, zg|xs, zs;ω) = ∆z

(
1

2π

)4l

f(ω)v1

vl−1 = us(l)F∗gsup(l)Fgs
(
vl +

ω2

c21(l)

α(xg,xs, zl)

)
,

(2.23)

and where vnz = 0. Thus the wavefield modelling operator iterates over the depth dimension,

starting at depth and terminating at the measurement surface. The algorithm is illustrated

by the flow diagram in Figure 2.3.

As an example, we consider the often studied Marmousi model (e.g. Versteeg, 1993). The

Marmousi model is two dimensional (x, z) so that the lateral dimensions xg = (xg, yg)

simplify to xg. Similar simplifications are made to the source coordinates xs, and the

corresponding Fourier conjugate dimensions. In Figure 2.4a, we plot the Marmousi velocity

model c(x, z). The units of the colour-scale are metres per second. In Figures 2.4b-d, we

plot near offset data sections obtained using various wavefield modelling algorithms. That

is, we plot approximations to ψs(xg, 0|xs, 0; t) for all (xg, xs) satisfying xg − xs = 400m.

In all four panels, the horizontal axis is the common depth point (CDP) position given by

xm = (xs + xg)/2 (see Figure 2.5 for an illustration). In Figure 2.4a the vertical axis is

depth z, and in Figures 2.4b-d, the vertical axis is two-way travel time t. In Figure 2.4b,

ψs is approximated using finite difference modelling as described by, for example, Versteeg

(1994). In Figure 2.4c, we use Gazdag wavefield modelling, and in Figure 2.4d, we use

split-step wavefield modelling. It should be evident that the split-step modelling algorithm

does a reasonable job in replicating the finite difference data, especially when compared to

the Gazdag wavefield modelling result in Figure 2.4c. For example, notice the arrival time

of the event indicated by the arrow in Figures 2.4b-d.
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Figure 2.4: a) The Marmousi velocity model, and b)-d) common offset data sections
of the wavefield. The data are computed using b) finite difference, c) Gazdag
modelling, and d) split-step modelling. The units of the colour-bar in a) are metres
per second. Arrows in b)-d) indicate a seismic event whose timings are comparably
modelled by finite difference and split-step modelling. In contrast, and as expected,
this same event is poorly modelled by Gazdag modelling.
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xs xm xg

xhxh

Figure 2.5: We illustrate the geometry used in data acquisition, showing the def-
inition of half-offset xh, and common depth point (CDP) location xm in terms of
source xs and geophone xg positions.

2.5 Wavefield modelling with WKBJ Green’s functions

In Section 2.4.1, Gazdag wavefield modelling was derived from a piece-wise constant refer-

ence velocity model c0(l) where within each domain of constant velocity, a constant velocity

Green’s function is used to describe the propagation of the wavefield. Then, in Section 2.4.2

the assumption of constant velocity Green’s functions is violated by introducing lateral vari-

ation into the reference velocity using the split-step approximation. Here, we derive a similar

algorithm, but allow c0(z) to be continuous through use of a WKBJ Green’s function. We

show that it differs from the split-step algorithm in Section 2.4.1, and by example, that this

difference makes it less accurate.

2.5.1 WKBJ Green’s functions

The WKBJ Green’s function satisfies L(Gz, c0(z)) = δ(x− xs)δ(z − zs) where L is defined

by equation 2.1, and c0(z) is constant in the lateral dimensions x, but varies in the vertical

dimension z. As in Section 2.3, the derivation results in both causal and anti-causal Green’s

functions. Unlike Section 2.3, the WKBJ Green’s function is approximate. The validity of

its approximation depends on two factors. First, it depends on the band-width of frequencies

used in the operator; and second, in the smoothness of the reference velocity c0(z). The first

factor is shown in Appendix A.4 where the derivation of the WKBJ Green’s function includes

the truncation of a power series in inverse-frequency ω−1. The error in the approximation,

due to the truncation, decreases as ω increases. Therefore, the WKBJ Green’s function

can be thought of as a high frequency approximation. The second factor is not shown in

Appendix A.4, but can be shown by analysis of the coefficients of the power series (e.g.

Ghatak et al., 1991).

In particular, the WKBJ Green’s function is found by truncating the power series at the
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ω−2 term, so that (see Appendix A.4),

Gz(kgx, zg|x′, z′;ω) = − 1

i4
√
kgz(zg)kgz(z′)

e−ikgx·x′e
i
∫ z′
zg
kgz(z′′)dz′′

(2.24)

Gz(x
′, z′|ksx, zs;ω) = − 1

i4
√
ksz(z′)ksz(zs)

eiksx·x′ei
∫ z′
zs
ksz(z′′)dz′′ , (2.25)

where,

kgz(z) = sgn(ω)
√

(ω/c0(z))2 − kgx · kgx (2.26)

ksz(z) = sgn(ω)
√

(ω/c0(z))2 − ksx · ksx. (2.27)

Equations 2.24-2.27 describe WKBJ Green’s functions that can be used in the Born solution

of the scattered wavefield ψs (equation 2.4) when the reference velocity c0(z) varies in depth

only.

2.5.2 WKBJ and split-step modelling

Applying the WKBJ Green’s functions in equations 2.24 and 2.25 to the Born approximation

in equation 2.4, we find (after recognizing Fourier transforms over the lateral directions x),

ψWs (kgx, z0|ksx, z0;ω) = f(ω)

∫ ∞

−∞
uWp (kgx,ksx, ω, z0, z

′)
ω2

c20(z′)
α(kgx,ksx, z

′)dz′, (2.28)

where,

uWp (kgx,ksx, ω, z0, z
′) = − e

i
∫ z′
z0

(kgz(z′′)+ksz(z′′))dz′′

16
√
ksz(zs)ksz(z′)kgz(zg)kgz(z′)

. (2.29)

In equations 2.28 and 2.29 we use the superscript W to denote the WKBJ solution, and as

before, we have let zg = zs = z0.

In this section, we will show the similarity between WKBJ wavefield modelling in equa-

tions 2.28 and 2.29, and Gazdag wavefield modelling (equations 2.10 and 2.16). Then,

we introduce the split-step approximation into the WKBJ wavefield modelling equation,

calling the resulting modelling algorithm WKBJ+SS. In doing so it becomes evident that

split-step wavefield modelling and WKBJ+SS wavefield modelling are not equivalent. This

is illustrated by partitioning the depth axis into two domains (layers), D1 = {z0 ≤ z < z1}
and D2 = {z1 ≤ z < z2}, and calculating the resulting wavefields using the two methods.

Finally, we show, by example, that split-step wavefield modelling is more accurate than

WKBJ+SS wavefield modelling. We conjecture that the reason for this is due to a nonlin-

earity introduced into the error terms of each of the respective modelling algorithms.
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We start by partitioning the integral in equation 2.28 using D1 and D2 such that,

ψWs (kgx, zg|ksx, zs;ω) ≈ f(ω)
[
ūWp(1)

∫ z1

z0

ω2

c20(1)

α(kgx,ksx, z
′)dz′

+ ūWp(2)u
W
p(1)

∫ z2

z1

ω2

c20(2)

α(kgx,ksx, z
′)dz′

]
,

(2.30)

where,

uWp(l)(kgx,ksx) = ei(kgz(zl)+ksz(zl))(zl−zl−1), (2.31)

and,

ūWp(l) = −
uWp(l)

16
√
ksz(zs)ksz(zl)kgz(zg)kgz(zl)

, (2.32)

for l = 1, 2, and we have approximated the integral in the exponential functions by sums.

Equations 2.30-2.32 show that, modulus an amplitude factor, ψWs ≈ ψs. That is, the WKBJ

modelled wavefield is roughly equivalent to the Gazdag modelled wavefield. In particular,

the interested reader will make a comparison with equations 2.10 and 2.16 for l = 1, 2.

Next, we introduce the split-step approximation into equation 2.28 to arrive at the

WKBJ+SS wavefield,

ψWs (xg, zg|xs, zs;ω) ≈
(

1

2π

)4

f(ω)

∫ ∞

−∞
uWs F∗gsuWp Fgs

ω2

c20(z′)
α(xg,xs, z

′)dz′, (2.33)

where, as before, Fgs is the four-dimensional Fourier transform over xg and xs. The split-

step correction uWs is,

uWs (xg,xs, ω, z0, z
′) = e

iω
∫ z′
z0

(c−1
0 (xg,z

′′)+c−1
0 (xs,z

′′)−2c−1
1 (z′′))dz′′

, (2.34)

where c−1
1 (z′′) is taken to be the average of c−1

0 (x, z′′), over the lateral x dimensions. Again,

we partition the integral in equation 2.33 using D1 and D2 so that,

ψWs (xg, z0|xs, z0;ω) ≈
(

1

2π

)4

f(ω)

[
uWs(1)F∗gsūWp(1)Fgs

∫ z1

z0

ω2

c20(1)

α(xg,xs, z
′)dz′

+uWs(2)u
W
s(1)F∗gsūWp(2)u

W
p(1)Fgs

∫ z2

z1

ω2

c20(2)

α(xg,xs, z
′)dz′

]
,

(2.35)

where uWp(l) and ūWp(l) are defined in equations 2.31 and 2.32, and,

uWs(l)(xg,xs, ω) = eiω(c−1
0 (xg,zl)+c

−1
0 (xs,zl)−2c−1

1 (zl))(zl−zl−1). (2.36)
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The first right-hand-side term in equation 2.35 is equivalent to split-step wavefield modelling

(equations 2.20 and 2.21). In contrast, the second right-hand-side term is not equivalent

to split-step wavefield modelling. Namely because the terms in the operator preceding the

integration do not commute. That is,

uWs(2)u
W
s(1)F∗gsūWp(2)u

W
p(1)Fgs = uWs(2)u

W
s(1)F∗gsūWp(2)FgsF∗gsuWp(1)Fgs

6= uWs(2)F∗gsūWp(2)FgsuWs(1)F∗gsuWp(1)Fgs.
(2.37)

To illustrate the difference between split-step wavefield modelling and WKBJ+SS wavefield

modelling caused by the inequality in equation 2.37, we consider, again, the Marmousi

model. Figure 2.6a plots the Marmousi model, and Figures 2.6b-d plot a near-offset section

computed using various forward modelling techniques. In particular, Figure 2.6b is the

result of finite difference modelling, Figure 2.6c is the result of split-step modelling, and

Figure 2.6d is the result of WKBJ+SS modelling. We note that the split-step modelling

result provides a closer match to the finite difference data when compared to the WKBJ+SS

result. In particular, spurious energy that is present in the WKBJ+SS result is not present

in the split-step result. This is especially noticeable in the events that fall at and beyond 2

seconds of travel time, and one of which we point out with the boxes in Figures 2.6b-d. In

Figures 2.6b and 2.6c the event in the box is clearly visible and is not obscurred by spurious

energy. Meanwhile, in Figure 2.6d the same event is obscurred.

2.6 Adjoint operator for regularized migration

In the preceding sections, we reviewed various methods for modelling a scalar wavefield, all

providing some linear mapping between scattering potential and the measured wavefield.

All of these algorithms stem from the Born approximation (equation 2.4). The adjoint of

equation 2.4 is,

α†(x′, z′)

=

∫∫∫ ∞

−∞
f∗(ω)G∗0(xg, zg|x′, z′;ω)

ω2

c20(x′, z′)
ψ(xg, zg|xs, zs;ω)G∗0(x′, z′|xs, zs;ω)dxgdxsdω.

(2.38)

In geophysics, this equation (in various guises) has a well-known and extensively analyzed

interpretation. Specifically that it is the downward continuation of the wavefield from the

measurement surface to its scattering points. When the wavefield is coincident with the

scattering point, time is interpreted to be zero. Indeed it is this interpretation (the so-



CHAPTER 2. BORN APPROXIMATION 25

0

500

1000

1500

2000

2500

3000

D
e

p
th

 (
m

)

4000 6000 8000
Lateral position (m)

1500

2000

2500

3000

3500

4000

4500

5000

5500
0

0.5

1.0

1.5

2.0

2.5
T

im
e

 (
s)

4000 6000 8000
CDP position (m)

0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (

s)

4000 6000 8000
CDP position (m)

0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (

s)

4000 6000 8000
CDP position (m)

Figure 2.6: The Marmousi velocity model, and b)-d) common offset data sections
of the wavefield. The data are computed using b) finite difference, c) split-step
modelling and d) WKBJ+SS modelling.
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called imaging condition attributed to Claerbout (1971)) that is most often used to build

and interpret migration algorithms, and implies that the adjoint resembles the scattering

potential. That is, the adjoint migrates data. This interpretation will have further conse-

quence in Chapter 4. For now, we will consider the adjoint of split-step wavefield modelling

(equations 2.10 and 2.20). We remind ourselves that with the construction of the adjoint

operator, in addition to the forward operator, we have the requisite operators for studying

regularized migration.

To find the adjoint of equation 2.20, we recognize its equivalence to a discrete form of the

Fredholm integral equation of the first kind which has the general form (e.g. Hansen, 1998),

g(x) =

∫
u(x, z)h(z)dz, (2.39)

and the adjoint,

h†(z) =

∫
u∗(x, z)g(z)dx, (2.40)

where u, g and h are arbitrary functions, and u∗ is the adjoint of u. Meanwhile, in equa-

tions 2.10 and 2.20, we recognize the form,

ψs(xg, z0|xs, z0;ωj) =
∑

l

u(xg,xs;ωj , zl)α(xg,xs; zl), (2.41)

so that by analogy to equation 2.40, the adjoint is,

α†(xg,xs; zl) =
∑

j

u∗(xg,xs;ωj , zl)ψs(xg, z0|xs, z0;ωj), (2.42)

where,

u∗(xg,xs;ω, zl)

= (2π)−4lf∗(ω)(u∗s(l)F∗gs(ω/c1(l))
2u∗p(l)Fgs) · · · (u∗s(2)F∗gsu∗p(2)Fgs)(u∗s(1)F∗gsu∗p(1)Fgs),

(2.43)

and we have used,

(us(l)F∗gsup(l)Fgs)∗ = (u∗s(l)F∗gsu∗p(l)Fgs),

where u∗s(l) and u∗p(l) denote the conjugate of us(l) and up(l) respectively. In constructing

equation 2.43, we have limited the support of α in Dl to z = zl. A similar derivation can

be made for the adjoint of Gazdag data modelling, but is not shown here.

We find an efficient numerical implementation of the adjoint operator in equations 2.42 and



CHAPTER 2. BORN APPROXIMATION 27

0

500

1000

1500

2000

2500

3000

D
ep

th
 (

m
)

4000 6000 8000
Lateral position (m)

2
T

im
e 

(s
)

6000
CDP position (m)

100
Offs

et
 (m

)

0

500

1000

1500

2000

2500

3000

D
ep

th
 (

m
)

4000 6000 8000
CDP position

0

500

1000

1500

2000

2500

3000

D
ep

th
 (

m
)

4000 6000 8000
CDP position (m)

a) b)

c) d)

Figure 2.7: a) The Marmousi velocity model, b) The Marmousi data computed using
the finite difference approximation to the wave-equation, and the migration results
α† using c) the Gazdag adjoint operator and d) the split-step adjoint operator, both
applied to the finite difference data in b). In b) each side of the cube shows a cross-
section through the cube. The locations of the three cross-sections are annotated
by the solid lines.
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Figure 2.8: We plot a) the true scattering potential α for the Marmousi model and
some chosen smooth reference wave-speed, and b) the migration result α† using the
split-step adjoint operator.

2.43 by recognizing an iteration for u∗(xg,xs;ωj , zl). Namely,

ū∗(xg,xs;ωj , zl) = u∗s(l)F∗gsu∗p(l)Fgsū∗(xg,xs;ωj , zl−1) , l = 1 . . . nz

u∗(xg,xs;ωj , zl) = (2π)−4lf∗(ωj)ū
∗(xg,xs;ωj , zl),

(2.44)

and where ū∗(xg,xs;ωj , z0) = ψs(xg, z0|xs, z0;ωj), the measured wavefield. To illustrate the

adjoint operator, we continue with the Marmousi example presented in the previous section.

In Figure 2.7a, we again plot the Marmousi velocity model. In Figures 2.7c and 2.7d, we

plot the results of, respectively, the Gazdag and split-step adjoint operators when applied to

the Marmousi finite difference data in Figure 2.7b (previously shown in Figure 2.4b for one

realization of offset). Note that in Figure 2.7b, each face of the cube plots a plane cutting

through the volume, and the location of the planes are annotated by the solid lines. In other

words, the top of the cube shows a time-slice for t = 2s, the front side of the cube shows

a common offset gather for xh = 100m, and the right side of the cube shows a common

midpoint gather for xm = 6000m. We note that this style of plot will be used in other

examples throughout the remainder of the thesis. In both Figures 2.7c and 2.7d, we plot

results for all CDP positions xm, where at each CDP position, we have integrated α† over

the half-offset dimension xh, defined as xh = (xg+xs)/2. We note that the split-step adjoint

provides a reasonable approximation to the discontinuities in the original velocity model,

particularly when compared to the result of the Gazdag adjoint operator in Figure 2.7c. To

further illustrate the migration result, we plot α computed from equation 2.5 and where the

reference velocity c0 is a smooth version of the velocity c. In particular, Figure 2.8a plots

α, and for comparison, Figure 2.8b plots the migration result α†. Notice that the migration
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result looks like a low resolution (i.e. band-limited) version of α.

2.7 A note on model and data dimensions for source-

receiver migration

In the preceding analysis, we manipulated the lateral coordinates of the scattering potential

α(x, z). First, we Fourier transformed the Gazdag wavefield modelling operator over lateral

geophone and shot coordinates mapping α(x, z) to α(kgx−ksx, z). Subsequently, we added

a degree of freedom to α by making kgx and ksx independent variables (see equation 2.19),

and recognized α(xg,xs, z) as its four dimensional inverse Fourier transform over lateral co-

ordinates. This is the source-receiver parameterization of the scattering potential, whereby

the migrated data (scattering potential) takes on the same lateral coordinates as the data

(measured wavefield). Within the regime of the source-receiver parameterization, we, in this

section, review an alternate coordinate systems useful for the reflection seismology experi-

ment; namely, CDP (also known as midpoint) xm and offset xh. This is especially useful in

the marine acquisition geometry.

In equations 2.41 and 2.42 the forward and adjoint operators for split-step wavefield mod-

elling and migration are written in lateral shot xs and receiver xg coordinates. We make a

change of variables to midpoint xm and offset xh coordinates (via a 45◦ rotation). Figure 2.5

illustrates the well-known relation between these two coordinate systems. Specifically, we

define (e.g. Clayton and Stolt, 1981),

xh = (xg − xs)/2 xm = (xg + xs)/2,

which we solve for xg and xs, to find,

xg = xm + xh xs = xm − xh. (2.45)

We use equation 2.45 in the Fourier transform of the scattered wavefield at the measurement

surface,

ψs(kgx,zg|ksx, zs; t)

=

∫∫ ∞

−∞
ψs(xg, zg|xs, zs; t)ei(ksx·xs−kgx·xg)dxgdxs

=

∫∫ ∞

−∞
ψs(xm, zg|xh, zs; t)e−i((kgx−ksx)·xm+(kgx+ksx)·xh)dxmdxh (2.46)

= ψs(km, zg|kh, zs; t), (2.47)
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where we have used, respectively, e−ikg·xg , eiks·xs , e−ikm·xm and e−ikh·xh kernels for the

Fourier transforms over xg, xs, xm and xh. In equation 2.46 we rotated the frame of

reference for the data by 45◦ (in practise accomplished by a simple re-sorting of data into

common midpoint gathers). In equation 2.47, we defined,

kh = kgx + ksx km = kgx − ksx,

which, in-turn, leads to,

kgx = (kh + km)/2 ksx = (kh − km)/2. (2.48)

With the change of coordinates from shot and geophone to midpoint and offset, the forward

and adjoint operators for wavefield modelling remain largely unchanged. Nonetheless, it is

worthwhile to write the operators for split-step wavefield modelling using the midpoint-offset

parameterization. First, we rewrite the lth term (equation 2.20) in the wavefield modelling

operator (equation 2.10) in the midpoint-offset coordinate system so that,

ψs(l)(xm,xh; z0, ω) = (2π)lf(ω)
(
us(1)F∗mhup(1)Fmh

)
· · ·
(
us(l−1)F∗mhup(l−1)Fmh

)

×
∫ zl

zl−1

(
us(l)F∗mhup(l)Fmh

) ω2

c21(l)

α(xm,xh, z
′)dz′,

(2.49)

where Fmh is the four dimensional Fourier transform over the midpoint and offset dimen-

sions. The phase shift operator remains similar to its shot-geophone analogue in equa-

tion 2.12, but is a function of midpoint and offset rather than shot and geophone so that,

up(l)(km,kh, z
′, ω) = −e

i(kgz(l)+ksz(l))(z
′−zl−1)

16kgz(l)ksz(l)
, (2.50)

where the vertical wave-numbers (kgz(l),ksz(l)) are found by substituting equation 2.48

into the dispersion relations (equations 2.13 and 2.14), giving the dispersion relations in

midpoint-offset coordinates,

kgz(l) = sgn(ω)

√(
ω

c0(l)

)2

− |kh + km|2
4

(2.51)

ksz(l) = sgn(ω)

√(
ω

c0(l)

)2

− |kh − km|2
4

. (2.52)

Likewise, the split-step operator (equation 2.21) becomes,

us(l)(xm,xh, z
′, ω) = e

iω(c−1
0(l)

(xh+xm)+c−1
0(l)

(xh−xm)−2c−1
1(l)

)(z′−zl−1)
. (2.53)
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Then, in midpoint-offset coordinates, split-step wavefield modelling is given by equa-

tions 2.10, and 2.49-2.53. Similarly, we find the adjoint operator (equation 2.42) in

midpoint-offset coordinates so that,

α†(xm,xh; zl) =
∑

j

u∗(xm,xh;ωj , zl)ψ(xm,xh; z0, ωj), (2.54)

where u∗ is given by the trivial 45◦ rotation of equation 2.43 to midpoint-offset coordinates.

The synthetic Marmousi data is typical of a 2D marine acquisition geometry (towed-

streamer) for reflection seismic data, and gives an example where the 45◦ rotation to

midpoint-offset coordinates is beneficial. To illustrate, we plot the acquisition geometry

of the Marmousi data in shot-geophone and midpoint-offset coordinates in Figure 2.9. To

accommodate the two dimensional fast Fourier transform (integral to the efficiency of the

described algorithms), we require ψ and α on a regular grid, either in shot and geophone

coordinates, or in midpoint and offset coordinates. To that end, we fill beyond the record-

ing aperture (the white-space in Figures 2.9a and 2.9b) with null data (zero traces). It is

evident from Figure 2.9 that for the Marmousi data the midpoint-offset geometry requires

fewer zero traces. We note that this may not be true for all acquisition geometries. For

example an ocean bottom survey (e.g. Sollid and Ursin, 2003) may show preference to the

shot-geophone coordinate system.

2.8 Summary

In this chapter, we constructed forward and adjoint operators for, respectively, wavefield

modelling and migration operators using split-step wavefield propagation. In order to derive

the operators, we began with constant velocity Green’s functions applicable to wavefield

propagation with a constant reference velocity. Next, to allow for the velocity model to

vary in depth, we employed a Gazdag algorithm, partitioning the reference velocity model

into layers. Within each layer the reference velocity was held constant and the scattered

wavefield was computed. To propagate the wavefield to and from the layer of interest, we

used the direct wavefield. Finally, to allow for the reference velocity to vary in its lateral

dimensions, we used the split-step approximation for the Green’s function within each layer.

In the case where the reference velocity varies in depth only, the Gazdag wave-propagation

algorithm is roughly equivalent to using WKBJ Green’s functions. However, we found

that when the split-step approximation is used, the Gazdag and WKBJ derivations lead

to significantly different operators. Moreover, we found by example that the WKBJ+SS

method is less accurate than split-step wavefield modelling.
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Figure 2.9: We plot the acquisition geometry for the Marmousi data in a) shot-
geophone and b) midpoint-offset geometries.
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The split-step wavefield modelling operator derived in this chapter is linear, and in it we

recognized a Fredholm integral equation of the first kind. In turn, this made it a relatively

simple matter to find the adjoint to split-step wavefield modelling. The adjoint is called

migration, and gives an estimate of the scattering potential. This, in turn, can be interpreted

as a map of the earth’s velocity structure.

Lastly, we made a 45◦ rotation in the survey coordinate system, from shot and geophone

coordinates to midpoint and offset coordinates. The seismic experiment is most readily

parameterized by the positions of its shots and geophones. However, we noted that due

to the realities of seismic experiments, it is often more efficient to represent the data in

midpoint and offset coordinates.



CHAPTER 3

Pre-conditioning of least-squares pre-stack split-step

migration and analysis using eigenvalues and Ritz values

3.1 Introduction

In Chapter 2, we used the Born approximation to the acoustic wavefield to develop wavefield

modelling and migration operators. The Born approximation is linear, and, as such, the

resulting operators can be written using matrix-vector products, Am = d. In this equation,

d is data (the recording seismic wavefield ψs), and we aim to find the scattering potential

α housed in the vector m. In Chapter 2, image gathers were found using the migration

operator (i.e. the adjoint of the wavefield modelling operator). In this Chapter, we let the

image gathers be some model m that satisfies Am = d. This can be done in a least-squares

sense so that the equation of interest is AHAm = AHd, leading to a least-squares migration

algorithm (e.g. Nemeth et al., 1999) where the migrated image gathers are found by the least

squares inverse rather than by the adjoint.

Finding m in least-squares migration, then, is largely dependent on the properties of AHA.

In this chapter, we review the imaging Jacobian J and its pseudo-inverse J† introduced in

Sava et al. (2001) and Sava and Fomel (2003). The Jacobian matrix provides an approxi-

mation to AHA, so that J†AHA is, in a broad sense, better behaved than AHA. In the

ideal scenario J†AHA would be the identity matrix; however, the more likely case is that

J† will work as a pre-conditioner, clustering the eigenvalues of AHA, and improving the

convergence of iterative solvers. We attempt to quantify this statement by providing an

analysis of AHA and J†AHA using, first their eigenvalues, and then their Ritz values, and

for the particular case where A is built using the pre-stack split-step migration operator

described in Chapter 2, but where the image gathers are parameterized by ray-parameter

rather than by offset. We show that, unfortunately, the Jacobian matrix does not improve

the clustering of eigenvalues (or Ritz values) of the least-squares system. The difficulty in

the analysis of AHA and J†AHA lies in their size. For example, a subset of the relatively

34
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small Marmousi data makes AHA a matrix with, roughly, 45 million rows and columns

(requiring, in single precision, about 8 Peta-bytes of computer memory). In short, the size

of the matrix makes its eigenvalues impossible to compute. Instead, we compute the leading

principal minors of similar tridiagonal matrices that are, in turn, found using the conjugate

gradient method (Hestenes and Stiefel, 1952). The eigenvalues of these similar matrices are

Ritz values of the original matrix, and are shown to be a subset of its eigenvalues.

We begin by re-writing the wavefield modelling (forward) and migration (adjoint) operators

when the image gathers are in midpoint and ray-parameter coordinates rather than midpoint

and offset coordinates using the slant-stack transform (Ottolini and Claerbout, 1984). These

are the coordinates in which the Jacobian matrix introduced by Sava et al. (2001) is applied.

Next, we write down the discrete matrix-vector form of the forward and adjoint operators,

and the corresponding set of least-squares equations. We construct the solution to the least-

squares equations using the conjugate gradient method which we introduce in this chapter,

but which will also be useful in later chapters. With the conjugate gradient method at hand,

we review the concept of similar matrices and use them to compute Ritz values from the

conjugate gradient method (e.g. Scales, 1989). Next, we derive the Jacobian matrix, using

it as a pre-conditioner for a synthetic example with a small acquisition geometry, making an

analysis of the eigenvalues of the least-squares equations without and with pre-conditioning.

Finally, we review a derivation of the pre-conditioned conjugate gradient method, and use

it to compute the Ritz values of the pre-conditioned least-squares equations for a typical

acquisition geometry using the synthetic Marmousi data.

3.2 Forward and adjoint operators in midpoint and ray-

parameter coordinates

In Chapter 2, we derived forward (wavefield modelling) and adjoint (migration) operators for

a source-receiver geometry. In our derivation, the scattering potential and wavefield were

parameterized by either shot and receiver coordinates or, alternatively, by midpoint and

offset coordinates. In this chapter, we parameterize the scattering potential using midpoint

and ray-parameter coordinates, and as before we parameterize the wavefield using midpoint

and offset coordinates.

The change in coordinates for scattering potential from midpoint and offset to midpoint

and ray-parameter is more involved then the simple 45◦ coordinate rotation used to go from

shot and receiver coordinates to midpoint and offset coordinates. In particular, the relation

between offset ray-parameter ph = (phx, phy) and lateral wave-numbers (kgx, ksx and kh)
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is,

ph = ω(kgx + ksx) = ωkh =
1

c1
(sin θg + sin θs), (3.1)

where θg and θs were described in Figure 2.2. The transformation from midpoint and

offset to midpoint and ray-parameter given by equation 3.1 is implemented by the slant-

stack transform (e.g. Ottolini and Claerbout, 1984). For example, in split-step wavefield

modelling, equation 2.49 becomes,

ψs(k)(xm,xh; z0, ω) = G(xm,xh,ph; z′, ω)α(xm,ph, z
′)

= (2π)lf(ω)
(
us(1)F∗mhup(1)Fmh

)
· · ·
(
us(l−1)F∗mhup(l−1)Fmh

)

×
∫ zl

zl−1

(
us(l)F∗mhup(l)Fmh

) ω2

c21(l)

F∗h
∫ ∞

−∞
δ(ph − ωkh)α(xm,ph, z

′)dphdz
′,

(3.2)

where up and us are given by, respectively, equations 2.50 and 2.53, and Fh is the two

dimensional Fourier transform over offset coordinates xh. As before (Chapter 2), Fmh is

the four dimensional Fourier transform over midpoint and offset coordinates. Likewise, the

adjoint operator in equation 2.54 becomes (with continuous frequency ω),

α†(xm,ph; z) = G†(xm,xh,ph; z, ω)ψs(xm,xh; z0, ω)

=

∫∫ ∞

−∞
δ(kh − ph/ω)Fhu∗(xm,xh;ω, z)ψs(xm,xh; z0, ω)dphdω,

(3.3)

where u∗ is shown by equations 2.43 and 2.54. The operators G and G† represent, respec-

tively, the mappings from α to ψs, and ψs to α†, and will be used in the ensuing analysis.

Figures 3.1a and 3.1b illustrates the adjoint operator applied to the Marmousi data in, re-

spectively, midpoint and offset, and midpoint and ray-parameter coordinates. The latter

is used in amplitude versus ray-parameter studies (e.g. Kuehl, 2002) which in turn can be

used to invert for earth properties.

3.3 Least-squares solution for the scattering potential

In this chapter, we construct the least-squares solution for the scattering potential (i.e. least-

squares migration) given the forward and adjoint operators (G and G†) in equations 3.2 and

3.3. That is, we choose the scattering potential that gives the smallest distance between

observed and modelled data (i.e. measured wavefield). In Section 3.4 we note that more than

one instance of the scattering potential may satisfy this criterion. Since we are, ultimately,

interested in a numerical implementation, we re-cast equations 3.2 and 3.3 in their discrete

matrix-vector form. To that end, we introduce vectors d and m such that the entries of

d are realized from the observed wavefield ψs(xm,xh;ω), and the entries of m are realized
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Figure 3.1: We show the result of applying the adjoint operator to the Marmousi
data, using a) midpoint and offset coordinates, and b) midpoint and ray-parameter
coordinates.
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from the scattering potential α(xm,ph, z). This, in turn, allows us to write the least-squares

solution in a discrete vector space.

We let the model vector m be of length N , and the data vector d be of length M so that,

mT =
[
m1 m2 · · · mN

]
dT =

[
d1 d2 · · · dM

]
. (3.4)

Further, we define realizations of ψs and α, so that,

mi = α(xm(l2), ym(l3), phx(l4), phy(l5); z(l1)) , i = l5 + L5(l4 + L4(l3 + L3(l2 + L2l1)))

dj = ψs(xm(l2), ym(l3), xh(l7), yh(l8);ω(l6)) , j = l8 + L8(l7 + L7(l3 + L3(l2 + L2l6))),

(3.5)

where lk = 1 . . . Lk, k = 1 . . . 8, so that the latent variables are realized on the discrete grid

given by,

z(l1) = z0 + l1∆z , l1 = 0 . . . L1

ω(l2) = ω0 + l2∆ω , l2 = 0 . . . L2

xm(l3) = (xm)0 + l3∆xm , l3 = 0 . . . L3

ym(l4) = (ym)0 + l4∆ym , l4 = 0 . . . L4

xh(l5) = (xh)0 + l5∆xh , l5 = 0 . . . L5

yh(l6) = (yh)0 + l6∆yh , l6 = 0 . . . L6

phx(l7) = (phx)0 + l7∆phx , l7 = . . . L7

phy(l8) = (phy)0 + l8∆phy , l8 = . . . L8.

(3.6)

The operators G and G† in equations 3.2 and 3.3 are mapped into matrices, A and AH ,

respectively so that the ith row and jth column of A is given by,

[A]ij = G(xm(l3), ym(l4), xh(l5), yh(l6), phx(l7), phy(l8); z(l1), ω(l2)), (3.7)

where,

i = l6 + L6(l5 + L5(l4 + L4(l3 + L3l2)))

j = l8 + L8(l7 + L7(l4 + L4(l3 + L3l1))).
(3.8)

Given the definitions for A, m and d in equations 3.4-3.8, we recognize d = Am and

m† = AHd which are the discretized versions of equations 3.2 and 3.3, respectively. Then

we define a cost function,

φ(m) = ||d−Am||22, (3.9)

which has its minimum when,

AHAm = AHd, (3.10)

and are the classical least-squares normal equations.



CHAPTER 3. PRE-CONDITIONING ANALYSIS 39

In practise the size of AHA and A make their explicit construction infeasible on modern

day computers. For example, the relatively small subset of the Marmousi data used to

illustrate the migration and de-migration operators in Chapter 2 and Figure 3.1 correspond

to AHA having roughly 45 million rows and columns. To store this matrix on a computer

would require (in single precision) about 16 Peta-bytes of computer memory. Therefore, we

rely on iterative methods to minimize the cost φ(m) in equation 3.9.

3.4 Least-squares conjugate gradients

The iterative method we use to find a solution for equation 3.10 is the least-squares conjugate

gradient method (Hestenes and Stiefel, 1952). The conjugate gradient method constructs a

solution for m by its projection onto a growing Krylov space, where each conjugate gradient

iteration adds an additional dimension to the space. Our choice of method dictates the

solution. Namely, it prescribes a search direction for each iteration, and insists that the

error in the model is orthogonal (as defined by the Krylov space) to the search direction.

To proceed, we note that AHA in equation 3.10 is Hermitian (self-adjoint). Further, we

define mk to be the estimate of m after the kth conjugate gradient iteration, and ek =

m−mk be its associated error. Further, we define a residual vector after the kth iteration,

rk = AH(d−Amk). The conjugate gradient method chooses a set of search directions pk,

k = 1 . . . n that are orthogonal in a Krylov space (i.e. pkA
HApk−1 = 0). The conjugate

gradient method is initialized by letting m0 = 0, and by letting the initial search direction

be the residual vector so that p0 = AHd. Then, it finds m1 by the projection of m onto

p0, and under the constraint pH0 AHAe1 = 0. That is the search direction p0, and the error

e1 are, in a Krylov space, made orthogonal. Generalizing, the projection onto the first n

search directions is found using the constraints,

pkA
HAek−1 = 0 , k = 1 . . . n− 1. (3.11)

The choice of search directions in the conjugate gradient method has the pleasing result

that each new search direction pk can be computed using only the previous search direction

pk−1 and the current residual vector rk. There are two additional consequences of the

conjugate gradient method that are important to our analysis. First the residual vectors rk

are mutually orthogonal in an L2 sense (i.e. rHk rk−1 = 0), and, second, the search directions

form the basis for a Krylov space Kn which after n iterations is given by,

Kn(d) =
{
AHd, (AHA)AHd, (AHA)2AHd, . . . , (AHA)n−1AHd

}
. (3.12)

Algorithm 3.1 summarizes the conjugate gradient method. In it, αk is the step-length in the
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Algorithm 3.1 Least-squares conjugate gradient method for a matrix A, and data d

m0 = 0, p0 = r0 = AHd
for k = 1 to n do

αk = ||rk−1||22/(pHk−1A
HApk−1)

mk = mk−1 + αkpk−1

rk = AH(d−Amk)
βk = ||rk||22/||rk−1||22
pk = rk + βkpk−1

end for

(k−1)th search direction pk−1, and is determined by the previously mentioned orthogonality

between the search direction and the error vector ek. Further, βk helps determine the

kth search direction, and is found by Gram-Schmidt orthogonalization. There are well

known redundancies in the equations which are not shown in Algorithm 3.1, and with the

consequence that in the least-squares conjugate gradient method A and AH need only be

applied once per iteration. To show this, we make the following two observations. First for

the residual vector rk, we can write,

rk = AH(d−Amk) = AH(d−A(mk−1 + αkpk−1))

= AH(d−Amk−1)− αkAHApk−1 = rk−1 − αkAHApk−1,
(3.13)

and, second, AHApk−1 appears in the computation of the step-size αk, confirming our

assertion that A and AH need only be applied once per iteration. We note, however, that

when taking advantage of equation 3.13, we have to be careful of numerical round-off errors

caused by its iteration on the residual vector. In practise, every 10 conjugate gradients

iterations we use the non-iterative formula for rk, removing cumulative round-off errors.

In geophysical applications, it is often the case that the least-squares normal equations

(3.10) are ill-conditioned so that it is satisfied by more than one realization of m. In this

case the solution found by the conjugate gradient method is dictated by its projection onto

the constructed Krylov space. In particular, the solution at the kth iteration is constrained

by equation 3.11. This is in contrast to constraints that appear in alternative iterative

methods such as the generalized minimal residual method that does the projection onto the

Krylov space using the minimum of the L2 norm of the residual vector rk (Saad and Schultz,

1986).

The conjugate gradient method is widely used in geophysical applications (e.g. Fomel, 2007;

Pidlisecky et al., 2007; Chunduru et al., 1997; Pilkington, 1997). It is guaranteed to con-

verge in N iterations where N is the dimension of the model vector m. Moreover, it does

not require the explicit construction of A. This is especially important for the applications

considered in this thesis where A is prohibitively large and cannot be explicitly constructed
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and stored within the memory of a modern computer. Further, given the size of A it would

be unreasonable to run the conjugate gradient method through its N iterations. How-

ever, running the algorithm for fewer iterations allows us to relate the properties of the

constructed Krylov space to the spectrum (eigenvalues) of AHA. Moreover, this encour-

ages the pre-conditioning of AHA, allowing for clustering of eigenvalues and convergence

in fewer iterations, and which we examine in Sections 3.6 and 3.7. Prior to discussing

pre-conditioning within the context of the conjugate gradient method, it is important to un-

derstand the relation between the eigenvalues of AHA and the iterations of the conjugate

gradient method, and which we make an effort to describe in the next section.

3.5 Similar matrices and Ritz values

We use Ritz values to characterize the spectral properties of AHA, and which we find using

the conjugate gradient method. In particular, the conjugate gradient method can be used to

construct a similar tri-diagonal matrix which after the nth conjugate gradient iteration will

have n rows and columns. Its eigenvalues are readily computed and are called Ritz values

of AHA, which are, in turn, a subset of its eigenvalues.

We begin with the definition of similar matrices: we let B, C and M be square matrices,

and M be invertible. If C = M−1BM, then B and C are similar matrices, and share the

same eigenvalues. The proof is straight-forward. In particular,

Bx = λx⇒MCM−1x = λx⇒ C(M−1x) = λ(M−1x). (3.14)

As a corollary, equation 3.14 shows that if x is an eigenvector of B, then M−1x is an

eigenvector of C. The corollary is not integral to our discussion. In the ensuing analysis it

is important to consider the slightly more complicated case where M is a matrix with M

rows and N columns, and where M > N . Moreover, we can assume that the columns of

M are orthonormal, so that MHM = IN where IN is the identity matrix with N rows and

columns. That is MH is the left inverse of M. In this case, we write C = MHBM, and

show that B and C are similar matrices by the proof,

Cx = λx⇒MHBMx = λx⇒MHBx̂ = λMH x̂⇒MH (B− λIN ) x̂ = 0, (3.15)

where we have let x̂ = Mx. Equation 3.15 shows that if λ is an eigenvalue of B, then it is

also an eigenvalue of C, in turn, showing that C and B are similar.

With the definition of similar matrices in equation 3.15, we return to the normal equations

for least-squares migration (3.10). We are interested in characterizing the spectral properties
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of AHA. We use the conjugate gradient method to find similar matrices AHA and Tn, and

where Tn is a tri-diagonal matrix built using the conjugate gradient method. After each

conjugate gradient iteration, one row and column can be added to Tn so after n iterations

Tn has n rows and columns. To proceed, we define matrices ∆n, Rn, Pn and Bn such that,

Rn =
[

r0 r1 . . . rn−1

]
Pn =

[
p0 p1 . . . pn−1

]
,

where rk and pk for k = 0 . . . n − 1 are column vectors. In particular rk is the residual

vector and pk is the search direction for the kth least-squares conjugate gradient iteration

defined in Section 3.4. The matrix ∆n is a square and diagonal matrix, with its kth diagonal

element being ||rk||2, k = 0 . . . n − 1. We note that Rn and Pn each have N rows and n

columns, while Bn and ∆n are square matrices with n rows and columns. Given Pn and

Rn, the matrix Bn is defined implicitly such that,

Rn = PnBn. (3.16)

In equation 3.16, we use the relation from the conjugate gradient method, pk = rk+βkpk−1

(Algorithm 3.1), so that,

Bn =




1 −β1 0 · · · 0 0

0 1 −β2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −βn−1

0 0 0 · · · 0 1



.

Further, we define the matrix R̂n = Rn∆−1n so that the columns of R̂n are orthonormal.

Since R̂n has orthonormal columns, by equation 3.15, Tn = R̂H
n AHAR̂n and AHA are

similar matrices, and from equation 3.16 we can write,

Tn = R̂H
n AHAR̂n = ∆−1

n BH
n PH

n AHAPnBn∆−1
n . (3.17)

Furthermore, by construction the columns of Pn are orthogonal in the Krylov space shown in

equation 3.12. Hence, PH
n AHAPn must be a diagonal matrix with its kth diagonal element
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being δpk = pHk AHApk. Further, letting δrk =
√

1/(rHk rk), we find (after some algebra),

Tn =




δp0(δ
r
0)

2 −δp0δ
r
0δ

r
1β1 0 0 · · · 0

−δp0δ
r
0δ

r
1β1 δp0(δ

r
1)

2β2
1 + δp1(δ

r
1)

2 −δp1(δ
r
1)

2β2 0 · · · 0

0 δp0(δ
r
1)

2β2 δp1(δ
r
1)

2β2
2 + δp2(δ

r
2)

2 −δp2(δ
r
2)

2β3 · · · 0
...

...
...

...
...

...



.

(3.18)

To simplify equation 3.18, we note its relation to the step-lengths αk and Gram-Schmidt

conjugation factors βk in the conjugate gradient method. Namely, we find,

δpk(δrk)2 =
pHk AHApk

rHk rk
= α−1

k , (3.19)

δpkδ
r
kδ
r
k+1 = δpk(δrk)2δrk+1/δ

r
k =

pHk AHApk
rHk rk

√
rHk rk

rHk+1rk+1
= α−1

k β
−1/2
k+1 , (3.20)

and,

δpk(δrk+1)2 = δpk(δrk)2(δrk+1/δ
r
k)2 =

pHk AHApk
rHk rk

rHk rk
rHk+1rk+1

= α−1
k βk+1. (3.21)

Substituting the results from equations 3.19-3.21 into equation 3.18 gives for Tn,




α−1
0 −α−1

0 β
1/2
1 0 0 · · · 0

−α−1
0 β

1/2
1 β1/α0 + α−1

1 −α−1
1 β

1/2
2 0 · · · 0

0 −α−1
2 β

1/2
2 β2/α1 + α−1

2 −β−1/2
3 α−1

2 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · −βn−1/αn−2 + α−1
n−1



.

(3.22)

We notice that in equation 3.22, Tn has diagonal elements given by,

[Tn]ii = βk/αk+1 + α−1
k ,

for k = 0 . . . n− 1 and β0 = 0, and off-diagonal elements are given by,

[Tn]k,k+1 = [Tn]k+1,i = −α−1
k β

1/2
k+1,

for k = 0 . . . n − 2. The eigenvalues of Tn are called the Ritz values of AHA. Since Tn

and AHA are similar matrices, it must be that Ritz values of AHA are also a subset of

its eigenvalues. Therefore, we choose to use the Ritz values to characterize the spectral

properties of AHA. The end result of our analysis is that the matrix Tn can be computed

using the step-lengths and Gram-Schmidt coefficients found in the least-squares conjugate
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gradient method. In turn, the eigenvalues of Tn are readily computed (due to its tri-diagonal

form), and are the Ritz values of AHA.

3.6 The Jacobian matrix

The least-squares solution using the conjugate gradient method finds a regularized inverse

of AHA. The solution that we use in this thesis comes from the optimal projection onto a

Krylov space (the optimal projection being defined by equation 3.11). Finding the solution

using the conjugate gradient method is practical, but represents a large computational

expense. To reduce the computational burden, or eliminate it all-together, authors (e.g.

Rickett, 2003; Yu et al., 2006) have proposed estimates for the pseudo-inverse of AHA,

(AHA)†. Sava et al. (2001) propose a pseudo-inverse that they call the Jacobian matrix J,

so that, J† ≈ (AHA)†. Applying J† to both sides of equation 3.10 gives,

J†AHd = J†AHAm ≈m.

Hence, some clever choice for J† removes the necessity of inverting AHA. Even if J† is not

the pseudo-inverse of AHA, it may work to cluster its eigenvalues, allowing iterative methods

such as conjugate gradients to converge in fewer iterations, and this is the line of reasoning

that we pursue. We use an estimate of J† derived from forward and adjoint wavefield

modelling operators built using WKBJ Green’s functions. This is similar to Sava et al.

(2001), who showed the effectiveness of J† to correct amplitude versus ray-parameter gathers

found by application of the adjoint G† in equation 3.3. Here we illustrate its effectiveness

(or lack there-of) as a pre-conditioner for the least-squares system of equations.

We find J† using estimates of the forward wavefield modelling operator G, and the adjoint

migration operator G†, and where the estimates of G and G† are constructed using WKBJ

Green’s functions (see Section 2.5). In Chapter 2, forward and adjoint operators were

derived for when the image gathers were constructed in shot and geophone coordinates

or midpoint and offset coordinates (equation 2.28). In this chapter, we are interested in

analogous operators for when image gathers are represented by midpoint and ray-parameter.

In particular,

ψWs = Ĝα =

∫ ∞

−∞
ei

∫ z′
zm

(kgz(z′′)+ksz(z′′))dz′′
∫ ∞

−∞
δ(ph − ωkh)α(kmx,ph, z

′)dphdz
′, (3.23)
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and,

α† = Ĝ†ψWs =

∫ ∞

−∞

∫ ∞

−∞
δ(kh − ph/ω)e−i

∫ z′
zm

(kgz(z′′)+ksz(z′′))dz′′ψWs (kmx,khx;ω)dphdω.

(3.24)

We define the Jacobian operator so that,

J (α) = α† = Ĝ†Ĝα.

In particular, substitution of equation 3.23 into equation 3.24 and letting kz = kgz + ksz

gives,

α†(km,ph, z) =

∫ ∞

−∞

∫ ∞

−∞
δ(kh − ph/ω)e−i

∫ z
zm

kzdz
′′
∫ z

zm

ei
∫ z′
zm

kzdz
′′

×
∫ ∞

−∞
δ(ph − ωkh)α(km,ph, z

′)dphdz
′dωdkh

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(kh − ph/ω)δ(ph − ωkh)

×
∫ z

zm

ei
∫ z′
z
kzdz

′′
α(km,ph, z

′)dz′dωdphdkh

=

∫ ∞

−∞

∫ z

zm

ei
∫ z′
z
kzdz

′′
α(km,ph, z

′)dz′dω,

where kh = ωph. Using stationary phase arguments gives (Kuehl, 2002),

α†(km,ph, z) =

∫ ∞

−∞
e−ikzz

∫ z

zm

eikzz
′
α(km,ph, z

′)dz′dω.

Next, we use the dispersion relation (equation 2.8) to make a change of variables from ω to

kz, and use the support of α to change the limits of integration, so that,

α†(km,ph, z) =

∫ ∞

−∞
e−ikzz

∫ ∞

−∞
eikzz

′
α(km,ph, z

′)dz′
dω

dkz
dkz

=

∫ ∞

−∞
e−ikzzα(km,ph, kz)

dω

dkz
dkz,

= 2πF−1
z

(
α(km,ph, kz)

dω

dkz

)
,

where Fz is the one-dimensional Fourier transform over depth, and we have let eikzz be its

Fourier kernel. Hence,

α†(km,ph, kz) = 2π
dω

dkz
α(km,ph, kz),
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and,

α†(km,ph, kz) = J (α) = 2π
dω

dkz
α(km,ph, kz) (3.25)

α(km,ph, kz) = J−1(α†) =
1

2π

dkz
dω

α†(km,ph, kz). (3.26)

Finally, recalling the dispersion relations (for ω > 0) in equation 2.52, and using the defini-

tion of the ray-parameter in equation 3.1, we find,

kz = kgz + ksz =

√
ω2

c20
− 1

4
|ωph + km|2 +

√
ω2

c20
− 1

4
|ωph − km|2. (3.27)

Taking the derivative of kz in equation 3.27 with respect to ω and substituting the result

into equation 3.26 gives,

J−1(α†) =
1

4π

[
k−1
gz

(
ω

c20
− 1

4
(ωph + km) · ph

)
+ k−1

sz

(
ω

c20
− 1

4
(ωph − km) · ph

)]
α†,

(3.28)

where assuming ω > 0 and kz > 0 (see Appendix B),

ω =

√
k2
z + |km|2

4k2
z/c

2
0 − |ph|2(|km|2 + k2

z)
. (3.29)

In equation 3.28, J−1 is an operator acting on α in a continuous space. To find its discrete

form, we introduce the matrix Ĵ† so that,

J−1
j = J−1(kmx(l3), kmy(l4), phx(l7), phy(l8); kz(l1);α

†),

where j was given in equation 3.8, and J−1
j is the jth diagonal element of Ĵ†. The matrix Ĵ†

operates in midpoint wave-number and depth wave-number. To find the equivalent operator

J† in midpoint and depth, we write,

J† = F−1
mzĴ

†Fmz,

where Fmz is the three dimensional Fourier transform over midpoint and depth dimensions.

We illustrate the effect of J† using the data and model shown in Figure 3.2. Figure 3.2a is the

acoustic velocity model (half-space over a half-space) that we use to generate data using a

finite difference approximation to the acoustic wave-equation. Figure 3.2b is the acquisition

geometry for the experiment showing the survey geometry with 20 common depth point

locations, and 41 offsets for each common depth point data gather. Finally, Figure 3.2c is a

representative midpoint gather for the experiment, and corresponds to common depth point
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Figure 3.2: Example 1, a) acoustic velocity model (the colour-bar is shown in units
of metres per second) , b) acquisition geometry, and c) a single midpoint gather
corresponding to xm = 200m. The traces in the data have been normalized giving,
artificially, a flat amplitude response as a function of offset.

xm = 200m in Figure 3.2b. For the sake of our analysis of J†, the amplitude of the traces

in the data are normalized so that each trace has unit energy. This, artificially, introduces

a flat amplitude versus offset response into the data which we should expect to see in the

amplitude versus ray-parameter image gathers when the Jacobian is used to correct the

adjoint. We illustrate this in Figure 3.3. In particular, Figure 3.3a plots AHd, and in

Figure 3.3b we plot J†AHd. In these plots the image gather corresponds to the common

depth point data gather in Figure 3.2c, and we see that the inverse Jacobian flattens the

amplitude in the image gather as a function of ray-parameter. This result is similar to Sava

et al. (2001), and lends confidence to our formulation and implementation of the Jacobian

matrix.

For our second example, we reduce the size of the problem so that it is possible to store

AHA in the computer, and so that we are able to compute its eigenvalues. In particular,

Figure 3.4 shows the model and data for the experiment. The model is unchanged from the

first example, but the size of the acquisition is reduced, and shown in Figure 3.4b. This

allows us to compute and store AHA which we plot (for its first 120 rows and columns) in

Figure 3.4c. Given AHA, we compute its pseudo-inverse,

(AHA)† = UΣ†UH ,

where U and Σ are, respectively, matrices with the eigenvectors, and eigenvalues of AHA.
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Figure 3.4: Example 2, a) acoustic velocity model (the colour-bar is shown in units
of metres per second), b) acquisition geometry, and c) the first 120 rows and columns
of AHA.

The matrix Σ is a diagonal matrix with diagonal elements,

[
Σ†
]
ii

=

{
σ−1
ii , σii > ε

0 , σii ≤ ε,

where ε is some prescribed tolerance, and σi is the ith diagonal element of Σ. The pseudo-

inverse is plotted in Figures 3.5a and 3.5c for its first 120 rows and columns where Figure 3.5a

plots the diagonal elements of (AHA)†. Meanwhile, the inverse Jacobian J† is plotted in

Figure 3.5b and 3.5d where, again, Figure 3.5b plots the diagonal elements of the matrix in

Figure 3.5d. Next, to illustrate the effect of the pseudo-inverse and inverse Jacobian, we plot

(AHA)†AHA and J†AHA in Figures 3.5g and 3.5h, respectively, for their first 120 rows

and columns. In Figures 3.5e and 3.5f, we plot their respective diagonal elements. Finally, in

Figure 3.6, we plot the normalized eigenvalues of AHA, (AHA)†AHA, and J†AHA using,

respectively, the dotted, dashed, and solid lines.

Our analysis shows that while the Jacobian matrix can be used to correct for amplitude

(as shown in our first example), it is not necessarily effective as a pre-conditioner for least-

squares migration (as shown in the second example).

3.7 Pre-conditioned conjugate gradients

The analysis in the preceding section is interesting, but can not be applied to typical seis-

mic exploration acquisition geometries, namely due to the size of the resulting migration

operators. To deal with large operators, we need to incorporate the Jacobian matrix into an
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Figure 3.5: Example 2, using the first 120 rows and columns of matrices, we plot c)
(AHA)† with its diagonal elements in a), d) J† with its diagonal elements in b), g)
(AHA)†(AHA) with its diagonal elements in e), and h) J†AHA with its diagonal
elements in f).
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Figure 3.6: Example 2, the normalized eigenvalues of AHA (dotted line),
(AHA)†AHA (dashed line), and J†AHA (solid line).
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iterative method. In this section we use similar matrices to write down a pre-conditioned

conjugate gradient method. In turn, this is used to find the solution to the pre-conditioned

least-squares normal equations given by,

J†AHAm = J†AHd. (3.30)

In the previous section, we showed that for small acquisition geometries using the Jacobian

matrix as a pre-conditioner does not cluster the eigenvalues of the least-squares system of

equations. In this section, we show that the same conclusion can be shown for its Ritz

values, and an industry standard 2D marine acquisition geometry (the Marmousi data). We

begin by writing down the pre-conditioned least-squares conjugate gradient method used

to solve equation 3.30. Then, we use the pre-conditioned least-squares conjugate gradient

method to compute Ritz values, drawing conclusions about the effectiveness of the Jacobian

matrix J† as a pre-conditioner.

The pre-conditioned conjugate gradient method can be derived by introduction of a matrix

E such that J = EEH , and so that from equations 3.30,

E−HE−1AHAm = E−HE−1AHd⇒ E−1AHAE−Hm̂ = E−1AHd, (3.31)

where m = E−Hm̂. It is important to note that the J†AHA and E−1AHAE−H are similar

matrices, sharing the same eigenvalues. In particular, for some vector v, we can write,

E−1AHAE−Hv = λv⇒ E−HE−1AHAE−Hv = λ(E−Hv)

⇒ J†AHA(E−Hv) = λ(E−Hv).

This means that the effect that J† has in pre-conditioning the system in equation 3.30 is the

same as the effect of E in equation 3.31. Direct substitution of the normal equations (3.31)

into the conjugate gradient method (Algorithm 3.1) gives Algorithm 3.2 (see Appendix B).

As was the case with the conjugate gradient method in Algorithm 3.1, the pre-conditioned

conjugate gradient method in Algorithm 3.2 contains redundancies allowing for the forward

and adjoint operators to be applied only once per iteration. Additionally, we notice that

while E is important to the construction of the pre-conditioned conjugate gradient method,

it does not appear in the final result (see Appendix B).

For an example, we consider, again, the synthetic Marmousi data. For this data, the migra-

tion operator is far too large to store as a matrix. Instead, we use the conjugate gradient

and pre-conditioned conjugate gradient methods to compute its Ritz values that are, in

turn, a subset of the eigenvalues for, respectively, the least-squares operator without and

with pre-conditioning using the Jacobian matrix. In Figure 3.7, we show the experiment

for the Marmousi data. In particular, Figure 3.7a plots the velocity model, and Figure 3.7b
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Figure 3.7: Example 3 (Marmousi data), a) the velocity model, b) the acquisition
geometry, c) an example common depth point gather, and d) its corresponding am-
plitude versus ray-parameter image gather found using the least-squares conjugate
gradient method.
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Algorithm 3.2 The preconditioned conjugate gradient method for the pre-conditioned
least-squares system in equation 3.30.

m0 = 0, r0 = AHd, p0 = J†r0

for k = 1 to n do
αk = (rHk J†rk)/(pHk−1A

HApk−1)
mk = mk−1 + αkpk−1

rk = AH(d−Amk)
βk = (rHk J†rk)/(rHk−1J

†rk−1)

pk = J†rk + βkpk−1

end for
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Figure 3.8: Example 3 (Marmousi data), the Ritz values compute for 20 iterations of
the least-squares conjugate gradient method (solid line), and b) the pre-conditioned
least-squares conjugate gradient method (dashed line).

plots the acquisition geometry. Figure 3.7c shows data for a single common depth point

position, and Figure 3.7d shows the corresponding amplitude versus ray-parameter gather

computed using 20 iterations of the least-squares conjugate gradient method. Using the

pre-conditioned conjugate gradient method for 20 iterations produces an equivalent result.

Figure 3.8 plots the normalized Ritz values computed for the first 20 iterations of the least-

squares conjugate gradient method (solid line), and pre-conditioned least-squares conjugate

gradient method (dashed line). It is evident that pre-conditioning the least-squares equa-

tions with the Jacobian matrix does not cluster the Ritz values. This is analogous to the

conclusion reached for the clustering of eigenvalues in Section 3.6 where an atypical small

survey acquisition was used.

3.8 Summary

In this Chapter, we showed that while the Jacobian matrix does correct for amplitude

in amplitude versus ray-parameter image gathers, it, unfortunately, does not work as a

pre-conditioner for least-squares migration. This Chapter introduced two additional and

important concepts to this thesis. First, it provided an example of regularized migration in
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that we found migrated image gathers by solving a set of least-squares normal equations.

The regularization was governed by a projection of the solution onto a Krylov space using

the conjugate gradient method. Second, it introduced the conjugate gradient method, itself,

which will be used extensively throughout the remainder of the thesis.



CHAPTER 4

Regularized migration with sparseness constraints

4.1 Introduction

In Chapter 2, we derived forward and adjoint operators for least-squares migration with a

variable reference velocity. Within the context of source-receiver migration, we considered

three parameterizations for the scattering potential, common shot image gathers, common

midpoint image gathers, and amplitude versus ray-parameter image gathers, the latter being

introduced in Chapter 3. In this chapter, we concentrate on source-receiver migration for

either common shot image gathers or common midpoint image gathers. In particular, we

apply our prior expectation that energy from data gathers focuses to where shot and receiver

are coincident in the image gathers. Our method is similar to Wang and Sacchi (2007) in

that it regularizes the common image gathers using a Cauchy norm (sparse prior), but differs

in its choice of model space. Whereas Wang and Sacchi (2007) use amplitude versus ray-

parameter image gathers, we use either common shot or common midpoint image gathers.

In these domains, we expect energy to migrate to where shot and receiver are coincident,

or offset is null (Claerbout, 1971). This, in turn, motivates the use of a sparse prior in all

dimensions of each common image gather. In contrast, Wang and Sacchi (2007) use a sparse

prior in the depth direction, and a smooth prior in the ray-parameter direction. Our choice

of sparse prior (the Cauchy norm) leads to a non-quadratic optimization problem that is

solved using iterative re-weighted least-squares (IRLS) (e.g. Gersztenkorn et al., 1986).

We begin with a review of Claerbout’s imaging condition, and, in particular, how it relates

to the forward and adjoint operators developed in Chapter 2. This leads us to choose

a sparseness criterion for regularized wave-equation migration which we introduce using

Bayes theorem and a Cauchy prior. In addition, we use a mixed Cauchy-Gaussian prior,

such that the Cauchy prior is used within each common midpoint image gather and the

Gaussian prior is used across image gathers. We show the effect of the sparse prior with

synthetic examples. We show two examples. In the first, we use a point scatterer in a

55
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variable reference wave-speed, and in the second we consider two specular reflectors, also in

a variable reference wave-speed.

4.2 Source-receiver migration and Claerbout’s imaging

condition

In Chapter 2, we derived equations for source-receiver wave-equation migration. In equa-

tion 2.11, we found the parameterization α(kgx − ksx, z), and by extension, wrote α =

α(xg,xs, z). This choice has interesting consequences. For example, in Chapter 3 it allowed

for the re-parameterization of α in depth, midpoint and ray-parameter. Here, we use it to

predict the behaviour of α(xg,xs, z) using Claerbout’s imaging condition.

For the scattered wavefield ψs(xg, zg|xs, zs;ω), Claerbout’s imaging condition as stated in

Stolt (1978) is,

α(x, z) ∼ ψs(x, z|x, z; t = 0). (4.1)

The ideas contained within equation 4.1 were introduced in Chapter 2. Again, we state its

interpretation that when the wavefield is coincident with the scattering point, time is taken

to be zero. In source-receiver migration, the scattering potential is parameterized by the

survey parameters, and the interpretation becomes slightly more involved. To understand

this, we analyze the adjoint to the Born approximation in equation 2.38, and which we

rewrite here for constant velocity Green’s functions (equation 2.7), so that for a single

frequency (see Appendix C),

α(kgx − ksx, z;ω) ∝ e−iω cos θgτgzψs(kgx, zg|ksx, zs;ω)e−iω cos θsτsz , (4.2)

where τgz is the vertical travel-time for the plane-wave propagating from the measurement

surface (xg, zg) to the scattering point (x, z), and τsz is the vertical travel-time for the

plane-wave propagating from the scattering point to the source (xs, zs). In particular,

τgz =
z − zg
c0

τsz =
z − zs
c0

. (4.3)

The angle θg was defined in Chapter 2, and is the angle to the vertical of the normal to

the receiver side plane-wave propagating from the measurement surface to the scattering

point. Likewise, θs is the angle to the vertical of the normal to the source side plane-wave

propagating from the scattering point to the measurement surface. In equation 4.2, the

seismic source is excited at time t = 0, and exp(−iω cos θgτgz) is proportional to the Green’s

function that propagates the wavefield from the measurement surface to the scattering point.
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Figure 4.1: We illustrate the shift in the time axis for the adjoint operator: a)
the travel-time t axis origin is coincident with origin of the experiment (when the
seismic shot is excited), b) the vertical travel-time axis origin is coincident with the
scattering point. In b), the lateral component of travel-time (difference between
the total travel-time and the vertical travel-time (equation 4.3)) remains coincident
with the origin of the experiment.

Similarly, exp(−iω cos θsτsz) is proportional to the Green’s function that propagates the

wavefield from the scattering point to the source (the origin of the experiment).

Following the logic in Claerbout’s imaging condition, we re-interpret the vertical travel-time

axis so that the wavefield is coincident (in depth) with the scattering point at zero vertical

travel-time. Under this new frame of reference, τsz is negative and τgz is positive, so that

equation 4.2 becomes,

α(kgx − ksx, z;ω) ∝ e−iω cos θgτgzψs(kgx, zg|ksx, zs;ω)eiω cos θsτsz . (4.4)

In equation 4.4, we see that both Green’s functions propagate the wavefield toward the depth

of the scattering point, but in the shifted frame of reference, exp(iω cos θsτsz) is propagating

the wavefield through negative vertical travel-time τsz (Figure 4.1 gives a schematic, showing

the shift of the time axis).

We note that the shift of the travel-time axis origin is limited to its vertical component.

Therefore, in the projection of travel-time onto the horizontal, the time origin for the exper-

iment remains at xs (illustrated in Figure 4.1). This leads to a further consequence, namely

that when travel-time t = 0 is coincident with the scattering point in depth, it is also coinci-

dent with the source location in the lateral dimensions. In turn, this affects our expectation

of α(xg,xs, z), and which is also described by the imaging condition. In particular, we

assume that within this new frame of reference the adjoint experiment is causal, meaning

that for t < 0 the wavefield is null. This means that in equation 4.4, α(kgx − ksx, z), or

equivalently α(xg,xs, z), will have energy only where xg is coincident with xs.

The preceding description of Claerbout’s imaging condition allows us to place our prior
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expectation onto α(xg,xs, z). Namely, its energy is isolated to where xg = xs, and where

there is some non-zero scattering potential. In migration, it is typically assumed that the

reference velocity c0 is chosen so that in depth the scattering potential is sparse, tracking

the earth’s reflectors. Therefore, in each pre-stack common shot image gather (or common

midpoint image gather), the scattering potential will be sparse.

4.3 Sparse inversion

The inversion method that we use is posed as the minimization of an objective function,

similar to Wang and Sacchi (2007), and Sacchi et al. (1998). We let d be observed seismic

data organized in adjacent common shot or common midpoint data gathers in space and

frequency, so that its realizations are taken from ψs(xg, zg|xs, zs;ω). Likewise, we let m

be the scattering potential organized in adjacent common image gathers, and realized from

α(xg,xs, z). Additionally, we let A be the split-step wavefield modelling operator derived

in Chapter 2. The methods for mapping from the continuous functions and operators to

vectors m and d, and the matrix A were shown in Chapter 3. Finally, we define a noise

vector, n = d−Am.

We derive a cost function for minimization using Bayes rule. From this, we find a set of

non-linear normal equations that are solved using iterative re-weighted least squares (IRLS).

To proceed, we let d, m and n be random vectors, and state Bayes rule (e.g. Ulrych et al.,

2001),

p(m|d) =
p(d|m)p(m)

p(d)
, (4.5)

where the denominator,

p(d) =

∫ ∞

−∞
p(d|m)p(m)dm, (4.6)

is constant. It is constant because d is given (the observable), and it integrates over all

possible choices for m. In the numerator of equation 4.5, p(d|m) is called the data likelihood

function, and is a measure of how well the forward modelled data matches the observed data.

The numerator also houses the prior probability density function for the model p(m) (in

our case, the model is the scattering potential in common shot, or common midpoint, image

gathers). Finally, p(m|d) is the posterior probability density function. In what follows, we

consider the data-likelihood and the prior probability density functions separately before

substituting them in Bayes rule, giving the posterior probability density function. To find

an optimal realization of m, we maximize the posterior density. The resulting estimate of

m is called the maximum posterior probability (MAP) estimator.

First, we consider the data likelihood probability density function, letting p(d|m) = p(n),
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and where we take the components of n, ni, i = 1 . . .M to be independent Gaussian

distributed random variables such that ni ∼ N(0, σn(i))
1, and,

p(n) =

M∏

i=1

p(ni) =

M∏

i=1

1√
2πσn(i)

exp

(
− n∗ini

2σ2
n(i)

)
, (4.7)

where n∗i is the complex conjugate of ni, and σn is the standard deviation of the ni for

all i. Given a mean and variance, and in the absence of other information, equation 4.7

is the maximum entropy distribution for the noise vector (see Appendix F.1, or Cover and

Thomas, 2006, Ch. 12), and therefore, we can consider it to be a suitable choice for the

data-likelihood probability density function.

Second, we consider, in equation 4.5, the prior probability density function p(m). We

let mi, i = 1 . . . N be the components of m. We assume that mi are independently

and identically distributed random variables so that, as with the data likelihood, p(m) =

p(m1)p(m2) . . . p(mN ). Finally, we assume that mi, i = 1 . . . N are distributed as Cauchy

probability density functions. Hence,

p(m) =

N∏

i=1

1

2πσ2
m

(
1 +

m∗imi

2σ2
m

)−1

, (4.8)

where σm is called the scale parameter (e.g. Johnson and Kotz, 1972). It is interesting to

compare the Cauchy probability density function to the Gaussian probability density func-

tion. In Figure 4.2, we plot the Cauchy probability density function, along with the Gaussian

probability density function, and notice that the Cauchy function has longer tails than the

Gaussian function. The long tails increase the chance of recovering few large elements to

explain the energy in m, in turn giving its sparse character. In contrast, the Gaussian dis-

tribution lacks long tails so that if we used it for the prior, then the MAP estimator would

be more likely to explain the energy of m with many small elements clustered around zero,

rather than few (sparsely distributed) large elements. We note that using a Gaussian prior

probability function would, in particular, lead to a damped least-squares formulation (the

undamped least-squares solution was studied in Chapter 3).

Given the data likelihood in equation 4.7 and the prior in equation 4.8, we write down the

posterior probability density function, and find a realization of m, say m∗, such that it is

maximum (i.e. m∗ is the MAP estimator of m). In particular, substituting equations 4.7

1N(0, σn(i)) denotes a Gaussian probability density function with mean 0 and standard deviation σn(i)
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Figure 4.2: We plot probability density functions for the Gaussian and Cauchy dis-
tributions. The Cauchy distribution is the solid line, and the Gaussian distribution
is the dashed line. We notice that the Cauchy distribution has longer tails than the
Gaussian distribution, promoting a sparse solution for the MAP estimator.

and 4.8 into the numerator of equation 4.5, gives the MAP estimator,

m∗ = arg max
m

p(m|d) = arg max
m

M∏

i=1

exp

(
− n∗ini

2σ2
n(i)

)
N∏

i=1

(
1 +

m∗imi

2σ2
m

)−1

= arg max
m

exp

[
−

M∑

i=1

n∗ini
2σ2

n(i)

−
N∑

i=1

ln

(
1 +

m∗imi

2σ2
m

)]
(4.9)

= arg min
m

[
||Wdn||22 +

N∑

i=1

ln

(
1 +

m∗imi

2σ2
m

)]
, (4.10)

where Wd is a diagonal matrix such that its ith diagonal element is,

[Wd]ii =
1√

2σn(i)

. (4.11)

Equivalently, m∗ in equation 4.10 is found by minimization of the cost function,

φ(m) = ||Wd(d−Am)||22 +

N∑

i=1

ln

(
1 +

m∗imi

2σ2
m

)
. (4.12)

For convenience, we define a matrix Ŵd so that Wd =
√

2σ−1
n Ŵd, where in the simplest

case (when ni are identically distributed), Ŵd = I and I is the identity matrix. Taking the

gradient of equation 4.12 with respect to x, and setting this result to zero, gives the normal

equations, (
AHŴH

d ŴdA + σ2
nQ
)

m = AHŴH
d Ŵdd, (4.13)
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where Q is a diagonal matrix such that its ith diagonal element is,

[Q]ii =
(
σ2
m +m∗imi/2

)−1
. (4.14)

In equation 4.14, we recognize that Q is a function of the model m, and, therefore, equation

4.13 is nonlinear.

To solve the non-linear normal equations (4.13), we use IRLS, an iterative algorithm (e.g.

Scales and Gersztenkorn, 1988). During the course of each IRLS iteration Q is held con-

stant, making equation 4.13 temporarily linear, and allowing for a linear conjugate gradient

algorithm to solve for m. In turn, this solution updates Q before proceeding to the next

IRLS iteration. In particular, we let m0 = 0, and mj , k = 1, 2 . . . be the solution to equa-

tion 4.13 after the kth IRLS iteration. Additionally, we let Qk, k = 1, 2 . . . be the matrix Q

after the kth IRLS iteration. In each iteration, mk−1 is used to construct Qk according to

equation 4.14 (see Algorithm 4.1).

Algorithm 4.1 Iterative re-weighted least-squares

m0 = 0
for k = 1 to n do

construct Qk using mk−1

mk =
(
AHŴH

d ŴdA + σ2
nQk

)−1

AHŴH
d Ŵdd

obs (via conjugate gradients)

end for

Two parameters control the influences of the data likelihood and prior density function on

the inversion: the scale parameter in the Cauchy probability density function σm, and the

standard deviation of the noise σn. First, we consider the scale parameter. If we choose a

large scale parameter, so that for all i, [Q]ii >> m∗imi, then Q ∼ σ2
mI, and equation 4.13

becomes equivalent to the damped least-squares normal equations, giving a small, rather

than a sparse solution. If, on the other hand, σm << m∗imi, then a sparse solution is

promoted. However, if σm is chosen too small when mi are also small, the normal equations

become unstable due to the inversion in equation 4.14. Second, we consider the standard

deviation of the noise. The noise variance controls a trade-off between fitting the data and

honouring the prior distribution for the model. If we choose a small σn, then the inversion

will work to fit the data more than it works to honour the model prior. Conversely, a

large σn will work to honour the model prior more than it works to fit the data. The

noise variance plays an additional role, making the inversion well conditioned. We safely

(given the discussion in Chapter 3) assume that the matrix AHŴH
d ŴdA is rank-deficient,

and that σ2
nQ acts as a regularization term, giving a well-conditioned matrix for inversion.

Selecting σn too small will, therefore, produce ill-conditioned normal equations. Having said

that, in this thesis we solve the linearized normal equations using linear conjugate gradients
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so that choosing a small σn finds an optimal solution for the constructed Krylov space

(see Chapter 3). Within the context of Bayes, this is also called the maximum likelihood

solution, or, in other words, the solution that finds where p(d|m) is maximum.

In the two examples in Sections 4.5 and 4.6, we fix σm to a small number, promoting a sparse

solution, and then choose σn based on an L−curve analysis. In this analysis (e.g. Lawson and

Hanson, 1974), we plot data misfit versus model norm, and where the curve is parameterized

by σn. The resulting curve tends to be shaped like the letter L. We use the heuristic that the

optimal σn is found at the bend in the L, or, in other words, where the second derivative of

the curve is maximum. We take a liberty here, as the L− curve analysis is typically used in

the damped least-squares problem, and here we apply it to normal equations derived using

a sparse regularization; although, recently it has been studied for the class of L1 problems

using the related Pareto curves (Hennenfent et al., 2008).

4.4 Inversion with a mixed norm Cauchy-Gaussian

model prior

Thus far, we have motivated a sparse (Cauchy) model prior using Claerbout’s imaging

condition. In particular, we argued that each common shot, or common midpoint, image

gather is characterized by a sparse prior probability density function. While this prior

is effective, it lacks fair treatment of all model dimensions. While it justifiably accounts

for sparsity in depth and offset, it neglects to justify its prior for the shot dimensions (in

the case of common shot image gathers) or midpoint dimensions (in the case of common

midpoint image gathers). In this section, we consider the problem for common midpoint

image gathers, so that in the midpoint dimension, we assume only the mean and variance of

the corresponding prior probability density function. This means that, as was the case for

the data likelihood, a Gaussian prior is applicable. Hence, we would like to characterize the

model with a Gaussian prior in the midpoint dimensions, and a sparse prior in the depth

and offset dimensions. This idea is also mentioned in Herrmann (2009), and can be thought

of as an extension to the sparse inversion discussed in Section 4.3 and Kaplan (2008). The

solutions of this type for general inversion problems are discussed in, for example, Kowalski

and Torrésani (2009) (and references therein) and are applied to a geophysical problem in

Rodriguez et al. (2010). The method results in what is commonly referred to as a mixed

norm. In this section we describe the changes to the sparse inversion shown in Section 4.3

when the mixed norm is substituted for the norm resulting from the Cauchy model prior.
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In equation 4.9 the contribution from the model prior probability density function is,

φc(m;σm) =

N∑

i=1

ln

(
1 +

m∗imi

2σ2
m

)
, (4.15)

so that equation 4.9 can be written as,

m∗ = arg max
m

exp

[
−

M∑

i=1

n∗ini
2σ2

n(i)

− φc(m)

]

The function φc is the model norm for the sparse prior. The mixed norm replaces φc with

φc,g so that,

φc,g(m;σm) =

Nc∑

i=1

ln


1 +

(√∑Ng

j=1m
∗
i,jmi,j

)2

2σ2
m


 . (4.16)

In equation 4.16 the elements of m are mi,j for i = 1 . . . Nc and j = 1 . . . Ng, and where

N = NcNg, so that,

mT =
[
m1,1 m1,2 · · · m1,Ng m2,1 m2,2 · · · mNc,Ng

]
.

In the language of the mixed norm (Kowalski and Torrésani, 2009), i indexes the group

and j indexes the members of the ith group. In other words, the model norm function in

equation 4.16 assigns a Gaussian-like prior among the members of each group, and assigns

a Cauchy-like prior across groups. For the regularized migration in this section, then, we

assign the midpoint dimension to the index j, and we assign the depth and offset dimensions

to the index i. In turn, this assigns a Gaussian-like prior to the midpoint dimension and a

Cauchy-like prior to the depth and offset dimensions.

The insertion of the mixed norm in equation 4.16 leads to the normal equations (4.13), but

with Q replaced with a new matrix Qc,g and which is derived from the mixed norm φc,g.

In particular, taking the gradient of φc,g with respect to m gives,

∇φc,g(m) = 2Qc,gm,

where Qc,g is a diagonal matrix such that its ith diagonal element is,

[Qc,g]ii =

(
σ2
m +

∑Ng

j=1m
∗
k,lmk,l

2

)−1

,

and where i = kM + l, but where we note that the value of [Qc,g]ii is independent of the
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index l.

In the example in Section 4.6 we show, in addition to the sparse inversion described in

Section 4.3, the mixed norm inversion described in this section and which gives a more

robust result. We, of course, attribute this robustness to the prior information removed

(sparsity) from the midpoint dimension. We note that the mixed norm solution is engineered

from rather than derived from Bayes theorem. That is, we did not find equation 4.16 by

the direct application of Gaussian and Cauchy density functions to Bayes theorem. Instead,

we substituted a new model norm for equation 4.15 that retained, for the groups, the form

that follows from a Cauchy prior, but uses the L2 norm for the members within each group,

and which is motivated by a Gaussian prior. While this engineered result lacks rigour, its

appeal to our intuition, and its utility (as will be seen in Section 4.6) warrants its inclusion

in our discussion.

4.5 Example: point diffractor

The model and data for the first example are shown in Figure 4.3. Figure 4.3a plots the

reference velocity model c0(x, z), and Figure 4.3b plots the earth’s velocity model so that

the scattering potential is the point diffractor shown in Figure 4.3b. Using the model in

Figure 4.3b, we conduct a synthetic reflection seismic experiment. We place a seismic source

and geophones at depth zm = 350m, and work to construct common midpoint data gathers

by conducting several experiments where in each experiment, the lateral positions of the

source and geophones are changed. The midpoints run between 0m and 400m, spaced every

20m, and the offsets ((xg−xs)/2) are spaced every 10m, again, between 0m and 400m. Data

is generated one shot gather at a time using a finite difference approximation (with a stencil

that is 4th order in space, and 2nd order in time) to the scalar wave-equation with absorbing

boundary conditions. The data are plotted in Figure 4.3c. To construct the L− curve, we

let σm = 10−5, and solve equation 4.13 for several realizations of σn, generating the curve

in Figure 4.4. The figure is annotated with values of σ2
n (the noise variance).

In Figure 4.4 we see the expected behaviour of the L − curve. Namely, as σn increases so

does the data misfit, while the model norm decreases. Conversely as σn is made smaller, the

data misfit shrinks, and the model norm grows. Moreover, we see the bend in the L− curve
(where σ2

n ≈ 0.004), which is typically identified with the optimal choice for σn. We consider

the solution for three choices of σn that represent three regimes on the L− curve. First, we

consider the case where σ2
n = 0.1 where honouring the model prior is more important than

fitting the data. Second, we consider the case where σ2
n = 0.00001, and where the model

prior is given little to no weight. Third, we use the optimal choice of σn, where the second

derivative of the L− curve is maximum.
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Figure 4.3: Point diffractor example: a) the reference velocity model, b) the earth’s
velocity model, and c) the data. The units for the colour-bars are metres per second.
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Figure 4.4: Point diffractor example, the L−curve computed from several instances
of the MAP estimator for equation 4.13. Each instance of the MAP estimator
corresponds to a different choice for σn. The values of σ2

n are annotated along the
curve.

Figure 4.5 plots the results for σ2
n = 0.1. Figure 4.5a is m1, the solution after the first

IRLS iteration, and Figures 4.5b and 4.5c are, respectively m2 and m3, the solutions after

the second and third IRLS iterations. The solution m2 has the desired sparse character,

but very small amplitudes. The small amplitudes are afforded by our choice of σn which

doesn’t require the model to fit the data. Due to the small amplitudes, the solution becomes

unstable, and diverges from the sparse solution. This is evident in Figure 4.5c where the

solution becomes less sparse, as compared to Figure 4.5b.

Figure 4.6 plots the results for σ2
n = 0.00001, giving, effectively, the maximum likelihood

(minimum norm) solution. In other words, the algorithm makes a best effort to fit the

data while ignoring the model norm. This makes the problem essentially linear, allowing

convergence in one IRLS iteration. Figures 4.6a-c show the results (common midpoint

image gathers) after, respectively, the first, second and third IRLS iterations, and illustrates

convergence in one iteration.

Finally, Figure 4.7 plots the optimal solution (according to the heuristic of the L− curve)
for our particular choice of the Cauchy scale parameter σm, and in Figures 4.7a-c we show

the result after, respectively, the first, second and fifth IRLS iterations. This solution gives

both a sparse solution, and a solution that adequately (within the bounds of the split-step

approximation to the physics) fits the data. We note that for this example the sparse prior

is applicable in all dimensions of the model, including the midpoint dimension.
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4.6 Example: specular reflections

To convince ourselves that the method has merit for data containing specular reflections,

as well as the point diffractor in the previous example, we repeat the same experiment.

But this time, we use the earth model in Figure 4.8b, and the reference velocity model in

Figure 4.8a. As before, we plot the data in Figure 4.8c. Since the reflectors are purely

specular, an image of the reflectors (in time) can be seeing by looking at a zero-offset slice

through the data (shown on the right side of the data cube in Figure 4.8c). We note that

we expect the specular reflector to produce a model that is not sparse in the midpoint

dimension. Therefore, we compare the sparse inversion (Section 4.3) result with the mixed

norm (Section 4.3) result, the latter of which does not impose a sparsity assumption in the

midpoint dimension.

As in the previous example, we set σm = 10−5, and search for an optimal σn using the

L − curve analysis. The L − curve is shown in Figure 4.9a for the sparse inversion, and

Figure 4.9b for the mixed norm inversion. Again, we plot solutions for three choices of σn

where we either under-fit the data (Figure 4.10), over-fit the data (Figure 4.11), or chose the

optimal solution (where the second derivative of the L− curve is maximum (Figure 4.12)).

For the sparse inversion, the results, even for the optimal σn, are less convincing than

the point-diffractor example. Nonetheless, in the offset dimension the solution becomes,

as expected, more sparse. In contrast, and as expected, the results from the mixed norm

inversion are sparse in offset and depth, but maintain the character of the reflector in

midpoint.

4.7 IRLS convergence

As already mentioned, IRLS is used to produce the results in this chapter. IRLS is an

iterative algorithm used to solve equation 4.13 in which Q is a function of m, making the

equation nonlinear. However, during the course of each IRLS iteration Q is held constant,

making equation 4.13 temporarily linear, and allowing for a linear conjugate gradient algo-

rithm to solve for m. In turn, this solution updates Q before proceeding to the next IRLS

iteration. Therefore, there are two levels of convergence that need to be considered. The

first is the convergence of Q, and the second is the convergence of the conjugate gradient

algorithm at each IRLS iteration. Further, we expect that at the conclusion of each IRLS

iteration, the recovered model (common image gathers) will reproduce, within the bounds

of some misfit, the data (common midpoint gathers) according to the forward operator

(equations 2.10 and 2.16). That is, we assume two things: first that the inverse problem is
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Figure 4.8: Specular reflection example, a) the reference velocity model, b) the
earth’s velocity model, and c) the data. The units for the colour-bars are metres
per second.
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Figure 4.9: Specular reflection example, the L − curves computed from several
instances of the MAP estimator for equation 4.13, using a) Q (the sparse norm)
and b) Qc,g (the mixed norm). Each instance of the MAP estimator corresponds
to a different choice for σn. The values of σ2

n are annotated along the curves.

inherently under-determined, and second that the approximation to the physics (split-step

de-migration with a reference velocity model) does not model the data without error. Fig-

ure 4.13 illustrates convergence for the specular reflection example. In particular, it plots

the data misfit for each of the five IRLS iterations, illustrating the desired convergence at

each IRLS step, as well as the convergence of the IRLS algorithm. Finally, we note that

while IRLS has a history of use in sparse inversion problems (e.g Sacchi et al., 1998), its

convergence under certain conditions was only recently shown (Daubechies et al., 2010).

4.8 Summary

In this chapter, we discussed novel regularization techniques for source-receiver migration.

In particular, our choice of model space (pre-stack common midpoint or common shot image

gathers) allowed us to assume that within each gather the solution is sparse. We motivated

the assumption using the imaging condition, and illustrated its use with two synthetic data

examples. In the first example, we used a point diffractor, and in the second a model that

produced specular reflections. In addition, we used a mixed norm to remove the sparsity

assumption from the midpoint (or shot) dimension. Not surprisingly, the mixed norm so-

lution gave more robust results, especially when applied to the specular reflection example
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Figure 4.13: Point diffractor example, a) the data misfit and b) the model norm,
both plotted against the conjugate gradient iteration. Each curve is produced by
its corresponding IRLS step, with five IRLS iterations in total.
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in Section 4.6. While the examples give promising results, further tests on more compli-

cated data (containing a more realistic sequence of reflectors) showed a lack of robustness,

often improving the resolution of some reflectors, while destroying the continuity of others.

Hence, there is an opportunity (see Chapter 9 for ideas) for further research to improve the

robustness of the method.



CHAPTER 5

Derivation of forward and adjoint operators for

shot-profile least-squares migration

5.1 Introduction

In Chapter 2, we derived wavefield modelling (forward) and migration (adjoint) operators for

least-squares migration using a Gazdag-like algorithm and the split-step approximation. In

doing so, we chose a source-receiver parameterization for the scattering potential α such that

its lateral dimensions are parameterized by the pre-stack acquisition geometry (source and

receiver locations or midpoint and offset locations). The source-receiver parameterization

fell out of the mathematics, and can be attributed to the representation of the Green’s

function in Section 2.3. In equation 2.6, for example, the Green’s function is represented

in a mix of space and wave-number coordinates. The resulting wavefield modelling and

migration algorithms are typically referred to as either survey-sinking or double-square-root

migration. In these approaches to migration the Fourier transform of the scattering potential

α(x, z) is α(kgx − ksx, z), and where kgx − ksx is the Fourier conjugate variable of lateral

space x. In turn this allows the parameterization of α in terms of the acquisition geometry

so that, by extension, we write α(kgx,ksx, z) and α(xg,xs, z) (see for example equation 2.11

in Chapter 2).

In this chapter, we derive similar split-step wavefield modelling (forward) and migration (ad-

joint) operators for the shot-profile parameterization of the scattering potential. In contrast

to the source-receiver parameterization, the lateral dimensions of α need not be related to

the acquisition geometry. Moreover, the shot-profile parameterization lends to shot-profile

wavefield modelling and migration operators that are applicable to a single shot gather.

Although the equivalence between the shot-profile and source-receiver geometries has been

shown (Wapenaar and Berkhout, 1987; Biondi, 2003), from a practitioner’s point of view

the difference in the respective parameterizations of the pre-stack migrated image gathers

is interesting (Jeannot, 1988). First, it has a practical advantage in that implementing an

78
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algorithm applicable to one shot is more flexible than implementing an algorithm applicable

to an entire three dimensional seismic survey. Second, it allows for more flexible distribu-

tions of seismic source energy (i.e. the forcing term in the Helmholtz equation). This is the

subject of blended migration and is discussed in, for example, Sava (2007), Berkhout et al.

(2009) and Dai and Schuster (2009). Third, the shot-profile parameterization will allow for

the data reconstruction algorithms that we introduce in Chapter 6.

We begin with the shot-profile derivation of the wavefield modelling (forward) and migration

(adjoint) operators using the shot-profile geometry and the Born approximation. Previously,

Rickett (2001, 2003) described similar algorithms for wavefield modelling and migration

using operator notation. In this chapter, we write down, explicitly, the algebra, and use

the operators in a least-squares migration algorithm, showing results from two examples.

The first uses a four layer acoustic model, and corrupts the data with random noise and

dead traces. The second example uses a single shot gather from the Sigsbee 2a model. Not

surprisingly, the derivation of the shot-profile wavefield modelling and migration operators is

similar to the derivation of the analogous source-receiver operators presented in Chapter 2.

The main difference lies in the formulation of the Green’s functions, and this, in turn,

leads to the shot-profile parameterization of the scattering potential, and the shot-profile

operators. A further consequence of the shot-profile parameterization is that the algorithm

can be applied one shot at at time. This is in contrast to the source-receiver geometry

which requires a rectilinear grid such that all four dimensions of the survey acquisition are

considered simultaneously (see Section 2.7).

5.2 Shot-profile wavefield modelling

As was done in Chapter 2 for the source-receiver parameterization of the scattering potential,

we outline the construction of the wavefield modelling (forward) operator, but this time for

the shot-profile parameterization of the scattering potential. In particular, we use the Born

approximation to the wavefield in which 1) we note the form of the Green’s function in space

and frequency for a constant reference velocity, 2) we modify the Green’s function using the

split-step approximation, and 3) use the Green’s function in a Gazdag-like algorithm in

analogy to a similar derivation in Chapter 2. The end result of our derivation is the shot-

profile wavefield modelling operator, and which in the literature is often called shot-profile

de-migration.

The Born approximation to the wavefield was given in equation 2.2. In particular, we wrote

ψ = ψd + ψs where ψ is the wavefield, ψd = f(ω)G0 is the direct wavefield, and ψs is

the scattered wavefield (equation 2.4). Integral to the Born approximation is the Green’s

function G0, and to find a shot-profile parameterization of the scattering potential, we use
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a Green’s function represented in space and frequency. In particular, we use the Green’s

function in equation 2.6, but after taking its two-dimensional Fourier transform over the

geophone wave-number dimensions kgx. In addition, we replace xg with x and kgx with kx

so that,

G0(x, z|x′, z′;ω) =

(
1

2π

)2 ∫ ∞

−∞

(
− 1

i4kz

)
e−ikx·(x′−x)eikz|z−z

′|dkx. (5.1)

The change of notation reminds us that in the derivation of the shot-profile wavefield mod-

elling operator, the parameterization of the scattering potential is independent of the survey

geometry. For the sake of completeness, we write down the corresponding dispersion rela-

tion,

kz = sgn(ω)

√
ω2

c20
− kx · kx,

which is analogous to the dispersion relations in equation 2.8.

To allow for the reference velocity model c0 to vary in its lateral dimension so that c0 = c0(x),

we again apply the split-step approximation in equation 2.17 to the Green’s function in

equation 5.1 so that it becomes,

G0(x, z|x′, z′;ω) = eiω(c−1
0 (x)−c−1

1 )|z−z′|
(

1

2π

)2 ∫ ∞

−∞

(
− 1

i4kz

)
e−ikx·(x′−x)eikz|z−z

′|dkx,

(5.2)

where,

kz = sgn(ω)

√
ω2

c21
− kx · kx, (5.3)

and c−1
1 is the mean of c−1

0 (x).

To allow the migration velocity model c0 to vary in both x and z we employ, in conjunction

with equation 5.2, the wavefield propagator described in Gazdag (1978) and Section 2.4.1

of this thesis. In particular, the reference velocity c0(x, z) is partitioned into nz domains

(layers), and the contribution to the total scattered wavefield from the lth layer is given by

ψs(l). The total total scattered wavefield is given by the sum over the terms ψs(l), l = 1 . . . nz

(see equation 2.10). Recall that within each layer there is a corresponding Green’s function

G0(l) (equation 5.2) built using its constant (with respect to depth) reference velocity c0(l)(x)

that, in turn, approximates c0(l)(x, z) for zl−1 ≤ z < zl. Moreover, to accommodate the

split-step approximation in Dl, we let c−1
1(l) be the mean of c−1

0(l)(x). As in Chapter 2, we

derive expressions for ψs(1) and ψs(2), using these to infer a general form for ψs(l).

In the first layer D1, we define a measurement surface z0 so that zg = zs = z0, and substitute
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G0(1) into equation 2.4 finding (see Appendix D),

ψs(1)(xg, z0|xs, z0;ω)

=

(
ω

c1(1)

)2(
1

2π

)4 ∫ z1

z0

u1
s(1)F∗gu1

p(1)Fg
[
u1
s(1)F∗gu1

p(1)g(kgx,xs, ω)
]
α(xg, z

′)dz′,

(5.4)

where Fg denotes the unnormalized two-dimensional Fourier transform over lateral coordi-

nates xg, and F∗g its adjoint operation, so that the corresponding inverse Fourier transform

is (2π)−2F∗g . The functions u1
p(1) and u1

s(1) in equation 5.4 are analogous to up(1) and

us(1) in, respectively, equations 2.12 and 2.21 which were used in the source-receiver wave-

field modelling and migration operators (they can be thought of as their single-square-root

counter-parts). In particular, u1
p(1) is,

u1
p(l)(kgx, z

′;ω) = −e
ikgz(l)(z

′−zl−1)

i4kgz(l)
, (5.5)

and u1
s(1) is,

u1
s(l)(xg, z

′;ω) = e
iω(c−1

0(l)
(xg)−c−1

1(l)
)(z′−zl−1)

, (5.6)

both for l = 1. The function,

g(kgx,xs, ω) = f(ω)e−ikgx·xs , (5.7)

is the synthetic source used in shot-profile migration algorithms, and kgz(l) is short-hand for

kgz(c1(l)) given by the dispersion relation in equation 5.3. To simplify the notation in this

chapter, we will drop the 1 in the superscripts of u1
p(l) and u1

s(l), while remembering that we

are using the shot-profile rather than the source-receiver operators. Equations 5.5 and 5.6

are constructed from G0(l), governing the propagation of energy in Dl. The detailed relation

between G0(l), up(l), us(l) and g are presented in Appendix D, and the physical meaning

of the Green’s functions in modelling the wavefield was given in Chapter 2. In addition,

we made a simplifying approximation for one of the amplitude terms in equation 2.4 before

arriving at equation 5.4. Namely, we let,

(ω/c0(l)(x
′))2α(x′, z′) ≈ (ω/c1(l))

2α(x′, z′), (5.8)

and continue using this simplification in the remaining derivations.

The construction of ψs(2) follows the same three step procedure outlined in Chapter 2, but

using the Green’s function from equation 5.2, and gives the following contribution to the
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scattered wavefield from the second layer (see Appendix D),

ψs(2)(xg, z0|xs, z0;ω) =

(
ω

c1(2)

)2(
1

2π

)8 ∫ z2

z1

us(1)F∗gup(1)Fgus(2)F∗gup(2)Fg

×
[
us(2)F∗gup(2)Fgus(1)F∗gup(1)g(kgx,xs, ω)

]
α(xg, z

′)dz′,

(5.9)

where up(2) and us(2) are given by, respectively, equations 5.5 and 5.6 with l = 2. General-

izing to the lth layer Dl, we find,

ψs(l)(xg, z0|xs, z0;ω)

=

(
ω

c1(l)

)2(
1

2π

)4l ∫ zl

zl−1

us(1)F∗gup(1)Fgus(2)F∗gup(2)Fg · · ·us(l)F∗gup(l)Fg

×
[
us(l)F∗gup(l)Fgus(l−1)F∗gup(l−1)Fg · · ·us(1)F∗gup(1)g(kgx,xs, ω)

]
α(xg, z

′)dz′,

(5.10)

where, again, up(l) and us(l) are given by equations 5.5 and 5.6.

The wavefield modelling operator is, then, defined by equations 2.10 and 5.10. To develop

an efficient implementation, we must analyze the sum in equation 2.10. We begin by adding

ψs(1) and ψs(2), approximating the integrals with sums, so that,

ψs(1) + ψs(2)

= ∆zus(1)F∗gup(1)Fg{(2π)−4(ω/c1(1))
2[us(1)F∗gup(1)g(kgx,xs, ω)]α(xg, z1)

+ (2π)−8(ω/c1(2))
2us(2)F∗gup(2)Fg[us(2)F∗gup(2)Fgus(1)F∗gup(1)g(kgx,xs, ω)]α(xg, z2)},

(5.11)

where we assume a constant thickness ∆z for each layer Dl. In equation 5.11, we arranged

terms such that an iteration and a recursion can be recognized. In particular, generalizing

to nz layers, we recognize in equation 5.11 an iterative method for downward continuing the

source side wavefield into the earth,

vs(1)(xg, ω; xs) = us(1)F∗gup(1)g(kgx,xs, ω)

vs(l)(xg, ω; xs) = us(l)F∗gup(l)Fgvs(l−1) , l = 2 . . . nz.
(5.12)

We recognize a recursion (l = nz . . . 1) for constructing the wavefield at the measurement

surface,

ψs(xg, z0|xs, z0;ω) = ∆zv1

vl(xg, ω; xs) = us(l)F∗gup(l)Fg
(
vs(l)(2π)−4l(ω/c1(l))

2α(xg, zl) + vl+1

)
,

(5.13)



CHAPTER 5. SHOT-PROFILE LEAST-SQUARES MIGRATION 83

vs(l)

×us(l)F∗
gup(l)Fg

×us(l)F∗
gup(l)Fg

vs(l+1) v(l)

g(xg,xs, ω) v(l−1)

+vs(l)α(zl)

ψs(xg, ω;xs)

Figure 5.1: We illustrate the split-step shot-profile wavefield modelling operator in
equations 5.12 and 5.13 using a flow-chart. The left-hand side is the iteration in
equation 5.12, and the right-hand side is the recursion in equation 5.13.

where vnz+1 = 0. Hence, as noted in Rickett (2001), the algorithm requires two passes

through depth, first to compute and store vs(l) in equation 5.12, and second to compute the

recursion in equation 5.13.

Equations 5.12 and 5.13 constitute an algorithm for wavefield modelling which is, in other

words, the forward operator for shot-profile least-squares migration. Because we have pa-

rameterized the equations for the shot-profile geometry rather than the source-receiver ge-

ometry, we can model each shot gather independently. Figure 5.1 provides a flow-chart for

the split-step shot-profile wavefield modelling operator. The left-hand side of the flow-chart

illustrates the iteration in equation 5.12 which propagates the source side wavefield into the

earth, saving it at each depth step (denoted by the index l). The right hand-side of the

flow-chart denotes the recursion in equation 5.13, showing the construction of the wavefield.

The flow-chart depicts a recursion that begins at depth and terminates at the measurement

surface.

5.3 Shot-profile wavefield migration

Equations 2.10 and 5.10 are wave-equation shot-profile wavefield modelling using split-step

operators. For least-squares shot-profile migration, they are the forward operator. In this
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section, we compute the corresponding adjoint operator, enabling a least-squares formula-

tion.

To proceed, we rewrite the forward operator (equations 2.10 and 5.10) so that a discretized

Fredholm integral equation of the first kind is recognized. In particular, we have for lateral

shot location xs,

ψs(xg, z0|xs, z0;ωj) = ∆z
∑

l

u(ωj , zl; xg,xs)α(xg, zl; xs), (5.14)

where ωj is some realization of ω, and,

u(ωj , zl; xg,xs) = (2π)−4l(ω/c1(l))
2

× us(1)F∗gup(1)Fg · · ·us(l)F∗gup(l)Fg
[
us(l)F∗gup(l)Fg · · ·us(1)F∗gup(1)g(kgx,xs, ωj)

]
.

(5.15)

With de-migration cast into the form of equations 5.14 and 5.15, we write down their adjoint

(e.g. Hansen, 1998),

α†(xg, zl; xs) = ∆z
∑

j

u∗(ωj , zl; xg,xs)ψs(xg, z0|xs, z0;ωj), (5.16)

where, as before, (·)∗ denotes the adjoint, so that,

u∗(ωj , zl; xg,xs) = (2π)−4l(ωj/c1(l))
2

×
[
u∗s(l)F∗gu∗p(l)Fg · · ·u∗s(1)F∗gu∗p(1)g

∗(kgx,xs, ωj)
]
u∗s(l)F∗gu∗p(l)Fg · · ·u∗s(1)F∗gu∗p(1)Fg,

(5.17)

and we have used,

(F∗gup(l)Fg)∗ = F∗gu∗p(l)Fg.

In the adjoint (equations 5.16 and 5.17), we recognize an example of the often studied shot-

profile migration algorithm (e.g. Sava and Hill, 2009). In particular, there are two iterations

for the downward continuation of the source and receiver side wavefields, as well as the

imaging condition (the sum over frequency indices j in equation 5.16). In particular, the

iteration that downward continues the source side wavefield from depth index l−1 to depth

index l is,

v∗s(1)(xg, ωj ; xs) = u∗s(1)F∗gu∗p(1)g
∗(kgx,xs, ωj)

v∗s(l)(xg, ωj ; xs) = u∗s(l)F∗gu∗p(l)Fgv∗s(l−1) , l = 2 . . . nz.
(5.18)
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Second, the downward continuation of the receiver side wavefield is,

v∗r(1)(xg, ωj ; xs) = u∗s(1)F∗gu∗p(1)Fgψs(xg, z0|xs, z0;ω)

v∗r(l)(xg, ωj ; xs) = u∗s(l)F∗gu∗p(l)Fgv∗r(l−1) , l = 2 . . . nz,
(5.19)

so that equation 5.16 becomes,

α†(xg, zl; xs) = ∆z
∑

j

(
ω

c1(l)

)2(
1

2π

)4l

v∗s(l)(xg, ωj ; xs)v
∗
r(l)(xg, ωj ; xs). (5.20)

Equations 5.16 and 5.17 constitute split-step shot-profile migration, and for efficiency is

implemented using the iterations (source and receiver side wavefield continuation operators)

in equations 5.18 and 5.19, and the imaging condition (cross correlation of the source and

receiver side wavefields) in equation 5.20. It is interesting to note that this constitutes

our physical interpretation of the adjoint operator, and was not, as is often the case, used

to motivate its construction. A schematic of the algorithm is shown in the flow-chart in

Figure 5.2.

5.4 Shot-profile least-squares migration

Following the same methodology as previous chapters (Chapters 3 and 4), we let d be a

vector of length M realized from ψs(xg, z0|xs, z0;ω), and where,

M =

ns∑

q=1

nωng(q),

ns are the number of shot gathers, ng(q) are the number of geophones in the qth shot gather,

and nω are the number of frequencies. Likewise, we let m be a vector of length N realized

from α(xg, z; xs), where,

N =

ns∑

q=1

ng(q)nz,

and, as before, nz are the number of depths in the migrated image gathers. Then we let A

be the M × N matrix built from the shot-profile wavefield modelling operator defined by

equations 5.12 and 5.13, and AH its adjoint (migration operator) defined by equations 5.16

and 5.17. Then A maps from m to d, and to find optimal migrated images, we solve the

set of least-squares normal equations,

(AHWH
d WdA + µI)m = AHWH

d Wdd, (5.21)
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vr(l)vs(l)

×u∗s(l)F∗
gu

∗
p(l)Fg ×u∗s(l)F∗

gu
∗
p(l)Fg

vs(l+1) vr(l+1)

∑
ω

×

α†(zl+1)

g∗(xg ,xs, ω) ψs(xg, ω;xs)

Figure 5.2: We illustrate the shot-profile split-step migration operator using a flow-
chart. The left-hand and right-hand sides of the flow-chart depict the downward con-
tinuations of, respectively, the source- and receiver-side wavefields (equations 5.18
and 5.19). The imaging condition in equation 5.20 is depicted in the × and

∑
ω

entries of the flow-chart.



CHAPTER 5. SHOT-PROFILE LEAST-SQUARES MIGRATION 87

for m. The least-squares normal equations can be found from a suitable interpretation

of Bayes formula. We neglect the derivation as it follows analogously to the derivation

of the normal equations in Chapter 4, except where, here, we use a Gaussian distribution

(with independent and identically distributed random variables) rather than the Cauchy

distribution for the model prior. In equation 5.21, Wd is a data weighting matrix derived

from an estimate of the noise covariance matrix (see Chapter 4), and in this chapter is used

to allow for incomplete data. Finally, µ = σ2
n/σ

2
m is a trade-off parameter weighting the

relative importance of the data likelihood and model prior, and where σ2
n is the variance

of the noise in the observed data, and σ2
m is the variance for the model prior (Gaussian

probability density functions; again we refer the interested reader to Chapter 4). We solve

equation 5.21 by the conjugate gradient method, and implicit construction of the matrices

(see Chapter 3).

In building the least-squares system of equations, we have made some choices. For example,

we assume that equation 5.21 is for all shot gathers. That is, d contains all shot gathers

in the survey, and we solve equation 5.21 once. Alternatively, one could let d contain one

shot gather from the survey, and solve equation 5.21 once for each shot gather. However,

this choice should have no consequence on the character of the final result. Additionally,

we made a choice to represent α in the pre-stack domain, and the alternative post-stack

representation is discussed in Section 5.5. We are tasked with making these choices exactly

because of the shot-profile parameterization of the scattering potential. If, on the other

hand, we choose a source-receiver parameterization of the scattering potential (Chapter 2),

then data are required on some rectilinear grid in shot and receiver (or midpoint and offset)

coordinates. This is to accommodate the four dimensional Fourier transforms required by the

source-receiver split-step (de-)migration algorithm. Moreover, the model space becomes less

physical, as the offset coordinate does not have a one-to-one correspondence with the earth

model. Instead, it must be interpreted in terms of the source-receiver imaging condition

(Chapter 4).

The matrices in the least-squares normal equations (5.21) are large. For the Sigsbee 2a

example (Section 5.7) with 241 shots, A has approximately 200 million rows and 140 million

columns. This makes its explicit computation and storage infeasible, as was also illustrated

in Chapter 3. Instead, the construction is implicit so that, for example, given some m, we

compute d = Am using an operator that implements equations 5.12 and 5.13. Likewise,

given some d, we compute m† = AHd using an operator that implements equations 5.19 and

5.20. We verify that our operators make a forward/adjoint pair using the dot-product test

(e.g. Claerbout, 1992). The conjugate gradient algorithm allows us to solve the least-squares

normal equations with the forward/adjoint operators, and without the explicit storage of

the matrices, or their inverse matrices.
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5.5 Joint shot-profile least-squares migration

In Section 5.4, we chose to represent α in the pre-stack domain. One could alter the forward

operator A to include the sum over shots. This would shrink the size of the model space,

perhaps producing a more efficient inversion, but at the cost of a more restrictive model space

(fewer degrees of freedom). In Chapter 6 we introduce a data reconstruction algorithm that

requires a post-stack representation of α. In this chapter, we experiment with the post-stack

representation of α, described in this section, for its effect on the migrated image.

We can accommodate this post-stack representation of α by altering the definitions in Sec-

tion 5.4. In particular, we redefine m and N such that m becomes a vector of length N

realized from,

α(xg, z) =

ns∑

q=1

α(xg, z; xs(q)),

where q = 1 . . . ns, N = nzng, and ng are the number of geophones for any given shot.

Please note that this requires a common parameterization of the geophone dimensions for

all shots. It also requires us to redefine the matrix A. In particular we let Aq be the M ×N
matrix built from the shot-profile wavefield modelling operator defined by equations 5.12

and 5.13, and AH
q its adjoint (migration operator) defined by equations 5.16 and 5.17, all

for a single instance of xs: namely, xs = xs(q). Then, the matrix A is defined such that,

AH =
[

AH
1 AH

2 · · · AH
ns

]
,

and, as before, A maps from m to d. The definition of d remains unchanged from Sec-

tion 5.4. In the following sections, we show examples for which we solve for both the pre-

and post-stack least-squares representations of α.

5.6 Example: 4 layer acoustic model

For our first example, we consider the synthetic data in Figure 5.3b. The data is generated

using an acoustic finite difference code with absorbing boundary conditions (including no

free-surface), and the acoustic four layer model in Figure 5.3a. We collect shots spaced,

laterally, every 20 metres, and at a depth of 150 metres. In total there are 71 shots, and 281

geophones per shot. The geophones are spaced every 5 metres, and are at a depth of 150

metres. We add Gaussian random noise to the data so that the signal to noise ratio is 3,

and, at random, we replace sixty percent of the traces with dead (zero) traces. Due to the

missing traces, we let Wd in equation 5.21 be a diagonal matrix such that its ith diagonal
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element is,

[Wd]ii =

{
1 , i /∈ Id
0 , i ∈ Id,

(5.22)

where Id is the set of indices corresponding to dead traces in d.

We apply the adjoint to each common shot gather, giving common shot image gathers, and

then sum over the shot dimension, giving the result in Figure 5.3c. Likewise, we apply

least-squares migration to each common shot gather using the pre-stack parameterization of

the scattering potential (Section 5.4), and sum to give Figure 5.3d. The differences between

Figures 5.3c and d are (in travel-time) small, but there are differences in amplitude that,

arguably, make the reflectors more visible in the inverse, as compared to the adjoint. Finally,

we apply least-squares migration using the post-stack parameterization of the scattering

potential (Section 5.5) to give the result in Figure 5.3e. In this later case, the improvement

of the least-squares migration result over the migration (adjoint) result are more obvious.

In particular, we see that the quality of the reflectors is enhanced.

In Figure 5.4, we apply the forward (wavefield modelling) operator to the migrated data

found by inversion, giving Figure 5.4c for the pre-stack parameterization of the scattering

potential (Section 5.4) and Figure 5.4e for the post-stack parameterization of the scattering

potential (Section 5.5). Figure 5.4b is the corresponding shot gather in the input data,

and Figure 5.4a is its noise-free counter-part. Finally, Figure 5.4d is the difference between

the reconstructed data and the noise-free data using the pre-stack parameterization of the

scattering potential, and Figure 5.4f is the same, but for the post-stack parameterization

of the scattering potential. Given that the pre-stack parameterization gives more degrees

of freedom to the model then the post-stack parameterization, it is reasonable that the

residual in the pre-stack (Figure 5.4d) case is less than the residual in the post-stack case

(Figure 5.4f).

5.7 Example: Sigsbee 2a data

For our second example, we consider the Sigsbee 2a model from the SMAART JV project

(Bergsma, 2007). We use finite-difference data obtained from the Madagascar project (Irons,

2007). The portion of the model that we consider is shown in Figure 5.5a, and Figure 5.5b

is the velocity model used for migration. Figure 5.5c plots the one-and-only shot gather

that we use in this example. Since we are using only one shot gather for this example, the

pre-stack and post-stack parameterizations of the scattering potential are equivalent. The

shot is located at 3.33km, and there are 348 receivers. The near-offset receiver is coincident

with the shot, and the far-offset receiver is located at 11.26km (offset 7.93km from the shot).

The shots and receivers are placed at a depth of 7.62m. The aperture for the migration
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Figure 5.3: Four layer acoustic model example showing, a) the velocity model, b) the
data, c) the adjoint, the inverse computed using d) the pre-stack parameterization
of α, and e) the post-stack parameterization of α. (both c) and d) are shown after
summing over all shots, and c) through e) are all plotted using a 50% clip).
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Figure 5.4: Four layer acoustic model example showing for xs = 0m, a) the clean
shot gather, b) the shot gather, the interpolated shot gather using least-squares
shot-profile migration with c) the pre-stack and e) post-stack parameterization of
the scattering potential. In d), we show the difference between a) and c), and in f)
we show the difference between e) and a).
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runs from the shot location out to 14.3km (offset 10.97km from the shot). The results

of applying migration and least-squares migration to the shot gather in Figure 5.5c are

shown in Figures 5.6 and 5.7. In Figures 5.6a and 5.6b we show, respectively, migration and

least-squares migration, and in Figure 5.6c we show the true reflectivity model, which is

representative of the scattering potential α (for display purposes, we apply a low-pass filter

to the reflectivity). Figure 5.7 shows the same information as Figure 5.6 but for a shorter

time window.

In the inversion, we note that the split-step wavefield propagator makes heavy use of the

Fourier transform which tends to cause edge effects. We allow for these by including a taper

in the data weights Wd. This means that we do not require the least-squares migration

algorithm to fit far offset traces. The effect of Wd is visible when reconstructing the data

gather from the least-squares common shot image gather, and is illustrated in Figure 5.8.

Figure 5.8a plots the shot gather (repeated from Figure 5.5c), and Figure 5.8b plots the shot

gather constructed using the common shot image gather in Figure 5.6b, and the wavefield

modelling operator given by equations 5.12 and 5.13.

Due to the limited data (single shot gather), the migrated images are, in places, of poor

quality, especially where the offset from the source is large. We observe that the inverse

compared to the adjoint has, in places, improved the image. In particular, artifacts have

been reduced, and the point diffractors, especially those at 5km depth and far offset, are

better resolved. We include the single-shot example because it illustrates the difference

between migration and least-squares migration under limited data. In this case the limi-

tation is, admittedly, extreme (a single shot gather), and is not adequate for illumination

of the entire sub-surface. Of course, when more shots are used to generate the image, the

resolution improves, and we show this in Figure 5.9 where 241 shot gathers are used. The

first shot is the same as the single-shot experiment, located at 3.33km, and with the same

geophone configuration. The remaining shots are spaced every 45.72m, with the last shot

located at 14.3km. Each shot has 348 receivers, and the survey follows a towed-streamer

geometry. Figures 5.9a and 5.9b are the sum over the 241 common shot image gathers which

are, in turn, computed using, respectively, migration and least-squares migration using the

pre-stack geometry for the scattering potential. In Figure 5.9c, we plot the least-squares mi-

gration result for the post-stack parameterization of the scattering potential. We note that

Figures 5.9a through 5.9c are plotted using the same percentile clip. While least-squares

migration with the pre-stack geometry for the scattering potential shows some uplift in

amplitude compared to migration, the differences concerning reflector locations and point

diffractor resolution are, perhaps, less tangible than the single shot example. On the other

hand, the least-squares migration result using the post-stack geometry for the scattering po-

tential gives some reasonable improvements. For example, we note the improved delineation

of the point diffractors located at approximately 7.8km depth in Figure 5.9c as compared
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Figure 5.5: Sigsbee 2a example: a) velocity model, b) migration velocity model,
and c) data (single shot gather).

to Figure 5.9a and 5.9b.

5.8 Summary

We showed, in detail, the derivation of shot-profile wave-equation migration and wavefield

modelling operators from the Born approximation, and split-step wavefield modelling. We

derived the forward (wavefield modelling) operator, and its adjoint (migration). From this

analysis we recognize the usual shot-profile migration algorithm involving the downward

continuation of the source and receiver side wavefields, along with an imaging condition.

Given the forward and adjoint operators for wave-equation shot-profile (de-)migration, we

built a shot-profile wave-equation least-squares migration algorithm using pre- and post-

stack parameterizations of the scattering potential. This differs from previously published

source-receiver least-squares migration algorithms (and those used in Chapters 3 and 4),

allowing for the (de-)migration operators to be applied one shot at a time, as well as giving

an alternative parameterization of the migrated image gathers.

We applied migration and least-squares migration to data generated from the Sigsbee 2a

model, showing differences between the two results. For example, point scatterers in the

Sigsbee 2a reflectivity were better resolved, especially when the input data consists of a



CHAPTER 5. SHOT-PROFILE LEAST-SQUARES MIGRATION 94

2

4

6

8

D
ep

th
 (

km
)

4 7 10 13
Lateral position (km)

2

4

6

8

D
ep

th
 (

km
)

4 7 10 13
Lateral position (km)

2

4

6

8

D
ep

th
 (

km
)

4 7 10 13
Lateral position (km)a) b) c)

Figure 5.6: Sigsbee 2a example, single shot: a) the migration (adjoint), b) the
least-squares migration (inverse), and c) the true reflectivity.
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Figure 5.7: Sigsbee 2a example, single shot: for a time window we show, a) the
migration (adjoint), b) the least-squares migration (inverse), and c) the true reflec-
tivity.
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Figure 5.8: Sigsbee 2a example, single shot: a) the shot gather, b) the reconstructed
shot gather, c) the difference between a) and b).

single shot gather. Further, we note that shot-profile least-squares migration is capable of

working under noisy input data by making use of prior constraints (model norm and data

weights) in the least-squares normal equations. Moreover, we note that results depended on

the parameterization of the scattering potential. Namely, we used the pre-stack parameter-

ization to allow for better fitting of the data due to its greater number of degrees of freedom

in the model as compared to the post-stack case. The post-stack parameterization of the

scattering potential provided an improved migration image as compared to the post-stack

case.
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CHAPTER 6

Data reconstruction with shot-profile least-squares

migration

6.1 Introduction

We introduce a data reconstruction algorithm, shot-profile migration data reconstruction

(SPDR). SPDR uses the least-squares shot-profile migration algorithm introduced in Chap-

ter 5, but for a constant reference wave-speed c0. This is done both for efficiency and so

that minimal assumptions are made about earth structure. We remind the reader that at

the core of least-squares migration are wavefield modelling (de-migration) and migration

operators, the former mapping from model space to data space, and the latter mapping

from data space to model space. SPDR uses least-squares migration to find an optimal

instance of model space which, in turn, is mapped to data space using de-migration, pro-

viding the reconstructed shot gather. SPDR is applied to a single shot gather, and in this

thesis we assume that the shot gather has a single offset coordinate. This means that SPDR

is a one dimensional data reconstruction algorithm. We present an extension of SPDR to

multiple shot locations via modifications to the forward and adjoint operators. We call the

extension, two dimensional shot profile migration data reconstruction (SPDR2), and use it

to interpolate in both one shot and one geophone dimension. We can think of SPDR2 as a

multi-dimensional generalization of SPDR.

In seismic data reconstruction, algorithms fall into one of two categories, being rooted in

either signal processing or the wave-equation. Examples of the former include f − x trace

interpolation (Spitz, 1991), f − k trace interpolation (Gülünay, 2003), minimum weighted

norm interpolation (Liu and Sacchi, 2004), reconstruction using the curvelet transform (Her-

rmann and Hennenfent, 2008), and multistep autoreggressive reconstruction (Naghizadeh

and Sacchi, 2007), while examples of the later include the use of the Born approximation

and asymptotic methods (Stolt, 2002; Chiu and Stolt, 2002; Ramı́rez et al., 2006), Green’s

97
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thoerem (Ramı́rez and Weglein, 2009), post-stack Stolt migration and data fitting meth-

ods (Trad, 2003), and dip move-out operators (e.g. Baumstein and Hadidi, 2006). SPDR

belongs to the family of wave-equation based methods for data reconstruction. It differs

from previous efforts in its parameterization of model space, being based on shot-profile

migration and de-migration operators. Additionally, it relies on data fitting methods such

as those used in Trad (2003), rather than direct inversion and asymptotic approximation

which are used in, for example, Stolt (2002).

A challenge for data reconstruction algorithms is the aliasing of signal. In particular, when

aliased energy is present and interferes with signal, their separation becomes challenging

(but, not impossible). A recent example of data reconstruction is Naghizadeh and Sacchi

(2007), and uses the non-aliased part of data to aid in the reconstruction of the aliased

part of data. An alternative approach is to transform data via some operator that maps

from data space to some model space, and such that in that model space, the corresponding

representation of signal and alias are separable. This is a common idea used in various

signal processing methods (e.g. Trad et al., 2003), and is also the approach that we take in

SPDR. In particular, the SPDR model space is the constant velocity shot-profile migration

of a shot gather (i.e. a common shot image gather). This means that the model space is a

representation of the earth’s reflectors parameterized by pseudo-depth (i.e. depth under the

assumption of a constant velocity migration velocity model) and lateral position. We will

show that under the assumption of limited dips in the earth’s reflectors, the SPDR model

space allows for the suppression of alias while preserving signal.

We begin with a description of shot-profile migration and de-migration built from the Born

approximation to the acoustic wavefield and constant velocity Green’s functions. This is

similar to the derivation presented in Chapter 5, except that the constant reference wave-

speed (i.e. constant velocity Green’s functions) leads to more efficient algorithms for both

wavefield modelling and migration. We apply shot-profile migration to an analytic example

in order to illustrate its mapping of signal and alias from data space (shot gather) to model

space (image gather). The mapping will infer that with constrained dip in the earth’s

reflectors, the signal and alias map to disjoint regions of model space. We note that if the

dips in the earth’s reflectors are large, then the model space representation of signal and alias

are not necessarily disjoint, and the SPDR algorithm will fail unless survey parameters are

adjusted to increase Nyquist wave-numbers. We reproduce the analytic result with a similar

numerical result. Given the de-migration (forward) and migration (adjoint) operators, we

construct a set of weighted least-squares normal equations. The normal equations are built

such that 1) to some prescribed noise tolerance, the reconstructed shot gather fits the

observed shot gather, and 2) the aliased portion of model space is suppressed. Solving the

normal equations gives an optimal common shot image gather, and, in turn, the de-migration

of the optimal common shot image gather is the reconstructed shot gather. In total, this



CHAPTER 6. DATA RECONSTRUCTION 99

is the procedure followed in the SPDR method. We apply SPDR to two data examples.

The first is synthetic, and uses data generated by a finite difference implementation of the

acoustic wave-equation. The second is a real data example from the Gulf of Mexico.

We follow our description of SPDR with a description of its extension to two dimensions

(shot and geophone), SPDR2. In particular, this requires the extension of the forward

and adjoint operators to include a variable shot position, further analysis of the signal and

alias model space representations, and a slight re-definition of the SPDR least-squares data

fitting algorithm. The forward and adjoint operators for SPDR2 are similar to those shown

in Section 5.5 in that the model space is post-stack (using a sum over common shot image

gathers). We apply SPDR2 to two classes of data reconstruction. The first class being

data interpolation in both the shot and geophone dimensions, and the second class being

near-offset data extrapolation. In the first case we show synthetic and real data examples,

and in the latter case we restrict ourselves to a real data example.

6.2 Shot-profile migration and de-migration operators

SPDR relies on least-squares shot-profile migration (Chapter 5). We remind the reader

that least-squares migration depends on migration and de-migration operators, the former

providing a mapping from model space to data space (the forward operator), and the later

being its adjoint, mapping from data space to model space. Within the context of the

Born approximation, the model space is called the scattering potential (e.g. Weglein et al.,

2003), and under the shot-profile parameterization of the operators, the scattering potential

is a common shot image gather. In Chapter 5, we described shot-profile wave-equation

migration and de-migration operators using split-step Green’s functions and a Gazdag-like

depth marching algorithm. Here, we describe shot-profile wave-equation migration and

de-migration operators built with a constant velocity Green’s functions, meaning that the

reference wave-speed is constant. The use of shot-profile migration rather than source-

receiver migration (Biondi, 2003) leads to a shot-profile parameterization of model space

which is integral to the SPDR algorithm. Namely, it parameterizes the model by pseudo-

depth and lateral position. The term pseudo-depth describes a depth axis that honours the

constant reference wave-speed. That is, the pseudo-depth of a reflector does not necessarily

reflect its true depth due to the migration velocity model.

The forward operator (de-migration) for SPDR models the scattered seismic wavefield using

the Born approximation (equation 2.4) under the assumption of an acoustic and constant

velocity Green’s function G0 geared toward the shot-profile parameterization (equation 5.1).

We remind ourselves that in equation 2.4, α is the scattering potential. Within the context

of least-squares migration it is the model, and for SPDR it is a common shot image gather.
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The forward operator in equation 2.4 describes the mapping from the scattering potential

α (model space) to the scattered wavefield ψs (data space) recorded at geophone positions

(xg, zg) where xg = (xg, yg), and due to the seismic source located at (xs, zs) where xs =

(xs, ys), and with frequency distribution f(ω). We recall that the vertical wave-number kgz

in equation 5.1 is given by the dispersion relation in equation 5.3. The dispersion relation

will play a role in understanding the null-space of the de-migration operator which, in turn,

will affect our understanding of where alias in the data maps to in the model.

Substitution of equation 5.1 into equation 2.4 with zg = zs = z0, and taking the support of

α to be below z0 (see Appendix E.1) gives,

ψs(xg, ω; xs)

=

(
ω

c0

)2(
1

2π

)4

F∗g
∫ ∞

z0

u1
p(kgx, z

′, ω)Fg
[
F∗gu1

p(kgx, z
′, ω)g(kgx,xs, ω)

]
α(xg, z

′)dz′,

(6.1)

where,

u1
p(kgx, z

′, ω) = −e
ikgz(z′−z0)

i4kgz
, (6.2)

and g(kgx,xs, ω) was given in equation 5.7, and is interpreted as being the seismic point

source located laterally at x = xs. Equations 6.1 and 6.2 describe shot-profile de-migration

(i.e. wavefield modelling, or the forward operator). They constitute the constant reference

wave-speed de-migration analogue to equations 5.10 and 2.10. In equation 6.1, Fg is the

two dimensional and unnormalized Fourier transform, mapping from lateral space xg to

lateral wave-numbers kgx, and F∗g is its adjoint so that, as in Chapter 5, the corresponding

inverse Fourier transform is (2π)−2F∗g . The function u1
p in equation 6.2 is equation 5.5 in

Chapter 5 for l = 0. It is a phase-shift operator, propagating the wavefield toward, or away

from potential scattering points within a constant reference wave-speed. In equation 6.2,

the vertical wave-number kgz is given by the dispersion relation defined in equation 2.8. For

the sake of notational convenience, we will drop the superscript 1 from u1
p for the remainder

of this chapter.

The use of the shot-profile parameterization in the construction of wavefield modelling op-

erator in equation 6.1 is integral to SPDR. We recall that it means that in α(xg, z
′), xg are

the lateral coordinates of the earth, and z′ is pseudo-depth (i.e. depth under the assumption

of the constant migration velocity model that we use in the Born approximation). This

means that the model space is characterized by the sub-surface reflectors that fall within

the aperture of the shot. The shot-profile parameterization of the scattering potential has a

second, less pleasing, consequence. In particular, we note that despite the constant reference

wave-speed, we cannot use Stolt migration (Stolt, 1978), thus producing a more expensive

data reconstruction algorithm than the one derived in Trad (2003).
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Not surprisingly, the adjoint of the de-migration operator (equation 6.1) is migration. We

find it by, once again, recognizing a Fredholm integral equation of the first kind in the

de-migration operator, so that,

ψs(xg, ω; xs) =

∫ ∞

z0

u(ω, z′; xg,xs)α(xg, z
′)dz′,

where,

u(ω, z′; xg,xs) =

(
ω

c0

)2(
1

2π

)4

F∗gup(kgx, z′, ω)Fg
[
F∗gup(kgx, z′, ω)g(kgx,xs, ω)

]
.

Then,

α†(xg, z
′) =

∫ ∞

−∞
u∗(ω, z′; xg,xs)ψs(xg, ω; xs)dω, (6.3)

where,

u∗(ω, z′; xg,xs) =

(
ω

c0

)2(
1

2π

)4 [
F∗gu∗p(kgx, z′, ω)g∗(kgx,xs, ω)

]
F∗gu∗p(kgx, z′, ω)Fg.

(6.4)

In equation 6.4 we have used the relation,

[
F∗gup(kgx, z′, ω)Fgg(xg,xs, ω)

]∗
= F∗gu∗p(kgx, z′, ω)Fgg∗(xg,xs, ω).

We substitute equation 6.4 into equation 6.3, finding,

α†(xg, z
′; xs)

=

(
1

2π

)4 ∫ (
ω

c0

)2 [
F∗gu∗p(kgx, z′, ω)g∗(kgx,xs, ω)

]
F∗gu∗p(kgx, z′, ω)Fgψs(xg, ω; xs)dω,

(6.5)

where (·)∗ denotes the adjoint when applied to the Fourier operator, and the complex

conjugate otherwise. Equation 6.5 is shot-profile migration for an acoustic and constant

velocity migration velocity model. With equations 6.1 and 6.5, we have the necessary tools

to construct a constant velocity shot-profile least-squares migration algorithm for a constant

reference wave-speed.

To produce efficient numerical implementations of the forward and adjoint operators in

equations 6.1 and 6.5, we find iterative algorithms that implement the operators. The

derivation of the iterations are straight-forward, and the resulting algorithms should be

similar to those found in Chapter 5. However, they differ enough to be interesting. In

particular, we will show that the iteration uses an operator that is invariant to depth. This

results in more efficient algorithms. In addition, we find that only one iteration over depth
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is required for the forward operator. This is in contrast to the variable reference wave-speed

case in Chapter 5 where an additional and separate recursion over depth was required. We

begin with the forward operator (equation 6.1), re-arranging terms and approximating the

integral with a sum so that,

ψs(xg, ω; xs)

=

(
ω

c0

)2(
1

2π

)4

F∗g∆z

nz∑

l=1

up(l)(kgx, ω)Fg
[
F∗gup(l)(kgx, ω)g(kgx,xs, ω)

]
α(xg, zl),

(6.6)

where,

up(l)(kgx, ω) = −e
ikgz(zl−z0)

i4kgz
, (6.7)

and the earth model is partitioned into nz layers of constant thickness ∆z. We implement

equations 6.6 and 6.7 using two iterations. First, we define vs(l) for l = 1 . . . nz such that,

vs(1)(kgx, ω; xs) = up(1)(kgx, ω)g(kgx,xs, ω)

vs(l)(kgx, ω; xs) = ∆up(kgx, ω)vs(l−1)(kgx, ω; xs),
(6.8)

where up(1) = exp(ikgz(z1 − z0))/(i4kgz) and ∆up = exp(ikgz∆z). Second, we define vr(l)

so that,

vr(1)(kgx, ω) = up(1)(kgx, ω)

vr(l)(kgx, ω) = ∆up(kgx, ω)vr(l−1)(kgx, ω).
(6.9)

Then the forward operator in equation 6.6 becomes,

ψs(xg, ω; xs) =

(
ω

c0

)2(
1

2π

)4

F∗g∆z

nz∑

l=1

vr(l)(kgx, ω)Fg
[
F∗g vs(l)(kgx, ω; xs)

]
α(xg, zl; xs).

(6.10)

Equations 6.8-6.10 constitute an algorithm that implements the de-migration operator in

equation 6.1, and the bulk of computation is in the two two-dimensional Fourier transforms

required per depth and frequency.

Next, we consider the implementation of the adjoint operator (equation 6.5), approximating

the integral over angular frequency with a sum (and using the Fourier representation of the

scattered wavefield),

α†(xg, zl; xs)

=

(
1

2π

)4

∆ω

nω∑

j=1

(
ωj
c0

)2 [
F∗gu∗p(l)(kgx, ω)g∗(kgx,xs, ω)

]
F∗gu∗p(l)(kgx, ω)ψs(kgx, ωj ; xs).

(6.11)

Analogous to the forward operator, we implement equation 6.11 using two iterations. First,
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we define v∗s(l) for l = 1 . . . nz so that,

v∗s(1)(kgx, ω; xs) = u∗p(1)(kgx, ω)g(kgx,xs, ω)

v∗s(l)(kgx, ω; xs) = ∆u∗p(kgx, ω)vs(l−1)(kgx, ω; xs).

Second, we define v∗r(l) for l = 1 . . . nz so that,

v∗r(1)(kgx, ω; xs) = u∗p(1)(kgx, ω)ψs(kgx, ω; xs)

v∗r(l)(kgx, ω; xs) = ∆u∗p(kgx, ω)vr(l−1)(kgx, ω; xs).

Then the adjoint operator in equation 6.11 becomes,

α†(xg, zl; xs) =

(
1

2π

)4

∆ω
∑

j

(
ωj
c0

)2 [
F∗g v∗s(l)(kgx, ωj ; xs)

]
F∗g v∗r(l)(kgx, ωj ; xs), (6.12)

again requiring two two-dimensional Fourier transforms per depth and frequency. Equa-

tion 6.12 is shot-profile migration for a constant velocity reference wave-speed. It is impor-

tant to note that in the iterations for the forward and adjoint operators, ∆up is constant

with respect to the depth index l. Taking advantage of this fact in their software implemen-

tation, allows for a constant reference wave-speed (de-)migration that is significantly faster

than the equivalent variable reference wave-speed (de-)migration.

For the purposes of SPDR, α† is called the adjoint, and ψs is called data. The adjoint

indicates how energy distributes in model space given its computation from some instance

of data. Thus, before using the forward and adjoint operators in least-squares migration,

we will analyze the adjoint to illustrate how signal and alias are mapped from data space

to model space. This analysis will, in turn, motivate the construction of the weights in the

weighted least-squares migration algorithm.

6.3 Observed data on a nominal grid

SPDR uses least-squares migration for data reconstruction. The input to the least-squares

migration algorithm is observed seismic data (shot gather), and is sampled from the scattered

wavefield ψs(xg, ω; xs). In practise, we have some finite set of geophones to represent ψs in

its lateral dimensions xg. In SPDR, we assume 2D earth models and a single shot gather

so that both data and model spaces are sufficiently described by a single lateral dimension

xg. Then, we define a regular nominal grid xng for that same lateral dimension so that,

xng ∈ {xg|xg = k∆xng , k = 1 . . . nng }.
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xg

∆xn ∆xo

Figure 6.1: Schematic example of nominal and observed grids. The boxes (open
and filled) denote the nominal grid, and the observed grid is denoted by the filled
boxes. ∆xng denotes the grid spacing for the nominal grid, and ∆xog denotes the
grid spacing for a regular observed grid.

Further, we define an observed grid xog so that xog ∈ xng . This means that each sample on

the observed grid is also a sample on the nominal grid. Further, in data space, each sample

of the observed grid corresponds to an observation (i.e. a seismic trace). This is a common

idea used in data reconstruction algorithms (e.g. Liu and Sacchi, 2004), and is illustrated in

Figure 6.1. In this chapter we assume that the observed grid is regular with sample spacing

∆xog, although the case of an irregular xog grid is also interesting (but perhaps less challenging

since it tends to increase the Nyquist wave-number (e.g. Babu and Stoica, 2010)). SPDR is

equally applicable to regular and irregular observed grids.

6.4 Adjoint mapping of signal and alias due to the ob-

served grid

In this section, we analyze the adjoint (shot-profile migration with a constant reference wave-

speed) operator with an analytic example. We let data ψs be the sampling (Shah) function

corresponding to a regular observed grid xog. Our goal is to provide some understanding

of where signal and alias in data space map to in model space via the adjoint operator.

We begin with a data space description of the signal and alias using the sampling theorem.

Then, we find the adjoint (model space representation) of the sampling function by applying

the shot-profile migration operator described in the previous section. This provides a basis

for categorizing the energy in model space as corresponding to either data space signal or

data space alias; that is, as either model space signal or model space alias.

In the sampling theorem, we represent ψs(xg, ω;xs) with ψ̄s = IIIo(xg)ψs where IIIo(xg)

is a sampling (Shah) function such that,

IIIo(xg) =

no
g∑

k=0

δ(xg + k∆xog). (6.13)
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Then, a well known result of the sampling theorem states that (e.g. Lathi, 1998, p. 319),

ψ̄s(kgx, ω;xs) =

∞∑

p=−∞
ψs(kgx + p2π/∆xog, ω;xs). (6.14)

The series in equation 6.14 contains both signal (for p = 0), and alias for p 6= 0.

We notice that equation 6.14 is signal and alias in data space. We are interested in their

manifestation in model space. For this purpose, we consider the migration operator (equa-

tion 6.5) applied to ψ̄s (equation 6.14), so that (using the Fourier representation of the

scattered wavefield),

ᾱ†(xg, z;xs)

=

(
1

2π

)2 ∫ ∞

−∞

(
ω

c0

)2 [
F∗gu∗p(kgx, z, ω)g∗(kgx, xs, ω)

]
F∗gu∗p(kgx, z, ω)ψ̄s(kgx, ω;xs)dω.

(6.15)

Then, substitution of equation 6.14 into equation 6.15 gives,

ᾱ†(xg, z;xs)

=

(
1

2π

)2[ ∫ ∞

−∞

(
ω

c0

)2 [
F∗gu∗p(kgx, z, ω)g∗(kgx, xs, ω)

]
F∗gu∗p(kgx, z, ω)ψs(kgx, ω;xs)dω

+

∫ ∞

−∞

(
ω

c0

)2 [
F∗gu∗p(kgx, z, ω)g∗(kgx, xs, ω)

]
F∗gu∗p(kgx, z, ω)ψs(kgx + 2π/∆xog, ω;xs)dω

+

∫ ∞

−∞

(
ω

c0

)2 [
F∗gu∗p(kgx, z, ω)g∗(kgx, xs, ω)

]
F∗gu∗p(kgx, z, ω)ψs(kgx − 2π/∆xog, ω;xs)dω

+

∫ ∞

−∞

(
ω

c0

)2 [
F∗gu∗p(kgx, z, ω)g∗(kgx, xs, ω)

]
F∗gu∗p(kgx, z, ω)ψs(kgx + 4π/∆xog, ω;xs)dω

+ · · ·
]

=

∫ ∞

−∞
α†0(xg, z, ω;xs)dω +

∫ ∞

−∞
α†1(xg, z, ω;xs)dω +

∫ ∞

−∞
α†−1(xg, z, ω;xs)dω

+

∫ ∞

−∞
α†2(xg, z, ω;xs)dω + · · · ,

(6.16)

where,

α†p(xg, z, ω;xs) =

(
1

2π

)2(
ω

c0

)2 [
F∗gu∗p(kgx, z, ω)g∗(kgx, xs, ω)

]

×F∗gu∗p(kgx, z, ω)ψs(kgx + p2π/∆xog, ω;xs).

(6.17)

The term
∫
α†0(xg, z, ω;xs)dω from equation 6.16 is the hypothetical image that would be
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obtained from a continuously sampled spatial dimension xg in the data (i.e. α†0 = α†), and

α†p, p 6= 0 is the expression of the alias in model space (i.e. the model space alias).

We illustrate the model space alias for a single frequency component of ᾱ†. In particular,

we let ψ̄s(xg, ω;xs) = IIIo(xg)ψ0(ω) which is shown in Figure 6.2a for k = 0 . . . 10. The

discrete Fourier transform of IIIo(xg) is (e.g. Lathi, 1998, p. 320),

IIIo(kgx) =
1

∆xog

∞∑

p=−∞
δ

(
kgx + p

2π

∆xog

)
,

and is shown in Figure 6.2b. Next, we let ψ̄s(xg, ω;xs) = IIIo(xg)ψ0(ω), so that in equa-

tion 6.14,

ψs(kgx + p2π/∆xog, ω;xs) =
1

∆xog
δ

(
kgx + p

2π

∆xog

)
ψ0(ω). (6.18)

Upon substitution of equation 6.18 into equation 6.17, we find for any given frequency ω

(see Appendix E.2),

α†p(kgx, κz,ω;xs = 0)

=
f∗(ω)ψ0(ω)

∆xog

(
ω

c0

)2

δ

(
κz + (kgz(p) + sgn(ω)

√
ω2/c20 − (kgx − kp)2)

)
,

(6.19)

where kp = p2π/∆xog,

kgz(p) = sgn(ω)

√
ω2

c20
− k2

p,

κz is the Fourier conjugate variable of z, and kgz was given by the dispersion relation in

equation 2.8. Equation 6.19 means that α†p is non-zero only when,

κz = −kgz(p) − sgn(ω)

√
ω2

c20
− (kgx − kp)2. (6.20)

Equation 6.20 is shown in Figure 6.2c for p = 0,±1.

In SPDR, we force the null space of the migration operator to include the evanescent por-

tion of the wavefield which, in turn, is defined for when kgz in the dispersion relation

(equation 2.8) is imaginary. This is common practise in wave-equation migration algo-

rithms, although there are exceptions (Huang et al., 1999). The non-evanescent portion of

the wavefield is defined for when,

− ω
c0
≤ kgx ≤

ω

c0
.

In Figure 6.2b, we plot the bounds of the non-evanescent region under some assumed fre-
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quency ω and migration wave-speed c0. Notice that energy for p = 0,±1 falls within these

bounds, and all other energy falls within the evanescent portion of the wavefield. Hence, for

this example, the adjoint operator will annihilate energy mapped from data space for where

|p| ≥ 2. This is exactly why in Figure 6.2c, we show α†p for only p = 0,±1. In model space,

these bounds are translated by kp in equation 6.19 so that,

− ω
c0

+ kp ≤ kgx ≤
ω

c0
+ kp.

In particular, we show, in Figure 6.2c, the lower and upper bounds for α†p(kgx, κz, ω;xs = 0)

for p = 0, the lower bound for p = −1, and the upper bound for p = 1.

The synthetic experiment shown in Figure 6.3 confirms the analytic example. In particular,

we define a nominal grid xng with ∆xng = 5m. In Figure 6.3a, we plot ψs(xg, ω;xs) =
ˆIIIo(xg) for xg ∈ xng where,

ˆIIIo(xg) =

{
1 , xg = k∆xog, k = 0 . . . 6

0 , otherwise,

and where ∆xog = 300m. In other words, the observed grid is regular with samples spaced

every 300m. We show the adjoint of ˆIIIo(xg) evaluated for a temporal frequency of 6Hz,

in Figure 6.3b. The resulting pattern mimics what is predicted by the analytic example.

The examples presented in Figure 6.2 and 6.3 were for a single frequency. In Figure 6.4,

we show results for when five frequencies, equally spaced between 6 and 10Hz, contribute

to the integral in the adjoint operator (equation 6.5). In particular, Figure 6.4b shows the

model space analytic result, while Figure 6.4a shows a comparable synthetic example.

The analytic example in this section gives us an understanding of where signal and alias in

data space map to in model space. This understanding will be useful in the development of

SPDR. However, we point out that the application of the adjoint operator to the sampling

function is equivalent to propagating a receiver side horizontal plane wave into the earth,

and then applying the downward continued source, and the shot-profile migration imaging

condition. In practise, the data will contain some continuum of plane-wave components,

and each will contribute to the distribution of energy in model space.

6.5 Reflector dip constraints on model space

In Section 6.4, we explored the adjoint mapping of the sampling function. The example

showed how the sampling function in data space maps to model space. Moreover, the

resulting pictures show obvious overlap between the model space representation of signal
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and alias (e.g. Figure 6.4). This overlap would make it difficult to construct an algorithm

that suppresses the model space alias while preserving the model space signal, and this is

exactly how we intend SPDR to function. However, we remind ourselves that the model

space provides a representation of the earth’s reflectors. This is a direct consequence of

using shot-profile migration for the adjoint operator. Thus, it follows that for any given

frequency the adjoint will be band-limited in kgx according to the maximum dip of the

reflectors (parameterized by lateral position and pseudo-depth). We postulate that this

band-limitation allows for a disjoint representation of model space signal and alias. In this

section we illustrate this idea with two examples. First, we apply a band-limitation operator

to the analytic example studied in the previous section. Second, we use a synthetic example

in which the earth model consists of a single reflector.

In the adjoint of the sampling function, we assume that α†p is band-limited so that equa-

tion 6.19 becomes,

α†p(kgx, κz,ω;xs = 0)

=
f∗(ω)ψ0(ω)

∆xog

(
ω

c0

)2

h(kgx, κz)δ(κz + (kgz(p) + sgn(ω)
√
ω2/c20 − (kgx − kp)2)),

(6.21)

where,

h(kgx, κz) =

{
1 , |kgx| ≤ kb(κz)
0 , |kgx| > kb(κz),

and where kb(κz) is built from the expected maximum dip of the earth’s reflectors, as

represented in pseudo-depth. In particular, if a reflector has dip ξ such that,

α(xg, z) = δ(z + ξxg),

then it can be shown that,

α(kgx, κz) = 2πδ(kgx − ξκz). (6.22)

Hence, it must be that kb(κz) = ξκz. For example, when the dip of the reflector is null,

so is kb, and, likewise, kb increases with increasing ξ. Figure 6.5 illustrates equation 6.21

for small dip (ξ = 0.1). It is a band-limited version of Figure 6.4b. Notice that with the

band-limiting function h(kgx, κz) applied, the model space signal and alias of the sampling

function are separable. This will make it possible to build a data reconstruction algorithm

that filters out the alias, but preserves the signal.

To further illustrate the band-limitation, we construct a synthetic example using the model

in Figure 6.6a, and the finite difference approximation to the acoustic wave-equation, con-
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structing data ψs in Figure 6.6b. The source (f(ω) in equation 5.7) is a minimum-phase

Ricker wavelet with a peak frequency of 15Hz. For the data, we use a nominal grid spacing

of 5m, and a regular observation grid, with observations (geophones) spaced every 300m.

The data are severely aliased as illustrated by its f − k spectrum in Figure 6.6c. Since the

model consists of a single reflector with null dip, we expect the adjoint operator to separate

signal and alias. In Figure 6.6d, we plot the adjoint of the data using the shot-profile mi-

gration operator. A quick comparison to the band-limited analytic example in Figure 6.5

allows us to label the clusters of energy corresponding to model space signal and alias. In

particular, we identify energy corresponding to p = 0,±1,±2.

We can construct a lower bound for the maximum reflector dip ξ resulting in separable

model space signal and artifacts, and allowing for the successful application of SPDR. This

dip will be a function of the observed grid spacing (i.e. the lateral Nyquist wave-number).

In particular, we note that equation 6.22 gives the relation kgx = −ξκz so that max |kgx| =
ξmax |κz|. At the very least, it must be that max |kgx| < k1 where k1 = 2π/∆xog was

defined in the previous section. Hence, it follows that ξmax |κz| < 2π/∆xog, or, in other

words, ξ < 2π/(∆xog max |κz|). This shows, for example, an inverse relation between the

observed grid sampling interval and the maximum allowed reflector dip in model space. In

other words it shows a direct relation between the lateral Nyquist wave-number and the

maximum allowed dip.
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Figure 6.6: Synthetic example for a zero dip reflector: a) the earth model is a half-
space over a half-space, b) synthetic data generated by the finite difference method,
c) f −k spectrum of the data, and d) kgx−κz spectrum of the adjoint. We identify
energy corresponding to p = 0,±1,±2 in equation 6.19.
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6.6 Least-squares data reconstruction

Thus far, we have identified the adjoint operator (shot-profile migration) as a useful tool for

mapping data (common shot data gather) with interfering data space signal and alias to a

model space (common shot image gather) where signal and alias are separated. To move

toward a complete description of SPDR, we are next tasked with finding a method that

suppresses the alias from model space, while preserving the signal. For this purpose, we

use a weighted least-squares inversion, rather than the adjoint, to construct an instance of

model space. The consequences are two-fold. First, it will ensure that the forward operator

(de-migration) applied to the model produces modelled data that fits the observed data.

Second, it allows us to penalize those regions of model space that contain an expression of

alias rather than signal (in sections 6.4 and 6.5, we identified disjoint regions of model space

that correspond to either model space signal or alias). We begin with a description of the

weighted least-squares normal equations. Then, we construct data weights that honour the

observed data, and model weights that penalize the aliased energy.

To construct the weighted least-squares inversion, we begin with a reminder of some previ-

ously used definitions. We let d be a data vector of length M realized from a single shot

gather ψs(x
n
g , ω;xs), and where we recall that xng describes the nominal grid for the lateral

dimension xg. We let d be the observed data, and a vector of length M . It is sampled

by the nominal grid xng , and will be non-zero only for the intersection of the nominal xng

and observed xog grids. For this single shot gather, M = nωn
n
g where nω is the number of

non-negative frequency samples, and, as before, nng is the number of grid points in the nom-

inal grid xng . Likewise, we let m be a model vector of length N realized from α(xng , z;xs),

where N = nzn
n
g , and nz are the number of samples in depth for the shot-profile migration

image gather. Last, we let A be the M × N matrix representation of the forward opera-

tor (shot-profile de-migration in equation 6.1), and AH its corresponding adjoint operator

(shot-profile migration in equation 6.5).

To find an optimal m that honours the observed data d, we find the minimum of the cost

function,

φ(m) = ||Wd(d−Am)||22 + µ||Wmm||22 (6.23)

= φd(m) + µφm(m),

where Wd are data weights, and Wm are model weights. This is the same as the cost

function used in Chapter 5, except for the introduction of Wm. As in previous chapters, we

partition the cost function into two components φd and φm, with φd being the data misfit

function, and φm being the model norm function. Finding the minimum of equation 6.23
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results in the normal equations,

(AHWH
d WdA + µWH

mWm)m = AHWH
d Wdd, (6.24)

which we solve to find an optimal scattering potential m = m∗. Then, the data can be

reconstructed using the wavefield modelling (forward) operator such that d∗ = Am∗. That

is, d∗ is the SPDR reconstructed data. In practise, equation 6.24 is solved using the least-

squares conjugate gradient method, and implicit construction of the matrices.

Key to the construction of m∗, and thus also to the reconstructed data d∗ is the choice of

the model and data weight matrices, Wm and Wd. The data weight matrix Wd penalizes

missing data, and was shown in equation 5.22. In chapter 5 it penalized dead traces. Here,

it, more specifically, penalizes any trace that does not fall on the observed grid. That is, it

is a diagonal matrix such that its ith diagonal element is,

[Wd]ii =

{
1 , i ∈ Id
0 , i /∈ Id,

(6.25)

where Id is the set of indices corresponding to the observed grid xog. This ensures that the

cost function in equation 6.23 works to fit only the observed data, and not the missing data.

The construction of model weights is slightly more involved, and draws on the discussion in

sections 6.4 and 6.5. In particular, we define,

Wm = F−1WF, (6.26)

where F is the two-dimensional Fourier transform over lateral position xg and depth z.

Then, W penalizes model space aliased energy according to the windowing function,

w(kgx, κz) =





1 + 1/ε , kgx < −k2(κz)

1 + 1
2ε

(
1 + cos(π

kgx+k2(κz)
τ )

)
, −k2(κz) < kgx < −k1(κz)

1 , −k1(κz) < kgx < k1(κz)

1 + 1
2ε

(
1 + cos(π(1 +

kgx−k1(κz)
τ ))

)
, k1(κz) < kgx < k2(κz)

1 + 1/ε , k2(κz) < kgx,

(6.27)

where ε� 1 is some small constant. The functions k1(κz) and k2(κz) are defined according

to the model dip constraints in equation 6.22. Namely,

k1(κz) = ξ̂|κz|+ η (6.28)

k2(κz) = ξ̂|κz|+ η + τ, (6.29)
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so that τ defines the length of the cosine taper, and η is some estimate of the bandwidth of the

model space signal. The parameter ξ̂ is the estimated maximum dip of the earth’s reflectors

as parameterized by pseudo-depth and lateral position in the migrated image gather (see

equation 6.22). For example, we could set ξ̂ = 0, and η = 2π/∆xog, the former for simplicity

and the latter motivated by the sampling theorem (see equation 6.14). The parameter τ

defines the length of the cosine taper. The function kb(κz) was defined in equation 6.22,

and depends on some user selected maximum dip of the earth’s reflectors. We note that

equation 6.27 can be generalized to allow for specification of separate maximum positive

and negative dips.

To illustrate, we continue with the example shown in Figure 6.6. In particular, we use the

decimated data from Figure 6.6b for d in equation 6.24. Then, we solve equation 6.24 for m∗.

We recall that m∗ is a discrete representation of the scattering potential α = α∗(xg, z;xs)

(common-shot image gather), and in Figure 6.7c we plot its amplitude in the wave-number

domain |α∗(kgx, κz;xs)|. This should be compared to Figure 6.6d, where we plot the adjoint

of the decimated data |ᾱ†(kgx, κz;xs)|. Finally, we use m∗ to compute the reconstructed

data d∗ = Am∗. We show the reconstructed data in Figure 6.7b. For comparison, we show

the same data computed using the finite difference approximation to the acoustic wave-

equation in Figure 6.7a. In Figure 6.7d, we plot the f − k spectrum of the reconstructed

data which should be compared to the f − k spectrum of the decimated data which was

shown in Figure 6.6c.

In Figure 6.7c, we plot the model weights. In this example, we set ξ̂ = 0 so that the model

weights are invariant to the vertical wave-number κz. Finally, we plot the data misfit φd as

a function of conjugate gradient iteration in Figure 6.8, showing convergence of the iterative

least-squares conjugate gradient algorithm, that we use to solve equation 6.24, after 60

iterations. One can use, for example, a χ2 statistic built from an estimate of the noise in the

data to determine a stopping criterion for the conjugate gradient iterations (e.g. Hansen,

1998). Numerical tests show that the algorithm tends to converge sufficiently after tens of

iterations (of course, this will depend on the size of the model space).

Our description of SPDR is now complete. The data weights in the least-squares inversion

were built to fit the known data on the observed grid xog, while giving no weight to the

remaining samples on the nominal grid xng (i.e. the missing traces in the shot gather). The

model weights were built to penalize the portion of model space that corresponds to alias

rather than signal. The synthetic example given in this section provided an illustration

of SPDR. However, the example in this section is limited to a model with a single zero

dip reflector which is, exactly, the least challenging scenario for SPDR. In the following

two sections, we present more challenging examples for SPDR, where the reflectors have

non-zero dip, and the earth’s velocity is not necessarily well represented by the migration
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Figure 6.7: Synthetic example for a zero-dip reflector: a) data computed using
the acoustic finite difference approximation to the acoustic wave-equation on the
nominal grid. b) The reconstructed data computed from the observed data in
Figure 6.6b, and using SPDR. c) The wave-number spectrum of the least-squares
inverse m∗. The model weights used in the least-squares migration normal equations
are also shown in c). d) The f − k spectrum of the SPDR reconstructed data d∗.
In a) the head-wave is indicated by two vertical arrows.
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velocity model.

6.7 Synthetic data examples for models with variable

dip reflectors

Thus far, we have limited ourselves to a synthetic example where the earth model consists

of a single zero-dip reflector. The earth model at and above the reflector consisted of a

single velocity of 1500m/s, precisely what we use for c0 in the migration and de-migration

operators. Moreover, the data set consisted of a single primary event, and neglected, for

example, free-surface multiples. In this section, we apply SPDR to more involved synthetic

examples, where the models contain a range of reflector dips. In a first example, we use

a range of models, each containing a different dip for its interface. This illustrates the

dip limitation of the algorithm, and its connection to the Nyquist wave-number. In a

second example, we consider a model with multiple reflectors and a range of reflector dips

(to maximum absolute dip of approximately ξ = 0.7, or a slope of approximately 45◦

as measured from the horizontal). Additionally, we allow the data to contain free-surface

multiples, violating the single scattering approximation made in the migration/de-migration

operators, and used in our data reconstruction algorithm.1

For the first example, we aim to illustrate the dip limitation of SPDR, and its relation to the

lateral Nyquist wave-number. Figure 6.9 shows the application of SPDR to three velocity

models. From left to right, in the figure, we show models with increasing reflector dips. In

particular, Figure 6.9a plots the velocity models for these three cases; Figure 6.9b plots the

1The data also contains internal multiples, etc.
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observed data built from the finite difference approximation to the acoustic wave-equation,

and a shot located at (xs, zs) = (2500m, 50m); Figure 6.9c plots the SPDR reconstructed

data; and Figure 6.9d plots the wave-number spectra of the migrated gathers computed from

the data in 6.9b. We notice that in the shallowest dip case, shown in the first column of Fig-

ure 6.9, SPDR is successful. This success is due to the clear separation between the adjoint

representation of data signal and alias shown in the wave-number spectra (Figure 6.9d, first

column). On the other hand, in the second and third columns of Figure 6.9, the reflector dip

is increased, and the separation between the signal and artifacts degrades, in turn, reducing

the effectiveness of SPDR.

The location of the artifacts is, in part, dictated by the observed grid. In this example, the

observed grid is regular with ∆xog = 150m. From the band-limited adjoint representation of

data (equation 6.21), we predict that the model space artifacts are band-limited and centred

at the lateral wave-numbers kgx = ±2π/150 = ±0.04., and this is observed in Figure 6.9d.

Therefore, increasing the Nyquist wave-number by decreasing ∆xog will, in turn, improve

the separation between the model space signal and artifacts (regardless of reflector dip), and

subsequently improve the quality of the SPDR result. This is, of course, not a surprising

conclusion, and simply states that data reconstruction becomes less challenging as ∆xog

decreases.

For the second example, Figures 6.10 through 6.15 show the experiment and the SPDR

results. In Figure 6.10a, we plot the acoustic velocity model for the experiment. We use

the finite-difference approximation to the acoustic wave-equation to generate the synthetic

shot gather in Figure 6.10b. The synthetic shot gather is built with a source located in

the acoustic model at (xs, zs) = (2500m, 50m), and with, again, a minimum phase Ricker

wavelet with a peak frequency of 15Hz. The observations are on the regular grid xog such

that geophones are placed every 100m, and run from 0m to 5000m, and each at a depth

of 50m. The observations are placed on the nominal grid xng with ∆xng = 5m spacing. In

Figure 6.10b, the data are plotted using a subset of the nominal grid. In particular, we plot

the recorded data for every 4th nominal grid sample and near offsets. In Figure 6.10c, we

plot the f − k spectrum of the recorded data.

We solve equation 6.24 for the optimal model (common shot image gather) m∗, subsequently

computing the SPDR reconstructed data d∗ = Am∗. In finding m∗, we set the model

weights such that ξ̂ = 0, η = .09kN , τ = .01kN and µ = 10−2, and where kN = 0.063

is the Nyquist wave-number for the observed grid xog. The result, again shown for near

offsets and every 4th trace on the nominal grid, is shown in Figure 6.11b. For comparison,

we compute the data on the nominal grid using the finite difference approximation to the

acoustic wave equation, plotting the resulting data in Figure 6.11a. Figure 6.11c plots the

difference between the SPDR reconstructed data in Figure 6.11b, and the finite difference
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Figure 6.9: Synthetic data example showing the effect of dips (angle to to the
horizontal) of, from left to right, 7.6◦, 12.6◦, and 17.3◦: a) the velocity models,
b) the observed data, c) the SPDR reconstructed data, and d) the wave-number
spectra of the constant wave-speed migrated observed data. Each column plots a
different experiment, with the dips of the reflectors increasing from left to right.
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data in Figure 6.11a. Finally, in Figure 6.12, we plot the f−k spectra of the finite-difference

and SPDR reconstructed data. In particular, Figure 6.12a plots the f − k spectrum of the

finite difference data, and Figure 6.12b plots the f −k spectrum of the SPDR reconstructed

data.

We use the results to emphasize two characteristics of SPDR. First, the head-wave is not

reconstructed. It falls within the null-space of the forward operator. In Figure 6.13a, we

plot far-offset traces from d, the observed data on the nominal grid (every 4th trace in the

nominal grid is shown). Figure 6.13b is the data computed for all offsets on the nominal grid

using the finite difference approximation to the acoustic wave-equation. In this plot we see

both the specular reflection, and the head-wave. The head-wave is indicated by the arrow.

Finally, Figure 6.13c plots the data reconstruction d∗ which shows the reconstruction of the

specular reflections, and the omission of the head-wave. As we already mentioned, this is a

limitation of the SPDR algorithm.

Second, we consider the free-surface multiple events. The single scattering approximation

used in the de-migration operator does not correctly model free-surface multiples. Indeed,

a first order approximation to a free-surface multiple requires a second order scattering

interaction (e.g. Weglein et al., 2003). However, the single scattering approximation does

see the multiple event as a false primary, and maps it to a copy of the true reflector at

an erroneous depth, allowing for the extra travel-time of the wavefield through the water-

column. This can be seen in Figure 6.14. In Figure 6.14a, we allow the model space to

have a maximum depth of 1000m. This allows for the model space to contain the pseudo-

depth location of the reflectors, but does not allow for the first-order copy that is due to

the free-surface multiples. Meanwhile, in Figure 6.14b, we allow the model space to extend

to a depth of 2000m. Then, the copy of the reflector that corresponds to the multiple

energy falls within the bounds of the alloted model space. We note that the energy of the

multiples mapped to model space is very small. Therefore, to see their energy, we had to

apply a severe clip to the image. In turn, this shows various low amplitude artifacts. The

effect in the reconstructed data of enlarging the model space to allow for the multiple of

the reflector is shown in Figure 6.15. In Figure 6.15a, we plot finite difference data, and

in Figures 6.15b and 6.15c, we plot the data reconstructions using, respectively, the larger

and smaller model spaces. The corresponding data space effect of the larger model space

is shown in Figure 6.15b, where the multiples are reconstructed. In contrast, the smaller

model space result in Figure 6.15c excludes the multiples. Note that to show the small

multiple energy, we have applied a significant clip to the plots.
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Figure 6.10: Synthetic data example: a) the acoustic velocity model, b) The ob-
served data shown for its near-offset traces, and using every 4th trace in the nominal
grid, c) the f − k spectrum of the observed data.
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Figure 6.11: Synthetic data example: a) data synthesized using the finite difference
approximation and the known velocity model, b) the SPDR reconstructed data com-
puted from the data in Figure 6.10b, c) the difference between the finite difference
data in a) and the SPDR reconstructed data in b). In all plots, every 4th trace in
the nominal grid is shown for small offsets.
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Figure 6.12: Synthetic data example: f − k spectrum of a) the finite difference
data in Figure 6.11a, and b) the SPDR reconstructed data in Figure 6.11b. For
comparison, consider the f − k spectrum of the observed data in Figure 6.10c.
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Figure 6.13: Synthetic data example, illustrating that the direct wave is in the null-
space of the de-migration operator. We show far offset traces from a) the recorded
data, b) data synthesized using the finite difference approximation to the acoustic
wave-equation, and c) the SPDR reconstructed data. The direct arrival in the finite
difference data is indicated by the arrow in b).
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Figure 6.15: Synthetic data example, illustrating the data reconstruction of free-
surface multiples: a) data generated for the nominal grid using the finite difference
approximation to the wave-equation, b) the SPDR reconstructed data using a model
space to 2000m depth, c) the SPDR reconstructed data using a model space to
1000m depth. The multiples are indicated by arrows in a) and b) and are absent
from c).
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6.8 Real data example

For a real data example, we use a shot gather from a marine data set from the gulf of Mexico.

The shot gather has receivers spaced every 26.7m, with the near offset receiver placed at

a distance of 20.7m from the source, and the far offset receiver placed at a distance of

4874.7m from the source. In total there are 183 recorded geophones. In our experiment, we

use a nominal grid with 365 grid points spaced every 13.3m. Finally, for our experiment,

we decimate the data so that the geophones are spaced every 80.0m. In other words, there

are 5 nominal grid points between each point on the observed grid, and that need to be

interpolated.

In Figure 6.16, we plot results from the SPDR algorithm. In Figure 6.16a, we plot the

original real data on its original observational grid with 26.7m spacing. In Figure 6.16b,

we plot the data after decimation, and on its nominal grid with 13.3m spacing. Finally, we

show the SPDR result in Figure 6.16c. The result is plotted using the 26.7m grid spacing

of the original data. This allows us to compare the SPDR result to the observed data.

In particular, Figure 6.16d plots the difference between the data in Figure 6.16a and the

SPDR result in Figure 6.16c. Note that before plotting, we apply an automatic gain control

algorithm to emphasize the small amplitude events. In addition, the gained data are clipped

to 33% of the largest magnitude. In Figure 6.17, we plot the corresponding f − k spectra.

In particular, Figure 6.17a shows the f −k spectrum of the original data on the 26.7m grid,

Figure 6.17b plots the f −k spectrum of the decimated data (80.0m grid), and Figure 6.17c

plots the f − k spectrum of the SPDR reconstructed data.

In Figures 6.18a-c, we plot various realization from model space, and in Figures 6.18d-f, we

plot their wave-number spectra. In the first column (Figures 6.18a and 6.18d), we plot the

adjoint of the original data (on its 20.7m grid), while in the second column (Figures 6.18b and

6.18e) we plot the adjoint of the decimated data (from the 80.0m observational grid). The

alias resulting from the decimated data is evident. Finally, in the third column (Figures 6.18c

and 6.18f) we plot the weighted least-squares inverse of the decimated data, and which is

used in producing the SPDR result in Figure 6.16c. In applying SPDR, we set η = 0.09,

τ = 0.01 and ξ̂ = 0, the effect of which is seen in the comparison of Figures 6.18e and 6.18f.

Additionally, we used 60 conjugate gradient iterations to find the solution of the least-

squares normal equations. We calculate a signal-to-noise ratio (SNR) for the reconstructed

data finding,

SNR = 10 log10

||d1||22
||d1 − d∗||22

= 11dB. (6.30)

where d1 is the original data before decimation (Figure 6.16a), and || · ||2 is the L2 norm

computed for an xg grid common to both d1 and d∗. For comparison, the signal to noise
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Figure 6.16: Real data example: a) the original data, b) the decimated data, c) the
reconstructed data, d) the residual, or difference between c) and a). An automatic
gain control algorithm is applied prior to plotting. In addition, we clip the data at
33% of the largest magnitude. All four plots use the same colour scale.
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Figure 6.17: Real data example: f − k spectra of a) the original data, b) the
decimated data, and c) the reconstructed data.
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Figure 6.18: Real data example: the model space representation of a) the original
data and b) the decimated data, both using the adjoint operator, and c) the dec-
imated data under the weighted least-squares inversion. The corresponding wave-
number spectra are shown in d) for the original data and e) for the decimated data,
both using the adjoint operator, and f) the decimated data using the weighted
least-squares inversion.
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ratio for the first synthetic example, presented in Figure 6.7, is 16.0dB.

6.9 2D shot profile data reconstruction

SPDR is a 1D data reconstruction algorithm meaning that for any given shot gather, it

reconstructs data along one geophone dimension. We extend SPDR to a 2D shot-profile

data reconstruction algorithm (SPDR2). In particular, SPDR2 reconstructs data in both

geophone and shot dimensions. Analogous to SPDR, we restrict ourselves to data recon-

struction in one shot and one geophone dimension, namely xs and xg, while assuming that

data are invariant in the yg and ys dimensions. The extension of SPDR to SPDR2 requires

the corresponding extensions of the SPDR forward and adjoint operators to their SPDR2

counter-parts, and their use in a least-squares data reconstruction method. In this section,

we describe these extensions, and provide an analysis of the adjoint operator analogous to

Section 6.4.

6.9.1 Extension of forward and adjoint operators to 5D

In Section 6.2, we considered the de-migration (forward) and migration (adjoint) operators

used in SPDR. The forward operator for SPDR maps from a prescribed model space to a

prescribed data space. We recall that the data space in SPDR is a single common shot data

gather, and is a function of time and lateral dimensions xg. Likewise, the model space in

SPDR is single common shot image gather, and is a function of depth z and the same lateral

dimensions xg. For SPDR2, the operators add two dimensions to data space allowing the

shot location xs = (xs, ys) to vary. In contrast, the model space for SPDR2 is the same as

it was for SPDR. In particular, we construct operators so that model space domain remains

three-dimensional, described by lateral coordinates xg = (xg, yg) and depth z.

The forward operator is given by equation 6.1, except with the assertion that ψs is a function

of xs, rather than being merely parameterized by it. That is, we will use multiple instances

of xs in the reconstruction algorithm. We assume a finite number of shot locations, and let

xs(q) denote the location of the qth shot, so that,

ψs(xg,ω,xs(q))

=

(
1

2π

)4(
ω

c0

)2

F∗g
∫ ∞

z0

up(kgx, z
′, ω)Fg

[
F∗gup(kgx, z′, ω)g(kgx,xs(q), ω)

]
α(xg, z

′)dz′.

(6.31)

Equation 6.31 is an extension of equation 6.1, and can be implemented in a similar fashion.

We recall that up is given by equation 6.2, g(kgx,xs(q), ω) by equation 5.7, and Fg and
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Fs are the two dimensional unnormalized Fourier transforms over lateral coordinates. To

construct the adjoint (shot-profile migration) operator corresponding to the forward operator

in equation 6.31, we will need to consider the effect of the extra dimension xs(q) in ψs. In

particular, we introduce an operator H, so that the forward operator in equation 6.31 can

be expressed using matrix-vector notation,




ψs(xg, ω,xs(1))

ψs(xg, ω,xs(2))
...

ψs(xg, ω,xs(ns))




=




H(xs(1))

H(xs(2))
...

H(xs(ns))



α(xg, z

′), (6.32)

where we have assumed ns shots. From equation 6.31, we recognize that the operator H
must be defined so that,

H(xs(q))α(xg, z
′)

=

(
1

2π

)4(
ω

c0

)2

F∗g
∫ ∞

z0

up(kgx, z
′, ω)Fg

[
F∗gup(kgx, z′, ω)g(kgx,xs(q), ω)

]
α(xg, z

′)dz′.

(6.33)

It follows directly from equations 6.32 and 6.33 that the corresponding adjoint operation is,

α†(xg, z
′) =

[
H∗(xs(1)) H∗(xs(2)) · · · H∗(xs(ns))

]




ψs(xg, ω,xs(1))

ψs(xg, ω,xs(2))
...

ψs(xg, ω,xs(ns))



, (6.34)

and where,

H∗(xs(q))ψs(kgx, ω,xs(q)) =

(
1

2π

)4

×
∫ ∞

−∞

(
ω

c0

)2 [
F∗gu∗p(kgx, z, ω)g∗(kgx,xs(q), ω)

]
F∗gu∗p(kgx, z, ω)ψs(kgx, ω,xs(q))dω.

(6.35)

In short, the adjoint operator includes a sum over shot gathers such that,

α†(xg, z
′) =

(
1

2π

)4

×
ns∑

q=1

∫ (
ω

c0

)2 [
F∗gu∗p(kgx, z′, ω)g∗(kgx,xs(q), ω)

]
F∗gu∗p(kgx, z′, ω)Fgψs(xg, ω,xs(q))dω.

(6.36)
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Figure 6.19: 2D schematic of the nominal and observed grids for SPDR2. The
squares are the nominal grid xng , the black filled squares are the observed grid

x
o(q)
g for i = 1 . . . 3 (three observed shots). The grey filled circles are the observed

shot locations xs(q) for q = 1 . . . 3 relative to the geophone axis. The empty circle
represents the location of a missing shot gather that will be reconstructed using
SPDR2.

In other words, α†(xg, z′) =
∑
q α
†(xg, z′; xs(q)), and where α†(xg, z′; xs(q)) was previously

defined in equation 6.5. This formulation is similar to what was shown in Section 5.5.

Equations 6.31 and 6.36 define, respectively, the 5D forward and adjoint operators for

SPDR2. We have made an important choice in the construction of the 5D forward and

adjoint operators. In particular, we chose the model space such that it is not a function of

shot location. This choice is integral to SPDR2. It allows for the data reconstruction of

missing data using information from known and near-by shot gathers.

6.9.2 Observed data on a 2D nominal grid

SPDR2 reconstructs missing data in both geophone and shot dimensions. In the geophone

dimension, SPDR and SPDR2 share the same requirements. Namely, we define some nom-

inal and observed grid. As stated earlier, we will assume that data and model are invariant

to yg, and that, additionally, the data are invariant to ys. For all shots, the nominal grid xng

is invariant to shot location xs(q). On the other hand, the observed grid necessarily varies

with shot location due to the acquisition geometry of the seismic experiment so that for

the qth shot, we write x
o(q)
g . There is no analogous nominal grid for the shot dimension.

That is, both the observed and reconstructed shots can be located arbitrarily along the shot

dimension. The caveat being that the aperture of the common shot image gather corre-

sponding to the reconstructed shot must be sufficiently illuminated by the observed shots.

This caveat will be illustrated when we consider the reconstruction of missing near offset

traces in Section 6.9.6. We give a schematic representation of the nominal grid xng for mul-

tiple shot locations in Figure 6.19. The empty and filled boxes in Figure 6.19 represent the
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nominal grid xng , the black filled boxes represent the observed grid x
o(q)
g (i.e. data traces),

the grey filled circles represent the observed shot locations relative to the xg axis, and the

empty circle represents a shot location for SPDR2 to reconstruct relative to the geophone

axis. We note that the shot locations need not fall on the nominal geophone grid.

6.9.3 SPDR2 adjoint mapping of signal and alias due to the ob-

served grid

We analyze the adjoint operator in equation 6.36 with an analytic example. This is an

extension of the analysis in Section 6.4. Our goal is to show that the understanding obtained

in Section 6.4 for the single shot adjoint operator is roughly equivalent to the understanding

of the multi-shot adjoint operator (equation 6.36). In particular, when the adjoint operator

is applied to the sampling function, the shape of the sampling function in model space is

the same, except that multiple shot gathers introduce an interference pattern along the kgx

dimension.

We proceed in analogy to Section 6.4, letting ψ̄s(xg, ω, xs(q)) = IIIo(xg)ψ0(ω) for

q = 1 . . . ns, so that ψ̄s(kgx, ω, xs(q)) is defined by equation 6.18. Then, we substitute

ψ̄s(kgx, ω, xs(q)) into the adjoint operator in equation 6.36, finding an expression that is

analogous to equation 6.16,

ᾱ†(xg, z) =
∑

p

∫ ∞

−∞
α†p(xg, z, ω)dω, (6.37)

but where,

α†p(xg, z, ω) =

(
1

2π

)2(
ω

c0

)2

×
ns∑

q=1

[
F∗gu∗p(kgx, z, ω)g∗(kgx, xs(q), ω)Fg

]
F∗gu∗p(kgx, z, ω)ψs(kgx + p2π/∆xo(q)g , ω, xs(q)).

(6.38)

Then, we substitute ψs for its form in equation 6.18, finding (see Appendix E.2),

α†p(kgx, κz, ω)

=
f∗(ω)ψ0(ω)

∆xog

(
ω

c0

)2

δ

(
κz + (kgz(p) + sgn(ω)

√
ω2/c20 − (kgx − kp)2)

) ns∑

q=1

ei(kgx−kp)xs(q) ,

(6.39)

where, again, κz is the Fourier conjugate variable of z. Equation 6.39 can be thought of as a

generalization of equation 6.19. That is, if in equation 6.39 we use a single shot gather such

that ns = 1 and xs(1) = 0, then we find equation 6.19. The generalization in equation 6.39
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Figure 6.20: Interference patterns I(kgx) for a) one (ns = 1), b) two (ns = 2) and c)
three (ns = 3) terms in equation 6.40. We plot the real (dashed line) and imaginary
(dash-dot line) components of I(kgx), along with the amplitude |I(kgx)| (solid line).
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terference patterns in the lateral wave-number dimension correspond to the analytic
predictions shown in Figure 6.20.
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introduces the sum over shot location, and an interference pattern into the wave-number

spectrum of α†p in the kgx dimension.

We illustrate the interference pattern in Figures 6.20 and 6.21. In Figure 6.20a, 6.20b and

6.20c, we plot the interference pattern for, respectively, ns = 1, ns = 2 and ns = 3. Namely

we plot,

I(kgx) =

ns∑

q=1

ei(kgx−kp)xs(q) , (6.40)

for p = 0. In each plot, the dashed line is the real component of I(kgx), the dot-dashed line

is the imaginary component, and the solid line is the amplitude, |I(kgx)|. In Figure 6.21,

we show results for the equivalent synthetic experiment. In particular, we compute α† for a

single frequency 6Hz. We plot the adjoint for when the data consists of one (Figure 6.21a),

two (Figure 6.21b) and three (Figure 6.21c) shot gathers. Notice that the interference

pattern in the numerical results are predicted by the analytic example.

6.9.4 SPDR2 least-squares data reconstruction

Applying the SPDR2 adjoint operator (equation 6.36) to the sampling function produced a

similar pattern to the SPDR adjoint operator (equation 6.5), with the exception of the inter-

ference pattern in the kgx dimension. Therefore, we choose to assume that the least-squares

data reconstruction algorithm shown for SPDR in Section 6.6 is, with some modification,

also applicable to SPDR2. The modifications include a straight-forward redefinition of the

data vector d, and the corresponding mappings given by the matrices A and AH . In addi-

tion the data weights Wd will be trivially extended to accommodate multiple shot gathers;

but, the model m and model weights Wm will remain unchanged. The interference pattern

introduced by the SPRD2 adjoint operator seems to imply that a different model regular-

ization is required. However, we have found in practise that the SPDR model regularization

sufficiently accounts for the interference pattern introduced into the SPDR2 model space.

We note that the model space dip limitation (h(kgx) in equation 6.21) will help mitigate

the effect of the interference pattern. To avoid notational clutter, we will reuse the notation

of SPDR least-squares data reconstruction in our description of SPDR2 least-squares data

reconstruction.

Like SPDR, SPDR2 finds the solution to equation 6.24. However, in SPDR2 d is a data

vector of length M realized from ns observed shot gathers ψs(x
n
g , ω, xs(q)) so that M =

nsnωn
n
g , and as before there are nng geophones on the nominal grid. The forward and

adjoint operators are evaluated for nω realization of frequency. The model vector m is as

it was in SPDR algorithm so that N = nzn
n
g where nz are the number of depth points

in α(xg, z). Then, we let A be the M × N matrix representation of the forward operator
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(shot-profile de-migration in equation 6.31), and AH its corresponding adjoint operator

(shot-profile migration in equation 6.36). Then, as before, A maps from m to d.

The extension to the data weights Wd for SPDR2 is straight forward so that in equation 6.25,

Id is the set of indices corresponding to the observed grid x
o(q)
g for q = 1 . . . ns. The model

weights Wm remain unchanged and are given by equations 6.26-6.29.

Once equation 6.24 is solved in the context of SPDR2, the forward (de-migration) operator

in equation 6.31 can be applied to reconstruct common shot data gathers for arbitrary shot

locations xs(q), and geophones that fall on the nominal grid xng . Again, the caveat is that

any reconstructed shot must have its corresponding common shot image gather sufficiently

illuminated by the observed shots. We illustrate the method with one synthetic example

and two real data examples.

6.9.5 Synthetic data example

For a synthetic example, we consider the acoustic velocity model in Figure 6.10a. Using

the finite difference approximation to the acoustic wave-equation, we generate the 13 shot

gathers shown in Figure 6.22a. The shot gather locations are given by,

xs(q) = 2300m+ (q − 1)50m , q = 1 . . . 13.

For all shots, 1001 geophones are spaced every 5m between 0 and 5000m. We decimate the

data to give Figure 6.22b. In particular, we decimate the data by removing all but 4 shots,

so that the distance between each shot is 200m. Additionally, we remove geophones so that

there are 51 geophones spaced every 100m. We use SPDR2 to reconstruct the missing data

in Figure 6.22b, showing the result in Figure 6.22c. The input to the SPDR2 algorithm is the

four observed shot gathers on the nominal geophone grid. We regularize the model space by

setting Wm such that in equations 6.28 and 6.29, η = 0.06kn, τ = 0.01kn, and ξ = 0.2, and

kn is the Nyquist wave-number for the nominal geophone grid. Finally, we set the trade-off

parameter in the least-squares normal equations (equation 6.24) to µ = 0.1. Note that, η

and τ were chosen from an interpretation of the adjoint model, and in which the location

of signal and alias can be interpreted according the analysis in Sections 6.4 and 6.9.3. In

Figure 6.23, we plot the f − k spectra of the data, decimated data and reconstructed data.

The f − k spectra illustrate the presence of aliased events in the decimated data, and the

lack thereof in the original and reconstructed data.
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6.9.6 Real data examples

For real data examples, we revisit the Gulf of Mexico data from Section 6.8. For our first

example, we consider five shot gathers from this data, and that are shown in Figure 6.24b.

The central shot gather was also used in Section 6.8 for the SPDR example. The shots are

spaced every 53.34m, and the geophones are spaced every 26.67m. We decimate the data

to give Figure 6.24a. In particular, we remove every other shot gather so that the distance

between observed shots is 106.68m. We remove geophones so that the distance between

observed geophones is 80.01m. The observed shot gathers in Figure 6.24a are input to

SPDR2, and the SPDR2 reconstructed data are shown in Figure 6.24b. The SNR of the

reconstruction is 6dB (see equation 6.30). For comparison, we plot the original data, before

decimation, in Figure 6.24c.

For our second example, we consider the reconstruction of near-offset traces. The successful

reconstruction of near-offset traces is important to seismic data processing techniques such

as surface related multiple elimination (e.g. Ramı́rez et al., 2006). We use the 6 shot gathers

shown in Figure 6.25 to illustrate the effectiveness of SPDR2 for the data reconstruction

of near-offset traces. Note that in Figure 6.25, we show a subset of these offsets. The

shot gathers have geophones spaced every 26.67m with offsets running from −2.43km to

−10.37m. The shots are spaced every 53.34m so that from left to right in Figure 6.25, the

shot location is increasing (see Figure 6.26a for a schematic representation of the geometry

of the first four shot gathers). This is typical of a towed-streamer acquisition geometry,

and is an important point in constructing an understanding of why SPDR2 can be used to

reconstruct near-offset traces. The data in Figure 6.25 is used by SPDR2 with the goal of

reconstructing the near-offset data for the first (left-most) shot gather, but using information

from all six shot gathers. The argument for this is as follows. If SPDR2 is applied to just

the first (q = 1) shot gather in Figure 6.25a, then that part of the model allowing for the

reconstruction of near offset traces is not illuminated. If, on the other hand, SPDR2 is

applied to the first two shot gathers (q = 1, 2), then traces from the second q = 2 shot

gather will begin to illuminate that part of the model required to reconstruct the near offset

traces in the first shot gather. As the third through sixth (q = 3 . . . 6) shot gathers are added

to the input data for SPDR2, the illumination of the pertinent portion of model space is

refined. This is illustrated with the schematic in Figure 6.26. In Figure 6.26a, the grey filled

boxes are the shot locations, and the black filled boxes are the geophone locations on the

observed grid x
o(q)
g . The near-offset traces that we want to reconstruct fall between the shot

location and its nearest observed geophone location. In SPDR2, all shot gathers contribute

to the construction of the model according to the adjoint operator in equation 6.36. Hence,

in Figure 6.26b, we plot the union of the observed geophone positions from Figure 6.26a.

This provides some representation of the lateral locations illuminated in model space, and
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allows us to suppose that the near offsets for the q = 1 shot gather can be recovered via

SPDR2. For our example, we illustrate this illumination of model space in Figure 6.27 where

from left to right, we plot α†(x, z) computed using the SPDR2 adjoint and the shot gathers

in Figure 6.25a for q = 1 . . . ns with, respectively, ns = 1 . . . 6. The SPDR2 reconstructed

shot gathers are shown in Figure 6.25c. We expect a good reconstruction result for the first

(left-most) shot gather, and results that degrade as we increase the shot location (i.e. as the

shot gathers in Figure 6.25c progress to the right). In Figure 6.28 we plot traces from the

first (q = 1) shot gather. In particular, Figure 6.28a plots the traces from original data, and

Figure 6.28b plots the reconstructed data, for the 14 nearest offset traces.

We note that with this particular acquisition geometry, and within the context of the

schematic in Figure 6.26b, it is always the shot gathers that fall to the right of the shot

gather of interest that contribute to the correct data reconstruction. In addition, we note

that in running SPDR2 on this example, we set Wm to the identity matrix. This is because

the sampling in the geophone dimension is such that no signature of alias is present in model

space. Finally, we note that for the data reconstruction of the first (q = 1) shot gather,

SNR = 4dB.

6.10 Summary

We introduced a new data reconstruction algorithm, called shot-profile migration data re-

construction (SPDR), along with its extension (SPDR2) to a two-dimensional data recon-

struction algorithm. The algorithms share similarities with other wave-equation-based data

reconstruction methods. They differ in their choice of mode-space for which we use a shot-

profile migration image gather parameterized by lateral position and pseudo-depth. An

analysis of SPDR and SPDR2 shows that they are applicable to earth models consisting

of reflectors with limited dip. We illustrated the effectiveness of the algorithm using both

synthetic and real data examples.

While the single scattering approximation used does not explicitly model multiple reflections,

a careful parameterization of model space maps data multiples to false copies of the model

space reflectors. In turn, this allows SPDR to interpolate multiple events, as well as primary

events. On the other hand, portions of data (such as the head-wave) corresponding to the

null-space of the forward operator are not reconstructed by the SPDR algorithm.

In this thesis the SPDR algorithm is limited to a single 2D shot gather. We imagine that

the extension to a 3D shot gather would be straightforward. The same comment can be

made regarding the SPDR2 algorithm which, in this thesis, is applied for one geophone and

one shot dimension.
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Figure 6.24: 2D real data example: a) the decimated real data, b) the reconstructed
data using SPDR2, and the decimated data in a), and c) the original real data,
before decimation. For plotting, the data are clipped at ten percent of the maximum
absolute value.
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Figure 6.26: 2D real data example, reconstruction of near offsets: a) we give a
schematic representation of the data acquisition for the first four shots. b) repre-
sents the union of the shot and geophone positions of the four shot gathers, and is
representative of the model. Empty and filled boxes represent the nominal geophone

grid xng , while black filled boxes represent the observed geophone grid x
o(q)
g , and the

grey filled boxes represent the shot locations relative to the geophone dimension.
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Figure 6.27: 2D real data example, reconstruction of near offsets: we plot the adjoint
computed using the decimated shot gathers in Figure 6.24a using ns = 1 . . . 6 shot
gathers, so that in a) we show the result for ns = 1 using the q = 1 shot gather,
and in b) the result for ns = 2 using the q = 1, 2 shot gathers, etc.
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Figure 6.28: 2D real data example, reconstruction of near offsets. For a small
time window, we show a) the reconstructed near-offset traces using SPDR2 and the
decimated data from Figure 6.24a, and b) the observed near-offset traces.
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While this chapter explored the model space separation of signal and alias that overlap in

data space, it did not give definite conditions for when model space signal and alias will

be disjoint. Rather, we choose to make broader statements about the need for limited dip

reflectors. This presents a possible topic for future research, to find rigorous bounds on

model space that would ensure the success of the algorithm.

As with many signal processing algorithms, SPDR and SPDR2 include a parameter selec-

tion problem. While there are many methods for parameter selection in inverse theory (e.g.

L-curve fitting, Chapter 4), we do not explore them here. We note that for the examples

presented, parameter selection was not onerous. We found that the most important param-

eter to select is, not surprisingly, η. It is used to determine the windowing function used

to construct the model weights. In general, we choose it to be a value slightly smaller than

the location of the alias in kgx, and which corresponds to kp for p = ±1, a property of the

observed grid.



CHAPTER 7

Parallel implementation of least-squares migration for

distributed systems

7.1 Introduction

In Chapters 2–4, we discuss wavefield modelling operators for the source-receiver parameter-

ization of the scattering potential and their application in regularized migration algorithms.

In this chapter, we consider the parallel implementation of split-step wavefield modelling

and its adjoint, as well as least-squares migration, all for source-receiver migration. The

algorithmic complexity (expense) of these source-receiver migration algorithms encourages

their parallel implementation. The expense of shot-profile migration (Chapters 5 and 6)

also warrants its parallel implementation. However, shot-profile migration is an embarrass-

ingly simple algorithm to make parallel; in particular, because the migration of each shot

gather is independent (see Chapter 5). In addition, we note that the least-squares migration

implementation is integral to the iterative re-weighted least-squares (IRLS) algorithm used

in Chapter 4. Hence, by simple extension, the parallel implementations described in this

chapter are also applicable to the IRLS examples shown in Chapter 4. Previous efforts have

been made to parallelize source-receiver migration operators (split-step and phase-shift plus

interpolation (PSPI)) using shared memory computer systems and OpenMP (Kuehl, 2002;

Wang, 2005). In this thesis we consider a parallel implementation for distributed comput-

ing systems using MPI. The advantage of this approach is that distributed systems tend

to be larger than shared memory systems in both their number of central processing units

(CPU’s) and their amount of memory. The disadvantage of this approach is the complexity

of the resulting algorithm in needing to cope with a distributed (rather than shared) memory

space. Regardless, I thought it would be a useful exercise to write an MPI implementation

of least-squares migration with split-step wave-equation operators.

We begin with the equations of interest. Then, we present our parallelization strategy and

provide scaling results, showing the behaviour of the implementation for up to, and includ-

149
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ing, thirty-two MPI processes. Our tests are run on a Linux Opteron cluster with InfiniBand

interconnect, and hosted by the Western Canada Research Grid (www.westgrid.ca). The

results show an algorithm that scales well, and is an important contribution to this thesis,

enabling the examples that were presented in previous chapters.

7.2 Operators

The forward and adjoint operators that we are charged with evaluating were shown in

Chapter 2. To review, the split-step forward wavefield modelling operator is,

ψs = ψs(1) + ψs(2) + · · ·+ ψs(nz), (7.1)

where,

ψs(l)(xg, zg|xs, zs;ω) =

(
1

2π

)4l

f(ω)(us(1)F∗gsup(1)Fgs)

· · · (us(l−1)F∗gsup(l−1)Fgs)(us(l)F∗gsup(l)Fgs)
ω2

c21(l)

α(xg,xs, zl),

(7.2)

up(l)(kgx,ksx, ω) = −e
i(kgz(l)+ksz(l))(zl−zl−1)

16kgz(l)ksz(l)
, (7.3)

and,

us(l)(xg,xs, ω) = e
iω(c−1

0(l)
(xg)+c−1

0(l)
(xs)−2c−1

1(l)
)(zl−zl−1)

. (7.4)

Likewise, the adjoint operator is,

α†(xg,xs; zl) =
∑

j

u∗(xg,xs;ωj , zl)ψs(xg, z0|xs, z0;ωj), (7.5)

where u∗ is computed recursively in depth from,

u∗(xg,xs;ωj ; zl)

=

(
1

2π

)4l

f∗(ω)(
ω2

c21(l)

u∗s(l)F∗gsu∗p(l)Fgs) · · · (u∗s(2)F∗gsu∗p(2)Fgs)(u∗s(1)F∗gsu∗p(1)Fgs),

(7.6)

and the recursion starts at zk = z0 where z0 is the measurement surface. The functions,

u∗p(l) and u∗s(l) are, respectively, the complex conjugate of up(l) and us(l).

The vertical wave-numbers (kgz and ksz) play an important role in load balancing a parallel

implementation of the forward and adjoint split-step operators. In particular, we recall the

http://www.westgrid.ca
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dispersion relations,

kgz(l) = sgn(ω)
√
ω2/c21(l) − kgx · kgx ksz(l) = sgn(ω)

√
ω2/c21(l) − ksx · ksx. (7.7)

The evanescent wavefield is where kgz(l) or ksz(l) are imaginary, and we assume that the

evanescent contribution to the wavefield is small, and can be discarded; thus, shrinking the

domain of computation for up to where, at each depth/frequency pair,

−ω/c1(l) ≤ |kgx| ≤ ω/c1(l). (7.8)

In the next section, the algorithm is described such that computation is made parallel by

assigning groups of frequencies ω to each MPI process. Equation 7.8 means that care must

be taken when distributing the frequencies across the MPI processes in order to maintain a

load-balanced algorithm.

7.3 Algorithms

In Section 7.2 we reviewed the equations for the forward and adjoint operators used in

least-squares migration, and using the source-receiver parameterization of the scattering

potential. In our parallel implementation of these equations each MPI process evaluates the

operators for some subset of frequencies. Thus, we divide the processing work amongst MPI

processes. In addition, the storage of α† and ψs is shared amongst the distinct memory

spaces of the MPI processes. In particular, α† is partitioned along its depth axis, and ψs

is partitioned along its frequency axis. This allows us to take advantage of the full storage

capacity of a distributed system. Finally, the least-squares system of equations are solved

by the method of conjugate gradients (Chapter 3) which is, somewhat trivially, also given

a corresponding parallel implementation.

7.3.1 Adjoint operator

In short, the algorithm for computing the adjoint operator in equation 7.5 consists of the

following steps, most of which we will discuss in greater detail. 1) We read data (the

recorded wavefield ψs) from disk, so that each MPI process stores some subset of common

midpoint gathers (or common shot gathers). 2) We Fourier transform the data from time t

to frequency ω. 3) We re-distribute the data in memory so that the memory space for each

MPI process stores a subset of frequencies, but for all space (xg,xs). 4) For each frequency,

we evaluate the adjoint operator in equation 7.5. 5) We undo the re-distribution in step 3
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r1 ∩ r2 ∩ r3 1 2 3 4 5 6 7 8 9 10 11 12
r1 1 4 7 10
r2 2 5 8 11
r3 3 6 9 12

Table 7.1: We illustrate the distribution of 12 frequencies across 3 MPI processes
using the round-robin strategy in equation 7.9.

so that each MPI process stores some subset of common midpoint (or common shot) image

gathers which can then be written to disk.

We make some comments about the algorithm when there are nr MPI processes, nm common

midpoint gathers, nw realizations of frequency, and nz realizations of depth. In particular,

we emphasize how each step makes the processing and storage tasks parallel. In step 1,

the data are stored in parallel, so that each MPI process stores nm/nr common midpoint

gathers. In step 2, the Fourier transforms from ψ(xg, zg|xs, zs; t) to ψ(xg, zs|xs, zs;ω) in

each MPI process are mutually independent, making the implementation parallel.

Step 3 requires communication between the memory spaces of all MPI processes. Before this

communication, each MPI process stores all frequencies for some subset of common midpoint

gathers; and, after the communication each MPI process stores all common midpoint gathers

for some subset of frequencies, with each memory space holding nw/nr frequencies. The

memory requirements before and after communication are the same. This redistribution of

frequencies must take into account the evanescent portion of the wavefield to maintain a

load-balanced algorithm. In particular, we re-distribute data using a round-robin strategy

so that the jth frequency in the data is the ith frequency to be stored in the memory space

of the kth MPI process, so that,

j = k + (i− 1)nr, (7.9)

k = 1, 2 . . . nr, and i = 1, 2 . . . nw/nr. To illustrate, we consider a simple example with

nw = 12, and nr = 3, and show the resulting distribution of frequencies in Table 7.1, where

rk denotes the kth MPI process.

Step 4 is the evaluation of the adjoint operator in equation 7.5 and, in the context of

a parallel MPI implementation, has two complications. First the sum over frequency is

divided into parts. In particular,

α†(xg,xs; zl) =

nr∑

k=1


 ∑

j∈Wk

u∗(xg,xs;ωj , zl)ψs(xg, z0|xs, zo;ωj)


 , (7.10)
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whereWk is the set of frequency indices stored in the memory space of the kth MPI process.

The inner sum in equation 7.10 is performed independent of other MPI processes; whereas,

the outer sum requires communication between all MPI processes. Second, the storage of α†

is distributed amongst the MPI processes. In particular, we let the kth MPI process store

the set of depth indices Zk such that,

Zk = {(k − 1)nz/nr ≤ l < knz/nr} . (7.11)

Remembering the iteration used in evaluating equation 7.5, we evaluate equation 7.10 for

Zk on all MPI processes, and store its result on the kth MPI process. In Algorithm 7.1, we

illustrate step 4.

Algorithm 7.1 Step 4 in computing the adjoint operator

Running on the ith MPI process.
for k = 1 to nr do

for all l ∈ Zk and j ∈ Wi do
Evaluate the inner sum in equation 7.10.

end for
for all l ∈ Zk do

Evaluate the outer sum in equation 7.10 by communicating across MPI processes,
finding,

α†(xg,xs; zl) , ∀l ∈ Zk
end for
Store α†(xg,xs; zl) for all l ∈ Zk on the kth MPI process.

end for

7.3.2 Forward operator

The parallel organization of the forward operator is similar to that of the adjoint operator.

Here, we assume that α(xg,xs; zl) is already stored in the memory spaces of the MPI

processes where, as before, the memory space of the kth MPI process stores α for depths

zl where l ∈ Zk. However, an analysis of equations 7.1 and 7.2 show that all depths

are required to compute ψs for a single frequency. Therefore, a strategy for computing

the forward operator must include communication of α between the memory spaces of the

MPI processes. Fortunately, a recursion evident in equation 7.2 makes this communication

feasible. We should emphasize that this recursion is not new to this chapter, but is the

accepted method of computing the forward (de-migration) operator (e.g. Kühl and Sacchi,

2003), regardless of whether the implementation is parallel or serial, and which we reviewed

in Chapter 2.

We recall that the recursion for computing the forward operator was shown in equation 2.23.
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For convenience, we rewrite equation 2.23 here, so that for l = nz . . . 2,

ψs(xg, zg|xs, zs;ωj) = ∆z

(
1

2π

)4l

f(ωj)v1

vl−1 = us(l)F∗gsup(l)Fgs
(
vl +

ω2

c21(l)

α(xg,xs, zl)

)
,

(7.12)

and where vnz
= 0. Due to the recursion in equation 7.12, we use the following steps in our

parallel implementation: 1) we communicate α from the memory space of the k = nr MPI

process to all memory spaces. 2) For all l ∈ Znr
, we compute the recursion in equation 7.12

for all frequencies ωj and lateral space (xg,xs). In doing so, we remember that the memory

space of the ith MPI process stores frequencies in the set Wi. 3) We repeat steps 1 and 2

for α in the memory space of the k = nr − p MPI process for p = 1 . . . (nr − 1). These steps

are illustrated in Algorithm 7.2.

Algorithm 7.2 Computation of the forward operator

Running on the ith MPI process.
for k = nr to 1 do

Communicate α(xg,xs; zl) for l ∈ Zk to all MPI processes.
for all l ∈ Zk and j ∈ Wi do

Evaluate the recursion in equation 7.12.
end for

end for

7.3.3 Parallelization of the conjugate gradient algorithm for the

normal equations

We review the use of the forward (Section 7.3.2) and adjoint operators (Section 7.3.1) in

the least-squares normal equations,

(AHA + µI)m = AHd, (7.13)

where A is the forward operator corresponding to equations 7.1 and 7.2, and AH is the

adjoint operator corresponding to equation 7.5. We call the vector m the model, made from

realizations of α(xs,xg, z), and the vector d the data, made from realizations of ψs(xg,xs, ω).

We solve equation 7.13 for m using a parallel implementation of conjugate gradients. In

doing so, we assume that the forward A and adjoint AH are implemented according to

Sections 7.3.2 and 7.3.1. We point out that this does not constitute a novel method (see

for example Gupta et al. (1995)). This is not surprising given how readily the conjugate

gradient method is made parallel. Regardless, we give an overview of our implementation.
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Please note that we assume, in this section, that the reader is knowledgeable of the conjugate

gradient method (see Chapter 3).

Algorithm 7.3 Conjugate gradient algorithm for distributed parallel systems

Running on the lth MPI process, and assuming that m is of size nm.
r0,l = AH

l (dl −Alm0,l)− µm0,l

p0,l = r0,l

δ0,l = rT0,lr0,l

(MPI) δ0 =
∑
l δ0,l

for i = 0 to i = nm and δi > εδ0 do
al = pTi,l(A

H
l Al + µI)bi,l

(MPI) a =
∑
l al

αi = δi/a
mi+1,l = mi,l + αipi,l
ri+1,l = AH

l (dl −Almi,l)− µmi,l

δi+1,l = rTi+1,lri+1,l

(MPI) δi+1 =
∑
l δi+1,l

βi = δi+1/δi
pi+1,l = ri+1,l + βipi,l

end for

To proceed, recall that conjugate gradients is an iterative method, and let mi be the result

of the ith iteration. Then, we partition the model mi and data d according to the number

of MPI processes so that,

dT =
[

dT1 dT2 · · ·dTnr

]
(7.14)

mT
i =

[
mT
i,1 mT

i,2 · · ·mT
i,nr

]
, (7.15)

where dl, l = 1 . . . nr contain the frequency indices in the setWl. Likewise, mi,l, l = 1 . . . nr

contain the depth indices in the set Zl. Then, the forward and adjoint operators applied on

the lth MPI process are given by Al and AH
l , respectively. With this in mind, we define a

residual vector ri,l on the lth MPI process and at the ith conjugate gradient iteration such

that,

ri,l = AH
l (dl −Almi,l)− µmi,l. (7.16)

Likewise, we let the conjugate directions be pi,l for, again, the ith conjugate gradient itera-

tion and lth MPI process. With these definitions in mind, we present our implementation of

the parallel conjugate gradient method in Algorithm 7.3 where lines that are prefixed with

(MPI) require communication across all nr MPI processes. Please note that Algorithm 7.3

is not indicative of the number of times that the forward and adjoint operator must be

evaluated for each iteration of the conjugate gradient algorithm. It is well known that only

one forward and one adjoint operation need be evaluated for each conjugate gradient iter-
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MPI processes
Forward operator Adjoint operator Least-squares inverse

Run-time Speed-up Run-time Speed-up Run-time Speed-up
1 176.5 1.0 174.5 1.0 1402.7 1.0
2 89.4 2.0 85.6 2.0 695.7 2.0
4 44.7 4.0 43.3 4.0 345.3 3.9
8 22.4 7.9 22.5 7.8 177.5 7.9
16 11.6 15.2 11.9 14.7 89.9 15.6
32 6.4 27.4 6.9 25.3 49.5 28.4

Table 7.2: Run-time and speed-up values for evaluating the forward, adjoint and
least-squares inverse (using ten iterations of the conjugate gradient method). All
run-times are given in minutes.

ation. We leave it to the interested reader to understand these redundancies, which were

also discussed in Chapter 3.

7.4 Results

We present scaling results of the proposed algorithm, showing an almost ideal speed-up as a

function of the number of MPI processes. All tests were performed using the Marmousi data

(e.g Versteeg, 1994). The results are presented in Table 7.2. The code was run on a Linux

Opteron cluster with InfiniBand interconnect hosted by the Western Canada Research Grid

(www.westgrid.ca). If the algorithm scaled perfectly as a function of the number of MPI

processes, then we would expect the number of MPI processes to match the Speed-up.

7.5 Summary

We implemented split-step wavefield modelling and migration operators for parallel dis-

tributed computing systems. In addition, we presented a parallel implementation of the

conjugate gradient algorithm. The primary purpose of this work was to accelerate the pace

of research, reducing the turn-around time when running regularized migration tests used

throughout this thesis.

http://www.westgrid.ca


CHAPTER 8

Data pre-processing: noise attenuation

8.1 Introduction

In this thesis, we have primarily been concerned with wavefield modelling and migration

operators for least-squares migration. It is important to remember that migration is one

step in a larger seismic processing work-flow. Data collected in the field may undergo any

number of processing steps before migration is applied. In some cases these processing steps

are necessary because of assumptions made in the construction of the migration operator.

For example, the migration operator does not account for either the direct wavefield or

seismic multiples. In seismic exploration, multiples (previously discussed in Chapter 6) are

data events from that portion of the wavefield that has experienced at-least one downward

reflection during its propagation from source to receiver (e.g. Verschuur et al., 1992; Weglein

et al., 1997).1 To model these events, we would require an operation that is nonlinear in

the scattering potential. We recall that migration is linear in the scattering potential.

An additional, and important processing step is the removal of random noise from seismic

data. Random noise is another feature of data that can hinder migration, although as we

have seeing in previous chapters, least-squares migration can cope with significant levels of

random noise.

In this chapter, we use sparse coding (an established method in information theory) to

attenuate both random Gaussian and coherent (multiples) noise in seismic data. Sparse

coding finds some linear expansion of data in which both the coefficients and basis of the

expansion are found from the data. That is, the basis of the expansion is data-driven. The

coefficients of the expansion are the sparse code, and we attenuate noise in the data by

filtering (via soft thresholding) the sparse code.

The sparse coding representation of data is found by making some assumption about its

coefficients, namely that they are sparse. This is similar to principal component analysis

1to the exclusion of source- and receiver-side ghosts which are defined separately.
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(PCA). In PCA, a series expansion of data is found such that its coefficients are small (in

a L2 sense), and the basis of the expansion follows from this criterion. PCA has been

applied to the problem of noise attenuation in seismic data (Freire and Ulrych, 1988; Ka-

plan and Ulrych, 2002). More recently, empirical mode decomposition (EMD) has been

used to represent seismic data (Bekara and van der Baan, 2009). Like sparse coding and

PCA, EMD derives its basis functions from data, but does not specify a criteria for the

coefficients of the expansion. Instead, it finds the basis by applying successive operations

to the data (Huang et al., 1998). In contrast to all of these methods, the curvelet trans-

form (Candès and Donoho, 2004) and local wavefield decomposition (Sacchi et al., 2004)

are among those data representations where the basis is prescribed analytically, and the

coefficients are found by projection. Interestingly, the set of basis functions studied in the

local wavefield decomposition and curvelet transforms often resemble those found by sparse

coding.

Sparse coding stems from the field of cognitive neuroscience and the former is an effort to

explain the function of the primary visual cortex (Vinje and Gallant, 2000). In fact, the

underlying mathematical model for sparse coding can be described using a neural network

(Olshausen and Field, 1997). It is not surprising that it has been used for feature extrac-

tion and de-noising of images (e.g. Oja et al., 1999; Hoyer, 1999), something at which the

average human is quite proficient. In the development of its practical applications to image

feature extraction and de-noising, sparse coding has gained algorithms that were originally

developed for independent component analysis (ICA) (Common, 1994). For our work, we

employ the widely used FastICA algorithm (Hyvärinen, 1999).

Here, we use sparse coding for two specific tasks in seismic data processing: 1) random

Gaussian noise attenuation, and 2) multiple attenuation. We accomplish both tasks by

applying a filter to the sparse code. In random noise attenuation, we follow the work

of, for example, Hyvärinen et al. (1999), and shrink the sparse code (Kaplan and Ulrych,

2005). For multiple attenuation, we apply sparse coding to a common midpoint gather after

normal move-out correction, filtering the sparse code based on the dominant ray-parameter

in the corresponding basis vectors. This allows us to filter out the primary events from the

gather, leaving only multiples which are, subsequently, subtracted from the original data.

This is similar to Hampson (1986) and Foster and Mosher (1992), who both use the Radon

transform in a similar manner.

We start with a brief review of sparse coding, referring the interested reader to relevant

articles. Then, we describe the filters applied to the sparse code. For random de-noising, we

give a brief review of the traditional sparse code shrinkage method. For multiple attenuation,

we describe a novel filter that effectively sorts the basis by its dominant ray-parameters,

and then truncates the series expansion. The sorting separates the data into flat (signal)
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and curved (noise) components. Next, we show a synthetic data example for random noise

attenuation, making comparisons to results obtained by f−x deconvolution (Canales, 1984;

Gülünay, 1986; Galbraith, 1991) and the curvelet transform (Starck et al., 2002; Herrmann

and Hennenfent, 2008). Lastly, we show a real data example from the Gulf of Mexico

for multiple attenuation, making a comparison to a method using the parabolic Radon

transform.

We do not presume to recommend sparse coding in-place of established methods such as

f − x deconvolution for Gaussian noise attenuation, and the Radon transform for multiple

attenuation. In the case of random noise attenuation we note that the established methods

give better de-noising results than sparse coding, and we are hesitant to trust the sparse

coding multiple attenuation results for near offsets. However, we think that the application

of data-driven data representation to geophysical signal processing is interesting.

8.2 Sparse coding

Consider the expansion,

x =

n∑

i=1

yipi = Py, (8.1)

where x ∈ Rm and yT =
[
y1 y2 · · · yn

]
are random vectors (yi are random variables),

and pi ∈ Rm is the ith column of P ∈ Rm×n. Here, pi are the basis vectors of the expansion,

and yi are the corresponding coefficients. In other words, the vectors pi span a subspace

containing x. In this chapter, both pi and y are computed using ICA, providing a sparse

representation of x. The resulting expansion is called sparse coding, and y is the sparse

code.

8.2.1 Input data

We consider data d(t, x) in time t and space x, and work to construct, from it, equation 8.1.

To construct the realizations of x, we define matrices Wj , j = 1 . . . J and Vi, i = 1 . . . n,

and call Wj data patches, and Vi basis patches. We apply a windowing algorithm to d(t, x)

where the jth window is the data patch Wj ∈ RM×N with M time samples and N samples

(i.e. seismic traces) in space. Presently, we let,

Wj =

n∑

i=1

yijVi, (8.2)



CHAPTER 8. DATA PRE-PROCESSING: NOISE ATTENUATION 160

be the expansion of the jth data patch Wj onto the basis patches Vi, and coax equation 8.2

into the form of equation 8.1 by letting each data patch Wj be a realization of x. In

particular,

• The jth data patch Wj is mapped, via a column-wise reordering of a matrix into a

vector, to the jth realization of x.

• The basis patches Vi are mapped, via a column-wise reordering of a matrix into a

vector, to the basis vectors pi.

• The coefficient yij is the jth realization of yi, the ith random variable in the sparse

code y.

For example, consider data patches such that Wj ∈ R32×16 (i.e. 32 time samples by 16

traces). In this case, both x and y would have length m = 512. If several such windows are

collected from d(t, x), then both x and y will have several realizations, one for each data

patch.

8.2.2 The sparse code and entropy

The sparse coding representation of x is achieved using ICA, a method commonly used

for source separation (e.g. Common, 1994). ICA finds the components of the expansion in

equation 8.1 through the computation of independent components,

yi = bTi x y = Bx, (8.3)

where bTi is the ith row of B, and is chosen such that the independent components yi have

zero-mean, unit-variance, minimum entropy, and are statistically uncorrelated. Here, we

use differential entropy h(pY ) which for the ith independent component is,

h(pY ) = −
∫ ∞

−∞
pY (yi) ln pY (yi)dyi, (8.4)

where yi ∼ pY , and in the context of ICA, yi is an independent component when equation 8.4

has its minimum. The random variable yi is distributed as the probability density function

pY . It follows that distributions can be found which maximize entropy. In particular, given

moment constraints defined by the functions rk and,

∫ ∞

−∞
rk(yi)pY (yi)dyi = ck , k = 1 . . . l, (8.5)
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Appendix F.1 finds the classical result that the maximum entropy distribution of yi is,

pY (yi) = exp

(
−1 + λ0 +

l∑

k=1

λkrk(yi)

)
, (8.6)

and shows that for a prescribed mean and variance it is Gaussian. In equation 8.6, λk

are Lagrange multipliers. Since the maximum entropy distribution is Gaussian, minimizing

entropy maximizes its distance from a Gaussian distributed random variable. One way to

manifest this distance is to make pY a sparse distribution, in turn, making yi, in addition

to an independent component, one component of the sparse code.

As is evident from equation 8.4, computing entropy creates the rather difficult task of

estimating integrals from probability density functions. Here, we use an estimate introduced

by Hyvärinen (1998) that expands the probability density function pY onto a basis of non-

polynomial functions (rk(y) in equation 8.5) such that it satisfies the maximum entropy

distribution in equation 8.6 and the moment constraints in equation 8.5. This estimate

leads to an approximation for a measure related to entropy, called negentropy J(pY (yi)),

such that,

J(pY (yi)) = h(pξ(ξ))− h(pY (yi)) ≈
1

2

l∑

k=3

[E(rk(yi))]
2, (8.7)

where E is the expectation operator, pξ(ξ) is a Gaussian distribution with the same mean

and variance as pY (yi). Hence, negentropy measures the distance from a Gaussian ran-

dom variable, and minimizing the entropy of yi is equivalent to maximizing its negentropy.

Therefore, independent components correspond to maxima of equation 8.7. Note that in

the derivation of equation 8.7, k = 1, 2 are used for the prescribed constraints of zero mean

and unit variance.

8.2.3 The FastICA algorithm

Due to the relation between negentropy and independent components, the ICA problem

is reduced to one in optimization with an associated cost function measuring negentropy.

We use the FastICA algorithm with symmetric orthogonalization (Hyvärinen, 1999) for the

optimization, the details of which are given in Appendix F.2. Here, we show the utility of

PCA for ICA, write down the cost function that the algorithm optimizes, and show how its

solution relates to the sparse coding basis P.

PCA, used as a pre-processor, allows for the derivation of much needed constraints for the op-

timization problem. Given zero mean data x, we define a vector zT =
[
z1 z2 · · · zn

]
,

and a whitening matrix Γ ∈ Rn×m so that z = Γx where z is white (E(z) = 0, E(zzT ) = I
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and I is the identity matrix). That is, the random variables zi, i = 1 . . . n are mutually

uncorrelated. An appropriate choice for Γ is found such that,

Γ = Σ−1UT , Σ−1 =
[

(Σ′)−1
0
]
,

where the columns of U are the principal components of x, Σ′ = diag(σ1, σ2, . . . , σn), and

σi is the standard deviation of the ith principal component (e.g. Kaplan and Ulrych, 2005).

Due to Σ−1 ∈ Rn×m, the whitening matrix reduces the dimension of x by removing the

principal components with the smallest σi’s.

Next, define a matrix Q such that y = Qz, qTi is the ith row of Q and yi = qTi z is an

independent component exactly when qi is chosen such that yi has maximum negentropy.

Hence, an appropriate cost function (for minimization) is,

φ(qi) = −J(pY (yi)) = −J(pY (qTi z)). (8.8)

As already mentioned, whitening the data further constrains the cost function. In particular,

recalling that var(yi) = 1, E(yi) = 0 and that the independent components are uncorrelated

such that E(yiyj) = 0, i 6= j gives,

E(yiyj) = E
[
(qTi z)(qTj z)T

]
= qTi E(zzT )qj = qTi qj =

{
0 , i 6= j

1 , i = j.

Thus, the cost function need only be considered on the surface defined by qTi qi = 1, and

multiple local minima may be found using orthogonality.

Once the optimal Q is found by FastICA (Appendix F.2), the basis P for sparse coding is

readily computed. In particular, noting that Q is orthogonal, y = Qz and z = Γx, we find

x = Γ−1QTy, where Γ−1 is the left inverse of Γ. Hence, it follows from equation 8.1 that

P = Γ−1QT . The sparse code is given by y = Qz, so that the sparse coding representation

of the data x is complete.

8.3 Filtering the sparse code

In the preceding section, we reviewed the sparse coding representation of data d(x, t), build-

ing the random vector x, and its representation with the sparse code y and basis P. When

x is corrupted with noise, equation 8.1 becomes,

x̂ =

n∑

i=1

ŷip̂i = P̂ŷ, (8.9)
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where x̂ = x + n, and n is a noise vector.

8.3.1 Sparse code shrinkage for Gaussian noise

If the noise is Gaussian, we follow Hoyer (1999), and shrink the coefficients so that for the

ith random variable in the sparse code y (see Appendix F.3),

yi =
1

1 + σ2a
sign(ŷi) max(0, |ŷi| − σ2b), (8.10)

where σ is the estimate of the standard deviation of the noise, and a and b control the

sparseness of yi. For example, if a = 1 and b = 0, then yi is expected to follow a Laplacian

distribution, and if a = 0 and b = 1, then yi is expected to follow a Gaussian distribution.

The filtered data are x ≈ P̂y. In the construction of equation 8.10, it is assumed that the

noise random variables are independent.

8.3.2 τ − p truncation for multiple suppression

If d(x, t) is a common midpoint gather after normal move-out correction, then the data

consist of flat events (primaries), and the noise consists of curved events (multiples). We

assume that some subset of the basis pi represent the curved signal, say pi for i ∈ In, while

the compliment set represents the flat primaries. Then the multiple attenuated data vector

is,

x ≈ x̂−
∑

i∈In
yipi.

To choose the set In we,

1. map the ith basis vector pi ∈ RMN to its corresponding basis patch Vi ∈ RM×N
via column-wise reordering, so that it has dimensions of time t and space x, that is

Vi = Vi(t, x);

2. Radon transform the ith basis patch Vi(t, x), mapping it from the t−x domain to the

τ − p domain, giving Vi(τ, p);

3. compute a τ − p sorting norm that measures the maximum ray-parameter in Vi(τ, p),

mi =
arg maxr.p. |Vi(τ, p)|

δ(r.p.)
− ||pi||∞||P||∞

, (8.11)

where ||·||∞ is the infinity norm (largest element of the matrix or vector), and δ(r.p.) is

the sampling interval for the ray-parameter axis. The function arg maxr.p. |Vi(τ, p)| is
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the ray-parameter corresponding to the maximum absolute value in the Radon panel

Vi(τ, p).

Given the above thee-step procedure, we define the set:

In = {i |mi > εmax(mi), i = 1 . . . n} , (8.12)

where ε ∈ [0, 1] is some user-defined threshold. In particular, the larger we choose ε, the

fewer sparse coding basis vectors pi are used in the reconstructed multiples. The metric in

equation 8.11 is chosen so that, all things being equal, a basis patch dominated by a large

ray-parameter has a large norm. This is, in particular, measured by the first right-hand-

side term in equation 8.11. The second right-hand-side term in equation 8.11 refines the

sorting norm so that if the largest element in any given basis patch is large compared to the

maximum value of the basis, the norm shrinks.

8.4 Example: Gaussian random noise attenuation

For our first example, we revisit sparse coding for random Gaussian noise attenuation applied

to a synthetic seismic data example (Kaplan and Ulrych, 2005). The aim of the example is

two-fold. First, it illustrates the nature of the sparse coding basis pi. Second, it shows their

use for random noise attenuation.

Figure 8.1a is data d̂(t, x) = d(t, x) + n(t, x) with t being its vertical time axis and x its

horizontal trace number axis. The noisy data d̂ consists of three apex shifted hyperbolic

events and three linear events, corrupted by band-limited Gaussian random noise n. We

extract data patches Wj ∈ R32×16 from d(t, x) using a moving window. The set of windows

{Wj} sample the entirety of d(t, x), and have redundancy so that the lower left corner

of window Wj is shifted by either 5 traces or 5 time samples to give Wj+1. In total, 3478

realizations of Wj are collected. The data patches give the realizations of x̂ whose dimension

is reduced from m = 512 to n = 300 using the whitening matrix Γ. From the rank reduced

and whitened data, we compute the sparse code ŷ and the basis P̂ (equation 8.9). The

sparse coding basis patches Vi are built from a re-ordering of each column of P̂, from a

vector to a matrix. Interestingly, this data-driven basis, shown in Figure 8.2, has captured,

locally, the behaviour of the signal.

We filter the components of the sparse code ŷ using the shrinkage function (equation 8.10)

with a = 0.8, b = 0.2, giving y, which along with P̂ is used to reconstruct x, the filtered

data vector. In equation 8.10 our estimate of the variance of the noise in the data is set

to σ. Figure 8.1b is the sparse coding filtered data, say f(d̂), recovered from x using the

inverse of our windowing procedure. Finally, we plot the residual (d̂− f(d̂)) in Figure 8.1c.
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Figure 8.1: Random noise attenuation example: a) the input data, b) noise attenu-
ation result using sparse coding, c) residual, or difference between a) and b). Plots
d)-f) show a window from, respectively, a)-c).

In Figure 8.3 we compare the sparse coding result (Figure 8.3a) to those obtained by f − x
deconvolution (Figure 8.3b) and curvelet de-noising (Figure 8.3c). The curvelet de-noising

example uses the CurveLab software package described in, for example, Candès et al. (2006),

and produces artifacts similar to those shown in their example. To make a quantitative

comparison of the results, we show signal-to-noise ratios in Table 8.1.

noisy data sparse coding f − x deconvolution curvelet transform
-1.5 0.8 2.4 2.9

Table 8.1: Table of signal-to-noise ratios in decibels for the noisy, and filtered data.
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Figure 8.2: Random noise attenuation example: the sparse coding basis patches
Vi, i = 1 . . . 300.



CHAPTER 8. DATA PRE-PROCESSING: NOISE ATTENUATION 167

0.1

0.3

0.5

0.7

0.9

T
im

e 
(s

)

50 100 150
Trace number

0.1

0.3

0.5

0.7

0.9

T
im

e 
(s

)
50 100 150
Trace number

0.1

0.3

0.5

0.7

0.9

T
im

e 
(s

)

50 100 150
Trace number

0.4

0.5

0.6

0.7

T
im

e 
(s

)

70 80 90 100 110
Trace number

0.4

0.5

0.6

0.7

T
im

e 
(s

)

70 80 90 100 110
Trace number

0.4

0.5

0.6

0.7

T
im

e 
(s

)

70 80 90 100 110
Trace number

a) b) c)

d) e) f)

Figure 8.3: Random noise attenuation example: noise attenuation results using a)
sparse coding, b) f − x deconvolution, and c) curvelet transform. Plots d)-f) show
a window from, respectively, a)-c).
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8.5 Example: multiple attenuation

For our second example, we introduce a new application for sparse coding, applying it

to multiple attenuation. In particular, we consider a single common midpoint (CMP) data

gather which has undergone normal move-out (NMO) correction. Due to NMO, the primary

events are flat, but the multiples are under-corrected, and are parabolic. The idea, then, is

that the parabolic and flat events are captured by disjoint subsets of the sparse coding basis

functions, allowing us to use the τ − p truncation filter to capture only the multiple events

which are subsequently subtracted from the data.

To test this idea, we consider the real data example in Figure 8.4. In Figure 8.4a, we plot

d(t, x), the NMO corrected CMP gather. 3478 realizations of x are extracted from d(t, x)

using the same windowing procedure described in the previous section. Then, we compute

the sparse code y and the basis P, plotting the reordered columns of P (the sparse coding

basis patches) in Figure 8.5a. The ordering of the basis depends on the initialization of the

FastICA optimization procedure. We sort the sparse coding basis by increasing norm mi

in equation 8.11. The re-ordered basis is shown in Figure 8.5b. We plot the values of mi

in Figures 8.5c and 8.5d for, respectively, the basis before and after sorting. The multiples

are constructed by selecting ε so that the first 40 sorted sparse coding basis functions are

excluded, giving the multiple estimate dm in Figure 8.4b. Subtracting dm from d give

the multiple attenuated data in Figure 8.4c. For comparison, we plot estimated multiples

using the high resolution parabolic Radon transform (Trad, 2003) in Figure 8.4e, and the

corresponding multiple attenuated data in Figure 8.4f. We note that the artifacts in the

Radon transform result are small in amplitude. Figures 8.4e and 8.4f are clipped to 30% of

their maximum value.

8.6 Summary

When using sparse coding for noise attenuation, we are required to select three sets of

parameters. First, in generating the sparse coding basis patches, we choose the size of the

data patches Wj , and how these patches sample the data (e.g. using a moving window).

Second, for the FastICA algorithm, we choose the number of dimensions in z, the whitened

data vector. Third, we choose parameters that filter the sparse code. For random de-noising,

we have three parameters, the variance of the noise, as well as a and b in equation 8.10.

We use the latter two to control the sparsity of the underlying distribution of the sparse

code. In multiple attenuation, we choose ε in equation 8.12, removing a subset of the basis

for the reconstruction. In this chapter, we have chosen these parameters by inspection. For

example, analysis of the error panel in the random noise attenuation example, guides our
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Figure 8.4: Multiple suppression example: a) the input data; b) sparse coding
estimate of multiples; c) sparse coding multiple attenuation result, or the difference
between d) and b); d) the input data (windowed); e) Parabolic Radon transform
estimate of multiples; f) Parabolic Radon transform multiple attenuation result, or
the difference between d) and e).
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versus the sparse coding basis index i c) before and d) after sorting.
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choice of a, b and σ. While we do not discuss the topic in this chapter, for random noise

attenuation many of these parameters could be selected using methods from inverse theory

where we not only ask that the sparse code follows a sparse distribution, but also that the

reconstructed data falls close (within the expected variance of the noise) to the data (e.g.

Beck and Teboulle, 2009). For multiple suppression, the burden for choosing parameters

(e.g. ε) is placed on the user of the algorithm who must interpret the ordered basis patches,

and decide which basis patches span the primary events, and, likewise, which basis patches

span the multiple events.

Similar statements can be made about the methods that we use in this chapter for com-

parison to sparse coding. For example, in the curvelet transform we choose parameters for

shrinking the curvelet coefficients. In f − x deconvolution, we window the data so that

within each window the signal is approximately linear, as well as choosing the length of the

filter and the amount of padding. In the Radon transform, we choose how to apply the

mute in the Radon panel.

In the random noise attenuation examples, and for the purposes of this chapter, we have

been aggressive in our threshold. This is true for both the curvelet transform example and

the sparse coding example. We note that by being this aggressive, we likely filtered some

signal (in addition to the noise), damaging signal-to-noise ratios. In practise, one might

be less aggressive in choosing the thresholding parameters, giving less dramatic and more

conservative results.

Noise attenuation methods such as the curvelet transform use basis functions that represent

either signal or noise, but not both. In the data driven approach of sparse coding, it is clear

that many of the sparse coding basis patches in Figure 8.2 contain both signal and noise.

The result of this can be seeing in the reconstructed data where within the vicinity of the

signal, the noise level increases. This is, of course, not a desirable feature of the sparse

coding representation of seismic data, and is likely responsible for the small signal-to-noise

ratio shown in Table 8.1.

We used sparse coding to attenuate both random and coherent (multiples) noise in seismic

data. Sparse coding is used to estimate from the data themselves the basis functions required

to represent signal and noise. In the random noise scenario, filtering can be implemented

via thresholding the coefficients of the data expansion. In the coherent noise scenario, we

selected a subset of the basis functions by using a τ − p sorting norm. In both cases, we

compared sparse coding to existing methods. In particular, we used f − x deconvolution

and the curvelet transform for random noise, and the Radon transform for coherent noise.



CHAPTER 9

Conclusions

9.1 Summary

The primary subject of this thesis is regularized migration. It is used both to find a reg-

ularized approximation to the scattering potential, and as a tool for data reconstruction.

Important to this thesis are our chosen parameterizations of the scattering potential (shot-

receiver in Chapter 2 versus shot-profile in Chapter 5). The choice of parameterization

influences our choice of model prior, and has practical implications for algorithm implemen-

tations and requirements. For example, it was exactly the shot-profile parameterization of

the scattering potential that allowed for the data reconstruction algorithm in Chapter 6.

In Chapter 2, we derived source-receiver split-step wavefield modelling and migration oper-

ators. We took care to derive the operators from first principles before finding the expected

and classic survey sinking interpretation for the migration operator. In Chapter 3 we pro-

vided an analysis of regularized (specifically, least-squares) migration using Ritz values. In

Chapter 4, we used the expected distribution of energy in the source-receiver parameteriza-

tion of the scattering potential to influence a sparse model prior. In Chapter 5, we derived

wavefield modelling and migration algorithms under the shot-profile parameterization of

the scattering potential. This parameterization provided a basis for the data reconstruc-

tion algorithm shown in Chapter 6. In Chapter 7, we described our implementation of the

source-receiver regularized migration algorithm for distributed computing systems. Finally,

in Chapter 8, we introduced a noise suppression algorithm by applying sparse coding to

seismic data processing.

In Chapter 1, we described seismic data processing as an ordered sequence of tasks. In this

thesis, our primary focus was on the task of migration. However, we additionally, applied

migration to the task of data reconstruction, a step that precedes migration. We note that

this does not present a contradiction. In particular, this is because in our development of

172
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our data reconstruction algorithms we used wavefield modelling and migration operators

built from Green’s functions propagating at a constant velocity reference wave-speed.

9.2 Contributions

The contributions of this thesis are as follows. First, we provided derivations of wavefield

modelling and migration operators (Chapters 2 and 5). The resulting operators are, cer-

tainly, known in geophysics. However, a formal derivation of the operators is necessary

in the context of regularized migration. In particular, this is because we require that the

wavefield modelling and migration operators form a forward/adjoint pair. We note that

Chapter 5 provided novel applications of least-squares migration to the shot-profile parame-

terization of the scattering potential. Second, we provided novel algorithms for seismic data

processing: migration with a sparse model prior (Chapter 4), and shot-profile migration

data reconstruction (Chapter 6). Third, we provided a novel parallel implementation of

source-receiver least-squares migration (Chapter 7). Finally, we gave two novel applications

of sparse coding to seismic data processing; namely, random noise attenuation and multiple

suppression (Chapter 8).

9.3 Further work

In Chapter 1, we described five dimensional data collected in a reflection seismic experi-

ment. While the theory in this thesis was primarily developed for five dimensional data,

the implementation of the algorithms was done for three dimensions, such that two spa-

tial dimensions were held constant. This is certainly not a desirable feature of this thesis;

however, it is understandable given the size of five dimensional reflection seismic data (oc-

cupying Tera-Bytes of computer storage). As resources become available, extensions of the

algorithms in this thesis to five dimensional data would be an interesting engineering task.

In Chapter 4, we used a sparse model prior to regularize the inversion. While this certainly

gave some interesting results, the algorithm is not robust. We imagine that improvements

could be obtained by allowing the scale parameter for the Cauchy distribution and the noise

variance to vary as a function of space, allowing the character of the solution to, in turn,

vary over space.

This thesis used the scalar wave-equation to approximate the physics of wave-propagation.

This ignores the shear component of the wavefield, and assumes an isotropic earth. One

may want to investigate the extension of the studied methods to, for example, an elastic

and anisotropic earth model.
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APPENDIX A

Derivations for wavefield modelling within the Born

approximation

A.1 The Born approximation

To derive equation 2.4, we begin with the perturbed Helmholtz equation shown in equa-

tion 2.1, and introduce a perturbation in wave-speed using the scattering potential α and

the reference wave-speed c0. In particular, we write,

(ω/c(x, z))2 = (ω/c0(x, z))2 (1− α(x, z)) , (A.1)

where α(x, z) = 1− (c0(x, z)/c(x, z))2. Substituting equation A.1 into equation 2.1, gives,

L (ψ, c0) = f(ω)δ(x− xs)δ(z − zs) + (ω/c0(x, z))2α(x, z)ψ(x, z|xs, zs;ω), (A.2)

where, assuming a Green’s function G0 such that L(G0, c0) = δ(x− xs)δ(z − zs), allows us

to write the Lippmann-Schwinger equation,

ψ(x, z|xs, zs;ω) = f(ω)G0(x, z|xs, zs;ω)

+

∫∫ ∞

−∞

(
ω

c0(x′, z′)

)2

G0(x, z|x′, z′;ω)α(x′, z′)ψ(x′, z′|xs, zs;ω)dx′dz′.

(A.3)

From equation A.3, the Born (forward scattering) series is derived. In particular, defining

ψs = ψ − f(ω)G0 to be the scattered wavefield, and using the recursion apparent in the

183
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Figure A.1: Contours for evaluating the Weyl integral. a) for z > zs and b) for
z < zs.

Lippmann-Schwinger equation, we have,

ψs(x, z|xs,zs;ω) =

∫∫ ∞

−∞

ω2f(ω)

c20(x′, z′)
G0(x, z|x′, z′;ω)α(x′, z′)G0(x′, z′|xs, zs;ω)dx′dz′

+

∫∫ ∞

−∞

(
ω

c0(x′, z′)

)2

G0(x′, z′|x′′, z′′;ω)α(x′′, z′′)ψ(x′′, z′′|xs, zs;ω)dx′′dz′′.

Continuing the recursion yields the full Born series, and truncating at the first term, and

evaluating at the measurement surface gives the desired Born approximation in equation 2.4.

A.2 Constant velocity Green’s function

We derive the Green’s functions in equations 2.6 and 2.7 for when the reference velocity c0

is constant. Again, we begin with the Helmholtz operator L defined in equation 2.1, and

define a Green’s function G0 such that L(G0, c0) = δ(x − xs)δ(z − zs). Then, taking the

Fourier transform with respect the spatial coordinates (x and z), we find,

(
(ω/c0)2 − (kx · kx)− κ2

z

)
G0(kx, κz|xs, zs;ω) = e−i(kx·xs+κzzs),

where κz is the Fourier conjugate variable of z, and kx is the Fourier conjugate variable of

x. Solving for G0, we find,

G0(kx, κz|xs, zs;ω) =
e−i(kx·xs+κzzs)

(κz − kz)(κz + kz)
,

where we have used the following definition,

k2
z = (ω/c0)2 − kx · kx. (A.4)
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Taking the inverse Fourier transform over z gives the Weyl integral (e.g. Kober, 1968),

G0(kx, z|xs, zs;ω) =
1

2π

∫ ∞

−∞

e−i(kx·xs)eiκz(z−zs)

(κz − kz)(κz + kz)
dκz. (A.5)

Equation A.5 has two poles, both of order 1. Hence, we can solve equation A.5 using

residue theory, (e.g. Saff and Snyder, 1993), the end result being the Green’s function in

equations 2.6 and 2.7.

First, we consider the case where z > zs. We let κz be complex, and construct the contour

in Figure A.1a such that it does not enclose the poles of the integrand f(κz) in equation A.5.

Hence, by Cauchy’s integral theorem,

(∫ −kz−r1
−∞

+

∫ kz−r2

−kz+r1

+

∫ ∞

kz+r2

+

∫

γ1

+

∫

γ2

+

∫

Γ

)
f(κz)dκz = 0, (A.6)

where γ1, γ2 and Γ are contours shown in Figure A.1a, and the first three integrals are

constrained to the real axis. In the limit as r1 and r2 go to zero, the first three integrals in

equation A.6 collapse to one from −∞ to∞, along the real axis. Further, our choice z > zs,

allows the application of Jordan’s lemma, so that the Γ contour integral vanishes. Hence,

∫ ∞

−∞
f(κz)dκz = −

(∫

γ1

+

∫

γ2

)
f(κz)dκz

= πiRes(f(κz), kz) + πiRes(f(κz);−kz)

=
πi

2kz
e−i(kx·xs)eikz(z−zs) − πi

2kz
e−i(kx·xs)e−ikz(z−zs). (A.7)

Using the eiωt convention for the Fourier transform over time t (Clayton and Stolt, 1981),

we can show, by plane wave analysis, that for ω > 0, the first term in equation A.7 is causal,

while the second is anti-causal. We will retain only the causal part of the solution in our

final answer. Hence, for z > zs, we have,

G0(kx, z|xs, zs;ω) = − 1

i4kz
e−i(kx·xs)eikz(z−zs). (A.8)

Performing a similar analysis for z < zs, we use the contour in Figure A.1b so that, again,

Jordan’s lemma is applied to the Γ contour integral, and find,

∫ ∞

−∞
f(κz)dκz =

(∫

γ1

+

∫

γ2

)
f(κz)dκz

= −πiRes(f(κz), kz)− πiRes(f(κz),−kz)

= − πi

2kz
e−i(kx·xs)eikz(z−zs) +

πi

2kz
e−i(kx·xs)e−ikz(z−zs), (A.9)
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with the first term being anti-causal, and the second term being causal. Retaining only the

causal term gives for z < zs,

G0(kx, z|xs, zs;ω) = − 1

i4kz
e−i(kx·xs)e−ikz(z−zs). (A.10)

Finally, combining the results for z > zs (equation A.8) and z < zs (equation A.10), gives

for all z,

G0(kx, z|xs, zs;ω) = − 1

i4kz
e−i(kx·xs)eikz|z−zs|, (A.11)

where kz is given by the dispersion relation in equation A.4, so that,

kz = ±
√

(ω/c0)2 − kx · kx, (A.12)

which, when evaluated at the measurement surface, is the same as the Green’s function in

equation 2.6. To ensure a causal solution, we retain the following part of equation A.12:

kz = sgn(ω)
√

(ω/c0)2 − kx · kx. (A.13)

To arrive at Green’s function in equation 2.7, we take the inverse Fourier transform over

lateral dimensions x in equation A.11, so that,

G0(x, z|xs, zs;ω) =

(
1

2π

)2 ∫ ∞

−∞
− 1

i4kz
e−i(kx·xs)eikz|z−zs|ei(kx·x)dkx (A.14)

=

(
1

2π

)2 ∫ ∞

−∞
− 1

i4ksz
ei(ksx·x)eiksz|z−zs|e−i(ksx·xs)dksx. (A.15)

Hence,

G0(x, z|ksx, zs;ω) = − 1

i4ksz
ei(ksx·x)eiksz|z−zs|,

which when evaluated at the measurement surface is the same as equation 2.7.

A.3 Gazdag wavefield modelling

We derive the result in equation 2.16, the lth term in the Gazdag modelling operator (equa-

tion 2.10). In the first layer D1, we consider the previously discussed differential equation,

L(ψ(1), c0(1)) = f(ω)δ(x− xs)δ(z − z0) +
ω2

c20(1)

α(x, z)ψ(1)(x, z|xs, z0;ω),
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so that using the constant velocity Green’s function G0(1),

ψ(1)(x, z|xs,z0;ω) = f(ω)G0(1)(x, z|xs, z0;ω)

+

∫ ∞

−∞

∫ z1

z0

G0(1)(x, z|x′, z′;ω)
ω2

c20(1)

α(x′, z′)ψ(1)(x
′, z′|xs, z0;ω)dz′dx′.

(A.16)

Next, we recognize the recursion in equation A.16, finding to first order in α,

ψ(1)(x, z|xs,z0;ω) ≈ f(ω)G0(1)(x, z|xs, z0;ω)

+ f(ω)

∫ ∞

−∞

∫ z1

z0

G0(1)(x, z|x′, z′;ω)
ω2

c20(1)

α(x′, z′)G0(1)(x
′, z′|xs, z0;ω)dz′dx′.

(A.17)

The second term on the right-hand-side of equation A.17 is equivalent to ψs(1) in equa-

tion 2.16. To show this, we evaluate it at the measurement surface (xg, z0), and take the

Fourier transforms over xg and xs so that,

ψs(1)(kgx, z|ksx, z0;ω)

= f(ω)

∫ ∞

−∞

∫ z1

z0

G0(1)(kgx, z0|x′, z′;ω)
ω2

c20(1)

α(x′, z′)G0(1)(x
′, z′|ksx, z0;ω)dz′dx′.

(A.18)

Next, we substitute the constant velocity Green’s functions in equations 2.6 and 2.7 while

assuming that the support for α is below z0, giving,

ψs(1)(kgx, z0|ksx, z0;ω) = f(ω)

×
∫ ∞

−∞

∫ z1

z0

(
−e

ikgz(1)(z
′−z0)

i4kgz(1)
e−ikgx·x′

)
ω2

c20(1)

α(x′, z′)

(
−e

iksz(1)(z
′−z0)

i4ksz(1)
eiksx·x′

)
dz′dx′.

(A.19)

Finally, recognizing the Fourier kernel exp(−i(kgx − ksx) · x′) allows us to express equa-

tion A.19 using the Fourier transform, with respect to x′, of α so that,

ψs(1)(kgx, z0|ksx, z0;ω) = f(ω)

∫ z1

z0

(
−e

i(kgz(1)+ksz(1))(z
′−z0)

16kgz(1)ksz(1)

)
ω2

c20(1)

α(kgx − ksx, z
′)dz′

= f(ω)

∫ z1

z0

up(1)(kgx,ksx, z
′, ω)

ω2

c20(1)

α(kgx − ksx, z
′)dz′,

which is the same as equation 2.11 with up(1) defined in equation 2.12.

Next, we are interested in computing the scattered portion of the wavefield contributed from
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the scattering potential α in the second layer denoted by D2. The first right-hand-side term

in equation A.17 propagates the wavefield (without scattering) through to the bottom of

D1, and can be used as a boundary condition at the top of D2. Translating this boundary

condition into a forcing term gives for D2,

L(ψ(2,1), c0(2)) = f(ω)G0(1)(x, z|xs, z0;ω)δ(z − z1) +
ω2

c20(2)

α(x, z)ψ(2,1)(x, z|xs, z0;ω),

so that,

ψ(2,1)(x, z|xs, z0;ω) = f(ω)

∫ ∞

−∞
G0(1)(x

′, z1|xs, z0;ω)G0(2)(x, z|x′, z1;ω)dx′

+

∫ ∞

−∞

∫ z2

z1

G0(2)(x, z|x′, z′;ω)
ω2

c20(2)

α(x′, z′)ψ(2,1)(x
′, z′|xs, z0;ω)dz′dx′.

(A.20)

We recognize that the second term on the right-hand-side of equation A.20 contains the

scattered portion of the wavefield which, here, we denote as ψs(2,1). As before, recognizing

the recursion in equation A.20 allows us to write ψs(2,1) to first order in α,

ψs(2,1)(x, z|xs, z0;ω) = f(ω)

∫∫ ∞

−∞
G0(1)(x

′′, z1|xs, z0;ω)

×
∫ z2

z1

G0(2)(x, z|x′, z′;ω)
ω2

c20(2)

α(x′, z′)G0(2)(x
′, z′|x′′, z1;ω)dz′dx′′dx′.

(A.21)

Equation A.21 is the scattered wavefield in D2 due to the scattering potential α ∈ D2. To

find the scattered wavefield at the measurement surface due to α ∈ D2, we use ψs(2,1) as

a boundary condition at the bottom surface of D1. Then, we let ψs(2) be the scattered

wavefield in D1 due to α ∈ D2. In particular, we have,

L(ψs(2), c0(1)) = ψs(2,1)(x, z|xs, z0;ω)δ(z − z1),

so that for z ∈ D1,

ψs(2)(x, z|xs, z0;ω) = f(ω)

∫∫∫ ∞

−∞
G0(1)(x, z|x′, z1;ω)

∫ z2

z1

G0(2)(x
′, z1|x′′, z′′;ω)

× ω2

c20(2)

α(x′′, z′′)G0(2)(x
′′, z′′|x′′′, z1;ω)dz′′G0(1)(x

′′′, z1|xs, z0;ω)dx′′′dx′′dx′,

which is equivalent to equation 2.16 for l = 2. To show this we, as before, evaluate it at the



APPENDIX A. BORN APPROXIMATION - DERIVATIONS 189

measurement surface (xg, z0), and take the Fourier transforms over xg and xs so that,

ψs(2)(kgx, z0|ksx, z0;ω) = f(ω)

∫∫∫ ∞

−∞
G0(1)(kgx, z0|x′, z1;ω)

∫ z2

z1

G0(2)(x
′, z1|x′′, z′′;ω)

× ω2

c20(2)

α(x′′, z′′)G0(2)(x
′′, z′′|x′′′, z1;ω)dz′′G0(1)(x

′′′, z1|ksx, z0;ω)dx′′′dx′′dx′.

Next, we substitute the Green’s functions in equations 2.6 and 2.7, so that,

ψs(2)(kgx, z0|ksx, z0;ω) = f(ω)

∫∫∫ ∞

−∞

(
−e

ikgz(1)(z1−z0)

i4kgz(1)
e−ikgx·x′

)

×
∫ z2

z1

G0(2)(x
′, z1|x′′, z′′;ω)

ω2

c20(2)

α(x′′, z′′)G0(2)(x
′′, z′′|x′′′, z1;ω)dz′′

×
(
−e

iksz(1)(z1−z0)

i4ksz(1)
eiksx·x′′′

)
dx′′′dx′dx′′,

so that recognizing Fourier transforms over x′ and x′′′ gives,

ψs(2)(kgx, z0|ksx, z0;ω) = f(ω)

∫ ∞

−∞

(
−e

ikgz(1)(z1−z0)

i4kgz(1)

)∫ z2

z1

G0(2)(kgx, z1|x′′, z′′;ω)

× ω2

c20(2)

α(x′′, z′′)G0(2)(x
′′, z′′|ksx, z1;ω)dz′′

(
−e

iksz(1)(z1−z0)

i4ksz(1)

)
dx′′.

(A.22)

Finally, we recognize that the remaining integrals are the D2 analogy to those in equa-

tion A.18 so that,

ψs(2)(kgx, z0|ksx, z0;ω)

=f(ω)up(1)(kgx,ksx, z1, ω)

∫ z2

z1

up(2)(kgx,ksx, z
′, ω)

ω2

c20(2)

α(kgx − ksx, z
′)dz′.

(A.23)

The generalization to the lth layer follows from the pattern of integrals that we recognized

in deriving equation A.23 from equation A.22, so that ψs(l) is given by equation 2.16.

A.4 Derivation of the WKBJ Green’s function

We roughly follow the derivation in Ghatak et al. (1991) to derive a WKBJ Green’s function

that can be substituted into the Born approximation of the wavefield (as is done in Clayton

and Stolt (1981)), or used in conjunction with the split-step approximation (as is done in
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Section 2.5.2).

We start with the homogeneous Helmholtz equation L(ψ, c0(z)) = 0 where the operator L
is defined by equation 2.1, and take the two dimensional Fourier transform over the lateral

dimensions x so that,

(
∂2

∂z2
+ k2

z(z)

)
ψ(kx, z|xs, zs;ω) = 0, (A.24)

where,

k2
z(z) = ω2c−2

0 (z)

(
1− c20(z)

ω2
kx · kx

)
= ω2n2(z), (A.25)

and,

n2(z) = 1− c20(z)

ω2
kx · kx.

Substituting equation A.25 into equation A.24, gives,

(
∂2

∂z2
+ ω2n2(z)

)
ψ(kx, z|xs, zs;ω) = 0. (A.26)

Next, we make the ansatz,

ψ(kx, z;ω) = eiωg(z), (A.27)

and proceed to find an appropriate form for g(z). The second derivative of ψ is,

∂2

∂z2
ψ(kx, z;ω) = eiωg(z)

[
(iωg′(z))2 + (iωg′′(z))

]
. (A.28)

Upon substitution of equation A.28 into equation A.26, we find,

−(g′(z))2 + ig′′(z)/ω + n2(z) = 0, (A.29)

where we have divided through by ω2 in order to make the coefficient of the n2 term unity.

Next, we write g(z) using a power series in ω−1 so that,

g(z) = g0(z) + g1(z)ω−1 + g2(z)ω−2 + · · · ,

and substituting back into equation A.29, we find by equating terms that are zero order in

ω−1,

g0(z) = ±
∫ z

n(z′)dz′.

Likewise, using terms that are first order in ω−1, we find,

g1(z) =
i

2
lnn+ C,
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so that to first order in ω−1,

g(z) = g0(z) + g1(z) = ±
∫ z

n(z′)dz′ +
i

2
lnn+ C. (A.30)

Substitution of equation A.30 into equation A.27 gives,

ψ(kx, z;ω) = eiω(±
∫ z n(z′)dz′+(i/2) lnn+C) =

C±√
n(z)

e±iω
∫ z n(z′)dz′ .

To find C±, we interpret an initial condition from the forcing term in the definition of the

Green’s function so that at t = 0 the wavefield is equal to the constant velocity Green’s

function with c(x, z) = c(xs, zs). In particular, we let,

H(z − zs)ψ(kx, z; t = 0) = G0(kx, z|xs, zs; t = 0),

where G0 = 0 for (x, z) 6= (xs, zs), and H is the Heaviside step function. Hence, for the

non-trivial case where (x, z) = (xs, zs), and using the constant velocity and causal Green’s

function in equation 2.6 so that C+ = 0, we find,

H(z − zs)
∫ ∞

−∞
e−iωt

C−√
n(zs)

e−iω
∫ zs n(z′)dz′dω = −

∫ ∞

−∞
e−iωt

1

i4kz
e−ikx·xseikz|zs−zs|dω,

or,

∫ ∞

−∞
e−iωt

C−√
n(zs)

e−iω
∫ zs
zs

n(z′)dz′dω = −
∫ ∞

−∞
e−iωt

1

i4kz
e−ikx·xseikz|zs−zs|dω,

where kz is evaluated at z = zs. It follows that,

C−√
n(zs)

= − 1

i4kz
e−ikx·xs ⇒ C− = −

√
n(zs)

i4kz
e−ikx·xs = − 1

i4ω
√
n(zs)

e−ikx·xs .

Hence, the WKBJ Green’s function is,

Gz(kx, z|xs, zs;ω) = − 1

i4
√
kz(z)kz(zs)

e−ikx·xsei
∫ z
zs
kz(z′)dz′ , (A.31)

which is equivalent to equation 2.24. Finally, to find the form of equation 2.25, we take the

inverse Fourier transform of equation A.31 over lateral space x, so that,

Gz(x, z|xs, zs;ω) =

(
1

2π

)2 ∫ ∞

−∞
eikx·x

[
− 1

i4
√
kz(z)kz(zs)

e−ikx·xsei
∫ z
zs
kz(z′)dz′

]
dkx.
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Making a change of variables from kx to ksx gives,

Gz(x, z|xs, zs;ω) =

(
1

2π

)2 ∫ ∞

−∞
e−iksx·xs

[
− 1

i4
√
kz(z)kz(zs)

eiksx·xei
∫ z
zs
ksz(z′)dz′

]
dksx,

so that,

Gz(x, z|ksx, zs;ω) = − 1

i4
√
ksz(z)ksz(zs)

eiksx·xei
∫ z
zs
ksz(z′)dz′ ,

which is the same as equation 2.25.



APPENDIX B

Derivations for Ritz values

B.1 Derivation of ω for the Jacobian operator

We derive equation 3.29 which, in turn, is used in the derivation of the Jacobian operator

in Chapter 3. We begin with the equation for kz in equation 3.27, and which, at the risk of

being redundant, we repeat here,

kz =

√
ω2

c20
− 1

4
|ωph + km|2 +

√
ω2

c20
− 1

4
|ωph − km|2.

Taking the square of both sides and re-arranging terms gives,

(
k2
z +
|km|2

2

)
+ ω2

( |ph|2
2
− 2

c20

)
= 2

√
ω2

c20
− 1

4
|ωph + km|2

√
ω2

c20
− 1

4
|ωph − km|2.

Again, we take the square of both sides and group terms according to powers of ω finding,

(
k2
z +
|km|2

2

)2

+ ω4

(
4

c20
+

1

4
(|ph|2)2 − 2

|ph|2
c20

)
+ 2ω2

( |ph|2
2
− 2

c20

)(
k2
z +
|km|2

2

)

= ω4

(
4

c40
+

1

4
(|ph|2)2 − 2

|ph|2
c20

)
− ω2

(
1

2
|ph|2|km|2 + 2

|km|2
c20

)
+

1

4
(|km|2)2.

(B.1)

In equation B.1 we notice that the ω4 terms cancel giving,

(
k2
z +
|km|2

2

)2

+ 2ω2

( |ph|2
2
− 2

c20

)(
k2
z +
|km|2

2

)

= −ω2

(
1

2
|ph|2|km|2 + 2

|km|2
c20

)
+

1

4
(|km|2)2.

193
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Finally, grouping terms in ω2 gives,

(
k2
z +
|km|2

2

)2

− 1

4
(|km|2)2

= ω2

[
−1

2
|ph|2|km|2 − 2

|km|2
c20
− 2

( |ph|2
2
− 2

c20

)(
k2
z +
|km|2

2

)]
,

which, in turn, is equivalent to,

k2
z(k2

z + |km|2) = ω2

[
−|ph|2|km|2 − |ph|2k2

z + 4
k2
z

c20

]
. (B.2)

Solving equation B.2 for ω such that ω ≥ 0 gives the desired result in equation 3.29.

B.2 Derivation of the pre-conditioned conjugate gradi-

ent method

We derive the pre-conditioned conjugate gradient method in Algorithm 3.2 using the con-

jugate gradient method in Algorithm 3.1 applied to the pre-conditioned normal equations

(3.31). In particular, the conjugate gradient method used to solve equation 3.31 gives Al-

gorithm B.1 where we have used E−1AHAE in place of AHA, E−1AHd in place of AHd,

and m̂ in place of m with m = E−Hm̂ (see equation 3.31). In addition, in Algorithm B.1,

we have introduced new search directions p̂k and residual vectors r̂k.

Algorithm B.1 Derivation of the pre-conditioned conjugate gradient method, step 1

m̂0 = 0, r̂0 = E−1AHd, p̂0 = r̂0

for k = 1 to n do
αk = ||r̂k||22/(p̂Hk−1E

−1AHAE−H p̂k−1)
m̂k = m̂k−1 + αkp̂k−1

r̂k = E−1AH(d−AE−Hm̂k)
βk = ||r̂k||22/||r̂k−1||22
p̂k = r̂k + βkp̂k−1

end for

To find Algorithm 3.2, we start with Algorithm B.1, and substitute for m̂k = EHmk so

that the residual r̂k becomes,

r̂k = E−1AH(d−AE−HEHmk) = E−1AH(d−Amk) = E−1rk,

and where we have let rk = AH(d−Amk). We notice that this definition of rk is the same as

was used in the conjugate gradient method in Algorithm 3.1. Substitution of m̂k = AHmk
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and r̂k = E−1rk in Algorithm B.1 gives several simplifications, and results in Algorithm B.2.

In going from Algorithm B.1 to Algorithm B.2, we have used J−1 = E−HE−1.

Algorithm B.2 Derivation of the pre-conditioned conjugate gradient method, step 2

m0 = 0, r0 = AHd, p̂0 = E−1r0

for k = 1 . . . n do
αk = (rHk J−1rk)/(p̂Hk−1E

−1AHAE−H p̂k−1)

mk = mk−1 + αkE
−H p̂k−1

rk = AH(d−Amk)
βk = (rHk J−1rk)/(rHk−1J

−1rk−1

p̂k = E−1rk + βkp̂k−1

end for

Finally, to arrive at Algorithm 3.2, we let p̂k = EHpk so that in Algorithm B.2, the search

directions simplify to,

EHp0 = E−1r0 ⇒ p0 = E−HE−1r0 = J−1r0, (B.3)

for k = 0, and similarly the search directions for k > 0 become,

EHpk = E−1rk + βkE
Hpk−1 ⇒ pk = E−HE−1rk + βkE

−HEHpk−1 = J−1rk + βkpk−1.

(B.4)

Likewise the model update computing mk from mk−1 becomes,

mk = mk−1 + αkE
−H p̂k−1 = mk−1 + αkE

−HEHpk−1 = mk−1 + αkpk−1. (B.5)

Applying equations B.3-B.5 to Algorithm B.2, and approximating J−1 by J† gives the

desired result in Algorithm 3.2.



APPENDIX C

Derivations for regularized migration with sparseness

constraints

To derive equation 4.2, we start with the forward operator in equation 2.4, Fourier transform

over xg and xs, and substitute for the constant velocity Green’s functions in equations 2.6

and 2.7. Finally, we let the support of α be below both zs and zg, giving,

ψs(kgx, zg|ksx, zs;ω) ∝
∫∫

e−i(kgx−ksx)·x′eikgz(z′−zg)α(x′, z′)eiksz(z′−zs)dx′dz′. (C.1)

In equation C.1, the relation is proportional due to omitted amplitude terms. Recognizing

the two dimensional Fourier transform over x′, we find,

ψs(kgx, zg|ksx, zs;ω) ∝
∫
eikgz(z′−zg)α(kgx − ksx, z

′)eiksz(z′−zs)dx′dz′, (C.2)

and whose adjoint is,

α†(kgx − ksx, z
′) =

∫
e−ikgz(z′−zg)ψs(kgx, zg|ksx, zs;ω)e−iksz(z′−zs)dω. (C.3)

The dispersion relation in equations 2.8, gives for ω > 0 (see Figure 2.2),

kgz(z
′−zg) = ω

z′ − zg
c0

√
1− c20

ω2
kgx · kgx = ω

z′ − zg
c0

√
1− sin2 θg = ω

z′ − zg
c0

cos θg. (C.4)

Letting, τgz = (z′ − zg)/c0, and making a similar argument for τsz gives equation 4.2.
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Derivations for shot-profile wavefield modelling

We derive ψs(1) in equation 5.4 and ψs(2) in equation 5.9. First, we consider ψs(1). We

substitute the Green’s function in equation 5.1 into the Born approximation in equation 2.4,

taking the support of α below the measurement surface and within D1,

ψs(1)(xg, z0|xs, z0;ω) =

(
ω

c1(1)

)2(
1

2π

)4 ∫ z1

z0

∫ ∞

−∞

× eiω(c−1
0(1)

(xg)−c−1
1(1)

)(z′−z0)
∫ ∞

−∞

(
− 1

i4kgz(1)

)
e−ikgx·(x′−xg)eikgz(1)(z

′−z0)dkgxα(x′, z′)

× eiω(c−1
0(1)

(x′)−c−1
1(1)

)(z′−z0)
∫ ∞

−∞

(
− 1

i4k′z(1)

)
eik
′
x·x′eik

′
z(1)(z

′−z0)g(k′x,xs, ω)dk′xdx
′dz′.

(D.1)

In equation D.1, we have recognized an expression for the synthetic source used in shot-

profile migration algorithms,

g(k′x,xs, ω) = f(ω)e−ik
′
x·xs .

Rearranging terms, and regrouping integrals gives,

ψs(1)(xg, z0|xs, z0;ω) =

(
ω

c1(1)

)2(
1

2π

)4 ∫ z1

z0

e
iω(c−1

0(1)
(xg)−c−1

1(1)
)(z′−z0)

∫ ∞

−∞
e−ikgx·xg

×
(
− 1

i4kgz(1)

)
eikgz(1)(z

′−z0)

∫ ∞

−∞
e−ikgx·x′eiω(c−1

0(1)
(x′)−c−1

1(1)
)(z′−z0)

×
∫ ∞

−∞
eik
′
x·x′

(
− 1

i4k′z(1)

)
eik
′
z(1)(z

′−z0)g(k′x,xs, ω)dk′xα(x′, z′)dx′dkgxdz
′.

(D.2)

Finally, we make change of variables from k′x to kgx, and x′ to xg, and recognize three two-

dimensional Fourier transforms to give equation 5.4. Note that the change of integration
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variables to lateral geophone (space and wave-number) is somewhat arbitrary. In practise,

we extend xg beyond the aperture of the geophones by adding zero-traces to either side of

the shot gather. This, in effect, makes the aperture of α for shot xs (the migrated image

shot gather) independent of the recording aperture.

Next, we consider ψs(2), the contribution to the scattered wavefield from the second layer

denoted by D2. In equation 5.4, ψs(1) is the scattered portion of the first order solution to

the perturbed Helmholtz equation,

L(ψ(1), c0(1)) = f(ω)δ(x− xs)δ(z − z0) +
ω2

c20(1)

α(x, z)ψ(1)(x, z|xs, z0;ω), (D.3)

where L is the Helmholtz operator. The corresponding direct wavefield ψd(1) = f(ω)G0(1),

propagates the wavefield (without scattering) from the source through to the bottom of

D1, and can be used as a boundary condition at the top of D2. Translating this boundary

condition into a forcing term gives for D2,

L(ψ(2,1), c0(2)) = f(ω)G0(1)(x, z|xs, z0;ω)δ(z−z1)+
ω2

c20(2)

α(x, z)ψ(2,1)(x, z|xs, z0;ω), (D.4)

so that,

ψ(2,1)(x, z|xs, z0;ω) = f(ω)

∫ ∞

−∞
G0(1)(x

′, z1|xs, z0;ω)G0(2)(x, z|x′, z1;ω)dx′

+

∫ ∞

−∞

∫ z2

z1

G0(2)(x, z|x′, z′;ω)
ω2

c20(2)

α(x′, z′)ψ(2,1)(x
′, z′|xs, z0;ω)dz′dx′.

(D.5)

We recognize that the second term on the right-hand-side of equation D.5 contains the scat-

tered portion of the wavefield which, here, we denote as ψs(2,1). Recognizing the recursion

in equation D.5 allows us to write ψs(2,1) to first order in α,

ψs(2,1)(x, z|xs, z0;ω) ≈ f(ω)

∫∫ ∞

−∞
G0(1)(x

′′, z1|xs, z0;ω)

×
∫ z2

z1

G0(2)(x, z|x′, z′;ω)
ω2

c20(2)

α(x′, z′)G0(2)(x
′, z′|x′′, z1;ω)dz′dx′′dx′.

(D.6)

Equation D.6 is the scattered wavefield in D2 due to the scattering potential α ∈ D2. To

find the scattered wavefield at the measurement surface due to α ∈ D2, we use ψs(2,1) as a

boundary condition at the bottom surface of D1 (neglecting reflected energy). Then, we let

ψs(2) be the scattered wavefield in D1 due to α ∈ D2. In particular, we have,

L(ψs(2), c0(1)) = ψs(2,1)(x, z|xs, z0;ω)δ(z − z1), (D.7)
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so that for z ∈ D1,

ψs(2)(x, z|xs, z0;ω) = f(ω)

∫∫∫ ∞

−∞
G0(1)(x, z|x′, z1;ω)

∫ z2

z1

G0(2)(x
′, z1|x′′, z′′;ω)

× ω2

c20(2)

α(x′′, z′′)G0(2)(x
′′, z′′|x′′′, z1;ω)dz′′G0(1)(x

′′′, z1|xs, z0;ω)dx′′′dx′′dx′,

(D.8)

which can be made equivalent to equation 5.10 for l = 2. To show this, we evaluate it at

the measurement surface (xg, z0), and substitute for the Green’s function in equation 5.1 so

that after re-grouping integrals, we find,

ψs(2)(xg, zg|xs, zs;ω) =

(
1

2π

)8
ω2

c21(2)

∫ z2

z1

us(1)(xg, z1;ω)

∫
eikgx·xgup(1)(kgx, z1;ω)

×
∫
e−ikgx·x′us(2)(x

′, z′′;ω)

∫
eik
′
x·x′up(2)(k

′
x, z
′′;ω)

∫
e−ik

′
x·x′′

[
us(2)(xg, z

′′;ω)

×
∫
eik
′′
x ·x′′up(2)(k

′′
x, z
′′;ω)

∫
e−ik

′′
x ·x′′′us(1)(x

′′′, z1;ω)

∫
eik
′′′
x ·x′′′up(1)(k

′′′
x , z1;ω)

× g(k′′′x ,xs, ω)dk′′′x dx
′′′dk′′x

]
α(x′′, z′′)dx′′dk′xdx

′dkgxdz
′′,

(D.9)

where we have, again, used the simplifying assumption in equation 5.8. Additionally, to

avoid notational clutter, we have used the definitions in equations 5.5 and 5.6, and where

the limits of integration are not specified, they are (−∞,∞). In equation D.9, we make

a change of integration variables from each of x′, x′′ and x′′′ to xg, and from each of k′x,

k′′x and k′′′x to kgx. Then, recognizing four two-dimensional inverse Fourier transforms, and

three two-dimensional Fourier transforms gives equation 5.10 for l = 2.



APPENDIX E

Derivations for shot-profile migration data

reconstruction

E.1 Derivation of the forward operator

We find ψs in equation 6.1 using the Born approximation in equation 2.4, and the Green’s

function in equation 5.1. This derivation risks being redundant to an analogous derivation

in Appendix D, the difference being in its use of a constant reference wave-speed. Taking

zg = zs = z0, and the support of α to be below z0, we find by substitution of equation 5.1

into equation 2.4,

ψs(xg, ω; xs) =

(
1

2π

)4(
ω

c0

)2 ∫ ∞

z0

∫ ∞

−∞

∫ ∞

−∞

(
− 1

i4kgz

)
e−ikgx·(x′−xg)eikgz(z′−z0)dkgx

× α(x′, z′)
∫ ∞

−∞

(
− 1

i4k′z

)
eik
′
x·x′eik

′
z(z′−z0)g(k′x, ω,xs)dk

′
xdx

′dz′.

(E.1)

In equation E.1, k′x is the Fourier conjugate variable of x′, and we have recognized an

expression for the synthetic source used in shot-profile migration algorithms,

g(k′x, ω,xs) = f(ω)e−ik
′
x·xs .

Moreover, we have used the dispersion relation,

k′z = sgn(ω)

√
ω2

c20
− k′x · k′x.
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Rearranging terms and regrouping integrals in equation E.1 gives,

ψs(xg, ω; xs) =

(
1

2π

)4(
ω

c0

)2 ∫ ∞

z0

∫ ∞

−∞
eikgx·xg

(
− 1

i4kgz

)
eikgz(z′−z0)

∫ ∞

−∞
e−ikgx·x′

×
∫ ∞

−∞
eik
′
x·x′

(
− 1

i4k′z

)
eik
′
z(z′−z0)g(k′x, ω,xs)dk

′
xα(x′, z′)dx′dkgxdz

′.

Finally, we make a one-to-one change of notation for variables of integration, from k′x to kgx,

and x′ to xg, and recognize three two-dimensional Fourier transforms to give equation 6.1.

The conventions that we use for the Fourier kernels are indicated by the operator notation

that we use in equation 6.1. Note that, as was the case in Appendix D, the change of

integration variables to lateral geophone (space and wave-number) is somewhat arbitrary.

Again, we extend xg beyond the aperture of the geophones by adding zero-traces to either

side of the shot gather. Moreover, we can let xg correspond to the nominal grid used for data

reconstruction, rather than a grid dictated by the geophone locations. This, in effect, makes

the aperture of α for shot xs (the migrated image shot gather) independent of the recording

aperture. This was important in our discussion of least-squares shot-profile migration, and

becomes even more important in our discussion of SPDR and SPDR2.

E.2 Derivation of adjoint sampling operator for SPDR

and SPDR2

We find α†p in equations 6.19 and 6.39. We substitute equation 6.18 into equation 6.38 while

letting z0 = 0, so that,

α†p(xg, z
′, ω) =

(
1

2π

)2(
ω

c0

)2 ns∑

q=1

[∫ ∞

−∞
eikgx·xge−ikgzz

′
f∗(ω)eikgxxs(q)dkgx

]

×
∫ ∞

−∞
eikgxxge−ikgzz

′ 1

∆x
o(q)
g

δ(kgx − kp)ψ0(ω)dkgx,

(E.2)

where

kp = 2πp/∆xog.



APPENDIX E. DATA RECONSTRUCTION - DERIVATIONS 202

In equation E.2, we use the sifting property of the Dirac delta function so that,

α†p(xg, z
′, ω) =

(
1

2π

)2(
ω

c0

)2 ns∑

q=1

[∫ ∞

−∞
eikgx·xge−ikgzz

′
f∗(ω)eikgxxs(q)dkgx

]

× eikpxge−ikgz(p)z
′ 1

∆xog
ψ0(ω),

(E.3)

where,

kgz(p) = sgn(ω)

√
ω2

c20
− k2

p.

Making a change of variables from kgx to k′gx, letting, k′gz = sgn(ω)
√
ω2/c20 − (k′gx)2, and

taking the Fourier transform of equation E.3 with respect to xg, gives,

α†p(kgx, z
′, ω) =

f∗(ω)ψ0(ω)

(2π)2∆xog

(
ω

c0

)2

×
ns∑

q=1

e−ikgz(p)z
′
∫ ∞

−∞
e−ikgxxg

∫ ∞

−∞
eik
′
gxxgeikpxgeik

′
gxxs(q)e−ik

′
gzz
′
dk′gxdxg.

We change the order of integration, and rearrange terms to give,

α†p(kgx, z
′, ω) =

f∗(ω)ψ0(ω)

(2π)2∆xog

(
ω

c0

)2

×
ns∑

q=1

e−ikgz(p)z
′
∫ ∞

−∞
eik
′
gxxs(q)e−ik

′
gzz
′
∫ ∞

−∞
e−ikgxxgei(k

′
gx+kp)xgdxgdk

′
gx.

(E.4)

To proceed, we recognize that,

F−1
{
δ(kgx − (k′gx + kp))

}
=

1

2π

∫ ∞

−∞
eikgxxgδ(kgx − (k′gx + kp))dkgx

=
1

2π
ei(k

′
gx+kp)xg .

Hence,

F
{
ei(k

′
gx+kp)xg

}
= 2πδ(kgx − (k′gx + kp)). (E.5)

We substitute equation E.5 into equation E.4 giving,

α†p(kgx, z
′, ω) =

f∗(ω)ψ0(ω)

2π∆xog

(
ω

c0

)2 ns∑

q=1

e−ikgz(p)z
′
∫ ∞

−∞
eik
′
gxxs(q)e−ik

′
gzz
′
δ(kgx−(k′gx+kp))dk

′
gx.

(E.6)
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As before, we use the sifting property of the Dirac delta function so that the integral in

equation E.6 evaluates to where k′gx = kgx − kp in the integrand. In particular, if we recall

that,

k′gz = sgn(ω)

√
ω2

c20
− k′gx,

then, equation E.6 becomes,

α†p(kgx, z
′, ω) =

f∗(ω)ψ0(ω)

2π∆xog

(
ω

c0

)2 ns∑

q=1

e−ikgz(p)z
′
ei(kgx−kp)xs(q)e−i sgn(ω)

√
ω2/c20−(kgx−kp)2z′ .

(E.7)

Next, we take the Fourier transform of equation E.7 with respect to z giving,

α†p(kgx, κz, ω) =
f∗(ω)ψ0(ω)

2π∆xog

(
ω

c0

)2

×
ns∑

q=1

ei(kgx−kp)xs(q)

∫ ∞

−∞
e−iκzz

′
e−i(kgz(p)+sgn(ω)

√
ω2/c20−(kgx−kp)2)z′dz′,

(E.8)

where κz is the Fourier conjugate variable of z. To simplify equation E.8, we let Fz denote

the Fourier transform over z with F−1
z begin its inverse, and note that,

F−1
z

{
δ(κz + (kgz(p) + sgn(ω)

√
ω2/c20 − (kgx − kp)2))

}

=
1

2π

∫ ∞

−∞
eiκzzδ(κz + (kgz(p) + sgn(ω)

√
ω2/c20 − (kgx − kp)2))dκz,

which simplifies to,

F−1
z

{
δ(κz + (kgz(p) + sgn(ω)

√
ω2/c20 − (kgx − kp)2))

}

=
1

2π
e−i(kgz(p)+sgn(ω)

√
ω2/c20−(kgx−kp)2)z.

Hence,

Fz
{
e−i(kgz(p)+sgn(ω)

√
ω2/c20−(kgx−kp)2)z

}

= 2πδ(κz + (kgz(p) + sgn(ω)
√
ω2/c20 − (kgx − kp)2)).

(E.9)
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With equation E.9, we can simplify equation E.8, giving,

α†p(kgx, κz, ω)

=
f∗(ω)ψ0(ω)

∆xog

(
ω

c0

)2

δ(κz + (kgz(p) + sgn(ω)
√
ω2/c20 − (kgx − kp)2))

ns∑

q=1

ei(kgx−kp)xs(q) ,

(E.10)

which is the same as equation 6.39. If we let ns = 1 and xs(1) = 0, then equation E.10

simplifies to equation 6.19.



APPENDIX F

Derivations for sparse coding

F.1 The maximum entropy distribution

We find the maximum entropy distribution for a continuous random variable y that satisfies

the usual conditions,

pY (y) ≥ 0 , y ∈ R
∫ ∞

−∞
pY (y)dy = 1, (F.1)

and the moment constraints in equation 8.5. Hence, the appropriate cost function (for

maximization) is,

φ(pY ) = h(PY ) + λ0

(∫ ∞

−∞
pY (y′)dy′ − 1

)
+

l∑

k=1

λk

(∫ ∞

−∞
rk(y′)pY (y′)dy′ − ck

)
,

where λk are Lagrange multipliers, and the entropy h(pY ) is given by equation 8.4. Differ-

entiating with respect to pY (y) gives,

∂φ

∂pY
= − ln pY (y)− 1 + λ0 +

l∑

k=1

λkrk(y), (F.2)

and setting this result to zero yields the extreme point of the cost function,

pY (y) = exp

(
−1 + λ0 +

l∑

k=1

λkrk(y)

)
. (F.3)

Independent components are assigned a mean of 0 and a variance of 1. Hence, l = 2 and

equation 8.6 becomes,

pY (y) = eλ0−1eλ1y+λ2y
2

.
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Setting λ0 = ln(2π)−1/2 + 1, λ1 = 0 and λ2 = 1/2 yields a Gaussian distribution which sat-

isfies the constraints in equation 8.5 and the maximum entropy distribution in equation F.1

and, hence, maximizing entropy.

F.2 FastICA update rule

To minimize φ in equation 8.8, we use the FastICA algorithm, proposed by Hyvärinen

(1999) which employs approximate Newton steps in an iterative scheme. The gradient of φ

(equation 8.8) is,

∇φ(qi) = −E(r(yi))E (r′(yi)z) , (F.4)

and ignoring the scalar value −E (r(yi)) allows for computation of an approximate Hessian

H such that,

H ≈ E (r′′(yi)) E(zzT ) = E(r′′(yi))I.

This approximation gives a Hessian that is easily inverted, leading to the approximate

Newton step (from iteration k to k + 1) given by,

q
(k+1)
i = q

(k)
i −

E(r′(yi)z)

E(r′′(yi))
. (F.5)

Multiplying equation F.5 through by the denominator in its third term yields,

E (r′′(yi)) q
(k+1)
i = E (r′′(yi)) q

(k)
i − E (r′(yi)z) .

Hence, an appropriate update rule for the ith row of Q is,

q
(k+1)
i = E(r′′(yi))q

(k)
i − E(r′(yi)z)

q
(k+1)
i ← q

(k+1)
i

||q(k+1)
i ||2

. (F.6)

The projection back onto the unit circle accounts for the constraint qTi qi = 1. For the

algorithm used in this thesis, all rows of Q are updated simultaneously. That is, for each

iteration of the optimization routine, 1) each row qTi of Q is updated according to equa-

tion F.6, and 2) the rows of Q are made orthogonal using symmetric orthogonalization such

that,

Q← Q
(
QTQ

)−1/2
.
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F.3 Sparse code shrinkage

We derive equation 8.10 where the sparse code yi is corrupted with noise so that, dropping

the subscript, ŷ = y + n. First, we write Bayes formula,

p(y|ŷ) =
p(ŷ|y)p(y)

p(ŷ)
,

where p(ŷ) =
∫∞
−∞ p(y)p(ŷ|y)dy is a constant. Here, we let p(ŷ|y) = pn(ŷ − y) where n

is random noise. Next, we maximize the posterior density p(y|ŷ) with respect to y. In

particular, letting n ∼ N(0, σn) gives,

arg max
y

p (y|ŷ) = arg max
y

[
1√

2πσn
exp

(
− (ŷ − y)

2

2σ2
n

)
p (y)

]

= arg max
y

[
exp

(
− (ŷ − y)

2

2σ2
n

+ ln p (y)

)]

= arg min
y

[
1

2σ2
n

(ŷ − y)
2 − ln p (y)

]

= arg min
y

[
1

2σ2
n

(ŷ − y)
2

+ φp (y)

]
, (F.7)

where φp (y) = − ln p (y) is the model norm. Equation F.7 has its solution when,

1

σ2
n

(y − ŷ) + f ′ (y) = 0⇒ y = ŷ − σ2
nf
′ (y) . (F.8)

For example, consider, as Hoyer (1999) does, the following probability density function,

p (y) = c exp
(
−ay2/2− b|y|

)
,

where c is a constant, and the parameters a and b are adjusted, allowing control over the

sparseness of y. In this case, the model norm is,

φp (y) = − ln
[
c exp

(
−ay2/2− b|y|

)]
= − ln c+ ay2/2 + b|y|. (F.9)

Taking the derivative of equation F.9 with respect to y gives,

φ′p (y) = ay + b
y

|y| = ay + b sign(y),
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and applying this result to equation F.8 gives,

y =
1

1 + σ2a

(
ŷ − σ2b sign (y)

)

=
1

1 + σ2a
sign (y)

(
ŷ

sign (y)
− σ2b

)
.

Finally, we let sign (y) = sign (ŷ), and ensure that the choice of b does not flip the sign of

the coefficients such that,

y =
1

1 + σ2a
sign (ŷ) max

(
0, |ŷ| − σ2b

)
,

which is the same as equation 8.10.
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