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Abstract

The goal of this study was to show that quantifiable metabolic changes may be used to screen for
cancer. NIH Il nude mice were injected with human GBM cells (h=22) or with saline (n=14). Daily
urine samples were collected pre and post-injection and analyzed using NMR Spectroscopy. 34
metabolites were identified and quantified through targeted profiling with Chenomx Suite 5.1. Univariate
statistical analysis showed that 3 metabolites (2-oxoglutarate, glucose and trimethylamine n-oxide) were
significantly altered in the presence of tumour, while PCA and PLS-DA analysis modeled the maximum
variance between the healthy and tumour-bearing groups. Receiver operating characteristic (ROC) curve
analysis was applied to provide a measure of clinical utility. ROC statistics were as high as 0.850 for the
analysis of individual metabolites, 0.939 for the analysis of metabolite pairs and 0.996 for the PLS-DA

models. These results show that metabolomics has potential to screen for cancer
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Chapter 1
Overview of Thesis

1.1 Overview of the Project

The stage at which atumour is detected serves as an important prognostic
indicator (Feng et al., 2009). It has been well established that early detection of tumours
will significantly improve long term survival rates aswell as decrease the costs of
treatment (Kil-Sun et a., 2010; Taplin et d., 2004). Studies of metabolism have shown
promisein the field of early detection of metabolic diseases (Kim et al., 2009).

M etabolomics is the time dependent, quantitative measurement of the
multivariate metabolic response to a pathological stimulus or genetic modification
(Nicholson et al., 1999). It has been shown that quantifiable metabolic changes appear
with the development of a disease (Nicholson et al., 2007). The complement of dl
metabolic changes that take place are expected to be unique to a particular disease; the so
called metabolic fingerprint (Spratlin et a., 2009). By measuring the concentrations of
metabolitesin abiofluid or tissue extract as individual s transition from healthy to
diseased, it may be possible to identify patterns of metabolic behaviour associated with
the disease (Goldsmith et al., 2010).

To date, there is no standard method to evaluate the clinical significance of a
metabolomics data set. If the results of metabolomics studies are to reach clinical
acceptance, it is essential to quantify the effectiveness with which a metabolic signature
can differentiate samples from healthy and diseased individuals. Receiver operating
characteristic (ROC) curve analysis has been widely used in the clinic to evaluate a
diagnostic test (Akobeng, 2006; Del.ong et d., 1988). We hypothesi ze that the
application of ROC curve analysis to a metabolomics data set will provide a measure of
clinical significance, in which the results could be used to identify the metabolic changes
associated with the early development of tumour in the body.

The goal of thisthesisisto show that quantifiable metabolic changesin urine
samples take place with the onset of tumour development in an animal GBM tumour
model. The observed metabolic changes will be quantified with ROC curve analysis to
provide a measure of their clinical significance. Univariate statistics are used to test the



significance of the changesin urinary metabolite concentrations between the healthy and
tumour-bearing populations on an individual and paired (ratios) basis. Multivariate
techniques are employed to investigate complicated metabolic relationships to optimally
separate the two populations. An age-matched group of sham-injected control animals

will serve to identify metabolic changes that are not related to the presence of the tumour.

1.2 Organization of the Thesis

The organization of the thesis will begin with atheoretical description of the
experiment and a presentation of the techniques used in similar experiments. A full
description of the methods used in our study will follow. The results will then be

presented.

Chapter 2 opens with a description of what constitutes a screening test and
provides a brief summary of mammography, cytology and the prostate specific antigen
tests. The potential for using metabolomics for screening is presented. Six studies which
use metabolomics information for the identification of cancer are then summarized.

Next, the advantages of using urine samples for screening are described. The chapter

concludes with an overview of the experiment with emphasis on the impacts of our study.

Chapter 3 provides atheoretical description of NMR spectroscopy. Thisincludes
a description of the magnetization, the process of relaxation, and the nuclear overhauser
effect (NOE). The 1-D NOESY pulse sequence used in our experiments exploits the
NOE and will aso be described.

Chapter 4 presents an overview of the measurements and analytical techniques
often used in metabol omics experiments. NMR spectroscopy and mass spectrometry are
described. Most studies rely on chemometrics approached to analyze the data. This
chapter covers PCA and PLS-DA, including a mathematical description of each. The
chapter closes with an overview of the cross validation techniques used to evaluate PCA

and PLS-DA models aswell as how to interpret the results obtained from them.

Chapter 5 describes ROC curve analysisis greater detail. The chapter focuses on
devel oping an understanding of how to make an ROC curve and how diagnostic
information may be extracted from the curve. The area under the ROC curve will be
described in terms of clinical significance. The methods used to determine the optimal
decision threshold are also described.



Chapter 6 covers the experimental techniques used in this study in detail. It
opens with a description of the animal model, urine collection techniques and proper
sample handling. The NMR analysis methodology is presented. Thisincludesthe
timings used in the pul se sequence and optimizing the magnetic field shims. The
Chenomx software is then described in detail. The techniques used for data processing

and analysis are described.

Chapter 7 presents the results of the experiment. Emphasisis placed on the
addition of ROC analysisto the analysis. These results are presented for both univariate
and multivariate statistical analysis. The AUC and the optimal decision thresholds are
displayed for the metabolite concentrations and the metabolite ratios.



Chapter 2
Screening for Cancer

2.1 Screening

Screening is defined as the use of simple tests across a population to identify
individuals who have a disease before they become symptomatic (World Health
Organization a; Cook, 2008; Zivian and Gershater, 2008). The development and
implementation of screening tools for cancer is particularly important for two principa
reasons: first, it has been estimated that that one in two men and one in three women will
develop cancer in their lifetime (Eyre, 2009; Welch and Black, 2010) and second, the
stage at which atumour is detected serves as an important prognostic indicator for patient
outcome (de Nooijer et a., 2001; Feng et d., 2009; Smith et a., 2009; Taplinet al.,
2004). Figure 2.1 shows the 5-year survival rates for four types of cancers. The
examples of pancreas, lung and ovary, are cancer which are often diagnosed at alater

stage, and suffer from poor survival rates.

000 500 100%
Cummulative Percentage of People Diagnosed at Each Stage

gy

80%0

Prostate

60% Ovary

40%0

Pancreas

2000

5-Year Survival Rate at Each Stage

Stage I Stage 11 Stage I1I Stage IV

Figure 2.1: 5-year survival rates for four types of cancers. The thickness of the curves
relates the percentage of tumour diagnosed at each stage as defined by the gray scale.
Pancreas, Lung and Ovarian cancers are examples of cancers which are often diagnosed at
alater stage and suffer from poor survival rates. This motivates the need to develop a
screening technique for early detection. Permission granted for use of figure by Mr.
Thomas Goetz, deputy editor for Wired Magazine and author of article: “Why Early
Detection is the Best Way to Beat Cancer”, Wired Magazine, 2008, Vol. 17.01



Effective screening programs require atest which is highly sensitive and specific
for the disease in question (Cady and Michael son, 2001), has a gold standard to verify the
presence of the disease and has access to treatment (Taplin et a., 2004). The screening
test should be safe, reliable and inexpensive (World Health Organization b). Further, the
test should be easily accessible to the total population and screen for a disease with high
prevalence (Cady and Michaelson, 2001). Taplin et al. (2004) and Cady and Michaelson
(2001) have both suggested that non-compliance can be an issue for screening, therefore
itis aso important to develop atest that is non-invasive and requires minimal time and

effort from the patient.

It has been suggested that tumours having 10°-10° cells (approximately weighing
1 g) are often difficult to detect with current methods (Eyre 2009). Detection at this stage
would result in improvements in the efficacy of cancer therapies as the tumour has
generally not metastasized. Tumours with 10* cells (about 1 kg of tumour) are often
associated with death. Patients will often not seek medical expertise for cancers until
clinical signs and symptoms present (Welch and Black, 2010). The sizes of tumours at
various stages are shown in figure 2.2. As shown, most tumours are detected and treated

beyond the point of small, easily treated tumours (10%-10° tumour cells).

The Prevention - Therapy Convergence

Lesion, Tumor

Clinical Death
Microscopic Disease Symptoms

0 10 10¢ 10° 10* 10° 105 107 10% 10° 10 10! 1012
(1 mm?3/ 1 mg) (Iem?/1¢) (11/1kg)

Number of Cells (Volume/Mass)

Clinical
Detection

Figure 2.2 Clinical and molecular model of the convergence of invasive cancer and
pre-invasive disease, and of cancer therapy and prevention. Permission granted to use
figurein thesisfrom Elsevier. Figure found in: Eyre H 2009 Winning the Cancer
Fight: A Look at the Future Primary Care: Clinicsin Office Practice 36 859-866.



2.2 Current Methods of Cancer Screening

Current screening techniques include mammography for breast cancer (Cady and
Michaelson, 2001), cytology screening for cervical (Smith et al., 2002) and bladder
cancer (Issaq et al., 2008), and the prostate-specific antigen (PSA) test for prostate cancer
(Isharn et a., 2009; Spahn et al., 2010). These methods attempt to find evidence of
small, but devel oping tumours before clinical symptoms present (Cook, 2008). The
American Cancer Society (ACS) publishes areport summarizing their recommendations
for cancer screening each year (Smith et al., 2002; Smith et al., 2009). The annual
reports do not contain information for all cancers, but will describein great detail
changes from the previous reports. A brief summary of the three mentioned screening

techniques follow.

Breast cancer is the most common cancer in women and is the second leading
cause of death from cancersin women (Smith et al., 2009). Mammography isthe main
imaging modality used to detect breast cancers at an early stage and is thought to
decrease mortality rates by 30-40% (Alvarengaet a., 2010; Taplin et a., 2009; van den
Biggelaar et a., 2009). Other benefits of mammography include increased survival rates,
requirement for less aggressive surgical procedures and adjuvant therapies and an
increase in the number of treatment options available (Smith et al., 2009). Cady and
Michael son (2001) suggest that mammography screening will detect smaller sizes of
invasive cancers which are often accompanied with patients having low grade histology.
Thisresultsin significant improvements in outcome. The sensitivity of mammography is
predicted to be 70-80% (Nam et al., 2009). However, the accuracy of thetest is
dependent on the composition of the mammary parenchyma and tumour tissue
characterigtics (Alvengaet al., 2010). The complicated radiographic structure of breast
tissue and the subtle characteristics of early stage tumours make screening more difficult
(Zivian and Gershater, 2008). Despite these challenges, therisk of late stage cancer is
greater in women who have not had a mammography (Taplin et a., 2009).

Mammography is able to detect cancers that are 0.5-1.0 cmin size in women
with non-dense breasts, but tumours are rarely detected smaller than this (Eyre, 2009).
Despite breast cancer detection rates increasing by 4.6-15 % (Destounis, 2004; Taplin et
al., 2009), alarge proportion of detectable lesions are missed — even those at late stage
(Taplin et al., 2009; van den Biggelaar et a., 2009) — and not all detected cases are
associated with agood prognosis (Smith et a., 2009). It is predicted that approximately



25-30% of visible cancers are missed when mammogram images are read by asingle
radiologist (Zivian and Gershater, 2008). This could be a consequence of the low
incidence of breast cancer lesions observed in mammograms (~ 2.6 lesionsin 1000).
Newer devel opments have focused on computer-aided detection (CAD) (Zivian and
Gershater, 2008) and breast ultrasound imaging (Alvengaet a., 2010).

Cervical cancers are often detected through cytology testing or papanicolaou
(Pap) smears (Smith et al., 2009). Cytology specimens are collected from the entire anal
canal using a Dacron swab (Bean and Chhieng, 2010). The cells collected are fixed on a
dlide for aconventional smear onin aliquid medium for liquid-based cytology (Bean and
Chhieng, 2010). The PAP test has been highly effective at screening for pre-invasive
cancers (Gustafsson et al., 1997), decreasing the incidence and mortality rates from
cervica cancer in Canada between 1981 and 2002 by 39% and 53%, respectively (Lofters
et a., 2010), and decreased incidence rates in the USA from 35-40/ 100,000 to 8 / 100,00
(Bean and Chhieng, 2010). Thistest is capable of reliably detecting precancerous
changes with 10*-10° tumour cells (Eyre, 2009), but it isinvasive, painful and costly
(Issag et a., 2008). The sensitivity and specificity of a cervica cytology test is 75% and
90% (Bean and Chhieng, 2010).

Screening for prostate cancer is performed via the prostate-specific antigen
(PSA) test or adigital rectal examination (Goldsmith et al., 2020; Smith et a., 2002).
These tests, however, are not sufficiently specific and have accuracies of 25-50%
(Goldsmith et al., 2010). Goldsmith et a. (2010) estimated that PSA testing has
sensitivities and specificitiesin the range of 60-75%. In addition, prostate cancer patients
with a PSA value greater than the threshold 20 ng/ml come from a highly heterogeneous
group; therefore an elevated PSA is not sufficiently specific to distinguish high risk
patients (Sphan et al., 2010). It is essential to discover a better screening technique asthe
treatment can cause moderate to substantial harms (Smith et al. 2009).

Current screening methods often rely on imaging or pathological specimens from
cytology or biopsy (Eyre, 2009). Thetests can beinvasive, uncomfortable for the patient,
and may suffer non-compliance; this deems them unsatisfactory for screening (Wen et al.,
2010). Infact, problems with detection account for 40% of late stage cancersin the
clinic (Taplin et a., 2004). The 5-year survival ratesfor oral cancersisaround 50% and
has not improved over the last 30 years as the tumours are often discovered in late stage.

Ninety-eight percent of pancreatic cancersresult in death due to the lack of treatment



available and the increased rates of metastases (Sugimoto et a., 2010). These examples

emphasi ze the need for better techniques for screening.

Studies of metabolism hold potential to serve as screening tools (Altmaier et d.,
2008; Gowdaet a., 2008; Holmes et a., 2000; Griffin and Shockcor, 2004). To date,
studies have successfully identified individuals with Alzheimer’ s disease (Barba et al.,
2008; Tukianinen et a., 2008), Duchenne muscular dystrophy (Griffin et al., 2001),
myocardia ischemia (Sabotine et a., 2005), type 2 diabetes (Selek et a., 2007), inborn
errors of metabolism (Shlomi et a., 2009) and a number of cancers (Claudino et al.,
2007) in alaboratory setting.

2.3 Potential of Metabolomicsfor Screening

M etabolism may be used for early diagnosis, or for real-time monitoring of the
effects of adisease (Kim and Maruvada, 2008; Kim et al., 2009). Theideaisthat the
comprehensive analysis of the metabolic content of biofluids - such as urine, serum or
cerebral spind fluid (Beckonert et al., 2007) — or from atissue extract, will provide
information about an individual’s current health status (Ala-K orpela, 2008; Bollard et al.,
2001; Kaddurah-Daouk et al., 2008; Nordstrom and Lewensohn, 2010). It has been well
established that the metabolic content of a sample will be altered in the presence of a
disease or toxic effect (Bollard et a., 2005). By analysing these changes, it may be
possible to identify the presence of adisease (Saude et a., 2007; Spratlin et a., 2009;
Vinayavekhin et a., 2010).

The field of metabolomics emerged in the 1980’ s to study changesin the
concentrations of small endogenous molecules, known as metabolites, and relate these
changes to a state of disease or toxicity (Nicholson et al., 2007). A metabolite is defined
as any chemical compound involved in, or a product of, metabolism (Lawrence, 2005).
These consist of amino acids, oligopeptides, sugars, bile acids and ssimple fatty acids
(Clarke and Haselden, 2008). The complement of all low-molecular weight metabolites
found in abiofluid or tissue, which takes part in metabolic reactions, constitutes the
metabolome (Kaddurah-Daouk et al., 2008). It isthought to cover 7-9 orders of
magnitude of concentration (pmol-mmol) (Dunn and Ellis, 2005). Metabolomicsisthe
comprehensive analysis of all metabolitesin an organism, and is used in conjunction with

pattern recognition techniques and bioinformatics to detect and follow endogenous



metabolitesin biofluids or tissues (Spratlin et al., 2009). In 1999, Nicholson et a. coined
the term ‘ metabonomics' which isthe “the quantitative measurement of the dynamic
multi parametric metabolic response of living systems to pathophysiologic stimuli or

genetic modification”.

The human body contains a complex and dynamic array of interacting metabolic
pathways. In ahealthy individual, metabolic processes are kept in balance (homeostasis)
(Saude et al., 2007). When atoxic stressis present, whether it isadrug or adisease, cdlls
attempt to maintain homeostasis and metabolic control by altering the composition of the
biofluids that perfuse them or are secreted by them (Goldsmith et al., 2010; Holmes and
Antti, 2002; Lindon et al., 2003; Nordstrom and Lewensohn, 2010). Metabolitesin cells,
tissues and biofluids are in dynamic equilibrium, so abnormal processes will be indicated
by alterations in the metabolic content (Clarke and Haselden, 2008; Lindon et al., 2001;
Maher et al., 2007). By comparing the metabolic content of biofluids between
populations of healthy and diseased individuals, it is possible to identify patterns of
metabolic behaviour which may be indicative of that disease (Goldsmith et a., 2008;
Kimet a., 2009). The toxicological response is defined as the deviation from the control
or baseline levels (Bollard et al., 2004). A disease process generates a unique and
characteristic signature of metabolic changes which is known as the metabolic phenotype
(Holmes and Antti, 2002; Lindon et a., 2001; Serkovaet a., 2008). In such studies, a
certain degree of homeostasisin the healthy population is assumed (Saude et a., 2007).
The metabolome is dynamic, and will respond to stimuli within seconds (Dunn and Ellis,
2006; Kim and Maruvada, 2008; Kim et a., 2008; Weckwerth and Morgenthal, 2005).
This makes metabonomics studies good candidates for screening.

M etabonomic studies have shown that external influences can have profound
impacts on the metabolic content of biofluids from healthy individuas (Bollard et al.,
2005). Itistherefore important to follow a standard procedure in terms of the time of day
asampleis collected, handling of samples prior to analysis, dietary control, etc. Early
studies suggest that the inter-individual differences were larger than the intra-individual
differences (Ala-Korpela, 2008; Lens et al., 2003; Kim et a. 2009). However, amore
recent study showed that the metabolic content from asingleindividual can vary greatly
over time and even span the range of the entire group (Saude et al., 2007). Despite the
magnitude of these changes on an individual basis, studies have found that alterationsin

response to a disease or toxicological process are detectable (Bollard et al., 2005).



Natural effects on metabolism include diurnal variation, differences between
males and females, aging, hormonal effects, diet and changes in the gut microflora
(Bollard et al., 2005; Slupsky et al., 2007). Metabolic activity changes throughout the
day depending on wake and sleep patterns, which alters the composition and volume of
urine excreted. It has been suggested to collect al samples around the same time of day
to minimize diurnal effects (Bollard et a., 2005; Lens et al., 2003). Bollard et a., (2005)
reviewed metabolic changes associated with gender and age. The results suggest that
femal es experience stronger pharmacological effects than males, likely as aresult of
lower metabolic activity. Aging animals undergo a number of physiological changes,
both physical and biochemical, which resultsin different amounts of endogenous
metabolites being excreted into the urine. Wilson and Nicholson (2007) found that the
microbiome in experimental animals was stable and resistant to change post weaning. In
general, inter-animal variation is more pronounced than diurnal alterations, whichis
greater than hormonal effects (Bollard et al., 2005). Also, inter-subject variation exceeds
that from the measurement technique used (Dunn and Ellis, 2006; Slupsky et al., 2007).
Despite al these changes, Slupsky et al. (2007) found that the analysis of metabolite
concentrationsin normal urine samples using targeted profiling (matching
mathematically modelled pure metabolite peaks to the NMR spectra) produced consistent
and reliable results. Variationsin experimental mice are caused by the animals well-
being, genetic drift, strain, hormonal differences, the metabolic rate, age and gender.
External influences that must be minimized include food and water intake, temperature,
light intensity and subjection to stress (Bollard et & ., 2005). These influences are
reviewed in greater detail in Bollard et a., 2005 and Slupsky et al., 2007.

M etabolomics presents a good screening tool for tumours that readily produce or
excrete accessible fluids (Spratlin et a., 2009). Cancer cells possess highly unique
metabolic phenotypes characterized by increased glucose uptake (Griffin, 2006; Serkova
et a., 2008; Spratlin et a., 2009) and increased lactate production in aerobic conditions
(Vizan et a., 2008). Griffin and Kauppinen (2006) claim that metabolic profilesin
various tumour preparations show correlations with tumour type, proliferation rates,
metabolic activity and cell death. Similarly, Issaq et a., (2008) suggests that
metabonomics can provide metabolic patterns characteristic of various benign or
malignant conditions. Cell proliferation rates are generally greater in cancersthanin
normal tissue, thus yielding higher rates of glucose utilization (Griffin and Shockcor,

2006) and increased concentrations of excreted modified nucleosides (Frickenschmidt et
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a., 2008). Alterationsin thetotal choline metabolites (tcho) has been used to
characterize cases of breast and prostate cancers (Spratlin et a., 2009) and may be linked
with malignant cdll growth (Griffin, 2004). Alternatively, lactate has been proposed as a
diagnostic tool for identifying cases of cancersin patients. Vizan et al., (2008)
discovered that increases in lactate levels could identify late stage tumour progression,

especially in cases with tumour invasion.

To date, most metabonomics studies have dealt with animals (Lenz et a., 2003),
however studies on human popul ations are now more common (Erb et a., 2008; Guan eta
al., 2009; Issaq et al., 2008; Lenz et al., 2003; Odunsi et a., 2005; Woo et al., 2009).
Until recently, studies suggested that metabolic information in animals was more stable,
thus allowing for increased confidence in the observed changes. Saude et al., (2007)
found that the metabolite concentrations in a controlled guinea pig population were
similar to that found in a cohort of healthy humans. Aslong as the animals are given
time to acclimatize to the experimental environment (about three days), the metabolome
should be stable (Bollard et a., 2005; Lenz and Wilson, 2006). In fact, al animalsare
known to respond in a similar fashion to humans (Bollard et al., 2005). The techniques
used to study metabolism in animal models have been applied to study human cancers
(Griffin and Kauppinen, 2006).

2.4 Examples of M etabolomics Studiesfor Cancer Screening

M etabonomics studies have shown great potentia in the field of cancer diagnosis
(Claudino et al., 2007). To date, studies have investigated metabolic changes associated
with biliary tract cancer (Wen et al., 2010), bladder cancer (Issaq et al., 2008), brain
metastases (Simoes et al., 2008), breast cancer (Giskeodegard et a., 2010; Sitter et al.,
2010; Whitehead et al., 2005; Woo et a., 2009), cervical cancer (Woo et a., 2009),
colorectal cancer (Feng et a., 2009; Maet d., 2009), liver cancer (Chen et a., 2009),
mal e pancreatic cancer (Beger et al., 2006), oral cancer (Tiziani et a., 2009), ovarian
cancer (Guan et al., 2009; Odunsi et a., 2005) and prostate cancer (Jordan and Cheng,
2007; Lokhov et d., 2010). When analysing the metabolic content of urine samples, the
test will be non-invasive and easy to perform. A few examples of applications which use

metabolomics analysis for cancer detection are reviewed below.
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2.4.1 Detection of Malignant Tumour from the Methyl and M ethylene Line-widths

The first study using NMR metabolomics for cancer identification was performed
by Fossdl et d. in 1986. In this study, blood samples were collected from patients with
malignant or benign tumours, healthy controls and pregnant women. NMR analysis was
carried out at 360 MHz or 400 MHz with aBruker AM Fourier-transform Spectrometer.
Water suppression was achieved using presaturation at the water resonance frequency.
The full widths at half height of the methyl and methylene resonances were measured
without knowledge of the patients’ health status. The results suggested that the average
line widths were narrower in patients with cancer, decreasing from 39.5 + 1.6 Hz for the
healthy controlsto 36.1 + 2.6 Hz for patients with malignant tumour, 36.7 £ 2.0 Hz for
patients with benign tumours (breast, ovary, uterus and colon cancers), and 29.9 + 2.5 Hz
for patients with untreated cancers. In addition, they found that the line widths obtained
from pregnant patients were consistent with the presence of malignant tumour. The study
suggested that line widths less than 33 Hz were indicative of the presence of cancer and is

independent of the type of cancer.

2.4.2 Epithelial Ovarian Cancer

Odunsi et a., (2005) studied the metabolic changes associated with the presence
of epithelia ovarian cancer (EOC). In this study, pre-operative serum specimens were
obtained from 38 patients with EOC, 12 patients with benign ovarian cysts and 53
healthy women (21 premenopausa and 32 postmenopausal). *H NMR Spectroscopic
analysis was performed on a 600 MHz spectrometer. Principal component analysis
(PCA) of the EOC patients and controls revealed clear separation between the two groups
- those with EOC and healthy women — and clustering of the samplesin these groups.
One model correctly predicted all 38 cancer specimens and 21 premenopausal individuals
and a second model correctly separated 37 of the 38 cancer specimens and 31 of the 32
postmenopausal women. They were able to differentiate between women in each of the
three categories. They applied Receiver operating characteristic (ROC) curve analysis to
the datato evaluate their utility to predict EOC. This analysis showed that by utilizing
information from two regions — descriptors at 4.03 ppm and 4.77 ppm —excellent
discrimination for EOC is attained (Area under the ROC curve (AUC) = 1.00). Alone,
these regions had an AUC of 0.942 and 0.689, respectively.
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2.4.3 Breast Cancer

Whitehead et al., (2005) performed *H NMR analysis on serum samples obtained
from 10 mice inoculated with a highly-metastatic mammary carcinoma cell line, 10 mice
inoculated with a normally metastatic mammary carcinoma cell line, and 10 healthy
controls. Analysis was performed on the linewidths of the composite methyl and
methylene peaks. Their results suggest that the average linewidths can be used to
distinguish sera from the highly-metastatic and normal-metastatic tumour-bearing
animals from the healthy controls with p-values of 0.0002 and 0.0003, respectively. The
broadened methylene and narrow methyl resonance were consistent with other studies

involving cancerous sera due to abnormal distributions of plasma lipoproteins.

They aso applied PCA to the data set to determine if unique metabolic patterns
for the different categories of metastatic breast cancer in serum existed. The model
correctly separated sera of the tumour-bearing mice from those from the normal controls
and was able to distinguish between classes of varying metastatic ability. The regions
responsible for the separation were different for the highly-metastic and normally-
metastic cases when compared with the control mice. They identified |actate, taurine,

choline and sugar moieties as the variables responsible for the separation.

2.4.4 Bladder Cancer

Issag et a., (2008) anaysed the metabolic content of urine samples collected
from 41 patients with transitional cell carcinoma and 48 healthy individuals. The patient
populations were approximately age-matched, with ages ranging between 51-93 for those
with baldder cancer and 20-86 for the healthy controls. Samples were analyzed using
high performance liquid chromatography coupled online with a hybrid triple-quad time-
of-flight mass spectrometer. The data was subjected to both PCA and orthogonal partial
least squares-discriminant analysis (OPLS-DA). PCA correctly predicted 46 of 48
healthy individuals and 40 of 41 bladder cancer samples, while the OPLS-DA model was
ableto correctly predict 48 of 48 healthy individuals and 41 of 41 bladder cancer urine

samples.
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2.4.5 Oral Cancer

Tiziani et al., (2009) investigated the potentia of *H NMR metabolomics to
diagnose early stage oral squamous cell carcinoma (OSCC). Samples of venous blood
were collected from 15 patients with confirmed OSCC (average age 63.8 years) and 10
control samples from normal donors (average age 57 years) who had no persona history

of cancer. All sampleswere collected at approximately the same time during the day.

The group obtained 1-D *H and 2-D *H J-resolved NMR spectra using a 500
MHz spectrometer equipped with a cryogenically cooled probe and a2D COSY
experiment was carried out on a 800 MHz Varian spectrometer with a cryogenically

cooled probe.

Both PCA and partial |east squares discriminant analysis (PLS-DA) were used
for statistical dataanalysis. PCA of the 1-D data shows clear separation between samples
from patients with OSCC and healthy individuals and revealed clustering according to the
stage of the cancer. The PLS-DA model showed excellent separation between the
populations with sensitivity and specificity values greater than 95%. The loading plots
showed that levels of valine, ethanol, lactate, alanine, acetate, citrate, phenylalanine,
tyrosine, methanol, formaldehyde and formic acid were reduced in the OSCC patients,
while glucose, phyruvate, acetone, acetoacetate, 3-hydroxybutyrate and 2-
hydorxybutyrate, choline and betaine had enhanced loadings. PLS-DA was also applied
to only the data from diseased patients. The loadings plots revealed similar patterns of
distinction between the different stages. The increased levels of glucose and reduced
levels of lactate are different from most studies involving cancer. They propose that the
increase in glucose results from a unique behaviour of oral cancers to interfere with the

ability of insulin to modulate the uptake of glucose.

2.4.6 Prostate Cancer

Lokhov et al., (2010) investigated the effects of prostate cancer on the metabolic
content of blood plasma. In this study, samples were collected from 30 healthy men and
40 men who had been diagnosed with stage two prostate cancers. Mass spectrometry was
carried out to measure the concentrations of positive and negativeions. The two sided
Wilcoxon rank sum test was used to define the difference of the peak intensities between
the healthy and diseased populations.
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Six metabolites showed a statistically significant shift in intensity in the
cancerous populations. The effectiveness of these metabolites in a diagnostic situation
was assessed using ROC curve analysis. The area under the curve (AUC) was used to
indicate the efficiency and clinical applicability of the diagnostic method. They
considered curves with an AUC > 0.6 as being clinically applicable and an AUC > 0.8 to
indicate a good diagnostic measure. Two metabolites, dimethylhepatonoyl carnitine and
arachidonoyl amine, had an AUC > 0.8, with AUC’ s of 0.97 and 0.86 respectively.
These were compared with the conventional screening technique of PSA (prostate

specific antigen) which had an AUC of 0.59 for the same sample population.

2.5 Useof Urinein Metabonomics Studies

Urineisan easily accessible, abundant biofluid which contains thousands of
metabolites (Goldsmith et al., 2010; Lindon et al., 2006). Samples may be collected non-
invasively (Lenz and Wilson, 2006) and multiple samples can be collected without harm
to the patient (Saude et al., 2007; Wilson and Nicholson, 2007). This means that samples
can be collected from animals before and after inoculation of a disease so that the toxic
effect may be monitored on an individua basis (Bollard et a., 2001). Samples may be
pooled to average out diurnal influences or day-to-day variation (Lenz and Wilson,
2006). Further, urine provides high resolution NMR spectra due to the content of many
small aqueous metabolites and the non-viscous nature of the fluid (Reo, 2002). Asa
fluid, it isisotropic and magnetically homogenous (Lindon and Wilson, 1989).

Urine provides an integrated view of al metabolic activities in the individual
(Lindon et d., 2006; Viant et a., 2007). Asaresult, it servesasa‘sums of history’ of all
disease processes in the individual (Griffiths, 2007). The excretatory nature of urine
allowsit to be used for time-related studies of disease response as it describes what has
happened in the individual since the last sample was acquired (Viant et al., 2007; Wilson
and Nicholson, 2007). Early markers for disease response are easily identifiable in urine
since the kidney’ s function is to maintain homeostasis (Griffiths and Stubbs, 2007;
Wilson and Nicholson, 2007).

Urine samples require minimal preparation; in most cases, the procedure includes
pH adjustments and the addition of an internal standard for analysis (Serkovaet al.,
2008). The pH of urine ranges between 5 and 9, but is generally within the range of 6.5-

15



7.5 (Nicholson and Wilson, 1989). Most groups will add phosphate buffered saline to
bring the pH to a specific value and stabilize the pH (Lindon et a., 2003). Most groups
choose apH around 6.8 (Kim et al., 2008 ; Murdoch et al., 2008; Um et al., 2009) or 7.0
(Jukaininen et al., 2008; Parsons et a., 2007; Troy et a., 2007; Wiljie et d., 2006). Some
groups filter samples to remove proteins and macromol ecules (Saude and Sykes, 2006;
Viant et a., 2007). This step has been shown to halt further metabolic changes.

Samples should be frozen until required for analysisto prevent breakdown dueto
bacterial contamination (Lauridsen et a., 2007; Viant et al., 2007). Contamination may
be observed through decreases in the levels of creatinine and increased creatine (Saude
and Sykes, 2006) or increased concentration of acetate and formate (Lenz and Wilson,
2006). Lauidensen et d., (2007) studied the effects of a number of methods for sample
storage. He stored samples at 4°C, -25°C and -80°C for variable times ranging from 0 to
26 weeks. Anincreasein acetate and decreasesin citrate and hippurate was observed in
the samples without a preservative one week post collection. Samples with an added
preservative were stable for alonger period. Samples stored at -25°C and -80°C showed
no differences, with and without the added preservative for up to 26 weeks post injection.
They recommend that samples be stored at -25°C, but most groups choose to store the
samples at -80°C (Holmes et al., 1999; Miyataka et al., 2007; Pohjanen et al., 2006).
There are studies (Nordstrom and Lewensohn, 2010; Saude and Sykes, 2006) that have
indicated aloss of metabolitesin samples stored for long periods of time, however, other
studies suggest that the samples are not affected for up to 9 months (Ross et a ., 2007).
Maher et al., (2007) suggests that urine may be stored at room temperature for 24 hours,

whichis sufficient for analysis.

2.6 Motivation for our Experiment

The aim of our experiment is to show that metabolomics data has potential to
serve as a screening test for cancer at an early stage. To achieve this goal, urine samples
are collected from animals bearing a human glioblastoma (GBM) xenograft. Sample
collection began one week before cell injection for the purpose of defining a normal
baseline, while post cell-injection samples were collected for 5 weeks to observe

metabolic changes associated with the presence of atumour.
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Studies have suggested that external sources of variation can mask the metabolic
changes associated with tumour devel opment, therefore a group of control animals are
examined to identify naturally occurring metabolic changes or aterations that results as a
response to the stress of the injection procedure. The control animals are treated the same
as the tumour-bearing animals in terms of the environment in which they are housed, the
method of urine collection and age of animals throughout the collection procedure. The
ideaisthat by compensating for the metabolic changes in the control population, it may

be possible to isolate metabolic changes resulting from only the tumour.

M etabolomics analyses are either performed between a group of healthy
individuals and a group of individuals with established disease, or used to study the
metabolic changes temporally asindividuals transition from healthy to having a disease.
Studies of disease in human populations examine changes between a healthy and diseased
group. Animal studies have the advantage that an individual may serve asits own
control. Thisreducesinter-individual differencesin the data and enables the
investigation of subtle metabolic changes associated with early disease progression.
Animal studies that compare the metabolic changes on an individua basis often do not
perform a paralel analysis of control animals (Keun et al., 2004; Pohjanen et al., 2006;
Um et al., 2009) or do not account for the metabolic changes observed in the controlsin
their further analysis (Kim et a., 2008; Lenz et a., 2004; Tyburski et a., 2009).

Principal component analysis and partial least squares discriminant analysis are
common multivariate statistical toolsfor analysis. Models are constructed with the
healthy and diseased populations. Most groups only qualitatively suggest that the model
is effective at distinguishing individuals from each population. However, some groups
will calculate the sensitivity and specificity for aline drawn manually through the data.

If the goal of the analysisisto identify metabolites which may be used to distinguish
individualsin each group, univariate statistical analysisis performed. To our knowledge,
metabolites with p<0.05 are considered significant; no correction is made for testing

multiple metabolites.

We propose to track changes on an individua basis by pairing the data before
and after cell injection. We envision that this could mirror a human application of this
technique in which an individual could submit a urine sample for analysis one or more
time per year. Oncea“normal” metabolic trajectory isidentified, deviation from this

path could be used to identify the presence of a disease like cancer.
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Univariate analysis, in the form of the non-parametric Wilcoxon rank sum test,
will prove that metabolic changes are taking place. Statistical significance will be
defined by the Bonferroni correction limit and the false discovery rate (FDR)
methodology. The goal of thisanalysisisto show that useful metabolic information is
available using both a conservative compensation (Bonferroni correction) and a newer

technique which control s the number of false positive discoveries (FDR method).

The analysiswill first consder all post-injection data as one group to confirm
that quantifiable metabolic changes are observed in the presence of tumour. After these
metabolic changes were established, the tumour-bearing datais divided into early and
late stage data to evaluate the ability of our techniques to diagnose cancer at the two
stages. It is hypothesized that the pre-injection and early stage data can be distinguished
and that the early and late stage data are altered in asimilar fashion.

There is no standard method for quantifying the degree of separation between
pre-defined classes (i.e. pre-injection and post-injection with cancer) in a metabolomics
dataset. Recently, some groups have begun to apply ROC analysis to the distributions of
the pre and post-injection data (Lokhov et al., 2010; Odunsi et al., 2005) or to statistical
models (Sugimoto et a., 2010).

The nature of multivariate statistical analysisisto determine the maximum
variationin the data set. It is expected that the maximum variation will bein the
direction of class discrimination. However, no method isin place to assess the degree of
separation. We propose to apply ROC analysis to the component axes initially, and then
rotate the data from a pair of scores vectors in unit angle increments about the origin to
determine the angle at which the model is most effective at distinguishing between
classes. Thisanalysiswill be applied to the pre and post-injection tumour bearing data to
simulate a environment for screening, between the post-injection data from the control
and tumour-bearing mice to simulate a human study using a age-matched group of health
individuals and those who are known to have the disease, and between al ‘tumour-free

(or *healthy’) and tumour bearing samples.

Asafina analysis, the tumour-bearing data will be separated into early and late
stage datato eval uate the potential of metabolomics for the early identification of tumour.
A PLS-DA model will be used between the pre-injection and late stage data. The early
stage data will be projected onto the model. ROC analysis will provide a measure of the
clinical significance of the metabolic changes.
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Chapter 3
Nuclear M agnetic Resonance
Spectroscopy Theory

This Chapter overviews the theory related to Nuclear Magnetic Resonance
(NMR) Spectroscopy. The Nuclear Overhauser Effect (NOE) and the 1-D NOESY pulse
sequence will be discussed briefly. The bulk of information in this chapter was taken
from Claridge, 2009 (sections 3.1 - 3.3), Jordan and Cheng, 2008 (sections 3.1 and 3.2),
Ross et al., 2007 (sections 3.2 and 3.3) and McKay, 2009 (section 3.3).

3.1 History of Nuclear M agnetic Resonance Spectr oscopy

Nuclear magnetic resonance (NMR) spectroscopy in a condensed state of matter
was detected independently by Felix Bloch and Edward Purcell in 1945. In the 1950's,
scientists discovered that the resonant frequency of nuclei was dependent onitslocal
chemical environment and that nuclei could influence the resonance of other nuclei
through intervening chemical bonds. Computers were added to NMR systemsin the
1960’s. Their addition, in combination with stronger magnets, allowed for significant
improvements in senditivity and analysis of smaller samples. Computers collected a
time-domain signal. The Fourier Transform was applied to reveal information about the
complement of nuclear spinsfound in the sample. The mid-1960’s brought about the
Nuclear Overhausser Effect (NOE); this technique has become the most widely used
technique for sensitivity enhancements between nuclei and for studying the spatial
proximity of nuclei. Theintroduction of the superconducting magnet in the 1970's
initiated the development of higher magnetic field strengths. Today it is common to find
magnets with cryogenically cooled probes which incorporate active shielding to keep
stray fields closer to the magnet. NMR Spectroscopy has since found widespread

application in chemistry, biology, medicine, materials science and geology.

19



3.2 Theory of Nuclear Magnetic Resonance (NMR)
3.2.1 Magnetization

Atomic nuclei — protons and neutrons— possess an innate property known as the
nuclear spin quantum number, | (Pochapsky and Pochapsky, 2006; Ross et al., 2007).
Molecules with an odd number of neutrons or protons will have a net spin and contribute
tothe NMR signal. The spin quantum numbers of these molecules are multiples of %%:
i.e. /2,1, 3/2, etc. Spin¥2molecules, such asthe protonsin water, are most often
studied with NMR Spectroscopy. The nuclear spin has 2I1+1 possible spin states. For the
example of a spin %2 nucleus, there are two spin statesknown as . (‘spinup’, | =%) or

(‘spindown’, | =-1/2). The following discussion will consider only protons.

Z

Figure 3.1: Proton in an external magnetic field. When
B, placed in an external magnetic field, anucleus will precess
about the field at the Larmor frequency (o =yB,). The
proton can bein the *spin up’ (digned paralld to the field)
state or the *spin down’ (aligned anti-parallel to the field)
x state. The protonisinthe spin up statein thisfigure.

When nuclel are placed in an external, static, magnetic field, B,, they will either
align parald (spin up) or anti-parallel (spin down) to the field. By convention, the field
isaligned along the +z-axis. The actua spin of the nuclei is not aligned with the
magnetic field, but presses about it (see figure 3.1). A spinning proton has an angular

momentum, | h, which gives rise to a magnetic moment, p with magnitude:
u=ylh (Equation 3.1)

Wherey isthe gyrometric ratio. The magnetic moment is unique to a nucleus

and can be interpreted as how ‘magnetic’ the nucleusis (Claridge 2009).

Precession is a consequence of the applied torque from the magnetic field on the
magnetic moment. The rate of precession, which is commonly referred to asthe Larmor

frequency is given by:

w=—yB,(rad/s) (Equation 3.2a)

or v=—)B,/27x(Hz) (Equation 3.2 b)
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Sincethe‘spin up’ orientation is at alower energy, more nuclel will bein this
state. The proportion of nuclei in the spin up to the spin down spin statesis described by

the Boltzmann distribution:

AE

Na _ kgT .
=€ (Equation 3.3)
N,

Where N,, isthe number of nuclei in the spin up state, Ng the number of protons
in the spin down state, AE is the difference in energy between the two states, kg isthe
Boltzmann constant (1.381 x 102 JK) and T is the temperature in Kelvin.

The signal from NMR experiments, known as the magnetization, comes from the
difference in the number of nuclei in the spin up and spin down orientations. Due to the
statistical averaging of alarge number of microscopic magnetic moments, the net
magnetization may be represented as a classical macroscopic magnetic moment, M,
which isaligned with the external magnetic field (figure 3.2). The energy differenceis
quite small (order of 102 Jfor fields of strength 18.8T (Magnetic field of a 800MHz
spectrometer) ), so the population differences are generally of the order of 1 partin 10* at
18.8T. Consequently, NMR Spectroscopy is arelatively insensitive technique when
compared to mass spectrometry (Claridge 2009).

Figure 3.2: Complement of all magnetic moments and Net Magnetization. a) An
NMR sample consists of alarge number of resonating nuclei. The nuclel resonate at
the Larmor frequency, but have different phases. Dueto statistical averaging, the
transverse component from one nuclei cancel's another, while the components along
the z-axes add. There are more nuclei in the spin up state, resulting in a net
magnetization along the +z-axis (b)).
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In an external magnetic field, valence electrons circulate. This createsaloca
diamagnetic current, which in turn generates a small magnetic field opposite to the main
field (Paviaet d., 2009; Ross et al,. 2007). The net magnetic field, i.e. the sum of the
main magnetic field and these small local fidds, isreferred to as B. In effect, the proton
is‘shielded’ dlightly and will resonant at alower frequency. The Larmor frequency is
now dependent on B, not B, (Jordan and Cheng, 2008; Paviaet al., 2009). These small
changesin the Larmor frequency are referred to as the chemical shift, 8;, (Pochapsky and
Pochapsky, 2006) and may be cal culated with the following:

S O T Oy

x10®  (Equation 3.4)
Wy

Here, o; isthe Larmor frequency of the metabolite of interest and o, isthe
Larmor frequency of a standard molecule. The units are parts per million (ppm).
Common choices for the internal standard include 3-trimethylsilylpropionic acid (TPS)
with the methylene groups deuterated to avoid unwanted peaks (Beckonert et al., 2007,
Pavia et al., 2009) or the methyl peak of 2,2-dimethyl-2-silapentane-5-sulfanate (DSS)
(Wiljieet ., 2006). The chemical shift isindependent of the field strength (and hence

the chemical properties) which alows for standard identification among spectrometers.

Nucle from different molecul es experience a different chemical environment. In effect,
molecules have unique chemical shifts. Thisaidsin the identification of compounds
(Claudino et a., 2007; Jordan and Cheng, 2008). The fact that each compound provides
aunique and characteristic spectrum makes NMR spectroscopy attractive for

metabol omics experiments (Saielli and Bagno, 2009; Verpoorte et al., 2008; Wishart,
2008).

NMR occurs when a nuclear spin changes spin states after the absorption of a
guantum of energy that is equal to the difference between the two spin states. The energy
is supplied through a radiofrgeuncy (RF) pulse with a frequency that matches the Larmor
frequency of the proton and satisfies the following:

h
AE=hv= zﬁ (Equation 3.5)
T

Where his Planck’s constant (6.26 x 10** Js) and v is the frequency in Hz.
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3.2.2 Excitation and Detection of the Signal

NMR is achieved by tipping the magnetization into the x-y plane by means of a
time-dependent RF pulse which has afrequency that matches the Larmor frequency of
the protons at the center of the spectrum. If the RF pulseis at the correct frequency, it
creates a new time-dependent oscillating effective field, known as the B, field, in the
transverse plane. By convention, we dign the B, field with the +x-axisin the rotating
reference frame. Thisfield applies atorque to the magnetization, causing it to rotate

about the +x-axis onto the x-y plane (figure 3.3).

Figure 3.3: Application of an RF excitation
pulse along the +x-axis of the rotating
reference frame exerts atorque on the net
magnetization, causing it to rotate towards the
+y-axis. The angle of rotation is given by

y 0 =)B,7. Inmost NMR experiments, the B,

B, field is constant, so the angle of rotation is
X dependent on the duration of the pulse.

Theangle (in radians) at which the net magnetization rotates (also referred to as
the nutation angle), depends on the length of time the pulseis applied, t, and is given by:

0=Br (Equation 3.6)

Microscopicaly, the absorption of the RF energy will promote some nuclei to the
spin down state (Dunn and Ellis, 2006; Goldsmith et al., 2010) and forces all magnetic
moments into phase coherence (figure 3.4). Summing the magnetic moments will result
in the net magnetization, which has rotated away from the +z-axis by the angle given by
equation 2.6. Asan example, a 90° pulse rotates the net magnetization to the x-y plane;
here the number of nuclei in the spin up and spin down states are equal and al spins point

in the +y direction.

Only magnetization in the x-y plane can be detected by the receiver coils. Inthe
laboratory frame of reference, the net magnetization is precessing about the external
magnetic field at its Larmor frequency. Therotating nuclei induce an dectrical currentin
the receiver coils which can be registered as the time-domain signal. The magnitude of
the current is proportional to the net magnetization. Thiswill be covered in more detail

in section 3.2.4.
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Figure 3.4: The RF pulse forcesthe
M microscopic nuclel into phase coherence. If the
0 pulseisa90° pulse, the net magnetization lies
> Yy along the +y-axis and equal numbers of nuclei
arein the spin up and spin down states.

NMR samples are often heterogeneous, so protons experiencing different
magnetic fields precess at different rates. In the rotating frame of reference, protons
resonating at the Larmor frequency remain stationary along the +y-axis, while
metabolites resonating at different frequencies will rotate about the z-axis (figure 3.5).
Protons resonating at higher rates spin clockwise, while those resonating at lower

frequencies spins counter clockwise. This processisreferred to as dephasing.

7 Figure 3.5: Dephasing of the Magnetization due
® < Oyef to different Larmor frequencies. Protons
experience different magnetic fields dueto
electron shidding. Thisresultsin nuclei
> Oref y precessing at different Larmor frequencies due to

different effective magnetic fields. Protonsthat
precess faster than the reference proton spin

® > Oyef clockwise with respect to the reference signal,

re while protonsthat precess at a slower rate spin

counter-clockwise. In NMR, the reference
proton generally precesses at the dowest rate.

3.2.3 Relaxation

Therotating nucle attempt to return to their ground states by emitting a quantum
of energy. Macroscopically, the net magnetization will decay in the transverse plane and
rebuild along the +z-axis until it re-establishesits equilibrium state. This processis

known as relaxation and is presented in figure 3.6.

There are two forms of relaxation: longitudinal or spin-lattice relaxation
(characterized by the time constant T) and transverse or spin-spin relaxation
(characterized by the time constants T, and TZ* ). The mechanisms of relaxation are the

same for both cases, but T, isaways larger than T, (Pochapsky and Pochapsky, 2006).
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Figure 3.6: T, and T, Relaxation. Thisfigure
4 shows the magnetization changes over time. At
1 time, t = 0's, the magnetization is shown in light

The transverse magnetization will decay

dictated by the T, and T, relaxation constants.
X For small mobile molecules, T;~ T..

Longitudinal relaxation isthe first order relaxation and describes process of

rebuilding the magnetization aong the +z-axis. Nuclei return to the spin-up state with

the release of an energy quantum to the surroundings in the form of heat. Theinitial

magnitude of the acquired signal is proportiona to the transverse magnetization. For

_ yexponential ly with time and rebuild along the +z-
axis. Therate at which these processes occur are

grey and gradually gets darker as time progresses.

optimal results, it is recommended to wait approximately 5T ; between excitation pulses

to alow the magnetization to re-establish equilibrium (achieving 99.3% of the full
magnetization).

Because of the small difference in energy between the spin states, nuclear spin

transitions are not spontaneous. Relaxation processes require stimulation by the chaotic

tumbling of nearby molecules at the proton’s Larmor frequency.

According to the Bloch theory of NMR, the rate of recovery of the bulk

magnetization is:

Z=2 g (Equation 3.7)

Where M, isthe magnitude of the magnetization aong the z-axis, M, isthe
magnetization at thermal equilibrium, and T, isthefirst order time constant (or
longitudinal relaxation time) for the process. Solving the differential equation and
assuming an initial starting point of no net magnetization (after a 90° pulse or after

inserting the sample into the field), the magnetization is:

t
M, = Mo[l e Tl} (Equation 3.8)
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The transverse magneti zation decays by means of transverse, or T, relaxation.
Thisform of relaxation involves the exchange of energy between nearby nuclei; a so-
called flip-flop process. Transverserelaxation is a consegquence of inhomogeneitiesin
the main magnetic field and differencesin the local magnetic fields resulting from inter
and intra-molecul ar interactions. The processis also referred to as spin-spin relaxation
since energy istransferred between like nuclei. The nuclel permanently lose their phase
coherence as aresult of small differencesin thelocal magnetic fields. Theloss of phase

coherence is characterized by the time constant T».

Alternatively, TZ* relaxation a so accounts for additional 1oss of phase coherence
resulting from inhomogeneities in the external magnetic field. In this case, nuclei
resonate at different frequencies. If the nuclei do not diffuse in the sample, thisloss of
phase coherence may be undone. TZ* is aways faster than T, relaxation as a result of

additional factors. Therelaxation rate is defined as:

1 1

1
=t
T2* T2 T2 (ABO)

(Equation 3.9)

Where Tz* is the net relaxation time constant, T, is the time constant for
relaxation related to inter and intra molecular interactions and T,(AB,) isthe relaxation
time constant due to inhomogeneities in the main magnetic field. Tz* approaches T, in

well shimmed magnet fields.

The Bloch equation for the transverse magnetization in the rotating frameis:

¥ __ 9 Equation 3.10
dt T, (Eq )

The transverse magnetization is attained by solving the differential equation:
t

M, =M.ze" (Equation 3.11)

The widths of NMR resonances are inversely proportional toTZ* . For small TZ* :

the frequency differential between like nuclel increases, thus leading to spreading in the
frequency regime (Claridge 2009). In general, proteins and macromolecules have broad

peaks, while small molecules have sharper peaks (Beckonert et al., 2007) as aresult of

the T, relaxation time constants.
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For single exponential relaxation, the lineshape is approximately Lorentzian with
a half-height linewidth equal to:

Avy, =

*

2

(Equation 3.12)

Small, rapidly tumbling spin %2 nuclel in alow-viscosity solute, T; ~ T, ~ TZ* :
which are on the order of 1-3s. In contrast, larger, dower tumbling molecules have T,
times that are much larger than T,. Macromolecules often have very short T, times

(order of ms), resulting in broader NMR peaks.

3.2.3.1 Mechanismsfor Relaxation

There are four main mechanisms by which stimulated emission occurs: the
dipole-dipole interactions, chemical shift anisotropy (CSA), spin rotation and
guadrupolar mechanisms. For small, spin %2 nuclei, dipole-dipole interactions are the
dominant mechanism for relaxation. Such interactions are important for signal

enhancement of urinary metabolites when using the 1-D NOESY pulse sequence.

In dipole-dipole interactions, the magnetic fields from two nucle interact as they
near one another. These interactions include attraction and repulsion, depending on the
relative orientation of the dipoles. In single, slowly tumbling nuclei, the dipolar
orientations are invariant, but their relative positionsin space change with time. Asthe
molecule tumbles, the local magnetic fidlds experienced by one nucleus by another
changes. The nuclei will relax if the moleculeistumbling at the appropriate frequency.
Protonsin a dilute solution tend to relax slower due to the limited numbers of
nei ghbouring magnetic dipoles. In effect, these protons tend to saturate and will not fully
recover before the next excitation pulse. Thisleadsto smaller spectral areas.
Alternatively, a proton may relax by interacting with an unpaired electron. The magnetic
moment for eectronsis over 600 times greater than that for a proton, so this mechanism

for relaxation is highly effective and is often referred to as paramagnetic rel axation.

The remaining three processes are not important for our application and will only
be described briefly here. Chemical shift anisotropy results from an unsymmetrical, or
anisotropic, electron distribution in the chemical bonds. The local field experienced by
the nucleus is dependent on the orientation of the bond with respect to the applied static
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field and will average out in rapidly tumbling molecules. Spin-rotation relaxation is most
effective for small, symmetrical molecules or freely rotating methyl groups. The
molecular magnetic moments are generated by the rotating electronic and nuclear charges
and fluctuate as aresult of molecular collisions. The efficiency of the processis
dependent on the tumbling rates, with higher frequencies improving the efficiency.
Quadrupolar relaxation is only relevant for nuclei with a nuclear spin quantum number
greater than %2 and is often the dominant mechanism for relaxation for these molecul es.
Quadrupolar nuclei possess both amagnetic dipolar and an e ectric quadrupolar moment.
The quadrupolar moment isinfluenced by electric field gradients about the nucleus and
will relax if the changes occur at the correct frequency. The efficiency of quadrupolar
relaxation depends on the magnitude of the quadrupolar moment and the magnitude of
the dectric field gradient.

3.24TheNMR Signal

The rotating magnetization induces a current in the receiver coil. The magnitude
of theinduced current is proportional to the magnetization in the transverse plane and
decays exponentially with atime constant Tz* asthe nuclei relax. The signal is known as
the free induction decay (FID). The FID is a superposition of the cosine-modulated and

T,-damped contributions from all nuclei. The net magnetization is represented as:

t

M molecule (t) = z M, [cos(24f t) % + sin(2f, t) y}a_ﬁ (Equation 3.13 )
Mtotal (t) = Z C]- W molecule (t) (Equation 3.13 b)
j

Where M izyo is the magnetization from a single molecule, M motecue i the net

magnetization for each i spin type, and M i isthe magnetization from all j types of
molecules resonating at a frequency f,; with aconcentration ¢;. The Fourier transform of
equation 3.13 b leads to the spectrum. The spectrum of each molecule is a series of
defined resonant lines, and the spectrum of the mixture is alinear combination of the
concentrati on-weighted summation of these molecular spectra (Ross et al., 2007). The

linearity of the summation allows for accurate quantification of metabolites.
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3.2.4.1 Signal to Noise Ratio

The detected NMR signal is dependent on the gyrometric ratio of the nuclei, v,
the number of spinsin the sample, N, the external magnetic field, B,, the sensitivity of
the detector and noise. The signal islinearly dependent on the number of spins as each
magnetic moment induces a current in the receiver coil through electromagnetic
induction. Thereis a square dependence on the magnetic field. One factor comes
directly from the high-temperature approximation of Boltzmann's law, while the other
comes from the induced current in the detector coil. The noise-free signal may be

represented as:

Signal = 7,>3( NBE S, (Equation 3.14)

Where Sp describes the detector sensitivity and noise. The use of a cold head
probe, which operates at afew Kelvin, will improve the Sp parameter. The low
temperatures serve to dramatically reduce resistance in the wires, and hence reducing
electronic noise. Another method is to reduce the size of the detector (Ross et a ., 2007),
but it is not recommended to use aNMR tube smaller than 5mm in diameter for
metabol omics experiments (McKay, 2009). In addition, the scan time may be increased

to allow for full relaxation or more transients (Dunn and Ellis, 2006).

The signal to noise ratio may be enhanced by averaging multiple transients
(Evilia, 2001). The noiseis predicted to be ‘white' or uncorrelated, and would increase
by the square root of the number of scans (Szantay, 1992). Conversely, the signal is
stable, and would increase linearly with each scan (Ross et al., 2007). To afirst
approximation, the signal to noise ratios of the FID is proportional to B, (Szantay,
1992).

During acquisition, the receiver coil digitizes the FID using an anal og-to-digital
converter (ADC) (Szantay, 1992). The digitization rate should be greater than double the
highest frequency (or double the spectral width (Evilia, 2001)) to prevent back fold of the
data. Thisiscommonly referred to asthe Nyquist criterion. Under sampling will cause
high frequency signalsto be falsely represented at alower frequency. A low-passfilter
can be used before digitization to prevent fold over from noise components by selectively
attenuating the signal from the high frequency components, which are often dominated
by noise. Szantay (1992) predicted that noise could be up to 41% greater at the spectrum

edges than at the center dueto fold over.
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Thereceiver cail does not collect the FID from time 0 s, but begins after a short
dead time after the RF pulse has been turned off (Szantay, 1992). Theideaisto prevent
pul se breakthrough, which will contaminate the first few available data pointsin the FID,
leading to baseline distortions.

Szantay (1992) advises scientists to separate consecutive scans by 5T; and to
samplefor at least 5T2*. Thiswill result in long scan times, but will prevent wigglesin

the baseline caused by cutting off the spectrum too soon. Short acquisition times are
more detrimental to sharp resonance peaks since these resonances often have longer T,

relaxation constants.

The signal to noise ratio and peak shape can be improved by multiplying the FID
with an exponentially decaying window function prior to the Fourier Transform. The
exponential emphasi ses the contributions from the lower frequency resonances asit
attenuates high frequencies and has the form €™®', where LB is the line broadening (Ross
et a., 2007). Application of the window function will accelerate the apparent decay of
the FID, thus leading to line broadening. The optimal exponential weight is one that
matches the time constant of the exponential decay; thisis known as the matched filter

(Szantay, 1992).

3.2.4.2 Peak Splitting Dueto J-Coupling

Scalar coupling, or J-coupling, is the interaction between active spins sharing a
common electronic orbital. The nuclei involved are often separated by lessthan 5
chemical bondsin the same molecule. The magnetic field experienced by one nucleus,
A, from the other, B, is dependent on the relative orientation of the magnetic moments.
The coupling causes splitting of the resonances (Rule and Hitchens, 2006). Theideais
that the polarization of one nuclear spin will influence the polarization of the surrounding
electrons. This subsequent polarization will alter the local magnetic field experienced by
the coupled nuclei; whether the field increases or decreases depends on the polarization
of the first nucleus. (Rule and Hitchens, 2006).

Separation between the spectral peaks is defined by the degree of electronic
overlap between the two spins and is characterized by a coupling constant, "Jag, Where n
is the number of intervening bonds and A and B identify the two coupled spins (Pavia et
al., 2009; Rule and Hitchens, 2006). "Jag isusualy givenin Hz and is equal to the
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observed frequency shift between split resonance (Rule and Hitchens, 2006). Itis
independent of the magnetic field strength (Pochapsky and Pochapsky, 2006).

J-coupling may be weak or strong, depending on the relative magnitude of the
coupling constant and the observed separation between the peaks. The strength of the

coupling is related to the magnitude of the coupling constant and the difference in the

resonances of the nuclei. At high magnetic field strengths, dispersion of nuclei ison the

order of kHz. Conseguently, the spin system will be weakly coupled for our experiment.

J-coupling through multiple chemical bondsis greatly decreased (Rule and Hitchens,
2006).

Spin Y2 nuclei have two possible spin states. As previously suggested, the
populations of nuclei in each spin state are approximately equal. The orientations of
surrounding coupled nuclel will influence the net field experienced by a nucleus.
Depending on these orientations, the nuclel may experience a stronger or weaker
magnetic field (Rule and Hitchens, 2006). The different magnetic field will lead to a
shift in the resonance of the nuclei, causing the spectral peak to split. The separation
between the peaksis equa to the J-coupling (Rule and Hitchens, 2006). The shiftsin
frequency of both nuclei are identical, so the peak is centered about its chemical shift
(Rule and Hitchens, 2006).

For the example of atwo nucle system, half of the nucle will experience alarger

field, while the other half experiences the weaker field. The spectral peak will splitin
half, with each half having an equal intensity; thisis known as adoublet. Triplet

resonances occur when two nuclei have identical chemical shifts and couple with another

nucleus. Thetwo like nuclei are said to be magnetically equivalent and will not couple

with each other. The resultant triplet has peak intensities with ratios 1:2:1. For n
equivalent coupled nuclei, the spectral peak will split into (n+1) peaks with intensities
following the binomial distribution (Minch, 1994). The distance between consecutive
peaksis"Jag (Rule and Hitchens, 2006).

3.2.4.3 Causes of Spectral Distortion

Factors that cause spectral distortion include clipping of the FID verticaly,

truncating too many data points at the start of the FID (dead time), truncating the end of

the FID too early, or using too short an acquisition and relaxation delay (Szantay, 1992).
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Vertical truncation will result if the receiver coil gainis set too high. Thisresults
inan ADC or memory overload. High concentration samples are at risk of having an
ADC overload due to the large magnetization. The FID can induce currentsin the
receiver cail, which in turn produce weak RF fields. These fields work againgt the FID,
which resultsin afaster apparent T, relaxation time, and thus broadens the resonance.
This processis known as radiation damping. The large water signd is proneto this effect

asitstails may extend over alarge range of frequencies (Szantay, 1992).

Truncating the early parts of the spectrum could have profound effects on the
phasing (Szantay, 1992). Generadly, this problem is overcome through manual phasing
as long as the dead time was short enough to prevent excessive loss of information.

Nucle with short T, time constants are especialy affected.

In zero-filling, a series of zeros are appended to the end of a FID to improve the
resol ution without having to increase the acquisition time. Nonetheless, truncating the
FID too early, or zero filling when the FID has not reached zero magnitude will produce
wigglesin the baseline. The truncation acts as a step function at the end of the FID, thus
introducing a plethora of frequency signals (Szantay, 1992). Despite improvementsin

resolution, zero-filling by more than afactor of 2 is unnecessary (Evilia, 2001).

3.3 Nuclear Overhauser Effect (NOE) and NOESY Pulse Sequence
3.3.1 Requirement for Water Suppression

Urine samples contain metabolites at mM concentrations and water protons at a
concentration of 110 M (Lippenset al., 1995). At these concentrations, metabolites are
virtually undetectable unless water suppression is used to significantly reduce the
dynamic range (Goldsmith et al., 2010; Mo and Raferty, 2008; Potts et al., 2001; Vion
Dury, 1993). In addition, the large water resonance may result in baseline distortions,
and thus make quantification of metabolites difficult (Aranibar et al., 2006). Methods of
water suppression rely on null excitation, relaxation or selective irradiation of the solvent
signal (Lauridensen et al., 2008).

Solvent suppression is most effective on symmetric, tall and narrow peaks, as a
majority of the solvent resonances are confined to a narrow frequency window and
overlap with other metabolitesislesslikely (McKay, 2009). Therefore, ahomogenous

magnetic field is arequirement for effective water suppression (Viant et al., 2007).
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The standard approach for water suppression involves the pre-saturation of the
solvent resonance with aweak irradiation during the relaxation delay (Aranibar et al.,
2006; Viant et al., 2007). Thistechnique will reduce the intensity of proton resonancesin
fast exchange with water protons (Viant et al., 2007; Vion Dury, 1993). Therefore, itis
preferred to use an irradiation with lower power, as high power pulses will also attenuate
the signals from neighbouring signals (McKay, 2009). Thistechniqueis preferred for
samples with small molecules (Mo and Raftery, 2008). However, pre-saturation is not
sufficient when a strong water signal is present, therefore, it is often paired with a1-D
NOESY experiment (Viant et al., 2007). The pulse sequence exploits the nuclear
overhauser effect (NOE) to selectively saturate the water signal, while maintaining the
signals from the lower concentrations metabolites (Claridge 2009) and is shown in figure
3.7. Other choicesfor water suppression in metabol omics experiments include
WATERGATE and RECUR (Wishart, 2008).

3.3.2 Nuclear Overhauser Effect (NOE)

The nuclear overhauser effect (NOE) is a consequence of through-space
interactions between nuclei. Such interactions can cause an enhancement in the intensity
of one resonance after the saturation of another resonance. Unlike J-coupling, NOE
interactions need not share an electronic orbital, but must be closein space. The strength
of the NOE is dependent on the spatia distance between the spins and falls off asthe
inverse sixth power of the spacing (o 1/r°) (Willimason, 2008).

The system of a NOE interaction consists of two unique spin nuclei, | and S, such as
those from two distinct metabolites. The S spinswill relax to equilibrium through T,
relaxation, as well as through dipole-dipole coupling with nearby nuclei (Kumar et a.,
1981; Williamson, 2008).

The NOE is defined as the fractional change in intensity of one NMR resonance
when another resonance is perturbed as aresult of crossrelaxation (Kumar et al., 1981).
The perturbation often takes the form of saturating one resonance using weak irradiation
or inversion by applying a 180° degree RF pulse (Claridge 2009). The enhancement, n,,
iscalculated using:

-1,

n(S) = x100 (Equation 3.15)

0
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Here |l istheintensity of the magnetization in the presence of NOE, |, isthe
intensity of the magnetization with out the NOE and n,{ S} represents the observed NOE
for spin | when spin Swas perturbed. The enhancement is about 50% for small

molecules.

3.3.3NOESY Pulse Sequence

The standard 1-D NOESY pulse sequenceis:

RD -90°-t; —90° —t,, —90° - AQ

A schematic of the pulse sequence is shown in figure 3.7. Therelaxation delay,
RD, istypically afew seconds duration. During thistime the water resonanceis
selectively irradiated with the B; RF pulseto saturate the signal (Bollard et a., 2001,
Lippenset a., 1995). t; isafixed interval during which the nuclei precessfreely. This
allows for measurements of frequency related data, as well as for frequency labelling
(Macuraand Ernst, 2002). The second 90° pul se serves to align the magnetization along
the —z-axis, and thus enabling the build up of NOE through cross-relaxation (Macura and
Ernst, 2002). t,, isthe mixing time. During thistime interval, the water resonanceis
selectively irradiated for the second time to allow for the build up of NOE from the nuclei
of interest (Foreshed et al., 2005; Lippens et a., 1995; Potts et al., 2001). The third 90°
RF pulse returns the magnetization to the x-y plane so that the FID may be acquired
(Macuraand Ernst, 2002). The water resonance will return to equilibrium during
acquisition (AQ), but will be suppressed to zero again during the relaxation delay
(Lippenset a., 1995).

Thetime to repetition, tg, is dependent on the pre-saturation interval and
acquisition time. It isimportant that the relaxation delay is sufficiently long to suppress
the water peak (Lauridensen et al., 2008). The net magnetization from water should be
near zero at the start of the acquisition so that the lower concentration metabolites may be
detected (Lippenset a., 1995). Also, the acquisition time should be set to allow for near
complete relaxation of the transverse magnetization (Lauridensen et al., 2008).
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Figure 3.7: The standard 1-D NOESY pulse sequence. RD represents the relaxation
delay during which time the water resonance is selectively irradiated with aweak RF
pulse. t; isafixedinterval used to allow for phase information to be acquired. t, isthe
mixing time. The water resonanceis again irradiated to allow for NOE build up of the
protons of interest.

The 1-D NOESY pulse sequenceisrobust, requiring little optimization (Potts et
a., 2001). Thisattribute makesit easy to use (Lauridensen et al., 2008), thereby making
it attractive for high throughput applications, such as screening. It requires minimal first
order phase correction and baseline adjustments (Potts et a., 2001) asit provides efficient
water peak suppression (Lauridensen et al., 2008). Water suppression has been enhanced
from the simple pre-saturation experiment, while adding minimal time to the experiment
(Bollard et al., 2001). It does, however, distort the baseline about the water resonance
(Aranibar et al., 2006), so it is preferred to quantify metabolite resonances far from the

water resonance whenever possible.

In one study, Potts et al. (2001) showed that the greatest source of variability in
NMR experiments results from the water suppression technique and timings used as well
asvariationsin the baseline and differential attenuation of resonances near the water
resonance. PCA scores maps revealed that experiments using varying magnetic field
strengths were comparable (Potts et al., 2001; Malz and Jancke, 2005). In addition,
Lewiset a. (2007) found that analytical precision isindependent of the chemical
properties of the target molecules. Regarding spectral pre-processing, both Aranibar et
al. (2006) and Malz and Jancke (2005) found that the best results were obtained after
manual phasing and baseline corrections.

35



Chapter 4
Analytical Techniquesfor
M etabolomics Experiments

This Chapter will outline analysis and chemometric techniques often used to
study metabolism. The main analytical techniquesinclude '"H NMR Spectroscopy and
mass spectrometry, paired with liquid or gas chromatography. Once the metabolite
content is known, multivariate techniques, such as principal component anaysisor partial
least squares discriminant analysis are performed to reduce the dimensionality of the data

set and to discovery patterns in the data.

4.1 Nuclear M agnetic Resonance Spectr oscopy

Nuclear magnetic resonance (NMR) spectroscopy is a popular analytical
technique since biofluid sample collection (i.e. urine, saliva) can be non-invasive (Saude
et d., 2007), itisnon-destructive (Dunn and Ellis, 2005; Goldsmith et al., 2010),
provides arapid, high-throughput methodology (Dunn and Ellis, 2005; Verpoorte et al.,
2008), is highly reproducible (Kim et a., 2008; Viant et a., 2007), is not biased towards
the detection of certain metabolites (i.e. it is non-selective) (Goodacre et a., 2004;
Kaddurah Daouk et al., 2008), and can simultaneously analyze all metabolites present in
the biofluid (Griffin and Kauppinen, 2007; Vion-Dury et a., 1993). The output spectrum
issimply the sum of all spectra of individua metabolites present in the sample
(Verpoorte et al., 2008). NMR experiments generally require minimal sample
preparation, often consisting only of an adjustment of the pH and addition of aninternal
standard (Ross et al., 2007). NMR spectroscopy is acost effective method after the
spectrometer has been purchased, thus making it ideal for screening large populations
(Lenz and Wilson, 2007).

NMR spectra provide qualitative and quantitative information of the metabolic
content of abiofluid or tissue extract (Forshed et al., 2005; Um et al., 2009). The
concentrations of metabolites may be determined by comparing the area of each peak

with that of the internal standard, such as 3-trimethylsilylpropionic acid (TPS) (Beckonert
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et a., 2007) or 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) (Wiljie et a., 2006). Once
apulse sequence is selected for the experiment, it is pertinent to keep the timings, such as
the relaxation delay or mixing time, constant for quantitative purposes. A new set of
Nuclear Overhauser Effect enhancements (NOE) are obtained for each mixingtimein a
NOESY experiment (Kumar et al., 1981). It iswell established that the concentration is
directly proportional to the area of the peak (Dunn and Ellis, 2005). Depending on the
strength of the magnetic field, NMR spectroscopy can measure metabolitesin the mM
and uM ranges (Nordstrom and Lewensohn, 2010; Slupsky et al., 2007).

Larger magnetic fields are known to improve signal dispersion and sensitivity,
thus resolving metabolite peaks to a better extent (Lenz and Wilson, 2007). Thisis
beneficia when analyzing low concentration metabolites. The sensitivity of the
instrument can be further improved with the use of a cryoprobe (commonly referred to as
acold probe for Varian systems) (Lenz and Wilson, 2007). This hardware addition
decreases e ectronic noise by operating at liquid helium temperatures, thus alowing for
improved signal to noise ratios — by up to afactor of 4 (Lenz and Wilson, 2007).

A few drawbacks with NMR spectroscopy include the heavy overlap of
metabolite resonances (Holmes et al., 2000; Ludwig et al., 2009), chemical shift
variations due to changes in concentration, pH and ionic strength (Miyataka et al., 2007;
Spratlin et al., 2009), poor water suppression (Keun et a., 2002), baseline distortions
(Keun et al., 2002) and chemical exchange between metabolites, particularly with water
(Verpoorte et a., 2008).

Resonance overlap is a problem with *H NMR spectra since the scale runs
between 0 and 10 ppm (Nicholson et al., 2007; Potts et al., 2001) and thousands of
metabolites may contribute to the signal (Claudino et al., 2007; Goldsmith et al., 2010).
Several endogenous metabolites contain more than one resonance (AlaKorpelaet al.,
2008), which can complicate analysis with the conventional method of binning where the
spectra are generally divided into regions of width 0.04 ppm. In addition, overlapping

signals make profiling less accurate.

Differencesin the pH, concentration and ionic strengths will cause variationsin
the chemical shifts of resonances due to alterationsin the acid-base equilibrium and
solute-solute interactions (Spratlin et a., 2009). Miyataka et a. (2007) observed that the
chemical shift of citrate varied significantly between samples, and that the shift was

approximately linear with the sample pH. No other metabolite demonstrates such a
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dramatic change in chemical shift with pH (Miyatakaet a., 2007). Failureto consider
variations in the chemical shift of citrate with pH could introduce artefactsif spectral
binning is used.

Dilute samples often suffer from poor spectral quality due to incompl ete water
suppression (Keun et a., 2002). It is essential to suppress the water resonance as much
as possible so that nearby peaks can be resolved. Metabolites of interest are often present
in mM concentrations while water protons are 110M (Saude et al., 2006). Pottset al.,
(2001) found that the water suppression scheme used greatly influenced the baseline and
degree of attenuation of signals near the water resonance. The NOESY pulse sequence
showed differences based on varying mixing times (Potts et a., 2001). Poor water
suppression can el evate the baselines on either side of the peak, which adds to the total
peak height and thus affects quantification (Saude et al., 2006). Further, incomplete
water suppression can cause dynamic range problems if the water resonance is not
suppressed to reflect amM concentration (Keun et a., 2002).

Proton exchange between OH, NH or SH chemical groups with water can have
profound effects on the quantification of these metabolites as the resonance peaks will
also be suppressed and broadened due to an increased T, relaxation rate (Verpoorte et dl .,
2008). Peak broadening degrades the spectral resolution (Reo, 2002). Saude et al. (2006)
studied the effects of various water suppression techniques. They found that the thnoesy
pulse sequence provided the greatest degree of water suppression across the entire

spectrum and had the highest degree of quantitative accuracy.

4.1.1 Spectral Processing

The accuracy of metabolite concentration quantification islargely dependent on
the combination of pre-processing techniques, such as phasing or baseline correction, and

the profiling technique.

A common methodology isto bin the spectra. This technique involves dividing
the spectrum into smaller segments, often of width 0.04 ppm, and defining each bin asa
variable (Ross et a., 2007). However, itisnot clear if an alteration in the magnitude of a
single binis aresult of a metabolic change or an artefact resulting from an altered
chemical shift (Slupsky et al., 2007). Some groups attempt to minimize variationsin

chemical shift by combining adjacent bins so that the full resonance is contained within
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the larger bin (Ross et al., 2007). Combing bins will degrade the analytica resolution as
multiple resonances may be located in that bin (Forshed et al., 2005; Madsen et dl .,

2010). Thisistruein cases where one metabolite shiftsto another bin as aresult of pH or
ion concentration. The nature of spectral binning places greater emphasis on the higher
concentration metabolites. Therefore, low concentration metabolites may not be detected
(Weljieet a., 2006). Binning isprone to baseline errors (Wiljie et a., 2006). Incomplete
water suppression can elevate the baseline on either side of the water resonance and cause
further baseline distortions (Saude et al ., 2006).

Alternatively, targeted profiling, which consists of matching pre-established
metabolites from alibrary to the spectrum, provides better quantitative accuracy
(Kkaddurah-Daouk et al., 2008). Saude and Sykes (2006) showed that targeted profiling
provides accuracies in excess of 90% for their samples. Slupsky at a. (2007) measured
the coefficient of variability for metabolite near the limit of detection and found that the
precision is acceptable for clearly identifiable metabolites. The coefficients ranged from
1% for the larger concentration metabolites to 41% for metabolites near the limit of
detection. It issuggested that the larger coefficients are aresult of artefacts from the
baseline, overlap of resonances and noise (Slupsky et al., 2007).

Studies have evaluated the reproducibility of NMR spectra between facilities and
between spectrometers. One such study was completed by Keun et a. (2002). To assess
the analytical reproducibility of metabolomics protocols, sample preparation and NMR
data acquisition were performed at two sites, one site using a 500 MHz spectrometer and
the other using a 600 MHz system. Half of each urine sample was sent for analysis at
each facility. They found that despite using spectrometers operating at different
frequencies, the datasets were extremely similar. Observed differences were most often
related to small changesin the chemical shift. However, the main difference was
contributed to the efficiency of the water resonance suppression. The results show that
the normal physiological variation within the control group (26%) or pre-dose group
(17%)) accounted for five times as much of the total variability as the different
spectrometers did (3%). Further, samples considered outliers at one location were not
outliers at the other. Keun et a. (2002) suggest that thisis due to sporadic differencesin

sample preparation.
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4.1.2 Alternative NMR Techniques

Other NMR techniques include **C or *'P NMR experiments or magic angle
spinning for tissue extracts (Griffin and Shockcor, 2006; Serkova et al., 2008).

13C or *'P imaging allows for improved spectral resolution, but at the expense of
lower sensitivity due to the lower natural abundance of these elements (Dunn and Ellis,
2005). *C imaging spreads the peaks over a spectral width of 200 ppm as compared
to *H which encompasses the range between 0 and 10 ppm. These techniques can be
used in 2-D experiments to aid in the identification of metabolites (Serkovaet a., 2008).

2-D NMR experiments are useful in improving signal dispersion and exploiting
connectivity between signals (Beckonert et a., 2007). Most experiments combine
experiments with *H, **C, N and *'P nuclei to allow for identification of biochemical
substances (Beckonert et al., 2007). A few advantages of using a 2-D experiment include
the reduced overlap of spectral peaks, thus allowing for direct measurement of these
peaks (Lewis et a., 2007) and additional information regarding the multiplicity and
coupling patterns of resonances (Beckonert et a., 2007). However, this technique
requires longer acquisition times, of the order of hours (Beckonert et a., 2007; Lewis et
a., 2007), which makesit unsuitable for screening purposes. In addition, 2-D cross
peaks intensities are often influenced by a greater number of variables, including uneven
excitation throughout the sample, non-uniform relaxation, evolution time and mixing
times (Lewis et d., 2007).

Magic angle spinning NMR spectroscopy is used to profile the metabolitesin a
tissue extract (Griffin and Shockcor, 2004). This method involves spinning the samples
at 54.7° with respect to the main magnetic field to reduce the physical effectsthat lead to
line broadening (Griffin and Kauppenin, 2007). The line broadening is a consequence of
dipole coupling and tissue anisotropy in the semi-solid sample which scales as (3cos?0-1)
(Seierstad et al., 2008). Studies have shown that aligning the sample at an angle of 54.7°
with respect to the external magnetic field and then spinning the sample about its own
axis reduces these interactions (Seierstad et a., 2008). Though tissue extracts make the
procedure more invasive, there is again in robustness as tissues are under greater
homeostatic regulation and thus providing more consistent measurements of metabolism
(Viant et al., 2007).

40



'H NMR spectroscopy provides diagnostic and prognostic information on
cancers. For this reason, most studiesinvolving NMR applications use 'H. Applications
of its use for cancer include breast, brain, head and neck, lymphomas, liver and prostate
cancers (Griffin and Kauppinen, 2007), thought these studies have not attempted to

screen for these cancers.

4.2 M ass Spectrometry

Mass spectrometry (MS) identifies metabolites based on the mass-to-charge ratio
of the charged particles (Dunn and Ellis, 2005; Spratlin et al., 2009). MSisarapid,
sensitive and selective technique which offers a plethora of qualitative and quantitative
information (Dunn and Ellis, 2005). It isestimated that the sensitivity istwo orders of
magnitude greater than NMR and measures metabolites with concentrations well below
the mM range (Kaddurah Daouk, 2008). Mass spectrometers operate by ion formation,
separation of the ions by means of their mass-to-charge ratio and detection of the
separated ions (Dunn and Ellis, 2005).

MS s often paired with a chromatographic technique to separate metabolites.
Liquid and gas chromatography (LC-MS and GC-MS) are the most commonly used
techniques (Clarke and Haselden, 2008; Verpoorte et a., 2008). Metabolites are
identified by comparing the retention time or retention index and mass spectrum of the
sample peaks with acommercial database containing pure metabolites under ideal
circumstances. (Dunn and Ellis, 2005; Verpoorte et al., 2008). However, the accuracy
depends on the efficiency of the ion formation process (Griffin and Kauppenin, 2006).
Care must be taken regarding the methods of extraction, quenching, and sample storage
conditions as they can potentially alter metabolite structure, thereby introducing greater
variability between samples (Spratlin et al., 2009).

GC-MSiisconsidered the gold standard for metabolomics (Dunn and Ellis,
2005). Thetechnique first separates volatile and thermally stable compounds by GC,
then detects ions with el ectron-impact mass spectrometers (Dunn and Ellis, 2005). GC-
MS is biased towards detecting volatile, low molecular weight metabolites and requires
derivatisation at room or elevated temperatures (Dunn and Ellis, 2005). In fact, the
spectrometer will only detect ions which may be derived. The process can be time-
consuming, costly and runsthe risk of losing metabolites (Spratlin et a., 2009). Sample
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stability may also be a concern; the presence of water can cause breakdown of the
molecules. However, extensive sample drying can reduce this reaction, but could also
result in the loss of volatile metabolites (Dunn and Ellis, 2005).

LC-MSis another combined system which separates metabolites by LC followed
by electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI)
(Dunn and Ellis, 2005). Thistechnique may be performed at lower analysis temperatures
and does not require sample volatility. Electrospray instruments operate in positive and
negative ion modes, so that alarger complement of metabolites may be analyzed (Dunn
and Ellis, 2005). Moreover, ionized metabolites are detected in either the positive or
negative ion mode, but not both. Metabolite identification is more difficult and time-
intensive in LC-M S since spectral libraries are not commonly available. ESl is not
effective with high concentrations of salts, acids or bases (Dunn and Ellis, 2005). A
majority of metabolomics studies using LC-M S focus on clinical applications (Dunn and
Ellis, 2005).

Quantification of the metabolites generally requires external calibration or a
response ratio (peak area of metabolite/ peak area of internal standard) (Dunn and Ellis,
2005; Verpoorte et a., 2008). However, external calibration is laborious and not all
metabolites are available (Dunn and Ellis, 2005). A large numbers of unknown peaks
will degrade the quality of the analysis. One solution isto identify only those metabolites
that show a significant change between samples (typically of the order of 20-40
metabolites) (Verpoorte et al., 2008). Each M S technique has a bias towards certain
compound classes resulting from the ionization technique used, chromatography and
detector capabilities (Weckwerth and Morgenthal, 2005).

4.3 Statistical Significancefor Univariate Statistics

When simultaneoudy testing alarge number of variables, there is an increases
risk of obtaining afalse positive result (Broadhurst and Kell, 2006). For thisreason, itis
important to update the significance limit, a., to reflect the larger number of variables.
There are two approaches used in this thesis: the Bonferroni correction and the false
discovery rate (FDR).

The Bonferroni correction controls the overall error rate — known as the family-
wise error rate (FWER) — at o/N, where o is a predefined significance threshold (i.e. 0.05
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or 0.01) and N isthe number of variables. The correction can be thought of as the
probability of obtaining one or more false positives among all variables tested, not just
the probability of obtaining afalse positive for one variable (Broadhurst and Kell, 2006).
That is, testing each variable individualy at level a/N, will maintain afalse positive rate
lessthen a.. It isimportant to consider when N is large (Broadhurst and Kell, 2006). For
example, anaysis on the metabolite ratios (n = 561) at an error rate of o = 0.05 would
result in 28 false positives (0.05 x 561), whereas, the Bonferroni correction is expected to
have zero (on average, there will be a probability of 0.05 false positives). The Bonferroni
correction is amore stringent test for significance when testing multiple hypotheses
simultaneoudy (Broadhurst and Kell, 2006).

An aternative method, known as the False Discovery Rate (FDR), was proposed
by Benjamini and Hochberg. In contrast to conventional methods, which define alimit of
significance prior to testing, this technique controls the number of false positives within
the set of defined significant discoveries. The number of false discoveries accepted may
be controlled at a higher level, thusincreasing the power of the analysis. This property is
desired for screening purposes as it is advantageous to identify as many potential
discoveries possible, while still controlling the number of false discoveries (Benjamini
and Hochburg, 1995). Following is a brief derivation of their method.

Consider astudy with m (null) hypotheses, of which, m, are true and m-m, are
statistically significant (null hypothesis regjected). Assume that R hypotheses are
suggested to be satistically significant. There are two possibilities: 1) the hypothesis was
correctly rejected (true positive result or TP) or 2) the hypothesis was incorrectly rejected
(false positive result or FP). The false discovery rate may be defined as the number of
false positives (FP) divided by the total number of rejected hypothesis (R = FP + TP):

FDR= P(R>O)E[F—F\E)|R>Oj (Equation 4.1)

Where E represents an expectation value of the false discovery rate and P(R>0)
ensures that the FDR is controlled when no variables are significant. Two important
properties from this definition are: 1) In the limit where no result is statistically
significant, the FDR method will produce the same results asthe FWER (if FP =0, then
FDR =0 andif FP> O, then FDR = 1) and 2) when m, < m, the FDR is smaller than or
equal to the FWER, and thus more statisticaly significant variables will be discovered

while maintaining control over the number of false positives.
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Consider testing H, Ho,...H, hypotheses based on their corresponding p-val ues,
P1, P2,...Pn. Rank the p-values from smallest to largest such that Py < Py <...< Py
where P, corresponds with hypothesis Hg;. We define the following Bonferroni-type
multiple-testing procedure:

Let k bethe largest i for which Py, <——a; (Equation 4.2)
m

then rejectall H(i) i = 12, ..., k

The above definition controlsthe FDR at level o. Significant discoveries are
determined by comparing the p-value, p; withio/m,i=1,2,....m, (i.e. pi<io/m). If it
issmaller, then al preceding (smaller p-values) hypotheses are defined as significant.
Themaximum i at which the inequality is satisfied caps the number of defined significant

discoveries such that the error rateis maintained at .

It isimportant here to understand the difference between the fal se positive rate
and the false discovery rate. The false positive rateisthe rate at which true null
hypotheses are incorrectly defined as significant, whereas the false discovery rate
describes the expected proportion of false positives within the set of all tests defined as
significant, i.e. the discoveries (Storey, 2002).

4.4 Chemometric Techniques

Chemometric techniques are used to reduce the complexity of large data sets.
The goal isto reduce the dimensionality of the data set so that hidden patterns of
behaviour can be extracted, with minimal loss of information (Goodacre, 2007). Such

techniques are categorized as unsupervised or supervised.

Unsupervised methods apply data reduction to visualize inherent patterns of
behaviour and identify similarities in the data structure (Bollard et al, 2005; Lindon et dl.,
2001). Thesetechniques, however, are sensitive to subtleties in the experimental design,
making interpretation more difficult (Kaddurah Daouk et al., 2008). Examples of
unsupervised techniques include principal component analysis (PCA), nonlinear mapping
procedures (NLM) and hierarchal cluster analysis (HCA) (Holmes and Antti, 2002).

Supervised techniques build a multi-variate statistical model based on known
sample classes (Bollard et al., 2005; Erb, 2008). Classinformation is used to optimize
the separation between the classes (Claudino et a., 2007). The goal of these methodsis
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to find amathematical transformation that correctly classifies a majority, if not al, of the
samples (Goodacre, 2007). Examples of supervised methods include partid least squares
(PLS), linear discriminant analysis (LDA), K-nearest heighbour anaysis (KNN), partia
least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA (Lindon et al.,
2001).

Chemometric techniques aim to remove redundant data in the system, so that
non-random characteristics, which may be obscured by noise or random variables, may
be identified, or interpreted with some methods (Lindon et a., 2001). It is expected that
the level of redundancy is high in data sets with alarge number of variables (Antoniewics
et a., 2006); it does not matter what the variables represent, as long as they were
measured independently from one ancther (Shlens, 2005). As aresult, the system could
be described with afewer number of variables, known as latent variables (LV). The
LV’ srepresent the greatest sources of variation in the data (Trygg et al., 2007). The data
should follow anormal distribution for optimal results (Hagburg, 1998). Thisis not
awaystrue in an experimental situation; therefore, groups may apply alogio
transformation to the variables distributions prior to analysis (Chang, 2009).

Most multivariate methods involve the diagonalization (eigensystems analysis) of
asymmetric matrix (Hagburg, 1998; Lindon et al., 2001). Inthe cases of PCA and PLS-
DA, the symmetric matrix is the covariance matrix of the data set (Shlens, 2005;
Hagberg, 1998). The eigenvectors of the symmetric matrix represent the directionin K-
space, where K isthe number of original variables, which contributes to the maximum
variation (Shlens, 2005). The eigenvalues are used to cal culate the percentage of
variation that its corresponding eigenvector describes in K-space and are ordered from
largest to smallest. Thefirst eigenvector, associated with the maximum eigenval ue,
represents the direction with the maximum variation. This vector is assumed to be least
affected by noise (Hagburg et al., 1998). Each successive eigenvector describesthe
maximum variation remaining in the data set and is orthogonal to all previous
eigenvectors. Each sampleis projected onto the model axes—i.e. the latent variables —

and given anew set of coordinates, known as its scores (Keun et a., 2004).

The data set is often mean-centered and scaled prior to analysis. Mean-centering
involves calculating the mean for each variable and then subtracting the mean from all
variables (Lindon et d., 2001). Theresult isadistribution centered at 0, but having the
same shape. All multi-variate statistical techniques require mean-centered input data.
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Scaling techniques are applied to enhance the information from the lower
magnitude variables (Trygg et a., 2007). Common methods of scaling include unit
variance scaling (also known as auto scaling) and pareto scaling. Unit variance scaling is
achieved by dividing each variable by its standard deviation (Bollard et al., 2001; Lindon
et a., 2001). Unit variance scaling gives every variable an equal weighting, therefore the
model is not biased towards the higher magnitude variables (as these generaly have
larger variances). Pareto scaling provides a compromise between enhancing the lower
magnitude variables, without over expressing noise (User Guideto SIMCA P+). Pareto
scaling is generally recommended for metabolomics analyses, and involves dividing the
variables by the square root of its standard deviation (Trygg et a., 2007). There is debate
about which scaling method produces the most accurate and reproducible results,
however it iswell established that projection based techniques are sensitive to scaling
methods (Trygg et al., 2007). Inareview article, Trygg et a., (2007) recommends using
either no scaling or pareto scaling, while Lindon et al., (2001) and Antoniewicz et al.,
(2006) recommend unit variance scaling. Both methods (pareto and unit variance) have
been used in metabol omics studies and will be used in our analysis.

4.4.1 Principal Component Analysis (PCA)

Principle component analysis (PCA) wasintroduced in 1901 by Karl Pearson
(Gorban et al., 2007) and is now used to analyze data from numerous fields of study,
ranging from neuroscience to computer graphics (Shlens, 2005). With the increasing
complexity of experimenta analysis, it has been termed the “workhorse of
chemometrics’ (Trygg et a., 2007). The goa of PCA analysisisto account for as much
total variation as possible with the least number of variables (often known as latent
variables, or principal components (PC)) (Bollard et a., 2001; Serkovaet a., 2008) and
to reveal the ‘true’ dimensionality of the data set by removing redundant information
(Antoniewicz et al., 2006).

PCA suggests that the observation matrix, X, of rank m, where m is the number
of measured variables can be written as a sum of m matrices of rank 1 (Geladi and
Kowalski, 1986) (i.e. each matrix describes one variable),. It isassumed that the matrix

is mean-centered (al variables have a mean of zero).

X=M;+M, +...+ M, (Equation 4.3)
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These rank 1 matrices can be expressed as an outer product of a score vector, t;,
(nx 1) and aloading vector, p; (m x 1), where n is the number of samplesand misthe
number of variables. The scores vector stores the projection of each sample onto each
principal component. Likewise, the loading vector relates the relative contributions of
each variable to that principal component — thisis determined by projecting a unit vector
along the principa component axis onto the axis defined by each variable (Geladi and
Kowalski, 1986). Equation 4.3 may be re-expressed as.

X=tp] +t,p; +..+t.pl +E=XP" +E (Equation 4.4)

Wherea=mif al factors are used and E is the matrix of residuals. When noise
dominates the later vectors, a< m and only the important variables are emphasized. The
matrix of residuals contains all information that is not explained in the scores and loading
matrix (i.e. noise) (Geladi and Kowalski, 1986).

One method for PCA modelling involves computing an eigenvalue
decomposition of the covariance matrix or asingular value decomposition of a data
meatrix after mean centering (Shlens, 2005). PCA will determineif thereis another set of
orthonormal vectors, which are linear combinations of the origina variables, that better
describes the variation observed in the data set. In essence, the technique performs a
coordinate rotation to align the axes with the direction of maximum variation (Shlens,
2005). Theoretically, PCA will provide the optimum transformation for minimizing the
least squaresterm for a given data set (Geladi and Kowal ski, 1986).

The following section will summarize the key mathematical steps required to
construct a PCA model - full details can be found elsewhere (Shlens, 2005). There are
four main assumptions related to PCA (Shlens, 2005):

1. Theassumption of linearity: The observed datais expected to be constructed
from alinear combination of certain basis vectors; the principal components. It
isthis basis set that we wish to find when performing PCA.

2. Assumptions related to the sample mean and covariance: The nature of PCA
means that the eigenvectors of the covariance matrix are determined under the
Gaussian assumption. Skewed distributions could bias the final results asthe
mean and standard deviations will be affected.
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3. Large variances correspond with the most important dynamics of interest:
Variables with larger variances have a greater weight on thefinal resultsasitis
assumed that these variables contain the most information about the system. The
importance of each principal component may be assessed by ranking the
eigenvalues from largest to smallest and determining the percentage of described
variation. Inthetermsof PCA analysis, the signal to noiseratio is defined asthe
variance along the axis of interested (signal) divided by the variancein a
perpendicular direction (noise). Only when the signal to noise ratio is large, can
it be assumed that the first few PCs correspond with the dynamics of interest and
the latter PCs correspond with noise.

4. Orthogonality of the Principal Components. This property allows for data
reduction, via diagonalization, onto a plane spanned by a set of basis vectors—
the principal components. Orthogonal vectors mean that redundancy is kept to a
minimum; therefore, fewer variables (PC's) are required for an accurate

description of the data.

Datais collected from a number of samples and stored in an n x m matrix, X, where
m is the number of independently measured variables and n is the number of samples. In
the current state, it is not clear which variables contribute differences between samples.
PCA will identify a new orthogonal basis of vectors which are linear combinations of the
original variables and projects the data onto this new basis; a so-called ‘ change of basis'.

The covariance matrix is calculated to investigate the degree of correlations between
pairs of variables. A small covariance meansthat the variables have low redundancy
(relatively independent), while alarge covariance means the variables are highly
correlated. Completely independent variables will have a covariance of 0. The

covariance between two matrices, A and B, having zero means, is defined as:

1
n-1

Where n-1 is a constant of normalization. The covariance matrix isanmx m

C, XTX (Equation 4.5)

symmetric matrix. The diagonal terms represent the variance of asingle variable and the
off-diagonal terms describe the covariance between apair of variables. Noise and
redundancy between variables are captured in the covariance terms. Large diagonal
terms correlate with dynamics of interest, while small values represent noise. Similarly,

large off-diagonal term indicate high level of redundancy between those variables.
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The set of principal components are determined from the diagonalization of the
covariance matrix. For mathematical purposes, we define alinear transformation matrix,
P, such that:

X'=XP (Equation 4.6)

Where X’ isan n x m matrix in which the origina data has been projected onto a
new set of basis vectors. If the optimal basisis used, the covariance matrix of X’ should
be adiagona matrix. To determine this basis, we substitute Equation 4.6 into Equation

4.5 and rearrange the matrices:

C,. =L1PT(XTX)P (Equation 4.7)
n -
From linear algebra, the matrix XX is diagonalized by the orthogonal matrix of

its eigenvectors, E, such that:
X"X =EDE™ (Equation 4.8)

We select the matrix P such that its columns are the eigenvectors of X"X.
Therefore, E=Pand X"X = PDP™. Since XX issymmetric, P*= P". Substituting this

into Equation 4.7 and making the conversion P*= P', we get:

1
C,.=——P (X"X)P
o= PTXTX)

1 _
Cy = 71'3 “(PDP™)P (Equation 4.9)

1
C, =——(P*P)D(PP
«= = (P"P)D(PP)

C,,=—D
* p-1

The matrix Cy- isdiagonalized as desired. As such, PCA identifiesthe

eigenvectors of XX and calls them the principal components of the data matrix.

PCA isrecommended as a starting point for multivariate dataanalysis asit will
indicate if differences are present between populations (AlaKorpel, 2007; Trygg et al.,
2007). The model does not take into account class information, but will determine the
gross variability (Barker and Rayens, 2003). The resultant models are not capable of
distinguishing between groups, nor can it differentiate within class variation from
between class variation. However, it is possible to classify an unknown sample by

grouping it with the class with the closest average scores (Barker and Rayens, 2003).
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4.4.2 Partial Least Squares Discriminant Analysis (PLS-DA)

PLS-DA was established for chemical applicationsin the late 1970’ s by Svante
Wold and Harald Martens after initial work by Herman Wold in the 1960’ sin the field of
economics (Barker and Rayens, 2003; Geladi and Kowalski, 1986). The technique
combines the PL S algorithm with the linear discriminant analysis procedure devel oped
by Ronald Fisher in 1936 (Barker and Rayens, 2003). The method by Fisher involves a
linear projection of the input data where the between class variance is maximized with
respect to the within class variance (Rosipal and Kramer, 2006). The PLS agorithm
calculates the between groups sums of squares and the cross products matrix and utilizes
the results for separation (Barker and Rayens, 2003). Traditionally, discriminant analysis
was performed if structural differences between groups or subgroups were desired
(Rubingh et a., 2006). However, it may be beneficial to extend the study beyond
classification to study the sources of discrimination. PLS-DA was designed to maximize
the separation between pre-defined groups relative to the pooled within group variation
(Barker and Rayens, 2003).

PLS-DA is applied when a quantitative relationship between the data matrix, X,
and the response matrix, Y, is desired (Trygg et a., 2008). It may be described as the
regression extension of PCA (Bollard et al., 2001; Murdoch et a., 2008). ThePLS
regression is capable of quantifying arelationship between the independent and
dependent variables that best describe differencesin the populations under investigation.
The PLS regression assumes a linear relationship between the two matrices (Antoniewicz
et a., 2006).

Thegoal of PLS analysisisto maximize the covariance (or separation) between
the data matrix and the response matrix (Holmes and Antti, 2002; Rugingh et al., 2006).
The Y matrix may contain qualitative data, such as the age of a patient or a measured
value, or it may be comprised of orthogonal unit vectors which define the pre-defined
class (Bollard et al., 2001; Trygg et al., 2008). As an example, the class unit vectors may
be[1, 0] and [0, 1] for the two class case. Antoniewicz et al., (2006) showed that aPLS

model is capable of differentiating between informative variance and irrelevant data.

Following isabrief derivation of the PLS model. Unless specified, all information in the
following section is taken from Geladi and K owalski (1986), Hoskuldsson (1988) and
Rosipal and Kramer (2006). For further details regarding the PL S regression, refer to
Wold (1975) or Barker and Rayens (2003).
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Consider an experimental setting in which N independent, and M response

variables are measured for n samples. Two data matrices are defined: the data matrix, X

< R" (nx N), and the response matrix, Y < R™ (n x M), where N is the number of
measured variables, M is the number of response variables and n isthe number of
samples. These matrices are mean-centered, meaning that each variable has a mean of
zero. The data and response matrices may be represented by matrices with lower

dimensions and having the form:

X=TP" +E

(Equation 4.10)
Y=UQ" +F

Where T and U are the scores matrices (n x &, aisthe number of extracted scores
vectors), P (N x @ and Q (M x a) are the corresponding loading matrices, and E (n x N)
and F (nx M) are the matrices of residuals. The individual score and loading vectors
from each extracted scores vector makes up the columns of the scores and loadings
matrices and are denoted by the lower caseletters (i.e. t;, u;, p; and g; wherei =1,2,...a).
PLS analysisis most effective when it can best describe Y such that ||F|| is as small as
possible and it still achieves a useful relationship between the X and Y matrices (Geladi
and Kowalski, 1986).

Theclassical PLS model is derived from the non-linear iterative partid least
squares (NIPALS) algorithm. The model operates iteratively between the two matrices to
determine the relationship between the variablesin each. The NIPALS algorithm starts
with arandom initialization of one of the scores vectors u; (could be the first column of Y
(Hoskuldsson, 1988)) and repeats the following steps until convergence:

.
1)szTu
uu

2w = ”Ww (Scalew tolength1)

3) t=Xw _
Ty (Equation 4.11)
4)c= YT
t't

5) c:”—;| (Scalectolengthl)

6)u=Yc
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Here, w and ¢ are weight vectors. They are used to ensure that the t-values
obtained are orthogonal (Geladi and Kowalski, 1986). If the algorithm converges at 6)
(that isthe u from 1) and 6) differ by less than a predetermined significance threshold, €),
then the x- and y-loadings (p and g, respectively) are calculated asfollows. Otherwise, it
repeats the iteration with the new u.

Xt

P= t't
VT (Equation 4.12)

u

a= u'u

E=X-tp’ (Equation 4.13)
F=Y-uq'

The algorithm renames the E and F matricesas X and Y and repeats the process
for al dimensions of X. In calculating the scores and loadings from the residual's, mutual

orthogonality is guaranteed (Rosipal and Kramer, 2006). It is assumed that the score
vectorsof X, {t; }*,, are good predictors of Y and that an inner relation exists between

the scores vectorst and u. For thisreason, the Y matrix is‘deflated’ by subtracting off
information along the direction of each score vector, t;. Thisagorithm converges

quickly (Geladi and K owalski, 1986), so models can be generated promptly.
The PLS factors have four properties (Geladi and Kowalski, 1986):
1. Theloading vectors, p; and q;, have unit length. i.e. [|pi]| = [lai]| = 1
2. Thescoresvectors, t; and u;, are centered about zero
3. Thescoresof the X data matrix, t;, are orthogona

4. Theweights, w;, are orthogonal

When PLS s used for discrimination or classification, the samples are divided into g

classes such that {xi e XcR" }in:l for the set of n samples. We define the (n x g-1)

class membership matrix (Rosipal and Kramer, 2006):
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m n n
n L, 0,
Y=| : D (Equation 4.14)
0,, O, L.,
On On On

Where {ni }ig:l denotes the number of samplesin each class, Zil n,=n, 0, and
ln‘ are (n; x 1) vectors of al zeros and ones, respectively. Let G represent the between

class sums-of -squares and H represent the within class sums-of -squares where:

G=>" n(xi = x)(xi —x)"

g n - = (Equation 4.15)
H=30 >0 0 =) —xi)

Here xij represents an N-dimensional vector for the jth sample of theith class, and

138 .
Xi=—> x/
n <
'gJ ! (Equation 4.16)
- 1 N
=133
N4

Fisher’s method of discrimination involves the linear projection of the input data
onto the eigenvectors, u, of the following eigenval ue problem such that the between class
variance is maximized when compared with the within class variance (Rosipal and
Kramer, 2006):

E'Hu=Au (Equation 4.17)

The output of aPLS-DA model is aset of component axes, known as |l atent
variables, which maximize the covariance between the measured data and the class
membership matrix (response variables) (Bollard et d., 2001; Rubingh et a., 2006). The
set of latent variables represent a new prediction matrix with a greater emphasis on the
dynamics of interest. The response variables are regressed onto these new predictors
(Rosipal and Kramer, 2006) to abtain a new set of coordinates. These coordinates are
known as the samples scores. Similar to PCA, unknown samples may be projected onto
the model to determine their most probable class membership (Bollard et al., 2005).
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Not all components are used in the model as the higher order components
represent noise and are generaly left out. The number of components used can be
determined from the residual matrix of the response variables, F (Geladi and Kowal ski,
1986). A common method is to compare the values of ||F|| at the end of each iteration,
and stop when the difference becomes small when compared to a previously established
measurement error. An alternative approach is to stop when ||F|| drops below a pre-
defined threshold value. If the model isto be used for prediction, the prediction residual
sum of squares (PRESS) isused. The number of components is determined from the
minimum PRESS which isthe sum of the squared difference between the observed and
predicted values | eft out of the model (Lindon et al., 2001; User Guide for SIMCA P+).

PLS-DA should be used for dimensional reduction when the objectiveisto
identify patterns of behaviour responsible for defining pre-defined classes. PLS performs
better than PCA in cases where the within group variation exceeds the between group
variation, thus allowing for the identification of subtle changes associated with a disease
(Barker and Rayens, 2003).

45 Modd Validation

Multivariate statistical models can be sensitive to chance correlations and there is
arisk of overfitting the data (Rubingh et al., 2006; Westerhuis et al., 2008). Emphasison
previously known information could result in modeling ‘noise’ from the measurements
(Weckwerth and Morgenthal, 2005). For this reason, cross validation and permutation
testing should be performed to evaluate the performance and stability of a model
(Rubingh et a., 2006).

The strength of a model may be evaluated using the goodness of fit, R?, and the
goodness of prediction, Q” parameters. The R? value relates the fraction of variation
accounted for by the regression and describes the accuracy of prediction for that model
(Antiewicz et al., 2006). In genera, having alarge R? value (close to 1.0) is attractive,
but not sufficient for agood model asit could be overfit (Broadhurst and Kell, 2006;
Westerhuis et al., 2008). In contrast, the Q2 value describes the fraction of variationin
the training set (measured data,X for PCA and the class membership data, Y, for PLS-
DA) predicted by the model as determined from cross validation (Weljie et al,. 2006;
Westerhuis et al., 2008). Thereis no standard requirement for the R? and Q? values
(Westerhuis et d., 2008), but values greater than 0.5 are preferred (Erb et a., 2008).
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45.1 Cross Validation

Cross validation (CV) identifies the optimal model parameters and tests the
predictability of the model with part of the data. It may be used to determine the optimal
number of latent variables used. Having too few components will result in a significant
loss of information, while having too many components will overfit the data; the larger

latent variables explain more noise (Antiewicz et a., 2006).

The method involves splitting the data into two sets: the training set and the
prediction set. Thetraining set is used to develop a model, which isthen tested with the
prediction set (Rubingh et al., 2006). Theideaisthat amodel created with part of the
data should be able to correctly classify the datain the prediction set if thereisinfact a
unique change between populations. This provides a measure of the predictability for a
new data set (Rubingh et a., 2006). A common method isreferred to asthe ‘x fold
validation’ where the dataiis divided into x groups of the same size. One group is
removed from the data set and amodel is created using the remaining (x-1) groups. The
procedure is repeated until each group has been left out once and only once (Rubingh et
a., 2006). The model is used to predict the values of the response variable for the *left
out’ samples and residuals (error) are calculated (Antiewicz et a., 2006).

4.5.2 Permutation Testing

Permutation testing is used to assess the significance of a classification (Rubingh
et a., 2006). Thistechnique involves permuting the classification of samples and
recal culating the model for each permutation. Theideaisthat the origina classifications
should produce the best model. By randomly reassigning samplesto aclass, it is possible
to test for an overfitted model by evaluating the R* and Q® values. For each permutation,
the discrimination between the permuted classes is compared to the discrimination
between the original classes (Rubingh et a., 2006). If the original model produces the
maximum R? and Q° values of all models tested, then the model is good. A good model
will have the best discrimination between classes, and should aso have the largest R?and
Q° parameters of al models. The Q? valueis the more important of the two as the R?
value can be optimistic in over fit models (Broadhurst and Kell, 2006).
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4.6 Modd Interpretation

Multivariate statistical models identify the directions in K-space which best
explain the variation in the data set and closely approximate the measured data, but in a
lower dimensional plane (Trygg et a. 2007). Samples are projected onto the model
plane. The position of the sample in the new plane is defined by the scores, whichisa
vector relating the projection of the sample along each latent variable (Keun et al., 2004,
Trygg and Lundstedt, 2007). The scores may be used to describe variation in the sample
direction (Serkova et al., 2008). The loadings relate the influence of individual variables
in calculating the scores (Keun et al., 2004). The loadings describe the relationship
between variables. Variables with the same sign are directly related (both change in the
same direction), and those with larger loadings have a greater impact on the variance
along its corresponding latent variable (Trygg et al., 2007). It has been suggested that
variables with large loadings are well related, so treating these variables as a single group

can smplify interpretation (Lindon et al., 2001).

Similaritiesin the data structure are best observed in ascores plot (Bollard et dl.,
2005; Reo, 2002). A scoresplot isa2-dimensiona plot of two latent variables, which
visually displays the locations of samples under the new coordinate system. Objects
located close to one another are said to cluster and will have similar data structures or
biological composition (Um et al., 2009). Grouping, trends and outliers are easily
observed in this plot (Serkova et a., 2008). Vaueslying outside the Hotelling's T2
ellipse, which represents the 95% confidence interval, are considered strong outliers, and
may impact the model. It is suggested to remove these variables from the analysis (Trygg
and Lundstedt, 2007).

The loadings plot may be used to identify variables responsible for the observed
differences between samples (Bollard et al., 2005; Murdoch et a., 2008). Variables
farther from the origin have the largest impact on the explained variation. The direction
of datain the scores and loadings plot are correlated (Trygg et a., 2007). In fact, the
direction of the change, to the l€eft or right, corresponds to the change experienced in the
respective group (Murdoch et al., 2008). This meansthat populations located to the right
of the origin will have anincrease in variables located to the right in the loadings plot and
adecreasein variables located to the left. The sameistrue for samplesto the left. By
determining the direction of optimal separation, it is possible to identify the variables

most responsible for the differences.
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Chapter 5
ROC Curve Analysis

This Chapter will provide atheoretical description of Receiver Operating
Characteristic (ROC) curve analysis and describe how the curveis constructed. The
chapter will open with the motivation for using ROC curve analysis over asingle
measurement of the sensitivity and specificity. Next, a brief description on how to
construct a ROC curve from these measurements will follow. Methods for interpreting

the results of ROC curve analysis will conclude the chapter.

5.1 Defining Diagnostic Accur acy

A screening test makes a decision about the presence or absence of disease based
on the result of ameasurement. The result of this measurement might be a numerical
value which has a characteristic range for the healthy population and a different
characteristic range for the diseased population, though there will likely be overlap
between these two ranges. In adiagnostic situation, clinicians will define adecision
threshold to classify the samples (Bewick et al., 2004; Metz, 1989; Obuchowski, 2005).
Samples with a measurement that is larger than the decision threshold will be classified
as having the disease (positive test), while other samples are classified as healthy
(negative test).

One of four situations can occur: 1) a sample from an individual who has the
diseaseis correctly diagnosed (true positive or TP), 2) a sample from an individual who
has the disease isincorrectly diagnosed as healthy (false negative or FN), 3) asample
from a healthy individual isincorrectly defined as having a disease (false positive or FP)
or 4) asample from a healthy individual is correctly classified as healthy (true negative or
TN) (Weinstein et al., 2005, Zivian and Gershater, 2008). The four cases are summarized
in acontingency table, shown in Table 5.1. Here, the observer’s decision isindicated by
the columns and the results of the test are displayed asrows. It is assumed that the true
health status of all individualsis known so that the true positive, false positive, false
negative and true negative variables may be calculated (Obuchowski, 2005).
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Tableb.1: Contingency Table of Possible Test Results
Observer’s Decision

Test Result Disease Present Disease Absent
Positive Test True Positive (TP) False Positive (FP)
Negative Test False Negative (FN) True Negative (TN)

Table5.1: Contingency Table describing four situations experienced in
clinic. A true positive occurs when a diseased individual tests positive,
afase positive occurs when a hedthy individual tests positive, afalse
negative occurs when a diseased individua tests negative and atrue
negative occurs when a healthy individual has a negative test result.

These descriptors do not contain sufficient information for the clinic. For this
reason, we define two new terms; the sensitivity and specificity. These descriptors are
attractive as they do not vary greatly between patient populations (Zivian and Gershater,
2008). The senstivity is defined as the number of individuals having a disease, who are
correctly diagnosed (positive test), divided by the number of individual having the
disease. The specificity is defined as the number of healthy individuals, who are
correctly diagnosed (negative test), divided by the total number of healthy individuals
(Bewick et al., 2004; Cook, 2008; Hojung et al., 2009; Obuchowski, 2005; Weinstein et
al., 2008). In mathematical terms:

. TP .
Sensitivity = ———— Equation 5.1
Y TP+ FN (Eq )
e TN
ecificity = ———— Equation 5.2
> y TN + FP (Eq )

The sensitivity may be thought of as a measure of how well a diagnostic test,
such as a screening test, will perform in asample of sick patients. Similarly, the
specificity would explain how well adiagnostic test performsin a healthy population
(Zivian and Gershater, 2008). The sensitivity and specificity are inversely related
(Akobeng, 2007; Gardner and Grenier, 2006, Park et a., 2004, Zivian and Gershater,
2008). This meansthat by improving the sensitivity of atest, the specificity will
decrease. Consequently, it isimportant to weigh the ‘relative costs of false positives and
false negatives (Altman and Bland, 1994; Delong et a., 1988; Obuchowski, 2005).

Diseases with high prevalence and mortality rates require high sensitivities
(assuming that treatment is available) at the cost of specificity. Alternatively, conditions
with alow prevalence or arisky treatment will use atest with high specificity at the cost
of alower sensitivity (Akobeng, 2006). For screening purposes, it is essential to identify

as many sick individuals as possible, so a high sensitivity isrequired (Park et a ., 2004).
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5.2 Motivation for ROC Curve Analysis

Consider an experiment that involves the collection of data from two distinct
groups; one group is composed of healthy individuals, while the second group has a

specific disease. The data collected will create a distribution of measurements for each
variable tested. For the purpose of this example, it is assumed that the average

measurement from the diseased population is greater than that for the healthy group and
the distributions overlap one another. The distributions are assumed to be Gaussian in

shape, though this may not be the case for small data sets. An example of two such
distributions, for alarge sample study, is shown in Figure 5.1.

Distributions of Two Populations
1 , . :

Distributions of Two Populations
1 : -5 .
T — Healthy H "-' — Healthy
== Diseased ] % == Diseased
08} 0.8}
True "-_
061 061 Negative 5,-
04f 04} i
Decision
Threshold
02 02 i
A False 3%
A/ Positive,
0 p N . 0 . \, N
-4 -2 0 2 4 6 -4 -2 0 2

4
Figure 5.1: Distributions for two populations; one healthy and one having a particular

disease. One decision threshold is drawn (vertica line) and the regions corresponding
to false positives, false negatives, true positives and true negatives are labelled. The
proportions of each are dependent on the location of the decision threshold and the
shapes of the two distributions.

The sensitivity and specificity are dependent on the location of the decision
threshold. Increasing the threshold to alarger value allows for greater specificity (more
true negative results) at the expense of alower sensitivity (more false negatives). The
decision threshold is generally chosen to reflect the relative costs of afalse positive
versus afalse negative, however, it is hot obvious which cut point is best (Zivian and

Gershater, 2008). For instance, increasing the specificity by a small amount could greatly
affect the sensitivity if the distribution of sick individualsis narrow.
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The impact of changing the decision threshold is not intuitive when evaluating
only the sensitivity and specificity. One solution isto consider the overal accuracy,
defined as the total number of correct diagnoses—true positives and true negatives —
divided by the number of individuals tested (Zivian and Gershater, 2008). Despite the
helpful title, the observer could be biased by the prevalence of a disease.

As an example, consider a disease with low prevalence. The observer analysing
test resultsislikely to use a conservative threshold to minimize the number of false
positives. An extreme choiceisto label all tests negative. Because of the low
prevalence, the test will have a high specificity (100%) and accuracy (large proportion of
true diagnoses), but alow sensitivity (0%). If 1in 10 individuals have the disease, the
accuracy would be 90%. On the opposite side of the spectrum, a disease with high
prevalence (say 8 in 10) could lead an observer to call al tests positive. Thistest would
have a high sensitivity (100%) and accuracy (80%), but alow specificity (0%). These
examples show that even usel ess tests can achieve strong results for two of specificity,

sengitivity and accuracy, but offer little diagnostic information.

5.3 The Receiver Operating Characteristic (ROC) Curve

Receiver Operating Characteristic (ROC) curves were first developed in the
1950’ sto evaluate radar signal detection (Altman and Bland, 1994). The goal wasto
guantify how well an electronic receiver detects electronic signals in the presence of
noise (Zivian and Gershater, 2008). Lee Lusted realized that ROC curve analysis held
potential in medical applications and introduced the technique to medicinein 1971
(Centor, 1991, Hilden, 1991). Sinceitsinception, ROC curve analysis has become a
standard method for evaluating a diagnostic test’s accuracy (Akobeng, 2006; Del ong et
al., 1988; McClish, 1989; Wang et al., 2005) by jointly evaluating the fraction of positive
results in each population (Gardner and Greiner, 2006). Analysis of the resulting curve
allows scientists to evaluate tradeoffs between the sensitivity and specificity at different
thresholds (McClish, 1989; Pepe, 2000). In addition, this technique is independent of the
prevalence, so we avoid the issue presented in the previous section (Park et al., 2004; van
den Biggelaar et al., 2009, Wang et ., 2005).

An ROC curveisaplot of the sensitivity along the y-axis and (1-specificity) or
the false positive fraction along the x-axis (Akobeng, 2006; Obuchowski, 2005; Park et
al., 2004; Pepe, 2000). ROC curves are not dependent on a single decision threshold as
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all options are considered (Cook, 2008; Del.ong et al., 1988; Weinstein et a., 2005).
Each point on the graph, known as an operating point (Park et a., 2004), represents the
sengitivity and specificity for a different decision threshold (Altman and Bland, 1994; van
den Biggelaar et al., 2009). The empirical curveis created by connecting the operating
points with straight line segments (Obuchowski, 2005; Park et a., 2004). The smooth
ROC curve is bowed towards the top left hand corner — point (0,1) — therefore, the
empirical curve will underestimate the true area under the curve. However, the

estimation is quite accurate for continuous distributions (Obuchowski, 2005).

ROC curves al pass through the points (0,0) and (1,1), marking the most
conservative and strictest decisions threshol ds respectively (Obuchowski, 2005). There
are (h-1) additional points on the curve to represent each of the h unique decision
thresholds (Obuchowski, 2005). The operating points can be thought of as observations
from h Radiologists or as the measurements made by one Radiologist as they change their
threshold from the most conservative (al test results are positive) to the strictest (all test
results are negative) (Zivian and Gershater, 2008).

There are three main classification systems: 1) a 5-point system, 2) a confidence
scale system and 3) continuous distributions (Obuchowski, 2005). Thefirst choiceis
often used to eval uate the diagnostic potential of an imaging modality, such as
mammography or MR imaging (Akin et al., 2010; van den Biggelaar et a., 2009). The
radiologist will assign images a BI-RADS (Breast Imaging Reporting and Data System)
score based on the degree of suspected malignancy (1 = negative examination, 2 = benign
finding, 3 = probably benign finding, 4 = suspicious abnormality and 5 = highly
suggestive of malignancy) (van den Biggelaar et al., 2009). The confidence scale system
operatesin a similar fashion, except that the Radiologist scores the exam based on the
probability of malignancy (i.e. 0-100%) (Obuchowski, 2005). The continuous
distributions test allows users to systematically update the decision threshold across all
possible cut-offs (DelLong et a., 1988; Gardner and Greiner, 2006). ROC anaysis does
not work on binary (yes/no) tests as these only have one cut point (Park et al., 2004).

Drawing a straight line segment between the points (0,0) and (1,1) creates the
chance diagonal. Thisline represents atest that has no ability to discriminate between
individuals from two distinct populations and randomly assigns a diagnosis (Park et d.,
2004; Weinstein et al., 2005). The random assignment means that there are an equal
number of true positives and true negatives for al thresholds considered (Akobeng,
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2006). ROC curvesthat liein the upper left-hand corner of the plot contain some
diagnostic information (Weinstein et al., 2005).

Diagnostic information may be measured using one of the following summary measures:

1. Youden'sindex: Calculates the maximum vertical distance between the ROC
curve and the chance diagonal (Bewick et a., 2004). This parameter is
dependent on the decision threshold and may be calculated using:

J=max{ sensitivity + specificity - 1} (Equation 5.3)

2. Accuracy or the probability of correct diagnosis: This parameter utilizes
information about the prevalence of the disease (Prev) and will change asthe
prevalence changes (Obuchowski, 2005). The accuracy is calculated from:
Accuracy = Prev x sensitivity + (1- Prev) x specificity (Equation 5.4)

3. Theareaunder the ROC curve (AUC): The AUC isacombined measure of the
sengitivity and specificity and is perhaps the most popular choice (Cook, 2008;
McClish, 1989; Obuchowski, 2005; Park et a., 2004; Zivian and Gershater,
2008). Vdues range between 0.5 and 1.0 for diagnostically useful tests.

The AUC may beinterpreted as 1) the average sengitivity for all values of
specificity, 2) the average specificity for all values of sensitivity, or 3) the probability of
correctly diagnosing two individuals — one healthy and one having the disease — based on
a single measurement (i.e. concentration of a metabolite) (Obuchowski, 2005). The third
choice isindependent of the prevalence asit isfixed at 50% by definition (Gardner and
Greiner, 2006). Despite this, the third definition isintuitive in the sense that samples are
essentially ranked prior to calculating the ROC curve.

The AUC for adiagnostic test is bounded below by 0.5 for tests with no ability to
distinguish two populations, and above by 1.0, which represents a test with perfect
discrimination (Zivian and Gershater, 2008). Thereisno single standard for rating the
effectiveness of a diagnostic test. Some applications define atest with an AUC > 0.9 as
being an excellent test and an AUC > 0.8 as a good test (Broadhurst and Kell, 2006),
while Akobeng (2006) and Gardner and Grenier (2006) propose using:

AUC>0.9 High Accuracy
AUC>0.7and AUC<0.9 M oderate Accuracy
AUC>05and AUC<0.7 Low Accuracy
AUC=05 Chance
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The AUC contains information for all sengitivity and specificity pairs available.
This may not be sufficiently informative for adiagnosis. The ROC curve offersa
graphical representation of the tradeoffs between the sensitivity and specificity asthe
decision threshold is altered (Gardner and Grenier, 2006). The optimal point on the ROC
curve may be determined through the Y ouden index — equation 3.3 —or from the point
closest to the top | eft-corner of the plot (0,1) by minimizing the following expression
(Akobeng, 2006):

Optimal Point = min{ (1- sensitivity)® + (1- specificity)®} (Equation 5.5)

Thereisapossibility that the Y ouden index and the distance from the point (0,1)
provide different optimal decisions thresholds. One example where the two techniques
could produce different resultsis shownin Figure 5.2. Here, The ROC curveis parallée
to the chance diagonal, but has an artefact on one side. The minimum distance from the
point (0,1) to the ROC curve differs from the optimal point given by the Y ouden index
(maximum vertical distance from the ROC curve to the chance diagonal) which occurs as

the artefact. .

The AUC may be estimated non-parametrically by fitting trapezoids under the
empirical ROC curve (Bewick et al., 2004; Metz, 1988; Obuchowski, 2005; Park et al.,
2004). The estimate tends to underestimate the AUC (Metz, 1988), however it produces
results that are similar to those obtained using a parametric approach (assuming two
normal population distributions and fitting a smooth curve to the data) when the variables
are continuous (DeLong et al., 1988; Park et al., 2004).

7 ROC Curve Figure 5.2: Example where the Y ouden
1.0 Distance index and minimum point from (0,1) give
0.8 different optimal decision thresholds. A
= }n(;l‘g:f“ ROC curve where the region around the
Z 0.6 ‘ point (0,1) is approximately linear and has
E 04 the same slope as the chance diagona,
2 E‘&fﬂ however thereis asmall feature near the
0.2 ' line Sensitivity = 1.0. The Y ouden Index
and mini mum distance techniques produce
0.0 different results for the ootimal ROC point.

00 02 04 06 08 1.0
1-Specificity
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5.4 Predictive Values

Positive and negative predictive values measure the predictive capabilities of a
diagnostic test with consideration of the prevalence of the disease (Cook, 2008). The
positive predictive value (PPV) is the probability of a disease given a positive results and
a negative predictive value (NPV) is the probability of no disease given a negative result
(Bewick et a., 2004; Gardner and Greiner, 2006; Weinstein et al., 2005). As suggested
by Weingtein et al., (2005), the predictive values help clinicians plan treatments
depending on the probability that the individual does or does not have the disease based

on the test result.

There are two formal expressions used to calculate the predictive values,
depending whether or not the prevalence of the disease is known. The expressions are as

follows;

Sex P TP

PPV = =
SxP+(@1-)x(1-P) TP+FP

(Equation 5.6)

NPV — Sx(1-P) _ TN
1-S9)xP+Sx(1-P) TN+FN

(Equation 5.7)

Where Seisthe sengitivity, Sp isthe specificity and P isthe prevalence (fraction
of those having the disease in the sample population) (Gardner and Greiner, 2006;
Weinstein et al. 2005). Low prevalence resultsin adecreased PPV (Bewick et al.,
2006). Scientific experimentstend to bias the prevalence to greater values to improve the
statistical power of the study; therefore, the latter equality is preferred.

5.5 Limitations of ROC curve Analysis on Small Populations

Analysis on small populations could bias the resultsif the experimental
population does not accurately reflect the desired population (not independently
sampled). According to Metz (1988), the variance in the ROC curve isinversely
proportional to the number of samplesin the study. Individual sampleswill either over or
under estimate the true ROC curve data points, but will create a distribution of ROC

curves.
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Chapter 6
Experimental Techniques

This Chapter will discuss the methodol ogies associated with the experimental
work of this dissertation. The chapter organization follows the sequence of steps from
urine collection to the final dataanalysis. All work involving animals was approved in
advance by the Cross Cancer Institute’s Animal Care Committee. Animalswere

monitored daily for signs of distress throughout the experiment.

6.1 Tumour M odel

NIH 111 nude mice (n = 36) were ordered at 6 weeks of age from Charles River
Laboratories, USA. Animals were housed in the Cross Cancer Institute’ s Vivarium with
four mice per cage. The Vivarium allowed for a controlled experimental environment
with atemperature of 21°C, relative humidity 30-55% and a 12 hour light — 12 hour dark
cycle (6am — 6pm light, 6pm — 6am dark). Animals were fed a diet of laboratory
autoclavable rodent diet 5010 (Labdiet, Leduc, Canada) and were given free access to

autoclaved tap water.

Animals were given three days to acclimatize to the new facility before notching
their earsfor identification. During the procedure, the mice were anesthetised with 1.5%-

2.0% isoflurane mixed with oxygen. A sterile ear clipper punched aholein one ear.

The mice were whole body irradiated to 350cGy in a**'Csirradiator one week
post arrival to minimize any residual immune response to the tumour cell injections
(Laroque et d., 2009). Tumour cells were injected one week |ater.

The human GBM cell line M006xL o was used to initiate tumours (Franko et al.
1998). Three million cells, suspended in 0.1mL of phosphate buffered saline (PBS), were
injected subcutaneoudy over the animal’ sright thigh (n = 22) (Laroque et al., 2009). The
mice were anesthetised with 1.5%-2.0% isoflurane in oxygen during the injection. The
tumours became pal pable 3-4 days post injection and were visible to the eye by 5 days.
Control animals (n = 14) were injected with 0.1mL PBSin place of the GBM cdlls.
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6.2 Sample Collection

Sampl e collection began once the animals were whole body irradiated and
continued for five weeks post cell injection. To minimize the effects of diurna variation
(Tiziani et d., 2009), urine samples were collected into Eppendorf safe-lock microfuge
tubes (Sigma-Aldrich Co, Oakville, Canada) daily between 10:30am and 12:00pm by
restraining the mouse and gently massaging its bladder. Samples wereimmediately
stored in afreezer at -80°C until required for NMR andysis. The literature suggests that
immediate freezing at -80°C is sufficient to prevent bacteria contamination of the urine
samples (Lauridsen et al., 2007). The longest samples were stored before NMR spectrum
acquisition was 7 months, but most samples were analysed within 2 months post
collection. According to Ross et a. (2007), samples are not affected for up to 9 months
when stored at -40°C, so the time frame of storage should have minimal effects on the
metabolic composition. Samples selected for NMR analysis were required to exceed
30uL in volume as this appeared to be the lower limit of detection for NMR data

acquisition.

For the purpose of our analysis, samples were categorized as either pre-injection
or tumour-bearing (collected between 6 and 35 days post-injection). Not every mouse
contributed a sample each day, and some samples had insufficient volumes for inclusion
in the study. Consequently, the number of analysed samples in the pre-injection group
varied from 1-6, and from 1-7 for the tumour-bearing category. One cage (4 mice) was
injected with the GBM cells one week |ate (three weeks post arrival). The datafrom
these animal's were scattered amongst the data from the other animalsin the scores plots
of the preliminary PCA and PLS-DA models, indicating that the extraweek had no
observable effect on metabolism, so these animals were included in the study. The
number of pre-injection samples for these mice ranged between 5 and 8. The tumours
continued to grow over the course of the five week urine collection period, but even at

the earliest time points, the tumour was macroscopic in size.

6.3 Sample Preparation for NMR Analysis

Selected samples were removed from the freezer and allowed to thaw at room
temperature for approximately one hour. Available urine, ranging between 30 and
150uL, was pipetted (Ranin, Mettler Toledo Co, Oakland, USA) into a 3000kDa
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Nanosept filter (VMR International, Mississauga, Canada) with the volume brought to
500uL with distilled water (Keun et a., 2004; Ross et al., 2007). Proteins and larger
macromol ecules were removed from the sample by centrifuging the samples at 4°C for 10
minutes at 13000 rpm (Forshed et a., 2005; Holmes et al., 2000; Maher et al., 2007).
Samples were prepared for NMR analysis by adding 90uL of an internal standard
(Chenomx, Inc. Edmonton, Canada) which contains 5mM DSS and 0.2% NaN3 in D,0 at
apH of 7.0. 200uL of distilled water was added to the filtered samples to bring them to
an appropriate volume (~650uL + 50uL ).

The pH was measured using an Acumen Microprobe pH meter (Fisher Scientific,
Ottawa, Canada). The meter was calibrated using pH 4.01 and pH 10.00 buffer solutions.
Initial pH values for the urine samples were most often between 6.20 and 6.75. The pH
was adjusted to 6.84 + 0.04 by adding small volumes of 0.1M HCL or Noah (Kim et al.
2008; Murdoch et al., 2008; Slupsky et al. 2007; Um et al., 2009).

A 600uL aiquot of sample was extracted into aWilma 535-pp NMR tube
(Sigma-Aldrich Co., Oakville, Canada) and stored in afridge at 4°C overnight (Murdoch
et a., 2008; Slupsky et a., 2007). Thisvolume is highly recommended asit permits
good water suppression without over diluting the sample (McKay 2009).

6.4 NMR Analysis

Samples were run on an Oxford 2.2K 800 MHZ NMR Magnet (Oxford
Instruments, Inc., Oxfordshire, UK) utilising a 5mm HCN cold probe (Varian Inc., Palo
Alto, USA). Spectrawere acquired using a 1-D NOESY pre-saturation pul se sequence
with a saturation delay of 990ms, a mixing time of 100ms and an acquisition time of 4s.
Four steady state scans were performed prior to data acquisition. 32 scans were acquired
for atotal run time of 3:03 per sample. The spectra cover awidth of 12ppm. These
timings are required for accurate quantification when using Chenomx Software
(Chenomx NMR Suite 5.1 User guide).

The 1-D NOESY pre-saturation pulse sequenceisdisplayed in Figure 6.1. This
pulse sequence is often used for metabol omics experiments because it provides
satisfactory water suppression and allows for high throughput (Beckonert et al, 2007,
Betram et a., 2007; Bollard et d., 2001). Spectra are acquired using the Varian VNMR

software.
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Figure 6.1: Schematic of the 1-D NOESY pulse sequence. The saturation delay
and mixing times are constant for all experiments. The length of the 90° RF

pul ses were optimized by first determining the time required for a 360° pulse
(acquire anull signal), and dividing thisresult by 4. A total of 4 steady state
scans and 32 transient scans were used for most samples for atotal time of 3:03.

All samples were verified to have volumes of 600+25 L using a gauge scale.

Briefly, the volume was measured by means of the depth of the meniscus in the sample.
A referencetable, located on the wall at NANUC, provides a gauge value for centering

the sample. Using thisinformation and a reference cylinder, the bottom of the tubeis

aligned with the gauge value. Figure 6.2 shows a schematic for centering a 600uL

sample. A sample of this volume has a reference value of 66.

o

Sample

Magnetic
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Volume

65
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Figure 6.2: Centering the sample. The
sampleis centered in the magnet by
measuring the height of the meniscus
and identifying the gauge level. For a
sample with avolume of 600 uL, the
gauge value is 66. Aligning the bottom
of the tube with the gauge at 66 will
center the sample in the magnet. If
done properly, there should be equal
amounts of sample above and below the
magnet’ s sensitive volume.
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The sampleisinserted into the magnet and allowed to reach an acquisition
temperature of 25°C (Baleset al., 1984; Kim et al., 2008; Saude et al., 2006). The first
sample of the day was used to calibrate the lock signal. The flip angle for the water
resonance is optimized by varying the pulse width of the RF pulses until anull signal is
obtained. The null constitutes a 360° flip, so dividing the time by 4 provides the optimal

pulse width for excitation of the water resonance.

Next, an optimizing algorithm is applied to optimize the z-gradient shims. These
shims are not optimized, but only require minor adjustmentsto the z1, z2, x and y
gradients. The width of the methyl peak of DSS at half maximum is often smaller and
the peak shape is more symmetric than obtained with manual shimming; thisimproves
the spectral resolution. The change in the peak shape after manually shimming the field

isshowninfigure 6.3 aand b.

After shimming, the transmitter offset (tof) and saturation frequency is
optimized. Thisinvolved setting up an array of values between -294 Hz and -288 Hz and
visually inspecting the value at which the water peak is split down the middle. The
magnet is tuned appropriately when the tails of the water peak on either side have equal

magnitudes. Thisisshown in figure 6.3 c and d.

a b

Manually optimize z1,
z2, x and v gradients

—>
0 ppm
Chemlcal Shlft (ppm) Chemical Shift (ppm)
4.5 ppm 4.5 ppm
Chemical Shift (ppm) Chemical Shift (ppm)

Figure 6.3: Shimming the magnet and optimizing the transmitter offset (tof). a shows
the methyl peak of DSS after application of a shim optimization agorithm. Itis
observed that the peak shape is not optimal, so the field must be manually shimmed
using the z1, z2, x and y gradients. The optimized peak shapeisshowninb. candd
show the effects of changing thetof. In c, thetof is set too low, such that the right
hand tail has a greater amplitude than the left hand tail. The tof has been optimized
in d, where both tails are approximately the same height.
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Thereceiver gain was initially set to 18 dB for al scans and decreased to 12 dB
when an ADC overload occurred. One study found that dynamic changes in the receiver
gain have a negligible effect on the results due to the long word length of the analog
digital converter (Malz and Jancke, 2005).

Prior to acquisition, phasing adjustments were made to the entire spectrum to
flatten the spectrum baseline on either side of the water resonance. Magnetic field
shimming was performed on the methyl resonance peak of the DSS internal standard at
0.0ppm (Saude et d., 2006). The magnetic field was shimmed using the z-1, z-2, x and y
gradients to achieve aline width of lessthan 1.0 Hz. In most cases, the peak width at
0.55% and 0.11% peak height were less than 12 Hz and 20 Hz.

Water suppression on dilute samples was poor, and often resulted in an ADC
overload. Inthis case, the receiver gain was changed from 18dB to 12dB and the number
of scansincreased to 64. These values were chosen as a compromise between spectrum

guality and time of acquisition. The acquisition time for these experiments was 5:47.

6.5 Metabalite Profiling

Identification and quantification of metabolites was carried out with the
Chenomx Suite 5.1 (Chenomx Inc., Edmonton, Canada) software package.
Quantification is achieved using targeted profiling in which mathematically modelled
pure compound NM R resonances from the Chenomx library (pH 6-8) arefit to the
acquired spectra (Weljie et a., 2006). A detailed procedure for spectral processing
follows. Complete details can be found in the Chenomx Suite 5.1 user guide available

at www.chenomx.com. A DSS concentration of 0.125mM is used for all samples.

6.5.1 Spectrum Processing

The ‘Chenomx Processor’ prepares the NMR spectrum for profiling by
correcting phasing and baseline artefacts (Chenomx NMR Suite 5.1 User manual). Upon
opening the spectrum, the user must input the sample pH and decide whether or not to
apply line broadening. Entering the pH will help with profiling metabolites, such as
citrate, which are known to have a pH dependent chemical shift and peak shape
(Miyataka et al., 2007; Weljie et al., 2006). For the purpose of our experiment, we chose
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to apply line broadening at alater stage. Briefly, the steps applied are phasing, baseline
correction, line broadening, reference deconvolution and water deletion. Theinitia

spectrum is shown in Figure 6.4a.

Proper phasing and baseline corrections are essential for accurate profiling
(Wishart, 2008). Phasing the spectrum compensates for the missing data points at the
start of the free induction decay (FID) (Szantay, 1992). The software automatically
applies phase adjustments to the spectra by applying the automatically-determined phase
angles. Manual changes must be performed to optimize the phasing adjustments. This
includes zeroth order corrections to the phasing of the methyl resonance of DSS and first
order corrections to the spectrain the approximate range of 7.0 to 9.0 ppm. The baseline
should be symmetric on either side of the water resonance and have a smooth appearance
throughout (Vitols, December 2006). After proper phasing, the spectrum will look
similar to that shown in Figure 6.4b.

Baseline correction removes baseline distortions resulting from incompl ete water
suppression (Wishart, 2008). The spline function applies a cubic spline baseline
correction based on automatically-determined breakpoints (Cheng et al., 2007). Small
adjustments to the spline baseline are made near the urea and water resonances to better
fit the actual baseline and to remove very wide signals (line widths of the order of 1
ppm). The effect of baseline correction is shown in Figure 6.4 b and c.

Line broadening was applied to the spectrum to obtain afinal approximate peak
width of 1.25-1.30 Hz for the methyl resonance at 0.0ppm. The width of 1.25-1.30 Hz
provides the closest fit of the modelled compounds to the spectra (Chenomx NMR Suite
5.1 User Guide). Line broadening is performed by applying an exponential FID
weighting function to the data which aids in the removal of noise at the tail end of the
FID and emphasi ses the information at the early time points (Szantay, 1992). Line
broadening with an exponential weighting factor resultsin an artificial damping of the
FID so that the T, values of the metabolites appear faster. Line broadening will improve
the accuracy of integration as more data points are used to define the peak shape
(Szantay, 1992) and instrumental noise is averaged.

Reference deconvolution was applied to the methyl resonance (including the DSS
satellites) to aline width of 1.30 Hz. This step reconstructs an ideal spectrum by
removing lineshape distortions, resulting from field inhomogeneities and i mproper

shimming, based on the shape of the methyl resonance of DSS (Vitols and Mercier,
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2006). The method involves the deconvolution of the entire spectrum with the
experimental line shape of DSS, and then reconvolves the spectrum with an idea
lorentzian line shape (Vitols and Mercier, 2006). Reference Deconvolution isalinear
processin that it only uses direct and inverse Fourier transforms to maintain the
guantitative relationships between compounds in the spectrum. Reference deconvolution
assumes that all lineshapes are systematically distorted in the same way. It isuseful for
reducing the effects of varying shimming techniques between users and to improve the
guantitative accuracy of compounds in regions with heavy overlap of signas. Figure 6.4

d and e shows how the methyl peak is affected by application of reference deconvol ution.
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Figure 6.4 Procedure for pre-processing the spectrain Chenomx a, b and c al show
the same region of the spectra around the water resonance (~4 — 4.8 ppm). dand e
show only the methyl peak of DSS at 0 ppm. a. Initial spectrum when imported into
Chenomx. b. After correcting for phasing errors. c. Post baseline correct. d.
Methyl peak of DSS before reference deconvolution. e. Methyl peak of DSS after
reference deconvolution. f. Fina spectrum after processing.
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Water deletion removes the sections of the spectrum covered by the water
resonance. Removal of the water resonance is not required, but will remove the sections
of the spectrum near the water resonance which are distorted from the incompl ete water
suppression. These metabolite peaks are not profiled because they may also be
suppressed (McKay, 2009). The water resonance was removed from all samples for
consistency. Thefinal spectrum, after water deletion, is shown in Figure 6.4f.

6.5.2 Metabalite Profiling

Metabolite identification and quantification is performed using ‘the Profiler’
software. This software includes alibrary of mathematically modelled NMR resonances
for pure metabolites for a specific pH range (Saude et a., 2006). Profiling involves
matching the compounds NMR signatures to the patterns found in the spectrum. Figure
6.5 shows the steps in profiling a metabolite. Details of the procedure follow.

There are three important lines displayed in the Profiler: the black line represents
the acquired spectrum, the red line is the addition line which adds up the contributions of
all metabolite peaks at each chemical shift, and the green line is the subtraction line
which calculates the difference between the spectrum and the addition line. Quantitative
accuracy is greatest when the subtraction line is used for profiling. A modelled peak is
manually adjusted, amplitude and chemical shift, to best fit the spectral peak. Thisis
achieved by obtaining a subtraction line with zero magnitude. The amplitude of the
profiled peak is directly proportional to the concentration of that metabolite. In effect,
increasing the amplitude means having a higher concentration of the metabolite in that
sample. Figure 6.5a shows the creatinine singlet that has only been partially profiled. It
is evident that the profiled concentration is incorrect as the addition line (red) does not
encompass the area under the peak and the subtraction line (green) isnot flat. In Figure
6.5b, the metabolite has been correctly profiled. Thistime, the subtraction lineisflat.

Metabolites are known to have pH dependent chemical shifts, so the modelled
peaks are free to move to higher or lower chemical shift locations within a pre-defined
region (Vitols and Rosewell, March 2006). The resonance peak may be shifted to any
chemical shift within this region, but is bound by an upper and lower limit set by the
software. The software allows users to adjust the chemical shift of each resonance cluster
individually (Vitols and Rosewell, March 2006). In general, peaks originating from one
metabolite will shift in the same direction, but the magnitude may vary between clusters.
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Figure 6.5 Profiling the Creatinine peak at 3.0ppm. This figure shows the three
lines used for profiling: the black lineisthe NMR spectrum signal, thered lineis
the addition line which shows the sum of all metabolites profiled at the chemical
shift, and the green lineis the subtraction line which is used for profiling. When it
isflat, thefit it good. a. Bad fit asthe subtraction lineis not flat. b. Good fit.

A library with common urinary metabolites was first used for profiling. This
library contains alist of 80 metabolites, though not every metabolite was found in the
mouse urine. After profiling these metabolites, a second library, containing all
metabolites available, was selected to profile the remaining peaks. These libraries do not
contain al metabolites found in urine, but those present were identified and quantified.
Each metabolite was selected individually and fit to the spectrum. Metabolitesthat did
not have an obviousfit to the spectrum were assumed to be absent, and their

concentrations reset to 0 uM.

Identification and quantification was performed by adjusting the concentrations
and chemical shifts of the modelled peaks to fit the spectrum. Metabolites that were fully
resolved from nearby peaks and located far from the water and urea resonances (outside 3
and 7 ppm) were profiled first. Next, metabolites with a prominent peak in a crowded
area of the spectrum (generally asinglet) werefit. All possible metabolites with a
chemical shift in the region weretried to verify that the correct metabolite was profiled.
Metabolites that exhibit more than one resonance were fit to each cluster individually.
Quantification for these metabolites was performed on a well-resolved, prominent peak
far from the water resonance.
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Some metabolites are consistently found close together. To profile these
metabolites, previous knowledge about the relative chemical shifts for each resonance
was utilized. For example, lactate and threonine have a structural similarity, which
causes their methyl signal to overlap (Vitols and Fu, April 2006). However, lactateis
often found down-field (higher ppm value) of threonine. Another example is between
creatine and creatinine; creatinine is often found further down-stream and is generally the
larger of the two (Vitolsand Fu, April 2006). Such pairs of metabolites were fit

concurrently to ensure an accurate measurement for baoth.

A total of 43 metabolites were profiled, but only 34 were used in the analysis.
Glycerol and DSS were removed as they came from external sources. Ureais not
guantitative since its protons exchange with water. Asaresult, the intensity of the peak
is strongly dependent on the quality of the water suppression (Ross et al., 2007).
Allantoin is found near the urea resonance and isin chemical exchange with urea. This
causes broadening and variabl e attenuation of the two peaks, making quantification
unreliable. The glycolate and methylamine resonances are singlets found in a crowded
portion of the spectrum. Quantification is complicated by the fact that more than one
prominent singlet is present in the area. The chemical shifts of these singlets vary
between spectra and overlap at times. Only one singlet in the areawas profiled. Since
our knowledge of the other peaksis limited, we cannot assume that the profiled
resonance is always up (or down) stream from the others. For this reason, we chose to
remove these metabolites from the analysis. Phenylacetylglycine, pyroglutamate and
tyrosine are all low concentration metabolites found in a crowded area of the spectrum.
Sincethey are near the noise level, quantification is dependent on the user’ s judgement,
and thus eliminated.

6.6 Data Analysis
6.6.1 Preparation of Data

M etabolite concentrations (n=34) and metabolite ratios (n=561) were used in the
analysis. The metabolite concentrations must be normalized prior to analysis to bring all
samples to the same approximate concentration. Three methods are commonly used in

metabolomics studies: integral normalization, normalization with respect to creatinine
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and quotient normalization (Ross et al., 2007). In contrast, the metabolite ratios require
no normalization since all metabolitesin the sample are equally affected by dilution.

Integral normalization is the standard normalization of biofluids (Rosset d.,
2007). Thistechnique assumesthat the integrals of the spectra are afunction of only the
overall concentration of the samples. Changesin the concentrations of individual
metabolites are assumed to be small compared to changes associated with overall
concentrations. In particular, the up-regulation of metabolites should balance the down-
regulation of other metabolites to maintain a constant integral area. The integral
normalization procedure sums the areas of al variables (bins or metabolites) and divides
each variable by the sum. Most groups choose to remove the areas around the water and
urearesonances (Ross et al., 2007). A number of variations of integral normalization are
found in the literature. While some groups keep the total area at unity (Lenz et al., 2004;
Maher et al., 2007; Parsons et al., 2007; Potts et a., 2001), others choose to multiply by
100 for atotal areaof 100 (Keun et al., 2004). This method works well when the relative
change in metabolite concentrationsis small. However, it is not robust when these
changes are influenced by the alteration in the concentration of another metabolite or
when one metabolite change significantly dominates. Under these circumstances, the
spectra do not scale correctly which makes the technique inappropriate for metabolomics
experiments (Dieterle et a ., 2006).

Creatinine normalization is similar to integral normalization, except that that the
integral of the creatinine peak is used in place of the overall integral. In simpler terms,
the ratio of each metabolite with respect to creatinineis studied. The technique,
originating from clinical chemistry, is commonly used for studies involving human or
animal urine samples (Kim et al., 2008; Tyburski et a., 2009; Um et a., 2009). Itis
assumed that creatinine excretion into the urine is constant. Difficulties with this
technique involve accurate quantification of the creatinine peak when it is overlapping
with another resonance, pH dependent chemical shifts for the peak at 4.05 ppm (when
using binning) and metabolic responses that alter the excretion of creatinine. The
excretion of creatinine is known to be influenced by the mass of muscle tissuesin the
body (Stretch and Baracos, in press). Muscle loss, related to cancer, isawell established
effect (Stretch and Baracos, in press), so creatinine normalization should not be used for

cancer-related studies.
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Quotient normalization assumes that changes in the concentrations of single
metabolites influence part of the spectrum, whereas changesin the overall concentration
influence the entire spectrum (Dieterle et ., 2006). A most probable quotient between
the spectrum and a reference spectrum is determined. The entire spectrum is then
normalized with respect to this quotient. The reference spectrum can be a‘ golden’
reference spectrum or the calculated mean or median spectrum from the controls. It has
been shown that the choice of reference spectrum is not critical, but the median spectrum
from the controls is the most robust for studies with only afew animals. Itis
recommended to remove all areas of the spectrum that are dominated by noise and
perform an integral normalization prior to quotient normalization to bring all spectrato
the same absol ute magnitude (Ross et al, 2007). One study showed that the
normalization method works better than integral normalization for control animals where
only small changes in metabolite concentrations occur (Dieterle et a., 2006). This

normalization technique was chosen for its robustness.

The total area under each spectrum was normalized to an arbitrary value of 100
following the steps for integral normalization. A median spectrum was created by
calculating the median value of the fractiona area occupied by each of the 34 metabolites
of interest from all of the pre-injection spectra. The distribution of quotients was
determined by dividing each spectrum by the reference spectrum. The most probable
guotient for a particular sample was chosen as the median quotient in this distribution.

An example of adistribution is shown in Figure 6.6. Here, it is evident that most
guotients fall in the range between 0.388 and 3.58. For this example, the most probable
quotient is 1.03. The concentrations for all metabolitesin each sample were scaled with
respect to thisvalue.

Dilution factors for Sample J354

| Figure 6.6: Distribution of quotients for
spectrum normalization. Quotient
normalization requires that the most

| probable quotient is determined for each

| sample. The distribution of dilution

factors shown here suggests that the
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II II I | selected as for normalization of the
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Metabolite ratios were calculated for all pairs of metabolites. The smaller of the
reciprocd ratios (i.e. A/B vs. B/A) was chosen for analysis to minimize the shift in the
ratio as aresult of measurement errors in the reported concentration for low concentration
metabolites. For instance, metabolites at low concentration will generally have alarger
relative error as aresult of the numerical resolution of the software. Having this
metabolite in the denominator will have a significant impact on the magnitude of the ratio
and could bias the calculation of the mean and standard deviation. This effect is smaller
when this metabolite isin the numerator. This choice will place greater emphasis on the

higher concentration metabolites, which are often measured with greater accuracy.

The mean and standard deviation for each metabolite or ratio was calculated for
the pre and post injection samples. Observations that were more than three standard
deviations from the mean were defined as outliers and removed from the analysis. The
mean and standard deviation for all variables for each mouse were calculated from the
contributing samples. Averaging the samples by mouse decreases noise in the spectra
related to metabolic variation in the animals and instrument instabilities. Distributions of
the pre-injection and the tumour-bearing samples were constructed from the collection of
averaged values. The means were|0g, transformed prior to analysis. Even after

transformation, the distributions are not completely normal.

6.6.2 Univariate Statistical Analysis

The non-parametric Wilcoxon rank sum test (MATLAB statistics library) was
used for the univariate statistical analysis as each animal contributed a sample before and
after cell injection. Statistical significance was defined using the Bonferroni correction
(p<0.05/ N where N isthe number of metabolites or ratios) and the false discovery rate
(FDR) for the ratios.

Based on the distributions of the healthy and diseased popul ations, an ROC curve
was constructed from the sensitivity and specificity values obtained at 101 threshold
values. These thresholds were determined from the minimum and maximum values form
the digtributions. The minimum and maximum thresholds were rounded down and up to
the nearest thousandth to entirely encompass the distributions. The remaining thresholds
were equally spaced between these two end-points. The ROC curve was constructed by
plotting the sensitivity along the y-axis, and (1 — specificity) on the x-axis.
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Data points were connected with alinear segment for better visualization of the
curve. The AUC was calculated using the trapezoidal method for integration (Odunsi,
2005, Weinstein, 2005). This method often underestimates the area since the curve is
typically bowed towards the top-left corner; however, the estimate should be fairly

accurate since 101 threshold val ues were used.

A plot of the AUC vs. the p-value was drawn to identify trendsin the AUC
parameter with respect to the significance of various metabolites/ ratios (Broadhurst and
Kell, 2006). Vertical lineswere drawn on the plots to indicate regions with Bonferroni

and FDR significance limits.

6.6.3 Multivariate Statistical Analysis

Multivariate statistical analysis was performed with the SIMCA P+ software,
version # 12.0.1 (UMetrics, Sweden). Principal component analysis (PCA) and partial
least squares discriminate analysis (PLS-DA) models were generated for the log,o
transformed metabolite concentrations using unit variance scaling (UV) or Pareto scaling
(par). Seven-fold cross validation was performed for all models. The goodness of fit, R?,
and the goodness of prediction, Q?, parameters were recorded for every model. Thereis
no standard requirement for these parameters, though valuesin excess of 0.5 are
preferred (Westerhuis et a., 2008). Scores plots for the model s were used to ensure that

class separation between the pre-injection and tumour bearing animals was present.

The SIMCA software calcul ates the scores for each sample and storesthemin a
prediction list. The scores describe the samples location in k-space where k is the
number of principal components used to create the model. Samples not used in creating
the model are automatically projected onit. The scoresfor these samples are recorded in
the prediction list.

The prediction list for each model was imported to an excel document for ROC
curve analysis. Analysis of the scores revealed that the optimal separation between
classes was not aong a single component axis, but along a combination of two. For this
reason, ROC curves were applied to the scores plot at variable angles between 1° and
180°in 1°increments. At each angle, the minimum and maximum values were
determined and set asthe first and last ROC curve thresholds after rounding down and up

to the nearest thousandth. By definition, angles refer to the counter clockwise direction.
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The sensitivity and fal se positive fractions were determined at each threshold and were
used to construct the curve. Trapezoidal integration was again used to calculate the
AUC. ROC curve analysiswas applied to all permutations of component axes to

determine the angle at which the AUC was a maximum.

ROC curve analysis was performed with three groups of samples: 1. between the
pre and post-injection data for the tumour-bearing animals only, 2. between the post-
injection samples for the tumour-bearing and control animals and 3. Grouping all pre-
injection samples (tumour-bearing and controls) and the control post-injection data as one

population and comparing with the post-injection tumour-bearing samples.

6.6.4 Inclusion of Control Data

Control data was treated similarly to the tumour-bearing data. Univariate
statistical analysis on the metabolite concentrations revealed that one metabolite was
Bonferroni significant in the control animals, while afew others had p-values less than
0.05 or 0.01. These results suggested that additional influences were competing with the
metabolic changes associated with the presence of the tumour. To identify tumour-

related changes, these external influences must be carefully considered.

To our knowledge, there is no standard method to include control datain the
analysis. Changes experienced in the control animals may be corrected by removing any
metabolite that is significant (Bonferroni, FDR or having p < 0.05 or p < 0.01) in both the
control and tumour-bearing animals and travelling in the same direction (increased or
decreased in both groups). A more stringent technique is to remove any metabolite that is
significant in the control animals, regardless of how it changes in the tumour-bearing
population.
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Chapter 7
Results and Discussion

This Chapter shows the results of univariate and multivariate analysis. As
discussed in the methods chapter, univariate statistical analysis was performed to verify
that statistically significant metabolic changes were present. Analysis was performed on
both metabolite concentrations and the ratios of pairs of metabolites. ROC analysis was
applied to the distributions of the pre-injection and post-injection data. The AUC was
calculated to assess the clinical significance of metabolic changes. Multivariate statistical
analysis took the form of PCA and PLS-DA. For each technique, unit variance and
Pareto scaling was applied prior to modelling. ROC analysis was applied by rotating the
scores plots by unit angles between 1 and 180°. The optimal angle was defined as the

angle at which the maximum AUC was obtai ned.

7.1 Pre-Analysis

M etabolite concentrations were exported from Chenomx Suite 5.1 into an excel
file and sorted by animal and class. For the purposes of our analysis, classes were
defined as pre-injection, post-injection with tumour and post-injection controls. The
latter two classes were composed of all samples collected between 6 and 35 days post-
injection.

The samples had variable concentrations and required normalization prior to
analysis. The concentrations for each sample, for all animals, were plotted to show the
spread in the normalized metabolite concentrations. The examples of 3-indoxylsulfate,
glucose, taurine and trimethlyamine are displayed in figure 7.1. It is observed that the
variability of a metabolite concentration for asingle animal islarge. However, the range
of values is approximately consistent between the pre-injection data from the tumour-
bearing mice (black circles) and the control mice (black crosses) as expected. Subtle

changes in the concentrations post-injection are observed for glucose and trimethylamine.
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Figure 7.1: Plots of the normalized metabolite concentrations for 3-indoxylsulfate,
glucose, taurine and trimethlyamine. The black and red circles represent the pre
and post-injection data from the tumour-bearing mice, respectively, while the black
and red crosses represent data from the control animals. Theintra-animal variation
islargefor all animals. However, the range of valuesis consistent among all

animals: tumour-bearing and controls.

Paired analysis may be applied since data was collected from the same animals

before and after cell injection. This has the advantage of averaging out the day-to-day

variations in the urine content and compares metabolic changes experienced on an

individual level. For this reason, the pre and post-injection data for each animal was

averaged. Distributions of metabolite concentrations were created from the contribution

of al averaged concentrations. Prior to averaging, samples defined as outliers — those

found more than three standard deviations from the class mean — were removed.
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7.2 Univariate Statistical Analysison M etabolite Concentrations

The distributions of the pre and post-injection data from the tumour-bearing
animals were compared using the non-parametric Wilcoxon rank sum test. Thistest was
chosen because the distributions, even after 10g1q transformation, were often not normal.
Therole of the log;o transformation is to make a skewed distribution more normal in
shape so that statistical tests with an underlying assumption of normality may be applied.
Theresultsindicated that 3 (out of 34) metabolites - glucose, trimethylamine n-oxide and
2-oxoglutarate — changed in a manner that satisfied the Bonferroni correction (p-value <
1.47x10°%) and 2 more metabolites — trimethylamine and fumarate — satisfied the FDR
criterion for significance. For brevity, variables achieving statistical significance after
the Bonferroni correction is applied will be referred to as * Bonferroni significant’ and

those considered significant under FDR anaysiswill be referred to as‘ FDR significant’.

Thedistributions for the pre and post-injection datafor glucose, after alogyo
transformation, are shown in figure 7.2. There is anotable shift to lower concentrations
in the tumour-bearing sampl es, though there remains heavy overlap between the
populations. This observation is consistent with other studies involving cancer where
breast cancers had lower levels of glucose than healthy or malignant tissue which could
be attributed to the greater rate of aerobic glycolysisin tumour cells (Spratlin et a., 2009;
Whitehead et al., 2005).
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Figure 7.2: Digtribution of urinary glucose in experimental animals after applying a

logye transformation. Each point represents the average value of glucose concentration
insingle animals samples. The solid line represents the pre-injection (healthy)
population and the dashed line represents the post-inj ection tumour-bearing animals.
There is a notable decrease in the concentration post-injection. The distributions were
often not normal, so statistical significance was determined with the non-parametric
Wilcoxon sum-ranked test.
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ROC curve analysis was applied to these distributions to quantify the degree of
separation between healthy and tumour-bearing animals. Figure 7.3 shows the ROC
curves for the three Bonferroni significant metabolites. The AUC for these metabolites
are 0.789, 0.865 and 0.850 for 2-oxoglutarate, glucose and trimethylamine n-oxide,
respectively. The other two FDR significant metabolites had AUCs of 0.810 and 0.748
for trimethylamine and fumarate. The three Bonferroni significant metabolites and
trimethylamine had the largest AUC’ s of all metabolites studied. A single non-
significant metabolite, betaine (AUC = 0.756), has an AUC larger than fumarate (AUC =
0.748), though this differenceis not large.

ROC Curve For Bonferroni Significant Metabolites
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Figure 7.3: ROC curvesfor the three most significant metabolite concentrations. Each
curve was generated by calculating the sensitivity and specificity at 101 different
threshold values ranging from the absol ute minimum to the absolute maximum ratio in
the distributions. The AUC was calculated by fitting trapezoids under the curves.

The optimal decision threshold for each metabolite were determined from the
maximum Y ouden index and from the point that lies closest to the top left hand corner of
the graph (point (0,1)). In general, the optimal decision threshold was consistent between
the two methods, though there were some discrepancies. Table 7.1 summarizesthe
optimal decision threshold for the two methods and provides the sensitivity and

specificity for each. The decision thresholds here are for the log,, transformed data.
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Table7.1: The Optimal Decision Threshold for FDR Significant M etabolites

Metabolite Y ouden Index Minimum Distance from (0,1). AUC
D.T. Sen Spec | Y.I. |D.T. Sen | Spec | Dist
2-Oxoglutarate 0.725 0.682 0.810 | 0.491 | 0.725 0.682 | 0.810 | 0.371 | 0.789
Fumarate -0.966 0.455 0.952 | 0.407 | -1.084 0.727 | 0.667 | 0.431 | 0.748
Glucose 0.317 0.591 1.000 | 0.591 | 0.342 0.773 | 0.818 | 0.291 | 0.865

Trimethylamine | -0.710 0.857 0.591 | 0.448 | -0.643 0.714 | 0.727 | 0.395 | 0.810

Li'c';ieégy'am'”e 0603 | 0727 |0909 | 0636 | 0603 | 0.727 | 0.909 | 0.287 | 0.850

Table 7.1: Optimal decision thresholds, ‘D.T." as determined through the Y ouden
Index (Y.l1.) and minimum distance to the point (0,1) (Dist) methods for the five
FDR significant metabolites. The sensitivity (sen) and specificity (spec) for these
thresholds are indicated in the following columns.

A convenient method to evaluate the clinical and statistical significance of all
metabolites involves plotting the AUC against the p-value, as shownin figure 7.4
(Broadhurst and Kdll, 2006). Thefirst vertical line, at a p-value of 1.471 x 10
3 represents the threshold p-value for Bonferroni significance and the second line, at a p-
value of 3.47 x 10 is the FDR significance limit.

Performing the same analysis on the control animals indicates that only one
metabolite, taurine, is Bonferroni significant. FDR analysis showed that this metabolite
was also the only FDR significant variable. This metaboliteis not statistically significant
in the tumour-bearing population, and might result from aging or as aresponse to the
injection procedure. To increase the number of variables considered significant in the
control population, significance was defined for variables with p < 0.05 and p < 0.01.
Another two metabolites lie to the left of p = 0.01 and four more lie to the left of p =
0.05. Theselimitsare commonly used to define statistical significance when testing a
single variable, but have aso been used in the analysis of metabolomics data sets (Kim et
al., 2008; Saude and Sykes, 2007; Tyburski et a., 2009; Um et a., 2009). For this
reason, we chose to consider metabolites satisfying both conditions for further analysis.
The AUC against the p-value for the control datais displayed infigure 7.5. Inthis
analysis, taurine was the only metabolite to have an AUC greater than 0.9. A total of
three metabolites — 2-oxogl utarate, trimethylamine and trimethylamine n-oxide —had an
AUC greater than 0.7 in both populations.
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Figure 7.4: AUC versus p-value for metabolite concentrations. The figure shows a
total of 3 significant metabolites to the left of the Bonferroni limit (vertical line at a
p-value ~ 1.47x10°) and 5 to the | eft of the FDR limit (vertical line at a p-value of
3.47 x 10°®). These metabolites have larger markers to emphasize statistical
significance. The diamonds indicate metabolites with p < 0.01 in the control
animals, the crosses indicate metabolites in the control animals with p < 0.05 and the
circles represent metabolites that are not significant in the control population. The
single Bonferroni significant metabolite in the control population is identified with
the arrow. No other metabolites were FDR significant in the controls.

The goal of metabolomics analysisisto identify potential variables that can
discriminate between healthy and diseased populations. For this reason, it may be
advantageous to exclude variables that change in a statisticaly significant manner in both
populations. Metabolites with a p-value less than 0.01 in the control population are
displayed as the diamonds in figure 7.4, while those with a p-value less than 0.05 are
identified as crosses. For thisanalysis, taurine was the only Bonferroni significant

metabolite in the control population and isidentified with the single arrow infigure 7.4.
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Figure 7.5: AUC versus p-value for metabolite concentrationsin the control animals.
The figure shows that only one metabolite (taurine) achieves Bonferroni and/or FDR
significance (located to the left of the vertical line at ap-value ~ 1.47x10°). Taurine
has an AUC of 0.916. No other metabolites have an AUC greater than 0.8, though
trimethylamine n-oxide has AUC = 0.793 and o-phosphocholine has AUC = 0.799.

Of the seven metabolites with p < 0.05, four are al so significant in the tumour-
bearing group and change in the same direction (2-oxoglutarate, taurine, trimethylamine
and trimethylamine n-oxide). Removal of these metabolites resultsin aloss of two
Bonferroni-significant metabolites (trimethylamine n-oxide with p = 8.44x10° and 2-
oxoglutarate with p = 6.37 x 10*) and one FDR significant metabolite (trimethylamine p
= 1.73 x 10°) in the tumour-bearing group. Consequently, only glucose is Bonferroni
significant. Fumarate losesits FDR significance with the removal of the 4 metabolites.
Only one Bonferroni significant metabolite (trimethylamine n-oxide) is removed when
considering metabolites with p < 0.01 in the control animals. The reduced number of
metabolitesis not sufficient to change the Bonferroni limit enough so that trimethylamine
becomes Bonferroni significant. Therefore, only two metabolites are considered
significant in the tumour-bearing population. Removing the Bonferroni significant
metabolite — taurine — has no impact on the analysis asit is not statistically significant in

the tumour-bearing population.
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Our results show that the presence of atumour in ahost animal altersthe
metabolic composition of urine. However, the tumour does not affect all metabolites.
The magnitude of the change in concentration ranged from negligible to highly
significant. For instance, the mean concentrations of 1-methylnicotinamide, 3-
indoxylsulfate and fucose remain essentially unchanged with p-val ues exceeding 0.879
and AUC valuesless than 0.538. On the other hand, the mean concentration of glucose,
after applying the log,, transformation to make the distributions normal, decreased by
16.9% and had a p-value of 3.09 x 10°. This metabolite satisfies the condition for agood
diagnostic test with an AUC of 0.865. Two other metabolites, trimethylamine and
trimethylamine n-oxide, may also be considered good diagnostic tests as they have
AUC' s of 0.810 and 0.850, respectively. Of these two, only trimethylamine n-oxide was

Bonferroni significant, but both were FDR significant.

Analysis on the control animals revealed that some metabolites will changein the
same direction (increase or decrease) as in the tumour-bearing population. Removing
these metabolites from the analysis will enhance our confidence in the results, but could
result in the loss of too many metabolites. Therefore, it is advisable to set asignificance
threshold prior to removal. In thisanaysis, only two FDR significant metabolites will
remain after removal of metabolites with p < 0.05 in the control population. It isunlikely
that the behaviour of these two metabolites will be specific to cancer only. However, one
investigator (Oduns et a., 2005) showed that the use of 2 variables was sufficient for the
diagnosis of epithelial ovarian cancer in human sera. Others have used six (Lokhov et al.,
2010) and ten (Whitehead et a., 2005) metabolites for differentiation.

7.3 Univariate Statistical Analysison M etabolite Ratios

Univariate analysis was also performed on the ratios of pairs of metabolites. The
Wilcoxon rank sum test identified 144 metabolite ratios that changed in a manner that
was FDR significant, of these 19 were Bonferroni-significant. A total of 53 ratios (12
Bonferroni significant, 41 FDR significant) produced an AUC between 0.8 and 0.9, and 7
metabolites (all Bonferroni significant) had an AUC greater than 0.9. The AUC versus p-
value data for theratios are plotted in figure 7.6.
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Figure 7.6: Plot of AUC versusthe p-value for the ratio of pairs of metabolites. 19
metabolite ratios are Bonferroni-significant (left ling) and another 125 are significant
to the left of the FDR limit (right line). 53 ratios have an AUC between 0.8 and 0.9,
and 7 ratios have an AUC > 0.9 (all Bonferroni significant). Ratios with Bonferroni
and FDR significance are drawn with larger markers to emphasize the different levels
of significance. There are only two Bonferroni significant metabolites in the control
animals (indicated by the arrows). The data points displayed as diamonds and crosses
are the metabolite ratios that have p < 0.01 and p < 0.05 in the control population.

Performing the same analysis on the control population revealed that two
metabolite ratios experienced a change that was Bonferroni significant and another two
were FDR significant. Both Bonferroni significant ratios were FDR significant in the
tumour- bearing population and changed in the same direction and are identified by the
arrowsinfigure 7.6. Of the two FDR significant ratios, only one was FDR significant in
the tumour-bearing population and is indicated with an arrow in figure 7.6. The results of

the analysis on the control animals are summarized in figure 7.7. The two vertical lines
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represent the Bonferroni significance limit and the FDR significance limit when using the
Benjamani and Hochberg methodol ogy (Benjamani and Hochberg, 1995). Variables that
achieve Bonferroni or FDR significance in the control population are displayed as

diamonds and diamonds, and are indicated with an arrow in figure 7.6.

To account for urinary metabolic changes not related to cancer, we again focus
on the metabolite ratios in the control population where p < 0.05 and p < 0.01.
Metabolites are removed if they have a p-value less than 0.05 (or 0.01) in the control data

and experience shiftsin the same direction in both populations.
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Figure 7.7: Plot of AUC versusthe p-value for the ratio of pairs of metabolites for the
control animals. Two metabolite ratios are Bonferroni-significant (first line) and
another two are significant to the left of the FDR limit when using the Benjamani and
Hochberg method (second line). Ratios with Bonferroni and FDR significance are
drawn with larger markers to emphasi ze the different level s of significance.
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Removal of metabolites with p < 0.05 in both populations, and moving in the
same direction, (n = 64) resulted in aloss of 53 significant metabolites (43 FDR and 10
Bonferroni). After re-calculating the new Bonferroni significance threshold (p = 1.006 x
10), atotal of 72 metabolite ratios achieved FDR significance with 10 of these being
Bonferroni significant. One metabolite moved from the FDR to the Bonferroni
significance region after adjusting the limit. Removal of al metaboliteswith p < 0.05in
the control population (n = 92) removed a further 28 non-significant ratios from analysis,
and allowed one more metabolite to achieve Bonferroni significance. The affected ratios
are displayed as the diamonds and crosses in figure 7.6. Two Bonferroni significant
ratios have an AUC greater than 0.9, while the remaining eight (or nine after removal of

significant ratios in the control population) have AUC exceeding 0.837.

Removal of any metabolite ratio with p<0.01 in the control population, and
shifting in the same direction in the tumour-bearing group, resulted in aloss of 32
significant ratios in the tumour-bearing analysis: all are FDR significant, with 7 of them
being Bonferroni significant. The more conservative approach, in which al FDR
significant metabolite ratiosin the control population are removed from the analysis,
resulted in the removal of 46 metabolite ratios. The 32 FDR significant ratios mentioned
above were affected, as well as the addition of another 14 non-significant ratios. After
updating the Bonferroni limit to reflect the smaller number of variables, 12 ratios were
Bonferroni significant; one of these ratios was only FDR significant before. All
significant ratios had an AUC greater than 0.837, with three having an AUC in excess of

0.9. Theseratios are the diamonds in figure 7.6.

The optimal decision thresholds for each metabolite ratio were determined from
the ROC curve using both methods. In general, the two techniques agreed within 3
decision thresholds (101 were used to calculate the curve). Table 7.2 summarizes this
datafor nine Bonferroni significant metabolites which are likely due to the presence of

tumour.

The frequency with which individual metabolites appeared in each category of
significance (Bonferroni, FDR, p < 0.01 or p < 0.05) was determined. Theresults are
displayed in Table 7.3 for both the tumour-bearing and the control animals. The first
column for each group is the p-value for the metabolite concentration determined

previoudy. The remaining columns describe the various levels of significance used.

91



Table 7.2: Determination of the Optimal Decision Threshold for Metabolite Ratios

Metabolitein Metabolitein Y ouden Index Minimum Distance from (0,1)
Numerator Denominator DT. [Sen |Spec |Y. |DT. |Sen | Spec |Dist
Citrate Acetate 153 | 0.636 | 0.952 | 0.589 | 1.46 | 0.773 | 0.810 | 0.297
Citrate Betaine 129 | 0.864 | 0.773 | 0.636 | 1.29 | 0.864 | 0.773 | 0.265
Succinate Betaine 0.14 | 0.864 | 0.909 | 0.773 | 0.14 | 0.864 | 0.909 | 0.164
2-Oxoisocaproate Lr_'(;‘;(ie;gy'am'”e -0.32 | 0.864 | 0.818 | 0.682 | -0.32 | 0.864 | 0.818 | 0.227
3-Methyl-2- Trimethylamine | 5 | 0864 | 0.818 | 0.682 | -0.55 | 0.864 | 0.818 | 0.227
oxovalerate N-oxide

Acetate Lr_'(;‘;(ie;gy'am'”e -0.76 | 0.857 | 0.727 | 0.584 | -0.81 | 0.762 | 0.818 | 0.300
Hippurate Lr_'(;';(ie;gy'am'”e -0.86 | 0.773 | 0.818 | 0.591 | -0.86 | 0.773 | 0.818 | 0.201
Niacinamide Lr_'g‘(ie;gy'am'”e -1.34 | 0.727 | 0.909 | 0.636 | -1.34 | 0.727 | 0.909 | 0.287
Valine Lr_'g‘(ie;gy'am'”e -167 | 0.818 | 0.818 | 0.636 | -1.67 | 0.818 | 0.818 | 0.257

Table 7.2: Optimal decision thresholds, ‘D.T.’ for nine Bonferroni significant ratios
as determined through the Y ouden Index (Y .I.) and minimum distance to the point
(0,1) (Dist) methods. Based on the analysis of control animals, these nine ratios are
likely due to the presence of the tumour in the host animal. The sensitivity (sen)
and specificity (spec) for these thresholds are indicated in the following columns.

Inspection of the metabolite ratios (table 7.3) revealed that 38.9% (56 out of 144)
FDR significant metabolite ratios contained at |east one of the Bonferroni-significant
metabolites, while 60.4% (87 out of 144) of these metabolites contained at least one of

the five FDR significant metabolites. Further, 15 (of 19) Bonferroni significant ratios

contained one of the three Bonferroni significant metabolites and 16 Bonferroni

significant metabolites contained one of the five FDR significant metabolites. Fifty-

seven FDR significant ratios contained two metabolites that were not considered FDR

significant, with three of these ratios achieving Bonferroni significance. This means that

39.6% of the FDR significant metabolite ratios contain two non-significant metabolites.

Analysis of metabolite ratios has the ability to extract information similar to that

discovered with the analysis of metabolite concentrations, but also identifies significant

changesin the pair of two non-significant metabolites. In amajority of these ratios (50 of
the 57 or 87.7%), the two mean metabolite concentration changed in opposite directions.
Another two ratios had one metabolite increase in concentration, while the other
metabolite maintained the same value post-injection. Further, atotal of 53 ratios of pairs
of metabolites had an AUC exceeding 0.8 (7 having and AUC greater than 0.9), while
only 3metabolites (concentrations) had an AUC above 0.8.
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Table 7.3: Frequency of Metabolitesin the Significant Ratios

M etabolite

1-MethylInicotinamide

2-Oxoglutarate

2-Oxoisocaproate

2-Oxovalerate

3-Indoxylsulfate

3-Methyl-2-oxovalerate

3-Phenylpropionate

4-Hydroxybenzoate

Acetate

Betaine

Choline

Citrate

Creatine

Creatinine

Dimethylamine

Formate

Fucose

Fumarate

Glucose

Hippurate

Lactate

Methionine

Niacinamide

Nicotinamide N-oxide

O-Phosphocholine

Succinate

Taurine

Threonine

Trigonelline

Trimethylamine

Trimethylamine N-oxide

Vadine

Xylose

trans-Aconitate

Tumour-Bearing Population

p-value

9.16E-01
6.37E-04
2.09E-01
1.19E-01
8.79E-01
1.30E-01
3.79E-01
5.57E-02
1.24E-01
1.24E-02
4.48E-02
8.87E-03
4.32E-01
2.45E-01
1.24E-02
7.87E-01
8.97E-01
3.47E-03
3.09E-05
4.89E-01
2.36E-01
5.04E-01
7.87E-01
4.46E-01
6.89E-02
1.51E-02
2.99E-02
1.16E-02
5.65E-01
1.73E-03
8.44E-05
2.27E-01
6.89E-02
4.60E-01

Bon FDR 001 0.05

5 5 6
2 26 24 29
1 7 7 8
1 5 5 9
2 1 5
1 6 5 10
1 5 5 6
2 8 8 11
2 8 8 9
4 11 10 12
1 8 7 11
2 20 18 22
4 3 10
5 5 9
1 11 10 18
7 6 11
3 2 7
15 15 21
2 7 7 11
1 6 3 8
6 4 15
4 3 6
1 5 5 8
4 3 5
1 8 8 10
1 16 14 21
7 7 11
7 7 9
6 5 14

12 25 25 26

1 6 6 8
2 2 3
4 2 6

Control Population

p-value

3.26E-02
4.09E-02
8.36E-01
4.76E-01
8.00E-01
8.72E-01
4.76E-01
5.35E-01
3.23E-01
1.13E-01
7.30E-01
1.75E-01
2.23E-01
7.69E-02
1.03E-01
2.58E-02
9.82E-01
2.41E-01
2.23E-01
6.96E-01
9.45E-01
6.96E-01
9.82E-01
2.06E-01
6.26E-03
8.72E-01
5.22E-04
1.24E-01
9.45E-01
2.91E-02
5.44E-03
9.45E-01
1.13E-01
9.35E-02

Bon FDR 001 0.05
2 5
5

(=Y
w

-
~NWNORFPOOR, WN PP

4
1
1
1
4 10
1 1 5 7
5 12
1 2
7 12
3 7
1 3
2
1 4
2 5
5 6
2
1 3 17 22
2 6
1 3
5 13

PP ow
w N O

Table 7.3: This table shows the frequency with which individual metabolites appeared
in the significant metabolite ratios. The first column in each section isthe p-value
obtained from the metabolite concentration analysis. The following columns relate to
the Bonferroni significant metabolite ratios (Bon; p < 8.913 x 10°), FDR significant
metabolite ratios (FDR; 1.24 x 10 for tumour-bearing dataand 2.59 x 10 for control
data), metabolite ratios with p < 0.01 (0.01) and with p < 0.05 (0.05).
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Metabolic ratios provide information about the simple interactions between pairs
of metabolites and have the potential to identify significant changes that were not obvious
in the analysis of metabolite concentrations individually. Analysing metabolite ratios
increases the number of tested hypotheses from N to N(N-1)/2 where N is the number of
identified metabolites. Asaresult, more variables achieve statistical significance. The
larger number of tested hypotheses will, however, increase the risk of having false
discoveries. The Bonferroni correction or use of the FDR method is required to limit the

number of false discoveriesto an acceptable level.

Control animals were included in the study to investigate the effects of non-
tumour-related metabolic changes in an age and gender-matched population. The
treatment of all animals was consistent with respect to the light/dark cycle (12 hours
light, 12 hours dark), temperature and humidity of environment, diet and method of urine
collection. Metabolic changesin these animals may result from a number of factors

including aging or the animals' response to whole body irradiation or the injection.

The fact that significant metabolic changes were observed in the control animals
complicates the interpretation of the tumour-bearing data. If one were only interested in
tracking an individua metabolite concentration or a single metabolite ratio for diagnostic
purposes, consideration must be given to how the metabolite or ratio changesin an
appropriately-matched healthy subject. The results of this anaysis show that, in general,
metabolic changes are more pronounced in the tumour-bearing group than in the controls.
Despite some similar metabolic changes in both populations, there remain a number of
changes which are likely due to the presence of the tumour. The analysis shows that a
simple approach, such as removing metabolites or ratios that are common to both the
tumour-bearing and control groups, is still ableto extract significant (Bonferroni or FDR)

metabolic changes which may be characteristic to the tumour-bearing population.

While this treatment of control datawill improve our confidence in the
significance of the results, it likely underestimates the number of true discoveries. For
instance, if the tumour has a strong influence on the concentration of one metabolite and
an external source, such as aging or in response to an environmental or procedural stress,
has aweak influence on the same metabolite in the same direction, then the metabolite
could be unnecessarily removed. As metabol omics movesto theclinic, it is essential to
define a healthy base line so that metabolic changes associated with tumour devel opment

may be identified. Thisrequiresalarge cohort of patients from each group.
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7.4 Multivariate Statistical Analysison M etabolite Concentrations

PCA models were created for the pre and post-injection tumour-bearing data to
investigate variation in the data set. Five data sets were used for thisanalysis. i) all
metabolites, ii) all metabolites excluding those that had ap < 0.05 in the control animals,
iii) al metabolites excluding those that had ap < 0.05 in both control animals and tumour
bearing animals, iv) al metabolites excluding those that had ap < 0.01 in the control
animals and v) all metabolites excluding those that had a p < 0.01 in both control animals
and tumour bearing animals. For each data set, two models were constructed; the first
using unit variance (UV) scaling, and the other using Pareto scaling. Thiswas doneto
evaluate the ability of the different scaling techniques to discriminate between the healthy

and tumour-bearing groups.

The control datawas not used to generate the models aswe are interested in
metabolic changes associated with the presence of tumour. Instead the data was
projected onto the model. This allows for avisual assessment of how similar the post-
injection tumour-bearing and the post-injection control dataare. If the two groups are

well separated, then tumour-related metabolic changes are present.

PLS-DA models were a so constructed for the pre and post-injection tumour-
bearing metabolite concentration data with the objective of finding separation between
the two populations. The same five data sets defined above were used. Similar to the
PCA models, two PLS-DA models were created for each data set: one with Pareto
scaling and one with UV scaling. A total of 10 models were thus evaluated. The control
data was again not used to create the model, but was projected onto it.

A summary of the model parameters — R? and Q® values as well as the number of
components used —is shown in table 7.4. There are no standard R? and Q* valuesto
determine the strength of the model (Westerhuis et al., 2008), though val ues greater than
0.5 are attractive (Erb et a., 2008).

Each latent variable is said to describe the maximum variation in the data, which
has not already been accounted for in a previous component. This suggests that applying
ROC analysis along each component axis will indicate the level of useable tumour-
related information contained in that component. Ideally, the largest AUC should be

obtained along the first component axis.
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Table 7.4 Summary of PCA and PLS-DA Models

PCA PLS-DA
Model scaling R? Q* | Components | scaling | R? Q* | Components
uv 0565 | 0.172 4 0421 | 0.837 | 0.567 3
All data Par 0619 | 0.260 4 0.481 | 0.810 | 0.556 3
E 0<th0'01 1 uv 0486 | 0.186 3 0418 | 0.824 | 0505 3
removed Par 0621 | 0.243 4 0481 | 0.795 | 0.517 3
p<00Lin |, 0509 | 0.196 3 0381 | 0.651 | 0.427 2
controls
removed Par 0.638 | 0.239 4 0.449 | 0.602 | 0.427 2
E0<tho.o5 N uv 0.261 | 0.159 1 0423 | 0.771 | 0.422 3
removed Par 0.727 | 0.176 5 0.478 | 0.729 | 0.412 3
p<005in |, 0.256 | 0.152 1 0.360 | 0.615 | 0.354 2
controls
removed Par 0558 | 0.222 3 0425 | 0.542 | 0.326 2

Table 7.4: Summary of the PCA and PLS-DA models created after applying alogig
transformation to the normalized data set, mean centering and scaling (indicated in the
second column where UV = unit variance and par = pareto scaling). A tota of 10
models were constructed to represent the five data sets and the two common types of
scaling. The models coefficient of variability, R?, and coefficient of predictability, QZ,

is shown, as well asthe number of components used for the optimal model.

Three class comparisons took place. Inthefirst, only the samples (pre-injection
and tumour-bearing) from the animals receiving cancer cell injections were considered.
In the second, the post-injection tumour-bearing samples were compared with the post
injection samples from the control animals. In thethird, all pre-injection data (i.e.
samples from both the tumour-bearing and control animals) and the control post sham-
injection data were grouped as ‘ healthy’ and compared with the post-injection tumour-
bearing data. The results of this analysison al models are summarized intable 7.5. In
all cases, the scores plot using the first two component axes showed separation between
the pre-injection and tumour-bearing data, though there remains some overlap. The plots
also revealed that the optimal separation did not occur along a single component axis, but
a combination of two. This motivated usto perform ROC analysis after rotation of the
data about the positive horizontal axis. ROC analysis was performed along the positive
horizontal axis after each rotation. Figure 7.8 shows a scores plot for a PCA model with
all dataand UV scaling.
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Table 7.5 ROC Curve Analysis Alon

g the PCA and PL S-DA Model Components

Pre and Post Cell Injection

Post-injection Data

Healthy Versus Cancer

PCA PLS-DA

PCA PLS-DA

PCA PLS-DA

Dataset | LV | UV par uv | par uv par uv par uv par uv | par

1 | 0613] 0646 ] 0972 ] 0.924 | 0539 | 0570 | 0.867 | 0.789 | 0.564 | 0.615 | 0.935 | 0.889
Concer |2 | 0916 | 0.857 | 0650 | 0.704 | 0.882 [ 0.779 | 0.580 | 0.632 | 0.926 | 0.858 [ 0.654 | 0711

3 | 0525 | 0.566 | 0.706 | 0.734 | 0.651 | 0.649 | 0575 | 0.565 | 0.587 | 0.621 | 0587 | 0.612

4 | o519 | 0528 0570 | 0.648 0.528 | 0.609

1 | 0625] 0655 ] 0.941] 0.895 | 0.547 | 0576 | 0.789 | 0.745 | 0583 | 0.626 | 0.800 | 0.844
Ei'%o(‘)’i 2 | 0888|0817 0681|0737 | 0831 | 0.742 | 0568 | 0.504 | 0.804 | 0.822 | 0.664 | 0.715
both 3 | 0509 | 0556 | 0.727 | 0.734 | 0.645 | 0.649 | 0.607 | 0.610 | 0570 | 0.618 | 0575 | 0578

4 0.560 0.645 0.625

1 | 0626 0.654 ] 0.042 | 0.877 | 0.552 | 0.575 | 0.735 | 0.687 | 0.587 | 0.626 | 0.866 | 0.806
E%%i 2 | 0875 0810 0.685 | 0.743 | 0.813 | 0.740 | 0.563 | 0.607 | 0.882 | 0.815 | 0.666 | 0.717
controls |3 | 0511 | 0543 0633 | 0.643 0.553 | 0.608

4 0.596 0.696 0.664

1 | 0598 ] 0507 ] 0.931 ] 0.851 | 0.520 | 0.558 | 0.742 | 0.659 | 0.551 | 0.550 | 0.853 | 0.778
Remove | 2 0.763 | 0.683 | 0.750 0.731 | 0571 | 0.503 0762 | 0.661 | 0.715
p<005| 3 0567 | 0.707 | 0.704 0.646 | 0.658 | 0.635 0621 | 0515 | 0523
both 4 0.745 0.656 0.729

5 0.572 0.683 0.610
Remove | 1 | 0637 ] 0.646 | 0.017 | 0.832 | 0.544 | 0.568 | 0.705 | 0.651 | 0.586 | 0.612 | 0.830 | 0.761
p<005| 2 0.718 | 0.691 | 0.772 0.635 | 0591 | 0.589 0.696 | 0.665 | 0.714
controls | 3 0.665 0.675 0.694

Table 7.5: Summary of the ROC analysis applied along the components axes (labelled LV
for latent variables) for all models. Three groups of data were considered: the first
involved only the tumour-bearing animals (pre and post cell injection), the second used the
post-injection data for both the tumour-bearing and the control animals (post-injection data)
and the third combined al pre-injection data with the post-injection datafor the controls,
and compared this data with that for the post-injection tumour-bearing animals (healthy
versus cancer). Thisanalysis reveaed that the mgjority of tumour-related information was
contained in the first component for PLS-DA model s, but was often found in the second
component axisfor the PCA models. The PLS-DA models had an AUC greater than 0.9
when comparing the pre and post-injection tumour-bearing data using UV scaling. PCA
modelsfor ‘cancer’, ‘remove p < 0.01 both’ and *remove p < 0.01 control’ data sets had an
AUC greater than 0.8 along PC a mgjority of the time.
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PCA Scores Plot for All Metabolites

® Pre-injection
ATumour-Bearing
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Component 2
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Figure 7.8: Scores plot of PC 1 and PC 2 for the PCA model with all dataand UV
scaling. Thereisan evident shifting of the data post-injection along PC 2. ROC
curve analysis along this PC provided an AUC of 0.916. However, thereis some
degree of separation along the first PC, meaning that the optimal direction of ROC
analysisis not along a single component axis. This motivated usto perform ROC
analysis on the scores plots after rotation of the data. The solid black line provides
one example of this analysis where the datais rotated through an angle, 6, and
ROC analysisis performed in the direction of the line. Three decision thresholds
(dashed lines) are shown.

ROC curve analysis was performed by rotating the axes in one degree increments
between 1° and 180° and cal culating the ROC along the rotated axis (thick black linein
Figure 7.8). For each angle, the minimum and maximum decision thresholds were
updated to reflect the range of the rotated data. The thresholds used to calculate the ROC
curve parameters are perpendicular to the rotated axis— three of these thresholds are
displayed as the dashed linesin Figure 7.8. To determine the ability of each model to

discriminate between populations, al pairs of latent variables were used.
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ROC Analysis was applied to the data set by comparing the post-injection
tumour-bearing data with three different groups. The first was the pre-injection data from
the tumour-bearing mice. This analysiswill indicate the ability of our technique to
distinguish between health and tumour-bearing mice on an individual animal basis.
Second, the post-injection data from the control mice was used to evaluate the degree of
separation between the healthy and tumour-bearing animals post-injection. Thisis
analogous to a human study in which metabolism between pre-defined groups are
compared. Thethird analysisinvolved the grouping of all pre-injection data (from both
the controls and tumour-bearing mice) and the post-injection data from the control

animals. This decreases the prevalence of cancer in the test population.

Figure 7.9 shows the ROC curves along PC 1, PC 2 and the optimal rotated curve
for the pre and post-injection tumour-bearing datain the PCA model with all metabolites
and UV scaling. It isclear that the rotated data provides better separation between the
pre-defined groups. The results for the ten PCA models are shown in table 7.6.

ROC Curves for the PCA Model With Al Metabolites
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Figure 7.9: ROC curvesfor the pre and post-injection data from the tumour-bearing
animals for the PCA model using all metabolites. The curves displayed are those along
PC 1, PC 2 and the optimal ROC curve after rotation of the data. The AUC increases
from 0.613 and 0.916 for PC 1 and PC 2, respectively, to 0.936 after rotating the data.
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Table 7.6 ROC Curve Analysison the PCA Models

Pre and Post Post-injection | Healthy versus
Model Summary Best | Cell Injection | Data Cancer
pair Angle Angle Angle
DataSet | scaing | R? Q? of LV | AUC | (deg) | AUC | (deg) | AUC | (deg)
Aldaa LUV 0565 | 0172 | 1&2 | 0936 | 79 | 0883 | 92 | 0930 | 78
Par 0619 | 0260 | 1&2 | 0892 | 111 | 0812 | 112 | 0882 | 103
Removed
A oor Luv 0486 | 0186 | 1&2 | 0010 | 79 | oss9| 74 | 0007 | 73
both Par 0621 | 0243 | 182 | 0871 | 108 | 0787 | 114 | 0856 | 106
Removed
A s Luv 0509 | 0196 | 1&2 | 0017 | 77 | oes2| 80 | o011 | 77
control Par 0638 | 0239 | 1&2 | 0873 | 71 | 0768 | 65 | 0852 | 74
Removed
<005 |YV 0261 | 0.159
both Par 0727 | 0176 | 284 | 0847 | 50 | 0820 | 45 | 0842 | 64
Removed |y 0.256 | 0.152
p<0.05
control Par 0558 | 0222 | 2&3 | 0784 | 136 | 0727 | 121 | 0787 | 126

Table 7.6: Results of ROC analysis after rotation of the datafor al models created.
Three population comparisons took place and were defined earlier (figure 5.3). The
data was rotated about the origin for angles between 1° and 180° in 1° increments.
At each angle, a ROC curve was constructed based on the distributions of data from
each defined group (pre-injection, post-injection control, health data or post-
injection with tumour). The optimal angle of rotation was defined as the angle at
which the maximum AUC was obtained. These angles, along with the optimal AUC
are displayed.

The loadings plots of a PCA model indicate which metabolites contribute most
significantly to each principal component. The location of variablesin the loading plot
corresponds directly with the samplesin the scores plot and describes how the

metabolites changes between populations (Murdoch et a., 2008). The distance to the

origin corresponds to the relative contribution of a particular metabolite.

A loading plot for the PCA model using all metabolites and UV scaling is shown
infigure 7.10. Itisinteresting to note that the six FDR significant metabolites from the
univariate analysis of individual metabolites (2-oxoglutarate, fumarate, glucose,
trimethylamine and trimethylamine n-oxide from the tumour-bearing population and
taurine from the control population) are al located far from the origin. The scores plot
for this model shows that the pre-injection samples are located primarily in the first
guadrant, meaning that they have greater proportions of 1-methylnicotinamide, 2-
oxovalerate, 3-methyl-2-oxovalerate, 4-hydroxybenzoate, glucose, Nicotinamide, valine,
xylose and lower levels of 2-oxoglutarate, citrate, fumarate, |actate and succinate than the

tumour-bearing samples. Of interest, glucose is located in the top right corner of the plot,
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meaning that there is a net decrease in the concentration post-injection. Thisis consistent
with the previous anlaysis. Fumarate, the other FDR significant metabolite remaining
after removal of metabolites with p<0.05 in the control population, isfound in the lower
left hand corner, and thus representing an increase in concentration post-injection. This

also was consistent with the univariate anaysis.

Loading Plot for the PCA Model With All Data

0.35
A Betaing
0.30
< A Threonine A Glucose
0 A Choline A Valine
A Acetate
(o 0.20
R 015 A Formate A Taurine Ad-Hydroxyb
5 h A O-PIpeRhog i
g 010 A Creatin A Miacinamid
2 A MWethionine
A #ylose
A Trigonell
g 0.00 A 2-Oxoisocak 3-Methyl-2 alichi
. Fucose )

U 0.05 AHﬁpura?e AHQME){}

= 5
— U

Lactate

s Succinatt,A trans-Aton
o 010 4 A A Dirmethylarm A 3-Fhenylpr
-
L] .
= 013 A Fumnarate
- |
& 0] AT s ot

0.25

(.30

-0.35 & Trimeth 5&jTrlmethyIa

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 000 005 0.10 015 0.20 025 030
Principal Component 1

Figure 7.10: Loading Plot for the PCA model using all metabolites and UV scaling. The
distance between the origin and each metabolite represents its contributions to each
component axis. For instance, 1-Methylnicotinamide (1-Meth) has a strong weighting
along component axis 1, but little impact along component axis 2. The score and loading
plots are directly related, so sample in thefirst quadrant has greater levels of metabolites
with positive weights al ong each component axis. Asan example, the pre-injeciton
samples (generally found in the first quadrant) will have higher levels of glucose, valine
and 4-Hydroxybenzoate (4-Hydroxyb) and lower levels of citrate, 2-oxoglutarate (2-
oxogluta) and fumarate than the tumour-bearing samples. The FDR significant metabolites
from the anlaysis of individual metabolites (2-oxoglutarate, fumarate, glucose,
trimethylamine and trimethylamine n-oxide in the tumour-bearing group and taurine from
the controls) are al located far from the origin.
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This same analysis was applied to the PLS-DA models. A scores plot for the first
two latent variables for the PLS-DA model with al metabolites and UV scaling is shown
infigure 7.11. It isexpected that optimal separation should be near 0° for these models
as PLS-DA is designed to identify the maximum separation between pre-defined classes
and align thefirst latent variable in this direction.

The ROC curves were calculated for al ten models for the three class
comparisons:. 1) pre and post-injection tumour-bearing groups, 2) post-injection controls
and post-injection with tumour and 3) healthy versus cancer. The results are summarized
intable 7.7. The ROC curves created using the scores plot in figure 7.11 are displayed in
figure 7.12. The AUC for all these curves exceeds 0.9. The AUC for the healthy versus
cancer group is smaller than between the pre and post-injection tumour-bearing data due
to the slight overlap of the post-injection control data with the post-injection tumour-
bearing data. Thiswas observed for all models.

PLS-DA Scores Plot for All Animals
A

\ \\ \le
® Pre-injection vy .
4A Tumour-bearing Voo \\ . .
4" |0 Sham injected \‘ LN .

Component 2

Component 1
Figure 7.11: PLS-DA model for metabolite concentrations between the pre-injection and
post-injection tumour-bearing data when all metabolites were considered. Thereis clear
separation between the healthy (pre-injection and the tumour-bearing population).

Applying ROC curve analysisto the plot at an angle, 0, of 21° gave an AUC of 0.996.
The control data clusters together between the healthy and tumour-bearing populations.
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Table7.7 ROC Curve Analysison the PLS-DA Models

Pre and Post Post-injection | Healthy
Model Summary Cell Injection Data versus Cancer

Angle Angle Angle
DataSet | scaling | R? | R,> | @ AUC | (deg) [ AUC | (deg) | AUC | (deg)

uv 0.421 | 0.837 | 0.567 | 0.996 21 (0912 17 [0969| 20
All data

Par+ [ 0.481] 0.810 | 0.556 | 0.981 23 10869 33 |0946| 33

Removed | |y 0.418 | 0.824 | 0.505 | 0.995 30 |]0838| 18 |0938| 28

p<0.01
both Par 0.481 ] 0.795 | 0.517 | 0.977 38 |0792] 30 |0915| 38

Removed | 0.381 | 0651|0427 | 0980 | 26 |0808| 20 |o0920| 27

p<0.01
control Par 0.449 | 0.602 | 0.427 | 0.964 36 |0768] 33 |0899| 35

Removed uv * 0.423 | 0.771 | 0.422 | 0.980 25 [0763]| 15 [0.898| 28

p<0.05
both Par# | 0.478 | 0.729 | 0.412 | 0.958 37 |0709]| 19 |0.866| 36

Removed | |y 0.360 | 0.615 | 0.354 | 0.972 33 10765 27 ]0893| 29

p<0.05
control Par 0.425 | 0.542 | 0.326 | 0.937 42 10716 48 |0.850| 47

Table 7.7: Summary of the results of ROC analysis on the ten PLS-DA models for the
three class comparisons. The AUC for the PLS-DA components 1 and 2 is presented in
the table, athough in some cases components 1 and 3 produced a marginally better AUC;
the model labelled with a*+' had a better result (0.4% larger) for the cancer comparison,
the model with the ‘*’ marker had better results for both the cancer (0.2% larger) and
post-injection (5.1% larger) comparisons and the model 1abelled with ‘# had a better
result for the post-injection comparison (11.2% larger). The optimal AUC produced after
rotation of the scores plot and the angle of rotation are displayed.

Three ROC curves from the models created after removal of the FDR significant
metabolitesin the control population from the analysis are shown in figure 7.13. The
results show that all models have excellent ability to distinguish the pre-injection and

tumour-bearing data with AUC’ sin excess of 0.937.

PLS-DA isastandard method used in the analysis of metabolomics data sets.
Thetechniqueis designed to separate pre-defined populations and provides information
about more complicated patterns of metabolic behaviour. In our study, scores plots of the
model s showed good separation between the pre-injection, post-injection with tumour
and post-injection controls. The fact that the control data, which was projected onto the
model, did not cluster with the pre-injection data suggested that metabolic changes are
taking place. However, the post-injection data from both groups were well separated,
meaning that we can distinguish the popul ations based on the complement of all
metabolic changes taking place. ROC curve analysis revealed excellent separation
between the controls and the tumour bearing data, post injection (AUC = 0.912).
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ROC Curves for a PLS-DA Model
of Tumour-Bearing Animals
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Figure 7.12: ROC curves for the scatter plot shown in figure 7.11. Thisfigure shows
that the model successfully separates healthy and tumour-bearing samples. The AUC is
greatest when considering only the pre-injection and post-injection samples from the
tumour-bearing mice. Despite similar metabolic changes in the control animals, the
model is till able to identify the tumour-bearing samples.

The metabolite concentrations must be scaled prior to constructing the PLS-DA
model as high concentration metabolites will dominate the resultsif not scaled properly.
Two common methods for scaling are Pareto scaling, which scales high concentration
metabolites down and limits the up scaling of noise, or UV (also referred to as auto
scaling), which places equal weightings on al metabolites. Our results show that thereis
little change between the models using either scaling method. However, UV scaling did

produce models with larger R? and Q? val ues.
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ROC Curves for PLS-DA Models
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Figure 7.13: ROC curves of the tumour-bearing data for the PLS-DA models (UV scaling)
of the three data sets; all metabolites present, removal of metabolites with p < 0.05 in both
populations and removal of metabolties with p < 0.05 in the control population. For all
cases, the comparison was between the pre and post injection tumour-bearing data. The
figure shows that the AUC decreases as metabolites are removed from the analysis, but
only by afew percent. The magnitude of the decreaseis larger when considering the
models with pareto scaling or when analyzing the ‘ post-injection data’ or * healthy versus
cancer’ class comparisons.

PLS-DA models have been criticised for over-fitting the data (Westerhuis et d.,
2008). For thisreason it isimportant to validate the model via permutation testing.
Permutation testing was performed on all modelsin SIMCA with 999 permutations.
Valid models were required to have a Q% values greater than any permuted model and a
R? value greater than amajority of the permuted models as displayed in the validation
plot. All models passed on the basis of the R? results, but one model — removal of
metabolites with p < 0.05 in the control populations with Pareto scaling — failed the Q
condition; this case had one permutation which provided a Q? value exceeding the actual
model’s Q%

105



The permutation testing results are displayed in figures 7.14 and 7.15 for agood
model (all metabolites present and UV scaling) and the model that failed. As observed in
figure 7.14, the R? and Q? values are both larger than 0.5 and are largest for the original
model (fraction of correct classifiers of 1.0). In contrast, the failed model only has an R?
value greater than 0.5 and has alarge number of permuted models having a R?, and one
Q? value, greater than that for the original model.

Validation Model for the PLS-DA Model with All Data (UV)
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Figure 7.14: Cross validation of the PLS-DA model for all data using UV scaling.
This model satisfies the conditions for agood model: 1) The Q? value of the original
model is the maximum, and 2) The R* value for the original model is greater than a
majority of the permuted models. In additional, the Q? value of 0.567 exceeds the
desired value of 0.5
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Validation Model for the PLS-DA Model with All Data (UV)
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Figure 7.15: Cross validation for the PLS-DA model with all metabolite with p < 0.05
in the control population removed. This model does not satisfy the conditions for a
good model: 1) The Q® value of the original model is not a maximum, however 2) The
R? value for the original model is greater than a majority of the permuted models.

The loading plot for the model with al metabolites and UV scaling is displayed
asfigure 7.16. It is observed that the five FDR significant metabolites from the
univaraiate analysis of individual metabolites all have large weights aong latent variables
1 and 2. Thissupportsthe previous resultsin suggesting that these metabolites have

potential to discriminate healthy from tumour-bearing urine samples.

To evaluate the ability of thistechnique to detect the onset of disecase at a
relatively early stage, we constructed PLS-DA models, using both UV and Pareto scaling,
with the pre-injection and large tumour samples. Samplesin the large tumour category
were collected an average of 22.1 + 9.6 days post cell injection. Datafor the small
tumours (6-8 days post-injection) are projected onto the models to investigate the level of
similarities in the data structure of the early and large stage tumour data. PLS-DA was

selected for its ability to optimize the separation between classes.
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Loadings Plot for the PLS-DA Model With All Data
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Figure 7.16: Loading Plot for the PLS-DA model using all metabolites and UV scaling.
The distance between the origin and each metabolite represents its contributions to each
component axis. For instance, 1-Methylnicotinamide (1-Methylni) and trans-Aconitate
have strong weights along component axis 2 and small weight along component axis 1.
The score and loading plots are directly related, therefore, it is smple to determine what
metabolites are more abundant in each population. Asan example, the pre-injeciton
samples (clustering on the left hand side of the plot) will have higher levels of choline,
glucose, betaine, taurine and threonine and lower levels of dimethylamine, trimethylamine
and trimethylamine n-oxide than the tumour-bearing samples. The five FDR significant
metabolites from the anlaysis of individual metabolites (2-oxoglutarate, fumarate, glucose,
trimethylamine and trimethylamine n-oxide) in the tumour bearing populations are have
large weights along weight components 1 and 2.
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The scores plot for the models with UV scaling is shown in figure 7.17. In both
models, the small tumour data clustered with the large tumour data, suggesting that even

at early stage, similar metabolic changes are present.

Four class comparisons were considered for this analysis: the first evaluated the
separation between the pre-injection and | ate stage tumour data, the second was between
the pre-injection and late stage data, the third between the pre-injection and all tumour
data (early and late stage date remained separate) and the fourth compared the early and
late stage data. The fourth class comparison was performed to indicate if further
metabolic changes occurred as the tumour developed. Table 7.8 summarises the models

R? and Q° values, aswell as the best AUC and angle of rotation for the four cases.

PLS-DA Scores Plot for Small and Large Tumours

A Pre-injection
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Figure 7.17: PLS-DA model for the pre-injection and large tumour (22.1 + 9.6 days
post cell injection) samples. The AUC for the pre-injection and large tumour samples
is0.995 at 31° with respect to the horizontal axis, thus showing that there is good
separation between the two populations. The small tumour data (6-8 days post cell
injection) clusters with the large tumour data.
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Table7.8: PLS-DA Analysisfor the Pre-injection and L arge Tumour Data

Prevs. All Prevs. Small Prevs. Large | Small vs.
. Tumour Tumour Tumour Large Tumour
scding | R®> | RS | @
Angle Angle Angle Angle
AUC AUC AUC AUC
(deg) (deg) (deg) (deg)
uv 0.355 | 0.738 | 0.552 | 0.981 | 22 0971 | 23 0.99 | 31 0.752 | 29
Par 0.416 | 0.673 | 0493 | 0.975 | 30 0.961 | 30 0.987 | 28 0.699 | 45

Table 7.8: Summary of the PLS-DA models created for the pre-injection and large tumour
data (22.1 £ 9.6 days post-injection) after applying alog,o transformation to the
normalized data set, mean centering and scaling (indicated in the second column where
UV = unit variance and par = pareto scaling). The small tumour data was projected onto
the model. The small tumour data clusters with the large tumour data, revealing
similarities in the metabolic content of these samples. Four groups of data were
considered: the first involved the pre-injection and all tumour data (small and large), the
second used the pre-injection and small tumour data, the third used the pre-injection and
large tumour data and the fourth compared the small and large tumour data.. The optimal
AUC produced after rotation of the scores plot through angles between 0° and 180°, and
the angle of rotation for all groups considered are displayed.

The model for the pre-injection and large tumour samples shows that even at an
early stage in development, tumours produce similar changes in the metabolic content of
urine. The model with UV scaling has an AUC of 0.971, at an angle of 23°, when
separating the pre-injection and small tumour samples. The large AUC, in combination
with agreement of the optimal angle of rotation between the pre-injection and early stage
data and the pre-injection and | ate stage data, suggests that if the metabolic changes
between a healthy group and a populations with late stage tumour growth are identified,

screening for cancer at early stage is possible.

Inclusion of the large tumour samplesincreases this valueto 0.981. However,
the AUC was smaller than it was for the single tumour-bearing class. The discrepancy is
likely caused by the larger number of tumour-bearing data points in the new model since

the tumour-bearing population was divided into early and late-stage.

Applying ROC curve analysisto the small and large tumour classes shows that a
maximum AUC of 0.752 (UV scaling) or 0.699 (Pareto scaling) is achieved between the
groups. Thefact that the AUC in this caseiswell above 0.5 indicates that the changesin
urinary metabolism continue to evolve as the tumour grows; however, the extent of the
observed metabolic changes are smaller than those observed between the pre-injection
samples and the small tumours. Furthermore, the optimum angle of rotation was similar

between this class comparison and between pre-injection and tumour-bearing data.
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The loadings plot for the model with UV scaling isshown in figure 7.18. The
figure shows that four of the five FDR significant metabolites from the univariate
statistical analysis of individual metabolites (2-oxoglutarate, glucose, trimethylamine and
trimethylamine n-oxide) al have large weights along the first latent variable. This means
that they are responsible for the mgority of the variation along this axis and therefore
supports the results obtained earlier. It isinteresting to note that most of the metabolites

are located in the same quadrants as in figure 7.16 as expected.

Loadings Plot for the PLS-DA Model of the
Pre-injection and Late Stage Tumour Data (UV Scaling)
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Figure 7.18: Loading Plot for the PLS-DA model of the pre-injection and late stage
tumour datausing UV scaling. Thisplot is similar to that shown in figure 7.16 with few
differences related to the locations of the metabolites in each quadrant. In general,
metabolites are in the same quadrant asin figure 7.16. Four of the five FDR significant
metabolites from the anlaysis of individual metabolites (2-oxoglutarate, glucose,
trimethylamine and trimethylamine n-oxide) are responsible for the mgjority of the
variation observed along component axes 1 as indicated by the maximum distances from
the origin. Based on the results of the ROC curve analysis (maximum AUC at an angle of
22° for the pre-injection and all tumour data), acetate, dimethylamine, taurine and
threonine are additional metabolites used to discriminate between the two classes.
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ROC curve analysis has found widespread use in medical applications, but has
rarely been used in the field of metabolomics. ROC curves can simultaneoudly present
information about the sensitivity (fraction of diseased patients correctly diagnosed as
having the disease) and the specificity (the fraction of healthy individuals correctly
diagnosed as being healthy) of a diagnostic test.

The use of ROC curve analysis in metabol omics research will provide a measure
of the clinical significance of a metabolic change. ROC curves with an AUC exceeding
0.8 are considered good tests for diagnostics, while curves with an AUC greater than 0.9
are excellent. Glucose and trimethylamine n-oxide were two individual metabolitesin
which the concentration changed in a Bonferroni significant manner post-injection and
produced AUC valuesin excess of 0.8. Seven metabolite ratios produced an AUC value
in excess of 0.9 and PLS-DA analysis of the data resulted in two models with AUC’siin
excess of 0.975 (pre and post cell injection samples for the tumour-bearing animals).
More complicated analysis techniques are better able to identify metabolic behaviours
that are indicative of the presence of cancer. The use of rotated axes for ROC curve
construction seems intuitive for scatter plot analysis, however, to our knowledge, this
technique has not been published.

7.5 Prospects of the Study

Our study involved the collection of multiple urine samples from mice before and
after injection of the GBM-xenograft cells. Averaging the samples on a per mouse basis,
before and after, should have the effect of reducing ‘noise’ in the metabolic signature as a
result of day to day variation. All mice used in this study provided urine samples before
and after cell injection, so apaired test was used. The distributions of the pre and post-
injection data, which were created from the pooling of averaged data from all mice, were
often not normal, so the non-parametric Wilcoxon rank sum test was used. In pairing the
data from each mouse, we have effectively reduced the variation between individuals,
which has been suggested to exceed that found within an individual (Bollard et al., 2005;
Slupsky et al., 2007). The results obtained from the analysis of the paired data should
emphasi ze metabolic changes associated with tumour on an individual basis and simulate
aclinica-like environment in which urine samples, from one individual, are compared

between screening tests over the years.
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One limitation of the study is the highly controlled environment. All mice were
age matched and were housed in a highly-controlled environment in terms of the room
temperature, humidity, light/dark cycle (12 hours each), method of urine collection, and
the diet. Animalswere fed the same diet and exposed to the same environmental
stressors (WBI one week post arrival, cell / PBSinjection two weeks post arrival and
method of urine collection). Thislevel of control is not realistic when testing a human
population. External metabolic influences, unrelated to the tumour, will complicate
interpretation of the results. In studies of human populations, alarger number of patients
are required to acquire an understanding of the non-tumour related metabolic behaviours

and to determine what congtitutes a healthy sample.

Having a small number of animalsin the study increases the chance that a
metabolite concentration or ratio will achieve statistical significance when thereisno
significant change. Random errorsin the reported metabolite concentration, resulting
from noise, could overestimate the significance of avariable and lead to afalse
discovery. Application of the FDR method or Bonferroni correction will reduce the
occurrence of false discoveries, but these methods in themselves rely on the relative
change of the means of the metabolite before and after the cell injection.

The high presence of cancer in the test population tends to bias the findings
towards significance. Some metabolites or metabolite ratios were shown to change in the
same direction in both the control and tumour-bearing populations. Such changes would
significantly impact the specificity of a diagnostic test in aclinica environment. For this
reason, we chose to remove any variable with p<0.01 or p<0.05 in the control population.
This choiceis conservative, but does emphasi ze that significant metabolic changes, likely
due to the presence of tumour, are still present. The remaining variables (identified as the

black circlesin figures 7.4 and 7.6) could be potential indicators for cancer screening.

The idea of monitoring a metabolic signature for changesis not new. These data
support the idea that a simple, biofluid-based program holds potentia as a screening tool
for cancer. Significant human data would be required to identify a“normal” age-
dependent metabolic trajectory. Identification of deviations from this path that correlate
with the presence of cancer in general (and possibly specific forms of cancer) would

potentially allow earlier diagnosis and more successful treatment.
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Chapter 8
Conclusion

In this work, we have shown that metabolic changes occur in the presence of
tumour. Urine sampleswere collected daily from NIH I11 nude mice (n=22) before and
after injection with GBM xenografts. The metabolic content of the samples were
measured with an 800 MHz NMR spectrometer using the 1-D NOESY pulse sequence.
A total of 34 metabolites were identified and quantified via targeted profiling with
Chenomx Suite 5.1. A set of control animals (n=14) were studies to identify metabolic
changes that occur naturally and are not likely altered by the tumour.

Univariate statistics identified a number of statistically significant metabolic
changes in both the metabolite concentrations and the ratio of pairs of metabolites.
Analysis of the control animals revealed that some metabolic changes were occurring
naturally or as aresponse to the injection procedure. We chose to acknowledge these
changes by removing any metabolite with p<0.05 or p<0.01, in only the control
population or in both populations, from the analysis. Despite the conservative choice of
significance, there remained useful metabolic information which may be used for

screening for cancer.

The analysis of a single metabolite may not be sufficiently specific for cancer
screening. After removal of significant metabolitesin the control population, only two
FDR significant metabolites remained. The analysis of metabolite ratios provided more
information, as shown through a larger number of statistically significant variables and
improved ROC statistics. The results showed that 43/85 FDR significant ratio did not
include any FDR significant metabolites. This added information may be useful for

identifying tumour from other diseases.

Multivariate statistical analysis provided the most diagnostic information. The
scores plots showed clustering of like samples (i.e. healthy with healthy and tumour-
bearing with tumour-bearing) and separation between the different classes. PLS-DA
models were generally better than PCA models for discriminating the two groups. ROC
analysis of the PLS-DA models showed that most models had AUC in excess of 0.9
between the pre and post injection data of the tumour-bearing animals and greater than
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0.7 for the post-injection data of the controls and tumour-bearing mice. Further, the FDR
significant metabolites were far from the origin on the loadings plots, thus supporting the
claims of univariate statistical analysis. PLS-DA models of the pre-injection and last
stage data suggest that early detection of cancer is possible.

Thiswork supports the idea that a simple, NMR-based analysis of a biofluid such
as urine could be beneficial in screening for cancer. The approach used in this study
would be similar to asking patients to submit a urine sample one or more times per year
for analysis. Over time, a“normal” metabolic trgectory could be obtained which would
serve as a baseline againgt which each subsequent NMR sample could be compared. If a
sample showed significant deviation from the basdline in a manner that was consi stent
with a“cancer trgjectory”, the patient could be referred for additional testing. This
baseline metabolic signature would require significant characterization to account for the
many factors (i.e. age, sex, other disease presence, diet etc.) that cause inter and intra-
individual variation. Although thiswould represent asignificant challenge in data
analysis, the raw materials (urine, multivariate analysis software) are cheap, the
technology is readily available and the concept issimple. Furthermore, if this technique
proved effective at diagnosing various cancers at an earlier stage than they are with
current techniques, there could be significant improvementsin patient outcomes.

Future work related to this study will compare the metabolic information
obtained outside the tumour (i.e. from urine) with that which can be obtained directly in
vivo using 9.4T magnetic resonance spectroscopy. The quality of in vivo spectroscopy is
significantly inferior to that of NMR, however, it will be interesting to observe if any
similar metabolic patterns can be observed in the two types of signals. In addition, the
spectroscopic data from the urine will be compared to ex vivo analysis of the cultured

cellsto identify correlations with the in vivo data.

In conclusion, the application of ROC analysisto a metabolomics data set
provides useful information for screening purposes. Plots of the AUC against the p-value
relate information about the clinical and statistical significance of all metabolic changes
simultaneoudly. Such figures may be used to assess the capacity of using certain
metabolites for screening. The application of ROC curvesto a PLS-DA scores plot is
new. Optimal separation does not occur along a single latent variable, but a combination
of two. ROC curve analysis was applied to the scores plot after rotation of the data set in
unit angleincrements. The optimal angle of rotation was defined as the angle at which
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the maximum AUC was obtained. It is expected that this direction will contain the best
diagnostic information related to the tumour. Application of the Y ouden index or the

minimum distance from the point (0,1) will identify the optimal decision threshold.
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