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Abstract

Flows on normed spaces can be classified using flow equivalences — maps on the space
with the property that the structure of one flow is converted into the structure of another
flow. Of particular interest are classifications that arise from flow equivalences that are
either homeomorphisms or diffeomorphisms. It is possible to completely characterize such
classifications based solely on a few simple properties of flows, at least in the case of linear
flows on finite-dimensional normed spaces. Results concerning diffeomorphic classification
are well known and can be found in many textbooks that discuss continuous dynamical
systems. The situation is similar when it comes to homeomorphic classification of hyperbolic
flows, but for arbitrary (possibly nonhyperbolic) flows results concerning homeomorphic
classification are fairly obscure. This thesis aims to provide a complete discussion of the
homeomorphic and diffeomorphic classification of linear flows on finite-dimensional normed

spaces.
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1 Introduction

The word flow in common parlance elicits associations with streams, rivers, currents in a
lake, and so forth. One might imagine a collection of water molecules, each travelling along
its own path over time. The individual molecules may ultimately end up being completely
scattered, but one might expect similar short term behaviour. This conceptualization serves
as a reasonable illustration of mathematical flows as well.

In mathematics, a flow is a map on a space with certain special properties. These
properties have, at least from a geometric perspective, the effect of partitioning the space
into a collection of disjoint paths. Flows have a real ‘time’ variable, and one can use this
variable to travel forward and backward along the various paths. Although the basic flow
properties do not limit the long term relative behaviour of two nearby paths, such paths
are forced to behave similarly in the short term.

The concept of flows arose from the study of differential equations [6]. Initially the topic
of differential equations was approached from a fairly quantitative direction — the primary
concern was finding explicit solutions to various differential equations (often coming from
the study of physics) given some initial condition. This approach persisted until the time of
Poincaré (late nineteenth century) at which point there was a shift toward a more qualitative
study, and questions concerning the general behaviour of solutions to differential equations
gained prominence. Flows then arise as collections of solutions to differential equations,
where each path represents a specific solution for some initial condition. As flows capture
the behaviour of all solutions simultaneously, they are valuable considerations when it comes
to assessing the qualitative behaviour of solutions to differential equations.

When considering qualitative questions, it is often useful to introduce a notion of equiv-
alence. For example, two simple flows on the Euclidean plane might both consist of spirals
toward the origin, and from a qualitative perspective these flows may be viewed as essen-
tially the same. As such, it is worthwhile to consider some notion of flow equivalence. At
the most basic level, a flow equivalence between two flows is an automorphism of the space
that converts the behaviour of the first flow into the behaviour of the second, so paths of the
first flow are mapped into paths of the second, for instance. One can then add additional

structure to the notion of flow equivalence, which in turn preserves additional structure



between flows. For example, one may consider a flow equivalence that is also a homeomor-
phism. Such an equivalence not only preserves basic flow properties but also very loosely
preserves the general shape of paths.

This thesis is focused on fully characterizing diffeomorphic and homeomorphic flow
equivalence for linear flows, a class of particularly well-behaved flows. The thesis consists of
three main parts. In Chapter 2 the notions of linear flows and flow equivalence are formalized
and a number of basic properties of linear flows are introduced. Then classification theorems
for diffeomorphic and homeomorphic flow equivalence are discussed and proved in Chapter 3,
with the caveat of a crucial assumption made regarding the existence of invariant subspaces
with certain properties in the proof of the general homeomorphic classification theorem.
Chapter 4, the final main chapter, is concerned with justifying this assumption.

Much of chapters 2 and 3 of this thesis is common knowledge in the theory of (continuous-
time) linear dynamical systems. Details regarding the linear and diffeomorphic classifica-
tions can be found in many standard textbooks (for example, [1], [2], and [11]) and the
same is true with regard to the homeomorphic classification of hyperbolic systems. On
the other hand, the general (i.e., non-hyperbolic) classification is less well-known. The two
pertinent articles, [8] and [9], are not as detailed as they could be and may contain minor
inaccuracies. The goal of this thesis is to present a complete, self-contained and detailled
account of the classification problem for linear flows. While standard terminology and tools
are used throughout, and while the ideas of [9] in particular are followed wherever possible,
some aspects of the proofs of the main results (Theorem 3.15 and its corollaries) have not
appeared in the literature before. The three appendices provide a short introduction to the

tools from linear analysis and algebra required for this thesis.

Notation

Asusual N, Z, Q, R, and C denote the set of all natural, integer, rational, real, and complex
numbers. The natural numbers are the positive integers for the purposes of this thesis —
when necessary Ny is used to denote the nonnegative integers. There will be several instances
when only the positive real numbers are considered, so for simplicity they are represented

by R*. Similarly, R~ represents the negative real numbers.



This thesis is only concerned with flows on finite-dimensional normed spaces, and such
spaces are denoted primarily by X but also by Y and Z as necessary. The scalar field of
these vector spaces is always either R or C. Generally both scalar fields will work. It will
be made clear in the text when a specific scalar field is being considered; otherwise, K will
be used to denote the underlying scalar field. The choice of norm for a given space will
generally be irrelevant (as long as one is consistent in their choice throughout), so ||-|| will
be used to denote any arbitrary norm. It will be made clear in the text when a specific
choice of norm is required, and such norms will be differentiated from ||-|| with a subscript,
as in ||-||p for example. The only exception to this is the standard Euclidean norm on K¢,
which is denoted by || as usual. The unit sphere — that is, the set {x € X : ||z| = 1} —
appears occasionally and is denoted by S. If a specific choice of norm is used, then the unit
sphere with respect to that norm will be denoted using the same subscript, as in Sp.

The dimension of a given normed space is denoted by d € Ng. Flows on a given vector
space are denoted primarily by ¢ but also by ¥ and ~ as necessary. Similarly, bounded
linear operators on a given normed space are denoted primarily by L but also by M and
N as necessary. In particular I and O (as compared to 0 denoting either the number zero
or the origin of a given normed space) are always used to represent the identity and zero
operators respectively, as the vector space on which they are acting will always be clear
from the context. It turns out that the set of all linear flows on a given normed space X
can be identified with £(X), the set of all bounded linear operators on X. A subscript will
sometimes be used to denote the bounded linear operator associated with a given flow (as in
L, for example) but this subscript will be suppressed when it is clear from the context. It
will occasionally be necessary to consider a fixed basis of X, and in those situations a given
operator L and its matrix form with respect to that basis will be identified. In particular,
I and O will also represent appropriately sized identity and zero matrices as necessary. If

a matrix is block diagonal, say

A, O o ]
O A, 10
0 0 A |




where the A are any combination of square matrices and scalars, then it will be denoted by
diag(A1, A, ..., Ay). Diagonal matrices will frequently arise when a basis is chosen so that
the matrix form of an operator is in either real or complex Jordan canonical form. Complex
Jordan blocks of size d with eigenvalue A will be denoted by J4(\). Real Jordan blocks of
size d with nonreal eigenvalue pair {\,A\} will be denoted by Jy(\). It is often necessary
to consider the real and imaginary parts of a complex eigenvalue A, denoted R\ and S\
respectively. Finally, the notation o(L) will be used to denote the set of all eigenvalues of
the bounded linear operator L.

It will often prove useful to consider @} ; X}, the direct sum of an appropriate collection
of subspaces X}, of a given normed space X. When X is isomorphic to @, X, X will be
directly identified with @,"; X, and X = @, Xj will be written.

As this thesis can occasionally become notationally intense, with various different vari-
ables and indices all occurring simultaneously, it is worthwhile to attempt consistency in
using these various variables and indices. Generally r and ¢ denote fixed constants in R and
C respectively. Elements of a space X or Y are denoted by x and y, while ¢t and s are used to
represent variables in R. A subscript n is used to indicate a specific element of a sequence
and also as an index for countably infinite sets. Subscripts ¢ and s are used for indices
associated with R, R™, or R™. A subscript & is used to indicate a specific component while
m denotes the total number of components as in @)~ ; Xj;. Other subscripts and variables
will be used as needed.

As final notes, given a space X = @), Xj, the notation (z1,...,2,,) is often used to
represent a vector x € X in place of the standard vertical vector notation. It will sometimes
be necessary to consider the binary representation of a number. In such a situation < - >
will be used, so for example < 1010 > is the number ten represented in binary. It will also
sometimes be necessary to consider the floor and ceiling of some r € R, denoted |r] and [r]
respectively, where the floor of r is the largest integer not larger than r while the ceiling of

r is the smallest integer not smaller than r.



2 Basic Properties of Linear Flows

The first step toward classifying flows is to make precise the notion of linear flows. Moreover,
it is also necessary to develop a notion (several notions in this case) of flow equivalence.
One can then build upon these definitions to develop the basic properties of flows. In this
chapter most of the properties of linear flows required for the next chapter’s discussion of

flow classification are developed.

2.1 Linear Flows and Flow Equivalence

Definition 2.1 A flow on X is a continuous map ¢ : Rx X — X that satisfies the following:
(i) ¢(0,2) =z for all x € X and
(ii) p(s+t,z) =@(s,o(t,x)) for all s, t € R and z € X.

A flow can be viewed geometrically as a collection of disjoint paths, where the set
»(R, ) is the path through x. Points ¢(t,x) for positive ¢ can then be viewed as points
encountered along the path travelling from x, while ¢(¢,x) for negative ¢ can be viewed
as points encountered along the path travelling to x. It is a simple consequence of the
preceding definition that any two non-disjoint paths are identical. If two paths (R, x)
and ¢(R,y) are not disjoint, then ¢(s1,x) = ¢(s2,y) for some s1,s9 € R. It follows that
o(t,x) = (t — s1+ s2,y) € p(R,y) and p(t,y) = p(t — s2 + s1,z) € p(R,z) for all t € R.

A trivial example of a flow is the map satisfying (¢,z) — x for all (f,z) € R x X. It is

not difficult to construct other simple but less trivial flows as well.

Example 2.2 Consider the map ¢ on R x R? given by o(t, (21, 22)) = (! (txg + 1), e'x2).
This flow can be written in the form (¢, (z1,22)) = e!M (t)(x1, x2) where M (t) is the 2 x 2

matrix
1 ¢

0 1
for all t € R. Continuity of ¢ is now clear as t — e! M (t) is clearly continuous. Moreover, it

is also clear that e!M(t) = I when t = 0 so ¢ satisfies (i). Finally, it is easily verified that



eSM(s)etM(t) = e TP M (s +1), so ¢(s, p(t, (x1,22))) = @(s+t, (z1,22)) for all s, ¢ € R and

(71, 22) € R?, and thus ¢ satisfies (ii) as well. o

Example 2.3 It is also easily verified that the map ¢ on R x R? satisfying the equation
o(t, (x1,22)) = (sin(t)za + cos(t)x1, cos(t)xe — sin(t)x1) is a flow. This is due to the fact
that ¢ is really just R(t)(z1,22) where R(t) is the standard rotation matrix in R? with ¢
in place of §. The flow properties of ¢ are immediate consequences of the properties of

rotations of the Euclidean plane. ¢

Flows can also be viewed as families of automorphisms. Linear flows are then defined

simply by requiring that these automorphisms are all linear.

Definition 2.4 Let ¢ be a flow on X, and fix £ € R. The map ¢; : X — X given by
or(x) := @(t, z) is the time-t map of .

Definition 2.5 A flow on X is linear if its time-t maps are linear for all ¢ € R.

Examples 2.2 and 2.3 are clearly both linear, as for each fixed ¢t € R the maps ¢; are
both of the form Max for some 2 x 2 matrix M. Linear flows have many useful properties
that do not hold for flows in general, several of which will be demonstrated throughout this
chapter. Of particular note is that the set of all linear flows can be identified with the set
of bounded linear operators in a canonical fashion. This will be proved in the next section.
For now though, it is a straightforward application of the basic flow properties to show that

the time-t maps of a flow are all homeomorphisms.
Proposition 2.6 Let ¢ be a flow on X. Then ; is a homeomorphism for all t € R.

Proof. ¢ and ¢_; inherit the continuity of ¢ for each ¢ € R. Flow property (ii) requires
that ¢r 0 o+ = w9 = p_t o ¢ for each ¢t € R, and since flow property (i) requires that

wo = I, the invertibility of ¢, for each ¢ € R follows. [

Since X is assumed to be finite-dimensional, it follows that every time-¢ map of a linear
flow is a bounded linear operator.
Another essential notion required to discuss the classification of linear flows is that of flow

equivalence. Two flows are considered equivalent if there exists an invertible morphism that



maps the paths of one flow into the paths of the other flow and conversely, in some structured

fashion. The exact properties of the morphism may lead to different classifications.

Definition 2.7 Let ¢ and ¢ be flows on X and Y respectively. Then ¢ and ¢ are flow

equivalent if there exists a bijection (a flow equivalence) h : X — Y such that

h(p(t, ) = ¢ (t, h(z))

for all t € R and z € X. In particular, ¢ and ¢ are homeomorphically equivalent (and h is
a homeomorphic flow equivalence) if h is a homeomorphism. Similarly, ¢ and v are diffeo-
morphically equivalent (and h is a diffeomorphic flow equivalence) if h is a diffeomorphism.
Finally, ¢ and 1 are linearly equivalent (and h is a linear flow equivalence) if h and h™=! are

linear.

The ‘flow’ of flow equivalence will often be dropped, as flow equivalence is the only notion
of equivalence that appears in this thesis. The requirement that h(p(t,z)) = ¥ (t, h(zx)) is
related to the idea that h maps paths into paths since h(p(R,z)) = (R, h(x)). As t is
fixed here, this notion of equivalence does not admit much variation when it comes to how
the paths of one flow are mapped into the paths of the other flow. One could weaken
this definition to allow for more flexibility; for example, a common alternate definition of
equivalence is as above except that h(¢(t,z)) = ¥(rt, h(z)) for some fixed » € RT. While
it is still true that h(o(R,z)) = (R, h(x)) under this weakened definition, the additional
factor r allows for a broader notion of equivalence.

Although Definition 2.7 allows for equivalences between flows on different spaces, this
thesis is primarily interested in equivalences between flows on the same space. With that
said, there are instances where equivalences between flows on different spaces lead to equiv-
alences between flows on the same space. These instances occur as equivalence is transitive.

More generally, flow equivalence is an equivalence relation, exactly as one would hope.

Theorem 2.8 Flow equivalence is an equivalence relation, as are homeomorphic, diffeo-

morphic, and linear flow equivalence.

Proof. For reflexivity, note that the identity map is trivially a flow equivalence between any

flow and itself. For symmetry, suppose that ¢ and 1 are two flow equivalent flows on X



and Y respectively, so that there exists a flow equivalence h : X — Y between ¢ and . It

follows that h~! is a flow equivalence between 1) and ¢ since

W= (@) = K (Wt (R () = k™ (R(e(t, k() = et h™ (1)

forallt € R and y € Y, so ¢ and ¢ are flow equivalent. Finally, for transitivity, suppose ¢,
1, and ~ are three flows on X, Y, and Z respectively such that ¢ is flow equivalent to v,
and such that v is flow equivalent to . Then there exist two flow equivalences g : X — Y
and h: Y — Z between ¢ and 1 and between v and 7 respectively. It follows that h o g is

a flow equivalence between ¢ and + since

(hog)(e(t,x)) = h(¥(t g(x))) =t (hog)(x))

forallt € R and = € X, so ¢ and y are flow equivalent. The proofs for the homeomorphic,

diffeomorphic, and linear cases are similar. [

To simplify the process of examining the various types of equivalence, it is worthwhile
to seek out relationships between these notions. For example, two diffeomorphically equiva-
lent flows are necessarily also homeomorphically equivalent, as differentiability implies con-
tinuity. The following proposition summarizes a number of similar relationships between

equivalences.

Proposition 2.9 Let ¢ and ¥ be two flows on X andY, respectively. If ¢ and v are linearly
equivalent, then they are also diffeomorphically equivalent. If p and i are diffeomorphically

equivalent, then they are also homeomorphically equivalent.

Proof. The first statement follows since finite-dimensional linear maps are trivially differ-
entiable, as they are already the best linear approximations of themselves. The second

statement is a direct consequence of the fact that differentiability implies continuity. [

Note that Definition 2.7 does not require the flows to be linear. Note also that h need
not be unique — it follows immediately from Proposition 2.6 and flow property (ii) that
each ¢, is a flow equivalence between ¢ and itself. It simplifies matters if an equivalence
fixes the origin, and, at least for equivalent linear flows, it is always possible to find such

an equivalence.



Proposition 2.10 Let ¢ and 1 be linear flows on X and Y, respectively. If ¢ and ¢ are
homeomorphically (respectively, diffeomorphically or linearly) equivalent, then there exists
a homeomorphic (respectively, diffeomorphic or linear) equivalence h between ¢ and 1) such

that h(0) = 0.

Proof. If in particular ¢ and ¢ are linearly equivalent, then any linear equivalence h will
work, as necessarily h(0) = 0. Otherwise, let h be any homeomorphic equivalence between
¢ and ¢, and let h: X — Y be given by h(z) = h(x) — h(0) for all z € X.

The map h is clearly invertible with h=! : ¥ — X given by h='(y) = A~ (y + h(0)) for

all y € Y. Also since ¢ and 1 are linear for each t € R

h(eo(t,z)) = h(p(t,z)) — 1(0)
= h(p(t,2)) — h(p(t,0))
= (t, h(z)) = (t, 7(0))
= 9 (t, h(z) — 1(0))
= ¥(t, h(x))

forallt € R and x € X, so h is a flow equivalence; moreover, as a consequence of basic
properties of limits  is homeomorphic whenever & is. Finally, h(0) = h(0) — h(0) = 0. The

diffeomorphic case is similar. [J

As a consequence of the preceding proposition, from this point on it will be assumed

that all equivalences fix the origin.

2.2 Linear Flows and Bounded Linear Operators

It is often non-obvious, based solely on Definitions 2.1 and 2.7, whether or not two flows
are equivalent. As such, it is desirable to further develop the notion of flows; ideally, flows
could then be classified based solely on some easily determined properties. In the case of
linear flows, this can be achieved by identifying the set of flows with the set of bounded
linear operators. Questions concerning equivalence can then be answered by examining
the related operator. Toward this end it is first shown that linear operators induce linear

flows via the operator exponential. The operator exponential is defined based on the Taylor



Series representation of the real exponential. All of the familiar properties of the real expo-
nential carry over to the operator exponential with only minor adjustments (adjustments
are needed to handle the fact that the algebra of linear operators is not commutative) and
the exponential of a bounded linear operator is itself a bounded linear operator. A more

detailed discussion of the operator exponential can be found in Appendix A.

Proposition 2.11 Let L € £(X). The map ¢ : R x X — X given by ¢(t,z) := etlx is a

linear flow on X.

Proof. First fix (tg,79) € R x X and € € R", and consider that by the triangle inequality
leFx — efobag|| < [l — Pl — wol| + [l — e [[[[zo]| + [l [l — o]

for all t € R and 2 € X. The map t ~ e'* is continuous (in fact, differentiable) so
there exists a 6 € RT such that [e'’ — efol|| < min{m, V/5} for all ¢ € R satisfying
|t —to| < 0. Now set & := min{0, W} It follows, for all (t,x) € R x X satisfying
[t = toll, ||z — ol < 4, that [|efx — efolag| < \/S\/5 + ?,HTEHHHUUOH + HetOLHW < e
Since (g, zp) and € were arbitrary, ¢ is continuous.

Flow properties (i) and (ii) are direct consequences of the basic properties of the expo-

nential, and the fact that ¢ is linear follows from the fact that the exponential of a bounded

linear operator is itself a bounded linear operator. [

When a flow ¢ is of the form e!"x for some bounded linear operator L, then L is said to
generate the flow . It is easily seen that two different operators cannot generate the same

flow.
Proposition 2.12 Let ¢ be a linear flow on X generated by L, M € L(X). Then L = M.

Proof. By assumption ez = e!Mz for all (t,z) € R x X. It follows that Let‘z = MetMy
for all (t,z) € Rx X, by differentiating both sides with respect to ¢. In particular Lx = Mx
for all x € X by fixing £ = 0, and thus L = M. O

Proposition 2.11 states that every linear operator generates a linear flow in a canonical

fashion. This allows one to easily construct a wide variety of flows; the flows in Examples
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2.2 and 2.3 were constructed by applying Proposition 2.11 to

11 0 1
and
0 1 -1 0
respectively. It is natural to ask if the converse is true — that is, are all linear flows

generated by linear operators? This is indeed the case. An elegant proof of this fact, as
outlined by my supervisor, makes use of the operator integral. The operator integral is
defined by naively applying Riemann integration to continuous maps f : R — £(X). Given
a flow ¢ and numbers a, b € R, one may then construct f: p¢dt. As was the case with
the operator exponential, the properties of the operator integral are similar to those of
the Riemann integral, and f; ¢ dt is a bounded linear operator. Operator integration is

discussed further in Appendix B.

It is clear from the preceding discussion that a flow generated by some bounded linear
operator is necessarily differentiable, and the derivative at t = 0 is the operator that gener-
ates it. The idea then is to first show that every linear flow is differentiable at ¢t = 0. From

there one shows that the flow generated by this derivative is in fact the original flow.

Lemma 2.13 Let ¢ be a linear flow on X. Then the map t — iz is differentiable att = 0
forallx € X.

Proof. Set Y = {z € X : limy_0 ;(prx — ) exists}. Note that ¥ cannot be empty, as
limy_yg %(got() —0) = 0. It follows from the fact that ¢, is linear for each t € R and the
basic properties of limits that Y is in fact a subspace of X. By construction then Y is the
subspace of X for which the map ¢t — ¢, is differentiable at ¢ = 0, so the goal is to show
that Y = X.

1

Define A,, € L(X) by setting A, := nfO" ¢ dt for each n € N. Then lim,,_,,, 4, = I,
so that for all x € X the sequence {A,z},cn converges to xz. Since Y is a subspace of a
finite-dimensional space, Y must be closed. As a consequence of the above two statements,

if it can be shown that A,x € Y for all x € X and n € N, then Y = X. But this follows

11



from the various basic properties of the operator integral, as

1 1
1 n n
lirns—>0 7(905147155 - Anx) - hms—)() (‘Ps / Pt dtx — / Pt dt 37)
s 0

1 1
= lim,_yo — /n sos+tdt:v—/n prdtx
0 0
1
. n n
= limg_,g — (/ wtdt—/ <ptdt>a;
s 0
O 1 0

1 S
=n (hms_m - /1 ppdt — limg_yg 5 / o dt) x
1 0

=n(pr — Iz
forall z € X and n e N. O

Recalling that the idea of flows arose from the study of differential equations, and
now armed with the knowledge that every linear flow is differentiable, it is possible to
demonstrate that every linear flow is the exponential of a linear operator; that is, every

linear flow is of the form described in Proposition 2.11.

Proposition 2.14 Let ¢ be a linear flow on X. There exists an L, € L(X) such that
o(t,z) = etlex for all (t,z) €R x X.

Proof. Set L, := lim;_, %(gpt —1I). Now Ly is linear as a consequence of the basic properties
of limits, and since ¢ is linear for each ¢t € R by assumption. It then follows that L, € £(X),

as X is finite-dimensional.

Pt—Ps
t—s

Consider that lim;_ = limy;_,, % (ps = L,p, for all s,

t € R by the previous lemma. Thus ¢ is differentiable with respect to ¢ for all ¢ € R with
derivative %got = Lypr. Now consider the map ¢ e tle,. This is differentiable with
derivative —Lye~ e, —i—e*tL#’L(pgot =0, so e v, = C for some constant C' € £(X), and
consequently ¢; = Ce~F¢. But then ¢y = I, so C' = I, and thus ¢; = e'F¢. The desired

result follows. [J

The following theorem summarizes the relationship between linear flows and bounded

linear operators.

12



Theorem 2.15 Every linear flow on X can be uniquely identified with a bounded linear

operator on X and conversely.
Proof. This follows immediately from Propositions 2.11, 2.12, and 2.14. [J

The identification between linear flows and linear operators is the foundation from which
the classification of linear flows can be meaningfully discussed. It will ultimately be shown
that the existence of an equivalence between two linear flows will depend entirely on the
relative properties of the underlying operators. In particular, operator spectra and the
subspaces they induce will prove essential to determining whether or not two linear flows
are homeomorphically equivalent. Furthermore, it is now possible to provide an initial
classification result for linear equivalence, the strongest notion of equivalence discussed in

this thesis. First it is necessary to provide a notion of similar operators.

Definition 2.16 Let L, M € £(X). Then L and M are similar if there exists an invertible
N € L£(X) such that NLN~! = M.

Theorem 2.17 Let ¢ and ¢ be linear flows on X. Then ¢ and i are linearly equivalent if

and only if L, and Ly, are similar.

Proof. Suppose first that ¢ and ¢ are linearly equivalent. Then there exists an invertible
linear h : X — X such that ho(t,z) = ¢(t, he) for all t € R x X. Now h € L(X) since
X is finite-dimensional, and eleh™ by = hetlenr = ho(t,x) = ¥(t, hx) = eLvha for all
(t,z) € R x X as a consequence of Proposition 2.14. It follows from Proposition 2.12 that
hL(ph_1 = Ly, so L, and L, are similar.

Conversely, suppose L, and Ly, are similar. Then there exists an invertible N € £(X)
such that NL,N~! = L,. Set h : X — X so that h(z) = Nz for all x € X. Then
h(p(t,z)) = Netbeg = etNLeN "' Ny = etlo N = (¢, h(z)) for all (¢,2) € R x X, and h is

clearly an invertible linear map. Thus ¢ and v are linearly equivalent. [J

After fixing a basis for X, it is now straightforward to check if two linear flows are linearly
equivalent. First find the two operators that generate the flows by differentiating. These
two operators can be represented as matrices with respect to the chosen basis, and it is then
a simple exercise in verifying whether or not these two matrices are similar. Conversely one

can easily generate linearly equivalent linear flows using similar matrices.
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The remainder of this chapter is focused on developing additional properties of flows;
forms of equivalence aside from linear will be mostly ignored until the third chapter. In
particular, it will prove useful to represent flows in a specific form with respect to a given
basis. Now an arbitrary flow may not have the desired form with respect to an arbitrary
basis. With that said, it will always be possible to find a flow that has the desired form
via similar operators; in other words, given an arbitrary flow and basis, one can always
find a linearly equivalent flow that is of the desired form with respect to the basis. As a
consequence of Proposition 2.9, it is possible to assume that flows are always of the desired

form, regardless of the type of equivalence being investigated.

2.3 Flow Invariance

Although the identification between linear flows and linear operators will prove fundamental
to this discussion of the classification of linear flows, there are several other concepts that

will also prove useful. The first of these is invariance.

Definition 2.18 A subspace Y of X is invariant under L € £L(X) if L(Y) C Y, and Y is

(flow) invariant under a linear flow ¢ on X if it is invariant under ¢; for all ¢ € R.

The notion of invariance under an operator is quite natural. In the context of flows,
invariance is the idea that any path through some subspace exists entirely within that
subspace; one cannot travel along a path either into or out of that subspace. Note that, while
equality is not required for invariance, in the case of flow invariance equality is automatic: if
0e(Y) CY forall t € R, then ¢_+(Y) CY for all t € R, and thus Y = ¢(¢—+(Y)) C ¢ (Y)
for all t € R.

Invariance can be used to simplify the analysis of flows. The general idea is to consider
the behaviour of a linear flow along its various invariant subspaces. Every flow induces
component flows along these subspaces, and by working with specific well-chosen invariant
subspaces one can reduce the problem of classifying a flow to classifying certain component
flows. As some flows are significantly easier to classify than others, this can greatly simplify

the problem.
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Definition 2.19 Let L € £(X), and let Y be a subspace of X invariant under L. The
map Lly : Y — Y given by L|y(y) := Ly for all y € Y is the Y component of L. Similarly,
let ¢ be a linear flow on X, and let Y be a subspace of X invariant under ¢. The map

oly :RxY =Y with ¢|y(t,y) := ¢(t,y) for all (t,y) € R x Y is the Y component of .

It is clear that a component of a bounded linear operator is itself a bounded linear
operator. Similarly, a component of a linear flow is itself a linear flow.

It will often be the case that many invariant subspaces will be considered simultaneously.
If { X} }2, is a finite collection of subspaces of X invariant under some operator L or flow ¢,
then Lj and ¢, will be written in place of L|x, and ¢|x, respectively to simplify notation.

Given the identification between linear flows and linear operators, it is natural to exam-

ine the relationship between invariance under linear flows and under operators.

Proposition 2.20 Let ¢ be a linear flow on X, and let Y be a subspace of X. Then 'Y is

invariant under Ly if and only if Y is invariant under ¢.

Proof. Suppose first that Y is invariant under L., and fix y in Y. Now by assumption
L,y € Y; moreover, if L’:,y € Y for some k € N, then L’;Hy € Y. It follows by induction
on k that Ll;y € Y for all kK € N. This can be extended to Ny as Lgy =Ily=yeY.
It follows that Y p_o #(tLy)*y € Y for all t € R and n € N, as Y is a subspace of
X. Furthermore, Y is closed since X is assumed to be finite-dimensional, and therefore
oy = limy 500 > 1y %(thp)ky €Y for all t € R. Consequently Y is invariant under ¢, as
y was arbitrary.

Suppose now that Y is invariant under ¢ and consider that L,z = [%g@t]t:():r for all
x €Y. OnY in particular [%S@t]t:[)y = [%(gp]y)t]tzoy, so Loy = [%(<p|y)t]t:0y for all
y € Y. It follows from the definition of the derivative that [%(¢ly)ii=oy € L(Y), and thus

LyyeY forally €Y, soY is invariant under L. [

As a consequence of the preceding proposition, there is no need to distinguish between
invariance under a flow and the operator that generates it. As such, subspaces will often
be referred to as simply invariant, without reference to a specific operator or flow.

Now for invariance to be a valuable consideration when it comes to classifying flows, it

is important that invariance be preserved by equivalence, and this is indeed the case.
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Proposition 2.21 Let h be an equivalence between two linear flows ¢ and ¥ on X and Y
respectively. Further let Z be an invariant subspace of X. If h(Z) is a subspace of Y, then

h(Z) is invariant under 1 ; moreover, h|z : Z — h(Z) is an equivalence between ¢|z and

Vln(z)-

Proof. Suppose y € h(Z). Then y = h(z) for some z € Z, and since Z is invariant under
e it follows that ¥,y = ¥h(z) = h(pez) € h(Z). This proves the first statement, as t
and y were arbitrary. The second statement is a consequence of the fact that h|z inherits
the properties of h and h|z(¢|z(t,2)) = h(p(t, 2)) = ¥(t, h(2)) = Ylnz)(t, hlz(2)) for all
(t,2) ER x Z. O

If h in the preceding proposition is a linear equivalence, then necessarily h(Z) is a
subspace of X, so the preceding proposition applies. Unfortunately the same cannot be
said for weaker forms of equivalence such as homeomorphic equivalence. When considering
homeomorphic equivalence it is necessary to seek out invariant subspaces for which the
image under a homeomorphic equivalence is itself a subspace. Of particular interest, then,
will be invariant subspaces defined by a specific property — a property that is preserved
by homeomorphic equivalence. Two important examples of this are the stable and unstable

subspaces of a flow.

Definition 2.22 Let ¢ be a linear flow on X. The stable subspace of ¢, denoted X;r, is the
set of all z € X that satisfy limy_, o sz = 0. The unstable subspace of ¢, denoted X, o is
the set of all x € X that satisfy lim;—,_~ sz = 0. The stable and unstable components of

¢ are denoted by ¢+ and ¢~ respectively.

It is a simple consequence of the basic properties of limits, along with the fact that
¢ is linear for each t € R, that the stable and unstable subspaces of any linear flow are
indeed subspaces. These subspaces play a significant role in characterizing homeomorphic
equivalence and will be discussed in increasing detail throughout the remaining sections
of this chapter. First it is shown that these subspaces are always invariant. The proof is

straightforward.

Proposition 2.23 Let ¢ be a linear flow on X. Then X;r and X are invariant under ¢.
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Proof. Consider that lim;, 4o 0rpst = limyi00 Ysorr = ps(limy00 rz) = 0 for all
se€Rand z € X;r . Thus, X; is invariant under . The X case is proved in a similar

fashion. [J

As previously discussed, it is desirable that the defining property of the stable and
unstable subspaces be preserved by equivalence. This is indeed the case for homeomorphic
or stronger equivalence. Recall that homeomorphic equivalences are assumed to fix the

origin as a consequence of Proposition 2.10.

Proposition 2.24 Let h be a homeomorphic equivalence between two linear flows, ¢ and

¥, on X. Then h(X}) = X and h(X) = X

Proof. As h is continuous limy_, oo ¥ih(2z) = limy— 400 h(prx) = h(limi—,o0 @rzz) = 0 for all
r € X Thus h(X]) C X J; . On the other hand, since h™! is also continuous it follows
that limy o0 0:h ™ (z) = limgioo hH(Ypx) = A7 (limy oo Pyz) = 0 for all = € X$.

Consequently XJ C h(X ;r ). The unstable case is proved similarly. [

One final useful property of the stable and unstable subspaces of a flow is that these
subspaces only ever intersect trivially. This can be seen by considering a flow restricted to

the intersection of its stable and unstable subspaces.
Proposition 2.25 Let ¢ be a linear flow on X. Then X N X, = {0}.

Proof. First note that f(Y NZ) C f(Y)N f(Z) for all subsets Y and Z of X and for all
maps f: X — X. Since the intersection of any two subspaces is itself a subspace, it follows
that Y N Z is invariant whenever Y and Z are invariant, and thus it is sensible to consider
the component ‘P‘X:mX; of . Since Lp\X:mX; is a flow on X; N X, there exists some
L € L(X} N X)) such that L generates 90|X$0X;' Fix x € X; N X}. Now by assumption
limy s o0 etz = limy o etz = 0, so there exists T,f, T, € R such that ||e!lz|| < 1 for all
t < T, and ||etfz| < 1 for all + > T;. Without loss of generality, it may be assumed that
T, < T, . Since the map t + ||e*lz|| from [T, T; ] to R is a continuous function on a closed
interval, it follows that sup,cg|le’Fz| < oo, and this in fact holds for every z € Xo N X:Dr
since x was arbitrary. Then by the uniform boundedness principle sup;cg|lett|| < oo.

—tL etL

But ||z]] = lm¢yiool/z|| = limisyoole 7| < supsegllett || lim 4 oollefx|| = 0 for all

A X s .
r € XS N X, so it must be that X7 N X, = {0}. O
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The preceding property is useful in that one can meaningfully consider X;," ® X, . This
leads nicely into the next section’s discussion on reducibility, as direct sums play a substan-

tial role.

2.4 Reducible Flows

The notion of component flows was introduced in the previous section, along with the idea of
simplifying the problem of classifying flows to classifying their various components. For this
technique to be useful, it is necessary that the classification of a flow is entirely determined
by classifying a small number of easily classified components. Unfortunately flows can have
numerous components; worse still, components may overlap, and they may end up being
overly complex in their own right. To deal with these issues, a notion of ‘recombining’
component flows is introduced.

The tool for this purpose is the direct sum. Given a space X, if {X;}7*, is a finite
collection of subspaces of X, and if X} N (Zf;ll Xj+ 271 Xj) = {0} for all k < m,
then one may construct @j.; Xi. If one is further given maps f; : Xz — X}, for each
k < m, then one may construct the map @, fr : Bre; X — Dp; Xk defined by
setting (Dye, fx)(@) == > pey fu(xg) for all z = >0 o € @, Xi. It is easily verified
that @), Ly is a bounded linear operator whenever all the Ly are likewise, and similarly

D, ¢k is a linear flow whenever all the ¢y, are as well.

Proposition 2.26 Fiz m € N, and let {X}]"; be a collection of subspaces of X such
that X 0 (52! X+ Y01 X;) = {0} for all k < m. Then @p_, L € LD, Xx)
whenever Ly, € L(Xy) for each k < m. Similarly, @}, ¢k is a linear flow on B}, Xi

whenever g, is a linear flow on X for each k < m.
Proof. Note first that

(@::1 Lk) (ax +by) = Z:;l Li(axy + byk)
= Z:Zl(allkl’k + bLyyr)

=a Z::l kak +b Z::l kak

=o (D, 1)+ (D, 1)
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for all a, b € K and z, y € @, Xk, so @~ L is indeed linear. Now fix x € @, Xy
along with a sequence {xy}nen in @), Xj converging to x. Then for each k& < m the
sequence {Z, }nen in Xj converges to xy. It follows by the continuity of each Lj that
limy, o0 Lty = Ly for all k& < m, so limp o0 > oy LgZng = Y peq Lrag, and thus
limy, o0 (Bjey Li)zn = (Bjy Li)x. As x and {xy, }pen were arbitrary, @j- ; Ly is contin-
uous, and therefore @, L € LD, Xk)-

It follows from the above that @), ¢y is linear for each fixed ¢ € R, and an argument

similar to the preceding continuity argument demonstrates that €. ; ¢ is also continuous.

Now (D), 0r)(0,2) = >0 ¢r(0,25) =>4tz = x for all x € @)~ X}, and

(EB:; %) (s+tx) = ZZ; or(s +t, o)
=37 k(s enlt, )
= (D) (+ X, wntt.mw)
= (D) (= (D, #¢) 0)
for all s, t € R and 2 € @), Xg. Thus @/, ¢y is a linear flow on @), Xy O

Note that the various X} are invariant under these constructions, so that the various
Ly, and ¢y, are components of @, L and )" | ¢k respectively. It is constructions such
as these that allow one to classify a flow based on its components as the following lemma

demonstrates.

Lemma 2.27 Fiz m € N, and let {X,}]", and {Yi}}", be collections of subspaces of X
such that Xkﬂ(z X, i1 Xj) = {0} for all k < m and similarly for {Yi}7L,. If i
and vy, are (homeomorphically or linearly) equivalent linear flows on X, and Yy, respectively
for each k < m, then @}, vr and @,_, Yi are (respectively homeomorphically or linearly)
equivalent flows on @~ Xi and @~ Yy respectively.

Proof. Let hy : X — Yj be equivalences between ;. and 9, for each k < m. It is easily
verified that @}, hj, has inverse @], h;'. Now for all (¢,7) € R x @}~ X) necessarily
hi(pr(t, 2x)) = Ur(t, hi(ak)), implying that Y550, hy(er(t, 2x)) = 255, Ye(t hi(2y)), and
thus (B2 hi) (B2 er) (8 7)) = (Dily ¥i) (¢, (Bl hw)(x)). Now if all the hy are

continuous (respectively linear), then @) | hy is also continuous (respectively linear) as per
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the argument in the previous proposition. Similarly, if the h,;l are continuous (respectively

linear), then @}, h; * is continuous (respectively linear). O

Given a linear flow, it is worthwhile to consider various direct sums of its component
flows. Of particular interest will be when a flow is completely represented by the direct
sum of some collection of component flows. This type of situation arises when one finds
invariant subspaces { X}’ ; such that X N (Ef;ll Xj+ 301 Xj) = {0} for all k£ <m,
while also satisfying the equation > ", X, = X. In such a situation €., X can be
identified naturally with X. Whenever X = @, | X}, is written, it should be assumed that
Xk N (Zf;ll Xj+ 201 X;) = {0} for all £ < m and >7}", X = X. Furthermore, as
such constructions are only of interest in the context of invariant subspaces, it should also

be assumed that X}, is invariant for all £ < m.

Proposition 2.28 Let X = @' | Xj, let L € L(X), and let ¢ be a linear flow on X. If
X} is a collection of invariant subspaces of X under L, then L = @}, Lg. Similarly,
k=1 k=1

if { Xk}, is a collection of invariant subspaces of X under ¢, then ¢ = @) k.

Proof. This follows from the definition of ;" ; Ly and ;" ¢r. For the operator case,
note that Lo = LY - xp = > oy Lay = Y o Lyxp = (Bjey L)z for all z € X.
Similarly, o(t, =) = o(t, 25l o) = 2ply ot ak) = Doply er(t, zi) = (BrZy wr) (¢, @) for

all (t,z) € R x X as a consequence of the linearity of ¢ and ¢y for all £ < m. O

Note that the ordering of €D, ; X}, is irrelevant, as are the orderings of both €., Ly
and @@}", ¢r as long as they are consistent with the ordering of ;. ; Xp.
Lemma 2.27 and Proposition 2.28 combined demonstrate how one can classify flows

based on their components.

Theorem 2.29 Let ¢ and v be linear flows on X = @), X = @) Yi where {Xi}7,
and {Y,}7", are collections of subspaces of X invariant under ¢ and 1 respectively. If oy,
and vy, (here o, = ¢|x, and Yy = Y|y, ) are (homeomorphically or linearly) equivalent for

all k < m, then ¢ and 1) are (respectively homeomorphically or linearly) equivalent.

Proof. This follows directly from Lemma 2.27 and Proposition 2.28. [J
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As per the preceding note, the specific ordering of €B;" ; ¥ is irrelevant. If necessary,
it can be reordered prior to applying Theorem 2.29.

To see the value of Theorem 2.29, consider the respective stable and unstable subspaces
of two flows, ¢ and . As a consequence of Proposition 2.25, showing X;f +X, =X
and X:[ + X; = X is sufficient to demonstrate that X; ® X, =X and XJ &) X,L; =X
respectively. Under these conditions, if one can show that ¢+ and ¢~ are homeomorphically
equivalent to ¢+ and v~ respectively, then it immediately follows from Theorem 2.29 that ¢
and 1) are homeomorphically equivalent. It turns out that checking whether or not o™ and
1T (and similarly ¢~ and 1~ ) are homeomorphically equivalent is fairly straightforward,
as will be seen in Section 3.2, so flows for which X;f @ X, = X have their own special

designation.

Definition 2.30 Let ¢ be a linear flow on some X # {0}. If X = X @ X, then ¢ is
hyperbolic. 1If X;“ ® X, = {0}, then ¢ is central.

Note that, alternatively, ¢ is hyperbolic if ¢ = ¢t @ ¢~ for nontrivial ¢. Theorem
2.29 is of limited use if one cannot find a collection of invariant subspaces {X}}}" ; so that

X = @}, Xj. To this end a notion of reducibility is introduced.

Definition 2.31 L € £(X) is reducible if there exist nontrivial invariant subspaces Y and
Z of X such that X =Y @ Z; otherwise, L is irreducible. Similarly, a linear flow ¢ on X is
reducible if there exist nontrivial invariant subspaces Y and Z of X such that X =Y & Z;

otherwise, ¢ is irreducible.

Note that L and ¢ are reducible if L = M @& N and ¢ = 1 @ y respectively for some
nontrivial bounded linear operators M and N and nontrivial linear flows v and . More
generally, L and ¢ are reducible if L = @} | Ly and ¢ = @}, ¢k respectively for some
m > 1 with nontrivial bounded linear operators L, and linear flows ¢y

Irreducible flows essentially operate on invariant subspaces that do not contain any
further nontrivial invariant subspaces. In the previous section the relationship between
operator invariance and flow invariance was investigated; in particular, Proposition 2.20
states that a flow is invariant on some subspace if and only if the operator that generates

it is invariant on that subspace. A similar result holds for reducibility.
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Proposition 2.32 Let ¢ be a linear flow on X. Then ¢ is reducible if and only if L, is

reductble.

Proof. Suppose first that L, is reducible. Then there exist nontrivial subspaces ¥ and Z
of X such that Y and Z are invariant under L, and X =Y & Z. It follows immediately
from Proposition 2.20 that both Y and Z are invariant under ¢ as well, so ¢ is reducible.

The converse is similar. [l

As a consequence of the above proposition, ¢ is irreducible if and only if L, is irreducible.
This proposition will prove useful in the next section as part of the discussion of irreducible
flows. Similar to invariance, as a consequence of this proposition, spaces will often be
referred to as reducible or irreducible without referencing a specific operator or flow, as it
will generally be clear from the context.

There are some basic results that provide invariant decomposition of spaces given some
operator. In light of Proposition 2.32, such results can be exploited to find decompositions

for linear flows.

Proposition 2.33 Let ¢ be a linear flow on X with K = C such that L, has at least two

distinct eigenvalues. Then ¢ is reducible.

Proof. For each eigenvalue A\, of Ly, let X := ker(Ly, — Apl )%, By assumption these
subspaces are nontrivial. It is easily verified that X} is invariant under L, for all k& < m,
and it follows from a standard result of operator theory [7] that X = @, , X, and so
L, =@, Li. As a consequence of the previous proposition, ¢ = €B]" | ¢} with nontrivial

k, and thus ¢ is reducible. [J

It follows immediately from the preceding proposition that for every complex irreducible
flow ¢, it must hold that o(Ly) = {A} for some A € C. Abusing terminology somewhat, the
unique A associated with an irreducible ¢ will be referred to as the eigenvalue of ¢. The
situation is slightly more complicated when K = R, but the related real result is not needed
in this thesis.

With the idea of simplifying flows by reducing them to their components, it is reasonable

to attempt to reduce a flow as much as possible. Now any decomposition consisting entirely
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of irreducible components by definition cannot be further reduced. It turns out that such
a decomposition can be found for every linear flow. The requirement that the subspaces
be nontrivial in Definition 2.31 is important here, as every flow would be a reduction of
itself, so there would otherwise be no such thing as an irreducible flow. Requiring that the
reduction be nontrivial forces the subspaces to each have their dimension be strictly less

than that of the initial space.

Proposition 2.34 Let ¢ be a nontrivial linear flow on X. There exists a finite collection

{or}i, of nontrivial irreducible components of ¢ such that ¢ = @, k.

Proof. Let {¢r}}"; be a collection of nontrivial components of ¢ satisfying ¢ = ;" | ¢
and with the property that, for some fixed n € N, each ¢}, is irreducible whenever di > n
where dj is the dimension of Xj. Define a new finite collection {(ﬁj};ﬁ:l of components
of ¢ based on {¢;};r, as follows. Include ¢ in {gbj}gh:l for all & < m such that di # n.
Moreover include all irreducible ¢y with dy = n. For reducible ¢y with dy = n, reduce them
to nontrivial components ¢y 1 and ¢y 2 and include those as the final elements of {@; };hzl
It is clear by construction that ¢ = @;h:l @;. Now the elements of {gbj}gh:l with d; > n
are exactly the elements of {¢;}}", with di > n, and are by assumption all irreducible.
Moreover, the elements of {gbj};-h:l with d; = n are exactly the irreducible elements of
{¢r}i, with di, = n, as the reducible elements of {¢}}; | with dj = n were all reduced to
nontrivial elements of {gbj};ﬁ:l such that d; < n. Thus the elements of {gbj}f‘:l with d; =n
are also all irreducible. Consequently, {@; };h:l is a finite collection of nontrivial components
of  satisfying ¢ = @jﬂzl ¢; and with the property that, for some fixed n € N, each ¢; is
irreducible whenever d; > n — 1.

Now the collection {¢} satisfies the above construction for n = d trivially. By repeatedly
applying the above procedure d times, one acquires a finite collection {¢}7" ; of nontrivial
components of ¢ satisfying ¢ = @, ¢x and with the property that ¢ is irreducible
whenever dj, > 0. But the elements of {¢;}}", are nontrivial so dj, > 0 for all £ < m, and

consequently {¢x}}" is a finite collection of nontrivial irreducible components of ¢ such

that ¢ = @, v O

With all the work that has gone into reducing flows to irreducible components, one might
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hope that irreducible components are indeed simpler to work with than general linear flows.
To demonstrate that this is indeed the case, irreducible flows are discussed in detail in the

next section.

2.5 Irreducible Flows

So far flows have been discussed without fixing a basis or scalar field for the underlying
normed space. It is often more elegant to work without a fixed basis, but it will become
necessary in future sections for linear flows to be in certain desirable forms with respect
to some basis. Now a consequence of Theorem 2.17 is that two linear flows are linearly
equivalent if and only if one flow is the same as the other after an appropriate change of
basis. Since linear equivalence is the strongest form of equivalence considered in this thesis,
it follows that the choice of basis has no effect when it comes to considering diffeomorphic
and homeomorphic equivalence. As such, one can always choose to work with a basis for
which the generating operator is in (real or complex) Jordan canonical form (see [5] and

[7]) and this motivates the following definition.

Definition 2.35 Let L € £(X) with K = C (respectively R). Then L is of A-Jordan-type
if its matrix with respect to an appropriate basis consists of a single complex (respectively
real) Jordan block with eigenvalue A (respectively conjugate pair of eigenvalues {\, A}). In

other words for K = C, with respect to an appropriate basis, L is of the form

| A1 O 0 0 ]
0 X 1 0 0
0 0 X 0 0
Ja(A) =
0 0 0 Al
0 0 0 0 A

for some )\ € C. The situation is similar when K = R. In this case L is of the same form as
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above with respect to an appropriate basis for some A € R. Alternatively L is of the form

R sy 1 0 0 0|

—3X RA 0 1 0 0

0 0 R A 0 0

JiN=1 0 0 —SA RA 0 0
o 0 0 0 RA SN

o 0 0 0 —3A RA

with respect to an appropriate basis for some A € C\ R.

The complex case is clearly much easier to work with. The problem with real Jordan
blocks is that one cannot split conjugate pairs of eigenvalues while working solely with real
linear transformations, so real Jordan blocks with nonreal eigenvalues end up being much
more unwieldy. Still, real Jordan blocks fundamentally behave similarly to complex Jordan
blocks, so many results that hold for complex linear operators also hold for real ones. The
preferred strategy is to directly prove a result for the complex case, and then extend the
result to the real case via complexification. The concept of complexification (along with the

concept of realification) is discussed in more detail in Appendix C.

This previous definition is useful in that it completely characterizes irreducible flows

once a basis is fixed.

Proposition 2.36 Let L € L(X). Then L is irreducible if and only if it is of A-Jordan-type

for some A € C.

Proof. For simplicity, assume K = C.

Fix an appropriate basis for X so that L is in Jordan canonical form. Explicitly, L is of
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the form

A 01 O 0 0
0 X & 0 0
0 0 A3 0 0
0 0 0 Ad—1 0d—1
0 0 0 0 Ad

with respect to this basis, where A, € o(L) for all n < d and, for all n < d, where §,, = 0
whenever A\, # A\,41 and 6, € {0,1} otherwise. If any of the 4, are in fact zero, then L is
clearly reducible. Suppose now that L is irreducible. It follows from the contrapositive of
the preceding argument that §,, = 1 for all n < d. Moreover, as necessarily §,, = 0 whenever
An # Apa1, it must further be the case that Ay = A\, for all n < d. Consequently, L is a
single Jordan Block with eigenvalue A1, so L is of A;-Jordan-type. This proves the ‘only if’
part of the proposition.

To prove the ‘if” part, suppose that L is reducible, in which case there exist invariant sub-
spaces X7 and X3 of X such that X = X;® Xs. Fix an ordered basis {b, ... ,bdl,I;l, . I;dQ}
where {b1,...,bq, } and {b1,..., BdQ} are bases of Xy and Xs respectively. With respect to
this basis L is clearly block diagonal with at least two blocks. It follows that the Jordan
canonical form of L must consist of at least two blocks, and thus L cannot be of A-Jordan-

type for any A € C. The argument when K = R is similar if somewhat unwieldy. .

This result should not be too surprising when K = C in light of Proposition 2.33.
Considering the preceding proposition, it is not unreasonable to refer to the eigenvalue of
an irreducible linear flow when K = R as well, with the understanding that irreducible
linear flows on R really correspond to the conjugate pair {\, A} for A € C\ R.

Consequently every irreducible linear flow is generated by a single Jordan Block. But
every linear flow is generated by an operator in Jordan canonical form with respect to an
appropriate basis. Since the Jordan blocks of this operator correspond to irreducible com-
ponents of the flow, the uniqueness of the Jordan decomposition forces a form of uniqueness

on irreducible decompositions of the flow.
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Theorem 2.37 FEvery nontrivial linear flow ¢ on X has a decomposition ¢ = @ ¢k
for some m € N where vy, is a nontrivial irreducible component of ¢ for each k < m.
Moreover, if @2:1 Yy, is another such decomposition, then | = m and (reordering {1y }1-,

as necessary) pr and Yy are linearly equivalent for all k < m.

Proof. Proposition 2.34 demonstrates the existence of such a decomposition. For each
k < m, let Xj be the invariant subspace of X associated with ¢, and let Li be the
bounded linear operator that generates . Further, fix a basis By for X for each & < m.
By Proposition 2.36, L, is a single Jordan Block of dimension dj, and eigenvalue A\ for each
k < m. It follows by taking the basis elements of each B in order to form a basis B for X

that L is in Jordan canonical form with respect to that basis.

l
i=1

One may perform the same procedure on {1;} to form a second basis B. It follows
from the uniqueness of the Jordan canonical form that m = [ and, upon reordering {¢}}"
and By, as necessary, the matrices of L, and L, with respect to B and B respectively must
be identical. Now if {b; }?:1 and {b; }?:1 are the elements of the bases B and B respectively
in order, then the change of basis determined by the map b; — Bj for all j < d is clearly a
linear equivalence between ¢ and ¥ when restricted to Xj for all & < m. This completes

the proof. (O

As a consequence of the above theorem, given two irreducible decompositions, the irre-
ducible components of each can be identified with each other in a natural way. This iden-
tification preserves important properties such as the dimension of each component (more
accurately, the dimension of its associated invariant subspace) and in the case of K = C
the eigenvalue of each component. More generally, irreducible decompositions are unique
up to a change of basis, so irreducible decompositions are unique with respect to properties

of operators that are independent of a specific choice of basis.

Having characterized irreducible operators with respect to an appropriate choice of basis,
it is worthwhile to consider the form of irreducible linear flows with respect to that basis.

It follows from Proposition 2.36 that every irreducible linear flow on X with K = C is of
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the form

i 1,42 1 d—2 1 d—1 1
1 d—3 1 d—2
1 d—4 1 d—3
TN _ A tIa(0) _ A 00 1 @t @t
00 O 1 t
0 0 O 0 1

for some A € C with respect to an appropriate basis. A similar (though again less pleasant)

situation arises when K = R, in which case the flow is either of the form described above

tR(A) gt J (V) J(N)

for some A € R or is of the form e x for some A € C\ R where e is similar to

the above matrix, except that each a; ; in the matrix is replaced with the 2 x 2 block
cos(tIN)  sin(tIN)
almj :
—sin(tSA)  cos(tSN)
with the powers and factorials ranging only to % — 1 instead of d — 1. Written in this form,
it is not hard to make some basic statements concerning the behaviour of irreducible linear

flows.

Proposition 2.38 Let ¢ be an irreducible linear flow on X with eigenvalue A € C. If
RA < 0, then X = X;r. Simalarly, if R\ > 0, then X = X_. Finally, if R\ = 0, then
Xt =X, ={0}.

Proof. Fix a basis for X, and assume K = C. As in Proposition 2.36, the K = R case is
similar but more unwieldy due to the sin(t3\) and cos(t3A) terms that appear, and it will
be omitted.

Suppose first that RA < 0, and fix x € X. Then ¢ has the form described above with
respect to an appropriate basis. Now the product e’z can be viewed as a vector consisting
of polynomials with respect to t. It follows that [ee!’z| < Z;.lzlﬂetw‘pj(t)ﬂ where the
p;(t) are for each j < d these polynomials. Clearly lim; e = 0 and it follows that
limy— 1 oo etm‘/\pj (t) =0 for all j < d as the exponential behaviour will dominate the polyno-

mial behaviour regardless of the specific polynomials that occur. Thus lim;_, o ¢(t,2) = 0.
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As x was arbitrary, it follows that X = X; . A similar argument demonstrates the second
statement.

Suppose now that R\ = 0, and further let € X such that lim;_, ;o ¢(¢,2) = 0. In this
case there is no exponential term, and for this limit to hold, it must be the case that p;(t)
is constant zero for all j < d. But this can only be the case if z = 0. Thus X} = {0}. A

similar argument works for X 0" O

This result leads to the construction of a third useful invariant subspace of X to go
along with the stable and unstable subspaces — a subspace generated by the parts of the

flow that are neither stable nor unstable.

Definition 2.39 Let ¢ be a flow on X with irreducible decomposition ;" ¢k. If K is
the subset of {1,...,m} consisting of those indices for which the irreducible component
is neither stable nor unstable, then the central subspace of X, denoted Xg is given by

Xg = @.cx Xk, and the central part of ¢, denoted @Y is given by DBrex k-

It follows from the construction of the central part, along with Theorem 2.37, that
the behaviour of a linear flow is completely determined by its behaviour along its stable,

unstable, and central subspaces.

Theorem 2.40 Let ¢ be a linear flow on X. Then X = X, & Xg & X;r and similarly
p=9p @@t
Proof. This follows directly from the preceding definition and Proposition 2.38 via an irre-

ducible decomposition of ¢. [

There are a couple of additional handy results that will be proved before moving on
to discuss homeomorphic and diffeomorphic classification. To start with, it is desirable to
have a norm estimate for flows. This norm estimate will be constructed based on a norm
estimate for irreducible flows. The following proposition is a necessary step toward this

goal.

Proposition 2.41 Let ¢ be an irreducible linear flow on X with K = C. Then, for any

tA etGJd (0)

fized € € RT, with respect to an appropriate basis o is of the form e x, where \ is

the eigenvalue of .
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Proof. Now L, can be written in the form of a single Jordan block with eigenvalue A with
respect to an appropriate basis by Proposition 2.36. It follows that L, = AI + J;4(0). But

IAHa(0) g = tM ta(0) g, = tAetJa(O) g for all (¢,2) € R x X and the result

then etler = ¢
follows for € = 1.

To allow for arbitrary values of ¢ € R, consider T'(¢) := diag(1,¢,€2,..., e 1) with
respect to the chosen basis. Now T 1(€)L,T(€) = A\ + T 1(€).J4(0)T(¢). But it is easily
seen that T~ 1(e)J4(0)T'(€) = €J4(0). As T(e) is clearly an invertible bounded linear operator
on X, the similarity transformation T7!(¢)L,T(¢) can be viewed as a change of basis, and
it follows that ¢(t,z) is of the form e!*e!*/a(0)z for all (t,x) € R x X with respect to the

new basis. [J

It is often useful to consider an irreducible flow in the above form with e = 1. The € is

only needed for the norm estimate, so that €||.J4(0)|| can be made arbitrarily small.

Lemma 2.42 Let ¢ be an irreducible linear flow on X with K = C where X is the eigenvalue
of ¢, and fix v € R large enough that r > RX. Then ||p(t,z)|| < €"||z|| holds for all t > 0

and € X, and consequently ||p¢|| < e for all t > 0.

Proof. Fix 6 € RT sufficiently small that 7 —§ > R\. Then p(t,z) = etretela(0) g yunder an
appropriate basis with € € R is chosen small enough that €||J;4(0)|| < ¢, and consequently
lo(t 2)ll < e et @jz]| < =DetlaONz| < e=Dejz]| = e™|lz] for all t > 0

and x € X. O

One might hope to extend this result to arbitrary linear flows by considering an irre-
ducible decomposition. Unfortunately there is no guarantee that an arbitrary norm will
behave well when a space is decomposed via an irreducible decomposition of a flow. With
that said, given an arbitrary norm, one can always construct a new norm that does behave

well when a space is decomposed in this fashion.

Proposition 2.43 Let ¢ be a linear flow on X, and fix r € R large enough that r > R
for all X € o(Ly). Then there exists a norm ||-||p on X such that |¢(t,z)||p < €"||z||p for
allt>0and x € X.

Proof. Suppose first that K = C, and let @@}, ¢ be an irreducible decomposition of ¢.

By the preceding lemma ||y (¢, 21)|| < €"||ag|| for all t > 0 and zp € X and k < m. Now
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define the map ||-||p : X — R by setting ||z||p = > jeq|lzk||. It is easily verified that ||-||q is
a norm on X; moreover, ||p(t,z)||p = > ojeqllor(t, x| < Speq ezkll = e™||z||p for all
t>0and z € X.

In the case where K = R, consider the complexification ¢ of . As ¢ and ¢ have the
same eigenvalues, by the above argument there exists a norm ||-||5 on X¢ which satisfies
the property for pc. Define ||-|p to be the restriction of ||-|5 to X. It is easily verified
that |-||p is indeed a norm on X and ||¢(t,z)||p = |l¢c(t. 2)|p < €|z 5 = €|z|p for

allt>0and z € X. O

The other useful result that will be needed in the upcoming discussion of flow classifi-
cations is the invertibility of certain matrices. To start with, recall the matrix T'(¢) from
the proof of Proposition 2.41. This construction appears frequently (with e replaced with
t) in the process of discussing homeomorphic equivalence of nonhyperbolic flows, so it is

worthwhile to give it a formal definition.

Definition 2.44 A t-rescaling, denoted Ty(t), is the bounded linear operator on K9 given
by Ty(t) := diag(1,¢,%,... ,t71).

Note that a Ty(t) is invertible for all non-zero ¢ € R, with T '(t) = Ty(¢t~'). This
construction ends up being useful in many contexts. In particular, consider the matrix
form of an irreducible complex flow ¢ with respect to some appropriate basis so that ¢y is

of the form

1,42 1 d—2 1 d—1
Lt 5t =R @it
1 d—3 1 d—2
01 ¢ @t " @t
1 d—4 1 d—3
oA 00 1 @t @t
0 0 O 1 t
0O 0 O 0 1

for all t € R. Given any z € Z and constant d x d matrix M, one may introduce t into
M with the diagonal ¢ pattern similar to the above matrix — that is, with the element at
position (j1, j2) multiplied by t**727J1 — by considering t*T); L(#)MTy(t). Conversely, given
any d x d matrix M (t) with this diagonal ¢ pattern, one may apply ¢ ~*T,(t)M (t)T; *(t) to
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remove the ¢ pattern, resulting in a constant matrix. As an example of the usefulness of

t-rescalings, the notion is used in the proof of the following proposition.

Proposition 2.45 Let n € N and let | € Ng with | <n. Then the matrix

1 1 1 1
n! (n+1)! (n+2)! (n+1)!
1 1 1 1
(n—1)! n! (n+1)! (n+I1-1)!
— 1 ! 1 1
My, = w21 -1 nl (nt1—2)!
1 1 1 1
L (n=0)!  (n—I+1)!  (n—1+2)! n! J

s tnvertible.

Proof. Instead of working with M,, ; directly, consider t"Tl;l1 (t) My, T141(t) for some nonzero

t € R. It is easily seen that

p(t) C()%tn 4 Clﬁtnﬁ-l + -t (nil)!tn-‘rl
pl(t) _ COﬁtn_l + Cl%tn 4+ 4 Clﬁtn-‘rl—l 0
i p(l) (t) | | <o (nil)!tn_l +c (n—l1+1)!tn_l+1 4+ 4+ Cl%tn |
for any ¢ € C*! such that t"TQ_l1 (t)M,, Ti11(t)c = 0. Now consider the I'*® degree polyno-
mial q(t) := cod; + clﬁt +- 4 clmtl. Now 0 = p(t) = t"q(t), so q(t) =0 as t # 0.

But then 0 = p/(t) = nt"1q(t) + t"¢'(t) = t"¢/(t), so ¢'(t) = 0 as t # 0. Continuing in this
fashion, q(j)(t) = 0 for all j < [. It follows that ¢ is constant zero, and thus ¢ = 0. This
shows that t”Tl;l1 (t)M,, 1 T14+1(t) is invertible for all nonzero t € R. But for all nonzero t € R

clearly t”Tllll (t) and Tj41(t) are both invertible. Therefore M,,; is also invertible. [I.

It is easily seen that these factorial-type matrices arise as submatrices of the matrix

form of an irreducible flow described on the previous page; see also Section 4.2.
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3 Classification Theorems

This chapter builds on the ideas and results of the previous chapter to provide characteriza-
tions for several notions of flow equivalence. So far only linear equivalence has been consid-
ered in detail (Theorem 2.17) — diffeomorphic and homeomorphic equivalence have yet to
be considered. It turns out that the stronger notions of flow equivalence display a substan-
tial degree of rigidity; diffeomorphic equivalence in fact coincides with linear equivalence.
The situation is not the same for homeomorphic equivalence. Characterizing homeomorphic
equivalence is substantially more challenging, so that its discussion is split into two parts.
A characterization for homeomorphic equivalence of hyperbolic flows is first provided, prior

to the discussion of the general case.

3.1 Diffeomorphic Equivalence

Proposition 2.9 demonstrates that linear (that is, finest) equivalence implies diffeomorphic
equivalence which in turn implies homeomorphic (that is, coarsest) equivalence. This simply
reflects the fact that every linear map is its own best linear approximation and is thus dif-
ferentiable, and every differentiable map is necessarily continuous; that is, £(X) C D(X) C
C(X), where D(X) and C(X) are the spaces of differentiable and continuous maps on X
respectively. These inclusions are in general strict, and it is tempting to extend this addi-
tional fact to the chain of equivalences — that is, one might assume that linear equivalence
is strictly finer than diffeomorphic equivalence and so on. It turns out that this is not the
case. The following lemma demonstrates that diffeomorphic equivalence is at least as fine as
linear equivalence by generating a linear equivalence from the derivative of a diffeomorphic

equivalence.

Lemma 3.1 Let ¢ and ¢ be linear flows on X. If p and ¥ are diffeomorphically equivalent,

then they are linearly equivalent.

Proof. Let h be a diffeomorphic equivalence between ¢ and v, and let H be the derivative
of h at 0, so that H := Dgh. It follows immediately that H € £(X). As a consequence
of the chain rule DohDoh™! = Dj-1q)hDoh™" = Do(h o h™') = Dol = I and similarly
Doh™'Doh = I. Thus H is invertible.
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Now h o etle = etlv o h for all t € R since h is an equivalence. Again as a consequence
of the chain rule Hettv = Dgh o el = Dgetlv o h = etlv H for all t € R. It follows that
etHLeH™" — Hetle =1 = ¢tLv for all t € R. But then Ly = HL,H™! by Proposition 2.12,

so L is similar to Ly. Thus ¢ and 1 are linearly equivalent by Theorem 2.17. [J

This lemma in combination with Proposition 2.9 demonstrates that diffeomorphic equiv-
alence and linear equivalence are in fact identical, so diffeomorphic equivalence may be

characterized in the same fashion as linear equivalence.

Theorem 3.2 Let ¢ and v be linear flows on X. The following are equivalent:
(i) ¢ are v are diffeomorphically equivalent;
(ii) ¢ and 1 are linearly equivalent;

(i) Ly, and Ly are similar.

Proof. (i) = (ii) follows immediately from the previous lemma. (ii) = (i) follows from

Proposition 2.9. Finally, (ii) <= (iii) is just Theorem 2.17. [J

When it comes to equivalences stronger than homeomorphic, diffeomorphic equivalence
is as fine as it gets; homeomorphic equivalence classes may break into several diffeomor-
phic equivalence classes, but smoother equivalence does nothing to break up those classes
further. The above theorem essentially reduces the problem of linearly, diffeomorphically,
and homeomorphically classifying flows to the linear and homeomorphic cases. Since linear
equivalence has already been characterized, all that remains is to characterize homeomor-
phic equivalence.

Before examining homeomorphic equivalence in detail, it is worthwhile to point out that
diffeomorphic equivalence is in fact strictly finer than homeomorphic equivalence. This
is true even in the case of hyperbolic linear flows, and moreover even when the space
is one-dimensional. It is not hard to construct an example of two linear flows that are

homeomorphically but not diffeomorphically equivalent.

Example 3.3 Consider flows e’z and e*z on R. The induced linear operators in this case

have eigenvalues 1 and 3 respectively, so the flows cannot be diffeomorphically equivalent.
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On the other hand, the map h : R — R given by h(x) = 23 is clearly a homeomorphism
with

h(elz) = 323 = e3th(x)

for all x € R and ¢t € R. It follows that the two flows are homeomorphically equivalent. ©

3.2 Homeomorphic Equivalence of Hyperbolic Flows

Homeomorphic equivalence has so far only been discussed briefly, namely in Proposition
2.24, where it was demonstrated that a homeomorphic equivalence between two flows pre-
serves their respective stable and unstable subspaces. These subspaces were discussed in
more detail in the previous chapter. This section will build on Proposition 2.24 in con-
junction with various properties of the stable and unstable subspaces toward developing a
characterization of homeomorphic equivalence. Note that this section is based heavily on
Chapter 13 of [1].

In particular recall Proposition 2.38 — irreducible components of a linear flow ¢ are
either stable, unstable, or central if their eigenvalue X satisfies R\ < 0, RA >0, or RA =0
respectively. Consequently, ¢ and ¢~ consist of all the components of ¢ for which the
eigenvalue has a negative or positive real part respectively. It follows that dim X, 1s just
the sum of the sizes of the stable component flows, and similarly for dim X;‘ . In this
fashion Propositions 2.24 and 2.38 can be combined to produce a partial characterization

of homeomorphic equivalence.

Proposition 3.4 Let ¢ and v be two linear flows on X. If ¢ and 1 are homeomorphically
equivalent, then the following hold:

(i) dim X} :dimXJ and dim X, = dim X ;

(ii) Ly and Ly have the same number of eigenvalues (counting algebraic multiplicities)
with negative real part and the same number of eigenvalues (counting algebraic multi-

plicities) with positive real part.

Proof. Since homeomorphisms preserve dimension [4], it follows from Proposition 2.24 that

dimX} = dimh(X}) = dimX 1; and similarly that dimX_ = dimX.
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For (ii), consider first ¢T. It follows from Proposition 2.38 that the irreducible compo-
nents of ¢ in ot are exactly the components for which the real part of their eigenvalue is
negative. Given a irreducible decomposition, let K C {1,...,m} be the indexes of these
components, so @1 = Dk ©r- As a consequence of Proposition 2.36 the ¢y, correspond to
the Jordan blocks of L, of size dj, for which the eigenvalue has negative real part. It follows
that the number of eigenvalues with negative real part (counting algebraic multiplicities) is
the dimension of ¢™; that is, the number of eigenvalues with negative real part (counting
algebraic multiplicities) is dim X :,r . A similar statement holds for the number of eigenvalues
of negative real part for Ly, and thus it follows from (i) that L, and L, must have the
same number of eigenvalues (counting algebraic multiplicities) with negative real part. A

similar argument for eigenvalues with positive real part completes the proof of (ii). O

This may not seem like a strong foundation from which to construct a characteriza-
tion of homeomorphic equivalence — after all, knowledge of the dimensions of a couple
of subspaces can hardly be considered a substantial insight. Indeed, it is not particularly
challenging to construct two linear flows that are not homeomorphically equivalent despite

having appropriately-sized stable and unstable subspaces.

Example 3.5 Fix a basis for C3, consider the flows generated by

1 0 0 1 0 0
L=|0 -1 0|landM=|0 -1 0 |,
0 0 ¢ 0 0 2

and fix the point (¢t,7) = (,(0,0,1)) € R x C3. Further, let A be any homeomorphism of
C3. On one hand h(e!™z) = h((0,0,e*™)) = h((0,0,1)) = h(z), but on the other hand
e!fh(x) = h(x) only if h(x) = 0. Now consider y = (0,0,2). Since h is invertible h(y) # 0,
and thus e*“h(y) # h(y). Unfortunately, as in the case of x, y satisfies h(e™y) = h(y). It
follows that A is not an equivalence, let alone a homeomorphic equivalence. Since h was
an arbitrary homeomorphism, the flows generated by L and M are not homeomorphically

equivalent, despite each having one-dimensional stable and unstable subspaces. ¢

Beyond showing that the converse of Proposition 3.4 does not hold in general, the

preceding example serves to illustrate how periodic portions of a flow can make even basic
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equivalence impossible — note that the continuity of A was never required in the previous
example. The periodic aspects of two flows must line up in a very specific way to even allow
for the possibility of homeomorphic equivalence. This will be discussed in more detail in

future sections.

With that said, the flows in the preceeding example are clearly not hyperbolic. Some-
what surprisingly, the converse of Proposition 3.4 actually holds for hyperbolic linear flows;
in other words, identically-sized stable and unstable subspaces imply homeomorphic equiv-
alence in this case. As such, homeomorphic equivalence of hyperbolic linear flows can be
completely characterized based solely on the dimensions of stable and unstable subspaces.
Proving this fact rigorously is non-trivial, but the idea behind the proof is relatively straight-

forward.

It turns out that the nontrivial paths of irreducible hyperbolic linear flows are all spirals
about the origin; there is always an exponential component that ends up dominating the
behaviour of the flow. This exponential component arises from the real part of the eigen-
value of the induced operator (since the real part is nonzero) and the sign of the real part
determines whether the spirals are directed toward or away from the origin. More gener-
ally, the nontrivial paths of a stable or unstable flow are also (somewhat more complicated)

spirals toward or away from the origin.

The idea then is that one can homeomorphically straighten the nontrivial paths of the
stable (respectively unstable) part of a flow and then unstraighten those paths into the
nontrivial paths of the stable (respectively unstable) part of another flow, assuming the two
parts are the same size. The process of straightening paths consists of demonstrating that
every nontrivial path intersects a unit sphere at exactly one point. Assuming this is indeed
possible, one may take any point in X \ {0} to that sphere while storing the time ¢ required
to get there. One then may proceed by following for time ¢ the path of the flow generated
by either —I or I (whose paths consist of straight lines to or from the origin respectively)

as appropriate from the sphere.

Recall Proposition 2.43, which states that for every linear flow ¢ and r € R satisfying
r > R for all A € o(Ly) there exists a norm ||-||p such that ||p(t,z)||p < e"||z||p for all

t > 0 and x € X. One demonstrates that every nontrivial path of a stable or unstable linear
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flow — that is, a flow with #A < 0 or RA > 0 for all A € o(L,,) respectively — intersects a

unit sphere at exactly one point using this norm and its associated unit sphere.

Lemma 3.6 Let ¢ be a stable or unstable linear flow on X. There exists a norm ||-|p on
X so that the map @ : R x Sp — X \ {0} given by ¢(t,x) = p(t,z) for all (t,x) € R x Sp

1$ a homeomorphism.

Proof. Assume first that ¢ is stable. Then RX < 0 for all A € (L), and fix r € R" such
that A < —r for all A € o(L,). Proposition 2.43 provides a norm ||-||p on X with the
property that ||p(t,z)||p < e "||z||p for all t > 0 and z € X, and this norm is in fact the
desired norm, although that remains to be proved. Now it follows that |etX#||p < e~ for
all t > 0. But then ||z||p = |[etfeeex|p < e |e tex|p for all t > 0 and = € X,
so e"||lz||p < |le"ex|p for all t > 0 and = € X. Replacing ¢ with —¢ in the preceding
equation results in the reverse inequality ||o(¢,z)||p > e "||z||p for all t < 0 and z € X.

To summarize, the following inequalities hold:
(i) [letrex||p < e |z||p for all t > 0 and z € X and
(ii) |lettez|p > e "||x||p for all t < 0 and x € X.

Fix z € X \ {0}. As a consequence of (i), one may choose a t € R sufficiently large
that ||e'*¢x||p < 1. Similarly, one may choose a t € R sufficiently small that ||e!lez|p > 1
as a consequence of (ii). It follows from the continuity of ¢ that ||et’¢z||p = 1 for some
t € R. Since x was arbitrary, every non-trivial path of ¢ intersects Sp at at least one point.
Now fix € Sp. The above two inequalities imply that |e!f¢z|p < 1 for all ¢ > 0 and
letlex||p > 1 for t < 0. Since x was again arbitrary, it follows that every non-trivial path
of ¢ intersects Sp at at most one point, so |e!rex||p = 1 for exactly one t € R for every
xz € X\ {0}

Again, fix x € X \ {0}, and fix t € R such that |e*vz|p = 1. It follows that
o(—t,p(t,x)) = o(—t,p(t,x)) = x for (—t,p(t,z)) € R x Sp. Consequently ¢ is sur-
jective, since x was arbitrary. On the other hand, consider points (s,x),(t,y) € R x Sp
such that @(s, ) = @(t,y). Then [le=**(s,2)|p = |lo(=s,9(s,2))llp = [[#]lp = 1 and

lee@(s,2)llp = e 3(t.9)llp = lle(—t.@(t.u))p = lylp = 1. and, by the above,
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it must be that s = ¢t. It follows that © = @(—s,¢(s,z)) = @(—t,¢(t,y)) = y since
o(s,z) = @(s,z) = @(t,y) = p(t,y). Thus @ is injective, as (s,z) and (¢,y) were arbitrary.

1'is continuous, as the continuity of ¢ follows immediately

It remains to show that ¢~
from the continuity of ¢. Consider a sequence {zp}neny € X \ {0} converging to some
x € X \{0}. Necessarily there exists a sequence {(t,, yn) tnen € R x Sp with z, = @(tn, yn)
for all n € N.

Now consider a subsequence {(tx,yr)} of {(tn,¥yn)}nen. It follows from (i) and (ii)
that ||zx|p = ||e*Feyrllp < e " |lyxllp = e " whenever t; > 0 and similarly it follows

leyllp > e " |lykllp = e " whenever t; < 0, where {x;} is the

that [|zgllp = Jle
induced subsequence of {z, },en. As {zy} is a subsequence of {z, },en it also converges to
x € X \ {0}, and thus for sufficiently large k it must be that ||zx||p is greater than, say,
2llzllp. But since ||zg||p < e " for all ¢, > 0 there must exist an M € RT such that
tr < M for sufficiently large k. Similarly, it must be that ||z ||p is less than, say, 2||z|p for
sufficiently large k, and since ||zg||p > e " for all #; < 0 there must also exist an m € R~
such that tx > m for sufficiently large k. Consequently {¢;} is bounded.

Since Sp is compact, and since {tx} is bounded, there exists a further subsequence
{(tj,y;)} of {(tx,yr)} that is convergent to some (¢,y) € R x Sp. But the continuity of ¢
forces (t,y) = ¢~ !(x). Since the subsequence {(tx,yx)} was arbitrary, every subsequence
of {(tn,¥n)}nen = {@ 1 (2n)}nen has a further subsequence converging to $—!(z), and
consequently {$~!(z,)}nen converges to p~(z). As {x,}nen was itself arbitrary, ¢! is
continuous. This completes the proof for the stable case.

Suppose now that ¢ is unstable. Under an appropriate choice of » € R™ Proposition 2.43
can be applied to the stable flow e!(~L¢)z. Tt follows as above that ||e!~Le)z||p < e ||| p
for allt > 0 and € X, and similarly ||/~ L) x| p > e "||z|p for all t < 0 and z € X. But
then |le!Fex||p < e™|z||p for all t < 0 and = € X, and similarly ||e'*¢z|p > ||z p for all

t > 0 and x € X. These two inequalities can be applied as in the stable case to complete

the proof for the unstable case. [

Applying the inverse of ¢ as defined in the preceding lemma amounts to compressing
the nontrivial paths of a stable or unstable flow down to the points of an appropriate unit

sphere. It is tempting to now simply apply the preceding lemma to the flows generated by
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—1I and [ and then compose the two resulting homeomorphisms, but this approach has a
potential flaw: the unit sphere used for the first homeomorphism may not be the same as the
unit sphere used for the second one. Ultimately, since every unit sphere is homeomorphic
(as a consequence of the fact that all norms are equivalent for finite dimensional normed
spaces) this does not pose a significant problem. In fact the problem can be completely
circumvented, as it is easily seen that the flows generated by —I and [ intersect any unit
+tI

sphere at exactly one point. This is due to the fact that for any norm ||e** x| = e*?||z|| for

all (t,z) e R x X.

Lemma 3.7 For any norm ||-|| on X the maps hy, h— : R xS — X \ {0} given by

hy(t,z) =e Yz and h_(t,z) = e x respectively for all (t,z) € RxS are homeomorphisms.

Proof. 1t is easily verified that hy and h_ are clearly bijections where h;l and h~! are
given by hi'(z) = (—In||z|, el 2y and =1 (2) = (In||z||, e~ ™11 2) respectively for all
z € X \ {0}. Moreover, h;' and h=" are clearly both continuous, and A and h_ are both

tl

continuous as a restriction of the flows etz and e/z. O

At this point, since Lemma 3.7 works for any unit sphere, Lemmas 3.6 and 3.7 can be
combined to produce a homeomorphism of the nontrivial paths of a stable or unstable flow
into the nontrivial paths of either of the flows generated by —I and I. This homeomorphism
can be extended to the entire space by simply fixing the origin, although the extension may
fail to be continuous at that point. It turns out that continuity at the origin depends on
the relative directions of the two flows. The extended map will fail to be continuous at
the origin if the nontrivial paths of the two flows are in opposite directions — that is, one
flow has nontrivial paths directed toward the origin while the nontrivial paths of the other
flow are directed away from the origin. For example, the extension of the homeomorphism
between a stable flow and the flow generated by I will fail to be bicontinuous at the origin.
On the other hand, the extended map will be bicontinuous at the origin if the nontrivial
paths of the two flows are in the same direction; better yet, the extended map in this case

turns out to be a homeomorphic equivalence.

Proposition 3.8 Every stable or unstable flow on X is homeomorphically equivalent to the

flow generated by —I or I respectively.
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Proof. Suppose that ¢ is a stable flow on X. Further let ||-||p be the norm on X guaranteed
to exists by Lemma 3.6, and consider the map h : X — X given by h(0) = 0 and h(x) = (hyo
@Y (z) for allz € X \{0}, where % and h are the homeomorphisms guaranteed by Lemmas
3.6 and 3.7 respectively. It follows from these lemmas that h|x\ o} is a homeomorphism,
and it is further clear that h is a bijection. It remains to be shown that A is bicontinuous
at 0 and is an equivalence.

Fix € € R*, and consider that h(z) = e 7@y (z) for all z € X \ {0}, where 7: X — R
and x : X — Sp are the component functions of ' : X — R x Sp. Now |e " z|p = e
for all t € R and = € Sp. As such, there exists a ¢, € Rt such that e 2 € B.(0)
for all t € (t.,+o0) and x € Sp. Consequently, if it is possible to choose § € RT such
that ||z||p € Bs(0) \ {0} implies 7(z) € (te, +00), then ||z||p € Bs(0) \ {0} further forces
h(z) = e "@1x(z) € B.(0), as x(x) € Sp for all z € X \ {0}.

It turns out that it is always possible to choose such a 6. Fix § = |le7*L¢| ;. Then
le~tlex||p < 1 for all z € Bgs(0), and, applying Proposition 2.43 with an appropriate
choice of r € R*, it follows that ||el‘"t)lez|p < |ethe|plle ttez|p < e < 1 for all
t > 0 and x € Bs(0). The strict inequality in the above equation means that in particular
et e g||p # 1 for all t € RY and x € Bs(0). Since |le"7@Lez||p = 1 from the definition
of 7, it must be that —7(x) # t — tc for all t > 0 and = € By(0) \ {0}. It follows that
T(z) € (te,+00) for all z € Bs(0) \ {0}, and by the above argument, and since € was
arbitrary, h is continuous. Continuity of h~! is similar.

To see that h(p(t,z)) = e " h(z), consider that this is trivially true for all £ € R when

x = 0. Using 7 and x as defined above

h(p(t,@)) = h(p(t, e™@Eex(2)))
= By (x))

_ (@I

for all (t,z) € R x X \ {0}. Thus h is a homeomorphic equivalence. The unstable case

proceeds similarly with some minor adjustments, as in (the proof of) Lemma 3.6. O
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Proposition 3.8, along with Lemmas 3.6 and 3.7, are constructive — the desired maps
are built explicitly as part of the proofs. As such, it is tempting to attempt to construct the
homeomorphic equivalence of Proposition 3.8 directly given a specific stable or unstable flow.
A problem arises here in that the equivalence constructed in Proposition 3.8 is based on the
inverse of the homeomorphism constructed in Lemma 3.6, rather than the homeomorphism
directly, and providing an explicit representation of that inverse can be non-trivial. The

following example demonstrates this, and it also shows how this issue can be overcome.

Example 3.9 Consider the stable flow ¢ generated by

on C? with the standard basis and norm. It is unnecessary to work with a specially con-
structed norm in this case (as the flow is irreducible, so the required norm estimate follows
directly from Lemma 2.42) and by Lemma 3.6 the map ¢ : R x S — X \ {0} given by
@(t,x) = ¢(t,z) is a homeomorphism. The inverse then is given by ¢! = (7(z), x(z)) for
some 7: X \ {0} = Rand x: X\ {0} = S. x is given by x(z) = e "@Lez but what is 77

One could attempt to solve for 7 using the norm, as
e—T(x)wa _ eQT(x)e—T(x)J(O)x

1 —7(x T
_ 627'(:1:) T( ) 1

0 1 xT9

=¥ @) (z) — 7(x) 22, 22)

so e¥@)||(zy — 7(2)x2, 21)||> = |le”"@Lex|? = 1. This works out to be the product of a

polynomial and an exponential and cannot be easily solved algebraically. Instead of working

’

from ¢ to e "z, consider working from e *z to ¢ — that is, consider ! rather than h.

'z, and in particular 7(z) = —In|z| in

In this case the inverse map is coming from e~
this case, as ||e”™ll/2|| = 1 for all nonzero z € X. Thus h~! is given by h(0) = 0 and

h=(z) = e~ lelile o= nllzlily, — g=Inllelo—Wllzllle 5 for all nonzero z € X. o

At this point it is possible to combine Propositions 3.4 and 3.8 to fully characterize

homeomorphic equivalence of hyperbolic linear flows.
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Theorem 3.10 Let ¢ and ¢ be hyperbolic linear flows on X. The following are equivalent:
(i) ¢ and ¥ are homeomorphically equivalent;
(i) dim X} = dim X[ ;

(iii) dim X = dim X .

Proof. (i) = (ii) and (i) = (iii) follow from Proposition 3.4. (ii) <= (iii) is a
simple consequence of the fact that X‘j X, =X = X:[ &) XJ as ¢ and ¥ are both
hyperbolic. To see that both (i) and (iii) imply (i), suppose d; = dim X} = dim X$ and
dp = dim X, = dim X v Now ¢ and 9T are both homeomorphically equivalent to the
flow generated by —I;, by Proposition 3.8, so by transitivity there exists a homeomorphic
equivalence h™ between ot and ™. Similarly there exists a homeomorphic equivalence h™
between ¢~ and ¥~. As ¢ and v are both hyperbolic, ¢ = T ® ¢~ and ©p = YT B Y™,

and it follows from Theorem 2.29 that ¢ and ¢ are homeomorphically equivalent. [J

Theorom 3.10 can easily be modified to characterize homeomorphic equivalence of hy-
perbolic linear flows based on properties of the induced operators rather than the unstable

and stable subspaces.

Corollary 3.11 Two hyperbolic linear flows ¢ and ¥ on X are homeomorphically equivalent
if and only if the number of eigenvalues (counting algebraic multiplicity) of L, with negative
(respectively positive) real part is the same as the number of eigenvalues (counting algebraic

multiplicity) of Ly with negative (respectively positive) real part.

Proof. This follows immediately from Theorem 3.10 and the proof of Proposition 3.4. J

3.3 Homeomorphic Equivalence of General Linear Flows

With homeomorphic equivalence fully characterized for hyperbolic linear flows, it makes
sense to step back and consider homeomorphic equivalence of general linear flows. Many
results of the previous section do not require a hyperbolic flow, and thus still apply in

the general case. For example, Proposition 3.4 guarantees that the stable subspaces of
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two homeomorphically equivalent linear flows have the same dimension, and this is also
true for the unstable subspaces. Conversely, Proposition 3.8 guarantees that if the stable
subspaces of two linear flows have the same dimension, then the stable parts of the two flows
are homeomorphically equivalent, and the situation is similar for the unstable subspaces.
This is enough to completely characterize homeomorphic equivalence between flows that are
hyperbolic, as such flows are completely determined by their stable and unstable subspaces.

The problem that arises in the case of general linear flows is their central subspaces. It
is an immediate consequence of Proposition 3.4 that the central subspaces of two homeo-
morphically equivalent linear flows must have the same dimension. Unlike the stable and
unstable subspaces, the converse does not hold in general; that is, even if the central sub-
spaces of two linear flows have the same dimension, the central parts of the two flows need
not be homeomorphically equivalent. Recall Example 3.5, for instance. In that example it

was shown that the linear flows on C? generated by

1 0 0 1 0 0
L=10 -1 0|andM=1]0 -1 0
0 0 0 0 2

were not homeomorphically equivalent. But the stable and unstable parts of these flows are
clearly homeomorphically equivalent, so it must be that the central parts are not. But it is
also clear that the central subspaces of the two flows have the same dimension.

As such, Theorem 3.10 cannot be trivially extended to general linear flows. With that
said, it turns out that there is a substantial degree of rigidity when it comes to the central
parts of two homeomorphically equivalent linear flows. It will be proved in the next chapter
that, given any linear flow ¢ on X with K = C, there exists a family {BCp () }nen, ter+
of subspaces of X such that for any homeomorphically equivalent linear flow ¥ on X with

equivalence h the following two properties hold:
(i) h(BCpni(p)) = BCy () for all n € Ny and t € RT and

(ii) the dimension of BC,, ¢(¢) is the number of irreducible components of ¢ of dimension

greater than n with eigenvalue either 0 or @ for some z € Z, and similarly for

BCpt(¢).
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Specifically, this is Theorem 4.12. Now since homeomorphisms preserve dimension [4], (i)
guarantees that the number of irreducible components of 1 of size greater than n with
eigenvalue either 0 or @ for some nonzero z € Z is the same as that of p. Note that
both 0 and @ for all z € Z and t € R* lie on iR, so only irreducible components of
the central part of a flow are ever counted by elements of this family. Conversely, every
irreducible component of the central part of a flow is counted by some element of this family,
as any A € iR\ {0} can be written as +2T by setting ¢ = |2T”| In fact, if the dimensions

of the elements of {BC,, :(¢) }nen, ter+ are known, then it is possible to almost completely

determine the irreducible decomposition of ¢ by taking advantage of property (ii).

The general idea behind this is straightforward, though the details can become finicky.
To start with, since ¢ is finite-dimensional, one can always select a t so that for all irreducible

2278 o1 any nonzero z € Z. In this way only

components the eigenvalue does not satisfy A = =5

irreducible components with eigenvalue 0 will be counted by BC,, +(¢) for this choice of ¢.
Now BC,, +(¢) is trivial for all n > d, as it is impossible for an irreducible component to have
dimension greater than that of the total space. As such dimBCy_;(¢) is not simply the
number of irreducible components of dimension greater than d — 1; rather, dim BCy_; +(¢)
is the number of irreducible components of dimension exactly d with eigenvalue 0. But
then dim BCy_2+(¢) —dim BCy_1 +(¢) is the number of irreducible components of dimension
exactly d—1 with eigenvalue 0, dim BCy_3 ;(¢) —dim BC4_2 ;(¢) is the number of irreducible
components of dimension exactly d — 2 with eigenvalue 0, and so on. Continuing in this
fashion one can determine the number of irreducible components of every dimension with
eigenvalue 0 until reaching dimBCp¢(¢), the number of irreducible components of any

dimension with eigenvalue 0.

At this point one can select a different ¢ — a t for which an irreducible component with
a nonzero eigenvalue is counted by BC,, (), at least for sufficiently small n € Ny. Taking
care to subtract the number of irreducible components of each dimension with eigenvalue 0
from the new totals (as these components appear no matter the choice of t) one can then
determine the number of irreducible components of each dimension with this new eigenvalue.
This procedure is repeated for various values of ¢ until the dimensions of all the irreducible

components of ¢¥ are known. Some care is needed when it comes to choosing each new value
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of t, as multiple nonzero eigenvalues can line up with the same t. An example illustrates

this technique in action.

Example 3.12 Suppose ¢ is a linear flow on X with K = C. As X is finite-dimensional, ¢
has a finite collection of eigenvalues, say {0, —i,1, 2i, 31, —4i, 5i,6i}. As irreducible compo-
nents of ¢ with eigenvalue 0 will always contribute nontrivially to BC,, () for all ¢t € R
and small n € Ny, the first goal is to choose a ty € RT so that only the irreducible com-
ponents with eigenvalue 0 can possibly contribute to BC,, 4, (¢) for any n € Nyp. Consider

to = 27” If g is an irreducible component of ¢ with eigenvalue Ag, then ¢ can contribute

nontrivially to BC,, 4, (¢) only if either Ay =0 or A\ = % = 2z7i for some nonzero z € Z.
The latter case is clearly impossible here, as otherwise |A\x| = |72| > 7.

Now ¢ must have at least one irreducible component with eigenvalue 0, so it must
be the case that dimBC,, ;,(¢) > 0 for some small n € Ny, say dimBCyy,(¢) = 1 and
dimBC, ¢, (¢) = 0 for all n > 1. In this case ¢ has exactly one irreducible component of
dimension one with eigenvalue 0 and no other irreducible components of any other dimension
with eigenvalue 0. Now fix t; = 2%. Clearly the irreducible component with eigenvalue 0
contributes to BC,, ;, (¢) (at least when n = 0) but what other eigenvalues potentially

contribute? In this case the irreducible components with eigenvalue 6i also contribute for

sufficiently small n € Ny as 6 = % = 2771” No other irreducible components ¢, can
contribute, for otherwise |\;x| = [6z] > 6. Again, ¢ must have at least one irreducible

component with eigenvalue 64, so it must be the case that dim BC,, 4, (¢) > 0 for some small
n € Ny, say dimBCypy,(¢) = 2 and dimBC,, 4 (¢) = 0 for all n > 1. It follows in this
case that ¢ also has exactly one irreducible component of dimension one with eigenvalue 6i
(recall that the 2 is counting the irreducible component with eigenvalue 0 as well) and no
other irreducible components of any other dimension with eigenvalue 6.

One continues in this fashion by setting to = %’r Similar to above, only the irreducible
components with eigenvalue either 0 or with norm greater than or equal to five can poten-
tially contribute to BC,, 1, (¢). Now by construction irreducible components with eigenvalue
5-2mi _ 2mi

= . In this case irreducible

5i¢ definitely contribute, at least for small n, as 5i = >3 T

components with eigenvalue 67 cannot possibly contribute as that would imply % = z for

some nonzero z € Z. Now fix t3 = %TW' Repeating the previous arguments, one finds that
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only the irreducible component with eigenvalue 0 and any irreducible components with

eigenvalue —4i can possibly contribute to BC,, 4, (¢).

Suppose BCy, 1, (¢) and BC,, ¢, () are such that ¢ has exactly one irreducible component
of dimension 1 with eigenvalues 5i and —4i respectively and no irreducible components of
any other dimension with either eigenvalue. Now fix ¢4 = 5. Following the preceding
argument, the irreducible component with eigenvalue 0 and any irreducible component
with eigenvalue 3i can possibly contribute to BC,, 1, (¢). No other irreducible components

can possibly contribute, with the exception of irreducible components with eigenvalue 67,

as 6¢ = 2'32'7%7” = %47” Now suppose dim BCy ¢, (¢) = 3 and dim BC,, 4, (¢) = 0 for all n > 1.
Since it is already known that ¢ has exactly one irreducible component of dimension one
with eigenvalue (0 and exactly one irreducible component of dimension one with eigenvalue
64, it must be the case that ¢ also has exactly one irreducible component of dimension

one with eigenvalue 3¢ and no irreducible components of any other dimension with that

eigenvalue.

Now fix t5 = 27” It is easily verified in the same fashion as above that the irreducible
components of ¢ that contribute to BCy, ¢, (¢) are exactly those components with eigenvalues
0, 6i, —4i, and 2i. Suppose in this case that dimBCyy,(¢) = 6, dimBCj4,(¢) = 3,
dimBCy () = 2, dimBCs4,(¢) = 2, and dimBC,, ;;(¢) = 0 for all n > 4. Since in
particular dim BCy 4, (¢) = 0, the are no irreducible components of ¢ with dimension greater
than 4 and eigenvalue either 0, 6, —4i, or 2i. Since dim BCs 4, (¢) = 2, it follows that there
are exactly two irreducible components of ¢ of dimension 4 with eigenvalue either 0, 6¢, —44,
or 2i. But it is already known that the only irreducible components of ¢ with eigenvalue
either 0, 67, or —4¢ have dimension 1. Consequently, ¢ must have exactly two irreducible
components of dimension 4 with eigenvalue 2i. Now consider that dimBCs 4, () = 2, so
© has two irreducible components of dimension greater than 3 with eigenvalue either 0, 67,
—4i, or 2i. As it is already known that ¢ has two irreducible components of dimension
4 with eigenvalue 2¢, it must be that there are no irreducible components of dimension
3 with eigenvalue 2i (or 0, 6, or —4i). Moving on to n = 1, as the only irreducible
components that contribute to BCy 4, () are the two irreducible components of dimension

4 with eigenvalue 2¢, and as it is already known that there are no irreducible components
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of dimension 2 with eigenvalue either 0, 67, or —41, it must be the case that there is exactly
one irreducible component of dimension 2 with eigenvalue 2i. At this point there are three
known irreducible components with eigenvalue 2i and exactly one irreducible component
for eigenvalues 0, 67 , and —4i respectively. Since dim BCy4,(¢) = 6, it follows that there
are no irreducible components of ¢ of dimension 1 with eigenvalue 2i.

Finally, fix t¢ = 27. In this case every eigenvalue of ¢ contributes to BCy, ¢;(¢) for small
n € Np. But this is not a problem since the irreducible components of every dimension
and all of the eigenvalues except for ¢ and —i are already known at this point. Suppose
that dimBCy 4, (¢) = 10, dimBCj 4, (¢) = 4, dimBCy 4, (¢) = 2, dimBCs4,(¢) = 2, and
dimBCy, 45 (¢) = 0 for all n > 4. As per the preceding discussion, ¢ must have exactly
one irreducible component of dimension 2 with eigenvalue either ¢ or —¢, and exactly three
irreducible components of dimension 1 with eigenvalue either ¢ or —i. Unfortunately, one
cannot determine which of these irreducible components have eigenvalue ¢ specifically. Still,
it has been shown in this example how knowing dim BC,, ;(¢) for all n € Ny and ¢t € R is
sufficient to completely determine the number of irreducible components of the central part

or ¢ along with their respective dimensions and eigenvalues up to complex conjugation. ¢

The arguments of the preceding example can easily be reapplied to other flows as long
as K = C, as the existence of {BCy+(¢)}nen, ter+ Will only be proved for complex ¢ in

Chapter 4.

Lemma 3.13 Let ¢ be a flow on X with K = C, let @}, ¢r be the irreducible decompo-
sition of ¢°, and set b,y = dimBCy,+(¢) for all n € Ny and t € RT. Then m, dy, and A\
(up to complex conjugation) are completely determined by the family {bn}nen, er+ for all

k < m, where di and A\ are the dimension and eigenvalue respectively of py.

Proof. As X is finite-dimensional, o(L,) is finite, so o(L,) N iR is finite. Discard the
eigenvalue 0 (if it appears) along with exactly one eigenvalue for each conjugate pair of
eigenvalues in o(L,) N iR (if such pairs appear) and arrange the remaining eigenvalues
descending in norm, thus yielding {S‘j}ézl' In this fashion \; is (one of) the nonzero

eigenvalue(s) of L, with maximum norm while A is (one of) the nonzero eigenvalue(s) of

2

27
|5\1\+1

A1

L, with minimum norm. From this construct {¢; }3:0 by setting to = and t; =
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for all 1 < 5 <. If it is possible to completely determine m, di, and Ag for all & < m from

the various b, ¢ with n € Ny and ¢ € {t; }é':o taken in order, then the proposition follows.

With {tj}é':o constructed as above, b, 4, is the number of irreducible components of
©Y (note that only A € iR can possibly satisfy A = @ for some z € Z no matter the
choice of t € RT) of dimension greater than n with eigenvalue 0, and bn,t; 1s the number
of irreducible components of ¢? of dimension greater than n with eigenvalue A in the set

{0,4X1,..., XN N {z|\j]i - 2 € Z} for 1 < j < 1. First suppose that A = 227 for some

to

nonzero z € 7 implies that A\ = z(\jq\ + 1)i for some nonzero z € Z by construction. It
follows that |[A| = n(|]A1| + 1) for some n € N, so it must be that [A| > |A\|+ 1. But
by construction [\;| < |\i| for all j < I. Thus only irreducible components of dimension
greater than n with eigenvalue 0 are counted by by 4,. Now suppose A = %J’” for some
nonzero z € Z and 1 < j <[. Then by construction A = z\;\J\z for some nonzero z € Z. As
0= 0|5\j|, this is sufficient to demonstrate the right-hand side of the intersection. To get
the left-hand side, take the norm of the previous equation to get that |A| = n|);| for some

n €N, so [A| > |\j|. This inequality only holds for A = Ay with J < j by construction.

In particular this means that b, is the number of irreducible components of oY of
dimension greater than n with eigenvalue in some subset of {0,:&5\1, e ,:i:j\j} for each
1 < 5 < 1I. One may now completely determine the number of irreducible components
of ¢ along with their various dimensions and eigenvalues up to complex conjugation by
induction on j. The initial step is to determine the number of irreducible components of
@Y with eigenvalue 0 along with their various dimensions. To this end, consider bp i, for
n € Ny. For each n € Ny, since by, 4, and by1 ¢, are the number of irreducible components
of ¥ of dimension greater than n and n + 1 respectively with eigenvalue 0, it follows that
bn,to — bnt1,, is the number of irreducible components of cpo of dimension exactly n+ 1 with
eigenvalue 0. In this way the number of irreducible components of ¢ of dimension n with
eigenvalue 0 is completely determined for all n € N. Note that these numbers may be all
zero if 0 & o(Ly,).

Suppose now that the number of irreducible components of ¢" of dimension n with
eigenvalue A € {O,ij\l,...,j::\j} is known for all n € N for some fixed 1 < j < [. It

is then possible to determine the number of irreducible components of ¢" of dimension n
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with eigenvalue ij\j_i'_l for all n € N by considering the various by ;. Similar to above

b — bnt1,t,,, is the number of irreducible components of Y of dimension exactly n + 1

ntj+1
with eigenvalue in {0, 4\, ..., £X\j41} N {z[\j1]i : 2 € Z} for all n € N. One then, for
each n € Ny, determines the number of irreducible components of ©° of dimension exactly
n + 1 with eigenvalue 5\j+1 by subtracting the number of irreducible components of ¢° of
dimension exactly n + 1 with eigenvalue in {0, 41, ..., +X;} N {z[\j1]i : 2 € Z}, known
by assumption from bmtj o bn+17tj -

Once the number of irreducible components of ° of size n with eigenvalue X is known

for all n € N and A € o(Ly), then one immediately gets the total number of irreducible

components of ¢°. O

Unfortunately the preceding procedure cannot distinguish between irreducible compo-
nents of the same dimension with conjugate eigenvalues. This is due to the fact that, if
A= @ for some nonzero z € Z, then \ = %27” This might seem like a let-down after
all the work that went into distinguishing the various irreducible component flows in the
first place. But for homeomorphic equivalence, this turns out to be a good thing, as two
irreducible linear flows with complex conjugate eigenvalues are easily seen to be homeomor-

phically equivalent.

Proposition 3.14 Let ¢ and ¢ be irreducible linear flows on X and Y respectively where
X and Y are normed spaces over C with dim X = dimY. If A, = E, then ¢ and Y are

homeomorphically equivalent.

Proof. Begin by fixing a basis {b,}2_, for X such that ¢ is of the form e+ et g This is
possible by Proposition 2.41. Similarly fix a basis {Bn}szl for Y such that v is of the form
e eta©) gz Now consider h: X — Y given by h(z) = h(32%_, enbn) = 320, E,b, =: T for
all x € X. Clearly h is invertible. Furthermore, h is a homeomorphism of X since the map
¢ — € is continuous. Finally h(e¢etig) = ethoetla(0)g = treetaO)F = ¢trveta(0) ()
for all (t,z) € R x X, as Jy(0) is simply a Jordan block for eigenvalue 0 and as such

tJa(0)

has no nonreal entries. Thus h is a homeomorphic equivalence between et*¢e x and

erveta© g and the result follows. O

Of course, if ¢ and v are as in the previous lemma with A\, = Ay, then they are not
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only homeomorphically equivalent but in fact linearly equivalent via the homeomorphism
h(z) = h(Zizl Cnbn) = Zizl Cnbn.

Returning to the discussion of {BCy, () }nen, ter+, consider property (ii). If ¢ and
1) are two homeomorphically equivalent linear flows, then since homeomorphisms preserve
dimension, dim BC,, ;(¢) = dim h(BC,,+(¢)) = dim BC,, +(¢) for all n € Ny and t € RT. But
this means that applying the previously described procedure to either flow will result in the
same decomposition up to reordering and complex conjugation of individual irreducible
components. It turns out that this is sufficient to completely characterize homeomorphic
equivalence of linear flows. The following theorem and its corollaries are the main results of
this thesis. It is necessary to use complexifications ¢ and ¢ of ¢ and v respectively here
as the family {BCp () }neng ter+ is only constructed for complex flows ; that is, flows on

X with K = C. Of course ¢c = ¢ and 9¢ = ¢ for flows on X with K = C.

Theorem 3.15 Let ¢ and ¢ be linear flows on X. Then oc and Y are homeomorphically

equivalent if and only if the following three conditions hold:
(i) dim X}, = dim X ;
(ii) dim X, =dim X, ;

(iii) if Bjey vr and Py, Yk are irreducible decompositions of go% and 1/1(% respectively,

or Ap, = V

then (reordering ;. ¥r as necessary) dy, = dy, and either Ay, = Ay .

k k

for every k < m.

Proof. Suppose first that the three conditions hold. It follows from (i) and (ii) that there
exist homoemorphic equivalences h* between Lp[é and 1/15 and h~ between ¢ and ¢ by
Theorem 3.10. Consider property (iii). Now for ¢ and 1 with Ay, = Ay, it is clear
that o and 9, are homeomorphically (in fact, linearly) equivalent. For ¢ and 1 with
App = ka it follows from Proposition 3.14 that ¢, and ¢, are homeomorphically equivalent.
Thus (iii) guarantees the existence of a homeomorphic equivalence h° between cp(% and w(%.
Consequently ht @ kY @ h~ is a homeomorphic equivalence between ¢ and t)c. This
completes the proof of the ‘if’ case.

Suppose now that ¢c and ¥¢ are homeomorphically equivalent. Properties (i) and

(ii) follow directly from Proposition 3.4. To see that property (iii) also holds, consider
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that dimBC,,(¢c) = dimh(BCy4(¢)) = dimBCy () for all n € Ny and ¢ € RT by
the construction of {BC,, () },en, ter+ and since homeomorphisms preserve dimension.
Property (iii) then follows as applying Lemma 3.13 to ¢c and t¢c completely determines
the irreducible components of these flows up to conjugate eigenvalues. This completes the

proof of the ‘only if’ part. [J

This theorem can be made more elegant by considering the cases where K = C and
K = R separately. The K = C case in particular follows almost directly from the previous
theorem, and it improves on property (iii) of the theorem by using the realifications of the

central subspaces.

Corollary 3.16 Let ¢ and ¥ be linear flows on X with K = C. Then ¢ and ¢ are

homeomorphically equivalent if and only if the following three conditions hold:
N dim X+ — dim X -
(i) dim XJ = dim X};
(ii) dim X = dim X ';
(iii) @2 and ¥S are linearly equivalent.

Proof. As pc = ¢ and ¢¢ = 1, properties (i) and (ii) of this theorem are equivalent to
properties (i) and (ii) of Theorem 3.15. Thus it suffices to show that property (iii) of this
corollary is equivalent to property (iii) of Theorem 3.15. Note that ¢ = ¢° and ¥ = ¢,
let @, v and @~ ) be irreducible decomposition of Y and ¥° respectively, and let
(¢r)r and (Yx)r be the realifications of ¢ and vy respectively. Now if ¢y is of dimension
dy, with eigenvalue 0, then (¢ )R is the direct sum of two irreducible components of go]%, each
of dimension di with eigenvalue 0 and conversely. If ¢ is of dimension di with eigenvalue
A € iR\ {0}, then (¢g)r is an irreducible component of dimension 2d; with conjugate
eigenvalue pair {\, Ay} and conversely. The situation is the same for the components /.
The desired result then follows by noting that (¢r)r and (¢x)r have identical conjugate
eigenvalue pairs, even if the eigenvalue of ¢ is not identical but merely conjugate to the

eigenvalue of v, . [J

Oftentimes working in complex spaces is easier and provides more elegant proofs and

results than working in real spaces. For instance, C is algebraically closed while R is not.
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All differentiable complex-valued functions on C are analytic, but the same certainly cannot
be said for real-valued functions on R. Even in this thesis, the family {By, ¢(©)}nen, ter+
will only be constructed for flows ¢ on X with K = C, as dealing with real Jordan blocks
with nonreal eigenvalues is a hassle. Surprisingly, the characterization of homeomorphic
equivalence of real flows — that is, flows on X with K = R — is actually more elegant than

the complex case.

Corollary 3.17 Let ¢ and v be linear flows on X with K = R. Then ¢ and v are

homeomorphically equivalent if and only if the following three conditions hold:
. . _ . + .
(i) dim X} = dim X;
(ii) dim X =dim X ;
(iii) ©° and ¢° are linearly equivalent.

Proof. The ‘if” part is clear as properties (i) and (ii) guarantee homeomorphic equivalence
between ¢ and ¥* and between ¢~ and v~ as per the proof of Theorem 3.15, while
property (iii) guarantees homeomorphic equivalence between ¢’ and ¢°. For the ‘only if’
part, note that homeomorphic equivalence between ¢ and 1) guarantees that properties (i)
and (ii) hold as an immediate consequence of Proposition 3.4, while also guaranteeing ¢¢
and ¢ are homeomorphically equivalent. Thus it suffices to show that property (iii) of
Theorem 3.15 implies property (iii) of this corollary.

Let @i, ¢r and @, ¢ be irreducible decompositions of cp?c and w(% respectively.
Now each ¢ of dimension dj, with eigenvalue A\, € iR\ {0} is generated by an irreducible
component of ¢¥ of dimension 2d, with conjugate eigenvalue pair { A, A}, so the irreducible
components ¢y, of dimension dj, with eigenvalue A\, € iR\ {0} can be paired off exactly with
the irreducible components ¢; of dimension d; = dj, with eigenvalue \; = M. The situation
is the same for the irreducible components of w(% Reorder the ¢ and 1 as necessary so that
the pair of irreducible components of ¢ corresponding to a single irreducible component
of ¢ are all together while preserving property (iii) of Theorem 3.15. Now if ng 4, is the
number of irreducible components of ga% of dimension d with eigenvalue in £ C C, then

NN de = 2ninde = 2”{X},d,¢) by the preceding argument. The situation is the same
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for 92. Now property (iii) of Theorem 3.15 is itself equivalent to the requirement that
N X = AN o for all d € N and A € iR\ {0} and consequently 1y} 4., = n{r},d,4 for
alld € Nand A € iR\{0}. But this means that @, ¢, may be reordered so that d,, = dy,
and A, = Ay, for all & < m; moreover, this reordering may be done so that pairs of ¢y
generated by a single irreducible component of ¢ line up with pairs of 1}, generated by a
single irreducible component of V. Let @221 ¢ and @é-:l 1])j be irreducible decompositions
of ¢ and 9 respectively ordered based on the ordering of @), vr and )., tm; that
is, for instance, ¢1 generates either the first or the first pair of irreducible component(s) of
go?c as necessary, @9 generates either the second or second pair of irreducible component(s)
as necessary, and so on. Then by construction dy, = d s and Ay, = A ¥; forall j <1I. It

follows that ©° and ¥° are linearly equivalent. [J

Before closing out this chapter, it is worthwhile to consider characterizing the homeo-

morphic equivalence of linear flows in terms of their generating operators.

Corollary 3.18 Let ¢ and v be linear flows on X with K = C. Then ¢ and 9 are

homeomorphically equivalent if and only if the following three conditions hold:
(i) Ly and Ly have the same number of eigenvalues with negative real part;
(ii) Ly and Ly have the same number of eigenvalues with positive real part;

(iii) For each n € N and X\ € iR, L, and Ly have the same number of Jordan blocks of

dimension n corresponding to \ or .

Proof. This follows from Corollary 3.16. First note that ¢ is the direct sum of all irreducible
components of cpz with eigenvalue A; such that RA; < 0. Thus dim X; is the sum of the
dimensions of the irreducible components goz of pT. But each irreducible component is
a Jordan block Jg, (A\r) with respect to an appropriate choice of basis. The situation is
similar for 1", and it follows that property (i) of this corollary is equivalent to property
(i) of Corollary 3.16. A similar argument demonstrates that property (ii) of this corollary
is equivalent to property (ii) of Corollary 3.16. Finally, property (iii) of this corollary is
also clearly equivalent to property (iii) of Corollary 3.16 by considering each irreducible

component of ¢¥ and ¢° as a single Jordan block. O
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The real case of the preceding corollary is similar.

Corollary 3.19 Let ¢ and v be linear flows on X with K = R. Then ¢ and 1 are

homeomorphically equivalent if and only if the following three conditions hold:
(i) Ly and Ly have the same number of eigenvalues with negative real part;
(i) L, and Ly have the same number of eigenvalues with positive real part;

(ili) For each n € N and X\ € iR, L, and Ly have the same number of Jordan blocks of

dimension n corresponding to A.

Proof. This corollary is proved exactly as the proof of Corollary 3.18, but using Corollary
3.17 in place of Corollary 3.16. [J

After proving the existence of the family {BC, () }nenyer+ for flows ¢ on X with
K = C in Chapter 4, Chapter 5 includes a comparison between the complex and real
classifications of linear flows on normed spaces with small dimension, from which it will be

apparent that the complex situation is, well, more complex.
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4 Nonhyperbolic Flows

A complete characterization of homeomorphic equivalence of linear flows was presented in
Section 3.3. In demonstrating that characterization, the existence of a certain family of
subspaces {BCy, ¢(¢)}neng ter+ was assumed. This family had two significant properties:
every BC,, (¢) was preserved by homeomorphic equivalence, and the dimension of each
BC,,+(¢) was the number of irreducible component flows ¢ of dimension dy > n with
eigenvalue )\ satisfying either A\, = 0 or A\, = @ for some nonzero z € Z. The purpose of

this chapter is to prove the existence of this family. This chapter is heavily based on [9].

4.1 Basic Constructions

The family {BCp ¢(¢)}nen, ter+ of a given linear flow ¢ is constructed by combining sim-
pler subspaces in various permutations. The desired properties of this family can then be
demonstrated based on the properties of these simpler subspaces. The fundamental build-
ing blocks that will be used in this construction are the strong and weak centres of a given

flow.

Definition 4.1 Let ¢ be a linear flow on X. The weak centre of ¢ on a subset Y of X,
denoted WC(¢p,Y), is the set of all y € Y with the following property:

For every sequence {tp }nen in R with lim,,_,|tn| = 400 there exists a sequence {yn }nen

in Y converging to y such that the sequence {¢(t,,yn)}nen is bounded.

The strong centre of ¢ on Y, denoted SC(p,Y), is defined similarly to the weak centre,

except that the sequence {p(t,, yn)}nen is required to converge to zero.

Clearly strong centres are contained in weak centres. It is a straightforward exercise to
verify that, when Y is a subspace of X, the strong centre and weak centre of a linear flow
are always themselves subspaces of that subspace. The specific nature of these subspaces
will be discussed in detail in the next section, but their crucial aspect is that, under the

right conditions, they end up being approximately half the size of the initial subspace.
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Example 4.2 Consider the linear flow ¢ on R? generated by

01 -~ 1 ¢ T
L= , so that p(t,z) = e""x =
00 01 T2

Given any x; € R, and given any sequence {t,}nen in R such that lim, o |t,| = 400, the

sequence {(z1, —f*)}nen converges to (21,0); moreover, as ¢(ty, (1, —7) = (0, =) by

direct calculation via the above matrix, limy, o0 p(tn, (21, —7)) = lim, 0 (0, —F1) = (0,0),
so by definition (x1,0) € SC(p, R?). As x1 was also arbitrary, span{(1,0)} C SC(y,R?).
On the other hand, suppose (z1,72) € WC(p, R?), and again fix a sequence {t,}nen
in R with lim,,—,o0|t,| = +00. By definition there exists a sequence {(x1,72,)}nen in R
converging to (x1,z2) such that {¢(t,, (€14, Z2,)) }nen is bounded. In particular then the
sequence {x1 , + tpT2 5 fnen, the first coordinate of the previous sequence, is also bounded.
Since {tp}nen is unbounded, the sequence {x2,}nen must converge to zero, so zg = 0.

Thus WC(p, R?) C span{(1,0)}. Since also SC(p,R?) C WC(p, R?), it therefore follows
that SC(p, R?) = WC(y, R?) = span{(1,0)}. o

In the preceding example the strong and weak centres ended up being the same subspace,

but this is not always the case.

Example 4.3 Consider the flow ¢ on R given by ¢(t,2) = z for all (t,2) € R x R, and
consider the sequence {x,, }nen in R given by x,, = x for all n € N. Since ¢, is the identity for
all t € R, the induced sequence {¢(ty, =y) tnen is simply {2, }nen irrespective of the choice of
{tn}nen. This sequence is clearly bounded, so € WC(p,R). As x was arbitrary, it follows
that WC(¢,R) = R. On the other hand, given any sequence {z,},cn in R converging to
some z € R, the induced sequence {¢(t,, ) }nen is simply {z,, }nen, as previously. It follows

that for z to be in SC(¢, R), it must be that z = 0, so SC(p,R) = {0} # R = WC(g,R). ¢

Since strong and weak centres on a subspace are always themselves subspaces, one may
consider constructions involving combinations of strong and weak centres. For instance,
one could consider the strong centre of a flow on the weak centre of the weak centre of that

flow. The iterated centres of a flow are formed by combinations of this type.

Definition 4.4 Let ¢ be a linear flow on X, and let n € Ng. Then n may be uniquely
written in the form n = §;2/~1 + .-+ + §;2° where the J; € {0,1} (6§ must be 1, except in
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the case where [ = 1 to allow for n = 0) are the digits of the binary representation of n,

written n =< 6;0;_1...91 >. The n'* iterated centre of ¢, denoted IC,(p) is given by

ICn(QO) = Sl(@v Sl—l(@v s 52(907 81(@’ X))))7

where Sj(gp,Y) = WC(p,Y) if §; = 0 and Sj(go, Y) =SC(g,Y) if §; = 1 for any subspace Y’
of X.

Since strong and weak centres on a subspace are always themselves subspaces, and since
the iterated centres are finite combinations of these constructions, it follows that the iterated
centres are always subspaces as well. The iterated centres for n # 0 are made up of every
finite combination of strong and weak centres that ends with a strong centre. The pattern

is explicitly

n™ iterated centre | n in binary | Construction
ICo(p) <0> WC(p, X)
IC1(¢) <1> SC(yp, X)
ICa(¢p) <10> | SC(p, WC(p, X))
IC3(¢p) <11 > | SC(p,SC(p, X))
IC4(yp) <100 > | SC(p, WC(p, WC(p, X)))
IC5(¢p) <101 > | SC(p, WC(p,SC(p, X)))
ICs(¢p) <110 > | SC(p, SC(p, WC(p, X)))
IC7 () < 111> | SC(p,SC(¢,SC(p, X)))
ICs(p) < 1000 > | SC(p, WC(¢p, WC(p, WC(p, X))))

and so on. The idea behind iterated centres is that each repeated weak and strong centre
reduces the size of the iterated centre, so that IC, () becomes trivial for sufficiently large
n. One can then work backwards until IC,,(¢) is nontrivial, revealing the largest irreducible
components of ¢, and then continue to work backwards to find the next largest irreducible

components, and so on.

Example 4.5 Consider Example 4.3. By definition ICy(¢) = R. Furthermore, it is clear
that SC(p, {0}) = {0} and WC(p, {0}) = {0} (in fact, this is true for any ¢) and it follows
that IC,,(¢) = {0} for all n € N, since a strong centre appears in the construction of all of

these iterated centres.
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Now consider Example 4.2 denoting the flow by v in this case. Again it immediately
follows from the construction of ICy and IC; that ICy(¢p) = ICi(v0) = span{(1,0)}. Fur-
thermore, IC2(1)) = SC(¢p, WC(2p, R?)) = SC(v),span{(1,0)}) = {0} for the same reasons
that SC(¢, R) is trivial. More generally, IC,,(¢)) will always end up with either span{(1,0)}
or {0} before the final strong centre, so that IC,(¢)) = {0} for all n > 2. ¢

Although close to the goal, iterated centres are not yet enough to count the various
central irreducible component flows as ultimately desired. The primary remaining issue is
that iterated centres have no way of distinguishing components by their eigenvalue; two
components of the same dimension and eigenvalue should be and are indistinguishable,
but for homeomorphic equivalence to work as described in Section 3.3 it is necessary to
distinguish two components of the same dimension but with different eigenvalues. This

leads to the final construction of this section.

Definition 4.6 Let ¢ be a linear flow on X. The family of subspaces {BCy, () }neng ter+
is given by

BCp(p) =1C,(¢) Nker(p — 1)

foralln € Nand t € RT.

It is clear that this family can be constructed for any linear flow. Since iterated centres
are all subspaces, and since these kernels are all clearly subspaces, it follows that all of
these intersections are subspaces. As such, it is correct to refer to {BCp () }nen, ter+
as a family of subspaces. Demonstrating that {BC ¢(©)}nen, ter+ has the two desired
properties discussed previously will be done by building upon properties of strong and
weak centres. Having established properties of strong and weak centres, one may consider
the consequences of those properties when strong and weak centres are combined to form
iterated centres. From there, one considers the properties of ker(p; — I) in conjunction
with the properties of iterated centres. This process is demonstrated in the proof of the
following two propositions. First it will be shown that these constructions all behave well
with respect to flow decomposition. Then it will be shown that these constructions also

behave well with respect to homeomorphisms of the space.
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Proposition 4.7 Let ¢ be a linear flow on X with irreducible decomposition -, vr. The
following all hold:

(i) WC(p, D)ty Yi) = Dy WC(¢k, Yi) for any collection {Yi}7", of subspaces of X
with Y, C X for all k < m;

(ii) SC(p, Dy Yi) = Dy SCler, Yz) for any collection {Y;}}*, of subspaces of X with
Y C Xy for all k < m;

(iii) IC,(¢) = Bre; IC,(¢k) for all n € Ny;
(iv) ker(pr —I) = @j ker((¢r)e — I) for all t € RT;
(v) BCpi(p) = @y BChi(pk) for alln € Ng and t € RT.

Proof. (i) and (ii) are consequences of the fact that a sequence is bounded or converges
to zero if and only if all its components are bounded or converge to zero respectively. For
each k < m let Y, be a subspace of Xj, and suppose 2 € WC(p, @j-, Yi). Fix a sequence
{tn}nen in R so that limy,_,o|t,| = +00. Then there exists a sequence {zp }nen in @), Y
converging to x such that the induced sequence {¢(ty,Zn)}nen is bounded. But then the
sequence {@(tn, Tn k) tnen is bounded for each k£ < m. Since each sequence {xy i }nen in
Y}, converges to z, and since {t,},cn was arbitrary, it follows that xp € WC(pyg, Yy) for
every k < m, and thus x € @}, WC(px, Yi).

Conversely, suppose x € @)~ WC(¢g, Y:), and again fix a sequence {t,}nen in R so
that lim,_,o|tn| = +00. Then for each k < m there exists a sequence {z, k}nen in Yy
converging to zj, such that the induced sequences {@y(tn, Zpn k) }nen are bounded. These
sequences generate a sequence {zy ey in Y converging to  such that the induced sequence
{p(tn, Zn) }nen is bounded. Since {t, }nen was arbitrary, € WC(p, @2, Yi).

Since x was arbitrary, WC(¢, @), Yi) = @i WC(px, Yx), and as Y was also arbi-
trary this is true for any collection {Y}}}*; of subspaces of X with Y}, C X}, for all £ < m.
The proof of (ii) is similar.

Recall Definition 4.4, in which n is written in the form §;2"~1 + - - - 4+ §;2°, where the 0;
are the digits of the binary representation of n. Every value of n has a corresponding value

for I (though several n may share the same [ value) so (iii) may be proved by induction on [.
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In the case where [ = 1, then &; (g, X) is either WC(g, X) or SC(p, X), so as a consequence
of (i) and (ii) 01 (¢, X) = @, 01 (o, X1). Now suppose that, for some fixed L, the equality
0r(0,00-1(ps - - 02(p, 61.(p, X)) = Dty OL(#k, 011 (% - - - ba(r, 1 (98, X)) holds for
any combination of §;, and fix some combination d7,.1(p, 01 (¢, . ..d2(p,01(p, X)))) of ;.
Now 6111(,01(, - - 62(#,01(, X)) = dr41(0, By 6L(#k - - b2 (spk, 01( ks X1)))) by

0a(,01(, X)) = @1 Sr41(¢ks - - - ba(spr, 01 (1, Xi)))
as a consequence of (i) and (ii) since 07, (@, - - . 02(or, 010k, Xi))) € Xp, for all k < m. This

assumption. But then SL+1(QO,.. 9

argument works for any combination of Sj with j < L 4+ 1. It follows by induction over [
that 1Cy(¢) = @)1 ICn (k).

(iv) is similar to (i) and (ii). Fix t € R*, and suppose x € ker(¢; —I). Then ¢(t,z) = z,
so that ¢;(t,xx) = xy for all & < m, and thus xy, € ker((pg); —I) for all & < m. The reverse
situation is similar, and (iv) follows as ¢ was arbitrary.

(v) is a straightforward consequence of (iii) and (iv), as it is straightforward to verify

that (D), ICh(vr)) N (Br; ker((vr): — 1)) = @iy (ICh(¢r) Nker((pr): — 1)) for all
ne€Ngandt € RT. O

The previous proposition is immensely useful, as determining the properties of these
constructions on an arbitrary linear flow can be reduced to the properties of these con-
structions on its irreducible component flows. The next proposition demonstrates the first
of the two required properties of the family {BCy ()} en er+ in a similar fashion to the

previous proposition.

Proposition 4.8 Let h be a homeomorphic equivalence between two linear flows ¢ and Y

on X. The following all hold:
(i) h(WC(p,Y)) = WC(, h(Y)) for any subspace Y of X ;
(i) h(SC(¢,Y)) = SC(¥, h(Y)) for any subspace Y of X ;

(iii) A(IC,(¢)) = IC, (1) for all n € No;

(iv) h(ker(p; — I)) = ker(shy — I) for all t € R¥;
(v) h(BCpi()) = BCpi(y)) for alln € Ny and t € R
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Proof. Suppose that z € h(WC(p,Y)). Then there exists a y € WC(yp,Y) satisfying
x = h(y). Fix a sequence {t,}neny in R with lim,, ,|tn,] = +o00. Then there exists a
sequence {y,}nen in Y converging to y such that {¢(t,,yn)}nen is bounded. Construct
a sequence {x,}neny in A(Y) by taking x, = h(y,). Continuity of h guarantees that
{xn}nen converges to x. Now since {¢(tn,yn)}nen is bounded, it is entirely contained

in some compact ball B,.(0) for some r € RT. It follows again from the continuity of h

that {h(¢(tn,yn)) }nen is contained in the compact set h(B,(0)). Thus {h(¢(tn, yn))}nen
is bounded. But A(p(tn,yn)) = Y (tn, h(yn)) = Y (tn, zy) for all n € N, so {z,}nen is a se-
quence in h(Y') converging to z with the property that the induced sequence {¢(tn, Tn) }nen
is bounded. Since {ty, }nen was arbitrary, x € WC(¢, h(Y)). The converse argument is sim-
ilar, and thus (i) holds.

(ii) proceeds as in (i) except that in this case {@(tn, yn) }nen converges to zero. Defining
{zn}nen in A(Y) as in the proof of (i), it follows that ¥ (ty, xn) = Y (tn, h(yn)) = h(e(tn, yn)),
and thus {¥(t,, Tn) tnen converges to zero as well. The rest of (ii) follows as in (i).

(iii) is proved using induction as in Proposition 4.7 - (iii). It follows from (i) and
(ii) that h(i(p, X)) = 01(1), X). Suppose that, for any combination of 0; of length
L, h(3L(p,00-1(¢, ... 62(0,01(, X))))) = 00(4,61-1(th, ... 62(1h, 01 (), X)))). Then by (i)
and (i) A(r+1(p,02(p, ... 02(p,01(¢, X)) = dr41(, ALy, ... d2(p,81(p, X))))) for
any combination of Sj of length L + 1. But then it follows from the previous assump-
tion that h(dp41(,05(p,...02(0,01(0, X)) = dp1(,8L(, ... 02(1p, 01(p, X)))). (iii)
then follows by induction over I.

Fix t € RT, and suppose z € h(ker(¢; — I)). Then z = h(y) for some y € ker(yp; — I).
But then v:(x) = ¥¢(h(y)) = h(pi(y)) = h(y) = z, so x € ker(¢y — I). The converse
argument is similar, proving (iv), as t was arbitrary.

Since h is, in particular, a bijection, h(UNV) = h(U) N (V) for all sets U,V in X. (v)
then follows from (iii) and (iv). O

Demonstrating the other desired property of {BCy, ¢(©) }nen, ter+ concerning the dimen-
sions of the various BC,, ;(¢) requires more effort. First the structure of strong and weak
centres of certain subspaces will be investigated. This investigation will then be extended

to iterated centres and finally to {BCy, ¢(¢)}neng ter+, culminating in Theorem 4.12.
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4.2 Strong and Weak Centres

Understanding strong and weak centres is the first step toward confirming the final prop-
erty of BC,, ;(¢). To this end, several assumptions will be made throughout the next two
sections. In light of Proposition 4.7 it will be assumed that any given flow ¢ is irreducible.
Furthermore, it will be assumed that ¢ is central — that is, it will be assumed that the flow’s
eigenvalue lies on the imaginary axis — unless explicitly stated otherwise. The reasoning
behind this assumption will become clear in the next section. Perhaps most importantly, a
basis {b1,...,bq} for X will be fixed, and it will be assumed ¢ has matrix form etretJa(0)

with respect to that basis. Written explicitly, ¢; will be of the form

1 ¢ %tQ ﬁtd_Q ﬁtd_l

0 1 t @t @t

1 ,d4 1 ,d-3
o = 00 1 @yt @t
0 0 O 1 t
00 O 0 1

with respect to that basis. This assumption is justified by Proposition 2.41.

To simplify notation, a chain of subspaces Ko C K1 C --- C K is defined by setting K
to be the trivial subspace {0}, and by setting K; = span{by,...,b;} for all 0 < j < d. In
this section it will be shown that SC(p, K;) = KL%J and WC(p, K;) = K[%] for all j < d.
Recall that, for any r € R, |r] denotes the largest integer not larger than r, while [r]
denotes the smallest integer not smaller than r. Noting that K4y = X, the various K; for
j < d will be sufficient to fully describe IC,,(¢) for all n € Ny in the next section. Proving
that strong and weak centres behave in this fashion is long but straightforward. Note that

this proof uses t-rescalings Ty(t) := diag(1,¢,t2,...,t9"1) as discussed in Section 2.5.

Theorem 4.9 Let ¢ be an irreducible central linear flow on X with K = C. Then the
following both hold for all j < d:

(i) SC(p, Kj) = Ky s

(ii) WC(p, K;) = K.
J [51
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Proof. First note that SC(p, K;) = SC(¢|k,, K;) and WC(p, K;) = WC(p|k;, K;) for all
j < d. Consequently, it may be assumed without loss of generality that j = d. Note also
that K4 = X, and that the result is trivial if d = 0.

Fix a basis for X so that ¢ is in the matrix form described above. The proof of this
theorem is split over a number of cases. The first case considered is when d is even, so there

exists some [ € N satisfying d = 2I. Now ¢; may be written as

7 (AT | 47 () BT
o | 57\ (nATi()

Yt = et

where A is the eigenvalue of ¢ and A and B are real [ x [ matrices of the form

11 % D S — 1 1 1 1 1
2 =2 - n I+  ([+2)! (d=2)! (d-1)!
01 1 D — 1 1 1 11
=3 ([{=2) =1 ]l (+1)! (d=3) ([@-2)!
00 1 (1—14)' (l—13)' (1—12)1 (1—11)1 zl' (d—N!  (d-3)!
. . and . . . . .
1 1 1 1 1
000 1 1 2 6 % T O
1 1 1 1
(000 0 1 1 3 3 = o0

respectively. Note that A and B are independent of ¢ — that is, they are both constant
matrices.

First it will be shown that WC(p, X) C K;. Suppose z € WC(y, X). With respect to
the chosen basis x is of the form (y1,%2) for some y1, yo € C'. Fix a sequence {t, }ney in R
such that lim,,_,|t,| = +00. It may be assumed without loss of generality the ¢,, # 0 for
alln € N. As x € WC(p, X) there exist sequences {y1 , }nen and {y2.n Jnen in C! converging
to i1 and yo respectively such that {et")‘(Tl_l(tn)Aﬂ(tn)yl,n + tﬁlﬂ_l(tn)Bﬂ(tn)yg,n)}neN
is bounded. It follows immediately that {7, ' (t,) AT} (tn)yn1 + thT " (t2) BTi(tn)Y2,n tnen
is bounded, as |e»*| = 1 for all n € N since A € iR. Now {t.'T}(t,) }nen clearly converges
to zero, so it follows that {t 'AT; (tn)y1n + BTi(tn)y2,n tnen converges to zero. Consider
{7 VAT (tn) Y10 fnen- As the sequence {y1 ., }nen converges to yi, it is in particular bounded.
As {t;'Ti(t,) }nen converges to zero, and as A is independent of n, {t;'AT}(tn)y1.n}nen
converges to zero, so {BTj(ty)y2.n}neny must also converge to zero. Now B is a matrix

of the form described by Proposition 2.45, so B is invertible, and thus {7j(t,)y2.n }nen
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converges to zero. As {I] ' (t;)}nen is clearly bounded (in fact, convergent) it must be
that {y2n}nen converges to zero. But by construction {y2,}nen converges to ya, so by
uniqueness of limits y, = 0, and consequently x € K;. Then WC(p, X) C K| as x was
arbitrary.

Next it will be shown that K; C SC(p, X). Suppose z € K;. Then z is of the form
(y,0) for some y € C! with respect to the chosen basis. Fix a sequence {t,}nen such
that lim,_,|t,| = 400, and define a sequence {z,}neny in X given by z, = (y,0) for
n < N and z, = (y, —t,;'T; *(t,) B~ ATj(t,)y) otherwise with respect to the chosen basis,
where N € N is chosen sufficiently large that ¢, # 0 for all n > N. Note that B~!
exists as was seen previously. Also note that, for all n > N, each entry of the [ x [ matrix
t21T (t,) B~YATj(t,,) is the product of some constant real number (independent of n) with
tn? for some j € N. Consequently {=t,'T, 1 (t,) BT* AT} (ts)y}n>n converges to zero, and
thus {x, }nen converges to (y,0) = z. But by construction,

Y 0

@(tn, Tn) = 1, =
—t T () BTYAT ()Y —et MU (8, ) ABTY AT (8 )y

for all n > N. Tt follows similarly to above that {—t;;'T;"*(t,) AB~ AT(t,)y}n>n con-
verges to zero. Now |ef»*| = 1 for all n € N since A € iR, and consequently the sequence
{—etr M AT (t,) ABTY AT} (t,)y }n>n converges to zero. It follows that {¢(t,, 2 ) }nen con-
verges to zero, and thus x € SC(¢, X) as {t,}nen was arbitrary. Then K; C SC(p, X) as x
was arbitrary.

By the preceding arguments, WC(p, X) C K; and K; C SC(p, X). But necessarily
SC(p, X) C WC(p, X), so WC(p, X) = SC(p, X) = K;. Asl = |4%] =[4], this completes
the proof of the theorem for even d.

Now consider the case where d is odd, so d = 2] + 1 for some [ € Ny. It is easily seen
that the theorem holds for d = 1. In this case, ¢ is of the form €'z for some r € R. But
then ||o(t,z)|| = ||z||. Consequently, given any fixed = in X, any sequence {t,}nen in R
such that lim,_,~|t,| = 400, and any sequence {x,}nen in X converging to x, it must
be that the sequence {¢(ty,xn)}nen is bounded but can only converge to zero if x = 0.
Suppose now that d > 3 so that [ > 1. This case is similar to the even case but somewhat

more complicated, and it is now necessary to handle the strong and weak centres separately.
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First it will be shown that WC(¢, X) = K[g] = Kj,1. Similarly to the even case, ¢y may
2

be written as
by o | T AT | 1T 0BT
0 | ke

where X is the eigenvalue of ¢ and A, B, O, and C are real I x (1+1), 1 x1, (I+1) x (I+1),

and (I + 1) x | matrices respectively satisfying

11 1 1 1 1 1 1 1
3 i | G @l @3a) =R CED]
01 1 1 1 1 1 1 1 1
(R EH R )] @3 @2
00 1 1 1 1 1 1 1 1
AR 5] @11 @3
1 1 1 1 1 1
000 1 2 5 2 10 SR )]
1 1 1 1 1
o0 'S N I G GRS e
1 1 1 1
000 0 1 2 6 =y
1 1 1
000 0 0 1 1 2 RS
1 1
00 0 o o | 0o 1 1 e
0 0 O 0 0 0 0 0 1 1
(00 0 o o | 0o 0 0 o 1 |

First it will be shown that WC(yp, X) C Kjy;. Suppose z € WC(p, X). With re-
spect to the chosen basis x is of the form (yi,y2) for some y; € CH! and yp € Cl
Fix a sequence {ty}nen in R such that lim, ,o|t,| = +o00. It may be assumed without
loss of generality the ¢, # 0 for all n € N. As z € WC(p, X) there exist sequences
{y1n}nen in CH and {ya, tnen in C! converging to 1 and yo respectively such that the
induced sequence {et"’\(Tfl(tn)ATlH(tn)yLn+tﬁL‘HTfl(tn)éﬂ(tn)ygm)}neN is bounded. It
follows immediately that {T} " (tn) ATi1(tn)yn,1 + t5 T () BT} (tn)y2,n tnen is bounded,
as |e/*| = 1 for all n € N since A\ € iR. Now {t;(lH)Tl(tn)}neN clearly converges to
zero, so it follows that {t;(l—’_l)ATlH(tn)yl’n + BTi(tn)y2.n nen converges to zero. Consider
{t;(lH)ATH_l(tn)ylm}neN. As the sequence {y1n}nen converges to yi, it is in particular
bounded. As {t¢, (1+1) Ti+1(tn) fnen converges to zero, and as A is independent of n, it must

be that {tﬁ(lH)ATlH (tn)Y1.n }nen converges to zero, so { BT} (tn)ya.n fnen must also converge
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to zero. Now B is a matrix of the form described by Proposition 2.45, so B is invertible,
and thus {Tj(t,)y2.n }nen converges to zero. As {T) '(t,)}nen is clearly bounded, it must
be that {y2, }nen converges to zero. But by construction {y2,}nen converges to ya, so by
uniqueness of limits yo = 0, and consequently = € K;,1. Then WC(p, X) C K;;1 as x was
arbitrary.

Next it will be shown that K;11 € WC(p, X). Suppose x € K;11. Then x is of the form
(y,0) for some y € C*1 with respect to the chosen basis. Fix a sequence {t, },cn such that
limy, ,o0|tn| = 400, and define a sequence {z,}nen in X given by z, = (y,0) for n < N
and =, = (y, —t;(lH)Tl_l(tn)BflflTlH(tn)y) otherwise with respect to the chosen basis,
where N € N is chosen sufficiently large that ¢, # 0 for all n > N. Note that B! exists
as was seen previously. Also note that, for all n > N, each entry of the [ x (I + 1) matrix
tn (ZH)TI_I(tn)BflflTlH(tn) is the product of some constant real number (independent of

(1+) -

n) with t,” for some j € N. Consequently {—t, ) Y(tn) B~ AT 1 (tn)y}n>n converges

to zero, and thus {zy, }nen converges to (y,0) = z. But similarly to the previous case

0
" NOy — ;" T3 (t) OB ATi 4 (tn)y)

@(tn, Tn) =

by construction for all n > N. While {—t, lH(tn)CB YATi41(tn)y}n>n does not con-
verge to zero, it does at least converge as the highest power of t, that appears is 2, so
it is in particular bounded. As Oy is constant, {Oy — l+1( W)CB ATy 1 (t)y}ns N is
bounded, and so is {e"*(Oy — t, TlH(tn)CB VAT 41 (tn)y}tnsn. Tt follows that the se-
quence {@(tn, Tn) tnen is bounded, and thus x € WC(¢, X) as {t, }nen was arbitrary. Then
K11 € WC(p, X) as x was arbitrary.

By the preceding arguments, WC(¢, X) C K;11 and K;11 € WC(p, X). Consequently
WC(p, X)=Kj41. Asl+1= [%], this completes the proof of property (ii) for odd d.

Finally it will be shown that SC(p, X) = KL%J = K; when d is odd. As per above,
assume that d > 3 so that [ > 1. In this case the matrix form of ¢; with respect to the

chosen basis is
o | TAOATI®) | 7530 BT )

0 | T

Pt =€
where A is the eigenvalue of ¢ and A, B, and C are real (14 1) x I, (I+1) x (14 1), and
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[ x (I 4+ 1) matrices respectively satisfying

1 1 1 _1 1 1 1 1 1 1
2 -2 -1 1 (ES I (E) @21 (@11
01 1 1 1 1 1 1 1 1
-3 ot | G-nf 1 D @3y (@2
00 1 1 1 1 1 1 1 1
=0 @=3) | G=2y ([=1! Il (@41  (d—3)
1 1 1 1
A - 1 1 1
AlB| |00 o0 0 0 1 1 ! =i
A 1 1
o|C 00 0 0 0 0 1 1 =5 T=o
1 1
00 0 0 0 0 0 1 sy
1 1
00 0 0 0 0 0 0 ey
000 0 0 0 0 0 1 1
|00 0 0 0 0 0 0 0 ]

First it will be shown that SC(¢, X) C K;. Suppose z € SC(¢, X). With respect
to the chosen basis x is of the form (y1,ys) for some y; € C! and yo € CH!. Fix a se-
quence {t,}nen in R such that lim, o |t,| = +o00. It may be assumed without loss of
generality that ¢, # 0 for all n € N. As & € SC(g, X) there exist sequences {y1n}nen
in C' and {y2.n}nen in C*! converging to y; and ya respectively such that the induced
sequence {efn*( l+1( WDAT () y1m + LT H_1( w)BTi41(t)ya.n) nen converges to zero, as
does {Tl (tn)ATl(tn)yn 1+t TlH(tn)BTlH(tn)yg ntnen. Now {t7'T141(ty) }nen is clearly
bounded, so it follows that {t;'AT}(t,)y1.n + BTi41(tn)Y2.n nen converges to zero. Con-
sider {t. lflTl(tn)yl,n}neN. As the sequence {yi}nen converges to yi, it is in particular
bounded. As {t'Tj(t,)}nen converges to zero, and as A is independent of n, it must be
that {t;,'AT)(t,)y1.n}nen converges to zero, so {BTji1(tn)y2.n nen must also converge to
zero. Now B is a matrix of the form described by Proposition 2.45, so Bis invertible, and
thus {7741(tn)Yy2,n tnen converges to zero. As {Tl 1(tn) }nen is clearly bounded, it must be
that {y2n}nen converges to zero. But by construction {y2,}nen converges to ya, so by
uniqueness of limits y2 = 0, and consequently = € K;. Then SC(p, X) C K; as = was
arbitrary.

Next it will be shown that K; C SC(p, X). Suppose x € K;. Then z is of the form
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(y,0) for some y € C! with respect to the chosen basis. Fix a sequence {t, }ncn such that
limy, ,00|tn| = 400, and define a sequence {zy,}nen in X given by z, = (y,0) for n < N
and z, = (y, —t,,'T}, +1( »)B7LATj(t,)y) otherwise with respect to the chosen basis, where
N € N is chosen sufficiently large that ¢, # 0 for all n > N. Note that B! exists as
was seen previously. Also note that, for all n > N, each entry of the (I + 1) x | matrix

T

; +1( »)BLATj(t,) is the product of some constant real number (independent of n) with

tn? for some j € N. Consequently {—t ) +1( w)BYAT)(t,)y}n>N converges to zero, and
thus {z, }nen converges to (y,0) = z. But by construction
Y 0

(tn, Tn) = @1, " =

—t T (b)) BT AT (t0)y —etnAy, DL NVEBYAT (1,)y

for all n > N. Similarly to a previous argument {—t;(lH)Tfl(tn)CA’B_lflTl(tn)y}nZN
converges to zero, as does {—el" M, (U “Yt,)CB T ATy (t,)y}nsn. It follows that the
sequence {p(ty, Tn) }nen converges to zero, and thus x € SC(p, X) as {t, }nen was arbitrary.
Then K; C SC(p, X) as x was arbitrary.

By the preceding arguments, SC(p, X) C K; and K; C SC(p,X). Consequently
SC(p, X) = K;. Asl = L%J, this completes the case for the strong centre with d odd.

Furthermore, this completes the proof as all cases have now been considered. [J

Based on their definitions alone, one might view strong and weak centres as fairly com-
plicated constructions. Of course, defined as they are, it is a straightforward if tedious
exercise to verify that they are preserved by homeomorphic equivalence and decomposition,
as per Propositions 4.8 and 4.7. But the structure of the strong and weak centres of an
irreducible central linear flow on an arbitrary subspace is non-obvious from their definitions.
With that said, the preceding theorem demonstrates that the structure of strong and weak

centres on subspaces of the form K for some j < d is very simple.

4.3 Block Counting

Iterated centres consist of various combinations of strong and weak centres. In light of
Proposition 4.9, an iterated centre would start with K , reduce that to KI—QJ or K[gw,
2 2

reduce that by approximately half, and so on, at least for irreducible central linear flows.
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It follows that every iterated centre IC,(¢) of such a flow ¢ is a subspace of the form Kj
for some j € N; moreover, since every iterated centre (except the initial one) ends with a
strong centre, all iterated centres 1C,,(¢) for a sufficiently high n will be trivial as Ky = {0}.
The following proposition demonstrates that this sufficiently high n is in fact d, so that all
iterated centres for n > d are trivial. As a consequence of the intersection of iterated centres

and ker(y; — I), it turns out that this is all that is needed to completely describe BC,, ¢(¢).

Proposition 4.10 Let ¢ be an irreducible central linear flow on X with K = C. Then
IC,(p) = {0} ifd < n and IC, () D K1 if d > n for all n € Ny.

Proof. Since Theorem 4.9 states that the strong and weak centres of an irreducible central
linear flow on subspaces of the form K for some j € N are subspaces of the form K; for
some j € N, and since iterated centres consist solely of various combinations of strong and
weak centres starting with Ky = X, it follows that IC,(¢) = K; for some j € N for all
n € N. Note that Ky = {0}. Also note that the case where d = 0 is trivial.

Recall that for iterated centres n was considered in its binary form 621 + .- + §;2°
where the 0; € {0,1} with ¢ = 1 unless n = 0. As in the case of Propositions 4.7 and 4.8,
this proposition is proved via induction on [.

Suppose first that [ = 1 in which case n = 0 or n = 1. If n = 0, then n < d for all
d € N. This leads to the desired conclusion, since ICy(¢) = WC(p, X) = Kf%W and [%] >1
for all d > 1. Similarly, if n = 1 and d > 1, then since IC;(¢) = SC(p, X) = KL%J and
L%J > 1 for all d > 1, it follows that IC1(¢) 2 Kj. Finally, if n = 1 and d = 1, then
ICi(p) =SC(p, X) = KL%J = Kj. Thus the claim is correct for [ = 1.

Fix L € N and suppose that the proposition holds for all n with { < L. Suppose further
that n € N satisfies | = L+ 1. There are two main cases to be considered based on whether
n is even or odd. Then within each of these main cases are a number of sub-cases based on
whether d is even or odd and whether or not n > d.

Suppose first that n is even. Then 61 =0, so n = 2871 4+ 612172 + - .- + 622. It follows
that § = 202 4 5123 .+ 55 s0 5 has length [ — 1 = L. Moreover, it holds that
IC,(p) = SC(%SZ_I(Q@,...Sg(cp,fg%]))) = IC%(QOIK[%]). Thus the proposition holds for
even n assuming it can be shown that n > d if and only if & > [%1 To see that this indeed

is the case, note that if d is even, then trivially n > d if and only if § > % = [%] If d is
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odd and n > d, then necessarily n > d + 1, so § > % = [g} On the other hand, if d is
odd and n < d, then trivially n < d+1, s0 § < dT = (%} This completes the case where
n is even.
Suppose now that n is odd. Then n — 1 is even, and it follows similarly to above that
=1 —9l=2 4 5, 12-3 4 ... 4+ 5, and is of length [ — 1 = L. As 6; = 1 in this case, it follows
that IC,(¢) = ICnTﬂ(go|KL%J). Thus the proposition holds for odd n assuming it can be
shown that n > d if and only if 25 > [¢]. Now if d is also odd then trivially n > d if and
only if %51 > dT = L |. Otherwise if d is even and n > d, then necessarily n — 1 > d, so
2l >4 — | 4], Finally, if d is even and n < d, then trivially n — 1 < d, so %5 < 4 = | 4].

This completes the case when n is odd, and the proposition follows by induction on {. [J

The other major ingredients in the definition of the family {BCy +(¢)}nen ter+ are the
subspaces ker(p; — I) for t € RT. These spaces are much simpler than strong, weak, and
iterated centres. They are often trivial; in particular, they are trivial for any hyperbolic
linear flow. It is for this reason that strong, weak, and iterated centres have only been
considered for (irreducible) central flows — the iterated centres of hyperbolic flows will

always reduce to {0} upon intersection with this kernel.

Proposition 4.11 Let ¢ be an irreducible central linear flow on X with K = C and eigen-
value \. Then ker(p, — I) = {0} except when either X =0 or A = @ for some nonzero

z € Z, in which case ker(¢pr — I) = Kj.

thetJa(0) 4 ag per Proposition 2.41. Consider

Proof. Fix a basis for X so that ¢ is of the form e
that et/ =T 4 Ed ! 1, t7.J4(0)7. Now Z? ! l,tJJd( )7 is an upper diagonal matrix with
zeros along the diagonal, and this remains true if the matrix is multiplied by e**. Thus, the
diagonal of et et/a(0) — T is the same as the diagonal of e/*I — I, and so ker(p; — I) = {0}
whenever et* # 1. Now if A ¢ iR, then e?* # 1 for all t € RT. Even if X\ € iR, then ' # 1
unless A = @ for some nonzero z € Z.

Suppose now that either A = 0 or A = @ for some nonzero z € Z so that e* =
1. Since efet/al0) — T = Zd ! 1tJJd(O)j, it is clear that Ky C ker(p: — I). Suppose
in turn that x € ker(¢; — I). Then Zd ! 1,tJJd( Yo = 0. Since t is nonzero and

J3(0)¢ = 0, multiplying this equation by Jz(0)?"2 demonstrates that J;(0)% 'z = 0.
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Thus Z;l;f %thd(O)jx = 0. But multiplying this equation by J;3(0)43 demonstrates

that J4(0)4 2z = 0, so Z?;f %thd(O)jx = 0. Continuing inductively one concludes that

Ja(0)x = 0. As ker J4(0) = K7, it follows that x € K. Thus ker(p; — I) = Ky. O

What does this mean for the intersection between iterated centres and these kernels for
irreducible linear flows? If the flow is hyperbolic, then the intersection is always trivial due
to the kernel. If the flow is central, then the intersection is still trivial due to the kernel,
except in the case where the flow’s eigenvalue lines up appropriately with ¢. At this point
the iterated centre comes into play. Even with a central flow with appropriate eigenvalue,
the intersection is still trivial if d < n. Only in the case where the flow is central with an
appropriate eigenvalue and n < d will the intersection be nontrivial. In such a situation
the kernel is K7 and the iterated centre contains K7 so the intersection is K. This is what

gives the family {BC,, () }nen ter+ its final property.

Theorem 4.12 Let ¢ be a linear flow on X with K = C. There exists a family of subspaces
of X, denoted {BCy,t(9)}nen, ter+ that satisfy the following two properties for all n € No
and t € RT:

(i) If h is a homeomorphic equivalence, then h(BC,,+(¢)) = BCy, (ko ¢);

(ii) The number of irreducible components of ¢ of dimension greater than n with eigenvalue

either 0 or 2™ for some nonzero z € Z equals dim BC,, 4(¢) .

Proof. The existence of this family of subspaces is clear from its construction. Property (i)
is just Proposition 4.8 - (v). It remains to prove (ii).

Fix n € Ny and t € RT. Let @}, ¢k be the irreducible decomposition of ¢ guaranteed
by Theorem 2.37. Fix a basis B of X by combining in order the elements of bases By of X}

for each k < m constructed so that each @y (t,z) = ek eta (©)

x with respect to By. This
can be done by Proposition 2.41. Now by Proposition 4.7 BC,,+(¢) = @, BCrt(¢k)-
But dimBC,,4(¢) = dim @@}~ BCpi(vr) = >4, dimBC,, (k) from the basic properties
of dimensions. Now if ¢ is of dimension di > n with eigenvalue Ay either zero or of

Zzt” for some nonzero z € N, then BC,, ;(¢r) = ICy(¢r) Nker(pr, — I) = K1 by

the form

Propositions 4.10 and 4.11, so that dim BC,, ¢(¢y) = 1 in this case. Otherwise it follows from
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these propositions that BC,, ¢(¢r) = {0}, so dim BC,, ;(¢x) = 0. Since each ¢y, corresponds
to an irreducible component of ¢, it follows that dim BC,, +(¢) is the number of irreducible

Z2Mi for some

components of ¢ of dimension dy > n with eigenvalue either 0 or of the form =5

nonzero z € Z. Since n and t were arbitrary, this completes the proof. [

This theorem is all that is necessary to complete the characterization of homeomorphic

equivalence discussed in Section 3.3.
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5 Examples and Other Considerations

With the theoretical work now complete, it is natural to turn toward more practical prob-
lems such as explicitly classifying particular flows. On normed vector spaces of small dimen-
sion, it is a straightforward exercise to provide a natural representative for all equivalence
classes of linear flows. It is also worthwhile to consider additional avenues of investigation

beyond this thesis, and this is discussed in the final section.

5.1 Examples

The diffeomorphic classification of flows on K¢ is particularly simple as a consequence
of Theorem 3.2. Each distinct d x d Jordan canonical form matrix with coefficients in
K generates a unique equivalence class with respect to diffeomorphic equivalence, since
distinct Jordan canonical forms are nonsimilar, at least up to reordering the individual
Jordan blocks. On the other hand, the existance of a Jordan canonical form guarantees
that every d x d matrix with coefficients in K is diffeomorphically equivalent to a matrix in
Jordan canonical form. Consequently the distinct (up to reordering) d x d Jordan canonical
form matrices with coefficients in K act as a natural set of representatives for all of the

equivalence classes of linear flows with respect to diffeomorphic equivalence.

The situation is more interesting when it comes to the homeomorphic classification of
linear flows on K¢. Since diffeomorphic equivalence implies homeomorphic equivalence, it is
still worthwhile to start by considering d x d Jordan canonical form matrices with entries in
K as representatives of equivalence classes. However, in this case multiple distinct Jordan
canonical form matrices may generate homeomorphically equivalent flows. This can be seen
clearly when it comes to hyperbolic flows — in fact it will quickly become apparent that

the number of equivalence classes of hyperbolic linear flows is finite.

The simplest case is of course when d = 1. The linear flows on R are exactly the maps
(t,x) > e"tx for some r € R. If r is negative, the flow is stable and thus equivalent to e~‘x.
Similarly, if r is positive, then the flow is equivalent to e‘z. Finally, if » = 0, then the flow

cannot be equivalent to either e ‘x or ez, so it generates its own single element equivalence
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class. It follows that the distinct equivalence classes of linear flows on R are exactly
[—11], [I1], and [O]

where, to simplify notation, [L] represents the equivalence class of the flow generated by
some L € L£(X). The situation is similar for linear flows on C. In this case the flows
are exactly the maps (t,z) — ez for some ¢ € C. In this case all flows with ¢ in the
left open half-plane and the right open half-plane belong to the equivalence classes [—1]
and [I1] respectively. All that remains is to deal with the situation when ¢ € iR. While
the two equivalence classes [—1;] and [I;] are sufficient to completely represent hyperbolic
flows, an uncountable collection of equivalence classes is required to deal with the remaining
nonhyperbolic flows. Each flow of the form e’z is homeomorphically equivalent to e~"x
for all » € R but is in turn not homeomorphically equivalent to ez for any other 7 € R.
Consequently each r € RT generates a distinct equivalence class, so that {[ir[1]},cg+ is a
family of distinct equivalence classes. Note that it is not necessary to consider r € R™ as

[irli] = [irly] = [—ir]] for all » € R. It follows that the distinct equivalence classes of

linear flows on C are exactly
[—11], [11], [O1], and the family {[ir[]},cp+.

Handling the case when d = 2 comes with a small but nonnegligible increase in difficultly.
As it is now possible for a real matrix to have a variety of purely imaginary eigenvalues,
the set of equivalence classes of linear flows on R? is no longer finite. With that said, the
situation for hyperbolic flows is still straightforward. A hyperbolic flow on R? is either
completely stable, completely unstable, or a mix of stable and unstable, and the associated
equivalence classes are respectively [—1Is], [I2], and [diag(—1I1,I1)]. The situation for non-
hyperbolic flows with no zero eigenvalues is similar to the nonhyperbolic case on C. In this
case, by defining

0 1

~>
I

-1 0

each r € R generates a distinct equivalence class ['rf ]. More finesse is required to handle

flows with a zero eigenvalue — two equivalence classes are required to handle flows which
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only have the eigenvalue 0, along with two distinct equivalence classes to handle flows with
the zero eigenvalue and a stable or unstable subspace. These equivalence classes are as
follows: [O2], [J2(0)], [diag(O1, —1I1)], and [diag(O1,I1)]. Consequently, for linear flows on

R?, there are exactly seven specific equivalence classes, namely

[02], [JQ(O)], [diag(Ol, —11)], [diag(Ol,Il)], [—12], [diag(—[l,ll)], and UQ],
together with the family {[rI]},cg+.

The first seven preceding matrices all also represent distinct equivalence classes when
it comes to linear flows over C? and the reasoning is similar. Since it is now possible for
a flow to have a single purely imaginary eigenvalue (counting algebraic multiplicity), it is
necessary to include some additional families of equivalences to handle flows with a zero
and a purely imaginary eigenvalue, as well as to handle flows with a purely imaginary eigen-
value and a stable or unstable subspace. The required families are {[diag(O1,irI)]},cr+,
{[diag(—1I1,irI)|},cr+, and {[diag(l1,irl)]},cr+. Again note that it is only necessary to
consider r € R for the same reason as in the d = 1 case, and this will continue to be
true throughout these examples. The situation is also more complex than in the R? case
for flows with two purely imaginary eigenvalues. It is necessary to construct a family of
representatives for when a flow consists of a single Jordan Block with a purely complex
eigenvalue. It is also necessary to construct a family (now ranging over two variables) to
handle flows consisting of two Jordan Blocks with purely imaginary eigenvalues. These two
families are {[J2(ir)]},cr+ and {[diag(ir111,47211)]},, rper+- In combination with the pre-
viously discussed three families, these five families along with the seven matrices discussed
previously combine to form a complete set of distinct representatives of the equivalence
classes of linear flows on C? with respect to homeomorphic equivalence.

The explicit representation of the homeomorphic classification of linear flows on R? is
only just barely reasonable to write up fully, given how many equivalence classes and families
of equivalences that are required. Now fifteen fixed matrices are necessary to represent
the distinct equivalence classes for flows consisting of various combinations of stable and
unstable subspaces, along with subspaces associated with the zero eigenvalue. A full list is

as follows:
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(03], [diag(O1, J2(0))], [J3(0)], [diag(Os, —11)], [diag(O2, I1)], [diag(J2(0), —11)],
[diag(‘b(O)ﬂIl)]? [diag«)lﬂ_IQ)]v [diag(oh_llvll)]v [diag(OhI?)]v [_13]7 [diag(_I%Il)L
[diag(—]l,IQ)], and [13]

It is also now necessary to have three separate families, namely

{[diag(O1,rD)]},cp+, {[diag(—I1,71)]},er+, and {[diag(l1,7])]},er+

to handle the combination of a central, stable, or unstable subspace with a subspace gen-
erated by a purely imaginary eigenvalue pair respectively. This is similar to how it was
necessary on C? to have three cases to handle the combination of a purely imaginary eigen-
value with a stable and unstable space and with subspaces associated with a zero eigenvalue.
The case C3 is even worse than R3?. The same fixed matrices as in the R? case are required,
along with a fairly substantial number of families. In particular, seven families consisting
of a single purely imaginary eigenvalue combined with the various fixed matrices of the C?
case are required; for example, the family {[diag(Os,irl1)]},cr+ is needed. Also, for both
families associated with only purely imaginary eigenvalues (the single Jordan block and
dual Jordan block families) in the C? case, there are now three associated families in the C3
case. For instance {[diag(O1, J2(ir))]},er+ and {[diag(—1I1,ir1]1,ir211)]},, ryer+ are both
required to completely represent the equivalence classes of linear flows on C3. And these
families are not yet sufficient; it is still necessary to handle flows on C? with only purely
imaginary eigenvalues via the families {[J3(ir)|},er+, {[diag(iril1, J2(i72))]}r, rpert, and
{{diag(ir1 1, ira 1, ir311)] }ry g ryer-

It is perhaps becoming clear that homeomorphic classification for a given d = D can be
described by building upon the classifications for d < D. The pattern is sufficiently complex
that it is not worth stating explicitly. It should be clear that explicitly expressing repre-
sentatives for the equivalence classes of linear flows with d higher than 3 quickly becomes

tedious.

5.2 Other Considerations

This thesis has focused on the classification of linear flows on finite-dimensional normed

spaces based primarily on the specific notions of homeomorphic and diffeomorphic equiva-
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lence. These notions of equivalence are fairly natural choices to work with, but one could
certainly consider other notions as well. For instance, one could construct a notion of higher
order derivatives. If Dh : X — L(X) is the derivative of a diffeomorphic equivalence h,
then there may exist a map D?h : X — L(X, £(X)) that is the derivative of Dh, and so
on. One could then discuss C"(X) equivalent flows for all n € Ny where homeomorphic and
diffeomorphic equivalence are simply the n = 0 and n = 1 cases respectively. One could

even define a notion of smooth equivalence.

With that said, notions of equivalence based on higher order differentiability are not
particularly interesting. Consider that a linear equivalence x — hx is always differentiable
with derivative & +— h. This derivative is a constant map, so higher order derivatives will
all exist and be the zero map from X to some appropriate space. Consequently, linear
equivalence implies smooth equivalence, which in turn imples C"(X) equivalence for any
n € N, finally implying diffeomorphic equivalence in particular. It would then follow from

Lemma 3.1 that all these notions of equivalence are identical to diffeomorphic equivalence.

Notions of equivalence weaker than diffeomorphic are potentially more interesting. For
instance, one can examine how diffeomorphic classification morphs into homeomorphic clas-
sification by considering a-Holder continuity for various o € (0,1]. This approach is dis-
cussed in [10]. One may also consider notions of equivalence weaker than homeomorphic;
for example, one could consider flow equivalences that are bimeasurable rather than bi-
continuous. Even further, one could discuss basic flow equivalence, without any additional
structure on the equivalence. Now less structure results in fewer tools to work with to
analyze those equivalences, but there are still things that can be said. The two flows in Ex-
ample 3.5 are not flow equivalent even in the most basic sense, for instance, as bicontinuity

was not used in that example.

As mentioned when flow equivalence was first introduced, one may also consider equiv-
alences for which the time variable can vary; that is, given flows ¢ and ¥ on X one
may consider bijections on X with the property that h(@(t,z)) = (h(t,z), h(z)) where
h:R x X — R. Such constructions are sometimes referred to as conjugacies rather than

equivalences. This topic is discussed more in [9], but it is not too hard to see what hap-

pens when h(t,z) = rt for all (t,2) € R x X where r is some fixed real number. When r
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is positive, diffeomorphic equivalence is made a little more flexible in that the underlying
operators of two flows now need only be similar up to some uniform rescaling. In essence
this introduces a single degree of freedom for diffeomorphic conjugacy that does not exist
for diffeomorphic equivalence. In the latter case the underlying operators of two flows must
have identical Jordan block structure once a basis is fixed. In the former case the Jordan
block structure must be similar, but the eigenvalues no longer need to be exactly the same
— it is now only necessary that the ratios between eigenvalues are the same. For example,
consider the two flows on C2? generated by matrices L and M with eigenvalues {i,2i} and
{2i,4i} respectively. These two flows clearly cannot be diffeomorphically equivalent, but
they are diffeomorphically conjugate, as the Jordan canonical form of the second matrix is

twice the Jordan canonical form of the first.

The situation is similar for homeomorphic conjugacy with a fixed positive . Upon
rescaling the underlying operator by r, eigenvalues with positive real part still have positive
real part, eigenvalues with negative real part still have negative real part, and eigenvalues
with zero real part still have zero real part. Consequently, homeomorphic conjugacy behaves
identically to homeomorphic equivalence when it comes to the stable and unstable parts of
a flow, and it behaves similar to diffeomorphic conjugacy when it comes to the central part
of a flow, as homeomorphic equivalence functions are linearly equivalent for that part. The
situation is also similar for conjugacies with negative r. Negative r values not only rescale
time but also reverse the direction of paths. With that said, negative r values still only

allow for one degree of freedom — either all paths are reversed or none are.

Aside from considering forms of equivalence outside those discussed in this thesis, one
may also consider other types of flows. Less can be said about such situations here, as this
thesis relies heavily on the innate structural properties of linear flows on finite-dimensional
normed spaces. One could for example consider the case of nonlinear flows, but virtually
all of this thesis is predicated on the fact that all linear flows are of the form e*z for some
linear operator, and this clearly is not true for nonlinear flows. One could also consider
flows when the dimension is infinite. Properties of linear operators on finite-dimensional
normed spaces are used both explicitly and implicitly. While it may be possible to avoid

using these properties via more elegant arguments, this would be a substantial endeavour,
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would likely increase the complexity of proofs, and may not be possible everywhere. One
could even consider a notion of flows defined for discrete time (using say ¢ € Z rather than

t € R), though the behaviour of discrete flows differs greatly from that of continuous flows.
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A Operator Exponential

The exponential of an operator is defined by naively applying the Taylor series expansion
of the real exponential to linear operators. For this definition to make sense, it is essential

that such a construction is always well-defined.

Proposition A.1 Let L € L(X). The sequence of partial sums {37_, %Lj}neN converges
in L(X).

Proof. As X is assumed to be a finite-dimensional normed space, X is in fact a Banach
space, and thus it is sufficient to prove that the sequence is absolutely convergent. But

L € L£(X) implies that || L] < oo, so limp 0 > 7 %HLJH <elll < 00. O
The following definition is now justified.

Definition A.2 Let L € £(X). The exponential of L is e’ := >0 %Lj € L(X).

As one might expect, many properties of exponentials of real numbers carry over to

exponentials of operators. For example, |ef| < el!l for all ¢ € R, and it is easily seen that a

similar result holds for the operator exponential.

Proposition A.3 Let L € £(X). Then ||e*| < el

Proof. 1t follows from the triangle inequality that [[>27_, %Lj <370 %HLHJ for alln € N.

The desired result is obtained by taking n to co. [J

Another basic property of exponentials of real numbers is that St = efe! = ele®

whenever s, t € R. This property also extends to exponentials of operators but with a catch.

If L, M € £(X) do not commute, then it is not necessarily true that e/*M = eleM = eMel,

This issue does not arise in the real case as commutativity is automatic.
Proposition A.4 Let L, M € L(X) commute. Then e*t™™M = eleM = Ml
Proof. For notational simplicity, set L, = >.7 ;L7 and M, = >7 ;&MJ. Now el+M

J=0j 7=0 j1
is simply >, %(L + M)’. By uniqueness of limits it is sufficient to show that for every

¢ € R there exists an N € N so that |37, %(L + M)J — eleM|| < € for all n > N, and

similarly for eMer.
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Fix e € RT. As a consequence of the binomial formula,
n 1 « n J 1 1
- J— 17—k k
Zj:() j! (L+ M) ijo Zk:O (j— k:)! k'M
=3 O(Zk Vi) M

n—j)!
= L.4 M
> b

after an appropriate rearrangement and relabelling of the terms. Since, again by reordering,

My =37 G M™ 7, it follows that

1 ' 1
Y (LMY =t =3 (- el S M et (M — M),

Now there exists an Njy; € N such that ||M,, — M| < ﬁ whenever n > Nj. Similarly,
there exists an Ny € N so that || L, — e[| < o for all n > Np. Finally, || 1M]|| must

converge to zero for the series Z =0 ,M to be absolutely convergent, and consequently

—_— € y
there exists an N € N so that Hj!M || < S(VL ) masoci<, 1L—e"] whenever j > Ny

Let N = max{Ny + Nas, Nis}, and let n > N. Then for all j < Ny it must be the

case that n — j > Ny, so Z M"7I||Lj — e¥|| < e by the construction of N

N
Similarly, that » 7 NLHH M IIL; — e*|| < %€ follows from the construction of Ny,

and that ||e”|||| M, — M| < ge follows from the construction of Nj;. Now

L
IIZJ o 1l MY —e 6M||<Z] o M" TIL; — €]

1 n—j
+Zﬂ G )

+ e 1M ~ eM\L

and consequently ||>27_, L (L + M)’ — eleM|| < e. The desired result follows as n and e

j=0 41

L

were arbitrary. The eMel case is proved similarly. [J

This thesis is primarily interested in exponentials of the form ' for t € R and L € £(X).

In this case the situation is more straightforward.
Corollary A.5 Let L € L(X). Then et = esletl for all s, t € R.

Proof. As sL and tL necessarily commute for all s, t € R, the result follows immediately

from the preceding proposition. [J

84



Another property of real exponentials that extends to operator exponentials is differen-

tiability — a property that plays a crucial role in this thesis.

Proposition A.6 Let L € L(X). Then e'* is differentiable with respect to t, and the

derivative of et is given by Le'" for each fized t € R.

Proof. Fix e € Rt, and let § = min{1
|h| < § it holds that

=W} € RT. For all h € R\ {0} such that

<||=(e"—1)-L

tL”
h

1
Hh(e(tJrh)L - etL) - LetL He

[

' 1 no 1 . .
. no 1 j—173j tL
= im0 ijlﬁh LI —L|| |l
. noo1 ..
<timge [S57 1 = 1]
) n-1 1 |
:hmn—>oo Zj:l ]ﬁﬁh]L] HL”HetLH

_ noo1
limg 3 SIBVILIP e

. no 1 ; L
< limy, 00 ijo ﬁf;]”LH]HLHH@t |

<e€

by the definition of ¢, noting that § < 1 guarantees 8/ < § for all j € N. This completes

the proof as € and ¢t were arbitrary. [J

There are some properties of the operator exponential that are not considered properties
of the real exponential, as they are trivial in the real case. The problem again is that
commutativity is automatic for real numbers. For example, the real exponential equivalent

of the following property is trivial.
Proposition A.7 Let L, M € L(X) commute. Then e“M = Me".

Proof. It is easily verified by induction on j that LM = M L7 for all j € Ny as a consequence
of the commutativity of L and M (the j = 0 case is trivial) so > ", %Lj M=3", %M L
for all n € N. The desired result then follows directly by taking limits on both sides, as the

M can be pulled out of the sums and limits. [
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The following proposition is another such example. Here the proposition does not even
require commutativity; rather the result is completely uninteresting with commutativity, so

it is never worth considering for real exponentials.
Proposition A.8 Let L, M € L(X) with M invertible. Then ¢MIM ™" = MeL 1,

Proof. It is easily verified by induction on j that (MLM~') = MLIM~! for all j € Ny

(the j = 0 case is again trivial) and it is an immediate consequence of this fact that
MEM™E = 3700 (B(MLM Y = Y20  EMEIM ™ = M(352 4 L/)M ™" = Meb M. O

It is sometimes necessary in this thesis to calculate the exponential of an operator
with respect to some fixed basis. As a consequence of the previous proposition, since
similarity transformations are exactly changes of basis, it is sufficient to calculate the ex-
ponential of the operator’s Jordan canonical form. But any operator in Jordan canoni-
cal form is a block diagonal matrix, say tdiag(J4, (A1), .., Ja,, (Am)), and it is clear that
>0 %tdiag(Jdl()\l), oo day, (Am)) = diag(3oi_g tJa, (M), -5 200 tJa,, (Am)) for all n €
Ny by induction on n (the j = 0 case is trivial as usual). Consequently, it follows that
etdiag(Ja; (A1), Jam (Am)) — diag(e“dl ()‘1), e ,et‘]dm()‘m)), so it is really only necessary to cal-
culate the exponential of a single Jordan block.

When K = C, a Jordan block J4(\) is of the form

A1 0 0 0
0 A 1 0 0
0 0 X 0 0
0 0 O Al
0 0 O 0 A

for some A € C. But then !¢V = M+tJa(0) — M tJa0) a5 tXT and tJ4(0) necessarily
commute for all ¢ € R. Since I™ = I for all n € Ng, it consequently must be the case that
Y020 HIAD) = 3252 SN T = (3552, HEIM)T = €M, so elaY) = eela®) for all t € R.

n

Now it is easily verified by induction on n that J;z(0)" is a matrix with ones down the n*®

super diagonal and zeros everywhere else whenever n < d; moreover J;(0)" = O for all
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n > d. Tt follows that et’/a(N)

matrix of the form

tA

0
0

If K = R, the situation is the same for Jordan blocks with A € R.

= et Z;l é%thd(O)j for all ¢ € R, and so is a real d x d
1 1 d- 1 1 ]
t 5t @l @t
1 4d—3 1 ,d-2
Lot @t @t
1_d—4 1 _,d-3
0 1 @t @t
0 O 1 t
0 O 0 1

The situation for Jordan

blocks with A € C \ R is similar as well, but more complex. In this case the Jordan block

is of the form

where ¢ = R\ and b =

etjd( )

thus it is a real 2d x 2d matrix of the form

i E(t,b) tE(t,b) 3t?E(t,b)
0 E(t,b)  tE(t,b)
o 0 0 E(t,b)
0 0 0
0 0 0
where
E(t,b) := ettl —

aly + bl Iy 0
0 als + b I
0 0 aly + bl
0 0 0
0 0 0

t(z[+td1ag( s D)+ 4(0)2 —emdlag( th )

0 0
0 0
0 0 . 1
with I =
~1 0
aly + b Iy
0 aly + bl

..7

1

1

1

cos(tb)
— sin(tb)
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@2y

@3

(d—4)!

th )

t4=2E(t,b)
t4=3E(t,b)
t4=4E(t,b)

E(t,b)

0

sin(tb)
cos(tb)

1
(d-1)!

1
(d@=2)!

1
(d=3)!

LB, )
12 E(t,b)
I3 E(t,b)

tE(t,b)

E(t,b)

SA. Applying similar reasoning as above, one concludes that

d .
P07 Lt7J4(0)% for all ¢t € R, and




B Operator Integral

Operator integrals are defined and behave almost identically to the standard Riemann
integral of real-valued functions. As such, it is necessary to start by defining notions such

as the partition of an interval.

Definition B.1 A partition of [a,b] C R is a finite sequence {t,})_, of real numbers such
that {t,} is strictly increasing (so t,—1 < t, for all n < N) and tp = a and ty = b. A
tagged partition of [a,b] is a partition of [a, b] paired with a second finite sequence {£, })\_;
of real numbers such that &, € [tn—1,tn] for all n < N. The size of a partition P is given
by |P| := max,<n|tn — tn_1|. The size of a tagged partition P is the size of its underlying
partition P.

Riemann sums of operators are also defined exactly as in the case of real-valued functions.
Definition B.2 Let f : R — £(X), and let P be a tagged partition of [a,b] € R. The
Riemann sum of f over P is given by S(f, P) := Z;VZI FEN ) —ti-1).

The operator integral is then constructed using Riemann sums.

Definition B.3 Let f : R — £(X). Then f is integrable on [a,b] C R if there exists an
M € L(X) such that, for every e € Rt, one may choose a § € R so that ||S(f, P)—M]| < e
for every tagged partition P satisfying ]75] < §. The operator M is referred to as an
(operator) integral of f on [a,b] and is denoted fab f(t)dt. If f is integrable on [a,b] for
every [a,b] C R, then f is integrable.

It is unsurprising that an operator integral is unique (for a given [a, b]) if it exists, and
the proof of this fact is similar to the standard proof of uniqueness of limits.

Proposition B.4 Let f : R — £(X) be integrable on [a,b] C R. If M, M € £L(X) are two
operator integrals of f on [a,b], then M = M.

Proof. Note that ||[M — M|| < |M — S(f,P)|| + |S(f,P) — M|| for any tagged partition P
of [a,b]. In particular, given a fixed € € R", by definition there exist 6, 6 € Rt such that
|P| < min{d, 8} implies that ||S(f,P) — M|| < & and ||S(f,P) — M| < &, and consequently
| M — M | < € via an appropriate choice of tagged partition. Since e was arbitrary, it follows

that M = M. O
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For the purposes of this thesis it is essential that every linear flow be integrable. This is
indeed the case as demonstrated in the next proposition, but it is first necessary to prove

the following lemma.

Lemma B.5 Let f: R — L£(X), and let [a,b] C R. Then f is integrable on [a,b] if and
only if for all € € R there exists a § € RY such that |S(f,P) — S(f, Q)| < € whenever P
and Q are tagged partitions of [a,b] with |P|, |Q] < 4.

Proof. Suppose first that f is integrable on [a,b], and fix an ¢ € RT. By definition there
exists a & € RT such that any tagged partition P of [a, b] with ]75] < § must satisfy
1S(f, P f f(t)dt]]| < §. But then for two partitions P and Q such that |P|, |Q| < &
it must be that |S(f,P) — S(f, Q)| < [S(f,P) — [ f(t)dt| + |S(f, Q) — [V f(t)dt]| < e.
This is sufficient to prove the ‘only if’ case as € was arbitrary.

Suppose now that for all e € R there exists a § € Rt such that ||S(f, P) —S(f, Q)| < €
whenever P and Q are tagged partitions of [a,b] with |P|, |Q| < §. Then in particular
for any n € N there exists a 6, € R such that ||S(f,P) — S(f,Q)|| < 1 whenever P
and Q are tagged partitions of [a,b] with |P|, |Q| < &,. It may be assumed without loss
of generality that {0, }nen converges to 0. Now construct a sequence of tagged partitions
{Pn }neN of [a, b] such that |P,| < &, for all n € N. The induced sequence of Riemann sums
{S(f,Pn)}nen is clearly Cauchy by above, and since £(X) is a Banach space it follows that
{S’(f,P)n}neN converges to some limit M € L£(X).

Fix an € € RT. As {S(f,Ppn)}nen converges to M, there exists a d,, € R such
that [|S(f,Pn) — M| < § whenever |Pp] < 6ny. As {6, }nen converges to 0 there also
exists a 0,, € R such that ||S(f,Q) — S(f,P,)| < § whenever 19|, |Pu] < Ony. Set
5 = min{d,,,0n,}. Then for all tagged partitions Q of [a,b] with |Q| < § it must be that
IS(f, Q) — M|| < ||S(f, Q) — S(f, Pu)ll + |IS(f, Pn) — M| for any P,. As this holds for all
P,., this is in particular true for P, such that |P,| < 8, in which case ||S(f, Q) — M| < .

As € was arbitrary, this proves the ‘if” case. [

The standard approach to proving that every continuous real-valued map is integral
uses upper and lower sums. Such constructs do not make sense in the context of Banach-

valued maps, so an alternative approach is required. The preceding lemma demonstrates
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that integrability on an interval is equivalent to requiring that all Riemann sums satisfy a
Cauchy-type property. Using the preceding lemma, it is now possible to demonstrate that
every continuous Banach-valued map is integrable, simply by showing that every such map

satisfies this Cauchy-type property for every [a,b] C R.
Proposition B.6 Let f: R — L(X) be continuous. Then f is integrable.

Proof. Fix € € R*, and fix [a,b]. Since f is continuous, and since [a, ] is compact, there
exists a 6 € RT such that ||f(t) — f(s)]] < 35— Whenever It —s| < 8. Let P and Q be
two partitions of [a,b] such that [P|, |Q| < é. Define the partition R of [a,b] to be the
finite sequence {rn}gjo generated by the distinct elements of {tn}ﬁfio and {sn}ivfo taken in
increasing order. Then form a tagged partition R using R in combination with any sequence
{#,}E . Note that necessarily |R| < 4. It is sufficient to show that ||S(f, P)—=S(f,R)| < 5
as |S(f,P) = S(f, QI < IS(£,P) = S(f, R + I1S(f, R) = S(£, Q).

The idea now is to take advantage of the fact that the sequence {tn}iv Ly is contained in
{Tn}ﬁ[fo- Construct a sequence {ﬂl}gjl by setting #,, = t; whenever r,, € (tj_1,t;] for all

j < Np and n < Ng. Then S(f,P) = 2% f(#)(rn — 1), and it follows that
IS P) = SU R = [ AE 0 = racs) = S0, S0 = )|
- HZNj (FEL) — £ — rar)
< 1) - £ — )
o ﬁ< ~ i)

since YN (r, — r,_1) = b — a. As € was arbitrary, it follows from Lemma B.5 that f is

integrable on [a, b]. This completes the proof, as [a, b] was arbitrary. O

Not only are continuous maps all integrable as in the case of real integrals, but many
of the basic properties of operator integrals are similar to properties of real integrals. For

example, operator integrals behave well under operator addition and scalar multiplication.

Proposition B.7 Let f, g : R — L(X) be continuous, let [a,b] C R, and let z, y € K.
Then ffa:f( ) +yg(t dt—z:f f(t) dt+yf;g(t)dt
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Proof. Let P be a tagged partition of [a,b]. Tt is clear that S(zf + yg, P) = zS(f,P) +
yS(g,P) holds, so Hfab xf(t) +yg(t)dt — f f(t) dt—l—yfbg (t)dt)|| is less than or equal to
12 2 (8) + yg(t) di — S(af +yg, P+ 2llIS(P) — [° 56y dell + 1l S(g, ) — [ a(t) dt]
by the triangle inequality. It follows that ||fa xf(t) +yg(t) dt — f ft)dt+ yf g(t)dt)||
may be made arbitrarily small by choosing a tagged partition P of [a, b] with ]77] sufficiently
small. [J

Proposition B.8 Let f: R — L(X) be continuous, let [a,b] C R, and let L € L(X). Then
L[Pftydt = [PLf(t)dt and [° f(t)dtL = [* f(t)Ldt.

Proof. Note that for any tagged partition P of [a, b] it must hold that S(Lf, P) = LS(f,P)
and S(fL,P) = S(f, P)L. The rest of the proof follows similarly to the proof of the previous

proposition. [l

It is often useful to manipulate the intervals of a real integral, and these techniques

extend to the operator integral as well.

Proposition B.9 Let f : R — L(X) be continuous. Then f;f(t) dt = [7 f(t) dt—i—fcb f(t)dt

for any ¢ € (a,b).

Proof. Let P be any tagged partition of [a,b] so that ¢ appears in the sequence {t,}_,.
Then P splits into two partitions P; and P of [a, c] and [, b] respectively, and necessarily

S(f,P) = S(f,P1) + S(f,P2). Now Hf feydt — ([ f(t dt—i—f f(t)dt)] is less than or
equal to Hfa Ft)dt—S(f,P)|+IS(f,P1) — [ F(t) at]l + ||S(f, Ps) f f(t)dt]]. It follows
that ||f; f@)yde— ([ f(t)dt + f £(t)dt)|| can be made arbitrarily small by choosing P as
above with |P| sufficiently small. O

Proposition B.10 Let f : R — L(X) be continuous. Then fa+bf fo f(t+a)
for alla € R and b € RT.

Proof. Consider that any tagged partition P of [0,b] generates a tagged partition 0 of
[a,a + b] by setting s, = t, +a forall 0 < n < N and 5, = t, +a for all 1 < n <

N; moreover \75\ = |9| and S(f,Q) = S(f,P) where f(t) := f(t +a). It must hold
that || [0 f(t)dt — [ f(t+a)dt]) < |S(f, Q) — [SF° f(t) dtl| + |S(F, P) — [ F(t+a)dt]],
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SO ||faa+bf(t) dt — fobf(t + a)dt|| can be made arbitrarily small by choosing P with |P|

sufficiently small . [
For the purposes of this thesis, it is essential to prove the following proposition.

Proposition B.11 Let f : R — L(X) be continuous. Then lim,_, % faa+s f(t)dt = f(a)
for all a € R.

Proof. Fix ¢ € Rt. By continuity there exists a 6 € RT such that ||f(¢t) — f(a)|]] < §

whenever |t — a| < 0. Let s < 6. Now for any tagged partition P of [a,a + s] it must hold

that
12 [ rwa- s < | [T L sCam)| + st - s
- [ b a- s
S A ) = @t~ o)
- [ b a- s
LIS ()~ @)t )
<[ [T rwa-sisp

<+~

n tn—l)

F 2 1) - F(a)li
a+s R €
<[ srwa-scrp) s

In particular this is true for any tagged partition with |75| sufficiently small that P satisfies
1fem= L) dt — SCEP)| < Sso ||L [9F° f(t)dt — f(a)]| < §+§ = e. As e was arbitrary,

the result follows as a and s were also arbitrary. [J

C Complexification and Realification

It is often the case that complex normed spaces are easier to work with than real normed
spaces. As such, when working with real normed spaces, it is desirable to be able to in some

sense convert the spaces to complex normed spaces prior to analyzing them. This conversion
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can be done in a canonical fashion called complexification, wherein a real normed space is

viewed as being embedded in a complex normed space.

Definition C.1 The complezification of X with K = R, denoted X¢, is given by the set
{(z1,22) : 1,22 € X} equipped with notions of addition and (complex) scalar multipli-
cation, where addition is given by (z1,z2) + (y1,y2) = (1 + y1,22 + y2) for all (z1,x2),
(y1,y2) € Xc and scalar multiplication is given by (a + ib)(x1, x2) := (ax1 — bxa, axs + bxy)

for all @ + b € C and (1, z2) € Xc.

For simplicity X¢ := X for X with K = C. As such, it is only interesting to consider
X with K = R, so this will be assumed to be the case until stated otherwise. In either case

X is a finite-dimensional normed space over C.
Proposition C.2 X¢ is a normed space over C with dime X¢ = dimg X.

Proof. First it is shown that X¢ is a vector space over C. It is clear from the definition that
r+y € Xc for all z, y € X¢, and similarly that cz € X¢ for all ¢ € C and x € X¢. The
associativity and commutativity of addition follow from the definition of addition and the
fact that X is a vector space; moreover, it is clear that Oc is given by (0,0) and —z is given
by (—x1,—x32) for all x = (x1,22) € Xc. To see that scalar multiplication also behaves
properly, first note that clearly 1z = «x for all x € X¢. Scalar multiplication is associative,

since

c1(cax) = (a1 +iby)(agx1 — baxg, agxa + baxy)

= (a1a271 — a1bawa — biagwz — bibexy, arasxs + a1baxy + braswy — b1baxa)
= ((araz — biba) +i(a1be + braz))(z1, x2)

= (c1c9)x

for all x = (z1,22) € X¢ and ¢1 = a1 + ib1, c2 = ag + ibs € C. Finally,

clx+y) = (a+ib)(x1 + y1, 22+ y2)
= (ax1 + ay1 — bxy — bya, axs + ays + bx1 + by1)
= (ax1 — bxa, axe + bz1) + (ay1 — byz, ay2 + by1)

=cx+cy
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for all x = (z1,22), y = (y1,42) € Xc and ¢ = a +ib € C, and

(61 + 62)1‘ = ((a1 + CLQ) + i(bl + bz))($1,l’2)
= (a1x1 4+ aox1 — b1xs — boxa, a1x2 + asxe + b1 + ngl)
= (alxl — bl.rg, a1T2 + blxl) + (azl'l — bg:ﬁz, agsx9 + 521‘1)

= C1Z + Ccx

for all x = (z1,22) € X¢ and ¢1 = aj + by, co = ag + ibs € C, so addition and scalar
multiplication distribute appropriately.

To see that X¢ is a normed space, consider the map ||-||c : X¢ — R defined by setting
|zllc = supgejo,onllcos(@)z1 + sin(@)xz| for all z = (z1,22) € Xc. Clearly [[zflc > 0 for
all x € X¢ with ||0||c = 0. If ||z||c = O for some z = (x1,22) € X¢, then it must be that
cos(0)z1 + sin(f)xze = 0 for all § € [0,2n]. In particular, this must be true for § = 0 and

0 =5, s0z; =0 and xg = 0, and consequently z = 0. Now

[z +yllc = (z1 +y1, 22 + 32)llc
= SUPgeo, 2] [cos(0) 21 + cos(0)y1 + sin(0)z2 + sin(0)y2||
< suppeo 2r) ([lcos(0)z1 + sin(0) 2| + [lcos(O)y1 + sin(0)y2|)
< suppe,27)[lcos(0)z1 + sin(0) 22| + supgeo 2 lcos(0)y1 + sin(0)ya||

= llzllc + lylc
for all x = (z1,22), y = (y1,y2) € Xc. Finally,

llcx|lc = [|(re cos(0c)z1 — resin(fe)xa, e cos(0.)xa + resin(b:)x1)||c
= SUPgefo 2] [|7e c08(0) cos(bc)x1 — e cos(0) sin(fe)z2
+ resin(6) cos(0c)xa + 1 sin() sin(0. )1 ||
= TcSUPgeo2r[|cOS(0 — Oc) 1 + sin(0 — 0.) 22|
= |re(cos(0c) + isin(0c))| supgefo 2+ llcos(0)z1 + sin(0)z2||
= lelllzllc

for all x = (x1,22) € Xc and ¢ = r¢(cos(.) + isin(f.)) € C. It follows that [-||c is a norm

on Xc.
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Now let {b,}¢_; be a basis for X, and consider {(b,,0)}¢_; in X¢c. Given a point
x = (x1,z2) € Xc, there exists ap, a, € R for n < d such that z; = Zzzl anb, and
Ty = Zzzl anby, since {bn}gzl is a basis for X. Now define {cn}g:1 in C by ¢, = ap, + tay.

Then

d d d d
T = (I'l,xQ) = (anl anbn, _— anbn) = anl(anbna dnbn) = anl Cn(bmo)a

and thus {(b,,0)}?_; spans X¢ since = was arbitrary. On the other hand, suppose that
S en(bn,0) = 0 for some ¢, = a, + id, € C. Then (0,0) = (3%, anbn, 3% a@nbn).
Since {b,}¢_, is a basis for X, it must be that a, = @, = 0 for all n < d. But then
cn = 0 for all n < d. It follows that {(b,,0)}%_, is linearly independent, and consequently

{(bn,0)}2_, is a basis for X¢. Thus dime X¢ = dimg X < co. O

It makes sense to write x1 + iz in place of (x1,22) € Xc. Identifying X with the
subspaces {(z,0) : x € X} and {(0,z) : z € X}, it follows that X¢ can be viewed as
X @iX. While it took some work to construct a norm on X¢ built from a norm on X, it is
easily seen that the restriction any norm on X¢ induces a norm on X. Now that it is clear
that X¢ is a complex finite-dimensional normed space as desired, one may also define the

complexification of a map in a straightforward fashion.

Definition C.3 Let f : X — Y. The complexification of f, denoted fc : X¢c — Y,
is given by fc(x) = f(x1) + if(x2), where x1, 9 € X such that © = x; + ize. Let ¢
be a flow on X. The complexification of p, denoted pc : R x X¢ — X¢, is given by
oc(t,x) = @(t,x1) +ip(t, z2), where x1, o € X such that x = z1 + iza.

Many properties of maps are preserved by their complexifications. For example the

complexification of a continuous map is itself continuous.
Proposition C.4 Let f: X — Y be continuous. Then fc is continuous.

Proof. Let zy € X¢, and let {x,}n,en be a sequence in X¢ converging to xp. Then there
exists z9,1, 0,2 € X and sequences {xy 1 }nen and {z, 2 }nen in X such that zg = z91 +izo 2
and z, = x,1 + iz, 2 for all n € N. It follows from the convergence of {z,}nen that the

sequences {Zp 1 }nen and {izy2}nen converge to xo1 and ixg 2 respectively, and thus the
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sequence {xy 2}nen converges to xp2. Consequently,

limy, o0 fo(@n) = iMoo (f(2n,1) + i f (20,2))
= limy 0 f(#n1) + 0 limy, o0 f(2n.2)
= f(@o1) +if(w02)
= fe(wo),

and fc is therefore continuous as {x, }nen and xg were arbitrary. [
A similar result holds for linear operators.
Proposition C.5 Let L € L(X,Y). Then L¢c € L(Xc, Yo).

Proof. Continuity of L¢ follows from the previous proposition, so it suffices to demonstrate
linearity. Let x, y € X¢, and let ¢q, co € C. Then there exist x1, xs, y1, y2 € X and a1, by,
asz, bo € R such that x = x1 +ixe, y = y1 + 1y, c1 = a1 + ib1, and co = ag + iby. It follows

that

Le(erz + e2y) = Le((arzr — bize) + i(arwe + biwy) + (a2y1 — baye) + i(azy2 + bay1))
= Le((a1@n — biwg + agyn — bayz) + i(a122 + bzt + agys + bayn))
= L(a1z1 — biza + agyr — baya) + iL(a1z2 + biz1 + az2yz + bayn)
=a1Lxy — by Ly + asLyy — baLys + i(a1 Lxe + by Lzy + agLys + baLyr)
= (a1 +ib1) (L1 + iLxg) + (ag + ibe)(Lyr + iLys)

= c1Lcx + c2Ley,
so L is linear (over C) as z, y, ¢1, and co were all arbitrary. O

Not only does the complexification of a linear operator result in a linear operator, but
in fact the complexification of a linear combination of linear operators results in a linear
operator that is simply the linear combination of the complexifications of the linear operators

in the linear combination.
Proposition C.6 Let L, M € L(X), and let r, s € R. Then (rL + sM)¢c = rL¢c + sMc.
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Proof. Let x € X¢. There exist x1, x2 € X such that x = x1 4+ tx2. Now

(rL+ sM)cx = (rL + sM)xy +i(rL + sM)x
=rLxy + sMxy + i(rLze + sMxo)
=r(Lxy 4+ iLxs) + s(Mx1 +iMuzo)

=rLcx + sMcx,
so (rL + sM)c = rLc + sMc as « was arbitrary. [

Note that any linear operator L can be viewed as a real matrix once a basis has been
fixed. If this matrix is instead viewed as a complex matrix (with entries that happen to be all
real) then ¢L = Li, and consequently Lcx = Lz +iLxo = Lxy + Lizg = L(x1 +ixe) = Lz,
so the matrix representation of L¢ is the same as the matrix representation of L once a

basis is fixed.
Proposition C.7 Let ¢ be a flow on X. Then ¢c is a flow on Xc.

Proof. Let x € X¢. Then there exists x1, 9 € X such that x = x1 + ixo. But then

wc(0,2) = ¢(0,21) + ip(0,22) = 21 + ize = x. Also

ec(s, oe(t, @) = pc(s, ot 21) + ip(t, 22))
= p(s,0(t,21)) +ip(s, o(t, 22))
=(s+t,x1)+ip(s+t,za)
= c(s+1,2)

for all s, t € R. As x was arbitrary, it remains to show that ¢ is continuous. This is proved

similarly to the proof of Proposition C.4. [J

It follows from Proposition C.5 that the complexification of a linear flow is itself a linear
flow. Furthermore, it is easily seen that the complexification of a linear flow is generated

by the complexification of the operator that generates the original flow.

Proposition C.8 Let ¢ be a linear flow on X. If L € L(X) generates ¢, then ¢c is a

linear flow on Xc¢ generated by L.
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Proof. Linearity follows from Proposition C.5. To show that ¢c is generated by Lc, it
suffices to show that the complexification of et is really just e!c. Let 2 € X¢. There exists
x1, 2 € X such that x = x1 + izy. Note first that (Lc)? = (L7)c¢ for all j € N by induction
on j, since (Le) Mo = (Le) Lex = (I )e(Lay + iLag) = LIt ey + ili oy = (L) e if
(Lc) = (%), so (Le) ™t = (L7 +Y)¢ as o was arbitrary. Let t € R. It now follows from

Proposition C.6 that

(etL)(c:B =etly +ietlay
= lim,, 00 Z —t]sznl + 1 limy oo Z —tJL]acQ
= lim,, 0o Z —tj (L) +il7x)

= hmn_>oo Z =0 Ft] L]

= etleg

and thus (e'’)c = e*lc as x and t were arbitrary. O
Even flow equivalence is preserved by complexification.

Proposition C.9 Let h be a flow equivalence between flows @ and ¥ on X and Y respec-

tively. Then hc is a flow equivalence between oc and ¢ .

Proof. First it is shown that hc is a bijection. Let y € Y¢. Then y = y1 + iy2 for some
Y1, y2 € Y, but then y = h(xy) + ih(z2) = hc(zy + izg) for some z1, 9 € X, and
consequently y = hc(z) for some x € Xc. Thus hg is surjective. Let z, & € X¢. There
exists 1, x9, &1, T2 € X such that x = x1 + izy and & = & + iZe. If he(z) = he(2),
then h(x1) + ih(x2) = h(Z1) + ih(Z2), and thus h(z1) = h(21) and h(x2) = h(Z2). It then
follows from the injectivity of h that x1 = &1 and x2 = 22, so x = . Thus h¢ is injective.
Finally, let x € X¢. There exists x1, 9 € X such that z = x1 + ize. It follows directly
from the Definition C.3, along with the fact that h is an equivalence between ¢ and ¢, that
he(pc(t,x)) = e(t, he(z)) for all t € R. This is sufficient to complete the proof as x was

arbitrary. [J
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It follows from Proposition C.4 that the complexification of a homeomorphic equivalence
is iteself a homeomorphic equivalence. Similarly, it follows from Proposition C.5 that the
complexification of a linear equivalence is itself a linear equivalence.

Not only are many properties of maps preserved by complexification, but decompositions

are preserved by complexification as well.

Proposition C.10 If X = @’ | Xy, then Xc = @}, (Xk)c. Let L € L(X). If L can be
written as @), Ly for some Ly € L(X}), then Lc = @), (Lk)c. Let ¢ be a linear flow on

X. If ¢ can be written as @, i for some linear flows i, on Xy, then pc = By (Pk)c-

Proof. It is easily verified that X¢ = Y ;' ;(Xg)c. Now fix k& < m. Given some point
z € (Xg)c N Y22 (Xj)c, then there must exist some 1, ;2 € X for j < m such that
Tl +iTp = T) = Z#k xj1 +ixj2. But then xp; = Z#k xj1 and g9 = Z#k xj2. As
by assumption Xy N 3", X; = {0}, it follows that z = 0. Thus Xc =} 3}, (Xx)c = {0},
as x was arbitrary. As k was also arbitrary, this holds for all £ < m, and this is sufficient
to prove the first statement.

For the other two statements, let z € X¢. There exist y, z € X such that z = y + 2.

Now

Lex =Ly + Lz
m . m
= (D 1) v+ i (D, 1) -
m . m
= Zk:l Liryr +1 Zk:l Lz
m
= (Liye + iLgzy)
m
=, (Ix)czn
m
= (B, 2i)e)

and a similar argument works for ¢c. O

So many things are preserved by complexification that one may wonder what isn’t pre-
served. It turns out that irreducibility is not preserved by complexification. Of course
the irreducible decomposition of a flow necessarily generates a decomposition of the com-

plexification by the preceding proposition, but this decomposition need not be irreducible.
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Consider an irreducible flow ¢ of dimension d with eigenvalue A. As has been demonstrated
¢ is generated by L¢ where L is the operator that generates . Since ¢ is irreducible, L
takes the form of a single real Jordan block jd()\) under an appropriate choice of basis. But
under that basis L¢ has the same form. Now if A is real, then L¢ (and consequently ¢c) is
also irreducible as complex Jordan blocks with a real eigenvalue are the same as real Jordan
blocks with a real eigenvalue. However, real Jordan blocks with a nonreal eigenvalue are
constructed from conjugate pairs of complex Jordan blocks, so with an appropriate change
of basis L¢ = diag(Jg (N, Jg (\)). Note that % makes sense as d must be even for a real
Jordan block with a nonreal eigenvalue. But this means that ¢ reduces to the flows gener-
ated by J a (M) and J a (). Consequently, given a real flow ¢, each irreducible component of
@ of dimension d with eigenvalue A € R corresponds to an irreducible component of ¢¢ of
dimension d with eigenvalue A, while each irreducible component of ¢ of dimension d with
conjugate pair of eigenvalues {\, A} corresponds to a pair of irreducible components of ¢¢
of dimension g with eigenvalue A and X respectively.

One might wonder if complexification can be reversed; that is, given the complexification
of a space, can one reconstruct the original space? Unfortunately this is not possible. The
problem is that there is an infinite collection of subspaces of a complex normed space that
can be viewed as embedded real normed spaces, and there is no way to tell which one is
the original space. With that said, considering Definition C.1, complexification amounts
to introducing multiplication by ¢ to a real normed space. One can reverse this idea — in
effect one can forget multiplication by ¢ in a complex normed space — to construct a real

normed space from a complex normed space. This process is called realification.

Definition C.11 The realification of X with K = C, denoted Xg, is given by the set
{z : © € X} equipped with notions of addition and (real) scalar multiplication, where
addition is simply the addition of X and scalar multiplication is simply the (complex)

scalar multiplication of X restricted to the real numbers.

For simplicity Xg = X for X with K = R. Similar to complexification the case where
K = R is entirely uninteresting, so it will be assumed from here on that K = C. In many
respects realification is a simpler process than complexification. This can be seen in the

proof that Xg is a real finite-dimensional normed space for X with K = C.
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Proposition C.12 Xy is a normed space over R with dimg Xg = 2dim¢ X.

Proof. That Xg is a vector space is a trivial consequence of the fact that X is a vector
space and R is a subfield of C. It is also clear that, given any norm ||-|| on X, the map
|-lg : Xg — R given by ||z|[g = ||z|| for all # € Xg is a norm on Xg. Let {b,}¢_, be
any basis for X, and consider {En}?ﬂ:l given by b, = b, whenever n < d and b, = ib, g4

whenever d < n < 2d. If ¢ € Xg, then z = Zi:l Cnby, = Zd (an + i@y )b, for some

n=1

2d

—1 "nbn where

Cn = apn + ta, € C. But then z = Zi:l anbn + Zid:dﬂ 1n—dbn—q = Y.
rn = a, € R whenever n < d and r, = a,—4 € R whenever d < n < 2d. It follows that
{l;n}%d:l spans Xg since x was arbitrary. On the other hand, suppose Zid:l Fnbn = 0 for
some 1, € R, and define {cn}gzl by setting ¢, = ry, + irprq € C. Then it must be that
Zi:l Cpby = Zid:d-u rmbn = 0. Since {bn}z:1 is a basis for X, it follows that ¢, = 0 for
all n < d, and consequently r, = 0 for all n < 2d. Thus {Bn}%dzl is linearly independent,

and it follows that {l;n}%dzl is a basis for Xg, so dimg Xg = 2dim¢c X < oo. [
It turns out that Xr and X can be identified with each other in a very strong sense.

Proposition C.13 The map tx : Xg — X given by tx(z) = x is a homeomorphism with

tx and L)_(l both R-linear.
Proof. This is clear from the definition in light of the proof of Proposition C.12

One then defines the realification of a map between complex normed spaces based on

this identification.

Definition C.14 Let f : X — Y with Kx = Ky = C. The realification of f, denoted
fr : Xg — Yg, is given by fr(z) = ¢ (f(tx(x))). Let ¢ be a flow on X. The realification

of ¢, denoted g : R x Xg — Yg, is given by ¢r(t,z) = 15 (¢(t, 1x(2))).

Previously it was shown that complexification preserves many properties of maps, and
the situation is the same when it comes to realification — in fact, many of the proofs in
this case are essentially trivial. For instance, fr is continuous whenever f is continuous, as
fr is just a composition of continuous functions. The only result that requires care is the

following proposition.
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Proposition C.15 Let ¢ be a linear flow on X. If ¢ is generated by L € L(X), then ¢g

is a linear flow on Xr generated by Lg.

Proof. Note that (Lg)* = (L¥)r for all k € N by induction on k since if (Lg)* = (L*)g,
then

(LR)k+1JZ = (LR)kLRa:

= i (LM ix (@)
— (LF g
for all 2 € Xg, so (L)1 = (L¥1)g. Tt follows that
(eM)re = ik (" ix (2))
/,X (hmn_wo Z —th]LX )>
= limy, 00 Z —t] YL ux(x))

OJ'

= lim;,, 00 Z 0 ﬁtj LJ

= lim;, 00 Z —tj LR

— etL[RfE

for all x € X and ¢t € R. The desired result then follows. [

The only other result that needs to be considered is how realification affects decompo-
sitions. Unsurprisingly, just as with complexification, the realification of a decomposition

decomposes over the realifications of the various components.

Proposition C.16 If X = @' | X, then Xgp = @], (Xi)r. Let L € L(X). If L can be
written as @), Ly for some Ly € L(X}), then Lr = @), (Lk)r. Let ¢ be a linear flow on

X. If ¢ can be written as @, i for some linear flows pi, on Xy, then pr = B (Pk)r-

Proof. Let By be a basis for X}, for each k < m. Then B := |J;-, By, is a basis for X, and

using this basis to construct Xy the first statement then follows from the definition. It is
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also clear using this basis that tx((Xx)r) € X and ¢ (X;) € (Xk)r, and the other two

statements follow from the definition of Lg and ¢gr. O

As in the case of complexification, it is worthwhile to consider what happens to irre-
ducible components under realification. As previously, this amounts to determining what
happens to Jordan Blocks Jg(A) under realification. If ¢ is generated by L = J;(\) with
respect to a basis B, then one can determine Ly by direct calculation of Lz for x € X. If
A € R, then order the basis B U B of Xg by taking the elements of B in order followed
by the elements of i3 again in order. With the basis in this form, direct calculation of Ly
determines that Lg = diag(Jg(\), Ja(A)) — that is, ¢r is reducible with irreducible compo-
nents both generated by Jyz(\). If A € C\ R, then order B U iBB by taking the first element
of B followed by the first element of iBB followed by the second element of B followed by the
second element of 8 and so on. Direct calculation of Lg determines that Lr = jgd(/\), S0 in
this case g is still irreducible. Therefore, given a linear flow ¢, each irreducible component
of ¢ of size d with eigenvalue A € R corresponds to a pair of irreducible components of ¢gr
of size d with eigenvalue A, and each irreducible component of ¢ of size d with eigenvalue
A € C\R corresponds to an irreducible component of ¢ of size 2d with conjugate eigenvalue

pair {\, A}
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