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Abstract—For the integration of large-scale renewable energy
resources into power grids, the complex and dynamic behav-
ior of Inverter-Based Resources (IBRs), such as wind farms,
photovoltaic (PV) arrays, and battery energy storage systems
(BESSs), poses significant challenges. Traditional models often
fall short of feasibly simulating these resources at scale. This
paper introduces a hybrid machine learning approach, employing
Multi-Layer Perceptrons (MLPs) and Gated Recurrent Units
(GRUs), to effectively simulate IBRs. The hybrid models combine
MLPs and GRUs to capture the transients of IBRs. An extensive
dataset, including environmental data, load profiles, and fault
instances, was used for training and validation. The source of
this dataset was the computational Electromagnetic Transient
(EMT) models of IBRs and validated results. A test system was
developed to integrate a microgrid comprising batched ML-based
IBR modules into a large-scale AC-DC system, which is based
on the IEEE 118-bus system. The system is deployed on a Field-
Programmable Gate Array (FPGA) board, highlighting the via-
bility of real-time, hardware-accelerated emulations. The results
show that the hybrid ML methodology accurately represents
large-scale IBRs and predicts transient behaviors in integrated
grids, offering crucial insights for the future planning, operation,
and control of AC-DC grids, especially those with high renewable
energy integration.

Index Terms—Artificial neural networks, battery energy stor-
age, electromagnetic transients, field programmable gate arrays,
faster-than-real-time gated recurrent units, hardware-in-the-loop,
inverter-based resources, machine learning, multi-layer percep-
tron, photovoltaic, transient behavior, wind farms

NOMENCLATURE

ANN Artificial Neural Network.
BESS Battery Energy Storage System.
DFIG Doubly-Fed Induction Generator.
EMT Electromagnetic Transient.
FF Flip-Flop.
FPGA Field-Programmable Gate Array.
FTRT Faster Than Real-Time.
GRU Gated Recurrent Unit.
GSC Grid Side Converter.
HIL Hardware-in-the-Loop.
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I. INTRODUCTION

THE integration of large-scale renewable energy resources
into power grids is a crucial aspect of global efforts to

mitigate climate change and transition toward sustainable and
ecologically conscious energy consumption [1]. Representa-
tives of these resources, including doubly-fed induction gener-
ator (DFIG) wind farms, photovoltaic (PV) arrays, and battery
energy storage systems (BESSs), collectively termed Inverter-
Based Resources (IBRs), are characterized by dynamic and
intricate transient behaviors. These behaviors necessitate so-
phisticated control and operational strategies, particularly con-
cerning transient behaviors resulting from variability in fault
occurrences, diverse weather conditions, and fluctuations in
load demand. Understanding these transient emulations of
large-scale IBRs integrated into power networks is essential
for grid planning and operation, and improving grid reliability
and resilience.

Transient simulation methods for power systems generally
fall into two categories: transient stability (TS) simulation
and electromagnetic transient (EMT) simulation. Time-domain
EMT simulation, in comparison to TS simulation, can portray
transient behaviors down to sub-µs [2], making it a more
suitable choice for simulating the transients of IBRs to capture
detailed and faster transient behaviors [3], [4]. Traditionally,
EMT simulations are conducted by solving discrete-time nu-
merical equations from computational models. However, in
an IBR group such as a wind farm, the variability in wind
speed across hundreds of turbines can significantly affect the
system’s overall performance. This variability is particularly
pronounced in mountainous regions due to wake and acceler-
ation effects [5]. Large-scale models are essential to account
for individual unit variations, but as these traditional models
scale up, they encounter significant computational constraints
[6].

This article has been accepted for publication in IEEE Journal of Emerging and Selected Topics in Industrial Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JESTIE.2024.3434364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 26,2024 at 23:24:33 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY



2

To address these limitations, this study introduces a hybrid
machine learning-based methodology for modeling large-scale
IBRs, which circumvents the complex iterative solution of
large sets of non-linear equations inherent in traditional EMT
models. The proposed machine learning components are based
on Artificial Neural Networks (ANNs). Previous work on
ANN-based power system equivalent models [7], and the
implementation of AI technologies in the long-term steady-
state analysis of power systems [8]–[10], although insightful,
lacks the ability to perform fast transient predictions for
complex, highly non-linear renewable energy sources.

The proposed machine-learning-based IBR models utilize
hybrid ANNs, including Multi-Layer Perceptrons (MLPs) and
Gated Recurrent Units (GRUs). The choice of neural network
type depends on the complexity and time-dependency of
different IBR models. The GRU, a variant of the Recurrent
Neural Network (RNN) and akin to the Long-Short-Term
Memory (LSTM), excels in representing highly nonlinear and
time-dependent components [11]. The MLP, a simpler feed-
forward ANN, is more suitable for less time-dependent, non-
linear models. These hybrid models for IBRs were trained
using comprehensive datasets derived from validated simula-
tions and other code-based computational models of IBRs [12],
[13]. The datasets include historical weather data, grid inputs
and loads, and instances of faults, offering diverse conditions
and scenarios for model training and validation. The trained
ML-based IBR models were then interfaced with an actual AC
grid through microgrids.

Even though TS simulations are based on larger time-steps
up to the level of several ms, they are adequate for simulating
grid-level behaviors [12] and offer more computational effi-
ciency compared to EMT simulations [14], [15]. Thus, a multi-
time-step strategy was adopted to perform EMT-TS hybrid
emulation over the ML-based models and the AC grid model,
leveraging the advantages of both EMT and TS simulations.
This hybrid simulation method has been widely used and has
even been realized in commercial tools like PSCAD/EMTDC
[16], [17]. However, previous studies of hybrid simulation have
never used ML-based models. To enable real-time emulation of
the entire AC-DC system, a Field-Programmable Gate Array
(FPGA) board was deployed as the hardware accelerator, given
its capacity for parallel computations [2]. FPGAs have been
widely used as accelerators for neural networks representing
EMT models [18]–[21]. However, previous machine-learning
research EMT works focused on small-scale systems with
small-scale traditional electrical and mechanical components
such as motors and converter circuits. The application of
FPGAs to more complex models like IBRs remains under
exploration.

The main contributions of this paper can be summarized as
follows:

• The development and training for hybrid neural network
modeling of large-scale renewable energy sources and
energy storage systems, while the independent charac-
teristics of individual resources are still preserved.

• The introduction of a novel real-time hardware-in-the-
loop (HIL) transient emulation of the EMT-TS hybrid
large-scale ML-based renewable energy installations on

(c) PV Panel  

 Circuit Model Equivalent Model

Circuit Model
Wound-Rotor IG

RSC

Tm

GSC 

Control

RSC 

Control

Is

Ir

Ia

Ig

Ib
Ic

VS = Vgrid

VR

ωr

GSC

Wound-Rotor IG

RSC

Tm

GSC 

Control

RSC 

Control

Is

Ir

Ia

Ig

Ib
Ic

VS = Vgrid

VR

ωr

GSC

Equivalent Model

(a) DFIG Wind Turbine

~

Rsh

RsId Iout

Vout

+

_

Ir

JPV
GPV

Iout

Iph

Ia Ib Ic

=

Iabc

GBatIBeq

(b) Li-ion Battery

Equivalent Model

Fig. 1. Traditional computational IBR models: (a) DFIG wind turbine, (b)
Li-ion battery, and (c) PV panel.

the Xilinx® UltraScale+™ FPGA by efficient hard-
ware implementation of the ML-based IBR models. The
hardware-accelerated test system achieved an equivalent
faster-than-real-time (FTRT) ratio of 3.33, demonstrating
substantial improvements in computational efficiency and
response time over traditional simulation frameworks.
This capability is pivotal for the future planning and
operational strategies of AC-DC grids with large-scale
renewable installations.

The paper is organized as follows: Section II details the
traditional IBR models used as ML training targets and
the hybrid ANNs employed for different renewable energy
sources, including the detailed training process. Section III
describes the setup of the HIL transient emulation system and
the hardware implementation of the ML-based IBR models
integrated with the AC-DC grids. Section IV presents test
scenarios and results. Section V offers the conclusion.

II. MACHINE LEARNING BASED MODELING OF
RENEWABLE ENERGY SOURCES

A. Computational Models for Renewable Energy Sources

This section presents the traditional models used in this
study that the machine learning model will learn to behave.
These models are based on research works validated by
commercial simulation software such as PSCAD/EMTDC.

1) Wind Turbines: The wind turbine model utilized in this
study is the DFIG wind turbine from MATLAB Simulink [22].
Fig. 1(a) shows the fundamental structure of the DFIG model.
This model comprises a three-phase wound rotor induction
generator, with stator windings directly connected to the grid.
The rotor windings are linked to the grid via a back-to-
back voltage source converter. Independent control of the grid
side converter (GSC) and rotor side converter (RSC) allows
for separate regulation of active and reactive power, thereby
optimizing the extraction of wind energy under varying wind
intensities [23]. During operation, the generator speed dy-
namically adjusts to changes in wind speed, contributing to
improved power quality and grid compatibility.
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2) Battery Storage System: The battery model is based on
[12], which can be represented by a Thévenin equivalent rep-
resentation, consisting of a voltage source VBat and an internal
resistance ZB . The essential components of VBat include: The
base voltage, E0. Polarization effects, represented as Epol. The
exponential voltage, Eexp. Voltages due to charging, Echg, and
discharging, Edsc, processes.

Mathematically, VBat is expressed as:

VBat = E0 + Epol + Eexp + ScEchg + (1− Sc)Edsc, (1)

where Sc signifies the battery’s charging status, equating to 1
during the charging phase.

However, in the context of EMT simulation, the nodal volt-
ages are to be solved rather than the mesh currents. Therefore,
it is necessary to convert the Thévenin equivalent circuit to its
Norton equivalent circuit. Assuming the internal resistances
of all batteries under study are converted into the conductance
and then grouped as a vector GB = [GB1, GB2, . . .], the current
contribution of the batteries can be expressed as

IB,eq = VBat ◦GB, (2)

where the vector IB,eq = [IB,eq1, IB,eq2 . . .].
The Norton equivalent circuit for the battery model is shown

in Fig. 1(b).
3) Solar PV Cells: The PV cell model is adopted from [13].

A large-scale PV array is comprised of strings of PV panels
connected in parallel, while a single string consists of series-
connected single PV units. Fig. 1(c) shows the equivalent
circuit of a single-diode PV unit, where the equivalent current
source is represented by:

Iph =
Sirr

S∗
irr

· I∗ph (1 + αT · (TK − T ∗
K)) , (3)

which has variables with the superscription ∗ as references,
Sirr as the solar irradiance, αT the temperature coefficient,
and TK the absolute temperature. In addition, the model is
also comprised of the shunt and series resistors Rp and Rs,
respectively.

With all of its components represented by current sources
and conductors or resistors, the PV unit can be converted into
the most concise two-node Norton equivalent circuit, as shown
in Fig. 1(c).

B. Hybrid ANN Modeling for Renewable Energy Sources

1) Gated Recurrent Unit: The Gated Recurrent Unit was
introduced in [24] and has been known for its efficiency in
capturing temporal dynamics. In a standard GRU cell, the
computations for the gates and the resulting hidden state
update are encapsulated by the following equations:

zt = σ(W z
ihxt + bzih +W z

hhh(t−1) + bzhh), (4)
rt = σ(W r

ihxt + brih +W r
hhh(t−1) + brhh), (5)

nt = tanh(Wn
ihxt + bnih + rt ◦ (Wn

hhh(t−1) + bnhh)), (6)
ht = (1− zt) ◦ nt + zt ◦ h(t−1). (7)

In these expressions, zt denotes the output of the update
gate, which determines the extent to which the GRU cell’s
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Fig. 2. GRU structures: (a) cell, and (b) network.

state is updated. The output of the reset gate, rt, modulates
the influence of the previous state by allowing the cell to
selectively forget certain aspects. The candidate hidden state,
nt, is calculated as a combination of the current input and
the previous state, with the reset gate’s output regulating this
integration. The final output of the GRU cell at time t, ht,
emerges as a mixture of the previous state and the candidate
state, with the update gate’s output dictating the balance. The
terms Wih and Whh represent the input-to-hidden and hidden-
to-hidden weight matrices, respectively, while bih and bhh are
their respective bias vectors.

The calculation process is visualized in the simplified GRU
cell diagram shown in Fig. 2(a). A typical GRU network is
comprised of a large amount of individual GRU cells, which
is illustrated in Fig. 2(b).

2) Multi-Layer Perceptron: The MLP is a type of artificial
neural network commonly used for various machine learning
tasks [25]. It consists of multiple layers of interconnected
neurons, each layer contributing to the transformation of input
data to produce meaningful outputs. The output of a neuron
can be computed using the following equations:

zj = σ

(
n∑

i=1

wjixi + bj

)
, yk = σ

 m∑
j=1

vkjzj + ck

 ,

(8)

where zj is the activation of neuron j in a hidden layer,
yk is the output of neuron k in the output layer, σ is an
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activation function (e.g., sigmoid or ReLU ), wji are the
weights connecting input nodes to hidden layer neurons, vkj
are the weights connecting hidden layer neurons to output
nodes, and bj and ck are the bias terms for the hidden and
output layers, respectively. Since MLP has already been widely
applied in various research aspects for many years, the detailed
network-level process is omitted.

3) GRU Based DFIG Wind Turbine Model: The DFIG
wind turbine system is a complex system, divided into me-
chanical and electrical components to aid the GRU model in
understanding the wind turbine’s operational principles. The
mechanical component includes wind speed, Vw, DFIG torque,
Tm, and rotor speed, wr. The electrical component comprises
the three-phase AC voltage from the grid, Vabc, identical to
the DFIG stator voltage, Vs, and the output active and reactive
power, P and Q. The trained GRU model digitally represents
six DFIG wind turbines in parallel, as shown in the bottom part
of Fig. 3(a), offering computational efficiency for large-scale
wind farm deployment without compromising detail.

The training data was generated from offline simulation in
Simulink. Since GRU uses a sequence of time-series data as in-

puts, the continuous nature of input signals cannot be violated
when generating the data. In this case, each set of parameters
produces a continuous data series within a single Monte Carlo
test execution, rather than adjusting parameters during the run
time. The wind speed data forms a normal distribution with
a mean of 10 m/s and a standard deviation of 3 m/s, which
covers both the normal and extreme working conditions of
wind farms [5]. In addition to the wind speed variation, fault
scenarios are also simulated. An external symmetrical fault
is added to the training set. The short circuit resistance is
0.01Ω and the fault duration is 100 milliseconds. The fault
was applied at the grid connection port of the wind farm and
multiple instances of this fault were randomly inserted into
the training set, which takes up 5% of the dataset.

To facilitate EMT simulation, the GRU-based DFIG wind
turbine was trained as a three-phase current source to output
the three-phase grid current Iabc. In order to balance the
individual characteristics and computational efficiency, six
parallel-connected turbines are seen as a bundle for training
the ML-based model, which is depicted in the lower part of
Fig. 3(a). GRU networks update input data xt at each time-
step. However, internal turbine parameters like torque Tm

and rotor speed wr are not directly measurable in real-time
emulation. To enable continuous emulation, internal features
are recursively processed, serving as inputs to the GRU while
also being generated as outputs for subsequent time-steps. This
is illustrated in the top part of Fig. 3(a), where the features in
the red box indicate recursive features.

The model architecture was carefully selected to balance
computational efficiency and performance. The MSELoss
(Mean Squared Error Loss), which calculates the mean of the
squares of the differences between predicted and actual values,
is widely used to measure the performance of a regression
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model. The formula for MSELoss is given by:

MSELoss =
1

n

n∑
i=1

(ŷi − yi)
2 (9)

where n is the number of samples or data points, ŷi is the
predicted value for the ith sample, and yi is the actual value
for the ith sample.

As shown in Fig. 4(a), for varying hidden sizes, the
MSELoss converges to 0.02% after 100 epochs. A hidden size
of 30 was chosen to optimize resource usage. Fig. 4(b) shows
that MSELoss decreases with increasing sequence length for
a constant hidden size. However, a longer sequence also
indicates the storage of more historical data, which requires
more resources, and error reduction is less significant for
lengths beyond five. Therefore, the DFIG wind turbine GRU
model, shown in Fig. 3(a), consists of a single GRU hidden
layer with a hidden size of 30 and a sequence length of 5.

Challenges like overfitting [26] and gradient vanish-
ing/exploding [27] may arise during training. To address
these, the ReLU activation function was employed, and a
dropout rate of 0.2 was implemented, giving each neuron a
20% chance of being excluded in each training iteration to
ensure model generalization. The training epoch number is set
to 1000 to further reduce the error. Other hyperparameters,
such as learning rate and batch size, were tuned to 0.001
and 1000, respectively, for optimal training outcomes. The
Adaptive Moment Estimation (Adam) optimizer [28] was used
to minimize training loss.

The trained model behavior is validated by two symmetrical
faults with 80 and 200 ms of fault duration, which is 20% less
than and 100% more than those in the training set. The results
are shown in Fig. 5(a) and (c). The trained model behavior
under varying wind speeds was also tested. The wind speed
validation set includes two step changes, one from 8m/s to
13m/s, the other from 10m/s to 5m/s, which never appeared
in the training set. Although this step change is not realistic, it
can fully demonstrate the transient performance of the trained
model. The results are shown in Fig. 5(b) and (d). It can be
observed that the GRU-based model can accurately capture
the transient behaviors of the traditional model even under
unprecedented scenarios when being trained.

4) GRU Based Li-ion Battery Storage Model: The Li-ion
battery model, being a strongly time-dependent system, is
aptly modeled using a GRU network. The model’s features
are categorized into electrical and thermal components. The
electrical part encompasses the battery’s output voltage Vt,
output current Iout, input current Ii, and the state of charge
SOC. The thermal aspect includes the ambient temperature
Ta, the rate of change of the battery’s voltage with temperature
dE
dT , and the capacity’s temperature dependency dQ

dT . The GRU-
based battery model represents a 3x4 array, as shown in the
bottom part of Fig. 3(b). Similar to the DFIG model training,
SOC and Ii are recursive features, fed back into the model
as depicted in the top part of Fig. 3(b).

The training methodology for the battery model mirrors that
of the DFIG wind turbine model. The finalized GRU-based
battery model structure comprises a single layer with a hidden
size of 20 and a sequence length of 3. This architecture is
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from 10 m/s to 5 m/s.
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illustrated in the top part of Fig. 3(b). Training losses are
detailed in Fig. 6(a), where the MSELoss converges after
100 epochs, reaching a final loss of approximately 0.00078%.
Fig. 6(b) displays the discharging characteristics under varying
ambient temperatures, showcasing the high accuracy of the
ML-based model.

5) MLP Based Solar PV Cell Model: Given the specific
characteristics of PV arrays, where the current profile is
not profoundly time-dependent, MLP is deemed a preferable
choice. The rationale for this selection is that MLPs excel
in capturing static nonlinear relationships between inputs and
outputs, without emphasizing time-series or sequential data.
This attribute makes them particularly well-suited for model-
ing the behavior of PV arrays.

The architecture of the MLP model is designed to represent
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the I−V characteristics of a 4x4 PV panel array, as shown in
the bottom part of Fig. 3(c). This MLP structure, depicted in
the top part of Fig. 3(c), comprises four hidden layers, each
with a hidden size of 64. The primary inputs to the model
include the terminal voltage Vt and the irradiance Irr incident
on each panel in the 4x4 array, while the output predicts the
panel’s output current Iout.

For the training process, the training dataset was generated
by an optimized C++ simulation program based on the tra-
ditional PV model [13]. The Monte Carlo distribution was
used to randomly generate the data from the traditional PV
array simulation for training. The generated irradiance data
forms a normal distribution with a mean of 1000 W/m2

and a standard deviation of 300 W/m2, simulating real-
world specific irradiance conditions. The port voltage used
for training is varied linearly from zero to the maximum
operational voltage. A variable-learning-rate technique was
employed, initially set at 0.00001 and reduced to 0.000005 to
refine the training, as shown in Fig. 7(a). The high prediction
accuracy of the output current profile under random irradiance
conditions is illustrated in Fig. 7(b). The validation dataset
used in Fig. 7(b) was also randomly generated and never
appeared in the training dataset.

III. IMPLEMENTATION FOR ML-BASED HIL REAL-TIME
TRANSIENT EMULATION OF RENEWABLE ENERGY

SOURCES

A. Test System Topology

The test bench system is built upon real AC networks based
on the IEEE 118-bus system. An IBR microgrid, comprising
one wind farm, one solar farm, and one BESS station, is
integrated. The detailed topology of the IBR microgrid is
shown in Fig. 8(a). To enhance the complexity of the test case
and fully utilize the FPGA resources, the wind farm includes
30 batches of trained GRU-based wind turbine bundles. As
mentioned in Section.II.B.3), each of the GRU-based DFIG
models contains six turbines, therefore, 30 such models rep-
resent totaling 30 × 6 = 180 turbines. Each 6-turbine string
has a rated output power of 9 MW and thirty such strings are
connected in parallel, yielding 30 × 9 = 270 MW of output
power. The solar farm comprises 20 batches of 4x4 MLP-
based PV panel arrays, totaling 4 × 4 × 20 = 320 panels.
In the solar farm, a solar string contains four batches of 4x4
PV arrays connected in series, each of such string is rated at
4×3.125 = 12.5 kW, and five of such series are connected in
parallel, yielding a total output power of 5× 12.5 = 62.5 kW.
The BESS station, utilizing the ML-based model, is scaled
to 50 MW. This IBR microgrid is connected to the 118-bus
system at Bus-25 via a 25kV/138kV transformer, as displayed
in Fig. 8(b).

In large-scale power systems like the IEEE 118-bus system,
EMT-scale real-time simulation would be significantly expen-
sive in terms of hardware resources and latency. Alternatively,
TS simulation with a time-step of up to several milliseconds
is tolerable in showing the system-level dynamics [12]. There-
fore, in this study, the time-step for the 118-bus system is set to
5 ms to balance computational efficiency and system dynamic

display. However, the ML-based IBR models are EMT models
trained under 50 µs time-steps. To avoid time conflicts during
simulation, a multi-time-step test bench system is formed. In
other words, the equivalent time-step for the entire system
equals the largest time-step of the sub-modules, which is 5
ms in this study. For each equivalent time-step calculation,
the hybrid ML-based IBR models calculate for 5×10−3

50×10−6 = 100
steps in their own time scales. The data exchange rate between
the ML models and the AC grid must also follow this rate.

B. Hardware Platform

The hardware platform used in this study is showcased in
Fig. 8(c). The Xilinx® VCU118 board, equipped with the
UltraScale+™ XCVU9P FPGA, was selected for its robustness
in emulating complex systems. The VCU118 board provides
an abundance of resources, including 4320 Block RAMs
(BRAMs), 6840 DSP slices, 2364K flip-flops (FFs), and
1182K look-up-tables (LUTs), enabling the implementation of
a sophisticated system.

Table I details the primary hardware resource utilization and
latencies of both the individual renewable energy modules and
the entire test bench system. Latencies are measured in µs and
derived from the FPGA clock cycles, each set at 10 ns. Given
that the ML-based IBR models are equivalent to their EMT
counterparts with designed 50µs time-steps, the latency report
suggests an FTRT emulation of the test bench system on this
platform. The FTRT ratio for the 118-bus system is calculated
as 5ms

30µs = 166.67, while for the ML-based IBR models, the
ratios are as follows: GRU-based Wind Farm: 50µs

15µs = 3.33,
GRU-based Battery: 50µs

10µs = 5, MLP-based PV: 50µs
6µs = 8.33.

TABLE I
HARDWARE RESOURCE UTILIZATION AND LATENCIES

Model BRAM DSP FF LUT Lat. (µs)

Individual ML-based IBR models

GRU Wind Turbine - 1.3% 0.42% 0.9% 15
GRU Battery - 1.3% 0.42% 0.9% 10
MLP PV - 2% 0.37% 0.9% 6

Test Bench System

GRU Wind Farm - 40% 12.6% 27% 15
GRU BESS - 1.3% 0.42% 0.9% 10
MLP Solar Farm - 40% 7.4% 18% 6
IEEE 118 System - 12% 4% 15.4% 30

Total - 93.3% 24.42% 61.3% -
Available 4320 6840 2.36M 1.18M -

C. FPGA Implementation of Hybrid ANN Models

The translation of machine learning (ML) models from
high-level programming environments to FPGA platforms
requires a series of methodical adaptations and optimizations
to capitalize on the parallel processing capabilities of FPGAs.
This study has employed a systematic approach to port the
pre-trained hybrid ML-based models introduced in Section
II from PyTorch frameworks to an FPGA-synthesizable C++
environment.
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1) Model Adaptation and Quantization: Initially, the
PyTorch-trained models were in float32 precision, which is
both resource and time-consuming. The quantization process
aims to convert the original float-point precision to fixed-
point representation to meet the memory and computation
efficiency requirements. Two distinct quantization approaches
were adopted in this study: dynamic and static [29].

Dynamic quantization involves quantizing the weights of
the model at rest and dynamically quantizing the activations
at runtime. This method is particularly useful for models
like GRU, where the recurrent nature of the computations
means that the activations change dynamically with each input
sequence.

Qdynamic(x) = round

(
x

∆dynamic

)
+ Zdynamic, (10)

where x is the input value to be quantized, ∆dynamic is
the scale factor, dynamically calculated based on the range
or distribution of activation data during runtime. This factor
scales the input value to match the range of the fixed-point
format. Zdynamic is the zero point in dynamic quantization,
representing the fixed-point value that corresponds to the real
number zero. It is computed dynamically, similar to ∆dynamic,
to best fit the data during inference.

On the other hand, static quantization involves quantizing
both the weights and activations of the model ahead of time,
typically after the model has been trained. This method is more
suited for feedforward networks like MLPs.

Qstatic(x) = round

(
x

∆static

)
+ Zstatic, (11)

Similar to dynamic quantization, x is the input value to be
quantized, ∆static is the scale factor, and Zstatic is the zero
point. The term static denotes the fixed nature of quantization
parameters (∆static and Zstatic) once they are determined.

Using the GRU-based DFIG model as an example, the
comparison of the resource utilization on a Xilinx® VCU118
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FPGA board is shown in Fig. 9(a) and the model prediction
output accuracy is shown in Fig. 9(b). It can be observed
that the quantization process significantly decreases the hard-
ware utilization of the ML-based models while keeping a
considerably high accuracy. The dataset used here is the same
validating set used in the training process introduced in Section
II, where the wind speed changes from 8m/s to 13m/s at 5
seconds. The highest discrepancy point is even smaller than
0.01%. The other two models for the battery and PV panels
have similar performances.

2) FPGA-Specific Optimizations: Following the quantiza-
tion process, the models were meticulously translated into
C++ code based on the underlying mathematical principles of
GRU and MLP as depicted in the aforementioned formulas.
After comparison, the translated models retain the complete
fidelity of the original models in PyTorch. Further FPGA-
specific optimizations were performed in Vitis HLS to ensure
efficient FPGA implementation.

The first crucial step was to address the representation of
data types within the model, particularly accommodating the
range of int8 types used in the quantized model. To achieve
this, the ap_int<8> data type from the High-Level Synthesis
(HLS) library was used.

The next point to be optimized is the activation functions
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in neural networks. The activation functions used in this study
are the sigmoid function and tanh function. One of the
most straightforward and effective optimization methods for
activation functions is to use the LUT (Look Up Table) instead
of the default functions provided by the HLS library. The LUT
method basically pre-calculates an input-output table of the
target function using discrete input data in a certain range.
The appropriate range for the LUTs was determined based on
the potential input values the neural network might encounter
during operation, while the resolution was chosen to balance
the trade-off between accuracy and memory consumption. For
the sigmoid function, the range was set from -10 to 10 while
for the tanh function, the range was set from -6 to 6, which
are spans that effectively capture the significant transitions
of these functions. The resolution was selected with a finer
granularity, with a step size of 0.001, thereby ensuring a high
level of precision in the function approximations.

Additionally, the manipulation of for-loops is another sig-
nificant step in FPGA-specified optimization. The two most
commonly used optimization methods for for-loops are un-
rolling and pipelining [30].To balance the hardware resources
usage and latencies, the for loops in the hybrid ML models
are fully pipelined.

D. Interfacing FPGA-Implemented ML-based Models with AC
Grid Emulation

The interfacing of FPGA-implemented machine learning
models with the AC grid emulation is crucial for a seamless
EMT-TS hybrid environment. The primary challenge stems
from the temporal resolution disparity: the EMT-based wind
farm and photovoltaic array models operate on a 50 µs time-
step, while the 118-bus system’s transient stability model uses
a 5ms time-step. Moreover, both the hybrid ML models and
the AC grid incur individual synthesis latencies on the FPGA,
necessitating an additional data synchronization mechanism
beyond the original multi-time-step ratio of 100.

This synchronization process, illustrated in Fig. 10, employs
a buffering mechanism and control logic within the FPGA
design. Each ML model independently computes at its intrinsic
rate, storing outputs in buffers. A global clock governs the
control logic, ensuring timely data exchange between the ML
models and the AC grid model. With a multi-time-step ratio of
100, the AC grid module performs one calculation per system
iteration, while the three ML-based modules complete 100
calculations, storing results in buffers. The equivalent system
latency is thus 100 × 15 = 1500µs, dominated by the wind
farm module with the highest latency. Data synchronization
and exchange across the test bench system occur after this
latency period. The input and out features of the ML-based
IBR modules have been demonstrated in Section II. Some of
the external features are to be exchanged with the AC grid,
such as the input voltages. These features are directly read
from the emulation bus data in the IEEE 118-bus system model
during the data exchange stage. Some other external features
including the wind speed, irradiance, and temperature are man-
ually set according to different designs of the test scenarios,
which will be introduced in the later section. Because of the
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Fig. 10. FPGA data synchronization.

multi-time-step ratio of 100 between the ML-based models
and the grid model, when the emulation is running, the bus
data from the AC grid will be updated 100 times slower than
the ML-based modules. That means those input features that
are measured from the bus will be constant between two data
exchange stages. Accordingly, during this period, the ML-
based models keep iterating over those recursive features to
show transient behaviors.

IV. TEST SCENARIOS AND RESULTS

The FTRT multi-time-step HIL emulation is performed on
the FPGA-based test bench system introduced in Section III.
The test scenarios are mainly setting the previously mentioned
ambient input features including wind speed, irradiance, and
temperature to test the functionality and accuracy of the hybrid
ML-based IBR modules under variable working conditions.
The test cases mainly focus on the varying wind speed condi-
tions for the wind farm model and the partial shading situation
for the PV model. The testing results are compared with offline
simulations using traditional computational models introduced
in Section II. A.

A. Scenario 1: Step Change on Wind Speed

In this test case, the rated wind speed is set at 15m/s.
Given the variability of wind speeds in real-world scenarios,
the turbines in the test wind farm are categorized into three
groups. Each group is subjected to distinct wind speed inputs.
The wind speed for each group remains constant for the first
five seconds and then undergoes a step change to another
constant value for the subsequent five seconds. While sudden
wind speed transitions are atypical in natural environments,
this methodology aptly demonstrates the transient dynamics of
the ML-based wind turbine models. The respective wind speed
settings for the groups are as follows: Group 1 experiences a
change from 8m/s to 13m/s, Group 2 from 15m/s to 10m/s,
and Group 3 from 10m/s to 5m/s, covering a broad spectrum
of operational conditions for the turbines.

Fig. 11 illustrates that despite the step changes in wind
speed, the alterations in rotor speed and active power output
are not instantaneous but gradual. This gradual response is
indicative of the time required by the DFIG wind turbine’s
motor to modify the rotor’s kinetic energy and stabilize at a
new steady state. The findings validate the performance of
the ML-based wind farm model in comparison to traditional
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computational models. Slight relative errors can be noted near
the 5-second interval due to the sudden change in wind speed,
yet these discrepancies are minimal (below 1%) and do not
significantly impact the overall emulation fidelity.

B. Scenario 2: Partially Shaded on PV Panels

At the onset of the emulation, all solar panels were set to an
irradiance level of 1000W/m2. However, at the 1-second mark,
the irradiance levels for panels S1 and S16 were adjusted to
100W/m2 and 200W/m2, respectively to simulate a partially
shaded scenario for the solar farm. Given the serial connection
of the 4x4 solar array panels and the fact that S1 and S16
are located in different columns of the 4x4 PV array, it was
expected that the overall power output would reduce to roughly
half of its initial value. This is due to the characteristic of
serial-connected panels, where the output is constrained by
the panel with the minimum output current.

The results, illustrated in Fig. 12, reveal that the solar
array maintained high accuracy with the standard irradiance
inputs, exhibiting only a 0.2% relative error. In the partial
shading condition, the output of the MLP-modeled solar
array decreased from 62.5 kW to 31.25 kW. This change
reflects a 4% relative error compared to the traditional model
output. As introduced in Section II, the MLP-based PV model
training data adhered to a normal distribution centered around
1000W/m2. Despite the elevated errors observed in the edge
regions under partial shading, the output waveform maintained
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Fig. 13. Performance Evaluations: (a) FPGA resource utilization ML VS
traditional DFIG, (b) FPGA resource utilization ML VS traditional battery,
(c) FPGA resource utilization ML VS traditional PV, and (d) execution time
per simulation step vs. number of wind turbines between traditional and ML-
based DFIG model.

consistency with the expected behavior of the photovoltaic
model, thereby underscoring the MLP model’s robust gener-
alization capabilities.

C. Performance Evaluation

To showcase the effectiveness of the proposed hybrid neural
network-based IBR models, a comparative analysis was con-
ducted with the traditional nonlinear IBR models which have
been detailed in Section II. The evaluation was carried out
on the same Xilinx® VCU118 board to assess the resource
utilization of each approach. The scale of the models tested
aligns with the specifications illustrated in Fig. 3, including a
six-turbine DFIG model, a 3x4 battery array, and a 4x4 PV
array. The comparison of FPGA resource utilization between
traditional and ML-based IBR models is presented in Fig.
13(a) - (c), where the ML-based models demonstrate a marked
reduction in hardware resource demands.

Furthermore, the time-domain performance of the traditional
and ML-based models on FPGA was assessed, particularly
focusing on the execution time for a single EMT simulation
time-step, set at 50 µs. After testing, all three IBR models
exhibit similar performance over their respective traditional
models. Therefore, the DFIG wind turbine is used as an
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example here. A range of wind turbine installations was
considered to highlight the contrast between the scalability
of the traditional and ML-based models. As the number of
turbines increased from 1 to 10,000, distinct scalability trends
emerged. Fig. 13(d) reveals that when the turbine count is
below 10, both the traditional and the ML-based models
perform comparably. However, for installation exceeding this
threshold, the traditional model grows linearly in execution
time while the ML-based model consistently delivers lower
execution times. A speed-up rate surpassing 8193 times was
observed when the system was scaled up to 10,000 wind
turbines.

V. CONCLUSION

This work introduces an innovative approach leveraging ma-
chine learning for real-time, transient emulation, specifically
tailored for renewable IBRs. Utilizing hybrid neural networks
that capitalize on the temporal dependencies characteristic of
traditional renewable energy models, the machine learning
performance has been enhanced. The proposed ML-based
IBR models are batch-processed in parallel, enabling the
representation of system-level behaviors. Constructed on the
framework of an actual AC grid, the test bench system’s
outcomes were validated by conventional models, revealing
noteworthy advancements.

The advantages of the ML-based models presented in this
paper are twofold: firstly, computational efficiency is sig-
nificantly heightened. The machine learning-based approach
circumvents the laborious, iterative resolution of discrete-
time, non-linear equations inherent in traditional models, thus
expediting the emulation process substantially. Secondly, the
proposed model outperforms traditional models on FPGA in
terms of execution time. The proposed ML-based models
exhibit much higher scalability, especially for emulating large-
scale renewable energy installations. Thirdly, the models have
demonstrated high accuracy, as evidenced by the emulation
results. The relative errors, when contrasted with traditional
models, are minimal, rendering them negligible for practical
purposes.

Nonetheless, there remains room for further optimization.
On the one hand, the complexity of current ML-based models
can still be increased to achieve higher accuracy in handling
wider input data. On the other hand, the ML-based models
are optimized for inputs within a specified range of rated
values. Outlier data may lead to inaccurate predictions, a
concern compounded by the potential for error accumulation
inherent to the neural networks’ mathematical structure. An
improvement could be realized by integrating a conventional
model within the ML-based model array. This hybrid approach
would allow the traditional model to monitor and correct the
ML models’ relative errors when they exceed a predetermined
threshold.

In summary, the ML-based models proffered in this research
not only exhibit high computational efficiency and accuracy
but also hold the promise of markedly enhancing the real-time
emulation capabilities of renewable energy sources.
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