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Abstract 

 The goal of this study was to show that quantifiable metabolic changes may be used to screen for 

cancer.  NIH III nude mice were injected with human GBM cells (n=22) or with saline (n=14).  Daily 

urine samples were collected pre and post-injection and analyzed using NMR Spectroscopy.  34 

metabolites were identified and quantified through targeted profiling with Chenomx Suite 5.1.  Univariate 

statistical analysis showed that 3 metabolites (2-oxoglutarate, glucose and trimethylamine n-oxide) were 

significantly altered in the presence of tumour, while PCA and PLS-DA analysis modeled the maximum 

variance between the healthy and tumour-bearing groups.  Receiver operating characteristic (ROC) curve 

analysis was applied to provide a measure of clinical utility.  ROC statistics were as high as 0.850 for the 

analysis of individual metabolites, 0.939 for the analysis of metabolite pairs and 0.996 for the PLS-DA 

models.  These results show that metabolomics has potential to screen for cancer 
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Chapter 1 
Overview of Thesis 
 

1.1 Overview of the Project 

The stage at which a tumour is detected serves as an important prognostic 

indicator (Feng et al., 2009).  It has been well established that early detection of tumours 

will significantly improve long term survival rates as well as decrease the costs of 

treatment (Kil-Sun et al., 2010; Taplin et al., 2004).  Studies of metabolism have shown 

promise in the field of early detection of metabolic diseases (Kim et al., 2009). 

Metabolomics is the time dependent, quantitative measurement of the 

multivariate metabolic response to a pathological stimulus or genetic modification 

(Nicholson et al., 1999).  It has been shown that quantifiable metabolic changes appear 

with the development of a disease (Nicholson et al., 2007).  The complement of all 

metabolic changes that take place are expected to be unique to a particular disease; the so 

called metabolic fingerprint (Spratlin et al., 2009).  By measuring the concentrations of 

metabolites in a biofluid or tissue extract as individuals transition from healthy to 

diseased, it may be possible to identify patterns of metabolic behaviour associated with 

the disease (Goldsmith et al., 2010). 

To date, there is no standard method to evaluate the clinical significance of a 

metabolomics data set.  If the results of metabolomics studies are to reach clinical 

acceptance, it is essential to quantify the effectiveness with which a metabolic signature 

can differentiate samples from healthy and diseased individuals.  Receiver operating 

characteristic (ROC) curve analysis has been widely used in the clinic to evaluate a 

diagnostic test (Akobeng, 2006; DeLong et al., 1988).  We hypothesize that the 

application of ROC curve analysis to a metabolomics data set will provide a measure of 

clinical significance, in which the results could be used to identify the metabolic changes 

associated with the early development of tumour in the body. 

The goal of this thesis is to show that quantifiable metabolic changes in urine 

samples take place with the onset of tumour development in an animal GBM tumour 

model.  The observed metabolic changes will be quantified with ROC curve analysis to 

provide a measure of their clinical significance.  Univariate statistics are used to test the 
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significance of the changes in urinary metabolite concentrations between the healthy and 

tumour-bearing populations on an individual and paired (ratios) basis.  Multivariate 

techniques are employed to investigate complicated metabolic relationships to optimally 

separate the two populations.  An age-matched group of sham-injected control animals 

will serve to identify metabolic changes that are not related to the presence of the tumour. 

 

1.2 Organization of the Thesis 

 The organization of the thesis will begin with a theoretical description of the 

experiment and a presentation of the techniques used in similar experiments.  A full 

description of the methods used in our study will follow.  The results will then be 

presented. 

 Chapter 2 opens with a description of what constitutes a screening test and 

provides a brief summary of mammography, cytology and the prostate specific antigen 

tests.  The potential for using metabolomics for screening is presented.  Six studies which 

use metabolomics information for the identification of cancer are then summarized.  

Next, the advantages of using urine samples for screening are described.  The chapter 

concludes with an overview of the experiment with emphasis on the impacts of our study. 

 Chapter 3 provides a theoretical description of NMR spectroscopy.  This includes 

a description of the magnetization, the process of relaxation, and the nuclear overhauser 

effect (NOE).  The 1-D NOESY pulse sequence used in our experiments exploits the 

NOE and will also be described. 

 Chapter 4 presents an overview of the measurements and analytical techniques 

often used in metabolomics experiments.  NMR spectroscopy and mass spectrometry are 

described.  Most studies rely on chemometrics approached to analyze the data.  This 

chapter covers PCA and PLS-DA, including a mathematical description of each.  The 

chapter closes with an overview of the cross validation techniques used to evaluate PCA 

and PLS-DA models as well as how to interpret the results obtained from them. 

 Chapter 5 describes ROC curve analysis is greater detail.  The chapter focuses on 

developing an understanding of how to make an ROC curve and how diagnostic 

information may be extracted from the curve.  The area under the ROC curve will be 

described in terms of clinical significance.  The methods used to determine the optimal 

decision threshold are also described. 



3 
 

 Chapter 6 covers the experimental techniques used in this study in detail.  It 

opens with a description of the animal model, urine collection techniques and proper 

sample handling.  The NMR analysis methodology is presented.  This includes the 

timings used in the pulse sequence and optimizing the magnetic field shims.  The 

Chenomx software is then described in detail.  The techniques used for data processing 

and analysis are described. 

 Chapter 7 presents the results of the experiment.  Emphasis is placed on the 

addition of ROC analysis to the analysis.  These results are presented for both univariate 

and multivariate statistical analysis.  The AUC and the optimal decision thresholds are 

displayed for the metabolite concentrations and the metabolite ratios. 
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Chapter 2 

Screening for Cancer 
 

2.1 Screening 

Screening is defined as the use of simple tests across a population to identify 

individuals who have a disease before they become symptomatic (World Health 

Organization a; Cook, 2008; Zivian and Gershater, 2008).  The development and 

implementation of screening tools for cancer is particularly important for two principal 

reasons: first, it has been estimated that that one in two men and one in three women will 

develop cancer in their lifetime (Eyre, 2009; Welch and Black, 2010) and second, the 

stage at which a tumour is detected serves as an important prognostic indicator for patient 

outcome (de Nooijer et al., 2001; Feng et al., 2009; Smith et al., 2009; Taplin et al., 

2004).  Figure 2.1 shows the 5-year survival rates for four types of cancers.  The 

examples of pancreas, lung and ovary, are cancer which are often diagnosed at a later 

stage, and suffer from poor survival rates. 

 

Figure 2.1: 5-year survival rates for four types of cancers.  The thickness of the curves 
relates the percentage of tumour diagnosed at each stage as defined by the gray scale.  
Pancreas, Lung and Ovarian cancers are examples of cancers which are often diagnosed at 
a later stage and suffer from poor survival rates.  This motivates the need to develop a 
screening technique for early detection.  Permission granted for use of figure by Mr. 
Thomas Goetz, deputy editor for Wired Magazine and author of article: “Why Early 
Detection is the Best Way to Beat Cancer”, Wired Magazine, 2008, Vol. 17.01 
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Effective screening programs require a test which is highly sensitive and specific 

for the disease in question (Cady and Michaelson, 2001), has a gold standard to verify the 

presence of the disease and has access to treatment (Taplin et al., 2004).  The screening 

test should be safe, reliable and inexpensive (World Health Organization b).  Further, the 

test should be easily accessible to the total population and screen for a disease with high 

prevalence (Cady and Michaelson, 2001).  Taplin et al. (2004) and Cady and Michaelson 

(2001) have both suggested that non-compliance can be an issue for screening, therefore 

it is also important to develop a test that is non-invasive and requires minimal time and 

effort from the patient. 

It has been suggested that tumours having 108-109 cells (approximately weighing 

1 g) are often difficult to detect with current methods (Eyre 2009).  Detection at this stage 

would result in improvements in the efficacy of cancer therapies as the tumour has 

generally not metastasized.  Tumours with 1012 cells (about 1 kg of tumour) are often 

associated with death.  Patients will often not seek medical expertise for cancers until 

clinical signs and symptoms present (Welch and Black, 2010).  The sizes of tumours at 

various stages are shown in figure 2.2.  As shown, most tumours are detected and treated 

beyond the point of small, easily treated tumours (108-109

 

 tumour cells). 

 

 

 

Figure 2.2 Clinical and molecular model of the convergence of invasive cancer and 
pre-invasive disease, and of cancer therapy and prevention.  Permission granted to use 
figure in thesis from Elsevier.  Figure found in: Eyre H 2009 Winning the Cancer 
Fight: A Look at the Future Primary Care: Clinics in Office Practice 36 859-866. 
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2.2 Current Methods of Cancer Screening 

Current screening techniques include mammography for breast cancer (Cady and 

Michaelson, 2001), cytology screening for cervical (Smith et al., 2002) and bladder 

cancer (Issaq et al., 2008), and the prostate-specific antigen (PSA) test for prostate cancer 

(Isbarn et al., 2009; Spahn et al., 2010).  These methods attempt to find evidence of 

small, but developing tumours before clinical symptoms present (Cook, 2008).  The 

American Cancer Society (ACS) publishes a report summarizing their recommendations 

for cancer screening each year (Smith et al., 2002; Smith et al., 2009).  The annual 

reports do not contain information for all cancers, but will describe in great detail 

changes from the previous reports.  A brief summary of the three mentioned screening 

techniques follow. 

Breast cancer is the most common cancer in women and is the second leading 

cause of death from cancers in women (Smith et al., 2009).  Mammography is the main 

imaging modality used to detect breast cancers at an early stage and is thought to 

decrease mortality rates by 30-40% (Alvarenga et al., 2010; Taplin et al., 2009; van den 

Biggelaar et al., 2009).  Other benefits of mammography include increased survival rates, 

requirement for less aggressive surgical procedures and adjuvant therapies and an 

increase in the number of treatment options available (Smith et al., 2009).  Cady and 

Michaelson (2001) suggest that mammography screening will detect smaller sizes of 

invasive cancers which are often accompanied with patients having low grade histology.  

This results in significant improvements in outcome.  The sensitivity of mammography is 

predicted to be 70-80% (Nam et al., 2009).  However, the accuracy of the test is 

dependent on the composition of the mammary parenchyma and tumour tissue 

characteristics (Alvenga et al., 2010).  The complicated radiographic structure of breast 

tissue and the subtle characteristics of early stage tumours make screening more difficult 

(Zivian and Gershater, 2008).  Despite these challenges, the risk of late stage cancer is 

greater in women who have not had a mammography (Taplin et al., 2009). 

Mammography is able to detect cancers that are 0.5-1.0 cm in size in women 

with non-dense breasts, but tumours are rarely detected smaller than this (Eyre, 2009).  

Despite breast cancer detection rates increasing by 4.6-15 % (Destounis, 2004; Taplin et 

al., 2009), a large proportion of detectable lesions are missed – even those at late stage 

(Taplin et al., 2009; van den Biggelaar et al., 2009) – and not all detected cases are 

associated with a good prognosis (Smith et al., 2009).  It is predicted that approximately 
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25-30% of visible cancers are missed when mammogram images are read by a single 

radiologist (Zivian and Gershater, 2008).  This could be a consequence of the low 

incidence of breast cancer lesions observed in mammograms (~ 2.6 lesions in 1000).  

Newer developments have focused on computer-aided detection (CAD) (Zivian and 

Gershater, 2008) and breast ultrasound imaging (Alvenga et al., 2010). 

Cervical cancers are often detected through cytology testing or papanicolaou 

(Pap) smears (Smith et al., 2009).  Cytology specimens are collected from the entire anal 

canal using a Dacron swab (Bean and Chhieng, 2010).  The cells collected are fixed on a 

slide for a conventional smear on in a liquid medium for liquid-based cytology (Bean and 

Chhieng, 2010).  The PAP test has been highly effective at screening for pre-invasive 

cancers (Gustafsson et al., 1997), decreasing the incidence and mortality rates from 

cervical cancer in Canada between 1981 and 2002 by 39% and 53%, respectively (Lofters 

et al., 2010), and decreased incidence rates in the USA from 35-40 / 100,000 to 8 / 100,00 

(Bean and Chhieng, 2010).  This test is capable of reliably detecting precancerous 

changes with 104-106

Screening for prostate cancer is performed via the prostate-specific antigen 

(PSA) test or a digital rectal examination (Goldsmith et al., 2020; Smith et al., 2002).  

These tests, however, are not sufficiently specific and have accuracies of 25-50% 

(Goldsmith et al., 2010).  Goldsmith et al. (2010) estimated that PSA testing has 

sensitivities and specificities in the range of 60-75%.  In addition, prostate cancer patients 

with a PSA value greater than the threshold 20 ng/ml come from a highly heterogeneous 

group; therefore an elevated PSA is not sufficiently specific to distinguish high risk 

patients (Sphan et al., 2010).  It is essential to discover a better screening technique as the 

treatment can cause moderate to substantial harms (Smith et al. 2009). 

 tumour cells (Eyre, 2009), but it is invasive, painful and costly 

(Issaq et al., 2008).  The sensitivity and specificity of a cervical cytology test is 75% and 

90% (Bean and Chhieng, 2010). 

Current screening methods often rely on imaging or pathological specimens from 

cytology or biopsy (Eyre, 2009).  The tests can be invasive, uncomfortable for the patient, 

and may suffer non-compliance; this deems them unsatisfactory for screening (Wen et al., 

2010).   In fact, problems with detection account for 40% of late stage cancers in the 

clinic (Taplin et al., 2004).  The 5-year survival rates for oral cancers is around 50% and 

has not improved over the last 30 years as the tumours are often discovered in late stage.  

Ninety-eight percent of pancreatic cancers result in death due to the lack of treatment 
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available and the increased rates of metastases (Sugimoto et al., 2010).  These examples 

emphasize the need for better techniques for screening. 

Studies of metabolism hold potential to serve as screening tools (Altmaier et al., 

2008; Gowda et al., 2008; Holmes et al., 2000; Griffin and Shockcor, 2004).  To date, 

studies have successfully identified individuals with Alzheimer’s disease (Barba et al., 

2008; Tukianinen et al., 2008), Duchenne muscular dystrophy (Griffin et al., 2001), 

myocardial ischemia (Sabotine et al., 2005), type 2 diabetes (Selek et al., 2007), inborn 

errors of metabolism (Shlomi et al., 2009) and a number of cancers (Claudino et al., 

2007) in a laboratory setting. 

 

2.3 Potential of Metabolomics for Screening 

Metabolism may be used for early diagnosis, or for real-time monitoring of the 

effects of a disease (Kim and Maruvada, 2008; Kim et al., 2009).  The idea is that the 

comprehensive analysis of the metabolic content of biofluids - such as urine, serum or 

cerebral spinal fluid  (Beckonert et al., 2007) – or from a tissue extract, will provide 

information about an individual’s current health status (Ala-Korpela, 2008; Bollard et al., 

2001; Kaddurah-Daouk et al., 2008; Nordstrom and Lewensohn, 2010).  It has been well 

established that the metabolic content of a sample will be altered in the presence of a 

disease or toxic effect (Bollard et al., 2005).  By analysing these changes, it may be 

possible to identify the presence of a disease (Saude et al., 2007; Spratlin et al., 2009; 

Vinayavekhin et al., 2010). 

The field of metabolomics emerged in the 1980’s to study changes in the 

concentrations of small endogenous molecules, known as metabolites, and relate these 

changes to a state of disease or toxicity (Nicholson et al., 2007).   A metabolite is defined 

as any chemical compound involved in, or a product of, metabolism (Lawrence, 2005).  

These consist of amino acids, oligopeptides, sugars, bile acids and simple fatty acids 

(Clarke and Haselden, 2008).  The complement of all low-molecular weight metabolites 

found in a biofluid or tissue, which takes part in metabolic reactions, constitutes the 

metabolome (Kaddurah-Daouk et al., 2008).  It is thought to cover 7-9 orders of 

magnitude of concentration (pmol-mmol) (Dunn and Ellis, 2005).  Metabolomics is the 

comprehensive analysis of all metabolites in an organism, and is used in conjunction with 

pattern recognition techniques and bioinformatics to detect and follow endogenous 
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metabolites in biofluids or tissues (Spratlin et al., 2009).  In 1999, Nicholson et al. coined 

the term ‘metabonomics’ which is the “the quantitative measurement of the dynamic 

multiparametric metabolic response of living systems to pathophysiologic stimuli or 

genetic modification”. 

The human body contains a complex and dynamic array of interacting metabolic 

pathways.  In a healthy individual, metabolic processes are kept in balance (homeostasis) 

(Saude et al., 2007).  When a toxic stress is present, whether it is a drug or a disease, cells 

attempt to maintain homeostasis and metabolic control by altering the composition of the 

biofluids that perfuse them or are secreted by them (Goldsmith et al., 2010; Holmes and 

Antti, 2002; Lindon et al., 2003; Nordstrom and Lewensohn, 2010).  Metabolites in cells, 

tissues and biofluids are in dynamic equilibrium, so abnormal processes will be indicated 

by alterations in the metabolic content (Clarke and Haselden, 2008; Lindon et al., 2001; 

Maher et al., 2007).  By comparing the metabolic content of biofluids between 

populations of healthy and diseased individuals, it is possible to identify patterns of 

metabolic behaviour which may be indicative of that disease (Goldsmith et al., 2008; 

Kim et al., 2009).  The toxicological response is defined as the deviation from the control 

or baseline levels (Bollard et al., 2004).  A disease process generates a unique and 

characteristic signature of metabolic changes which is known as the metabolic phenotype 

(Holmes and Antti, 2002; Lindon et al., 2001; Serkova et al., 2008).  In such studies, a 

certain degree of homeostasis in the healthy population is assumed (Saude et al., 2007).  

The metabolome is dynamic, and will respond to stimuli within seconds (Dunn and Ellis, 

2006; Kim and Maruvada, 2008; Kim et al., 2008; Weckwerth and Morgenthal, 2005).  

This makes metabonomics studies good candidates for screening. 

Metabonomic studies have shown that external influences can have profound 

impacts on the metabolic content of biofluids from healthy individuals (Bollard et al., 

2005).  It is therefore important to follow a standard procedure in terms of the time of day 

a sample is collected, handling of samples prior to analysis, dietary control, etc.  Early 

studies suggest that the inter-individual differences were larger than the intra-individual 

differences (Ala-Korpela, 2008; Lens et al., 2003; Kim et al. 2009).  However, a more 

recent study showed that the metabolic content from a single individual can vary greatly 

over time and even span the range of the entire group (Saude et al., 2007).  Despite the 

magnitude of these changes on an individual basis, studies have found that alterations in 

response to a disease or toxicological process are detectable (Bollard et al., 2005). 
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Natural effects on metabolism include diurnal variation, differences between 

males and females, aging, hormonal effects, diet and changes in the gut microflora 

(Bollard et al., 2005; Slupsky et al., 2007).  Metabolic activity changes throughout the 

day depending on wake and sleep patterns, which alters the composition and volume of 

urine excreted.  It has been suggested to collect all samples around the same time of day 

to minimize diurnal effects (Bollard et al., 2005; Lens et al., 2003).  Bollard et al., (2005) 

reviewed metabolic changes associated with gender and age.   The results suggest that 

females experience stronger pharmacological effects than males, likely as a result of 

lower metabolic activity.  Aging animals undergo a number of physiological changes, 

both physical and biochemical, which results in different amounts of endogenous 

metabolites being excreted into the urine.  Wilson and Nicholson (2007) found that the 

microbiome in experimental animals was stable and resistant to change post weaning.  In 

general, inter-animal variation is more pronounced than diurnal alterations, which is 

greater than hormonal effects (Bollard et al., 2005).  Also, inter-subject variation exceeds 

that from the measurement technique used (Dunn and Ellis, 2006; Slupsky et al., 2007).  

Despite all these changes, Slupsky et al. (2007) found that the analysis of metabolite 

concentrations in normal urine samples using targeted profiling (matching 

mathematically modelled pure metabolite peaks to the NMR spectra) produced consistent 

and reliable results.  Variations in experimental mice are caused by the animals’ well-

being, genetic drift, strain, hormonal differences, the metabolic rate, age and gender.  

External influences that must be minimized include food and water intake, temperature, 

light intensity and subjection to stress (Bollard et al., 2005).  These influences are 

reviewed in greater detail in Bollard et al., 2005 and Slupsky et al., 2007. 

Metabolomics presents a good screening tool for tumours that readily produce or 

excrete accessible fluids (Spratlin et al., 2009).  Cancer cells possess highly unique 

metabolic phenotypes characterized by increased glucose uptake (Griffin, 2006; Serkova 

et al., 2008; Spratlin et al., 2009) and increased lactate production in aerobic conditions 

(Vizan et al., 2008).  Griffin and Kauppinen (2006) claim that metabolic profiles in 

various tumour preparations show correlations with tumour type, proliferation rates, 

metabolic activity and cell death.  Similarly, Issaq et al., (2008) suggests that 

metabonomics can provide metabolic patterns characteristic of various benign or 

malignant conditions.  Cell proliferation rates are generally greater in cancers than in 

normal tissue, thus yielding higher rates of glucose utilization (Griffin and Shockcor, 

2006) and increased concentrations of excreted modified nucleosides (Frickenschmidt et 
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al., 2008).   Alterations in the total choline metabolites (tcho) has been used to 

characterize cases of breast and prostate cancers (Spratlin et al., 2009) and may be linked 

with malignant cell growth (Griffin, 2004).  Alternatively, lactate has been proposed as a 

diagnostic tool  for identifying cases of cancers in patients.  Vizan et al., (2008) 

discovered that increases in lactate levels could identify late stage tumour progression, 

especially in cases with tumour invasion. 

To date, most metabonomics studies have dealt with animals (Lenz et al., 2003), 

however studies on human populations are now more common (Erb et al., 2008; Guan eta 

al., 2009; Issaq et al., 2008; Lenz et al., 2003; Odunsi et al., 2005; Woo et al., 2009).  

Until recently, studies suggested that metabolic information in animals was more stable, 

thus allowing for increased confidence in the observed changes.  Saude et al., (2007) 

found that the metabolite concentrations in a controlled guinea pig population were 

similar to that found in a cohort of healthy humans.  As long as the animals are given 

time to acclimatize to the experimental environment (about three days), the metabolome 

should be stable (Bollard et al., 2005; Lenz and Wilson, 2006).  In fact, all animals are 

known to respond in a similar fashion to humans (Bollard et al., 2005).  The techniques 

used to study metabolism in animal models have been applied to study human cancers 

(Griffin and Kauppinen, 2006).  

 

2.4 Examples of Metabolomics Studies for Cancer Screening 

Metabonomics studies have shown great potential in the field of cancer diagnosis 

(Claudino et al., 2007).  To date, studies have investigated metabolic changes associated 

with biliary tract cancer (Wen et al., 2010), bladder cancer (Issaq et al., 2008), brain 

metastases (Simoes et al., 2008), breast cancer (Giskeodegard et al., 2010; Sitter et al., 

2010; Whitehead et al., 2005; Woo et al., 2009), cervical cancer (Woo et al., 2009), 

colorectal cancer (Feng et al., 2009; Ma et al., 2009), liver cancer (Chen et al., 2009), 

male pancreatic cancer (Beger et al., 2006), oral cancer (Tiziani et al., 2009), ovarian 

cancer (Guan et al., 2009; Odunsi et al., 2005) and prostate cancer (Jordan and Cheng, 

2007; Lokhov et al., 2010).  When analysing the metabolic content of urine samples, the 

test will be non-invasive and easy to perform.  A few examples of applications which use 

metabolomics analysis for cancer detection are reviewed below. 
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2.4.1 Detection of Malignant Tumour from the Methyl and Methylene Line-widths 

The first study using NMR metabolomics for cancer identification was performed 

by Fossel et al. in 1986.  In this study, blood samples were collected from patients with 

malignant or benign tumours, healthy controls and pregnant women.  NMR analysis was 

carried out at 360 MHz or 400 MHz with a Bruker AM Fourier-transform Spectrometer.  

Water suppression was achieved using presaturation at the water resonance frequency.  

The full widths at half height of the methyl and methylene resonances were measured 

without knowledge of the patients’ health status.  The results suggested that the average 

line widths were narrower in patients with cancer, decreasing from 39.5 ± 1.6 Hz for the 

healthy controls to 36.1 ± 2.6 Hz for patients with malignant tumour, 36.7 ± 2.0 Hz for 

patients with benign tumours (breast, ovary, uterus and colon cancers), and 29.9 ± 2.5 Hz 

for patients with untreated cancers.  In addition, they found that the line widths obtained 

from pregnant patients were consistent with the presence of malignant tumour.  The study 

suggested that line widths less than 33 Hz were indicative of the presence of cancer and is 

independent of the type of cancer. 

 

2.4.2 Epithelial Ovarian Cancer 

Odunsi et al., (2005) studied the metabolic changes associated with the presence 

of epithelial ovarian cancer (EOC).  In this study, pre-operative serum specimens were 

obtained from 38 patients with EOC, 12 patients with benign ovarian cysts and 53 

healthy women (21 premenopausal and 32 postmenopausal).  1H NMR Spectroscopic 

analysis was performed on a 600 MHz spectrometer.  Principal component analysis 

(PCA) of the EOC patients and controls revealed clear separation between the two groups 

- those with EOC and healthy women – and clustering of the samples in these groups.  

One model correctly predicted all 38 cancer specimens and 21 premenopausal individuals 

and a second model correctly separated 37 of the 38 cancer specimens and 31 of the 32 

postmenopausal women.  They were able to differentiate between women in each of the 

three categories.   They applied Receiver operating characteristic (ROC) curve analysis to 

the data to evaluate their utility to predict EOC.  This analysis showed that by utilizing 

information from two regions – descriptors at 4.03 ppm and 4.77 ppm –excellent 

discrimination for EOC is attained (Area under the ROC curve (AUC) = 1.00).  Alone, 

these regions had an AUC of 0.942 and 0.689, respectively. 
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2.4.3 Breast Cancer 

Whitehead et al., (2005) performed 1

They also applied PCA to the data set to determine if unique metabolic patterns 

for the different categories of metastatic breast cancer in serum existed.  The model 

correctly separated sera of the tumour-bearing mice from those from the normal controls 

and was able to distinguish between classes of varying metastatic ability.  The regions 

responsible for the separation were different for the highly-metastic and normally-

metastic cases when compared with the control mice.   They identified lactate, taurine, 

choline and sugar moieties as the variables responsible for the separation. 

H NMR analysis on serum samples obtained 

from 10 mice inoculated with a highly-metastatic mammary carcinoma cell line, 10 mice 

inoculated with a normally metastatic mammary carcinoma cell line, and 10 healthy 

controls. Analysis was performed on the linewidths of the composite methyl and 

methylene peaks.  Their results suggest that the average linewidths can be used to 

distinguish sera from the highly-metastatic and normal-metastatic tumour-bearing 

animals from the healthy controls with p-values of 0.0002 and 0.0003, respectively.  The 

broadened methylene and narrow methyl resonance were consistent with other studies 

involving cancerous sera due to abnormal distributions of plasma lipoproteins.  

 

2.4.4 Bladder Cancer 

Issaq et al., (2008) analysed the metabolic content of urine samples collected 

from 41 patients with transitional cell carcinoma and 48 healthy individuals.  The patient 

populations were approximately age-matched, with ages ranging between 51-93 for those 

with baldder cancer and 20-86 for the healthy controls.  Samples were analyzed using 

high performance liquid chromatography coupled online with a hybrid triple-quad time-

of-flight mass spectrometer.  The data was subjected to both PCA and orthogonal partial 

least squares-discriminant analysis (OPLS-DA).  PCA correctly predicted 46 of 48 

healthy individuals and 40 of 41 bladder cancer samples, while the OPLS-DA model was 

able to correctly predict 48 of 48 healthy individuals and 41 of 41 bladder cancer urine 

samples. 
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2.4.5 Oral Cancer 

Tiziani et al., (2009) investigated the potential of 1

The group obtained 1-D 

H NMR metabolomics to 

diagnose early stage oral squamous cell carcinoma (OSCC).  Samples of venous blood 

were collected from 15 patients with confirmed OSCC (average age 63.8 years) and 10 

control samples from normal donors (average age 57 years) who had no personal history 

of cancer.  All samples were collected at approximately the same time during the day. 

1H and 2-D 1

Both PCA and partial least squares discriminant analysis (PLS-DA) were used 

for statistical data analysis.  PCA of the 1-D data shows clear separation between samples 

from patients with OSCC and healthy individuals and revealed clustering according to the 

stage of the cancer.  The PLS-DA model showed excellent separation between the 

populations with sensitivity and specificity values greater than 95%.  The loading plots 

showed that levels of valine, ethanol, lactate, alanine, acetate, citrate, phenylalanine, 

tyrosine, methanol, formaldehyde and formic acid were reduced in the OSCC patients, 

while glucose, phyruvate, acetone, acetoacetate, 3-hydroxybutyrate and 2-

hydorxybutyrate, choline and betaine had enhanced loadings.  PLS-DA was also applied 

to only the data from diseased patients.  The loadings plots revealed similar patterns of 

distinction between the different stages.  The increased levels of glucose and reduced 

levels of lactate are different from most studies involving cancer.  They propose that the 

increase in glucose results from a unique behaviour of oral cancers to interfere with the 

ability of insulin to modulate the uptake of glucose. 

H J-resolved NMR spectra using a 500 

MHz spectrometer equipped with a cryogenically cooled probe and a 2D COSY 

experiment was carried out on a 800 MHz Varian spectrometer with a cryogenically 

cooled probe. 

 

2.4.6 Prostate Cancer 

Lokhov et al., (2010) investigated the effects of prostate cancer on the metabolic 

content of blood plasma.  In this study, samples were collected from 30 healthy men and 

40 men who had been diagnosed with stage two prostate cancers.  Mass spectrometry was 

carried out to measure the concentrations of positive and negative ions.  The two sided 

Wilcoxon rank sum test was used to define the difference of the peak intensities between 

the healthy and diseased populations. 
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Six metabolites showed a statistically significant shift in intensity in the 

cancerous populations.  The effectiveness of these metabolites in a diagnostic situation 

was assessed using ROC curve analysis.  The area under the curve (AUC) was used to 

indicate the efficiency and clinical applicability of the diagnostic method.  They 

considered curves with an AUC > 0.6 as being clinically applicable and an AUC > 0.8 to 

indicate a good diagnostic measure.  Two metabolites, dimethylhepatonoyl carnitine and 

arachidonoyl amine, had an AUC > 0.8, with AUC’s of 0.97 and 0.86 respectively.  

These were compared with the conventional screening technique of PSA (prostate 

specific antigen) which had an AUC of 0.59 for the same sample population. 

 

2.5 Use of Urine in Metabonomics Studies 

Urine is an easily accessible, abundant biofluid which contains thousands of 

metabolites (Goldsmith et al., 2010; Lindon et al., 2006).  Samples may be collected non-

invasively (Lenz and Wilson, 2006) and multiple samples can be collected without harm 

to the patient (Saude et al., 2007; Wilson and Nicholson, 2007).  This means that samples 

can be collected from animals before and after inoculation of a disease so that the toxic 

effect may be monitored on an individual basis (Bollard et al., 2001).  Samples may be 

pooled to average out diurnal influences or day-to-day variation (Lenz and Wilson, 

2006).  Further, urine provides high resolution NMR spectra due to the content of many 

small aqueous metabolites and the non-viscous nature of the fluid (Reo, 2002).  As a 

fluid, it is isotropic and magnetically homogenous (Lindon and Wilson, 1989). 

Urine provides an integrated view of all metabolic activities in the individual 

(Lindon et al., 2006; Viant et al., 2007).  As a result, it serves as a ‘sums of history’ of all 

disease processes in the individual (Griffiths, 2007).  The excretatory nature of urine 

allows it to be used for time-related studies of disease response as it describes what has 

happened in the individual since the last sample was acquired (Viant et al., 2007; Wilson 

and Nicholson, 2007).  Early markers for disease response are easily identifiable in urine 

since the kidney’s function is to maintain homeostasis (Griffiths and Stubbs, 2007; 

Wilson and Nicholson, 2007). 

Urine samples require minimal preparation; in most cases, the procedure includes 

pH adjustments and the addition of an internal standard for analysis (Serkova et al., 

2008).  The pH of urine ranges between 5 and 9, but is generally within the range of 6.5-
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7.5 (Nicholson and Wilson, 1989).  Most groups will add phosphate buffered saline to 

bring the pH to a specific value and stabilize the pH (Lindon et al., 2003).  Most groups 

choose a pH around 6.8 (Kim et al., 2008 ; Murdoch et al., 2008; Um et al., 2009) or 7.0 

(Jukaininen et al., 2008; Parsons et al., 2007; Troy et al., 2007; Wiljie et al., 2006).  Some 

groups filter samples to remove proteins and macromolecules (Saude and Sykes, 2006; 

Viant et al., 2007).  This step has been shown to halt further metabolic changes. 

Samples should be frozen until required for analysis to prevent breakdown due to 

bacterial contamination (Lauridsen et al., 2007; Viant et al., 2007).  Contamination may 

be observed through decreases in the levels of creatinine and increased creatine (Saude 

and Sykes, 2006) or increased concentration of acetate and formate (Lenz and Wilson, 

2006).  Lauidensen et al., (2007) studied the effects of a number of methods for sample 

storage.  He stored samples at 4oC, -25oC and -80oC for variable times ranging from 0 to 

26 weeks.  An increase in acetate and decreases in citrate and hippurate was observed in 

the samples without a preservative one week post collection.  Samples with an added 

preservative were stable for a longer period.  Samples stored at -25oC and -80oC showed 

no differences, with and without the added preservative for up to 26 weeks post injection.  

They recommend that samples be stored at -25oC, but most groups choose to store the 

samples at -80o

 

C (Holmes et al., 1999; Miyataka et al., 2007; Pohjanen et al., 2006).  

There are studies (Nordstrom and Lewensohn, 2010; Saude and Sykes, 2006) that have 

indicated a loss of metabolites in samples stored for long periods of time, however, other 

studies suggest that the samples are not affected for up to 9 months (Ross et al., 2007).  

Maher et al., (2007) suggests that urine may be stored at room temperature for 24 hours, 

which is sufficient for analysis. 

2.6 Motivation for our Experiment 

The aim of our experiment is to show that metabolomics data has potential to 

serve as a screening test for cancer at an early stage.  To achieve this goal, urine samples 

are collected from animals bearing a human glioblastoma (GBM) xenograft.  Sample 

collection began one week before cell injection for the purpose of defining a normal 

baseline, while post cell-injection samples were collected for 5 weeks to observe 

metabolic changes associated with the presence of a tumour. 
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Studies have suggested that external sources of variation can mask the metabolic 

changes associated with tumour development, therefore a group of control animals are 

examined to identify naturally occurring metabolic changes or alterations that results as a 

response to the stress of the injection procedure.  The control animals are treated the same 

as the tumour-bearing animals in terms of the environment in which they are housed, the 

method of urine collection and age of animals throughout the collection procedure.  The 

idea is that by compensating for the metabolic changes in the control population, it may 

be possible to isolate metabolic changes resulting from only the tumour. 

Metabolomics analyses are either performed between a group of healthy 

individuals and a group of individuals with established disease, or used to study the 

metabolic changes temporally as individuals transition from healthy to having a disease.  

Studies of disease in human populations examine changes between a healthy and diseased 

group.  Animal studies have the advantage that an individual may serve as its own 

control.  This reduces inter-individual differences in the data and enables the 

investigation of subtle metabolic changes associated with early disease progression.  

Animal studies that compare the metabolic changes on an individual basis often do not 

perform a parallel analysis of control animals (Keun et al., 2004; Pohjanen et al., 2006; 

Um et al., 2009) or do not account for the metabolic changes observed in the controls in 

their further analysis (Kim et al., 2008; Lenz et al., 2004; Tyburski et al., 2009).  

Principal component analysis and partial least squares discriminant analysis are 

common multivariate statistical tools for analysis.  Models are constructed with the 

healthy and diseased populations.  Most groups only qualitatively suggest that the model 

is effective at distinguishing individuals from each population.  However, some groups 

will calculate the sensitivity and specificity for a line drawn manually through the data.  

If the goal of the analysis is to identify metabolites which may be used to distinguish 

individuals in each group, univariate statistical analysis is performed.  To our knowledge, 

metabolites with p<0.05 are considered significant; no correction is made for testing 

multiple metabolites. 

We propose to track changes on an individual basis by pairing the data before 

and after cell injection.  We envision that this could mirror a human application of this 

technique in which an individual could submit a urine sample for analysis one or more 

time per year.  Once a “normal” metabolic trajectory is identified, deviation from this 

path could be used to identify the presence of a disease like cancer. 
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  Univariate analysis, in the form of the non-parametric Wilcoxon rank sum test, 

will prove that metabolic changes are taking place.  Statistical significance will be 

defined by the Bonferroni correction limit and the false discovery rate (FDR) 

methodology.  The goal of this analysis is to show that useful metabolic information is 

available using both a conservative compensation (Bonferroni correction) and a newer 

technique which controls the number of false positive discoveries (FDR method). 

The analysis will first consider all post-injection data as one group to confirm 

that quantifiable metabolic changes are observed in the presence of tumour.  After these 

metabolic changes were established, the tumour-bearing data is divided into early and 

late stage data to evaluate the ability of our techniques to diagnose cancer at the two 

stages.  It is hypothesized that the pre-injection and early stage data can be distinguished 

and that the early and late stage data are altered in a similar fashion. 

There is no standard method for quantifying the degree of separation between 

pre-defined classes (i.e. pre-injection and post-injection with cancer) in a metabolomics 

data set.  Recently, some groups have begun to apply ROC analysis to the distributions of 

the pre and post-injection data (Lokhov et al., 2010; Odunsi et al., 2005) or to statistical 

models (Sugimoto et al., 2010). 

The nature of multivariate statistical analysis is to determine the maximum 

variation in the data set.  It is expected that the maximum variation will be in the 

direction of class discrimination.  However, no method is in place to assess the degree of 

separation.  We propose to apply ROC analysis to the component axes initially, and then 

rotate the data from a pair of scores vectors in unit angle increments about the origin to 

determine the angle at which the model is most effective at distinguishing between 

classes.  This analysis will be applied to the pre and post-injection tumour bearing data to 

simulate a environment for screening, between the post-injection data from the control 

and tumour-bearing mice to simulate a human study using a age-matched group of health 

individuals and those who are known to have the disease, and between all ‘tumour-free’ 

(or ‘healthy’) and tumour bearing samples. 

As a final analysis, the tumour-bearing data will be separated into early and late 

stage data to evaluate the potential of metabolomics for the early identification of tumour.  

A PLS-DA model will be used between the pre-injection and late stage data.  The early 

stage data will be projected onto the model.  ROC analysis will provide a measure of the 

clinical significance of the metabolic changes. 
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Chapter 3 
Nuclear Magnetic Resonance 
Spectroscopy Theory 
 

 This Chapter overviews the theory related to Nuclear Magnetic Resonance 

(NMR) Spectroscopy.  The Nuclear Overhauser Effect (NOE) and the 1-D NOESY pulse 

sequence will be discussed briefly.  The bulk of information in this chapter was taken 

from Claridge, 2009 (sections 3.1 - 3.3), Jordan and Cheng, 2008 (sections 3.1 and 3.2), 

Ross et al., 2007 (sections 3.2 and 3.3) and McKay, 2009 (section 3.3). 

 

3.1 History of Nuclear Magnetic Resonance Spectroscopy 

 Nuclear magnetic resonance (NMR) spectroscopy in a condensed state of matter 

was detected  independently by Felix Bloch and Edward Purcell in 1945.  In the 1950’s, 

scientists discovered that the resonant frequency of nuclei was dependent on its local 

chemical environment and that nuclei could influence the resonance of other nuclei 

through intervening chemical bonds.  Computers were added to NMR systems in the 

1960’s.  Their addition, in combination with stronger magnets, allowed for significant 

improvements in sensitivity and analysis of smaller samples.  Computers collected a 

time-domain signal.  The Fourier Transform was applied to reveal information about the 

complement of nuclear spins found in the sample.  The mid-1960’s brought about the 

Nuclear Overhausser Effect (NOE); this technique has become the most widely used 

technique for sensitivity enhancements between nuclei and for studying the spatial 

proximity of nuclei.  The introduction of the superconducting magnet in the 1970’s 

initiated the development of higher magnetic field strengths.  Today it is common to find 

magnets with cryogenically cooled probes which incorporate active shielding to keep 

stray fields closer to the magnet.  NMR Spectroscopy has since found widespread 

application in chemistry, biology, medicine, materials science and geology. 
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3.2 Theory of Nuclear Magnetic Resonance (NMR) 

3.2.1 Magnetization 

 Atomic nuclei – protons and neutrons– possess an innate property known as the 

nuclear spin quantum number, I (Pochapsky and Pochapsky, 2006; Ross et al., 2007).  

Molecules with an odd number of neutrons or protons will have a net spin and contribute 

to the NMR signal.  The spin quantum numbers of these molecules are multiples of ½: 

i.e. 1/2, 1, 3/2, etc.  Spin ½ molecules, such as the protons in water, are most often 

studied with NMR Spectroscopy.  The nuclear spin has 2I+1 possible spin states.  For the 

example of a spin ½ nucleus, there are two spin states known as α (‘spin up’, I = ½) or β 

(‘spin down’, I = -1/2).   The following discussion will consider only protons. 

 

 When nuclei are placed in an external, static, magnetic field, Bo

µ = γ I

, they will either 

align parallel (spin up) or anti-parallel (spin down) to the field.  By convention, the field 

is aligned along the +z-axis.  The actual spin of the nuclei is not aligned with the 

magnetic field, but presses about it (see figure 3.1).  A spinning proton has an angular 

momentum, I ħ, which gives rise to a magnetic moment, µ with magnitude: 

  (Equation 3.1) 

 Where γ is the gyrometric ratio.  The magnetic moment is unique to a nucleus 

and can be interpreted as how ‘magnetic’ the nucleus is (Claridge 2009). 

 Precession is a consequence of the applied torque from the magnetic field on the 

magnetic moment.  The rate of precession, which is commonly referred to as the Larmor 

frequency is given by: 

)/( sradBoγω −=   (Equation 3.2a) 

or )(2/ HzBo πγυ −=   (Equation 3.2 b) 

Figure 3.1: Proton in an external magnetic field.  When 
placed in an external magnetic field, a nucleus will precess 
about the field at the Larmor frequency (ω = γBo).  The 
proton can be in the ‘spin up’ (aligned parallel to the field) 
state or the ‘spin down’ (aligned anti-parallel to the field) 
state.  The proton is in the spin up state in this figure. 
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 Since the ‘spin up’ orientation is at a lower energy, more nuclei will be in this 

state.  The proportion of nuclei in the spin up to the spin down spin states is described by 

the Boltzmann distribution: 

Tk
E

Be
N
N ∆

−

=
β

α  (Equation 3.3) 

 Where Nα is the number of nuclei in the spin up state, Nβ the number of protons 

in the spin down state, ∆E is the difference in energy between the two states, kB is the 

Boltzmann constant (1.381 x 10-23

 The signal from NMR experiments, known as the magnetization, comes from the 

difference in the number of nuclei in the spin up and spin down orientations.  Due to the 

statistical averaging of a large number of microscopic magnetic moments, the net 

magnetization may be represented as a classical macroscopic magnetic moment, M, 

which is aligned with the external magnetic field (figure 3.2).  The energy difference is 

quite small (order of 10

 J/K) and T is the temperature in Kelvin. 

-25 J for fields of strength 18.8T (Magnetic field of a 800MHz 

spectrometer) ), so the population differences are generally of the order of 1 part in 104

 

 at 

18.8T.  Consequently, NMR Spectroscopy is a relatively insensitive technique when 

compared to mass spectrometry (Claridge 2009).  

 

 

Figure 3.2: Complement of all magnetic moments and Net Magnetization.  a) An 
NMR sample consists of a large number of resonating nuclei.  The nuclei resonate at 
the Larmor frequency, but have different phases.  Due to statistical averaging, the 
transverse component from one nuclei cancels another, while the components along 
the z-axes add.  There are more nuclei in the spin up state, resulting in a net 
magnetization along the +z-axis (b)). 
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 In an external magnetic field, valence electrons circulate.  This creates a local 

diamagnetic current, which in turn generates a small magnetic field opposite to the main 

field (Pavia et al., 2009; Ross et al,. 2007).  The net magnetic field, i.e. the sum of the 

main magnetic field and these small local fields, is referred to as B.  In effect, the proton 

is ‘shielded’ slightly and will resonant at a lower frequency.  The Larmor frequency is 

now dependent on B, not Bo (Jordan and Cheng, 2008; Pavia et al., 2009).  These small 

changes in the Larmor frequency are referred to as the chemical shift, δi

610x
ref

refi
i ω

ωω
δ

−
=

, (Pochapsky and 

Pochapsky, 2006) and may be calculated with the following: 

 (Equation 3.4) 

Here, ωi is the Larmor frequency of the metabolite of interest and ωref

Nuclei from different molecules experience a different chemical environment.  In effect, 

molecules have unique chemical shifts.  This aids in the identification of compounds 

(Claudino et al., 2007; Jordan and Cheng, 2008).  The fact that each compound provides 

a unique and characteristic spectrum makes NMR spectroscopy attractive for 

metabolomics experiments (Saielli and Bagno, 2009; Verpoorte et al., 2008; Wishart, 

2008). 

 is the 

Larmor frequency of a standard molecule.  The units are parts per million (ppm).  

Common choices for the internal standard include 3-trimethylsilylpropionic acid (TPS) 

with the methylene groups deuterated to avoid unwanted peaks (Beckonert et al., 2007; 

Pavia et al., 2009) or the methyl peak of 2,2-dimethyl-2-silapentane-5-sulfanate (DSS) 

(Wiljie et al., 2006).  The chemical shift is independent of the field strength (and hence 

the chemical properties) which allows for standard identification among spectrometers. 

 NMR occurs when a nuclear spin changes spin states after the absorption of a 

quantum of energy that is equal to the difference between the two spin states.  The energy 

is supplied through a radiofrqeuncy (RF) pulse with a frequency that matches the Larmor 

frequency of the proton and satisfies the following: 

π
γ

υ
2

oBh
hE ==∆  (Equation 3.5) 

Where h is Planck’s constant (6.26 x 10-34

 

 Js) and ν is the frequency in Hz. 
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3.2.2 Excitation and Detection of the Signal 

 NMR is achieved by tipping the magnetization into the x-y plane by means of a 

time-dependent RF pulse which has a frequency that matches the Larmor frequency of 

the protons at the center of the spectrum.  If the RF pulse is at the correct frequency, it 

creates a new time-dependent oscillating effective field, known as the B1 field, in the 

transverse plane.  By convention, we align the B1

 

 field with the +x-axis in the rotating 

reference frame.  This field applies a torque to the magnetization, causing it to rotate 

about the +x-axis onto the x-y plane (figure 3.3). 

 

 The angle (in radians) at which the net magnetization rotates (also referred to as 

the nutation angle), depends on the length of time the pulse is applied, τ, and is given by: 

τγθ 1B=  (Equation 3.6) 

 Microscopically, the absorption of the RF energy will promote some nuclei to the 

spin down state (Dunn and Ellis, 2006; Goldsmith et al., 2010) and forces all magnetic 

moments into phase coherence (figure 3.4).  Summing the magnetic moments will result 

in the net magnetization, which has rotated away from the +z-axis by the angle given by 

equation 2.6.  As an example, a 90o

 Only magnetization in the x-y plane can be detected by the receiver coils.  In the 

laboratory frame of reference, the net magnetization is precessing about the external 

magnetic field at its Larmor frequency.  The rotating nuclei induce an electrical current in 

the receiver coils which can be registered as the time-domain signal.  The magnitude of 

the current is proportional to the net magnetization.  This will be covered in more detail 

in section 3.2.4. 

 pulse rotates the net magnetization to the x-y plane; 

here the number of nuclei in the spin up and spin down states are equal and all spins point 

in the +y direction. 

x 

y 

z 

B1 

θ 

Figure 3.3: Application of an RF excitation 
pulse along the +x-axis of the rotating 
reference frame exerts a torque on the net 
magnetization, causing it to rotate towards the 
+y-axis.  The angle of rotation is given by 

τγθ 1B= .  In most NMR experiments, the B1 
field is constant, so the angle of rotation is 
dependent on the duration of the pulse. 
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 NMR samples are often heterogeneous, so protons experiencing different 

magnetic fields precess at different rates.  In the rotating frame of reference, protons 

resonating at the Larmor frequency remain stationary along the +y-axis, while 

metabolites resonating at different frequencies will rotate about the z-axis (figure 3.5).  

Protons resonating at higher rates spin clockwise, while those resonating at lower 

frequencies spins counter clockwise.  This process is referred to as dephasing. 

 

 

 

3.2.3 Relaxation 

 The rotating nuclei attempt to return to their ground states by emitting a quantum 

of energy.  Macroscopically, the net magnetization will decay in the transverse plane and 

rebuild along the +z-axis until it re-establishes its equilibrium state.  This process is 

known as relaxation and is presented in figure 3.6. 

 There are two forms of relaxation: longitudinal or spin-lattice relaxation 

(characterized by the time constant T1) and transverse or spin-spin relaxation 

(characterized by the time constants T2
*

2T and ).  The mechanisms of relaxation are the 

same for both cases, but T1 is always larger than T2 (Pochapsky and Pochapsky, 2006). 

x 

y 

z 

Mo 

x 

y 

z 

ω > ωref 

ω < ωref 

ωref 

Figure 3.4: The RF pulse forces the 
microscopic nuclei into phase coherence.  If the 
pulse is a 90o pulse, the net magnetization lies 
along the +y-axis and equal numbers of nuclei 
are in the spin up and spin down states. 

Figure 3.5: Dephasing of the Magnetization due 
to different Larmor frequencies.  Protons 
experience different magnetic fields due to 
electron shielding.  This results in nuclei 
precessing at different Larmor frequencies due to 
different effective magnetic fields.  Protons that 
precess faster than the reference proton spin 
clockwise with respect to the reference signal, 
while protons that precess at a slower rate spin 
counter-clockwise.  In NMR, the reference 
proton generally precesses at the slowest rate. 
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 Longitudinal relaxation is the first order relaxation and describes process of 

rebuilding the magnetization along the +z-axis.  Nuclei return to the spin-up state with 

the release of an energy quantum to the surroundings in the form of heat.  The initial 

magnitude of the acquired signal is proportional to the transverse magnetization.  For 

optimal results, it is recommended to wait approximately 5T1

 Because of the small difference in energy between the spin states, nuclear spin 

transitions are not spontaneous.  Relaxation processes require stimulation by the chaotic 

tumbling of nearby molecules at the proton’s Larmor frequency. 

 between excitation pulses 

to allow the magnetization to re-establish equilibrium (achieving 99.3% of the full 

magnetization). 

 According to the Bloch theory of NMR, the rate of recovery of the bulk 

magnetization is: 

1T
MM

dt
dM ozz −

=   

 Where M

(Equation 3.7) 

z is the magnitude of the magnetization along the z-axis, Mo is the 

magnetization at thermal equilibrium, and T1 is the first order time constant (or 

longitudinal relaxation time) for the process.  Solving the differential equation and 

assuming an initial starting point of no net magnetization (after a 90o














−=

−
11 T
t

oz eMM

 pulse or after 

inserting the sample into the field), the magnetization is: 

  (Equation 3.8) 

Figure 3.6: T1 and T2 Relaxation.  This figure 
shows the magnetization changes over time.  At 
time, t = 0 s, the magnetization is shown in light 
grey and gradually gets darker as time progresses.  
The transverse magnetization will decay 
exponentially with time and rebuild along the +z-
axis.  The rate at which these processes occur are 
dictated by the T1 and T2 relaxation constants.  
For small mobile molecules, T1 ~ T2. 



26 
 

 The transverse magnetization decays by means of transverse, or T2, relaxation.  

This form of relaxation involves the exchange of energy between nearby nuclei; a so-

called flip-flop process.  Transverse relaxation is a consequence of inhomogeneities in 

the main magnetic field and differences in the local magnetic fields resulting from inter 

and intra-molecular interactions.  The process is also referred to as spin-spin relaxation 

since energy is transferred between like nuclei.  The nuclei permanently lose their phase 

coherence as a result of small differences in the local magnetic fields.  The loss of phase 

coherence is characterized by the time constant T2

Alternatively, 

. 

*
2T  relaxation also accounts for additional loss of phase coherence 

resulting from inhomogeneities in the external magnetic field.  In this case, nuclei 

resonate at different frequencies.  If the nuclei do not diffuse in the sample, this loss of 

phase coherence may be undone.  *
2T  is always faster than T2

)(
111

22
*

2 oBTTT ∆
+=

 relaxation as a result of 

additional factors.  The relaxation rate is defined as: 

  (Equation 3.9) 

 Where *
2T  is the net relaxation time constant, T2 is the time constant for 

relaxation related to inter and intra molecular interactions and T2(∆Bo

*
2T

) is the relaxation 

time constant due to inhomogeneities in the main magnetic field.   approaches T2

 The Bloch equation for the transverse magnetization in the rotating frame is: 

 in 

well shimmed magnet fields. 

*
2T

M
dt

dM xyxy −=   (Equation 3.10) 

The transverse magnetization is attained by solving the differential equation: 

*
2T
t

oxy eMM
−

=   (Equation 3.11) 

 The widths of NMR resonances are inversely proportional to *
2T .  For small *

2T , 

the frequency differential between like nuclei increases, thus leading to spreading in the 

frequency regime (Claridge 2009).  In general, proteins and macromolecules have broad 

peaks, while small molecules have sharper peaks (Beckonert et al., 2007) as a result of 

the *
2T  relaxation time constants. 
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 For single exponential relaxation, the lineshape is approximately Lorentzian with 

a half-height linewidth equal to: 

*
2

2/1
1
Tπ

υ =∆   (Equation 3.12) 

 Small, rapidly tumbling spin ½ nuclei in a low-viscosity solute, T1 ~ T2 
*

2T~ , 

which are on the order of 1-3s.  In contrast, larger, slower tumbling molecules have T1 

times that are much larger than T2.  Macromolecules often have very short T2

 

 times 

(order of ms), resulting in broader NMR peaks. 

3.2.3.1 Mechanisms for Relaxation 

 There are four main mechanisms by which stimulated emission occurs: the 

dipole-dipole interactions, chemical shift anisotropy (CSA), spin rotation and 

quadrupolar mechanisms.  For small, spin ½ nuclei, dipole-dipole interactions are the 

dominant mechanism for relaxation.  Such interactions are important for signal 

enhancement of urinary metabolites when using the 1-D NOESY pulse sequence. 

 In dipole-dipole interactions, the magnetic fields from two nuclei interact as they 

near one another.  These interactions include attraction and repulsion, depending on the 

relative orientation of the dipoles.  In single, slowly tumbling nuclei, the dipolar 

orientations are invariant, but their relative positions in space change with time.  As the 

molecule tumbles, the local magnetic fields experienced by one nucleus by another 

changes.  The nuclei will relax if the molecule is tumbling at the appropriate frequency.  

Protons in a dilute solution tend to relax slower due to the limited numbers of 

neighbouring magnetic dipoles.  In effect, these protons tend to saturate and will not fully 

recover before the next excitation pulse.  This leads to smaller spectral areas.  

Alternatively, a proton may relax by interacting with an unpaired electron.  The magnetic 

moment for electrons is over 600 times greater than that for a proton, so this mechanism 

for relaxation is highly effective and is often referred to as paramagnetic relaxation. 

 The remaining three processes are not important for our application and will only 

be described briefly here.  Chemical shift anisotropy results from an unsymmetrical, or 

anisotropic, electron distribution in the chemical bonds.  The local field experienced by 

the nucleus is dependent on the orientation of the bond with respect to the applied static 
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field and will average out in rapidly tumbling molecules.  Spin-rotation relaxation is most 

effective for small, symmetrical molecules or freely rotating methyl groups.  The 

molecular magnetic moments are generated by the rotating electronic and nuclear charges 

and fluctuate as a result of molecular collisions.  The efficiency of the process is 

dependent on the tumbling rates, with higher frequencies improving the efficiency.  

Quadrupolar relaxation is only relevant for nuclei with a nuclear spin quantum number 

greater than ½ and is often the dominant mechanism for relaxation for these molecules.  

Quadrupolar nuclei possess both a magnetic dipolar and an electric quadrupolar moment.  

The quadrupolar moment is influenced by electric field gradients about the nucleus and 

will relax if the changes occur at the correct frequency.  The efficiency of quadrupolar 

relaxation depends on the magnitude of the quadrupolar moment and the magnitude of 

the electric field gradient. 

 

3.2.4 The NMR Signal 

 The rotating magnetization induces a current in the receiver coil.  The magnitude 

of the induced current is proportional to the magnetization in the transverse plane and 

decays exponentially with a time constant *
2T  as the nuclei relax. The signal is known as 

the free induction decay (FID).    The FID is a superposition of the cosine-modulated and 

T2

[ ] 2ˆ)2sin(ˆ)2cos()( 0,
T
t

i
ii

i
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−

∑ +≈ ππ

-damped contributions from all nuclei.  The net magnetization is represented as: 

 (Equation 3.13 a) 

)()( tMctM molecule
j

j
jtotal ∑=     (Equation 3.13 b) 

 Where i
zM 0,  is the magnetization from a single molecule, moleculeM  is the net 

magnetization for each i spin type, and totalM  is the magnetization from all j types of 

molecules resonating at a frequency f,i with a concentration cj

 

.  The Fourier transform of 

equation 3.13 b leads to the spectrum.  The spectrum of each molecule is a series of 

defined resonant lines, and the spectrum of the mixture is a linear combination of the 

concentration-weighted summation of these molecular spectra (Ross et al., 2007).  The 

linearity of the summation allows for accurate quantification of metabolites. 
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DoX SNBSignal 23γ=

3.2.4.1 Signal to Noise Ratio 

 The detected NMR signal is dependent on the gyrometric ratio of the nuclei, γ, 

the number of spins in the sample, N, the external magnetic field, Bo

   (Equation 3.14) 

, the sensitivity of 

the detector and noise.  The signal is linearly dependent on the number of spins as each 

magnetic moment induces a current in the receiver coil through electromagnetic 

induction.  There is a square dependence on the magnetic field.  One factor comes 

directly from the high-temperature approximation of Boltzmann’s law, while the other 

comes from the induced current in the detector coil.  The noise-free signal may be 

represented as: 

 Where SD describes the detector sensitivity and noise.  The use of a cold head 

probe, which operates at a few Kelvin, will improve the SD

 The signal to noise ratio may be enhanced by averaging multiple transients 

(Evilia, 2001).  The noise is predicted to be ‘white’ or uncorrelated, and would increase 

by the square root of the number of scans (Szantay, 1992).  Conversely, the signal is 

stable, and would increase linearly with each scan (Ross et al., 2007).  To a first 

approximation, the signal to noise ratios of the FID is proportional to B

 parameter.  The low 

temperatures serve to dramatically reduce resistance in the wires, and hence reducing 

electronic noise.  Another method is to reduce the size of the detector (Ross et al., 2007), 

but it is not recommended to use a NMR tube smaller than 5mm in diameter for 

metabolomics experiments (McKay, 2009).  In addition, the scan time may be increased 

to allow for full relaxation or more transients (Dunn and Ellis, 2006). 

o
3/2

 During acquisition, the receiver coil digitizes the FID using an analog-to-digital 

converter (ADC) (Szantay, 1992).  The digitization rate should be greater than double the 

highest frequency (or double the spectral width (Evilia, 2001)) to prevent back fold of the 

data.  This is commonly referred to as the Nyquist criterion.  Under sampling will cause 

high frequency signals to be falsely represented at a lower frequency.   A low-pass filter 

can be used before digitization to prevent fold over from noise components by selectively 

attenuating the signal from the high frequency components, which are often dominated 

by noise. Szantay (1992) predicted that noise could be up to 41% greater at the spectrum 

edges than at the center due to fold over. 

 (Szantay, 

1992). 
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 The receiver coil does not collect the FID from time 0 s, but begins after a short 

dead time after the RF pulse has been turned off (Szantay, 1992).  The idea is to prevent 

pulse breakthrough, which will contaminate the first few available data points in the FID, 

leading to baseline distortions. 

 Szantay (1992) advises scientists to separate consecutive scans by 5T1

*
2T

 and to 

sample for at least 5 .  This will result in long scan times, but will prevent wiggles in 

the baseline caused by cutting off the spectrum too soon.  Short acquisition times are 

more detrimental to sharp resonance peaks since these resonances often have longer T2

 The signal to noise ratio and peak shape can be improved by multiplying the FID 

with an exponentially decaying window function prior to the Fourier Transform.  The 

exponential emphasises the contributions from the lower frequency resonances as it 

attenuates high frequencies and has the form e

 

relaxation constants. 

-πLBt

 

, where LB is the line broadening (Ross 

et al., 2007).  Application of the window function will accelerate the apparent decay of 

the FID, thus leading to line broadening.  The optimal exponential weight is one that 

matches the time constant of the exponential decay; this is known as the matched filter 

(Szantay, 1992). 

3.2.4.2 Peak Splitting Due to J-Coupling 

 Scalar coupling, or J-coupling, is the interaction between active spins sharing a 

common electronic orbital.  The nuclei involved are often separated by less than 5 

chemical bonds in the same molecule.  The magnetic field experienced by one nucleus, 

A, from the other, B, is dependent on the relative orientation of the magnetic moments.  

The coupling causes splitting of the resonances (Rule and Hitchens, 2006).  The idea is 

that the polarization of one nuclear spin will influence the polarization of the surrounding 

electrons.  This subsequent polarization will alter the local magnetic field experienced by 

the coupled nuclei; whether the field increases or decreases depends on the polarization 

of the first nucleus. (Rule and Hitchens, 2006). 

 Separation between the spectral peaks is defined by the degree of electronic 

overlap between the two spins and is characterized by a coupling constant, nJAB, where n 

is the number of intervening bonds and A and B identify the two coupled spins (Pavia et 

al., 2009; Rule and Hitchens, 2006).  nJAB is usually given in Hz and is equal to the 
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observed frequency shift between split resonance (Rule and Hitchens, 2006).  It is 

independent of the magnetic field strength (Pochapsky and Pochapsky, 2006). 

 J-coupling may be weak or strong, depending on the relative magnitude of the 

coupling constant and the observed separation between the peaks.  The strength of the 

coupling is related to the magnitude of the coupling constant and the difference in the 

resonances of the nuclei.  At high magnetic field strengths, dispersion of nuclei is on the 

order of kHz.  Consequently, the spin system will be weakly coupled for our experiment.  

J-coupling through multiple chemical bonds is greatly decreased (Rule and Hitchens, 

2006). 

 Spin ½ nuclei have two possible spin states.  As previously suggested, the 

populations of nuclei in each spin state are approximately equal.  The orientations of 

surrounding coupled nuclei will influence the net field experienced by a nucleus.  

Depending on these orientations, the nuclei may experience a stronger or weaker 

magnetic field (Rule and Hitchens, 2006).  The different magnetic field will lead to a 

shift in the resonance of the nuclei, causing the spectral peak to split.  The separation 

between the peaks is equal to the J-coupling (Rule and Hitchens, 2006).  The shifts in 

frequency of both nuclei are identical, so the peak is centered about its chemical shift 

(Rule and Hitchens, 2006). 

 For the example of a two nuclei system, half of the nuclei will experience a larger 

field, while the other half experiences the weaker field.  The spectral peak will split in 

half, with each half having an equal intensity; this is known as a doublet.  Triplet 

resonances occur when two nuclei have identical chemical shifts and couple with another 

nucleus.  The two like nuclei are said to be magnetically equivalent and will not couple 

with each other.  The resultant triplet has peak intensities with ratios 1:2:1.  For n 

equivalent coupled nuclei, the spectral peak will split into (n+1) peaks with intensities 

following the binomial distribution (Minch, 1994).  The distance between consecutive 

peaks is nJAB

 

 (Rule and Hitchens, 2006). 

3.2.4.3 Causes of Spectral Distortion 

 Factors that cause spectral distortion include clipping of the FID vertically, 

truncating too many data points at the start of the FID (dead time), truncating the end of 

the FID too early, or using too short an acquisition and relaxation delay (Szantay, 1992). 



32 
 

 Vertical truncation will result if the receiver coil gain is set too high.  This results 

in an ADC or memory overload.   High concentration samples are at risk of having an 

ADC overload due to the large magnetization.  The FID can induce currents in the 

receiver coil, which in turn produce weak RF fields.  These fields work against the FID, 

which results in a faster apparent T2

 Truncating the early parts of the spectrum could have profound effects on the 

phasing (Szantay, 1992).  Generally, this problem is overcome through manual phasing 

as long as the dead time was short enough to prevent excessive loss of information.  

Nuclei with short T

 relaxation time, and thus broadens the resonance.  

This process is known as radiation damping.  The large water signal is prone to this effect 

as its tails may extend over a large range of frequencies (Szantay, 1992). 

2

 In zero-filling, a series of zeros are appended to the end of a FID to improve the 

resolution without having to increase the acquisition time.  Nonetheless, truncating the 

FID too early, or zero filling when the FID has not reached zero magnitude will produce 

wiggles in the baseline.  The truncation acts as a step function at the end of the FID, thus 

introducing a plethora of frequency signals (Szantay, 1992).  Despite improvements in 

resolution, zero-filling by more than a factor of 2 is unnecessary (Evilia, 2001). 

 time constants are especially affected. 

 

3.3 Nuclear Overhauser Effect (NOE) and NOESY Pulse Sequence 

3.3.1 Requirement for Water Suppression 

 Urine samples contain metabolites at mM concentrations and water protons at a 

concentration of 110 M (Lippens et al., 1995).  At these concentrations, metabolites are 

virtually undetectable unless water suppression is used to significantly reduce the 

dynamic range (Goldsmith et al., 2010; Mo and Raferty, 2008; Potts et al., 2001; Vion 

Dury, 1993).  In addition, the large water resonance may result in baseline distortions, 

and thus make quantification of metabolites difficult (Aranibar et al., 2006).  Methods of 

water suppression rely on null excitation, relaxation or selective irradiation of the solvent 

signal (Lauridensen et al., 2008). 

 Solvent suppression is most effective on symmetric, tall and narrow peaks, as a 

majority of the solvent resonances are confined to a narrow frequency window and 

overlap with other metabolites is less likely (McKay, 2009).  Therefore, a homogenous 

magnetic field is a requirement for effective water suppression (Viant et al., 2007). 
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 The standard approach for water suppression involves the pre-saturation of the 

solvent resonance with a weak irradiation during the relaxation delay (Aranibar et al., 

2006; Viant et al., 2007).  This technique will reduce the intensity of proton resonances in 

fast exchange with water protons (Viant et al., 2007; Vion Dury, 1993).  Therefore, it is 

preferred to use an irradiation with lower power, as high power pulses will also attenuate 

the signals from neighbouring signals (McKay, 2009).  This technique is preferred for 

samples with small molecules (Mo and Raftery, 2008).  However, pre-saturation is not 

sufficient when a strong water signal is present, therefore, it is often paired with a 1-D 

NOESY experiment (Viant et al., 2007).  The pulse sequence exploits the nuclear 

overhauser effect (NOE) to selectively saturate the water signal, while maintaining the 

signals from the lower concentrations metabolites (Claridge 2009) and is shown in figure 

3.7.  Other choices for water suppression in metabolomics experiments include 

WATERGATE and RECUR (Wishart, 2008). 

 

3.3.2 Nuclear Overhauser Effect (NOE) 

 The nuclear overhauser effect (NOE) is a consequence of through-space 

interactions between nuclei.  Such interactions can cause an enhancement in the intensity 

of one resonance after the saturation of another resonance.  Unlike J-coupling, NOE 

interactions need not share an electronic orbital, but must be close in space.  The strength 

of the NOE is dependent on the spatial distance between the spins and falls off as the 

inverse sixth power of the spacing (α 1/r6

The system of a NOE interaction consists of two unique spin nuclei, I and S, such as 

those from two distinct metabolites.  The S spins will relax to equilibrium through T

) (Willimason, 2008). 

1

 The NOE is defined as the fractional change in intensity of one NMR resonance 

when another resonance is perturbed as a result of cross relaxation (Kumar et al., 1981).  

The perturbation often takes the form of saturating one resonance using weak irradiation 

or inversion by applying a 180

 

relaxation, as well as through dipole-dipole coupling with nearby nuclei (Kumar et al., 

1981; Williamson, 2008). 

0 degree RF pulse (Claridge 2009).  The enhancement, ηI

100 )(
0

0 x
I

II
Si

−
=η

, 

is calculated using: 

   (Equation 3.15) 
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Here I is the intensity of the magnetization in the presence of NOE, I0 is the 

intensity of the magnetization with out the NOE and ηI

 

{S} represents the observed NOE 

for spin I when spin S was perturbed.  The enhancement is about 50% for small 

molecules. 

3.3.3 NOESY Pulse Sequence 

 The standard 1-D NOESY pulse sequence is:  

 

RD – 90o – t1 – 90o – tm – 90o

 

 – AQ 

 A schematic of the pulse sequence is shown in figure 3.7.  The relaxation delay, 

RD, is typically a few seconds duration.  During this time the water resonance is 

selectively irradiated with the B1 RF pulse to saturate the signal (Bollard et al., 2001; 

Lippens et al., 1995).  t1 is a fixed interval during which the nuclei precess freely.  This 

allows for measurements of frequency related data, as well as for frequency labelling 

(Macura and Ernst, 2002).  The second 90o pulse serves to align the magnetization along 

the –z-axis, and thus enabling the build up of NOE through cross-relaxation (Macura and 

Ernst, 2002).  tm is the mixing time.  During this time interval, the water resonance is 

selectively irradiated for the second time to allow for the build up of NOE from the nuclei 

of interest (Foreshed et al., 2005; Lippens et al., 1995; Potts et al., 2001).  The third 90o

 The time to repetition, t

 

RF pulse returns the magnetization to the x-y plane so that the FID may be acquired 

(Macura and Ernst, 2002).  The water resonance will return to equilibrium during 

acquisition (AQ), but will be suppressed to zero again during the relaxation delay 

(Lippens et al., 1995). 

R

 

, is dependent on the pre-saturation interval and 

acquisition time.  It is important that the relaxation delay is sufficiently long to suppress 

the water peak (Lauridensen et al., 2008).  The net magnetization from water should be 

near zero at the start of the acquisition so that the lower concentration metabolites may be 

detected (Lippens et al., 1995).  Also, the acquisition time should be set to allow for near 

complete relaxation of the transverse magnetization (Lauridensen et al., 2008). 



35 
 

 

 The 1-D NOESY pulse sequence is robust, requiring little optimization (Potts et 

al., 2001).  This attribute makes it easy to use (Lauridensen et al., 2008), thereby making 

it attractive for high throughput applications, such as screening.  It requires minimal first 

order phase correction and baseline adjustments (Potts et al., 2001) as it provides efficient 

water peak suppression (Lauridensen et al., 2008).  Water suppression has been enhanced 

from the simple pre-saturation experiment, while adding minimal time to the experiment 

(Bollard et al., 2001).  It does, however, distort the baseline about the water resonance 

(Aranibar et al., 2006), so it is preferred to quantify metabolite resonances far from the 

water resonance whenever possible. 

 In one study, Potts et al. (2001) showed that the greatest source of variability in 

NMR experiments results from the water suppression technique and timings used as well 

as variations in the baseline and differential attenuation of resonances near the water 

resonance.  PCA scores maps revealed that experiments using varying magnetic field 

strengths were comparable (Potts et al., 2001; Malz and Jancke, 2005).  In addition, 

Lewis et al. (2007) found that analytical precision is independent of the chemical 

properties of the target molecules.  Regarding spectral pre-processing, both Aranibar et 

al. (2006) and Malz and Jancke (2005) found that the best results were obtained after 

manual phasing and baseline corrections. 

Figure 3.7: The standard 1-D NOESY pulse sequence.  RD represents the relaxation 
delay during which time the water resonance is selectively irradiated with a weak RF 
pulse.  t1 is a fixed interval used to allow for phase information to be acquired.  tm is the 
mixing time.  The water resonance is again irradiated to allow for NOE build up of the 
protons of interest. 
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Chapter 4 
Analytical Techniques for 
Metabolomics Experiments 
 

This Chapter will outline analysis and chemometric techniques often used to 

study metabolism.  The main analytical techniques include 1

 

H NMR Spectroscopy and 

mass spectrometry, paired with liquid or gas chromatography.  Once the metabolite 

content is known, multivariate techniques, such as principal component analysis or partial 

least squares discriminant analysis are performed to reduce the dimensionality of the data 

set and to discovery patterns in the data. 

4.1 Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is a popular analytical 

technique since biofluid sample collection (i.e. urine, saliva) can be non-invasive (Saude 

et al., 2007),  it is non-destructive (Dunn and Ellis, 2005; Goldsmith et al., 2010), 

provides a rapid, high-throughput methodology (Dunn and Ellis, 2005; Verpoorte et al., 

2008), is highly reproducible (Kim et al., 2008; Viant et al., 2007), is not biased towards 

the detection of certain metabolites (i.e. it is non-selective) (Goodacre et al., 2004; 

Kaddurah Daouk et al., 2008), and can simultaneously analyze all metabolites present in 

the biofluid (Griffin and Kauppinen, 2007; Vion-Dury et al., 1993).  The output spectrum 

is simply the sum of all spectra of individual metabolites present in the sample 

(Verpoorte et al., 2008).  NMR experiments generally require minimal sample 

preparation, often consisting only of an adjustment of the pH and addition of an internal 

standard (Ross et al., 2007).  NMR spectroscopy is a cost effective method after the 

spectrometer has been purchased, thus making it ideal for screening large populations 

(Lenz and Wilson, 2007). 

NMR spectra provide qualitative and quantitative information of the metabolic 

content of a biofluid or tissue extract (Forshed et al., 2005; Um et al., 2009).  The 

concentrations of metabolites may be determined by comparing the area of each peak 

with that of the internal standard, such as 3-trimethylsilylpropionic acid (TPS) (Beckonert 
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et al., 2007) or 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) (Wiljie et al., 2006).  Once 

a pulse sequence is selected for the experiment, it is pertinent to keep the timings, such as 

the relaxation delay or mixing time, constant for quantitative purposes.  A new set of 

Nuclear Overhauser Effect enhancements (NOE) are obtained for each mixing time in a 

NOESY experiment (Kumar et al., 1981).  It is well established that the concentration is 

directly proportional to the area of the peak (Dunn and Ellis, 2005).  Depending on the 

strength of the magnetic field, NMR spectroscopy can measure metabolites in the mM 

and µM ranges (Nordstrom and Lewensohn, 2010; Slupsky et al., 2007). 

Larger magnetic fields are known to improve signal dispersion and sensitivity, 

thus resolving metabolite peaks to a better extent (Lenz and Wilson, 2007).  This is 

beneficial when analyzing low concentration metabolites. The sensitivity of the 

instrument can be further improved with the use of a cryoprobe (commonly referred to as 

a cold probe for Varian systems) (Lenz and Wilson, 2007).  This hardware addition 

decreases electronic noise by operating at liquid helium temperatures, thus allowing for 

improved signal to noise ratios – by up to a factor of 4 (Lenz and Wilson, 2007). 

A few drawbacks with NMR spectroscopy include the heavy overlap of 

metabolite resonances (Holmes et al., 2000; Ludwig et al., 2009), chemical shift 

variations due to changes in concentration, pH and ionic strength (Miyataka et al., 2007; 

Spratlin et al., 2009), poor water suppression (Keun et al., 2002), baseline distortions 

(Keun et al., 2002) and chemical exchange between metabolites, particularly with water 

(Verpoorte et al., 2008). 

Resonance overlap is a problem with 1

Differences in the pH, concentration and ionic strengths will cause variations in 

the chemical shifts of resonances due to alterations in the acid-base equilibrium and 

solute-solute interactions (Spratlin et al., 2009).  Miyataka et al. (2007) observed that the 

chemical shift of citrate varied significantly between samples, and that the shift was 

approximately linear with the sample pH.  No other metabolite demonstrates such a 

H NMR spectra since the scale runs 

between 0 and 10 ppm (Nicholson et al., 2007; Potts et al., 2001) and thousands of 

metabolites may contribute to the signal (Claudino et al., 2007; Goldsmith et al., 2010).  

Several endogenous metabolites contain more than one resonance (Ala Korpela et al., 

2008), which can complicate analysis with the conventional method of binning where the 

spectra are generally divided into regions of width 0.04 ppm.  In addition, overlapping 

signals make profiling less accurate. 
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dramatic change in chemical shift with pH (Miyataka et al., 2007).  Failure to consider 

variations in the chemical shift of citrate with pH could introduce artefacts if spectral 

binning is used. 

Dilute samples often suffer from poor spectral quality due to incomplete water 

suppression (Keun et al., 2002).  It is essential to suppress the water resonance as much 

as possible so that nearby peaks can be resolved.  Metabolites of interest are often present 

in mM concentrations while water protons are 110M (Saude et al., 2006).  Potts et al., 

(2001) found that the water suppression scheme used greatly influenced the baseline and 

degree of attenuation of signals near the water resonance.  The NOESY pulse sequence 

showed differences based on varying mixing times (Potts et al., 2001).   Poor water 

suppression can elevate the baselines on either side of the peak, which adds to the total 

peak height and thus affects quantification (Saude et al., 2006).  Further, incomplete 

water suppression can cause dynamic range problems if the water resonance is not 

suppressed to reflect a mM concentration (Keun et al., 2002). 

Proton exchange between OH, NH or SH chemical groups with water can have 

profound effects on the quantification of these metabolites as the resonance peaks will 

also be suppressed and broadened due to an increased T2

 

 relaxation rate (Verpoorte et al., 

2008).  Peak broadening degrades the spectral resolution (Reo, 2002).  Saude et al. (2006) 

studied the effects of various water suppression techniques.  They found that the tnnoesy 

pulse sequence provided the greatest degree of water suppression across the entire 

spectrum and had the highest degree of quantitative accuracy. 

4.1.1 Spectral Processing 

The accuracy of metabolite concentration quantification is largely dependent on 

the combination of pre-processing techniques, such as phasing or baseline correction, and 

the profiling technique. 

A common methodology is to bin the spectra.  This technique involves dividing 

the spectrum into smaller segments, often of width 0.04 ppm, and defining each bin as a 

variable (Ross et al., 2007).  However, it is not clear if an alteration in the magnitude of a 

single bin is a result of a metabolic change or an artefact resulting from an altered 

chemical shift (Slupsky et al., 2007).  Some groups attempt to minimize variations in 

chemical shift by combining adjacent bins so that the full resonance is contained within 
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the larger bin (Ross et al., 2007).  Combing bins will degrade the analytical resolution as 

multiple resonances may be located in that bin (Forshed et al., 2005; Madsen et al., 

2010).  This is true in cases where one metabolite shifts to another bin as a result of pH or 

ion concentration.  The nature of spectral binning places greater emphasis on the higher 

concentration metabolites.  Therefore, low concentration metabolites may not be detected 

(Weljie et al., 2006).  Binning is prone to baseline errors (Wiljie et al., 2006).  Incomplete 

water suppression can elevate the baseline on either side of the water resonance and cause 

further baseline distortions (Saude et al., 2006). 

Alternatively, targeted profiling, which consists of matching pre-established 

metabolites from a library to the spectrum, provides better quantitative accuracy 

(Kkaddurah-Daouk et al., 2008).  Saude and Sykes (2006) showed that targeted profiling 

provides accuracies in excess of 90% for their samples.  Slupsky at al. (2007) measured 

the coefficient of variability for metabolite near the limit of detection and found that the 

precision is acceptable for clearly identifiable metabolites.  The coefficients ranged from 

1% for the larger concentration metabolites to 41% for metabolites near the limit of 

detection.  It is suggested that the larger coefficients are a result of artefacts from the 

baseline, overlap of resonances and noise (Slupsky et al., 2007). 

Studies have evaluated the reproducibility of NMR spectra between facilities and 

between spectrometers.  One such study was completed by Keun et al. (2002).  To assess 

the analytical reproducibility of metabolomics protocols, sample preparation and NMR 

data acquisition were performed at two sites, one site using a 500 MHz spectrometer and 

the other using a 600 MHz system.  Half of each urine sample was sent for analysis at 

each facility.  They found that despite using spectrometers operating at different 

frequencies, the datasets were extremely similar.  Observed differences were most often 

related to small changes in the chemical shift.  However, the main difference was 

contributed to the efficiency of the water resonance suppression.   The results show that 

the normal physiological variation within the control group (26%) or pre-dose group 

(17%)) accounted for five times as much of the total variability as the different 

spectrometers did (3%).  Further, samples considered outliers at one location were not 

outliers at the other.  Keun et al. (2002) suggest that this is due to sporadic differences in 

sample preparation. 
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4.1.2 Alternative NMR Techniques 

Other NMR techniques include 13C or 31P NMR experiments or magic angle 

spinning for tissue extracts (Griffin and Shockcor, 2006; Serkova et al., 2008). 

13C or 31P imaging allows for improved spectral resolution, but at the expense of 

lower sensitivity due to the lower natural abundance of these elements (Dunn and Ellis, 

2005).  13C imaging spreads the peaks over a spectral width of 200 ppm as compared 

to 1

2-D NMR experiments are useful in improving signal dispersion and exploiting 

connectivity between signals (Beckonert et al., 2007).  Most experiments combine 

experiments with 

H which encompasses the range between 0 and 10 ppm.  These techniques can be 

used in 2-D experiments to aid in the identification of metabolites (Serkova et al., 2008). 

1H, 13C, 15N and 31

Magic angle spinning NMR spectroscopy is used to profile the metabolites in a 

tissue extract (Griffin and Shockcor, 2004).  This method involves spinning the samples 

at 54.7

P nuclei to allow for identification of biochemical 

substances (Beckonert et al., 2007).  A few advantages of using a 2-D experiment include 

the reduced overlap of spectral peaks, thus allowing for direct measurement of these 

peaks (Lewis et al., 2007) and additional information regarding the multiplicity and 

coupling patterns of resonances (Beckonert et al., 2007).  However, this technique 

requires longer acquisition times, of the order of hours (Beckonert et al., 2007; Lewis et 

al., 2007), which makes it unsuitable for screening purposes.  In addition, 2-D cross 

peaks intensities are often influenced by a greater number of variables, including uneven 

excitation throughout the sample, non-uniform relaxation, evolution time and mixing 

times (Lewis et al., 2007). 

o with respect to the main magnetic field to reduce the physical effects that lead to 

line broadening (Griffin and Kauppenin, 2007).  The line broadening is a consequence of 

dipole coupling and tissue anisotropy in the semi-solid sample which scales as (3cos2θ-1) 

(Seierstad et al., 2008).  Studies have shown that aligning the sample at an angle of 54.7o 

with respect to the external magnetic field and then spinning the sample about its own 

axis reduces these interactions (Seierstad et al., 2008).  Though tissue extracts make the 

procedure more invasive, there is a gain in robustness as tissues are under greater 

homeostatic regulation and thus providing more consistent measurements of metabolism 

(Viant et al., 2007). 
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1H NMR spectroscopy provides diagnostic and prognostic information on 

cancers.  For this reason, most studies involving NMR applications use 1

 

H.  Applications 

of its use for cancer include breast, brain, head and neck, lymphomas, liver and prostate 

cancers (Griffin and Kauppinen, 2007), thought these studies have not attempted to 

screen for these cancers. 

4.2 Mass Spectrometry 

Mass spectrometry (MS) identifies metabolites based on the mass-to-charge ratio 

of the charged particles (Dunn and Ellis, 2005; Spratlin et al., 2009).   MS is a rapid, 

sensitive and selective technique which offers a plethora of qualitative and quantitative 

information (Dunn and Ellis, 2005).  It is estimated that the sensitivity is two orders of 

magnitude greater than NMR and measures metabolites with concentrations well below 

the mM range (Kaddurah Daouk, 2008).  Mass spectrometers operate by ion formation, 

separation of the ions by means of their mass-to-charge ratio and detection of the 

separated ions (Dunn and Ellis, 2005). 

MS is often paired with a chromatographic technique to separate metabolites.   

Liquid and gas chromatography (LC-MS and GC-MS) are the most commonly used 

techniques (Clarke and Haselden, 2008; Verpoorte et al., 2008).  Metabolites are 

identified by comparing the retention time or retention index and mass spectrum of the 

sample peaks with a commercial database containing pure metabolites under ideal 

circumstances. (Dunn and Ellis, 2005; Verpoorte et al., 2008).  However, the accuracy 

depends on the efficiency of the ion formation process (Griffin and Kauppenin, 2006).  

Care must be taken regarding the methods of extraction, quenching, and sample storage 

conditions as they can potentially alter metabolite structure, thereby introducing greater 

variability between samples (Spratlin et al., 2009). 

GC-MS is considered the gold standard for metabolomics (Dunn and Ellis, 

2005).  The technique first separates volatile and thermally stable compounds by GC, 

then detects ions with electron-impact mass spectrometers (Dunn and Ellis, 2005).  GC-

MS is biased towards detecting volatile, low molecular weight metabolites and requires 

derivatisation at room or elevated temperatures (Dunn and Ellis, 2005).  In fact, the 

spectrometer will only detect ions which may be derived.  The process can be time-

consuming, costly and runs the risk of losing metabolites (Spratlin et al., 2009).  Sample 
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stability may also be a concern; the presence of water can cause breakdown of the 

molecules.  However, extensive sample drying can reduce this reaction, but could also 

result in the loss of volatile metabolites (Dunn and Ellis, 2005). 

LC-MS is another combined system which separates metabolites by LC followed 

by electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) 

(Dunn and Ellis, 2005).  This technique may be performed at lower analysis temperatures 

and does not require sample volatility.  Electrospray instruments operate in positive and 

negative ion modes, so that a larger complement of metabolites may be analyzed (Dunn 

and Ellis, 2005).  Moreover, ionized metabolites are detected in either the positive or 

negative ion mode, but not both.  Metabolite identification is more difficult and time-

intensive in LC-MS since spectral libraries are not commonly available.  ESI is not 

effective with high concentrations of salts, acids or bases (Dunn and Ellis, 2005).  A 

majority of metabolomics studies using LC-MS focus on clinical applications (Dunn and 

Ellis, 2005). 

Quantification of the metabolites generally requires external calibration or a 

response ratio (peak area of metabolite / peak area of internal standard) (Dunn and Ellis, 

2005; Verpoorte et al., 2008).  However, external calibration is laborious and not all 

metabolites are available (Dunn and Ellis, 2005).  A large numbers of unknown peaks 

will degrade the quality of the analysis.  One solution is to identify only those metabolites 

that show a significant change between samples (typically of the order of 20-40 

metabolites) (Verpoorte et al., 2008).  Each MS technique has a bias towards certain 

compound classes resulting from the ionization technique used, chromatography and 

detector capabilities (Weckwerth and Morgenthal, 2005). 

 

4.3 Statistical Significance for Univariate Statistics 

When simultaneously testing a large number of variables, there is an increases 

risk of obtaining a false positive result (Broadhurst and Kell, 2006).  For this reason, it is 

important to update the significance limit, α, to reflect the larger number of variables.  

There are two approaches used in this thesis: the Bonferroni correction and the false 

discovery rate (FDR). 

The Bonferroni correction controls the overall error rate – known as the family-

wise error rate (FWER) – at α/N, where α is a predefined significance threshold (i.e. 0.05 



43 
 

or 0.01) and N is the number of variables.  The correction can be thought of as the 

probability of obtaining one or more false positives among all variables tested, not just 

the probability of obtaining a false positive for one variable (Broadhurst and Kell, 2006).  

That is, testing each variable individually at level α/N, will maintain a false positive rate 

less then α.  It is important to consider when N is large (Broadhurst and Kell, 2006).  For 

example, analysis on the metabolite ratios (n = 561) at an error rate of α = 0.05 would 

result in 28 false positives (0.05 x 561), whereas, the Bonferroni correction is expected to 

have zero (on average, there will be a probability of 0.05 false positives).  The Bonferroni 

correction is a more stringent test for significance when testing multiple hypotheses 

simultaneously (Broadhurst and Kell, 2006). 

An alternative method, known as the False Discovery Rate (FDR), was proposed 

by Benjamini and Hochberg.  In contrast to conventional methods, which define a limit of 

significance prior to testing, this technique controls the number of false positives within 

the set of defined significant discoveries.  The number of false discoveries accepted may 

be controlled at a higher level, thus increasing the power of the analysis.  This property is 

desired for screening purposes as it is advantageous to identify as many potential 

discoveries possible, while still controlling the number of false discoveries (Benjamini 

and Hochburg, 1995).  Following is a brief derivation of their method. 

Consider a study with m (null) hypotheses, of which, mo are true and m-mo







 >>= 0)0( R

R
FPERPFDR

 are 

statistically significant (null hypothesis rejected).  Assume that R hypotheses are 

suggested to be statistically significant.  There are two possibilities: 1) the hypothesis was 

correctly rejected (true positive result or TP) or 2) the hypothesis was incorrectly rejected 

(false positive result or FP).  The false discovery rate may be defined as the number of 

false positives (FP) divided by the total number of rejected hypothesis (R = FP + TP): 

  (Equation 4.1) 

Where E represents an expectation value of the false discovery rate and P(R>0) 

ensures that the FDR is controlled when no variables are significant.  Two important 

properties from this definition are: 1) In the limit where no result is statistically 

significant, the FDR method will produce the same results as the FWER (if FP = 0, then 

FDR = 0 and if FP > 0, then FDR = 1) and 2) when mo < m, the FDR is smaller than or 

equal to the FWER, and thus more statistically significant variables will be discovered 

while maintaining control over the number of false positives. 
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Consider testing H1, H2,…Hm hypotheses based on their corresponding p-values, 

P1, P2,…Pm.  Rank the p-values from smallest to largest such that P(1) ≤ P(2) ≤…≤ P(m) 

where P(i) corresponds with hypothesis H(i)

Let k be the largest i for which 

.  We define the following Bonferroni-type 

multiple-testing procedure: 

α
m
iP i ≤)( ;    (Equation 4.2) 

then reject all H(i)

The above definition controls the FDR at level α.  Significant discoveries are 

determined by comparing the p-value, p

 i = 1, 2, …, k 

i with iα/m, i = 1, 2,…,m., (i.e. pi

It is important here to understand the difference between the false positive rate 

and the false discovery rate.  The false positive rate is the rate at which true null 

hypotheses are incorrectly defined as significant, whereas the false discovery rate 

describes the expected proportion of false positives within the set of all tests defined as 

significant, i.e. the discoveries (Storey, 2002). 

 ≤ iα/m).   If it 

is smaller, then all preceding (smaller p-values) hypotheses are defined as significant.  

The maximum i at which the inequality is satisfied caps the number of defined significant 

discoveries such that the error rate is maintained at α. 

 

4.4 Chemometric Techniques 

Chemometric techniques are used to reduce the complexity of large data sets.  

The goal is to reduce the dimensionality of the data set so that hidden patterns of 

behaviour can be extracted, with minimal loss of information (Goodacre, 2007).  Such 

techniques are categorized as unsupervised or supervised. 

Unsupervised methods apply data reduction to visualize inherent patterns of 

behaviour and identify similarities in the data structure (Bollard et al, 2005; Lindon et al., 

2001).  These techniques, however, are sensitive to subtleties in the experimental design, 

making interpretation more difficult (Kaddurah Daouk et al., 2008).  Examples of 

unsupervised techniques include principal component analysis (PCA), nonlinear mapping 

procedures (NLM) and hierarchal cluster analysis (HCA) (Holmes and Antti, 2002). 

Supervised techniques build a multi-variate statistical model based on known 

sample classes (Bollard et al., 2005; Erb, 2008).  Class information is used to optimize 

the separation between the classes (Claudino et al., 2007).  The goal of these methods is 
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to find a mathematical transformation that correctly classifies a majority, if not all, of the 

samples (Goodacre, 2007).  Examples of supervised methods include partial least squares 

(PLS), linear discriminant analysis (LDA), K-nearest neighbour analysis (KNN), partial 

least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA (Lindon et al., 

2001). 

Chemometric techniques aim to remove redundant data in the system, so that 

non-random characteristics, which may be obscured by noise or random variables, may 

be identified, or interpreted with some methods (Lindon et al., 2001).  It is expected that 

the level of redundancy is high in data sets with a large number of variables (Antoniewics 

et al., 2006); it does not matter what the variables represent, as long as they were 

measured independently from one another (Shlens, 2005).  As a result, the system could 

be described with a fewer number of variables, known as latent variables (LV).  The 

LV’s represent the greatest sources of variation in the data (Trygg et al., 2007).  The data 

should follow a normal distribution for optimal results (Hagburg, 1998).  This is not 

always true in an experimental situation; therefore, groups may apply a log10

Most multivariate methods involve the diagonalization (eigensystems analysis) of 

a symmetric matrix (Hagburg, 1998; Lindon et al., 2001).  In the cases of PCA and PLS-

DA, the symmetric matrix is the covariance matrix of the data set (Shlens, 2005; 

Hagberg, 1998).  The eigenvectors of the symmetric matrix represent the direction in K-

space, where K is the number of original variables, which contributes to the maximum 

variation (Shlens, 2005).  The eigenvalues are used to calculate the percentage of 

variation that its corresponding eigenvector describes in K-space and are ordered from 

largest to smallest.  The first eigenvector, associated with the maximum eigenvalue, 

represents the direction with the maximum variation.  This vector is assumed to be least 

affected by noise (Hagburg et al., 1998).  Each successive eigenvector describes the 

maximum variation remaining in the data set and is orthogonal to all previous 

eigenvectors.  Each sample is projected onto the model axes – i.e. the latent variables – 

and given a new set of coordinates, known as its scores (Keun et al., 2004). 

 

transformation to the variables distributions prior to analysis (Chang, 2009). 

The data set is often mean-centered and scaled prior to analysis.  Mean-centering 

involves calculating the mean for each variable and then subtracting the mean from all 

variables (Lindon et al., 2001).  The result is a distribution centered at 0, but having the 

same shape.  All multi-variate statistical techniques require mean-centered input data. 
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Scaling techniques are applied to enhance the information from the lower 

magnitude variables (Trygg et al., 2007).  Common methods of scaling include unit 

variance scaling (also known as auto scaling) and pareto scaling.  Unit variance scaling is 

achieved by dividing each variable by its standard deviation (Bollard et al., 2001; Lindon 

et al., 2001).  Unit variance scaling gives every variable an equal weighting, therefore the 

model is not biased towards the higher magnitude variables (as these generally have 

larger variances).  Pareto scaling provides a compromise between enhancing the lower 

magnitude variables, without over expressing noise (User Guide to SIMCA P+).  Pareto 

scaling is generally recommended for metabolomics analyses, and involves dividing the 

variables by the square root of its standard deviation (Trygg et al., 2007).  There is debate 

about which scaling method produces the most accurate and reproducible results, 

however it is well established that projection based techniques are sensitive to scaling 

methods (Trygg et al., 2007).  In a review article, Trygg et al., (2007) recommends using 

either no scaling or pareto scaling, while Lindon et al., (2001) and Antoniewicz et al., 

(2006) recommend unit variance scaling.  Both methods (pareto and unit variance) have 

been used in metabolomics studies and will be used in our analysis. 

 

4.4.1 Principal Component Analysis (PCA) 

Principle component analysis (PCA) was introduced in 1901 by Karl Pearson 

(Gorban et al., 2007) and is now used to analyze data from numerous fields of study, 

ranging from neuroscience to computer graphics (Shlens, 2005).  With the increasing 

complexity of experimental analysis, it has been termed the “workhorse of 

chemometrics” (Trygg et al., 2007).  The goal of PCA analysis is to account for as much 

total variation as possible with the least number of variables (often known as latent 

variables, or principal components (PC)) (Bollard et al., 2001; Serkova et al., 2008) and 

to reveal the ‘true’ dimensionality of the data set by removing redundant information 

(Antoniewicz et al., 2006). 

PCA suggests that the observation matrix, X, of rank m, where m is the number 

of measured variables can be written as a sum of m matrices of rank 1 (Geladi and 

Kowalski, 1986) (i.e. each matrix describes one variable),.  It is assumed that the matrix 

is mean-centered (all variables have a mean of zero). 

mMMMX +++= ....21   (Equation 4.3) 
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These rank 1 matrices can be expressed as an outer product of a score vector, ti, 

(n x 1) and a loading vector, pi

EXPEptptptX TT
aa

TT +=++++= ...2211

 (m x 1), where n is the number of samples and m is the 

number of variables.  The scores vector stores the projection of each sample onto each 

principal component.  Likewise, the loading vector relates the relative contributions of 

each variable to that principal component – this is determined by projecting a unit vector 

along the principal component axis onto the axis defined by each variable (Geladi and 

Kowalski, 1986).  Equation 4.3 may be re-expressed as: 

  (Equation 4.4) 

Where a = m if all factors are used and E is the matrix of residuals.  When noise 

dominates the later vectors, a < m and only the important variables are emphasized.  The 

matrix of residuals contains all information that is not explained in the scores and loading 

matrix (i.e. noise) (Geladi and Kowalski, 1986). 

One method for PCA modelling involves computing an eigenvalue 

decomposition of the covariance matrix or a singular value decomposition of a data 

matrix after mean centering (Shlens, 2005).  PCA will determine if there is another set of 

orthonormal vectors, which are linear combinations of the original variables, that better 

describes the variation observed in the data set.  In essence, the technique performs a 

coordinate rotation to align the axes with the direction of maximum variation (Shlens, 

2005).  Theoretically, PCA will provide the optimum transformation for minimizing the 

least squares term for a given data set (Geladi and Kowalski, 1986). 

The following section will summarize the key mathematical steps required to 

construct a PCA model - full details can be found elsewhere (Shlens, 2005).  There are 

four main assumptions related to PCA (Shlens, 2005): 

1. The assumption of linearity: The observed data is expected to be constructed 

from a linear combination of certain basis vectors; the principal components.  It 

is this basis set that we wish to find when performing PCA. 

2. Assumptions related to the sample mean and covariance:  The nature of PCA 

means that the eigenvectors of the covariance matrix are determined under the 

Gaussian assumption.  Skewed distributions could bias the final results as the 

mean and standard deviations will be affected.   
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3. Large variances correspond with the most important dynamics of interest:   

Variables with larger variances have a greater weight on the final results as it is 

assumed that these variables contain the most information about the system.  The 

importance of each principal component may be assessed by ranking the 

eigenvalues from largest to smallest and determining the percentage of described 

variation.   In the terms of PCA analysis, the signal to noise ratio is defined as the 

variance along the axis of interested (signal) divided by the variance in a 

perpendicular direction (noise).  Only when the signal to noise ratio is large, can 

it be assumed that the first few PCs correspond with the dynamics of interest and 

the latter PCs correspond with noise. 

4. Orthogonality of the Principal Components: This property allows for data 

reduction, via diagonalization, onto a plane spanned by a set of basis vectors – 

the principal components.  Orthogonal vectors mean that redundancy is kept to a 

minimum; therefore, fewer variables (PC’s) are required for an accurate 

description of the data. 

Data is collected from a number of samples and stored in an n x m matrix, X, where 

m is the number of independently measured variables and n is the number of samples.  In 

the current state, it is not clear which variables contribute differences between samples.  

PCA will identify a new orthogonal basis of vectors which are linear combinations of the 

original variables and projects the data onto this new basis; a so-called ‘change of basis’. 

The covariance matrix is calculated to investigate the degree of correlations between 

pairs of variables.  A small covariance means that the variables have low redundancy 

(relatively independent), while a large covariance means the variables are highly 

correlated.  Completely independent variables will have a covariance of 0.  The 

covariance between two matrices, A and B, having zero means, is defined as: 

XXCX
T

n 1
1
−

=   (Equation 4.5) 

Where n-1 is a constant of normalization.  The covariance matrix is an m x m 

symmetric matrix.  The diagonal terms represent the variance of a single variable and the 

off-diagonal terms describe the covariance between a pair of variables.  Noise and 

redundancy between variables are captured in the covariance terms.  Large diagonal 

terms correlate with dynamics of interest, while small values represent noise.  Similarly, 

large off-diagonal term indicate high level of redundancy between those variables. 
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The set of principal components are determined from the diagonalization of the 

covariance matrix.  For mathematical purposes, we define a linear transformation matrix, 

P, such that: 

XPX ='    (Equation 4.6) 

Where X’ is an n x m matrix in which the original data has been projected onto a 

new set of basis vectors.  If the optimal basis is used, the covariance matrix of X’ should 

be a diagonal matrix.  To determine this basis, we substitute Equation 4.6 into Equation 

4.5 and rearrange the matrices: 

PXXP
n

C TT
X )(

1
1

' −
=    (Equation 4.7) 

From linear algebra, the matrix XT

1−= EDEXX T

X is diagonalized by the orthogonal matrix of 

its eigenvectors, E, such that: 

    (Equation 4.8) 

We select the matrix P such that its columns are the eigenvectors of XTX.  

Therefore, E = P and XTX = PDP-1.  Since XTX is symmetric, P-1 = PT.  Substituting this 

into Equation 4.7 and making the conversion P-1 = PT
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, we get: 

  (Equation 4.9) 

The matrix CX` is diagonalized as desired.  As such, PCA identifies the 

eigenvectors of XT

PCA is recommended as a starting point for multivariate data analysis as it will 

indicate if differences are present between populations (Ala Korpel, 2007; Trygg et al., 

2007).   The model does not take into account class information, but will determine the 

gross variability (Barker and Rayens, 2003).  The resultant models are not capable of 

distinguishing between groups, nor can it differentiate within class variation from 

between class variation.  However, it is possible to classify an unknown sample by 

grouping it with the class with the closest average scores (Barker and Rayens, 2003). 

X and calls them the principal components of the data matrix. 
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4.4.2 Partial Least Squares Discriminant Analysis (PLS-DA) 

PLS-DA was established for chemical applications in the late 1970’s by Svante 

Wold and Harald Martens after initial work by Herman Wold in the 1960’s in the field of 

economics (Barker and Rayens, 2003; Geladi and Kowalski, 1986).  The technique 

combines the PLS algorithm with the linear discriminant analysis procedure developed 

by Ronald Fisher in 1936 (Barker and Rayens, 2003).  The method by Fisher involves a 

linear projection of the input data where the between class variance is maximized with 

respect to the within class variance (Rosipal and Kramer, 2006).  The PLS algorithm 

calculates the between groups sums of squares and the cross products matrix and utilizes 

the results for separation (Barker and Rayens, 2003).  Traditionally, discriminant analysis 

was performed if structural differences between groups or subgroups were desired 

(Rubingh et al., 2006).  However, it may be beneficial to extend the study beyond 

classification to study the sources of discrimination.  PLS-DA was designed to maximize 

the separation between pre-defined groups relative to the pooled within group variation 

(Barker and Rayens, 2003). 

PLS-DA is applied when a quantitative relationship between the data matrix, X, 

and the response matrix, Y, is desired (Trygg et al., 2008).  It may be described as the 

regression extension of PCA (Bollard et al., 2001; Murdoch et al., 2008).  The PLS 

regression is capable of quantifying a relationship between the independent and 

dependent variables that best describe differences in the populations under investigation.  

The PLS regression assumes a linear relationship between the two matrices (Antoniewicz 

et al., 2006). 

The goal of PLS analysis is to maximize the covariance (or separation) between 

the data matrix and the response matrix (Holmes and Antti, 2002; Rugingh et al., 2006).  

The Y matrix may contain qualitative data, such as the age of a patient or a measured 

value, or it may be comprised of orthogonal unit vectors which define the pre-defined 

class (Bollard et al., 2001; Trygg et al., 2008).  As an example, the class unit vectors may 

be [1, 0] and [0, 1] for the two class case.  Antoniewicz et al., (2006) showed that a PLS 

model is capable of differentiating between informative variance and irrelevant data. 

Following is a brief derivation of the PLS model.  Unless specified, all information in the 

following section is taken from Geladi and Kowalski (1986), Hoskuldsson (1988) and 

Rosipal and Kramer (2006).  For further details regarding the PLS regression, refer to 

Wold (1975) or Barker and Rayens (2003). 
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Consider an experimental setting in which N independent, and M response 

variables are measured for n samples.  Two data matrices are defined: the data matrix, X 
NR⊂  (n x N), and the response matrix, Y MR⊂ (n x M), where N is the number of 

measured variables, M is the number of response variables and n is the number of 

samples.  These matrices are mean-centered, meaning that each variable has a mean of 

zero.  The data and response matrices may be represented by matrices with lower 

dimensions and having the form: 

FUQY
ETPX

T

T

+=

+=
   (Equation 4.10) 

Where T and U are the scores matrices (n x a; a is the number of extracted scores 

vectors), P (N x a) and Q (M x a) are the corresponding loading matrices, and E (n x N) 

and F (n x M) are the matrices of residuals.  The individual score and loading vectors 

from each extracted scores vector makes up the columns of the scores and loadings 

matrices and are denoted by the lower case letters (i.e. ti, ui, pi and qi

The classical PLS model is derived from the non-linear iterative partial least 

squares (NIPALS) algorithm.  The model operates iteratively between the two matrices to 

determine the relationship between the variables in each.  The NIPALS algorithm starts 

with a random initialization of one of the scores vectors u

 where i = 1,2,…a ).  

PLS analysis is most effective when it can best describe Y such that ||F|| is as small as 

possible and it still achieves a useful relationship between the X and Y matrices (Geladi 

and Kowalski, 1986). 
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 (could be the first column of Y 

(Hoskuldsson, 1988)) and repeats the following steps until convergence: 

  (Equation 4.11) 
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Here, w and c are weight vectors.  They are used to ensure that the t-values 

obtained are orthogonal (Geladi and Kowalski, 1986).  If the algorithm converges at 6) 

(that is the u from 1) and 6) differ by less than a predetermined significance threshold, ε), 

then the x- and y-loadings (p and q, respectively) are calculated as follows.  Otherwise, it 

repeats the iteration with the new u. 

uu
uYq

tt
tXp

T

T

T

T

=

=
    (Equation 4.12) 

The next step is to regress u upon t and calculate the residual matrices, E and F. 

T

T

T

T

uqYF
tpXE

tt
tub

−=

−=

=

    (Equation 4.13) 

The algorithm renames the E and F matrices as X and Y and repeats the process 

for all dimensions of X.  In calculating the scores and loadings from the residuals, mutual 

orthogonality is guaranteed (Rosipal and Kramer, 2006).  It is assumed that the score 

vectors of X, { }a
iit 1= , are good predictors of Y and that an inner relation exists between 

the scores vectors t and u.  For this reason, the Y matrix is ‘deflated’ by subtracting off 

information along the direction of each score vector, ti

The PLS factors have four properties (Geladi and Kowalski, 1986): 

.  This algorithm converges 

quickly (Geladi and Kowalski, 1986), so models can be generated promptly. 

1. The loading vectors, pi and qi, have unit length.  i.e. ||pi|| = ||qi

2. The scores vectors, t

|| = 1 

i and ui

3. The scores of the X data matrix, t

, are centered about zero 

i

4. The weights, w

, are orthogonal 

i

 

, are orthogonal 

When PLS is used for discrimination or classification, the samples are divided into g 

classes such that { }n
i

N
i RXx 1=⊂∈  for the set of n samples.  We define the (n x g-1) 

class membership matrix (Rosipal and Kramer, 2006): 
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Where { }g
iin 1=  denotes the number of samples in each class,∑ =

=
g

i i nn
1

, 
in0 and 

in1 are (ni

∑ ∑
∑

= =

=

−−=

−−=
g

i

n

j
T

i
j

ii
j

i

T
i

g

i ii

i xxxxH

xxxxnG

1 1

1

))((

))((

 x 1) vectors of all zeros and ones, respectively.  Let G represent the between 

class sums-of-squares and H represent the within class sums-of-squares where: 

 (Equation 4.15) 

Here j
ix represents an N-dimensional vector for the jth sample of the ith class, and 
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   (Equation 4.16) 

Fisher’s method of discrimination involves the linear projection of the input data 

onto the eigenvectors, µ, of the following eigenvalue problem such that the between class 

variance is maximized when compared with the within class variance (Rosipal and 

Kramer, 2006): 

λµµ =− HE 1     (Equation 4.17) 

The output of a PLS-DA model is a set of component axes, known as latent 

variables, which maximize the covariance between the measured data and the class 

membership matrix (response variables) (Bollard et al., 2001; Rubingh et al., 2006).  The 

set of latent variables represent a new prediction matrix with a greater emphasis on the 

dynamics of interest.  The response variables are regressed onto these new predictors 

(Rosipal and Kramer, 2006) to obtain a new set of coordinates.  These coordinates are 

known as the samples scores.  Similar to PCA, unknown samples may be projected onto 

the model to determine their most probable class membership (Bollard et al., 2005). 
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Not all components are used in the model as the higher order components 

represent noise and are generally left out.  The number of components used can be 

determined from the residual matrix of the response variables, F (Geladi and Kowalski, 

1986).  A common method is to compare the values of ||F|| at the end of each iteration, 

and stop when the difference becomes small when compared to a previously established 

measurement error.  An alternative approach is to stop when ||F|| drops below a pre-

defined threshold value.  If the model is to be used for prediction, the prediction residual 

sum of squares (PRESS) is used.  The number of components is determined from the 

minimum PRESS which is the sum of the squared difference between the observed and 

predicted values left out of the model (Lindon et al., 2001; User Guide for SIMCA P+). 

PLS-DA should be used for dimensional reduction when the objective is to 

identify patterns of behaviour responsible for defining pre-defined classes.  PLS performs 

better than PCA in cases where the within group variation exceeds the between group 

variation, thus allowing for the identification of subtle changes associated with a disease 

(Barker and Rayens, 2003). 

 

4.5 Model Validation 

Multivariate statistical models can be sensitive to chance correlations and there is 

a risk of overfitting the data (Rubingh et al., 2006; Westerhuis et al., 2008).  Emphasis on 

previously known information could result in modeling ‘noise’ from the measurements 

(Weckwerth and Morgenthal, 2005).  For this reason, cross validation and permutation 

testing should be performed to evaluate the performance and stability of a model 

(Rubingh et al., 2006). 

The strength of a model may be evaluated using the goodness of fit, R2, and the 

goodness of prediction, Q2 parameters.  The R2 value relates the fraction of variation 

accounted for by the regression and describes the accuracy of prediction for that model 

(Antiewicz et al., 2006).  In general, having a large R2 value (close to 1.0) is attractive, 

but not sufficient for a good model as it could be overfit (Broadhurst and Kell, 2006; 

Westerhuis et al., 2008).  In contrast, the Q2 value describes the fraction of variation in 

the training set (measured data,X for PCA and the class membership data, Y, for PLS-

DA) predicted by the model as determined from cross validation (Weljie et al,. 2006; 

Westerhuis et al., 2008).  There is no standard requirement for the R2 and Q2 values 

(Westerhuis et al., 2008), but values greater than 0.5 are preferred (Erb et al., 2008). 
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4.5.1 Cross Validation 

Cross validation (CV) identifies the optimal model parameters and tests the 

predictability of the model with part of the data.  It may be used to determine the optimal 

number of latent variables used.  Having too few components will result in a significant 

loss of information, while having too many components will overfit the data; the larger 

latent variables explain more noise (Antiewicz et al., 2006). 

The method involves splitting the data into two sets: the training set and the 

prediction set.  The training set is used to develop a model, which is then tested with the 

prediction set (Rubingh et al., 2006).  The idea is that a model created with part of the 

data should be able to correctly classify the data in the prediction set if there is in fact a 

unique change between populations.  This provides a measure of the predictability for a 

new data set (Rubingh et al., 2006).  A common method is referred to as the ‘x fold 

validation’ where the data is divided into x groups of the same size.  One group is 

removed from the data set and a model is created using the remaining (x-1) groups.  The 

procedure is repeated until each group has been left out once and only once (Rubingh et 

al., 2006).  The model is used to predict the values of the response variable for the ‘left 

out’ samples and residuals (error) are calculated (Antiewicz et al., 2006). 

 

4.5.2 Permutation Testing 

Permutation testing is used to assess the significance of a classification (Rubingh 

et al., 2006).  This technique involves permuting the classification of samples and 

recalculating the model for each permutation.  The idea is that the original classifications 

should produce the best model.  By randomly reassigning samples to a class, it is possible 

to test for an overfitted model by evaluating the R2 and Q2 values.  For each permutation, 

the discrimination between the permuted classes is compared to the discrimination 

between the original classes (Rubingh et al., 2006).  If the original model produces the 

maximum R2 and Q2 values of all models tested, then the model is good.  A good model 

will have the best discrimination between classes, and should also have the largest R2 and 

Q2 parameters of all models.  The Q2 value is the more important of the two as the R2

 

 

value can be optimistic in over fit models (Broadhurst and Kell, 2006). 
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4.6 Model Interpretation 

Multivariate statistical models identify the directions in K-space which best 

explain the variation in the data set and closely approximate the measured data, but in a 

lower dimensional plane (Trygg et al. 2007).  Samples are projected onto the model 

plane.  The position of the sample in the new plane is defined by the scores, which is a 

vector relating the projection of the sample along each latent variable (Keun et al., 2004; 

Trygg and Lundstedt, 2007).   The scores may be used to describe variation in the sample 

direction (Serkova et al., 2008).  The loadings relate the influence of individual variables 

in calculating the scores (Keun et al., 2004).  The loadings describe the relationship 

between variables.  Variables with the same sign are directly related (both change in the 

same direction), and those with larger loadings have a greater impact on the variance 

along its corresponding latent variable (Trygg et al., 2007).  It has been suggested that 

variables with large loadings are well related, so treating these variables as a single group 

can simplify interpretation (Lindon et al., 2001). 

Similarities in the data structure are best observed in a scores plot (Bollard et al., 

2005; Reo, 2002).  A scores plot is a 2-dimensional plot of two latent variables, which 

visually displays the locations of samples under the new coordinate system.  Objects 

located close to one another are said to cluster and will have similar data structures or 

biological composition (Um et al., 2009).  Grouping, trends and outliers are easily 

observed in this plot (Serkova et al., 2008).  Values lying outside the Hotelling’s T2 

ellipse, which represents the 95% confidence interval, are considered strong outliers, and 

may impact the model.  It is suggested to remove these variables from the analysis (Trygg 

and Lundstedt, 2007). 

The loadings plot may be used to identify variables responsible for the observed 

differences between samples (Bollard et al., 2005; Murdoch et al., 2008).  Variables 

farther from the origin have the largest impact on the explained variation.  The direction 

of data in the scores and loadings plot are correlated (Trygg et al., 2007).  In fact, the 

direction of the change, to the left or right, corresponds to the change experienced in the 

respective group (Murdoch et al., 2008).  This means that populations located to the right 

of the origin will have an increase in variables located to the right in the loadings plot and 

a decrease in variables located to the left.  The same is true for samples to the left.  By 

determining the direction of optimal separation, it is possible to identify the variables 

most responsible for the differences. 
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Chapter 5 
ROC Curve Analysis 
 

This Chapter will provide a theoretical description of Receiver Operating 

Characteristic (ROC) curve analysis and describe how the curve is constructed.  The 

chapter will open with the motivation for using ROC curve analysis over a single 

measurement of the sensitivity and specificity.  Next, a brief description on how to 

construct a ROC curve from these measurements will follow.  Methods for interpreting 

the results of ROC curve analysis will conclude the chapter. 

 

5.1 Defining Diagnostic Accuracy 

A screening test makes a decision about the presence or absence of disease based 

on the result of a measurement.  The result of this measurement might be a numerical 

value which has a characteristic range for the healthy population and a different 

characteristic range for the diseased population, though there will likely be overlap 

between these two ranges.  In a diagnostic situation, clinicians will define a decision 

threshold to classify the samples (Bewick et al., 2004; Metz, 1989; Obuchowski, 2005).  

Samples with a measurement that is larger than the decision threshold will be classified 

as having the disease (positive test), while other samples are classified as healthy 

(negative test). 

One of four situations can occur: 1) a sample from an individual who has the 

disease is correctly diagnosed (true positive or TP), 2) a sample from an individual who 

has the disease is incorrectly diagnosed as healthy (false negative or FN), 3) a sample 

from a healthy individual is incorrectly defined as having a disease (false positive or FP) 

or 4) a sample from a healthy individual is correctly classified as healthy (true negative or 

TN) (Weinstein et al., 2005, Zivian and Gershater, 2008).  The four cases are summarized 

in a contingency table, shown in Table 5.1.  Here, the observer’s decision is indicated by 

the columns and the results of the test are displayed as rows.  It is assumed that the true 

health status of all individuals is known so that the true positive, false positive, false 

negative and true negative variables may be calculated (Obuchowski, 2005). 
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Table 5.1: Contingency Table of Possible Test Results 
 Observer’s Decision 

Test Result Disease Present Disease Absent 
Positive Test True Positive (TP) False Positive (FP) 
Negative Test False Negative (FN) True Negative (TN) 

 

These descriptors do not contain sufficient information for the clinic.  For this 

reason, we define two new terms; the sensitivity and specificity.  These descriptors are 

attractive as they do not vary greatly between patient populations (Zivian and Gershater, 

2008).  The sensitivity is defined as the number of individuals having a disease, who are 

correctly diagnosed (positive test), divided by the number of individual having the 

disease.  The specificity is defined as the number of healthy individuals, who are 

correctly diagnosed (negative test), divided by the total number of healthy individuals 

(Bewick et al., 2004; Cook, 2008; Hojung et al., 2009; Obuchowski, 2005; Weinstein et 

al., 2008).  In mathematical terms: 

FNTP
TPySensitivit
+

=   (Equation 5.1) 

FPTN
TNySpecificit
+

=  (Equation 5.2) 

The sensitivity may be thought of as a measure of how well a diagnostic test, 

such as a screening test, will perform in a sample of sick patients.  Similarly, the 

specificity would explain how well a diagnostic test performs in a healthy population 

(Zivian and Gershater, 2008).  The sensitivity and specificity are inversely related 

(Akobeng, 2007; Gardner and Grenier, 2006, Park et al., 2004, Zivian and Gershater, 

2008).  This means that by improving the sensitivity of a test, the specificity will 

decrease.  Consequently, it is important to weigh the ‘relative costs’ of false positives and 

false negatives (Altman and Bland, 1994; Delong et al., 1988; Obuchowski, 2005). 

Diseases with high prevalence and mortality rates require high sensitivities 

(assuming that treatment is available) at the cost of specificity.  Alternatively, conditions 

with a low prevalence or a risky treatment will use a test with high specificity at the cost 

of a lower sensitivity (Akobeng, 2006).  For screening purposes, it is essential to identify 

as many sick individuals as possible, so a high sensitivity is required (Park et al., 2004). 

Table 5.1: Contingency Table describing four situations experienced in 
clinic.  A true positive occurs when a diseased individual tests positive, 
a false positive occurs when a healthy individual tests positive, a false 
negative occurs when a diseased individual tests negative and a true 
negative occurs when a healthy individual has a negative test result.   
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5.2 Motivation for ROC Curve Analysis 

Consider an experiment that involves the collection of data from two distinct 

groups; one group is composed of healthy individuals, while the second group has a 

specific disease.  The data collected will create a distribution of measurements for each 

variable tested.  For the purpose of this example, it is assumed that the average 

measurement from the diseased population is greater than that for the healthy group and 

the distributions overlap one another.  The distributions are assumed to be Gaussian in 

shape, though this may not be the case for small data sets.  An example of two such 

distributions, for a large sample study, is shown in Figure 5.1. 

 

 

 
The sensitivity and specificity are dependent on the location of the decision 

threshold.  Increasing the threshold to a larger value allows for greater specificity (more 

true negative results) at the expense of a lower sensitivity (more false negatives).  The 

decision threshold is generally chosen to reflect the relative costs of a false positive 

versus a false negative, however, it is not obvious which cut point is best (Zivian and 

Gershater, 2008).  For instance, increasing the specificity by a small amount could greatly 

affect the sensitivity if the distribution of sick individuals is narrow. 

 

Figure 5.1: Distributions for two populations; one healthy and one having a particular 
disease.  One decision threshold is drawn (vertical line) and the regions corresponding 
to false positives, false negatives, true positives and true negatives are labelled.  The 
proportions of each are dependent on the location of the decision threshold and the 
shapes of the two distributions. 
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The impact of changing the decision threshold is not intuitive when evaluating 

only the sensitivity and specificity.  One solution is to consider the overall accuracy, 

defined as the total number of correct diagnoses – true positives and true negatives – 

divided by the number of individuals tested (Zivian and Gershater, 2008).  Despite the 

helpful title, the observer could be biased by the prevalence of a disease.  

As an example, consider a disease with low prevalence.  The observer analysing 

test results is likely to use a conservative threshold to minimize the number of false 

positives.  An extreme choice is to label all tests negative.  Because of the low 

prevalence, the test will have a high specificity (100%) and accuracy (large proportion of 

true diagnoses), but a low sensitivity (0%).  If 1 in 10 individuals have the disease, the 

accuracy would be 90%.  On the opposite side of the spectrum, a disease with high 

prevalence (say 8 in 10) could lead an observer to call all tests positive.  This test would 

have a high sensitivity (100%) and accuracy (80%), but a low specificity (0%).  These 

examples show that even useless tests can achieve strong results for two of specificity, 

sensitivity and accuracy, but offer little diagnostic information. 

 

5.3 The Receiver Operating Characteristic (ROC) Curve 

Receiver Operating Characteristic (ROC) curves were first developed in the 

1950’s to evaluate radar signal detection (Altman and Bland, 1994).  The goal was to 

quantify how well an electronic receiver detects electronic signals in the presence of 

noise (Zivian and Gershater, 2008).  Lee Lusted realized that ROC curve analysis held 

potential in medical applications and introduced the technique to medicine in 1971 

(Centor, 1991; Hilden, 1991).  Since its inception, ROC curve analysis has become a 

standard method for evaluating a diagnostic test’s accuracy (Akobeng, 2006; DeLong et 

al., 1988; McClish, 1989; Wang et al., 2005) by jointly evaluating the fraction of positive 

results in each population (Gardner and Greiner, 2006).  Analysis of the resulting curve 

allows scientists to evaluate tradeoffs between the sensitivity and specificity at different 

thresholds (McClish, 1989; Pepe, 2000).  In addition, this technique is independent of the 

prevalence, so we avoid the issue presented in the previous section (Park et al., 2004; van 

den Biggelaar et al., 2009, Wang et al., 2005). 

An ROC curve is a plot of the sensitivity along the y-axis and (1-specificity) or 

the false positive fraction along the x-axis (Akobeng, 2006; Obuchowski, 2005; Park et 

al., 2004; Pepe, 2000).  ROC curves are not dependent on a single decision threshold as 
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all options are considered (Cook, 2008; DeLong et al., 1988; Weinstein et al., 2005).  

Each point on the graph, known as an operating point (Park et al., 2004), represents the 

sensitivity and specificity for a different decision threshold (Altman and Bland, 1994; van 

den Biggelaar et al., 2009).  The empirical curve is created by connecting the operating 

points with straight line segments (Obuchowski, 2005; Park et al., 2004).  The smooth 

ROC curve is bowed towards the top left hand corner – point (0,1) – therefore, the 

empirical curve will underestimate the true area under the curve.  However, the 

estimation is quite accurate for continuous distributions (Obuchowski, 2005). 

ROC curves all pass through the points (0,0) and (1,1), marking the most 

conservative and strictest decisions thresholds respectively (Obuchowski, 2005).  There 

are (h-1) additional points on the curve to represent each of the h unique decision 

thresholds (Obuchowski, 2005).  The operating points can be thought of as observations 

from h Radiologists or as the measurements made by one Radiologist as they change their 

threshold from the most conservative (all test results are positive) to the strictest (all test 

results are negative) (Zivian and Gershater, 2008). 

There are three main classification systems: 1) a 5-point system, 2) a confidence 

scale system and 3) continuous distributions (Obuchowski, 2005).  The first choice is 

often used to evaluate the diagnostic potential of an imaging modality, such as 

mammography or MR imaging (Akin et al., 2010; van den Biggelaar et al., 2009).  The 

radiologist will assign images a BI-RADS (Breast Imaging Reporting and Data System) 

score based on the degree of suspected malignancy (1 = negative examination, 2 = benign 

finding, 3 = probably benign finding, 4 = suspicious abnormality and 5 = highly 

suggestive of malignancy) (van den Biggelaar et al., 2009).  The confidence scale system 

operates in a similar fashion, except that the Radiologist scores the exam based on the 

probability of malignancy (i.e. 0-100%) (Obuchowski, 2005).  The continuous 

distributions test allows users to systematically update the decision threshold across all 

possible cut-offs (DeLong et al., 1988; Gardner and Greiner, 2006).  ROC analysis does 

not work on binary (yes/no) tests as these only have one cut point (Park et al., 2004). 

Drawing a straight line segment between the points (0,0) and (1,1) creates the 

chance diagonal.  This line represents a test that has no ability to discriminate between 

individuals from two distinct populations and randomly assigns a diagnosis (Park et al., 

2004; Weinstein et al., 2005).  The random assignment means that there are an equal 

number of true positives and true negatives for all thresholds considered (Akobeng, 
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2006).  ROC curves that lie in the upper left-hand corner of the plot contain some 

diagnostic information (Weinstein et al., 2005). 

Diagnostic information may be measured using one of the following summary measures: 

1. Youden’s index: Calculates the maximum vertical distance between the ROC 

curve and the chance diagonal (Bewick et al., 2004).  This parameter is 

dependent on the decision threshold and may be calculated using: 

1} -y specificit ivity max{sensit  J +=     (Equation 5.3) 
 

2. Accuracy or the probability of correct diagnosis: This parameter utilizes 

information about the prevalence of the disease (Prev) and will change as the 

prevalence changes (Obuchowski, 2005).  The accuracy is calculated from: 

yspecificit  Prev) - (1 y sensitivit  Prev Accuracy ×+×=  (Equation 5.4) 
 

3. The area under the ROC curve (AUC):  The AUC is a combined measure of the 

sensitivity and specificity and is perhaps the most popular choice (Cook, 2008; 

McClish, 1989; Obuchowski, 2005; Park et al., 2004; Zivian and Gershater, 

2008).  Values range between 0.5 and 1.0 for diagnostically useful tests. 
 

The AUC may be interpreted as 1) the average sensitivity for all values of 

specificity, 2) the average specificity for all values of sensitivity, or 3) the probability of 

correctly diagnosing two individuals – one healthy and one having the disease – based on 

a single measurement (i.e. concentration of a metabolite) (Obuchowski, 2005).  The third 

choice is independent of the prevalence as it is fixed at 50% by definition (Gardner and 

Greiner, 2006).  Despite this, the third definition is intuitive in the sense that samples are 

essentially ranked prior to calculating the ROC curve. 

The AUC for a diagnostic test is bounded below by 0.5 for tests with no ability to 

distinguish two populations, and above by 1.0, which represents a test with perfect 

discrimination (Zivian and Gershater, 2008).  There is no single standard for rating the 

effectiveness of a diagnostic test.  Some applications define a test with an AUC > 0.9 as 

being an excellent test and an AUC > 0.8 as a good test (Broadhurst and Kell, 2006), 

while Akobeng (2006) and Gardner and Grenier (2006) propose using: 

AUC > 0.9 High Accuracy 
AUC > 0.7 and AUC ≤ 0.9 Moderate Accuracy 
AUC > 0.5 and AUC ≤ 0.7 Low Accuracy 
AUC = 0.5 Chance 
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The AUC contains information for all sensitivity and specificity pairs available.  

This may not be sufficiently informative for a diagnosis.  The ROC curve offers a 

graphical representation of the tradeoffs between the sensitivity and specificity as the 

decision threshold is altered (Gardner and Grenier, 2006).  The optimal point on the ROC 

curve may be determined through the Youden index – equation 3.3 –or from the point 

closest to the top left-corner of the plot (0,1) by minimizing the following expression 

(Akobeng, 2006): 
 

}y)specificit-(1  y)sensitivit-{(1min  Point  Optimal 22 +=   (Equation 5.5) 
 

There is a possibility that the Youden index and the distance from the point (0,1) 

provide different optimal decisions thresholds.  One example where the two techniques 

could produce different results is shown in Figure 5.2.  Here, The ROC curve is parallel 

to the chance diagonal, but has an artefact on one side.  The minimum distance from the 

point (0,1) to the ROC curve differs from the optimal point given by the Youden index 

(maximum vertical distance from the ROC curve to the chance diagonal) which occurs as 

the artefact. . 

The AUC may be estimated non-parametrically by fitting trapezoids under the 

empirical ROC curve (Bewick et al., 2004; Metz, 1988; Obuchowski, 2005; Park et al., 

2004).  The estimate tends to underestimate the AUC (Metz, 1988), however it produces 

results that are similar to those obtained using a parametric approach (assuming two 

normal population distributions and fitting a smooth curve to the data) when the variables 

are continuous (DeLong et al., 1988; Park et al., 2004). 

 

 
 

 

Figure 5.2: Example where the Youden 
index and minimum point from (0,1) give 
different optimal decision thresholds.  A 
ROC curve where the region around the 
point (0,1) is approximately linear and has 
the same slope as the chance diagonal, 
however there is a small feature near the 
line Sensitivity = 1.0.  The Youden Index 
and minimum distance techniques produce 
different results for the optimal ROC point. 
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5.4 Predictive Values 

Positive and negative predictive values measure the predictive capabilities of a 

diagnostic test with consideration of the prevalence of the disease (Cook, 2008).  The 

positive predictive value (PPV) is the probability of a disease given a positive results and 

a negative predictive value (NPV) is the probability of no disease given a negative result 

(Bewick et al., 2004; Gardner and Greiner, 2006; Weinstein et al., 2005).  As suggested 

by Weinstein et al., (2005), the predictive values help clinicians plan treatments 

depending on the probability that the individual does or does not have the disease based 

on the test result. 

There are two formal expressions used to calculate the predictive values, 

depending whether or not the prevalence of the disease is known.  The expressions are as 

follows: 

FPTP
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+
=
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Where Se is the sensitivity, Sp is the specificity and P is the prevalence (fraction 

of those having the disease in the sample population) (Gardner and Greiner, 2006; 

Weinstein et al. 2005).   Low prevalence results in a decreased PPV (Bewick et al., 

2006).  Scientific experiments tend to bias the prevalence to greater values to improve the 

statistical power of the study; therefore, the latter equality is preferred. 

 

5.5 Limitations of ROC curve Analysis on Small Populations 

Analysis on small populations could bias the results if the experimental 

population does not accurately reflect the desired population (not independently 

sampled).  According to Metz (1988), the variance in the ROC curve is inversely 

proportional to the number of samples in the study.  Individual samples will either over or 

under estimate the true ROC curve data points, but will create a distribution of ROC 

curves. 
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Chapter 6 
Experimental Techniques 
 

 

This Chapter will discuss the methodologies associated with the experimental 

work of this dissertation.  The chapter organization follows the sequence of steps from 

urine collection to the final data analysis.  All work involving animals was approved in 

advance by the Cross Cancer Institute’s Animal Care Committee.  Animals were 

monitored daily for signs of distress throughout the experiment. 

 

6.1 Tumour Model 

NIH III nude mice (n = 36) were ordered at 6 weeks of age from Charles River 

Laboratories, USA.  Animals were housed in the Cross Cancer Institute’s Vivarium with 

four mice per cage.  The Vivarium allowed for a controlled experimental environment 

with a temperature of 21o

Animals were given three days to acclimatize to the new facility before notching 

their ears for identification.  During the procedure, the mice were anesthetised with 1.5%-

2.0% isoflurane mixed with oxygen.  A sterile ear clipper punched a hole in one ear. 

C, relative humidity 30-55% and a 12 hour light – 12 hour dark 

cycle (6am – 6pm light, 6pm – 6am dark).  Animals were fed a diet of laboratory 

autoclavable rodent diet 5010 (Labdiet, Leduc, Canada) and were given free access to 

autoclaved tap water. 

The mice were whole body irradiated to 350cGy in a 137

The human GBM cell line M006xLo was used to initiate tumours (Franko et al. 

1998).  Three million cells, suspended in 0.1mL of phosphate buffered saline (PBS), were 

injected subcutaneously over the animal’s right thigh (n = 22) (Laroque et al., 2009).  The 

mice were anesthetised with 1.5%-2.0% isoflurane in oxygen during the injection.  The 

tumours became palpable 3-4 days post injection and were visible to the eye by 5 days.  

Control animals (n = 14) were injected with 0.1mL PBS in place of the GBM cells. 

Cs irradiator one week 

post arrival to minimize any residual immune response to the tumour cell injections 

(Laroque et al., 2009).  Tumour cells were injected one week later. 
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6.2 Sample Collection 

Sample collection began once the animals were whole body irradiated and 

continued for five weeks post cell injection.  To minimize the effects of diurnal variation 

(Tiziani et al., 2009), urine samples were collected into Eppendorf safe-lock microfuge 

tubes (Sigma-Aldrich Co, Oakville, Canada) daily between 10:30am and 12:00pm by 

restraining the mouse and gently massaging its bladder.  Samples were immediately 

stored in a freezer at -80oC until required for NMR analysis.  The literature suggests that 

immediate freezing at -80oC is sufficient to prevent bacterial contamination of the urine 

samples (Lauridsen et al., 2007).  The longest samples were stored before NMR spectrum 

acquisition was 7 months, but most samples were analysed within 2 months post 

collection.  According to Ross et al. (2007), samples are not affected for up to 9 months 

when stored at -40o

For the purpose of our analysis, samples were categorized as either pre-injection 

or tumour-bearing (collected between 6 and 35 days post-injection).  Not every mouse 

contributed a sample each day, and some samples had insufficient volumes for inclusion 

in the study.  Consequently, the number of analysed samples in the pre-injection group 

varied from 1-6, and from 1-7 for the tumour-bearing category.  One cage (4 mice) was 

injected with the GBM cells one week late (three weeks post arrival).  The data from 

these animals were scattered amongst the data from the other animals in the scores plots 

of the preliminary PCA and PLS-DA models, indicating that the extra week had no 

observable effect on metabolism, so these animals were included in the study.  The 

number of pre-injection samples for these mice ranged between 5 and 8.  The tumours 

continued to grow over the course of the five week urine collection period, but even at 

the earliest time points, the tumour was macroscopic in size. 

C, so the time frame of storage should have minimal effects on the 

metabolic composition.  Samples selected for NMR analysis were required to exceed 

30µL in volume as this appeared to be the lower limit of detection for NMR data 

acquisition. 

 

6.3 Sample Preparation for NMR Analysis 

Selected samples were removed from the freezer and allowed to thaw at room 

temperature for approximately one hour.  Available urine, ranging between 30 and 

150µL, was pipetted (Ranin, Mettler Toledo Co, Oakland, USA) into a 3000kDa 
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Nanosept filter (VMR International, Mississauga, Canada) with the volume brought to 

500µL with distilled water (Keun et al., 2004; Ross et al., 2007).  Proteins and larger 

macromolecules were removed from the sample by centrifuging the samples at 4oC for 10 

minutes at 13000 rpm (Forshed et al., 2005; Holmes et al., 2000; Maher et al., 2007).  

Samples were prepared for NMR analysis by adding 90µL of an internal standard 

(Chenomx, Inc. Edmonton, Canada) which contains 5mM DSS and 0.2% NaN3 in D2

The pH was measured using an Acumen Microprobe pH meter (Fisher Scientific, 

Ottawa, Canada).  The meter was calibrated using pH 4.01 and pH 10.00 buffer solutions.  

Initial pH values for the urine samples were most often between 6.20 and 6.75.  The pH 

was adjusted to 6.84 ± 0.04 by adding small volumes of 0.1M HCL or Noah (Kim et al. 

2008; Murdoch et al., 2008; Slupsky et al. 2007; Um et al., 2009). 

O at 

a pH of 7.0.  200µL of distilled water was added to the filtered samples to bring them to 

an appropriate volume (~650µL ± 50µL). 

A 600µL aliquot of sample was extracted into a Wilma 535-pp NMR tube 

(Sigma-Aldrich Co., Oakville, Canada) and stored in a fridge at 4o

 

C overnight (Murdoch 

et al., 2008; Slupsky et al., 2007).  This volume is highly recommended as it permits 

good water suppression without over diluting the sample (McKay 2009).   

6.4 NMR Analysis 

Samples were run on an Oxford 2.2K 800 MHZ NMR Magnet (Oxford 

Instruments, Inc., Oxfordshire, UK) utilising a 5mm HCN cold probe (Varian Inc., Palo 

Alto, USA).  Spectra were acquired using a 1-D NOESY pre-saturation pulse sequence 

with a saturation delay of 990ms, a mixing time of 100ms and an acquisition time of 4s.  

Four steady state scans were performed prior to data acquisition.  32 scans were acquired 

for a total run time of 3:03 per sample.  The spectra cover a width of 12ppm.  These 

timings are required for accurate quantification when using Chenomx Software 

(Chenomx NMR Suite 5.1 User guide). 

The 1-D NOESY pre-saturation pulse sequence is displayed in Figure 6.1.   This 

pulse sequence is often used for metabolomics experiments because it provides 

satisfactory water suppression and allows for high throughput (Beckonert et al, 2007; 

Betram et al., 2007; Bollard et al., 2001).  Spectra are acquired using the Varian VNMR 

software. 
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All samples were verified to have volumes of 600±25 µL using a gauge scale.  

Briefly, the volume was measured by means of the depth of the meniscus in the sample.  

A reference table, located on the wall at NANUC, provides a gauge value for centering 

the sample.  Using this information and a reference cylinder, the bottom of the tube is 

aligned with the gauge value.  Figure 6.2 shows a schematic for centering a 600µL 

sample.  A sample of this volume has a reference value of 66. 

 

 

 

Figure 6.1: Schematic of the 1-D NOESY pulse sequence.  The saturation delay 
and mixing times are constant for all experiments.  The length of the 90o RF 
pulses were optimized by first determining the time required for a 360o pulse 
(acquire a null signal), and dividing this result by 4.  A total of 4 steady state 
scans and 32 transient scans were used for most samples for a total time of 3:03. 

Figure 6.2: Centering the sample.  The 
sample is centered in the magnet by 
measuring the height of the meniscus 
and identifying the gauge level.  For a 
sample with a volume of 600 µL, the 
gauge value is 66.  Aligning the bottom 
of the tube with the gauge at 66 will 
center the sample in the magnet.  If 
done properly, there should be equal 
amounts of sample above and below the 
magnet’s sensitive volume. 
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The sample is inserted into the magnet and allowed to reach an acquisition 

temperature of 25oC (Bales et al., 1984; Kim et al., 2008; Saude et al., 2006).  The first 

sample of the day was used to calibrate the lock signal.  The flip angle for the water 

resonance is optimized by varying the pulse width of the RF pulses until a null signal is 

obtained.  The null constitutes a 360o

Next, an optimizing algorithm is applied to optimize the z-gradient shims.  These 

shims are not optimized, but only require minor adjustments to the z1, z2, x and y 

gradients.  The width of the methyl peak of DSS at half maximum is often smaller and 

the peak shape is more symmetric than obtained with manual shimming; this improves 

the spectral resolution.  The change in the peak shape after manually shimming the field 

is shown in figure 6.3 a and b. 

 flip, so dividing the time by 4 provides the optimal 

pulse width for excitation of the water resonance. 

After shimming, the transmitter offset (tof) and saturation frequency is 

optimized.  This involved setting up an array of values between -294 Hz and -288 Hz and 

visually inspecting the value at which the water peak is split down the middle.  The 

magnet is tuned appropriately when the tails of the water peak on either side have equal 

magnitudes.  This is shown in figure 6.3 c and d. 

 

Figure 6.3: Shimming the magnet and optimizing the transmitter offset (tof). a shows 
the methyl peak of DSS after application of a shim optimization algorithm.  It is 
observed that the peak shape is not optimal, so the field must be manually shimmed 
using the z1, z2, x and y gradients.  The optimized peak shape is shown in b.  c and d 
show the effects of changing the tof.  In c, the tof is set too low, such that the right 
hand tail has a greater amplitude than the left hand tail.  The tof has been optimized 
in d, where both tails are approximately the same height. 
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The receiver gain was initially set to 18 dB for all scans and decreased to 12 dB 

when an ADC overload occurred.  One study found that dynamic changes in the receiver 

gain have a negligible effect on the results due to the long word length of the analog 

digital converter (Malz and Jancke, 2005). 

Prior to acquisition, phasing adjustments were made to the entire spectrum to 

flatten the spectrum baseline on either side of the water resonance.  Magnetic field 

shimming was performed on the methyl resonance peak of the DSS internal standard at 

0.0ppm (Saude et al., 2006).  The magnetic field was shimmed using the z-1, z-2, x and y 

gradients to achieve a line width of less than 1.0 Hz.  In most cases, the peak width at 

0.55% and 0.11% peak height were less than 12 Hz and 20 Hz. 

Water suppression on dilute samples was poor, and often resulted in an ADC 

overload.  In this case, the receiver gain was changed from 18dB to 12dB and the number 

of scans increased to 64.  These values were chosen as a compromise between spectrum 

quality and time of acquisition.  The acquisition time for these experiments was 5:47. 

 

6.5 Metabolite Profiling 

Identification and quantification of metabolites was carried out with the 

Chenomx Suite 5.1 (Chenomx Inc., Edmonton, Canada) software package.  

Quantification is achieved using targeted profiling in which mathematically modelled 

pure compound NMR resonances from the Chenomx library (pH 6-8) are fit to the 

acquired spectra (Weljie et al., 2006).  A detailed procedure for spectral processing 

follows.  Complete details can be found in the Chenomx Suite 5.1 user guide available 

at www.chenomx.com.  A DSS concentration of 0.125mM is used for all samples. 

 

6.5.1 Spectrum Processing 

The ‘Chenomx Processor’ prepares the NMR spectrum for profiling by 

correcting phasing and baseline artefacts (Chenomx NMR Suite 5.1 User manual).  Upon 

opening the spectrum, the user must input the sample pH and decide whether or not to 

apply line broadening.  Entering the pH will help with profiling metabolites, such as 

citrate, which are known to have a pH dependent chemical shift and peak shape 

(Miyataka et al., 2007; Weljie et al., 2006).  For the purpose of our experiment, we chose 

http://www.chenomx.com/�
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to apply line broadening at a later stage.  Briefly, the steps applied are phasing, baseline 

correction, line broadening, reference deconvolution and water deletion.  The initial 

spectrum is shown in Figure 6.4a. 

Proper phasing and baseline corrections are essential for accurate profiling 

(Wishart, 2008).  Phasing the spectrum compensates for the missing data points at the 

start of the free induction decay (FID) (Szantay, 1992).  The software automatically 

applies phase adjustments to the spectra by applying the automatically-determined phase 

angles.  Manual changes must be performed to optimize the phasing adjustments.  This 

includes zeroth order corrections to the phasing of the methyl resonance of DSS and first 

order corrections to the spectra in the approximate range of 7.0 to 9.0 ppm.  The baseline 

should be symmetric on either side of the water resonance and have a smooth appearance 

throughout (Vitols, December 2006).  After proper phasing, the spectrum will look 

similar to that shown in Figure 6.4b. 

Baseline correction removes baseline distortions resulting from incomplete water 

suppression (Wishart, 2008).  The spline function applies a cubic spline baseline 

correction based on automatically-determined breakpoints (Cheng et al., 2007).  Small 

adjustments to the spline baseline are made near the urea and water resonances to better 

fit the actual baseline and to remove very wide signals (line widths of the order of 1 

ppm).  The effect of baseline correction is shown in Figure 6.4 b and c. 

Line broadening was applied to the spectrum to obtain a final approximate peak 

width of 1.25-1.30 Hz for the methyl resonance at 0.0ppm.  The width of 1.25-1.30 Hz 

provides the closest fit of the modelled compounds to the spectra (Chenomx NMR Suite 

5.1 User Guide).  Line broadening is performed by applying an exponential FID 

weighting function to the data which aids in the removal of noise at the tail end of the 

FID and emphasises the information at the early time points (Szantay, 1992).  Line 

broadening with an exponential weighting factor results in an artificial damping of the 

FID so that the T2

Reference deconvolution was applied to the methyl resonance (including the DSS 

satellites) to a line width of 1.30 Hz.  This step reconstructs an ideal spectrum by 

removing lineshape distortions, resulting from field inhomogeneities and improper 

shimming, based on the shape of the methyl resonance of DSS (Vitols and Mercier, 

 values of the metabolites appear faster.  Line broadening will improve 

the accuracy of integration as more data points are used to define the peak shape 

(Szantay, 1992) and instrumental noise is averaged. 
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2006).  The method involves the deconvolution of the entire spectrum with the 

experimental line shape of DSS, and then reconvolves the spectrum with an ideal 

lorentzian line shape (Vitols and Mercier, 2006).  Reference Deconvolution is a linear 

process in that it only uses direct and inverse Fourier transforms to maintain the 

quantitative relationships between compounds in the spectrum.  Reference deconvolution 

assumes that all lineshapes are systematically distorted in the same way.  It is useful for 

reducing the effects of varying shimming techniques between users and to improve the 

quantitative accuracy of compounds in regions with heavy overlap of signals.  Figure 6.4 

d and e shows how the methyl peak is affected by application of reference deconvolution. 

 

 

 

Figure 6.4 Procedure for pre-processing the spectra in Chenomx  a, b and c all show 
the same region of the spectra around the water resonance (~4 – 4.8 ppm).  d and e 
show only the methyl peak of DSS at 0 ppm.  a. Initial spectrum when imported into 
Chenomx.  b. After correcting for phasing errors.  c. Post baseline correct.  d. 
Methyl peak of DSS before reference deconvolution.  e. Methyl peak of DSS after 
reference deconvolution.  f. Final spectrum after processing. 
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Water deletion removes the sections of the spectrum covered by the water 

resonance.  Removal of the water resonance is not required, but will remove the sections 

of the spectrum near the water resonance which are distorted from the incomplete water 

suppression.  These metabolite peaks are not profiled because they may also be 

suppressed (McKay, 2009).  The water resonance was removed from all samples for 

consistency.  The final spectrum, after water deletion, is shown in Figure 6.4f. 

 

6.5.2 Metabolite Profiling 

Metabolite identification and quantification is performed using ‘the Profiler’ 

software.  This software includes a library of mathematically modelled NMR resonances 

for pure metabolites for a specific pH range (Saude et al., 2006).  Profiling involves 

matching the compounds NMR signatures to the patterns found in the spectrum.  Figure 

6.5 shows the steps in profiling a metabolite.  Details of the procedure follow. 

There are three important lines displayed in the Profiler: the black line represents 

the acquired spectrum, the red line is the addition line which adds up the contributions of 

all metabolite peaks at each chemical shift, and the green line is the subtraction line 

which calculates the difference between the spectrum and the addition line.  Quantitative 

accuracy is greatest when the subtraction line is used for profiling. A modelled peak is 

manually adjusted, amplitude and chemical shift, to best fit the spectral peak.  This is 

achieved by obtaining a subtraction line with zero magnitude.  The amplitude of the 

profiled peak is directly proportional to the concentration of that metabolite.  In effect, 

increasing the amplitude means having a higher concentration of the metabolite in that 

sample.  Figure 6.5a shows the creatinine singlet that has only been partially profiled.  It 

is evident that the profiled concentration is incorrect as the addition line (red) does not 

encompass the area under the peak and the subtraction line (green) is not flat.  In Figure 

6.5b, the metabolite has been correctly profiled.  This time, the subtraction line is flat. 

Metabolites are known to have pH dependent chemical shifts, so the modelled 

peaks are free to move to higher or lower chemical shift locations within a pre-defined 

region (Vitols and Rosewell, March 2006).  The resonance peak may be shifted to any 

chemical shift within this region, but is bound by an upper and lower limit set by the 

software.  The software allows users to adjust the chemical shift of each resonance cluster 

individually (Vitols and Rosewell, March 2006).  In general, peaks originating from one 

metabolite will shift in the same direction, but the magnitude may vary between clusters. 
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A library with common urinary metabolites was first used for profiling.  This 

library contains a list of 80 metabolites, though not every metabolite was found in the 

mouse urine.  After profiling these metabolites, a second library, containing all 

metabolites available, was selected to profile the remaining peaks.  These libraries do not 

contain all metabolites found in urine, but those present were identified and quantified.  

Each metabolite was selected individually and fit to the spectrum.  Metabolites that did 

not have an obvious fit to the spectrum were assumed to be absent, and their 

concentrations reset to 0 µM. 

Identification and quantification was performed by adjusting the concentrations 

and chemical shifts of the modelled peaks to fit the spectrum.  Metabolites that were fully 

resolved from nearby peaks and located far from the water and urea resonances (outside 3 

and 7 ppm) were profiled first.  Next, metabolites with a prominent peak in a crowded 

area of the spectrum (generally a singlet) were fit.  All possible metabolites with a 

chemical shift in the region were tried to verify that the correct metabolite was profiled.  

Metabolites that exhibit more than one resonance were fit to each cluster individually.  

Quantification for these metabolites was performed on a well-resolved, prominent peak 

far from the water resonance. 

Figure 6.5 Profiling the Creatinine peak at 3.0ppm.  This figure shows the three 
lines used for profiling: the black line is the NMR spectrum signal, the red line is 
the addition line which shows the sum of all metabolites profiled at the chemical 
shift, and the green line is the subtraction line which is used for profiling.  When it 
is flat, the fit it good.  a. Bad fit as the subtraction line is not flat.  b. Good fit. 
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Some metabolites are consistently found close together.  To profile these 

metabolites, previous knowledge about the relative chemical shifts for each resonance 

was utilized.  For example, lactate and threonine have a structural similarity, which 

causes their methyl signal to overlap (Vitols and Fu, April 2006).  However, lactate is 

often found down-field (higher ppm value) of threonine.  Another example is between 

creatine and creatinine; creatinine is often found further down-stream and is generally the 

larger of the two (Vitols and Fu, April 2006).  Such pairs of metabolites were fit 

concurrently to ensure an accurate measurement for both. 

A total of 43 metabolites were profiled, but only 34 were used in the analysis.  

Glycerol and DSS were removed as they came from external sources.  Urea is not 

quantitative since its protons exchange with water.  As a result, the intensity of the peak 

is strongly dependent on the quality of the water suppression (Ross et al., 2007).  

Allantoin is found near the urea resonance and is in chemical exchange with urea.  This 

causes broadening and variable attenuation of the two peaks, making quantification 

unreliable.  The glycolate and methylamine resonances are singlets found in a crowded 

portion of the spectrum.  Quantification is complicated by the fact that more than one 

prominent singlet is present in the area.  The chemical shifts of these singlets vary 

between spectra and overlap at times.  Only one singlet in the area was profiled.  Since 

our knowledge of the other peaks is limited, we cannot assume that the profiled 

resonance is always up (or down) stream from the others.  For this reason, we chose to 

remove these metabolites from the analysis.  Phenylacetylglycine, pyroglutamate and 

tyrosine are all low concentration metabolites found in a crowded area of the spectrum.  

Since they are near the noise level, quantification is dependent on the user’s judgement, 

and thus eliminated. 

 

6.6 Data Analysis 

6.6.1 Preparation of Data 

Metabolite concentrations (n=34) and metabolite ratios (n=561) were used in the 

analysis.  The metabolite concentrations must be normalized prior to analysis to bring all 

samples to the same approximate concentration.  Three methods are commonly used in 

metabolomics studies: integral normalization, normalization with respect to creatinine 
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and quotient normalization (Ross et al., 2007).  In contrast, the metabolite ratios require 

no normalization since all metabolites in the sample are equally affected by dilution. 

Integral normalization is the standard normalization of biofluids (Ross et al., 

2007).  This technique assumes that the integrals of the spectra are a function of only the 

overall concentration of the samples.  Changes in the concentrations of individual 

metabolites are assumed to be small compared to changes associated with overall 

concentrations.  In particular, the up-regulation of metabolites should balance the down-

regulation of other metabolites to maintain a constant integral area.  The integral 

normalization procedure sums the areas of all variables (bins or metabolites) and divides 

each variable by the sum.  Most groups choose to remove the areas around the water and 

urea resonances (Ross et al., 2007).  A number of variations of integral normalization are 

found in the literature.  While some groups keep the total area at unity (Lenz et al., 2004; 

Maher et al., 2007; Parsons et al., 2007; Potts et al., 2001), others choose to multiply by 

100 for a total area of 100 (Keun et al., 2004).  This method works well when the relative 

change in metabolite concentrations is small.  However, it is not robust when these 

changes are influenced by the alteration in the concentration of another metabolite or 

when one metabolite change significantly dominates.  Under these circumstances, the 

spectra do not scale correctly which makes the technique inappropriate for metabolomics 

experiments (Dieterle et al., 2006). 

Creatinine normalization is similar to integral normalization, except that that the 

integral of the creatinine peak is used in place of the overall integral.  In simpler terms, 

the ratio of each metabolite with respect to creatinine is studied.   The technique, 

originating from clinical chemistry, is commonly used for studies involving human or 

animal urine samples (Kim et al., 2008; Tyburski et al., 2009; Um et al., 2009).  It is 

assumed that creatinine excretion into the urine is constant.  Difficulties with this 

technique involve accurate quantification of the creatinine peak when it is overlapping 

with another resonance, pH dependent chemical shifts for the peak at 4.05 ppm (when 

using binning) and metabolic responses that alter the excretion of creatinine.  The 

excretion of creatinine is known to be influenced by the mass of muscle tissues in the 

body (Stretch and Baracos, in press).  Muscle loss, related to cancer, is a well established 

effect (Stretch and Baracos, in press), so creatinine normalization should not be used for 

cancer-related studies. 
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Quotient normalization assumes that changes in the concentrations of single 

metabolites influence part of the spectrum, whereas changes in the overall concentration 

influence the entire spectrum (Dieterle et al., 2006).  A most probable quotient between 

the spectrum and a reference spectrum is determined.  The entire spectrum is then 

normalized with respect to this quotient.  The reference spectrum can be a ‘golden’ 

reference spectrum or the calculated mean or median spectrum from the controls.  It has 

been shown that the choice of reference spectrum is not critical, but the median spectrum 

from the controls is the most robust for studies with only a few animals.  It is 

recommended to remove all areas of the spectrum that are dominated by noise and 

perform an integral normalization prior to quotient normalization to bring all spectra to 

the same absolute magnitude (Ross et al, 2007).  One study showed that the 

normalization method works better than integral normalization for control animals where 

only small changes in metabolite concentrations occur (Dieterle et al., 2006).  This 

normalization technique was chosen for its robustness. 

The total area under each spectrum was normalized to an arbitrary value of 100 

following the steps for integral normalization.  A median spectrum was created by 

calculating the median value of the fractional area occupied by each of the 34 metabolites 

of interest from all of the pre-injection spectra.  The distribution of quotients was 

determined by dividing each spectrum by the reference spectrum.  The most probable 

quotient for a particular sample was chosen as the median quotient in this distribution.  

An example of a distribution is shown in Figure 6.6.  Here, it is evident that most 

quotients fall in the range between 0.388 and 3.58.  For this example, the most probable 

quotient is 1.03.  The concentrations for all metabolites in each sample were scaled with 

respect to this value. 

 

Figure 6.6: Distribution of quotients for 
spectrum normalization.  Quotient 
normalization requires that the most 
probable quotient is determined for each 
sample.  The distribution of dilution 
factors shown here suggests that the 
most probable quotient for the sample is 
around 1.0.  The median quotient was 
selected as for normalization of the 
sample and is equal to 1.03. 
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Metabolite ratios were calculated for all pairs of metabolites.  The smaller of the 

reciprocal ratios (i.e. A/B vs. B/A) was chosen for analysis to minimize the shift in the 

ratio as a result of measurement errors in the reported concentration for low concentration 

metabolites.  For instance, metabolites at low concentration will generally have a larger 

relative error as a result of the numerical resolution of the software.  Having this 

metabolite in the denominator will have a significant impact on the magnitude of the ratio 

and could bias the calculation of the mean and standard deviation.  This effect is smaller 

when this metabolite is in the numerator.  This choice will place greater emphasis on the 

higher concentration metabolites, which are often measured with greater accuracy. 

The mean and standard deviation for each metabolite or ratio was calculated for 

the pre and post injection samples.  Observations that were more than three standard 

deviations from the mean were defined as outliers and removed from the analysis.  The 

mean and standard deviation for all variables for each mouse were calculated from the 

contributing samples.  Averaging the samples by mouse decreases noise in the spectra 

related to metabolic variation in the animals and instrument instabilities.  Distributions of 

the pre-injection and the tumour-bearing samples were constructed from the collection of 

averaged values.  The means were log10

 

 transformed prior to analysis.  Even after 

transformation, the distributions are not completely normal. 

6.6.2 Univariate Statistical Analysis 

The non-parametric Wilcoxon rank sum test (MATLAB statistics library) was 

used for the univariate statistical analysis as each animal contributed a sample before and 

after cell injection.  Statistical significance was defined using the Bonferroni correction 

(p < 0.05 / N where N is the number of metabolites or ratios) and the false discovery rate 

(FDR) for the ratios. 

Based on the distributions of the healthy and diseased populations, an ROC curve 

was constructed from the sensitivity and specificity values obtained at 101 threshold 

values.  These thresholds were determined from the minimum and maximum values form 

the distributions.  The minimum and maximum thresholds were rounded down and up to 

the nearest thousandth to entirely encompass the distributions.  The remaining thresholds 

were equally spaced between these two end-points.  The ROC curve was constructed by 

plotting the sensitivity along the y-axis, and (1 – specificity) on the x-axis. 
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Data points were connected with a linear segment for better visualization of the 

curve.  The AUC was calculated using the trapezoidal method for integration (Odunsi, 

2005, Weinstein, 2005).  This method often underestimates the area since the curve is 

typically bowed towards the top-left corner; however, the estimate should be fairly 

accurate since 101 threshold values were used. 

A plot of the AUC vs. the p-value was drawn to identify trends in the AUC 

parameter with respect to the significance of various metabolites / ratios (Broadhurst and 

Kell, 2006).  Vertical lines were drawn on the plots to indicate regions with Bonferroni 

and FDR significance limits. 

 

6.6.3 Multivariate Statistical Analysis 

Multivariate statistical analysis was performed with the SIMCA P+ software, 

version # 12.0.1 (UMetrics, Sweden).  Principal component analysis (PCA) and partial 

least squares discriminate analysis (PLS-DA) models were generated for the log10 

transformed metabolite concentrations using unit variance scaling (UV) or Pareto scaling 

(par).  Seven-fold cross validation was performed for all models.  The goodness of fit, R2, 

and the goodness of prediction, Q2

The SIMCA software calculates the scores for each sample and stores them in a 

prediction list.  The scores describe the samples location in k-space where k is the 

number of principal components used to create the model.  Samples not used in creating 

the model are automatically projected on it.  The scores for these samples are recorded in 

the prediction list.   

, parameters were recorded for every model.  There is 

no standard requirement for these parameters, though values in excess of 0.5 are 

preferred (Westerhuis et al., 2008).  Scores plots for the models were used to ensure that 

class separation between the pre-injection and tumour bearing animals was present. 

The prediction list for each model was imported to an excel document for ROC 

curve analysis.  Analysis of the scores revealed that the optimal separation between 

classes was not along a single component axis, but along a combination of two.  For this 

reason, ROC curves were applied to the scores plot at variable angles between 1o and 

180o in 1o increments.  At each angle, the minimum and maximum values were 

determined and set as the first and last ROC curve thresholds after rounding down and up 

to the nearest thousandth.  By definition, angles refer to the counter clockwise direction.  
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The sensitivity and false positive fractions were determined at each threshold and were 

used to construct the curve.  Trapezoidal integration was again used to calculate the 

AUC.  ROC curve analysis was applied to all permutations of component axes to 

determine the angle at which the AUC was a maximum. 

ROC curve analysis was performed with three groups of samples: 1. between the 

pre and post-injection data for the tumour-bearing animals only, 2. between the post-

injection samples for the tumour-bearing and control animals and 3. Grouping all pre-

injection samples (tumour-bearing and controls) and the control post-injection data as one 

population and comparing with the post-injection tumour-bearing samples.  

 

6.6.4 Inclusion of Control Data 

Control data was treated similarly to the tumour-bearing data.  Univariate 

statistical analysis on the metabolite concentrations revealed that one metabolite was 

Bonferroni significant in the control animals, while a few others had p-values less than 

0.05 or 0.01.  These results suggested that additional influences were competing with the 

metabolic changes associated with the presence of the tumour.  To identify tumour-

related changes, these external influences must be carefully considered. 

To our knowledge, there is no standard method to include control data in the 

analysis. Changes experienced in the control animals may be corrected by removing any 

metabolite that is significant (Bonferroni, FDR or having p < 0.05 or p < 0.01) in both the 

control and tumour-bearing animals and travelling in the same direction (increased or 

decreased in both groups).  A more stringent technique is to remove any metabolite that is 

significant in the control animals, regardless of how it changes in the tumour-bearing 

population. 
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Chapter 7 
Results and Discussion 
 

 

This Chapter shows the results of univariate and multivariate analysis.  As 

discussed in the methods chapter, univariate statistical analysis was performed to verify 

that statistically significant metabolic changes were present.  Analysis was performed on 

both metabolite concentrations and the ratios of pairs of metabolites.  ROC analysis was 

applied to the distributions of the pre-injection and post-injection data.  The AUC was 

calculated to assess the clinical significance of metabolic changes.  Multivariate statistical 

analysis took the form of PCA and PLS-DA.  For each technique, unit variance and 

Pareto scaling was applied prior to modelling.  ROC analysis was applied by rotating the 

scores plots by unit angles between 1 and 180o

 

.  The optimal angle was defined as the 

angle at which the maximum AUC was obtained. 

7.1 Pre-Analysis 

Metabolite concentrations were exported from Chenomx Suite 5.1 into an excel 

file and sorted by animal and class.  For the purposes of our analysis, classes were 

defined as pre-injection, post-injection with tumour and post-injection controls.  The 

latter two classes were composed of all samples collected between 6 and 35 days post-

injection. 

The samples had variable concentrations and required normalization prior to 

analysis.  The concentrations for each sample, for all animals, were plotted to show the 

spread in the normalized metabolite concentrations.  The examples of 3-indoxylsulfate, 

glucose, taurine and trimethlyamine are displayed in figure 7.1.  It is observed that the 

variability of a metabolite concentration for a single animal is large.  However, the range 

of values is approximately consistent between the pre-injection data from the tumour-

bearing mice (black circles) and the control mice (black crosses) as expected.  Subtle 

changes in the concentrations post-injection are observed for glucose and trimethylamine. 
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Paired analysis may be applied since data was collected from the same animals 

before and after cell injection.  This has the advantage of averaging out the day-to-day 

variations in the urine content and compares metabolic changes experienced on an 

individual level.  For this reason, the pre and post-injection data for each animal was 

averaged.  Distributions of metabolite concentrations were created from the contribution 

of all averaged concentrations.   Prior to averaging, samples defined as outliers – those 

found more than three standard deviations from the class mean – were removed. 

 

 

Figure 7.1: Plots of the normalized metabolite concentrations for 3-indoxylsulfate, 
glucose, taurine and trimethlyamine.  The black and red circles represent the pre 
and post-injection data from the tumour-bearing mice, respectively, while the black 
and red crosses represent data from the control animals.  The intra-animal variation 
is large for all animals.  However, the range of values is consistent among all 
animals: tumour-bearing and controls. 
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7.2 Univariate Statistical Analysis on Metabolite Concentrations 

The distributions of the pre and post-injection data from the tumour-bearing 

animals were compared using the non-parametric Wilcoxon rank sum test.  This test was 

chosen because the distributions, even after log10 transformation, were often not normal.  

The role of the log10 transformation is to make a skewed distribution more normal in 

shape so that statistical tests with an underlying assumption of normality may be applied.  

The results indicated that 3 (out of 34) metabolites - glucose, trimethylamine n-oxide and 

2-oxoglutarate – changed in a manner that satisfied the Bonferroni correction (p-value < 

1.47x10-3

The distributions for the pre and post-injection data for glucose, after a log

) and 2 more metabolites – trimethylamine and fumarate – satisfied the FDR 

criterion for significance.  For brevity, variables achieving statistical significance after 

the Bonferroni correction is applied will be referred to as ‘Bonferroni significant’ and 

those considered significant under FDR analysis will be referred to as ‘FDR significant’. 

10 

transformation, are shown in figure 7.2.  There is a notable shift to lower concentrations 

in the tumour-bearing samples, though there remains heavy overlap between the 

populations.  This observation is consistent with other studies involving cancer where 

breast cancers had lower levels of glucose than healthy or malignant tissue which could 

be attributed to the greater rate of aerobic glycolysis in tumour cells (Spratlin et al., 2009; 

Whitehead et al., 2005). 

 

Figure 7.2: Distribution of urinary glucose in experimental animals after applying a 
log10 transformation.  Each point represents the average value of glucose concentration 
in single animals’ samples.  The solid line represents the pre-injection (healthy) 
population and the dashed line represents the post-injection tumour-bearing animals.  
There is a notable decrease in the concentration post-injection.  The distributions were 
often not normal, so statistical significance was determined with the non-parametric 
Wilcoxon sum-ranked test. 
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ROC curve analysis was applied to these distributions to quantify the degree of 

separation between healthy and tumour-bearing animals.  Figure 7.3 shows the ROC 

curves for the three Bonferroni significant metabolites.  The AUC for these metabolites 

are 0.789, 0.865 and 0.850 for 2-oxoglutarate, glucose and trimethylamine n-oxide, 

respectively.  The other two FDR significant metabolites had AUCs of 0.810 and 0.748 

for trimethylamine and fumarate.  The three Bonferroni significant metabolites and 

trimethylamine had the largest AUC’s of all metabolites studied.  A single non-

significant metabolite, betaine (AUC = 0.756), has an AUC larger than fumarate (AUC = 

0.748), though this difference is not large. 

 

 

The optimal decision threshold for each metabolite were determined from the 

maximum Youden index and from the point that lies closest to the top left hand corner of 

the graph (point (0,1)).  In general, the optimal decision threshold was consistent between 

the two methods, though there were some discrepancies.  Table 7.1 summarizes the 

optimal decision threshold for the two methods and provides the sensitivity and 

specificity for each.  The decision thresholds here are for the log10

 

 transformed data. 

Figure 7.3: ROC curves for the three most significant metabolite concentrations.  Each 
curve was generated by calculating the sensitivity and specificity at 101 different 
threshold values ranging from the absolute minimum to the absolute maximum ratio in 
the distributions.  The AUC was calculated by fitting trapezoids under the curves. 
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Table 7.1: The Optimal Decision Threshold for FDR Significant Metabolites 
Metabolite Youden Index Minimum Distance from (0,1) AUC 

D.T. Sen Spec Y.I. D.T. Sen Spec Dist 
2-Oxoglutarate 0.725 0.682 0.810 0.491 0.725 0.682 0.810 0.371 0.789 
Fumarate -0.966 0.455 0.952 0.407 -1.084 0.727 0.667 0.431 0.748 
Glucose 0.317 0.591 1.000 0.591 0.342 0.773 0.818 0.291 0.865 
Trimethylamine -0.710 0.857 0.591 0.448 -0.643 0.714 0.727 0.395 0.810 
Trimethylamine 
N-oxide 0.603 0.727 0.909 0.636 0.603 0.727 0.909 0.287 0.850 

 

A convenient method to evaluate the clinical and statistical significance of all 

metabolites involves plotting the AUC against the p-value, as shown in figure 7.4 

(Broadhurst and Kell, 2006).  The first vertical line, at a p-value of 1.471 x 10-

3, represents the threshold p-value for Bonferroni significance and the second line, at a p-

value of 3.47 x 10-3

Performing the same analysis on the control animals indicates that only one 

metabolite, taurine, is Bonferroni significant.  FDR analysis showed that this metabolite 

was also the only FDR significant variable.  This metabolite is not statistically significant 

in the tumour-bearing population, and might result from aging or as a response to the 

injection procedure.  To increase the number of variables considered significant in the 

control population, significance was defined for variables with p < 0.05 and p < 0.01. 

Another two metabolites lie to the left of p = 0.01 and four more lie to the left of p = 

0.05.  These limits are commonly used to define statistical significance when testing a 

single variable, but have also been used in the analysis of metabolomics data sets (Kim et 

al., 2008; Saude and Sykes, 2007; Tyburski et al., 2009; Um et al., 2009).  For this 

reason, we chose to consider metabolites satisfying both conditions for further analysis.  

The AUC against the p-value for the control data is displayed in figure 7.5.  In this 

analysis, taurine was the only metabolite to have an AUC greater than 0.9.  A total of 

three metabolites – 2-oxoglutarate, trimethylamine and trimethylamine n-oxide –had an 

AUC greater than 0.7 in both populations. 

 is the FDR significance limit. 

Table 7.1: Optimal decision thresholds, ‘D.T.’ as determined through the Youden 
Index (Y.I.) and minimum distance to the point (0,1) (Dist) methods for the five 
FDR significant metabolites.  The sensitivity (sen) and specificity (spec) for these 
thresholds are indicated in the following columns. 
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The goal of metabolomics analysis is to identify potential variables that can 

discriminate between healthy and diseased populations.  For this reason, it may be 

advantageous to exclude variables that change in a statistically significant manner in both 

populations.  Metabolites with a p-value less than 0.01 in the control population are 

displayed as the diamonds in figure 7.4, while those with a p-value less than 0.05 are 

identified as crosses.  For this analysis, taurine was the only Bonferroni significant 

metabolite in the control population and is identified with the single arrow in figure 7.4. 

Figure 7.4: AUC versus p-value for metabolite concentrations.  The figure shows a 
total of 3 significant metabolites to the left of the Bonferroni limit (vertical line at a 
p-value ~ 1.47x10-3) and 5 to the left of the FDR limit (vertical line at a p-value of 
3.47 x 10-3).  These metabolites have larger markers to emphasize statistical 
significance.  The diamonds indicate metabolites with p < 0.01 in the control 
animals, the crosses indicate metabolites in the control animals with p < 0.05 and the 
circles represent metabolites that are not significant in the control population.  The 
single Bonferroni significant metabolite in the control population is identified with 
the arrow.  No other metabolites were FDR significant in the controls. 
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Of the seven metabolites with p < 0.05, four are also significant in the tumour-

bearing group and change in the same direction (2-oxoglutarate, taurine, trimethylamine 

and trimethylamine n-oxide).  Removal of these metabolites results in a loss of two 

Bonferroni-significant metabolites (trimethylamine n-oxide with p = 8.44x10-5 and 2-

oxoglutarate with p = 6.37 x 10-4) and one FDR significant metabolite (trimethylamine p 

= 1.73 x 10-3) in the tumour-bearing group.  Consequently, only glucose is Bonferroni 

significant.  Fumarate loses its FDR significance with the removal of the 4 metabolites.  

Only one Bonferroni significant metabolite (trimethylamine n-oxide) is removed when 

considering metabolites with p < 0.01 in the control animals.  The reduced number of 

metabolites is not sufficient to change the Bonferroni limit enough so that trimethylamine 

becomes Bonferroni significant.  Therefore, only two metabolites are considered 

significant in the tumour-bearing population.  Removing the Bonferroni significant 

metabolite – taurine – has no impact on the analysis as it is not statistically significant in 

the tumour-bearing population. 

Figure 7.5: AUC versus p-value for metabolite concentrations in the control animals.  
The figure shows that only one metabolite (taurine) achieves Bonferroni and/or FDR 
significance (located to the left of the vertical line at a p-value ~ 1.47x10-3).  Taurine 
has an AUC of 0.916.  No other metabolites have an AUC greater than 0.8, though 
trimethylamine n-oxide has AUC = 0.793 and o-phosphocholine has AUC = 0.799. 
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Our results show that the presence of a tumour in a host animal alters the 

metabolic composition of urine.  However, the tumour does not affect all metabolites.  

The magnitude of the change in concentration ranged from negligible to highly 

significant.  For instance, the mean concentrations of 1-methylnicotinamide, 3-

indoxylsulfate and fucose remain essentially unchanged with p-values exceeding 0.879 

and AUC values less than 0.538.  On the other hand, the mean concentration of glucose, 

after applying the log10 transformation to make the distributions normal, decreased by 

16.9% and had a p-value of 3.09 x 10-5

Analysis on the control animals revealed that some metabolites will change in the 

same direction (increase or decrease) as in the tumour-bearing population.  Removing 

these metabolites from the analysis will enhance our confidence in the results, but could 

result in the loss of too many metabolites.  Therefore, it is advisable to set a significance 

threshold prior to removal. In this analysis, only two FDR significant metabolites will 

remain after removal of metabolites with p < 0.05 in the control population.  It is unlikely 

that the behaviour of these two metabolites will be specific to cancer only.  However, one 

investigator (Odunsi et al., 2005) showed that the use of 2 variables was sufficient for the 

diagnosis of epithelial ovarian cancer in human sera.  Others have used six (Lokhov et al., 

2010) and ten (Whitehead et al., 2005) metabolites for differentiation. 

.  This metabolite satisfies the condition for a good 

diagnostic test with an AUC of 0.865.  Two other metabolites, trimethylamine and 

trimethylamine n-oxide, may also be considered good diagnostic tests as they have 

AUC’s of 0.810 and 0.850, respectively.  Of these two, only trimethylamine n-oxide was 

Bonferroni significant, but both were FDR significant. 

 

7.3 Univariate Statistical Analysis on Metabolite Ratios 

Univariate analysis was also performed on the ratios of pairs of metabolites.  The 

Wilcoxon rank sum test identified 144 metabolite ratios that changed in a manner that 

was FDR significant, of these 19 were Bonferroni-significant.  A total of 53 ratios (12 

Bonferroni significant, 41 FDR significant) produced an AUC between 0.8 and 0.9, and 7 

metabolites (all Bonferroni significant) had an AUC greater than 0.9.  The AUC versus p-

value data for the ratios are plotted in figure 7.6. 
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Performing the same analysis on the control population revealed that two 

metabolite ratios experienced a change that was Bonferroni significant and another two 

were FDR significant. Both Bonferroni significant ratios were FDR significant in the 

tumour- bearing population and changed in the same direction and are identified by the 

arrows in figure 7.6.  Of the two FDR significant ratios, only one was FDR significant in 

the tumour-bearing population and is indicated with an arrow in figure 7.6.  The results of 

the analysis on the control animals are summarized in figure 7.7.  The two vertical lines 

Figure 7.6: Plot of AUC versus the p-value for the ratio of pairs of metabolites.  19 
metabolite ratios are Bonferroni-significant (left line) and another 125 are significant 
to the left of the FDR limit (right line).  53 ratios have an AUC between 0.8 and 0.9, 
and 7 ratios have an AUC > 0.9 (all Bonferroni significant).  Ratios with Bonferroni 
and FDR significance are drawn with larger markers to emphasize the different levels 
of significance.  There are only two Bonferroni significant metabolites in the control 
animals (indicated by the arrows).  The data points displayed as diamonds and crosses 
are the metabolite ratios that have p < 0.01 and p < 0.05 in the control population.   
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represent the Bonferroni significance limit and the FDR significance limit when using the 

Benjamani and Hochberg methodology (Benjamani and Hochberg, 1995).  Variables that 

achieve Bonferroni or FDR significance in the control population are displayed as 

diamonds and diamonds, and are indicated with an arrow in figure 7.6. 

To account for urinary metabolic changes not related to cancer, we again focus 

on the metabolite ratios in the control population where p < 0.05 and p < 0.01.  

Metabolites are removed if they have a p-value less than 0.05 (or 0.01) in the control data 

and experience shifts in the same direction in both populations. 

 

 

Figure 7.7: Plot of AUC versus the p-value for the ratio of pairs of metabolites for the 
control animals.  Two metabolite ratios are Bonferroni-significant (first line) and 
another two are significant to the left of the FDR limit when using the Benjamani and 
Hochberg method (second line).  Ratios with Bonferroni and FDR significance are 
drawn with larger markers to emphasize the different levels of significance. 
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Removal of metabolites with p < 0.05 in both populations, and moving in the 

same direction, (n = 64) resulted in a loss of 53 significant metabolites (43 FDR and 10 

Bonferroni).  After re-calculating the new Bonferroni significance threshold (p = 1.006 x 

10-4

Removal of any metabolite ratio with p<0.01 in the control population, and 

shifting in the same direction in the tumour-bearing group, resulted in a loss of 32 

significant ratios in the tumour-bearing analysis: all are FDR significant, with 7 of them 

being Bonferroni significant.  The more conservative approach, in which all FDR 

significant metabolite ratios in the control population are removed from the analysis, 

resulted in the removal of 46 metabolite ratios.  The 32 FDR significant ratios mentioned 

above were affected, as well as the addition of another 14 non-significant ratios.  After 

updating the Bonferroni limit to reflect the smaller number of variables, 12 ratios were 

Bonferroni significant; one of these ratios was only FDR significant before.  All 

significant ratios had an AUC greater than 0.837, with three having an AUC in excess of 

0.9.  These ratios are the diamonds in figure 7.6. 

), a total of 72 metabolite ratios achieved FDR significance with 10 of these being 

Bonferroni significant.  One metabolite moved from the FDR to the Bonferroni 

significance region after adjusting the limit.  Removal of all metabolites with p < 0.05 in 

the control population (n = 92) removed a further 28 non-significant ratios from analysis, 

and allowed one more metabolite to achieve Bonferroni significance.  The affected ratios 

are displayed as the diamonds and crosses in figure 7.6.  Two Bonferroni significant 

ratios have an AUC greater than 0.9, while the remaining eight (or nine after removal of 

significant ratios in the control population) have AUC exceeding 0.837. 

The optimal decision thresholds for each metabolite ratio were determined from 

the ROC curve using both methods.  In general, the two techniques agreed within 3 

decision thresholds (101 were used to calculate the curve).  Table 7.2 summarizes this 

data for nine Bonferroni significant metabolites which are likely due to the presence of 

tumour. 

The frequency with which individual metabolites appeared in each category of 

significance (Bonferroni, FDR, p < 0.01 or p < 0.05) was determined.  The results are 

displayed in Table 7.3 for both the tumour-bearing and the control animals.  The first 

column for each group is the p-value for the metabolite concentration determined 

previously.  The remaining columns describe the various levels of significance used. 
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Table 7.2: Determination of the Optimal Decision Threshold for Metabolite Ratios 
Metabolite in 
Numerator 

Metabolite in 
Denominator 

Youden Index Minimum Distance from (0,1) 
D.T. Sen Spec Y.I. D.T. Sen Spec Dist 

Citrate Acetate 1.53 0.636 0.952 0.589 1.46 0.773 0.810 0.297 
Citrate Betaine 1.29 0.864 0.773 0.636 1.29 0.864 0.773 0.265 
Succinate Betaine 0.14 0.864 0.909 0.773 0.14 0.864 0.909 0.164 

2-Oxoisocaproate Trimethylamine 
N-oxide -0.32 0.864 0.818 0.682 -0.32 0.864 0.818 0.227 

3-Methyl-2-
oxovalerate 

Trimethylamine 
N-oxide -0.55 0.864 0.818 0.682 -0.55 0.864 0.818 0.227 

Acetate Trimethylamine 
N-oxide -0.76 0.857 0.727 0.584 -0.81 0.762 0.818 0.300 

Hippurate Trimethylamine 
N-oxide -0.86 0.773 0.818 0.591 -0.86 0.773 0.818 0.291 

Niacinamide Trimethylamine 
N-oxide -1.34 0.727 0.909 0.636 -1.34 0.727 0.909 0.287 

Valine Trimethylamine 
N-oxide -1.67 0.818 0.818 0.636 -1.67 0.818 0.818 0.257 

 

Inspection of the metabolite ratios (table 7.3) revealed that 38.9% (56 out of 144) 

FDR significant metabolite ratios contained at least one of the Bonferroni-significant 

metabolites, while 60.4% (87 out of 144) of these metabolites contained at least one of 

the five FDR significant metabolites .  Further, 15 (of 19) Bonferroni significant ratios 

contained one of the three Bonferroni significant metabolites and 16 Bonferroni 

significant metabolites contained one of the five FDR significant metabolites.  Fifty-

seven FDR significant ratios contained two metabolites that were not considered FDR 

significant, with three of these ratios achieving Bonferroni significance.  This means that 

39.6% of the FDR significant metabolite ratios contain two non-significant metabolites. 

Analysis of metabolite ratios has the ability to extract information similar to that 

discovered with the analysis of metabolite concentrations, but also identifies significant 

changes in the pair of two non-significant metabolites.  In a majority of these ratios (50 of 

the 57 or 87.7%), the two mean metabolite concentration changed in opposite directions.  

Another two ratios had one metabolite increase in concentration, while the other 

metabolite maintained the same value post-injection.  Further, a total of 53 ratios of pairs 

of metabolites had an AUC exceeding 0.8 (7 having and AUC greater than 0.9), while 

only 3metabolites (concentrations) had an AUC above 0.8. 

Table 7.2: Optimal decision thresholds, ‘D.T.’ for nine Bonferroni significant ratios 
as determined through the Youden Index (Y.I.) and minimum distance to the point 
(0,1) (Dist) methods.  Based on the analysis of control animals, these nine ratios are 
likely due to the presence of the tumour in the host animal.  The sensitivity (sen) 
and specificity (spec) for these thresholds are indicated in the following columns. 
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Table 7.3: Frequency of Metabolites in the Significant Ratios 
Metabolite Tumour-Bearing Population Control Population 

p-value Bon FDR 0.01 0.05 p-value Bon FDR 0.01 0.05 
1-Methylnicotinamide 9.16E-01  5 5 6 3.26E-02   2 5 
2-Oxoglutarate 6.37E-04 2 26 24 29 4.09E-02   5 13 
2-Oxoisocaproate 2.09E-01 1 7 7 8 8.36E-01    1 
2-Oxovalerate 1.19E-01 1 5 5 9 4.76E-01   2 2 
3-Indoxylsulfate 8.79E-01  2 1 5 8.00E-01 1 1 2 3 
3-Methyl-2-oxovalerate 1.30E-01 1 6 5 10 8.72E-01    1 
3-Phenylpropionate 3.79E-01 1 5 5 6 4.76E-01   3 6 
4-Hydroxybenzoate 5.57E-02 2 8 8 11 5.35E-01   1 6 
Acetate 1.24E-01 2 8 8 9 3.23E-01    1 
Betaine 1.24E-02 4 11 10 12 1.13E-01   4 6 
Choline 4.48E-02 1 8 7 11 7.30E-01   1 2 
Citrate 8.87E-03 2 20 18 22 1.75E-01   1 3 
Creatine 4.32E-01  4 3 10 2.23E-01   1 7 
Creatinine 2.45E-01  5 5 9 7.69E-02   4 10 
Dimethylamine 1.24E-02 1 11 10 18 1.03E-01 1 1 5 7 
Formate 7.87E-01  7 6 11 2.58E-02   5 12 
Fucose 8.97E-01  3 2 7 9.82E-01   1 2 
Fumarate 3.47E-03  15 15 21 2.41E-01   7 12 
Glucose 3.09E-05 2 7 7 11 2.23E-01   3 7 
Hippurate 4.89E-01 1 6 3 8 6.96E-01   1 3 
Lactate 2.36E-01  6 4 15 9.45E-01     
Methionine 5.04E-01  4 3 6 6.96E-01    2 
Niacinamide 7.87E-01 1 5 5 8 9.82E-01  1  4 
Nicotinamide N-oxide 4.46E-01  4 3 5 2.06E-01   2 5 
O-Phosphocholine 6.89E-02 1 8 8 10 6.26E-03   5 6 
Succinate 1.51E-02 1 16 14 21 8.72E-01    2 
Taurine 2.99E-02  7 7 11 5.22E-04 1 3 17 22 
Threonine 1.16E-02  7 7 9 1.24E-01   2 6 
Trigonelline 5.65E-01  6 5 14 9.45E-01   1 3 
Trimethylamine 1.73E-03 1 19 17 23 2.91E-02   5 13 
Trimethylamine N-oxide 8.44E-05 12 25 25 26 5.44E-03 1 2 11 12 
Valine 2.27E-01 1 6 6 8 9.45E-01   3 5 
Xylose 6.89E-02  2 2 3 1.13E-01   1 2 
trans-Aconitate 4.60E-01  4 2 6 9.35E-02   1 3 

 

Table 7.3: This table shows the frequency with which individual metabolites appeared 
in the significant metabolite ratios.  The first column in each section is the p-value 
obtained from the metabolite concentration analysis.  The following columns relate to 
the Bonferroni significant metabolite ratios (Bon; p < 8.913 x 10-5), FDR significant 
metabolite ratios (FDR; 1.24 x 10-2 for tumour-bearing data and 2.59 x 10-4 for control 
data), metabolite ratios with p < 0.01 (0.01) and with p < 0.05 (0.05). 
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Metabolic ratios provide information about the simple interactions between pairs 

of metabolites and have the potential to identify significant changes that were not obvious 

in the analysis of metabolite concentrations individually.  Analysing metabolite ratios 

increases the number of tested hypotheses from N to N(N-1)/2 where N is the number of 

identified metabolites.  As a result, more variables achieve statistical significance.  The 

larger number of tested hypotheses will, however, increase the risk of having false 

discoveries.  The Bonferroni correction or use of the FDR method is required to limit the 

number of false discoveries to an acceptable level. 

Control animals were included in the study to investigate the effects of non-

tumour-related metabolic changes in an age and gender-matched population.  The 

treatment of all animals was consistent with respect to the light/dark cycle (12 hours 

light, 12 hours dark), temperature and humidity of environment, diet and method of urine 

collection.  Metabolic changes in these animals may result from a number of factors 

including aging or the animals’ response to whole body irradiation or the injection. 

The fact that significant metabolic changes were observed in the control animals 

complicates the interpretation of the tumour-bearing data.  If one were only interested in 

tracking an individual metabolite concentration or a single metabolite ratio for diagnostic 

purposes, consideration must be given to how the metabolite or ratio changes in an 

appropriately-matched healthy subject.  The results of this analysis show that, in general, 

metabolic changes are more pronounced in the tumour-bearing group than in the controls.  

Despite some similar metabolic changes in both populations, there remain a number of 

changes which are likely due to the presence of the tumour.  The analysis shows that a 

simple approach, such as removing metabolites or ratios that are common to both the 

tumour-bearing and control groups, is still able to extract significant (Bonferroni or FDR) 

metabolic changes which may be characteristic to the tumour-bearing population. 

While this treatment of control data will improve our confidence in the 

significance of the results, it likely underestimates the number of true discoveries.  For 

instance, if the tumour has a strong influence on the concentration of one metabolite and 

an external source, such as aging or in response to an environmental or procedural stress, 

has a weak influence on the same metabolite in the same direction, then the metabolite 

could be unnecessarily removed.  As metabolomics moves to the clinic, it is essential to 

define a healthy base line so that metabolic changes associated with tumour development 

may be identified.  This requires a large cohort of patients from each group. 
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7.4 Multivariate Statistical Analysis on Metabolite Concentrations 

PCA models were created for the pre and post-injection tumour-bearing data to 

investigate variation in the data set.   Five data sets were used for this analysis:  i) all 

metabolites, ii) all metabolites excluding those that had a p < 0.05 in the control animals, 

iii) all metabolites excluding those that had a p < 0.05 in both control animals and tumour 

bearing animals, iv) all metabolites excluding those that had a p < 0.01 in the control 

animals and v) all metabolites excluding those that had a p < 0.01 in both control animals 

and tumour bearing animals.  For each data set, two models were constructed; the first 

using unit variance (UV) scaling, and the other using Pareto scaling.  This was done to 

evaluate the ability of the different scaling techniques to discriminate between the healthy 

and tumour-bearing groups. 

The control data was not used to generate the models as we are interested in 

metabolic changes associated with the presence of tumour.  Instead the data was 

projected onto the model.  This allows for a visual assessment of how similar the post-

injection tumour-bearing and the post-injection control data are.  If the two groups are 

well separated, then tumour-related metabolic changes are present. 

PLS-DA models were also constructed for the pre and post-injection tumour-

bearing metabolite concentration data with the objective of finding separation between 

the two populations.  The same five data sets defined above were used.  Similar to the 

PCA models, two PLS-DA models were created for each data set:  one with Pareto 

scaling and one with UV scaling.  A total of 10 models were thus evaluated.  The control 

data was again not used to create the model, but was projected onto it. 

A summary of the model parameters – R2 and Q2 values as well as the number of 

components used – is shown in table 7.4.  There are no standard R2 and Q2

Each latent variable is said to describe the maximum variation in the data, which 

has not already been accounted for in a previous component.  This suggests that applying 

ROC analysis along each component axis will indicate the level of useable tumour-

related information contained in that component.  Ideally, the largest AUC should be 

obtained along the first component axis. 

 values to 

determine the strength of the model (Westerhuis et al., 2008), though values greater than 

0.5 are attractive (Erb et al., 2008). 
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Table 7.4 Summary of PCA and PLS-DA Models 

Model 
PCA PLS-DA 
scaling R Q2 Components 2 scaling R Q2 Components 2 

All data 
UV 0.565 0.172 4 0.421 0.837 0.567 3 
Par 0.619 0.260 4 0.481 0.810 0.556 3 

p < 0.01 in 
both 
removed 

UV 0.486 0.186 3 0.418 0.824 0.505 3 

Par 0.621 0.243 4 0.481 0.795 0.517 3 
p < 0.01 in 
controls 
removed 

UV 0.509 0.196 3 0.381 0.651 0.427 2 

Par 0.638 0.239 4 0.449 0.602 0.427 2 
p < 0.05 in 
both 
removed 

UV 0.261 0.159 1 0.423 0.771 0.422 3 

Par 0.727 0.176 5 0.478 0.729 0.412 3 
p < 0.05 in 
controls 
removed 

UV 0.256 0.152 1 0.360 0.615 0.354 2 

Par 0.558 0.222 3 0.425 0.542 0.326 2 
 

 

Three class comparisons took place.  In the first, only the samples (pre-injection 

and tumour-bearing) from the animals receiving cancer cell injections were considered.  

In the second, the post-injection tumour-bearing samples were compared with the post 

injection samples from the control animals.  In the third, all pre-injection data (i.e. 

samples from both the tumour-bearing and control animals) and the control post sham-

injection data were grouped as ‘healthy’ and compared with the post-injection tumour-

bearing data.  The results of this analysis on all models are summarized in table 7.5.  In 

all cases, the scores plot using the first two component axes showed separation between 

the pre-injection and tumour-bearing data, though there remains some overlap.  The plots 

also revealed that the optimal separation did not occur along a single component axis, but 

a combination of two.  This motivated us to perform ROC analysis after rotation of the 

data about the positive horizontal axis.  ROC analysis was performed along the positive 

horizontal axis after each rotation.  Figure 7.8 shows a scores plot for a PCA model with 

all data and UV scaling. 

 

Table 7.4: Summary of the PCA and PLS-DA models created after applying a log10 
transformation to the normalized data set, mean centering and scaling (indicated in the 
second column where UV = unit variance and par = pareto scaling).  A total of 10 
models were constructed to represent the five data sets and the two common types of 
scaling.  The models coefficient of variability, R2, and coefficient of predictability, Q2, 
is shown, as well as the number of components used for the optimal model. 
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Table 7.5 ROC Curve Analysis Along the PCA and PLS-DA Model Components 

Data set LV 

Pre and Post Cell Injection Post-injection Data Healthy Versus Cancer 
PCA PLS-DA PCA PLS-DA PCA PLS-DA 
UV par UV par UV par UV par UV par UV par 

Cancer 

1 0.613 0.646 0.972 0.924 0.539 0.570 0.867 0.789 0.564 0.615 0.935 0.889 
2 0.916 0.857 0.650 0.704 0.882 0.779 0.580 0.632 0.926 0.858 0.654 0.711 
3 0.525 0.566 0.706 0.734 0.651 0.649 0.575 0.565 0.587 0.621 0.587 0.612 
4 0.519 0.528   0.570 0.648   0.528 0.609   

Remove 
p < 0.01 
both 

1 0.625 0.655 0.941 0.895 0.547 0.576 0.789 0.745 0.583 0.626 0.890 0.844 
2 0.888 0.817 0.681 0.737 0.831 0.742 0.568 0.594 0.894 0.822 0.664 0.715 
3 0.509 0.556 0.727 0.734 0.645 0.649 0.607 0.610 0.570 0.618 0.575 0.578 
4  0.560    0.645    0.625   

Remove 
p < 0.01 
controls 

1 0.626 0.654 0.942 0.877 0.552 0.575 0.735 0.687 0.587 0.626 0.866 0.806 
2 0.875 0.810 0.685 0.743 0.813 0.740 0.563 0.607 0.882 0.815 0.666 0.717 
3 0.511 0.543   0.633 0.643   0.553 0.608   
4  0.596    0.696    0.664   

Remove 
p < 0.05 
both 

1 0.598 0.507 0.931 0.851 0.520 0.558 0.742 0.659 0.551 0.550 0.853 0.778 
2  0.763 0.683 0.750  0.731 0.571 0.593  0.762 0.661 0.715 
3  0.567 0.707 0.704  0.646 0.658 0.635  0.621 0.515 0.523 
4  0.745    0.656    0.729   
5  0.572    0.683    0.610   

Remove 
p < 0.05 
controls 

1 0.637 0.646 0.917 0.832 0.544 0.568 0.705 0.651 0.586 0.612 0.830 0.761 
2  0.718 0.691 0.772  0.635 0.591 0.589  0.696 0.665 0.714 
3  0.665    0.675    0.694   

 

Table 7.5: Summary of the ROC analysis applied along the components axes (labelled LV 
for latent variables) for all models.  Three groups of data were considered: the first 
involved only the tumour-bearing animals (pre and post cell injection), the second used the 
post-injection data for both the tumour-bearing and the control animals (post-injection data) 
and the third combined all pre-injection data with the post-injection data for the controls, 
and compared this data with that for the post-injection tumour-bearing animals (healthy 
versus cancer).  This analysis revealed that the majority of tumour-related information was 
contained in the first component for PLS-DA models, but was often found in the second 
component axis for the PCA models.  The PLS-DA models had an AUC greater than 0.9 
when comparing the pre and post-injection tumour-bearing data using UV scaling.  PCA 
models for ‘cancer’, ‘remove p < 0.01 both’ and ‘remove p < 0.01 control’ data sets had an 
AUC greater than 0.8 along PC a majority of the time. 
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ROC curve analysis was performed by rotating the axes in one degree increments 

between 1o and 180o and calculating the ROC along the rotated axis (thick black line in 

Figure 7.8).  For each angle, the minimum and maximum decision thresholds were 

updated to reflect the range of the rotated data.  The thresholds used to calculate the ROC 

curve parameters are perpendicular to the rotated axis – three of these thresholds are 

displayed as the dashed lines in Figure 7.8.  To determine the ability of each model to 

discriminate between populations, all pairs of latent variables were used. 

Figure 7.8: Scores plot of PC 1 and PC 2 for the PCA model with all data and UV 
scaling.  There is an evident shifting of the data post-injection along PC 2.  ROC 
curve analysis along this PC provided an AUC of 0.916.  However, there is some 
degree of separation along the first PC, meaning that the optimal direction of ROC 
analysis is not along a single component axis.  This motivated us to perform ROC 
analysis on the scores plots after rotation of the data.  The solid black line provides 
one example of this analysis where the data is rotated through an angle, θ, and 
ROC analysis is performed in the direction of the line.  Three decision thresholds 
(dashed lines) are shown. 



99 
 

ROC Analysis was applied to the data set by comparing the post-injection 

tumour-bearing data with three different groups.  The first was the pre-injection data from 

the tumour-bearing mice.  This analysis will indicate the ability of our technique to 

distinguish between health and tumour-bearing mice on an individual animal basis.  

Second, the post-injection data from the control mice was used to evaluate the degree of 

separation between the healthy and tumour-bearing animals post-injection.  This is 

analogous to a human study in which metabolism between pre-defined groups are 

compared.  The third analysis involved the grouping of all pre-injection data (from both 

the controls and tumour-bearing mice) and the post-injection data from the control 

animals.  This decreases the prevalence of cancer in the test population. 

Figure 7.9 shows the ROC curves along PC 1, PC 2 and the optimal rotated curve 

for the pre and post-injection tumour-bearing data in the PCA model with all metabolites 

and UV scaling.  It is clear that the rotated data provides better separation between the 

pre-defined groups.  The results for the ten PCA models are shown in table 7.6. 

 

 

Figure 7.9: ROC curves for the pre and post-injection data from the tumour-bearing 
animals for the PCA model using all metabolites.  The curves displayed are those along 
PC 1, PC 2 and the optimal ROC curve after rotation of the data.  The AUC increases 
from 0.613 and 0.916 for PC 1 and PC 2, respectively, to 0.936 after rotating the data. 
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Table 7.6 ROC Curve Analysis on the PCA Models 

Data Set 

Model Summary Best 
pair 
of LV 

Pre and Post 
Cell Injection 

Post-injection 
Data 

Healthy versus 
Cancer 

scaling R Q2 AUC 2 
Angle 
(deg) AUC 

Angle 
(deg) AUC 

Angle 
(deg) 

All data UV 0.565 0.172 1 & 2 0.936 79 0.883 92 0.930 78 
Par 0.619 0.260 1 & 2 0.892 111 0.812 112 0.882 103 

Removed 
p < 0.01 
both 

UV 0.486 0.186 1 & 2 0.910 79 0.859 74 0.907 73 
Par 0.621 0.243 1 & 2 0.871 108 0.787 114 0.856 106 

Removed 
p < 0.01 
control 

UV 0.509 0.196 1 & 2 0.917 77 0.852 80 0.911 77 
Par 0.638 0.239 1 & 2 0.873 71 0.768 65 0.852 74 

Removed 
p < 0.05 
both 

UV 0.261 0.159 - - - - - - - 
Par 0.727 0.176 2 & 4 0.847 59 0.820 45 0.842 64 

Removed 
p < 0.05 
control 

UV 0.256 0.152 - - - - - - - 

Par 0.558 0.222 2 & 3 0.784 136 0.727 121 0.787 126 

 

The loadings plots of a PCA model indicate which metabolites contribute most 

significantly to each principal component.  The location of variables in the loading plot 

corresponds directly with the samples in the scores plot and describes how the 

metabolites changes between populations (Murdoch et al., 2008).  The distance to the 

origin corresponds to the relative contribution of a particular metabolite. 

A loading plot for the PCA model using all metabolites and UV scaling is shown 

in figure 7.10.  It is interesting to note that the six FDR significant metabolites from the 

univariate analysis of individual metabolites (2-oxoglutarate, fumarate, glucose, 

trimethylamine and trimethylamine n-oxide from the tumour-bearing population and 

taurine from the control population) are all located far from the origin.  The scores plot 

for this model shows that the pre-injection samples are located primarily in the first 

quadrant, meaning that they have greater proportions of 1-methylnicotinamide, 2-

oxovalerate, 3-methyl-2-oxovalerate, 4-hydroxybenzoate, glucose, Nicotinamide, valine, 

xylose and lower levels of 2-oxoglutarate, citrate, fumarate, lactate and succinate than the 

tumour-bearing samples.  Of interest, glucose is located in the top right corner of the plot, 

Table 7.6: Results of ROC analysis after rotation of the data for all models created.  
Three population comparisons took place and were defined earlier (figure 5.3).  The 
data was rotated about the origin for angles between 1o and 180o in 1o increments.  
At each angle, a ROC curve was constructed based on the distributions of data from 
each defined group (pre-injection, post-injection control, health data or post-
injection with tumour).  The optimal angle of rotation was defined as the angle at 
which the maximum AUC was obtained.  These angles, along with the optimal AUC 
are displayed. 
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meaning that there is a net decrease in the concentration post-injection.  This is consistent 

with the previous anlaysis.  Fumarate, the other FDR significant metabolite remaining 

after removal of metabolites with p<0.05 in the control population, is found in the lower 

left hand corner, and thus representing an increase in concentration post-injection.  This 

also was consistent with the univariate analysis. 

 

 

Figure 7.10: Loading Plot for the PCA model using all metabolites and UV scaling.  The 
distance between the origin and each metabolite represents its contributions to each 
component axis.  For instance, 1-Methylnicotinamide (1-Meth) has a strong weighting 
along component axis 1, but little impact along component axis 2.  The score and loading 
plots are directly related, so sample in the first quadrant has greater levels of metabolites 
with positive weights along each component axis.  As an example, the pre-injeciton 
samples (generally found in the first quadrant) will have higher levels of glucose, valine 
and 4-Hydroxybenzoate (4-Hydroxyb) and lower levels of citrate, 2-oxoglutarate (2-
oxogluta) and fumarate than the tumour-bearing samples.  The FDR significant metabolites 
from the anlaysis of individual metabolites (2-oxoglutarate, fumarate, glucose, 
trimethylamine and trimethylamine n-oxide in the tumour-bearing group and taurine from 
the controls) are all located far from the origin. 



102 
 

This same analysis was applied to the PLS-DA models.  A scores plot for the first 

two latent variables for the PLS-DA model with all metabolites and UV scaling is shown 

in figure 7.11.  It is expected that optimal separation should be near 0o

The ROC curves were calculated for all ten models for the three class 

comparisons: 1) pre and post-injection tumour-bearing groups, 2) post-injection controls 

and post-injection with tumour and 3) healthy versus cancer.  The results are summarized 

in table 7.7.  The ROC curves created using the scores plot in figure 7.11 are displayed in 

figure 7.12.  The AUC for all these curves exceeds 0.9.  The AUC for the healthy versus 

cancer group is smaller than between the pre and post-injection tumour-bearing data due 

to the slight overlap of the post-injection control data with the post-injection tumour-

bearing data.  This was observed for all models. 

 for these models 

as PLS-DA is designed to identify the maximum separation between pre-defined classes 

and align the first latent variable in this direction. 

 

 

Figure 7.11: PLS-DA model for metabolite concentrations between the pre-injection and 
post-injection tumour-bearing data when all metabolites were considered.  There is clear 
separation between the healthy (pre-injection and the tumour-bearing population).  
Applying ROC curve analysis to the plot at an angle, θ, of 21o gave an AUC of 0.996.  
The control data clusters together between the healthy and tumour-bearing populations. 
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Table 7.7 ROC Curve Analysis on the PLS-DA Models 

Data Set 

Model Summary 
Pre and Post 
Cell Injection 

Post-injection 
Data 

Healthy 
versus Cancer 

scaling Rx R2 y Q2 AUC 2 
Angle 
(deg) AUC 

Angle 
(deg) AUC 

Angle 
(deg) 

All data UV 0.421 0.837 0.567 0.996 21 0.912 17 0.969 20 
Par + 0.481 0.810 0.556 0.981 23 0.869 33 0.946 33 

Removed 
p < 0.01 
both 

UV 0.418 0.824 0.505 0.995 30 0.838 18 0.938 28 

Par 0.481 0.795 0.517 0.977 38 0.792 30 0.915 38 
Removed 
p < 0.01 
control 

UV 0.381 0.651 0.427 0.980 26 0.808 20 0.920 27 

Par 0.449 0.602 0.427 0.964 36 0.768 33 0.899 35 
Removed 
p < 0.05 
both 

UV * 0.423 0.771 0.422 0.980 25 0.763 15 0.898 28 

Par # 0.478 0.729 0.412 0.958 37 0.709 19 0.866 36 
Removed 
p < 0.05 
control 

UV 0.360 0.615 0.354 0.972 33 0.765 27 0.893 29 

Par 0.425 0.542 0.326 0.937 42 0.716 48 0.850 47 

 

Three ROC curves from the models created after removal of the FDR significant 

metabolites in the control population from the analysis are shown in figure 7.13.  The 

results show that all models have excellent ability to distinguish the pre-injection and 

tumour-bearing data with AUC’s in excess of 0.937. 

PLS-DA is a standard method used in the analysis of metabolomics data sets.  

The technique is designed to separate pre-defined populations and provides information 

about more complicated patterns of metabolic behaviour.  In our study, scores plots of the 

models showed good separation between the pre-injection, post-injection with tumour 

and post-injection controls.  The fact that the control data, which was projected onto the 

model, did not cluster with the pre-injection data suggested that metabolic changes are 

taking place.  However, the post-injection data from both groups were well separated, 

meaning that we can distinguish the populations based on the complement of all 

metabolic changes taking place.  ROC curve analysis revealed excellent separation 

between the controls and the tumour bearing data, post injection (AUC = 0.912). 

Table 7.7: Summary of the results of ROC analysis on the ten PLS-DA models for the 
three class comparisons.  The AUC for the PLS-DA components 1 and 2 is presented in 
the table, although in some cases components 1 and 3 produced a marginally better AUC; 
the model labelled with a ‘+’ had a better result (0.4% larger) for the cancer comparison, 
the model with the ‘*’ marker had better results for both the cancer (0.2% larger) and 
post-injection (5.1% larger) comparisons and the model labelled with ‘#’ had a better 
result for the post-injection comparison (11.2% larger).  The optimal AUC produced after 
rotation of the scores plot and the angle of rotation are displayed. 
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The metabolite concentrations must be scaled prior to constructing the PLS-DA 

model as high concentration metabolites will dominate the results if not scaled properly.  

Two common methods for scaling are Pareto scaling, which scales high concentration 

metabolites down and limits the up scaling of noise, or UV (also referred to as auto 

scaling), which places equal weightings on all metabolites.  Our results show that there is 

little change between the models using either scaling method.  However, UV scaling did 

produce models with larger R2 and Q2 values. 

Figure 7.12: ROC curves for the scatter plot shown in figure 7.11.  This figure shows 
that the model successfully separates healthy and tumour-bearing samples.  The AUC is 
greatest when considering only the pre-injection and post-injection samples from the 
tumour-bearing mice.  Despite similar metabolic changes in the control animals, the 
model is still able to identify the tumour-bearing samples. 



105 
 

 

 

PLS-DA models have been criticised for over-fitting the data (Westerhuis et al., 

2008).  For this reason it is important to validate the model via permutation testing.  

Permutation testing was performed on all models in SIMCA with 999 permutations.  

Valid models were required to have a Q2 values greater than any permuted model and a 

R2 value greater than a majority of the permuted models as displayed in the validation 

plot.  All models passed on the basis of the R2 results, but one model – removal of 

metabolites with p < 0.05 in the control populations with Pareto scaling – failed the Q2 

condition; this case had one permutation which provided a Q2 value exceeding the actual 

model’s Q2. 

Figure 7.13: ROC curves of the tumour-bearing data for the PLS-DA models (UV scaling) 
of the three data sets; all metabolites present, removal of metabolites with p < 0.05 in both 
populations and removal of metabolties with p < 0.05 in the control population.  For all 
cases, the comparison was between the pre and post injection tumour-bearing data.  The 
figure shows that the AUC decreases as metabolites are removed from the analysis, but 
only by a few percent.  The magnitude of the decrease is larger when considering the 
models with pareto scaling or when analyzing the ‘post-injection data’ or ‘healthy versus 
cancer’ class comparisons. 
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The permutation testing results are displayed in figures 7.14 and 7.15 for a good 

model (all metabolites present and UV scaling) and the model that failed.  As observed in 

figure 7.14, the R2 and Q2 values are both larger than 0.5 and are largest for the original 

model (fraction of correct classifiers of 1.0).  In contrast, the failed model only has an R2 

value greater than 0.5 and has a large number of permuted models having a R2, and one 

Q2

 

 value, greater than that for the original model. 

 

 

Figure 7.14: Cross validation of the PLS-DA model for all data using UV scaling.  
This model satisfies the conditions for a good model: 1) The Q2 value of the original 
model is the maximum, and 2) The R2 value for the original model is greater than a 
majority of the permuted models.  In additional, the Q2 value of 0.567 exceeds the 
desired value of 0.5  
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The loading plot for the model with all metabolites and UV scaling is displayed 

as figure 7.16.  It is observed that the five FDR significant metabolites from the 

univaraiate analysis of individual metabolites all have large weights along latent variables 

1 and 2.  This supports the previous results in suggesting that these metabolites have 

potential to discriminate healthy from tumour-bearing urine samples. 

To evaluate the ability of this technique to detect the onset of disease at a 

relatively early stage, we constructed PLS-DA models, using both UV and Pareto scaling, 

with the pre-injection and large tumour samples.  Samples in the large tumour category 

were collected an average of 22.1 ± 9.6 days post cell injection.  Data for the small 

tumours (6-8 days post-injection) are projected onto the models to investigate the level of 

similarities in the data structure of the early and large stage tumour data.  PLS-DA was 

selected for its ability to optimize the separation between classes. 

Figure 7.15: Cross validation for the PLS-DA model with all metabolite with p < 0.05 
in the control population removed.  This model does not satisfy the conditions for a 
good model: 1) The Q2 value of the original model is not a maximum, however 2) The 
R2 value for the original model is greater than a majority of the permuted models. 
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Figure 7.16: Loading Plot for the PLS-DA model using all metabolites and UV scaling.  
The distance between the origin and each metabolite represents its contributions to each 
component axis.  For instance, 1-Methylnicotinamide (1-Methylni) and trans-Aconitate 
have strong weights along component axis 2 and small weight along component axis 1.  
The score and loading plots are directly related, therefore, it is simple to determine what 
metabolites are more abundant in each population.  As an example, the pre-injeciton 
samples (clustering on the left hand side of the plot) will have higher levels of choline, 
glucose, betaine, taurine and threonine and lower levels of dimethylamine, trimethylamine 
and trimethylamine n-oxide than the tumour-bearing samples.  The five FDR significant 
metabolites from the anlaysis of individual metabolites (2-oxoglutarate, fumarate, glucose, 
trimethylamine and trimethylamine n-oxide) in the tumour bearing populations are have 
large weights along weight components 1 and 2. 
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The scores plot for the models with UV scaling is shown in figure 7.17.  In both 

models, the small tumour data clustered with the large tumour data, suggesting that even 

at early stage, similar metabolic changes are present. 

Four class comparisons were considered for this analysis: the first evaluated the 

separation between the pre-injection and late stage tumour data, the second was between 

the pre-injection and late stage data, the third between the pre-injection and all tumour 

data (early and late stage date remained separate) and the fourth compared the early and 

late stage data.  The fourth class comparison was performed to indicate if further 

metabolic changes occurred as the tumour developed.  Table 7.8 summarises the models 

R2 and Q2

 

 values, as well as the best AUC and angle of rotation for the four cases. 

 

Figure 7.17: PLS-DA model for the pre-injection and large tumour (22.1 ± 9.6 days 
post cell injection) samples.  The AUC for the pre-injection and large tumour samples 
is 0.995 at 31o with respect to the horizontal axis, thus showing that there is good 
separation between the two populations.  The small tumour data (6-8 days post cell 
injection) clusters with the large tumour data. 
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Table 7.8: PLS-DA Analysis for the Pre-injection and Large Tumour Data 

scaling Rx R2 y Q2 

Pre vs. All 
Tumour 2 

Pre vs. Small 
Tumour 

Pre vs. Large 
Tumour 

Small vs. 
Large Tumour 

AUC Angle 
(deg) AUC Angle 

(deg) AUC Angle 
(deg) AUC Angle 

(deg) 
UV 0.355 0.738 0.552 0.981 22 0.971 23 0.995 31 0.752 29 
Par 0.416 0.673 0.493 0.975 30 0.961 30 0.987 28 0.699 45 

 

The model for the pre-injection and large tumour samples shows that even at an 

early stage in development, tumours produce similar changes in the metabolic content of 

urine.  The model with UV scaling has an AUC of 0.971, at an angle of 23o

Inclusion of the large tumour samples increases this value to 0.981.  However, 

the AUC was smaller than it was for the single tumour-bearing class.  The discrepancy is 

likely caused by the larger number of tumour-bearing data points in the new model since 

the tumour-bearing population was divided into early and late-stage. 

, when 

separating the pre-injection and small tumour samples.  The large AUC, in combination 

with agreement of the optimal angle of rotation between the pre-injection and early stage 

data and the pre-injection and late stage data, suggests that if the metabolic changes 

between a healthy group and a populations with late stage tumour growth are identified, 

screening for cancer at early stage is possible. 

Applying ROC curve analysis to the small and large tumour classes shows that a 

maximum AUC of 0.752 (UV scaling) or 0.699 (Pareto scaling) is achieved between the 

groups.  The fact that the AUC in this case is well above 0.5 indicates that the changes in 

urinary metabolism continue to evolve as the tumour grows; however, the extent of the 

observed metabolic changes are smaller than those observed between the pre-injection 

samples and the small tumours.  Furthermore, the optimum angle of rotation was similar 

between this class comparison and between pre-injection and tumour-bearing data. 

Table 7.8: Summary of the PLS-DA models created for the pre-injection and large tumour 
data (22.1 ± 9.6 days post-injection) after applying a log10 transformation to the 
normalized data set, mean centering and scaling (indicated in the second column where 
UV = unit variance and par = pareto scaling).  The small tumour data was projected onto 
the model.  The small tumour data clusters with the large tumour data, revealing 
similarities in the metabolic content of these samples.  Four groups of data were 
considered: the first involved the pre-injection and all tumour data (small and large), the 
second used the pre-injection and small tumour data, the third used the pre-injection and 
large tumour data and the fourth compared the small and large tumour data..  The optimal 
AUC produced after rotation of the scores plot through angles between 0o and 180o, and 
the angle of rotation for all groups considered are displayed. 
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The loadings plot for the model with UV scaling is shown in figure 7.18.  The 

figure shows that four of the five FDR significant metabolites from the univariate 

statistical analysis of individual metabolites (2-oxoglutarate, glucose, trimethylamine and 

trimethylamine n-oxide) all have large weights along the first latent variable.  This means 

that they are responsible for the majority of the variation along this axis and therefore 

supports the results obtained earlier.  It is interesting to note that most of the metabolites 

are located in the same quadrants as in figure 7.16 as expected. 

 

 

Figure 7.18: Loading Plot for the PLS-DA model of the pre-injection and late stage 
tumour data using UV scaling.  This plot is similar to that shown in figure 7.16 with few 
differences related to the locations of the metabolites in each quadrant.  In general, 
metabolites are in the same quadrant as in figure 7.16.  Four of the five FDR significant 
metabolites from the anlaysis of individual metabolites (2-oxoglutarate, glucose, 
trimethylamine and trimethylamine n-oxide) are responsible for the majority of the 
variation observed along component axes 1 as indicated by the maximum distances from 
the origin.  Based on the results of the ROC curve analysis (maximum AUC at an angle of 
22o for the pre-injection and all tumour data), acetate, dimethylamine, taurine and 
threonine are additional metabolites used to discriminate between the two classes.  
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ROC curve analysis has found widespread use in medical applications, but has 

rarely been used in the field of metabolomics.  ROC curves can simultaneously present 

information about the sensitivity (fraction of diseased patients correctly diagnosed as 

having the disease) and the specificity (the fraction of healthy individuals correctly 

diagnosed as being healthy) of a diagnostic test. 

The use of ROC curve analysis in metabolomics research will provide a measure 

of the clinical significance of a metabolic change.  ROC curves with an AUC exceeding 

0.8 are considered good tests for diagnostics, while curves with an AUC greater than 0.9 

are excellent.  Glucose and trimethylamine n-oxide were two individual metabolites in 

which the concentration changed in a Bonferroni significant manner post-injection and 

produced AUC values in excess of 0.8.  Seven metabolite ratios produced an AUC value 

in excess of 0.9 and PLS-DA analysis of the data resulted in two models with AUC’s in 

excess of 0.975 (pre and post cell injection samples for the tumour-bearing animals).  

More complicated analysis techniques are better able to identify metabolic behaviours 

that are indicative of the presence of cancer.  The use of rotated axes for ROC curve 

construction seems intuitive for scatter plot analysis, however, to our knowledge, this 

technique has not been published. 

 

7.5 Prospects of the Study 

Our study involved the collection of multiple urine samples from mice before and 

after injection of the GBM-xenograft cells.  Averaging the samples on a per mouse basis, 

before and after, should have the effect of reducing ‘noise’ in the metabolic signature as a 

result of day to day variation.  All mice used in this study provided urine samples before 

and after cell injection, so a paired test was used.  The distributions of the pre and post-

injection data, which were created from the pooling of averaged data from all mice, were 

often not normal, so the non-parametric Wilcoxon rank sum test was used.  In pairing the 

data from each mouse, we have effectively reduced the variation between individuals, 

which has been suggested to exceed that found within an individual (Bollard et al., 2005; 

Slupsky et al., 2007).  The results obtained from the analysis of the paired data should 

emphasize metabolic changes associated with tumour on an individual basis and simulate 

a clinical-like environment in which urine samples, from one individual, are compared 

between screening tests over the years. 
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One limitation of the study is the highly controlled environment.  All mice were 

age matched and were housed in a highly-controlled environment in terms of the room 

temperature, humidity, light/dark cycle (12 hours each), method of urine collection, and 

the diet.  Animals were fed the same diet and exposed to the same environmental 

stressors (WBI one week post arrival, cell  / PBS injection two weeks post arrival and 

method of urine collection).  This level of control is not realistic when testing a human 

population.  External metabolic influences, unrelated to the tumour, will complicate 

interpretation of the results.  In studies of human populations, a larger number of patients 

are required to acquire an understanding of the non-tumour related metabolic behaviours 

and to determine what constitutes a healthy sample. 

Having a small number of animals in the study increases the chance that a 

metabolite concentration or ratio will achieve statistical significance when there is no 

significant change.  Random errors in the reported metabolite concentration, resulting 

from noise, could overestimate the significance of a variable and lead to a false 

discovery.  Application of the FDR method or Bonferroni correction will reduce the 

occurrence of false discoveries, but these methods in themselves rely on the relative 

change of the means of the metabolite before and after the cell injection. 

The high presence of cancer in the test population tends to bias the findings 

towards significance.  Some metabolites or metabolite ratios were shown to change in the 

same direction in both the control and tumour-bearing populations.  Such changes would 

significantly impact the specificity of a diagnostic test in a clinical environment.  For this 

reason, we chose to remove any variable with p<0.01 or p<0.05 in the control population.  

This choice is conservative, but does emphasize that significant metabolic changes, likely 

due to the presence of tumour, are still present.  The remaining variables (identified as the 

black circles in figures 7.4 and 7.6) could be potential indicators for cancer screening. 

The idea of monitoring a metabolic signature for changes is not new.  These data 

support the idea that a simple, biofluid-based program holds potential as a screening tool 

for cancer.  Significant human data would be required to identify a “normal” age-

dependent metabolic trajectory.  Identification of deviations from this path that correlate 

with the presence of cancer in general (and possibly specific forms of cancer) would 

potentially allow earlier diagnosis and more successful treatment. 
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Chapter 8 
Conclusion 
 

In this work, we have shown that metabolic changes occur in the presence of 

tumour.  Urine samples were collected daily from NIH III nude mice (n=22) before and 

after injection with GBM xenografts.  The metabolic content of the samples were 

measured with an 800 MHz NMR spectrometer using the 1-D NOESY pulse sequence.  

A total of 34 metabolites were identified and quantified via targeted profiling with 

Chenomx Suite 5.1.  A set of control animals (n=14) were studies to identify metabolic 

changes that occur naturally and are not likely altered by the tumour. 

Univariate statistics identified a number of statistically significant metabolic 

changes in both the metabolite concentrations and the ratio of pairs of metabolites.  

Analysis of the control animals revealed that some metabolic changes were occurring 

naturally or as a response to the injection procedure.  We chose to acknowledge these 

changes by removing any metabolite with p<0.05 or p<0.01, in only the control 

population or in both populations, from the analysis.  Despite the conservative choice of 

significance, there remained useful metabolic information which may be used for 

screening for cancer. 

 The analysis of a single metabolite may not be sufficiently specific for cancer 

screening.  After removal of significant metabolites in the control population, only two 

FDR significant metabolites remained.  The analysis of metabolite ratios provided more 

information, as shown through a larger number of statistically significant variables and 

improved ROC statistics.  The results showed that 43/85 FDR significant ratio did not 

include any FDR significant metabolites.  This added information may be useful for 

identifying tumour from other diseases. 

 Multivariate statistical analysis provided the most diagnostic information.  The 

scores plots showed clustering of like samples (i.e. healthy with healthy and tumour-

bearing with tumour-bearing) and separation between the different classes.  PLS-DA 

models were generally better than PCA models for discriminating the two groups.   ROC 

analysis of the PLS-DA models showed that most models had AUC in excess of 0.9 

between the pre and post injection data of the tumour-bearing animals and greater than 
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0.7 for the post-injection data of the controls and tumour-bearing mice.  Further, the FDR 

significant metabolites were far from the origin on the loadings plots, thus supporting the 

claims of univariate statistical analysis.  PLS-DA models of the pre-injection and last 

stage data suggest that early detection of cancer is possible. 

 This work supports the idea that a simple, NMR-based analysis of a biofluid such 

as urine could be beneficial in screening for cancer.  The approach used in this study 

would be similar to asking patients to submit a urine sample one or more times per year 

for analysis.  Over time, a “normal” metabolic trajectory could be obtained which would 

serve as a baseline against which each subsequent NMR sample could be compared.  If a 

sample showed significant deviation from the baseline in a manner that was consistent 

with a “cancer trajectory”, the patient could be referred for additional testing.  This 

baseline metabolic signature would require significant characterization to account for the 

many factors (i.e. age, sex, other disease presence, diet etc.) that cause inter and intra-

individual variation.  Although this would represent a significant challenge in data 

analysis, the raw materials (urine, multivariate analysis software) are cheap, the 

technology is readily available and the concept is simple.  Furthermore, if this technique 

proved effective at diagnosing various cancers at an earlier stage than they are with 

current techniques, there could be significant improvements in patient outcomes. 

 Future work related to this study will compare the metabolic information 

obtained outside the tumour (i.e. from urine) with that which can be obtained directly in 

vivo using 9.4T magnetic resonance spectroscopy.  The quality of in vivo spectroscopy is 

significantly inferior to that of NMR, however, it will be interesting to observe if any 

similar metabolic patterns can be observed in the two types of signals.  In addition, the 

spectroscopic data from the urine will be compared to ex vivo analysis of the cultured 

cells to identify correlations with the in vivo data.   

 In conclusion, the application of ROC analysis to a metabolomics data set 

provides useful information for screening purposes.  Plots of the AUC against the p-value 

relate information about the clinical and statistical significance of all metabolic changes 

simultaneously.  Such figures may be used to assess the capacity of using certain 

metabolites for screening.  The application of ROC curves to a PLS-DA scores plot is 

new.  Optimal separation does not occur along a single latent variable, but a combination 

of two.  ROC curve analysis was applied to the scores plot after rotation of the data set in 

unit angle increments.  The optimal angle of rotation was defined as the angle at which 
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the maximum AUC was obtained.  It is expected that this direction will contain the best 

diagnostic information related to the tumour.  Application of the Youden index or the 

minimum distance from the point (0,1) will identify the optimal decision threshold. 
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