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1
Introduction

1.1 What is Fault Detection and Diagnosis (FDD)?

A common problem within the process industry is that many control loops do not operate 
in a satisfactory manner. Though the controllers are designed to be robust to model 
uncertainty and disturbance rejection, they rarely work in a “fault-tolerant” manner. A 
simplistic and very general definition of a fault is that, it is an unacceptable deviation of 
properties or variables of a system. Typical problems are for instance, oscillations, sensor 
offsets and drifts, valve stiction, leaks, parameter changes etc. Since a typical plant consists 
of hundreds or thousands of control loops, which interact in a rather complex way, it is very 
hard to detect and diagnose such problems.

1.1.1 Basic tasks of an FDD routine

The main tasks of an FDD routine can be classified into two categories, detection and 
diagnosis. The diagnosis task can be further subdivided into, isolation, identification, and 
reconfiguration. When the FDD routine is used as an advisory system, its task is restricted 
to fault detection and isolation. When it is a part of an Abnormal Situations Management 
(ASM) system, it needs to have further capabilities. In this connection two possibilities 
exist. One can think of the FDD routine as a part of a Fault-Tolerant Control System 
(FTCS). In this case, the system continues to operate even in the presence of a fault. 
For example, this is possible in the presence of sensor and actuator faults. FTCS in the

1
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presence of sensor faults is more common. If it is possible to reconstruct the value of the 
sensor, or more importantly, infer the underlying state, it is possible to continue running the 
process even in the presence of the sensor fault. Similarly, if the system possesses enough 
redundant actuators, for example, as in an aircraft wing, it is possible to continue running 
the process even though some actuators have failed. The other possibility is to consider 
the FDD routine as a part of an alarm management system. Under the presence of certain 
faults, the FDD routine can trigger a safe shutdown before the occurrence of a catastrophic 
event. Different combinations of the following components of FDD help achieve the above 
mentioned capabilities:

Detection

The task in fault detection is to indicate whether a fault exists in the system under 
observation. This is a Yes/No question. It depends on the question of what constitutes 
a fault. While it has deep philosophical implications, a pragmatic viewpoint is to leave 
this decision to the user. However, it is important to ensure that the ignored faults do not 
develop into abnormal events which are of concern to the user.

Isolation

The task in fault isolation is to find the location of the fault. This is one of the most difficult 
tasks in the FDD process. It is made easier if a good model of the system is available. In 
this connection, a good model can be considered as one that has enough information, or 
level of detail, for the diagnostic task at hand.

Identification

The task in fault identification is to estimate the size of the fault. It is used mainly for 
FTCS. Fault identification is accomplished by state estimation using physical and analytical 
redundancy present in the system. The size of the fault is determined by comparing the 
values of the states computed using a number of different ways.

Reconfiguration

The presence of a fault generally makes the currently used control configuration sub- 
optimal or infeasible. Once the size of the fault has been estimated, and the decision to 
continue running the process has been made, a switch is made to a feasible configuration 
using a pre-determined logic. This is known as reconfiguration.
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1.2 Need for FDD

Before looking at different kinds of faults and methods used to diagnose the presence of 
these faults, it is important to consider whether it is necessary to really have a fault diagnosis 
routine. We provide the justification for such a routine using a simple simulated case-study.

1.2.1 Consequences of sensor faults in systems operating under 
closed-loop conditions

When sensor faults develop under closed loop conditions, the consequences to the health 
of the process can be significant. We illustrate this using a simulation of this condition in a 
continuous-flow stirred tank reactor in which an exothermic reaction takes place.

1.2.2 Illustration using an exothermic CSTR process

Consider the operation of a Continuous-flow Stirred Tank Reactor (CSTR) in which an 
exothermic first-order chemical reaction with Arrhenius temperature dependence takes 
place (Marlin 1995). A schematic representation of the process is shown in Fig. 1.1.

%

Figure 1.1: Schematic representation of a CSTR with an exothermic first order chemical 
reaction

The objective is to control the temperature and hence the concentration of the reactant 
in the CSTR. This is achieved by manipulating the flow rate of the coolant. This system is 
described by the following mass and energy balance relations (Marlin 1995):

rid a f
V - £  =  F(CA0 ~  CA) -  Vkoe-*TCA at

dT aFb+1 e  ( 1-0
VpCv—  =  pCvF(T0 -  T )  c- r s - ( T  -  T^ )  + ( -A H rxn)Vk0e - ^ C A
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This system has multiple equilibrium points. These are obtained by setting —  =  0, 

where, x  =  [Ca  T]T. Upon linearizing the equations around these points, two of die three 
points lead to linear models which have poles in the left-half s-plane while the third leads 
to a linear model which has a pole in the right-half s-plane. The physical parameters of the 
process is given in the following table:

Table 1.1: Exothermic CSTR parameters
F  - Inlet flow rate 1 m 3/m in
V  - Volume of Reactor lm 3
Cao - Inlet Concentration 2.0 kmole/rri6
Cp - Specific Heat capacity of reactant lcal/g°C
p - Density of reactant 10 6g /m 3
ko - Reaction Constant 10 lum m -1
E / R -  Arrhenius factor 8330.1A-1
A Hrxn - Heat of reaction 130 x 106cal/kmole
{Fc)s - Steady state Coolant flow rate 15m3/m in
Cpc - Specific Heat capacity of coolant 1 cal/(gK)
pc - Density of coolant 10 e5/m 3
b - Reaction related parameter 0.5
To - Inlet temperature 343AT
Tdn - Coolant Inlet temperature 310AT
a - Reaction related parameter 0.516 x 10G(cal /m in /K) / (m 3/min)

The following additional parameters correspond to the three equilibrium points:

Table 1.2: CSTR Equilibrium points
Equilibrium point (^(kmoZe/m3) 1.79 1.37 0.16
Equilibrium point T(K) 330.9 349.88 404.7
Nature of equilibrium point Stable Unstable Stable

It is possible to operate this CSTR at the unstable point with the help of feedback 
control. Thus if a feedback PI controller is implemented to maintain temperature at 350 
K by adjusting the coolant flow rate, the system reaches the intermediate state.

We now show that operating this process at the open-loop unstable point in the presence 
of a sensor drift, leads to undesirable behavior. Towards this end, we have designed the 
PI controller Gc(s) =  1.5 +  ^  to stabilize the system. We assume that the temperature 
sensor has an additive measurement noise characterized by a zero-mean gaussian process 
with standard-deviation 0.71 K.  A drift, as shown in Fig. 1.2 is introduced in the sensor 
measurement. We show that this sensor fault results in undesirable oscillations.
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Figure 1.3: Difference between observation and actual temperature

There can be a large difference between the observed temperature and the actual 
temperature. This is illustrated in Fig. 1.3. While the sensor fault sets in, there is apparently 
no change in the sensor reading seen by the operator.

The drift is introduced in the sensor at t  =  100 minutes. The trend plots of the sensor 
measurements are shown in Fig. 1.4. The controller changes the coolant flow rate under 
the assumption that the drift is due to a disturbance. As a result, the reaction rate and hence 
the concentration starts deviating from the desired value, while the sensor reading inclusive 
of the drift is held constant. As a result, the sensor fault cannot be detected from the 
observed temperature trend plot. The movement in the concentration and the manipulated 
variable could be easily mistaken as the effect of a disturbance in the system. The fact that 
something is wrong in the system can be found only when undesirable oscillations set in
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Figure 1.4: Trend plots of the sensor measurements

and after this, it is very difficult to trace it back to the error in the temperature sensor.
While this example might appear extreme, there are other cases where the presence of 

faults may degrade the performance of the system. In the latter part of this thesis, we 
show that such faults result in a degradation in the performance of systems operated under 
open or closed-loop conditions. We illustrate the differences in observed and actual process 
inputs and outputs in a simulated Quadruple-tank case-study under open-loop and closed- 
loop conditions in Sec. 3.2. In light of these safety concerns and performance degradation, 
the presence of an FDD system has important benefits.

1.3 Basic principles of FDD
One of the shortcomings of research in the area of Fault Detection and Diagnosis (FDD) 
is that the methods developed are rarely applicable to process plants. A significantly large 
amount of research in FDD assumes the availability of an accurate mathematical model 
of the system under observation. The role of an accurate model for Fault Detection and 
Diagnosis is illustrated in Fig. 1.5. Some o f  the existing techniques are shown in Fig. 1.6. 

It is evident from Fig. 1.5 that any fault detection and diagnosis routine consists of three 
parts, model selection or identification, residual generation and processing, and decision
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making. We can summarize these tasks as follows:

1.3.1 Model selection

Results obtained from FDD routines depend on the type of models used. FDD routines 
and the models they are built upon can be categorized as qualitative and quantitative. In 
addition, the amount of detail present in the model affects the performance of the FDD 
routine. For example, first-principles models that contain enough detail can be used to give 
more accurate and detailed diagnosis than simpler data-based models.

However, the nature of the model should depend on the diagnostic task at hand. For 
example, for simple process monitoring applications which mainly concentrate on fault 
detection, using a data-based steady-state model may be enough. However, if one needs 
to isolate complex process faults, it might be necessary to use a detailed first-principles 
model. In this thesis we concentrate on quantitative data-based models.
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1.3.2 Residual generation

Once a model is obtained, an important component of the FDD routine is residual 
generation. Information from the process, in terms of sensor readings and manipulated 
input values, is used along with the model to generate residuals which are to be used 
for fault detection and isolation. An important classification of the quantitative FDD 
methods is based on the way in which these methods process the residuals. For example, 
simple steady-state data-based methods like PCA use correlation analysis to produce 
contribution plots for fault diagnosis (Russell et al. 2000, Kresta et al. 1991). On the other 
hand, some quantitative model-based techniques process the residuals to obtain enhanced 
residuals with structural or directional properties (Gertler 1998). Alternatively special 
observers are constructed for processing the residuals to achieve specific detection and 
isolation objectives (Frank 1990). In addition, the statistical local approach (Basseville 
and Nikiforov 1993) provides a framework for fault detection in terms of detecting small 
changes in parameters and transforms these into a problem of monitoring the mean of a 
Gaussian vector.

1.3.3 Decision making

This task involves making a decision about the presence of a fault and its location, using the 
information present in the residuals. In most quantitative model-based FDD techniques it 
involves comparison of fault detection and isolation indices computed using the residuals, 
with confidence limits calculated using a stochastic characterization of the residual space, 
based on data collected under normal, fault-free conditions.

In the structured residual approaches (Gertler and Singer 1990), which are the main 
techniques used in this thesis, one can consider two different approaches for decision 
making. For the single faults hypothesis, we use the term multiple testing to denote 
the decision made by comparing the complete set of fault isolation indices based on the 
structured residual with their confidence limits. On the other hand, we use the term single 
testing when the smallest of the fault isolation indices rather then the entire set of fault 
isolation indices is used to make a decision.

1.4 Diagnostic task
Some of the types of faults which affect physical systems are illustrated in Fig. 1.7. 
Generally, it is easier to detect and diagnose input-output (I/O) faults like sensor and
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Figure 1.7: Types of faults affecting linear dynamic systems

actuator faults than to detect and diagnose process faults. Among process faults, it is 
easier to detect and isolate additive process faults than multiplicative process faults which 
arise from parametric changes. The information required for effective fault detection and 
diagnosis is related to the diagnostic task on hand. We can consider, for example, four 
classes of diagnostic tasks, process monitoring, sensor and actuator FDI, additive process 
fault detection and diagnosis and multiplicative process fault diagnosis.

1.4.1 Process Monitoring

The term process monitoring is generally used to refer to the task of detecting faults or 
changes in the operating condition in a process. In addition, some indication is provided as 
to the cause of the abnormality, if it exists. Using this information, the operator can decide 
whether any action is to be taken to bring back the process to its normal operating regime, or 
whether the fault requires immediate attention. Process monitoring is usually applied using 
simple steady-state data-based models which are constructed using routine operating data. 
Some of the popular techniques for process monitoring include those based on multivariate 
statistical techniques like PCA or PLS (Russell et al. 2000, Kresta et al. 1991).

1.4.2 Input-output faults

It is generally assumed that sensor and actuator faults affect the rest of the system in an 
additive way for linear systems. They can be diagnosed using discrete-time input/output 
(I/O) models of processes since they affect processes at the input or output ports. Such I/O 
models can be identified using standard techniques. Following the identification of these 
I/O models, sensor and actuator faults can be detected and diagnosed under open-loop and 
closed-loop conditions, using model based techniques such as, parity-space, observer-based 
techniques or their extensions.
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1.4.3 Additive Process faults

The dynamics of most physical systems can be accurately represented by continuous-time 
(CT) state-space models. Representation of CT systems by discrete-time (DT) models is 
only an approximation of their dynamics. Since it is easier to identify DT models than CT 
models and as in many cases a CT system’s dynamics can be represented well by a DT 
model, DT models have been widely used with success. However, in some cases, e.g. in 
the isolation of process faults, one has to use CT models. For example, while detection and 
isolation of sensor and actuator faults in a CT system can be performed using its discrete­
time (DT) state space model, process fault detection and isolation requires the knowledge of 
the fault gain matrix, which links the process faults to the state variables of the system. For 
the CT state space model of the system, the fault gain matrix is always available no matter 
how the faults are varying with time, while in the DT state space model of the system, the 
fault gain matrix is available only when the faults follow some known functions of time, 
e.g. if they are piece-wise constant. In the case of additive process faults, it is possible 
to identify fault-diagnosis relevant models for detecting and isolating these faults, using 
subspace identification techniques (Li et a l 2003).

1.4.4 Multiplicative Process faults

Multiplicative process faults arise due to changes in the physical parameters of a system 
(Basseville and Nikiforov 1993). Isolation of such faults using DT models of the system is 
not trivial because the change in a physical parameter associated with a system can result 
in changes in several parameters in the DT model. In contrast there usually exists a one-to- 
one correspondence between the CT model parameters and the physical parameters of the 
system (Isermann 1984). Hence it is necessary to use CT models for such faults.

1.5 Organization of this thesis

As discussed earlier, FDD techniques differ based on the type of model used. The fact 
that good models are not readily available for many physical processes makes a majority of 
the approaches unsuitable for application to solve problems faced by process industries. 
The focus of this thesis is on data-based techniques for fault diagnosis relevant model 
identification. Special emphasis is placed on identification of fault diagnosis-relevant 
models of the system under consideration. Fault diagnosis relevant model identification 
attempts to build models of the system so that the models developed are compatible with the
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detection and diagnosis of faults or events under investigation. Often the diagnosis results 
achievable by the FDD routine are limited by the quality of the instrumentation available in 
the system, the data quality and hence the quality of the model obtained from the data. 
This affects the set of diagnosable faults in the system. As discussed earlier, simple 
process monitoring is possible by relatively simple steady-state, data-driven, models. 
However, to diagnose complex process faults, more detailed first-principles models may 
be required. Considering these differences in the diagnostic ability of the methods, we 
study the problems which arise from the application of these methods to solve problems 
of process monitoring and FDI in a variety of industrial, laboratory and simulation case- 
studies and propose modifications and new approaches for solving these problems. The 
thesis is organized into the following parts:

•  Process monitoring and FDI using steady-state models.

•  Input-output FDI using discrete-time models.

•  Model identification for processes with irregularly sampled outputs.

•  Additive Process FDI using continuous-time models.

1.5.1 Process monitoring and FDI using steady-state models

When the process remains close to a particular steady-state, static models developed 
based on multivariate statistical data-compression techniques using routine operating data 
can be used for process monitoring (Russell et al. 2000, Kresta et al. 1991). However 
the fault isolation techniques used with these methods are correlation-based and have 
to be supplemented with process knowledge supplied by the user. These methods 
have gained wide acceptance because of their simplicity, data-crunching ability, and the 
availability of process knowledge from operator experience. It is possible to extend the 
isolation capabilities of these methods using the concepts of structured residuals (Gertler 
et al. 1999, Qin and Li 1999, Li and Shah 2002) which utilize information available in the 
model to project the residual vector into special subspaces. This results in improved fault 
diagnosis. We illustrate these ideas in this thesis using the following case-studies:

•  Failure diagnosis in a thermal power plant using Principal Components Analysis 
(PCA) (Ch. 2, Sec. 2.5).

•  Inferential Sensor Development for the prediction and monitoring of Bitumen 
Recovery in a Separation Cell of an Oil-Sands Extraction plant using the Partial Least
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Squares (PLS) and Iterative PCA (IPCA) techniques (Ch. 2, Sec. 2.3). Due to the 
proprietary nature o f these processes, the documentation for the process description 
is not as complete as one would like to have.

•  Structured Residual approaches for FDI in a quadruple tank process under steady- 
state conditions (Ch. 2, Sec. 2.7).

1.5.2 Input-output FDI using discrete-time models

When faults develop in the actuators or sensors associated with a process, there is a 
discrepancy between the actual input to the process or output from the process and the 
input given to the process or information received from the process. Models of the process, 
identified using techniques such as Prediction Error Methods (PEM) (Ljung 1999) or 
Subspace Identification Methods (SIM) (Viberg 1995, Overschee and DeMoor 1996) can 
be used with model-based FDI techniques (Gertler 1998, Frank 1990) for the detection and 
isolation of sensor and actuator faults under open-loop and closed-loop conditions. We 
illustrate these ideas in this thesis using the following case-studies:

•  Sensor Validation in closed-loop systems: Experimental studies on a pilot-scale 
Continuous-flow Stirred Tank Heater (Ch. 3, Sec. 3.4).

•  Comparison of the PCA and SRV techniques for Sensor and Actuator FDI: 
Simulation studies on a Quadruple-tank process (Ch. 3, Sec. 3.5).

1.5.3 Model identification for processes with irregularly sampled 
outputs

In many chemical processes, variables which indicate product quality are infrequently and 
irregularly sampled. However, the application of traditional identification techniques, like 
Prediction Error Methods (PEM) (Ljung 1999) and Subspace Identification (Overschee and 
DeMoor 1996) to processes with irregular output sampling is a non-trivial task. When 
the quality variables are irregularly sampled, Maximum Likelihood Estimation of the 
model parameters can be performed using the Expectation Maximization (EM) approach 
(Dempster et al. 1977, Shumway and Stoffer 1982). This identification procedure also 
yields a Kalman filter-based prediction-correction mechanism which can be used for 
optimal prediction of the quality variables. We illustrate optimal model identification and 
output prediction for processes with irregularly sampled outputs in this thesis through the 
following case-studies:
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•  Simulated Case-study: 3rd order underdamped state-space model (Ch. 4).

•  Laboratory Case-study: Continuous-flow Stirred Tank Heater (CSTH) process 
(Ch. 4).

•  Industrial Case-study: Gray-box model identification in a pulp mill (Ch. 5).

1.5.4 Additive Process FDI using continuous-time models

Representing continuous-time (CT) systems by discrete-time (DT) models is only an 
approximation of their dynamics. For example, many DT methods assume that signals 
in a system are piece-wise constant. This assumption can be true for manipulated variables 
that are driven by zero-order-hold (ZOH) devices. Other signals, e.g. disturbances and 
faults, are not always piece-wise constant. Therefore, DT fault models that attempt to 
associate the process behavior with the faults may not be correct. Additive process faults 
in linear dynamic systems are faults which directly affect the continuous-time states of the 
system in an additive fashion. Using CT gray-box identification techniques, it is sometimes 
possible to identify CT models which make the detection and isolation of additive faults 
in the states easier. We illustrate Continuous-time approaches to FDD and Fault Diagnosis 
Relevant Identification (FDRI) in this thesis using the following case-study:

•  Subspace Identification of Residual Models for FDI in Continuous-time Systems: 
Simulation studies on a Quadruple-tank process (Ch. 6).
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Steady-state model identification and 
fault diagnosis

2.1 Overview

Fault Detection and Diagnosis in complex processes is challenging, typically due to the lack 
of simplified empirical and first-principles models that can explicitly describe the process 
behavior. Modem plants contain large-scale, highly complex processes which operate with 
a large number of variables under closed loop control. In addition, the decrease in the 
price of instrumentation and data storage has led to a large increase in the amount of 
data logged in these plants. In this context, the use of multivariate data analysis tools has 
significant advantages in terms of identifying simple steady-state models which can then 
be used for process monitoring. Some of the multivariate statistical techniques which have 
made significant inroads into the process industry include Principal Components Analysis 
(PCA) and Partial Least Squares (PLS) Regression. These techniques have been used in a 
variety of applications including performance monitoring, building soft sensors, etc. In this 
chapter we give a brief description of these modeling techniques, the process monitoring 
methods based on these techniques and also study some of the issues which arise in 
the development of multivariate static models for industrial processes. These techniques 
are illustrated using simulation and industrial case-studies. We also present some of the 
challenges encountered in the development and online implementation of these techniques

14
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and the proposed solutions1.

2.2 Steady-state model identification

In many chemical engineering applications, quality variables may not be measured as 
frequently as would be desired for satisfactory closed-loop control. For example, key 
product quality variables are available after several hours of lab analysis. Often, it is 
possible to estimate the quality variables using other process variables which are measured 
frequently. The relationship, or the model that is used to predict quality variables using 
other process variables is often called a soft-sensor. The quality-variable estimator is called 
a soft-sensor or a virtual sensor since it is based on software calculations rather than a 
physical instrument. The soft-sensors developed in this way can be used for inferential 
control or process monitoring. Discussions on inferential control can be found in (Kresta 
et al. 1994, Parrish and Brosilow 1985, Amirthalingam et al. 2000, Li et al. 2002).

Multivariate statistical techniques such as PCA and PLS have been applied for 
process monitoring, fault detection and static modelling in chemical processes (Kresta 
et al. 1991, Qin and McAvoy 1992, Qin 1993, Ricker 1988). Extensions of these 
approaches for handling dynamic and auto-correlated data have also been proposed (Ku 
et al. 1995, Lakshminarayanan et al. 1997). PLS and PCA are especially suited to handle 
data in which both the predictor variables (inputs) and the response variables (outputs) 
are measured with error. Under these circumstances, the ordinary least squares regression 
gives biased estimates for the parameters. Such a problem in which all the variables in the 
system are measured with error is termed an errors-in-variables (EIV) regression problem. 
These problems have been extensively studied in the statistical literature (Fuller 1987) and 
the problem statement reflects what is commonly encountered in practice.

PLS regression is a popular technique used in the development of soft-sensors in the 
form of static models for multivariate processes. The main advantage of using PLS for 
process modelling comes from its ability to decompose the problem of obtaining model 
coefficients from multivariate data into a set o f univariate regression problems. Univariate

1 Sections of this chapter have been presented or published as:

1. Raghavan, H., S.L. Shah, R. Kadali and B. Doucette, “Monitoring Bitumen recovery in a separation 
cell using inferential sensors”, submitted to the Canadian Journal of Chemical Engineering, July,
2003.

2. Raghavan, H., S.L. Shah, R. Kadali and B. Doucette, “Application o f PLS-based Regression for 
monitoring Bitumen Recovery in a Separation Cell”, In Proc. AdCHEM-2003, Hong Kong, Jan.
2004.
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regression is performed on latent variables obtained by projecting the input and output data 
onto directions along which the covariance between these variables is maximized. While 
PLS seems to work well in practice, the statistical properties of the PLS algorithms are not 
clear. The PLS estimate is a highly nonlinear function of the observed dependent variable. 
It has been proved in (Stoica and Soderstrom 1998) that PLS and PCA are equivalent to 
within a first-order approximation. However, an exact analysis is difficult because of the 
highly convoluted procedure employed in obtaining the PLS estimates.

On the other hand, PCA is known to give consistent model estimates when the 
input and output variables of the system are measured with error. PCA is used for 
model estimation when the errors affecting the variables are independent and identically 
distributed (i.i.d.). This formulation is also known as Total Least Squares (TLS). Under 
these circumstances, the estimates can be considered to be maximum likelihood estimates,
i.e., if all measurement error standard deviations have the same normal distribution. In 
practice, it is difficult to ensure that the errors are independent and identically distributed. 
Hence it might be advantageous to jointly estimate the model parameters and the error 
covariance matrix. This problem of joint estimation is well studied in the statistical 
literature (Gleser 1981, Chan and Mak 1983) and it is known that it is not possible to 
solve this problem without imposing additional restrictions on the structure of the error 
covariance matrix, due to lack of identifiability. One such constrained solution is provided 
by the Iterative PCA (IPCA) procedure (Narasimhan and Shah 2003).

An interesting yet disturbing result (Gleser and Hwang 1987) is that it is not possible to 
obtain confidence bounds on the estimated parameters for a fixed sample size, no matter 
how large the sample size is. This casts doubt on the usefulness of asymptotic results on 
the confidence intervals for the estimated parameters. To quote from Gleser and Hwang 
(1987): “The 100(1 — a)% confidence intervals for the estimated parameters are o f infinite 
expected length and any confidence interval o f fixed expected length has a confidence 
1 — a  — 0,” i.e., the probability that the parameters will lie within that interval is zero, 
when the parameters are estimated from a sample of finite size. This is true irrespective 
of whether any distributional assumptions are made on the underlying signal. The result 
arises from the fact that by a suitable choice of the nuisance parameters (related to the 
variability of the underlying signal), the model can be made arbitrarily close to a model 
whose parameters are not identifiable. Hence it might not be possible to establish statistical 
properties other than consistency and some asymptotic properties such as normality and 
efficiency of the estimates for linear models in which the input and output variables are 
measured with error. This is true for the PCA, IPCA and the PLS procedures for static
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model identification, because they inherently assume that both the inputs and outputs are 
measured with error.

In spite of these problems, the IPCA procedure for soft-sensor design has some definite 
advantages. The model parameters obtained are scaling invariant and there is no ambiguity 
in the number of underlying components in the signal space when these are identified using 
the IPCA procedure. We now proceed to give a brief description of these techniques before 
illustrating these through case-studies.

2.2.1 Multiple Linear Regression (MLR)

Consider a data matrix Z. Let us assume for the time-being that the variables in this 
data matrix can be separated into predictor variables X  € 9lNxm and response variables
Y  G 5RWxp where N  is the number of observations, m is the number of process variables 
and p the number of quality variables. Assume the presence of linear relationships between 
the predictor and response variables:

Y = XC + E (2.1) 

Using the well known Ordinary Least Squares regression (OLS) we obtain the solution:

Cas = (Xt X)_1Xt Y (2.2)

However, note that in the general Errors-in-variables (EIV) case, where both X  and
Y  are measured with error, the Ordinary Least Squares procedure does not provide an 
unbiased estimate of the model parameters.

2.2.2 Errors-in-variables (EIV) Modeling

We represent the EIV case using the following model structure:

Y = XC + Ei
(2-3)

X  =  X  +  e 2

If E 2 =  0, we can estimate C using Ordinary Least Squares (OLS) regression. In 
addition to this assumption, if there is a high degree of correlation within the X  space,
reduced rank regression techniques such as Principal Components Regression (PCR) and
Canonical Variate Analysis (CVA) can be employed to solve this regression problem. 
Additionally there might be a high degree of correlation in the response space. Partial 
Least Squares (PLS) is one of the techniques used to deal with such data.
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The Errors-in-variables (EIV) case assumes that E 2 ^  0. In this case, OLS and CVA 
give biased parameter estimates. This is illustrated in the following example:

Consider the system governed by the equation,

y — cx + e i (2.4)

Let us assume that x  is measured with error, x = x  +  e2. The OLS estimate for c is given

by,
c = (xTx)~1xTy = ((x + e2)T(x +  e2))-1(® +  e2)T(cx + ei) (2.5)

Applying the expectation operator to this equation we see that c is not an unbiased estimate
(x e2)^ (ex -I- ei)

of c unless e2 =  0 because, it depends on quantities such as E(—-z r=-rr rr),
((x  + e2)T(x + e2) ) '

E(eJ $), E(xTei) andE(e2e\).
Special techniques are necessary to handle the EIV regression case. These are especially 

important when dealing with data from the chemical industries because the measured data 
from various sensors naturally falls into this category. Hence techniques such as PLS and 
PCA have been proposed to handle the EIV and reduced rank regression problems.

We now describe briefly, the procedure used for steady-state model identification using 
these latent variable regression techniques.

2.2.3 Principal Components Analysis (PCA)

Consider the zero-mean, unit variance data matrix Z € \RWx(m+p), where N  is the number 
o f observations collected at time instants t  — 1 to t = N,  m  is the number of process 
variables and p the number of quality variables.

A static relationship among these variables is given by,

Z 0 =  0 (2 .6)

Note that the Z matrix contains both the process variables u(t) and the response or quality 
variables y  (t). Hence,

*(*) =  [ 5K*)T *(*)T ] (2 -7)

The matrix Z is obtained by stacking the z(t) vectors corresponding to the time instants
t  =  1 to t  = N.

z(l) 
z(2)

z(AT)

(2.8)
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Performing an SVD on Z yields,

Z =  U lS iV f +  U 2S2V |’ (2.9)

where, U i, V i are the singular vectors corresponding to nonzero singular values and Si
is diagonal matrix with the singular values arranged along the diagonal in the order of
decreasing magnitude. Similarly, U 2, V 2 are the singular vectors corresponding to zero 
singular values and S2 is diagonal matrix with the zero singular values. Since V fV 2 =  0,

ZV2 =  0 (2.10)

Hence V 2 serves as an estimate for 0 . The observed data Z is related to Z by

Z =  Z +  E  (2.11)

If E  ~  iV(0,I), then PCA provides the Maximum Likelihood Estimate (MLE) of 0 . In 
addition, the number of static relationships can be estimated by inspecting the plot of the 
singular values. In this case, the dimensions corresponding to the unity singular values 
represent the residual space because the measurement noise has an identity covariance 
matrix. The dimensions corresponding to the singular values that are larger than unity 
represent the signal space. Once 0  has been estimated, it can be recast into a predictor 
form which can be used to predict the response variables as a function of the predictor 
variables.

2.2.4 Iterative Principal Components Analysis (IPCA)

Consider the case where E  is not i.i.d but can be characterized by a Gaussian distribution 
with a covariance matrix Q. In this case, one cannot determine the number of relationships 
in the data by looking at the singular values. Hence ad-hoc techniques are used for choosing 
the dimension of the signal space. Commonly used techniques include choosing the number 
of dimensions which explain 80% of the variation in the data or choosing dimensions for 
which the eigenvalues are greater than unity. Wentzell et al. (1997) proposed a maximum 
likelihood estimation technique for model identification using PCA when Q is known 
and the residual space dimension is specified. This technique is based on an alternating 
regression procedure which does not scale the data. Instead, it iteratively transforms 
the model identified by PCA on un-scaled data, until a maximum likelihood estimate is 
obtained. A simpler method to obtain the maximum likelihood estimate of 0  is by scaling 
the data using the matrix L-1, where Q =  LLT. For example, L could be the cholesky
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factor of Q. One of the advantages of scaling the data using L” 1 is that the number of static 
relationships can be estimated by inspecting the plot of the singular values as in PCA.

In practice, it is unrealistic to expect a priori knowledge of the covariance matrix 
Q. However, it may be possible to jointly estimate the covariance matrix and the static 
relationships from the data if the data satisfies certain identifiability restrictions (Chan and 
Mak 1983). For example, if the covariance matrix is diagonal, the identifiability restriction 
can be expressed as, > (m + p), where r  refers to the dimension of the residual 
space. The Iterative PCA (IPCA) procedure for joint estimation of the static model and the 
error covariance matrix is based on constructing the likelihood function of the constraint 
residuals, and determining the estimates of the model and error covariance matrix which 
maximize this likelihood function. The algorithm starts with an initial estimate of the 
model parameters (Oo) which is obtained using PCA. Using this estimate for the model, 
the constraint residuals are obtained from the data following:

r(f) =  z (t)0o (2.12)

Here we assume that z(t) € $ftlx(m+p) is the t th observation. Using these constraint 
residuals, the error covariance matrix is estimated as the solution of the following nonlinear 
optimization problem, where | . | refers to the determinant.

N /  - i  \
Q =  argm jnATlog|0oQ 0o|+  ^  ( r( t)T r©oQ©o) r(t) j (2.13)

t=i '  '

Following this estimation, the data is scaled using the inverse of the cholesky factor of 
the estimated covariance matrix. PCA is applied on the scaled data and the constrained 
residuals recalculated. This procedure is repeated until convergence. Once 0  has been 
estimated using the IPCA procedure, it can be recast into a predictor form and provide 
maximum likelihood estimates of the states and the response variables.

2.2.5 Partial Least Squares (PLS)

Because of the high degree of correlation among the variables within the predictor space 
the matrix X TX  may be ill-conditioned leading to high variance of the model parameters 
identified using the OLS procedure. In addition we may be interested in obtaining the 
directions, along which the common (second-moment) information between these blocks 
is concentrated. To satisfy these objectives, the following procedure is adopted in PLS 
regression. The matrix X  is decomposed into a scores matrix T  € 9fiNxa and a loadings
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matrix P  € 9ftmxo, where a is the number of PLS components used. Hence the following 
decomposition is achieved:

X  =  T P T +  F  (2.14)

where F  is a residual matrix. Similarly Y  is decomposed as

Y  =  U Q t +  G (2.15)

To obtain the loadings vectors the following algorithm is used:

1. Initialize, Y L =  Y  and X i — X  and i = 1.

2. Perform a Singular Value Decomposition (SVD) on XfY* and calculate j,, the 
left singular vector corresponding to the largest singular value and q;, the
corresponding right singular vector. This SVD calculation corresponds to capturing
the direction (ji.q*) that maximizes covariance between X, and Y*.

3. Let t i and u* be the corresponding scores. Perform a univariate regression between 
t i and u, to obtain b*.

4. The loadings vector for X* is given by

“  t r t ;Pi =  TtT- (2-16)

(2.17)

5. Deflate Y  and X  according to

Y i+1 =  {Y, -  b it iq f}

Xi+1 =  {Xi -  t i p f }

6. Set i =  i +  1.

7. Go to step 2.

After a stages, the approximations are

X  «  t i p f  +  t 2P2 H +  t ap^

Y  »  u iq f  +  u 2q2 H 1- u aq j

Hence we get the PLS estimate of the model coefficients as:

Cpis =  (2.19)

where, the columns of J  and Q contain the singular vectors of the SVD’s carried out at each 
stage, the columns of P  contain the loadings vectors of the X  matrix and B is a diagonal 
matrix containing the latent variable regression coefficients from each stage.

(2.18)
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2.3 Bitumen Recovery Prediction

In this section, an industrial example of the application of the PLS regression and IPCA 
approaches for the development of inferential sensors to predict the Bitumen Recovery in 
a separation cell is shown. Some of the challenges encountered in the development and 
online implementation of the inferential sensors and the proposed solutions are presented.

In many processes product quality is estimated through lab assays. These quality 
variables are infrequently and often irregularly sampled. In contrast, other process variables 
are sampled frequently. Inferential or “soft” sensors can be used for predicting the inter­
sample behavior of the quality variables. A soft sensor is a mathematical model that 
describes the relationship between quality variables and process variables. We present 
an industrial example of the development of inferential sensors to predict the Bitumen 
Recovery in a separation cell.

2.3.1 Process description

We have developed soft-sensors to predict the Bitumen Recovery in a separation cell at 
Suncor Energy’s Extraction facility at Fort McMurray in Alberta, Canada. The separation 
cell is used in the extraction of bitumen from oil sands. Oil sands are deposits of bitumen, 
that must be treated to convert them into crude oil which can then be refined in conventional 
refineries. The main processes in converting the oil sands to crude oil are Mining, 
Extraction and Upgrading. In the mining stage, the oil sands are mined using trucks and 
shovels. This is followed by the extraction stage in which bitumen is separated from the 
sand using processes such as froth-flotation. The bitumen is then converted to crude oil in 
the upgrading stage.

The extraction operations can be briefly described as follows: The oil sand is first passed 
through a slurry preparation stage. The main operation in this stage is to form a slurry 
using hot water, oil sands and caustic. Heat is used to reduce the viscosity of the bitumen. 
Caustic helps in the attachment of bitumen to the air in the froth formation while releasing 
it from the sand particles. The bitumen then forms small globules that are important in 
the formation of froth. Agitation also aids in breaking up the oil sand. The slurry passes 
through a series of vibrating screens that separate and reject any rocks or clumps of clay 
still present in the slurry. It is then pumped into separation cells.

A schematic of a separation cell is shown in Fig. 2.1. The separation cell allows the 
slurry to settle out into its various layers, the most important layer being the froth layer 
which rises to the top. The tailings sand sinks to the bottom. The middle layer is called the
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middlings layer and consists of bitumen, clay and water. The middlings remain suspended 
between the sand and the bitumen froth until it is drawn off and sent through the secondary 
separation cell. The secondary separation vessel extracts the remaining bitumen from the 
middlings.

Hot water 
Underwash

Froth

Separation 
CeU

Scavenger 
CeU

^Scavenger 
Froth

Coneflush

Process
Effluent
Water

*  Flotation 
Tailings

Scavenger CeU 
Flotation Tailings

~ 0 * - _ S e a l
-------►

Tailings
Water

Figure 2.1: Process Flow-sheet for Separation Cell

The main objective in the operation of the separation cell is to maximize the amount of 
bitumen in the froth and minimize the amount of bitumen lost in the tailings and middlings 
streams. A measure of the efficiency of operation of the separation cell is given by the 
Bitumen Recovery which can be calculated from the predictions of quality variables using 
the following equation:

R6C = FfrPfrCfr + FtptCt + FftPftCft (2'20)

where, Rec is the Bitumen Recovery in the cell, Ffrt F i and Fft refer to the Froth, 
Tailings and Flotation Tailings flows, Pfr, Pt & Pft refer to the densities of Froth, Tailings 
and Flotation Tailings and Cfr, Ct & Cjt refer to the concentrations of Bitumen in the 
Froth, Tailings and Flotation Tailings in wt% respectively. Hence the quality variables 
of interest are concentrations of Bitumen in the Froth, the Tailings and the Flotation 
Tailings. In our soft-sensor development, we have used 25 process variables, measured 
every minute, to predict these 3 quality variables. Of the three product variables, the froth 
bitumen concentration is available through lab analysis every 12 hours while the tailings 

and flotation tailings bitumen concentrations are available every 2 hours.
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2.3.2 Challenges in soft-sensor development

Monitoring the extraction of bitumen from oil sands is a problem which poses some 
unique challenges. These include, in the words of a practicing engineer from this industry, 
“changing process conditions, wide operating regions, bad data and lack o f  good software 
resources”. In addition, we have encountered other challenging problems for which 
we have some suggested solutions. Many of these solutions may also apply to other 
applications.

2.3.3 Data Acquisition and Import

Many publications on online applications of process monitoring and soft-sensor 
development for industrial processes start with statements such as: Assume that the data is 
available in a matrix X. However, it should be realized that there is a large amount of data 
preprocessing required before the data from an industrial process can be made available 
in a form that can be used by routines which are used to build monitoring and soft-sensor 
applications. In fact, it would be fair to say that more than 80% of the time required to 
develop online monitoring and soft-sensor applications is spent in data preprocessing and 
data quality analysis.

DCS
Preliminary Noise gating

Analysts Desktop
Multivariate analysis

Data Historian
Univariate data preprocessing

Measurement Devices
Data measurement, collection & 

transmission

Figure 2.2: Data-based view of an industrial process

A Data-based view of a typical industrial process is shown in Fig. 2.2. Data is collected 
by the field instruments, typically asynchronously, and is then transmitted to the Distributed 
Control System (DCS). Some preliminary data preprocessing is performed before or at the
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DCS level. This includes, noise gating, setting high and low limits and quantization which 
may be introduced due to data storage constraints. The DCS is used for online display of 
the current state of the process (univariate display of some key variables) and hence online 
control and monitoring operations which could be automatic or manual (operator driven). 
The length of data available in the DCS is of the order of a few days. It is of high quality 
in terms of the information it possesses about the process. This is because, the sampling 
rates in the data are constrained only by the sampling rates of the physical instruments 
themselves. However, this data is not suitable for developing monitoring or soft-sensor 
applications because of its short length which results in its inability to capture all the 
deterministic and stochastic modes of the process. For long term applications, data is stored 
in historical databases using software appropriately termed Plant Historians. Historians 
have a number of options which can be used to minimize the number of data points stored 
in order to make the best use of the data storage facilities, i.e., data is compressed for 
storage efficiency. However, most of the historian software available currently, treat data 
in a univariate fashion. Hence it is important to check the fidelity of the archived data 
from a multivariate analytic perspective before proceeding with such analysis. After such 
a preliminary analysis, if it is found that there is indeed a significant loss of information 
in the archival process, the parameters affecting the data storage in the historian, i.e., the 
compression factors, should be changed. It will take some time before enough data is 
collected which can be then used for multivariate analysis.

2.3.4 Data Quality Assessment

There are a number of ways in which plant historians process data before storing it. 
While these processes are useful in improving the quality of data from a univariate display 
point-of-view, some of these processes are harmful for multivariate data analysis because 
they introduce non-linear relationships, which may alter our inferences when we use the 
processed data. Hence it is important to note these settings and change some of them before 
we proceed to perform tasks such as building static or dynamic soft-sensors or monitoring 
schemes using such data. Some of the pre-processing steps include, outlier detection and 
replacement, determination of extent of data compression, estimating quantization effects 
and limits, low pass filtering and smoothing.

Outlier detection and removal: The objective of outlier detection and removal is 
to remove random data spikes that result from instrument or communication noise. In 
general, univariate routines are applied on data to remove statistical outliers. Some 
common routines currently used in historians are based on linear regression and standard
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deviation calculations based on small samples of data. For example, a common technique 
involves selection of a fixed small number of samples of data before and after a particular 
data point, performing linear regression using these surrounding values, calculating the 
standard deviation of the residuals and judging whether the data point in question is within 
a specified number of standard deviations from the line o f best fit. If it is outside this 
limit, it is considered as an outlier and replaced by the regression estimate. It is clear from 
this description that the method is highly nonlinear and harmful from a multivariate point 
of view because it does not take true multivariate nature of the process into account. In 
addition if  the historian is set in such a way that it processes variables at a common base 
sample rate (this is generally the case and this rate is around 1 min in many cases), then the 
dynamic time-scales of the individual variables is ignored in this procedure. Hence it might 
be better to turn off univariate outlier detection and replacement functions in the historian 
when data collection for multivariate analysis is being performed.

Data compression: Historical data contains a lot of useful information. However, it 
is difficult to store and retrieve large quantities of data because of hardware and network 
bandwidth requirements. Hence data compression is used to minimize the amount of data 
stored in a historical archive.

In practice historians use a variety of data compression techniques, e.g., box car, 
backward slope, swinging door etc. to compress the data. A number of the compression 
algorithms currently used in historians are based on piecewise linear interpolation. For 
example, the swinging door algorithm (Inc 2002) which is a commonly used algorithm is 
illustrated in Fig. 2.3. A detailed description of the methodology is available in (Thornhill 
et al. 2004). The points ‘a’ and ‘b’ are obtained by adding and subtracting the compression 
deviation from the recorded point ‘c \  The top line is drawn through ‘a’ and the data point 
which maximizes the magnitude of the slope. The bottom line is drawn through ‘b’ and 
the data point which minimizes the magnitude of the slope. The middle dashed line is 
obtained by connecting the last recorded point to the new value. If the middle line has a 
smaller slope than the top line or a greater slope than the bottom line, the previous value is 
recorded. Fig. 2.3 shows that a data point being recorded because the top slope is greater 
than the middle slope. The reconstructed data is obtained by linear interpolation between 
recorded points.

While these might be useful from a data storage point of view, they adversely affect 
the results of multivariate analysis. A recent study (Thornhill et al. 2004) concludes that 
compression induces changes to many of the quantities commonly used in data-driven 
process analysis. It has a significant impact on the basic statistical properties (like mean and
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Figure 2.3: Swinging Door algorithm for data compression

variances) and inferences obtained from control loop performance assessment and process 
monitoring studies. Hence it is necessary to turn off univariate data compression algorithms 
in the historian when data collection for multivariate analysis is being performed.

Quantization & Data limits: Historians have upper and lower limits on the values of the 
stored variables. These are sometimes called high extreme and low extreme values. These 
are artificially introduced in the tag definition and are potentially harmful for data analysis, 
if the physical variable reaches these limits. However, these can be set to meaningful 
values, like the range of the instrument. In some cases, due to economic considerations, 
the production rate may be more than the rate the instrument was designed for. Hence the 
sensor readings might be getting truncated at the high and low ends of the range of the 
instrument.

Fig. 2.4 shows one such example for a flow rate. This problem has been studied in 
statistical literature and is termed data censoring (Gupta 1952). For a sensor which is 
subject to a high degree of censoring, it might be necessary to disregard the sensor reading 
in the analysis. In case the data from the sensor is important for the model development, 
it might be necessary to use inferential strategies to predict the values of the sensor 
reading when it gets censored. The expectation maximization (EM) algorithm (Dempster 
et al. 1977) provides one such inferential strategy.

Data quantization is the minimum step size used for discretization in the data. This 
is generally a function of the data storage allotment in the historian i.e., the number of
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Figure 2.4: Example of a flow tag getting censored
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Figure 2.5: Example of severe quantization in a conductivity tag

bytes allotted to each data point and the physical capabilities of the instrument. Given 
the current trend of relatively inexpensive methods of data storage, data quantization is 
generally not a problem. However, it is good to find this out if  the data seems to be 

overly quantized because this might affect the results of the analysis. Fig. 2.5 shows 
an example of a conductivity tag suffering from quantization problems due to physical
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limitations in the measurement. If one does find out that a particular variable behaves in a 
discrete fashion because of physical or storage limitations, it might be necessary to resort 
to discrete or hybrid regression techniques. If the problem is with data storage, for example 
floating point numbers being saved as scaled 16 bit integer values rather than 4 byte floating 
representation because of the reduction in data storage requirement, it might be necessary 
to turn this feature off when data collection for multivariate analysis is being performed.

Data smoothing and Low-pass filtering: In some historians, data smoothing or 
low-pass filtering is performed to remove the effect of random noise which is typically 
concentrated in high frequency regimes. While this operation improves the appearance of 
data from a univariate perspective, it might modify the results obtained from multivariate 
analysis. For example, let us consider a system in which there is a static relationship 
between an input and output variable y(t) = Ku(t).  If a filter F(q~1) is applied to the 
input u(t), the relationship between the filtered input uF(t) and the output is different 
from the original relationship. It might be still possible to obtain the true relationship 
between input and the output, if the same filter is applied on the output as well. We will 
obtain a consistent estimate for K  using the filtered data, though the statistical properties 
of the estimate (particularly the second order properties) may not be the same. Hence it is 
necessary to carefully choose the smoothing parameters for the historian while identifying 
relationships from multivariate data.

Sample consolidation: One of challenges encountered while developing soft-sensors is 
due to the practice of physical consolidation of samples of the quality variables. The reason 
for this practice is to obtain representative samples of the quality variables. The procedure 
involves mixing a number of physical samples of the product collected at different time 
instants before performing lab analysis. For the process under consideration, consolidation 
is achieved using a flow totalizer and a triggering mechanism. When the cumulative flow 
in a line exceeds a set point it sets off a mechanism which leads to the collection of a 
sample in a container. The consolidation mechanism is illustrated in Fig. 2.6. This process 
continues for about 12 hours for the froth sample and about 2 hours for the other quality 
variables. At the end of the collection, the container has a mixture of the samples collected 
over this period. This liquid is then stirred for homogeneity and the consolidated sample is 
used for analysis. In order to build realistic models using such samples, it is important that 
the modelling methodology including the data pre-treatment mimic the process as much as 
possible. Hence we resorted to time-averaging of the input data as dictated by the sample 
consolidation mechanism before the actual regression was performed.

Let us assume that k  samples are collected at times T i+ ti,T i+ t2, ...,T2 =  7 i+ tfc, where
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Figure 2.6: Sample Consolidation mechanism

Ti and T2  refer to times when the vessel is removed for analysis and ■ ■ ■ ,tk, refer to 
the times when the trigger mechanism is engaged. Then, assuming that equal volumes of 
the product are sampled at the sample instant, the following equation holds approximately:

1 tk
Yav^ - ^ Y ( U )

u = t  1

Under the assumption that the process can be represented well using a linear static-plus­
time delay model of the form,

Y(ti) = ®1 U i ( t j  tdl )  - |-  tffl) +  • • • +  Q‘m,'U'm(ti ^ d m )

where, a i , . . . ,  am are the static regression coefficients of the m input variables 
and the di is the time delay between the ith input and the output, we get the expression:

1
Yav ~  ^ > ^i(tj tdl) +  . . . + Qm ^  ̂tfm(ti tdl)}

ti=tl t i ~ t i

Hence time-averaging can be used to mimic the sample consolidation mechanism.
Effect of large sampling intervals on data size: Another challenge is in the large 

sampling times for the quality variable. The economic cost of performing lab tests to 
obtain concentrations, is one of the reasons for the large sampling intervals. In addition, 
once soft-sensors are in place to predict important quality variables, the plant personnel 
tend to use these to increase the sampling intervals in order to save money on lab tests. 
The sampling time for the froth bitumen is 12 hours. This means that even data collected 
over the course of a few months would yield very few values for the froth bitumen. For 
example we obtained only 60 samples over 30 days. In addition, the ratio of sampling 
time of the quality variable to that of the process variables is 720. Developing multi­
rate models with such large sampling ratios given that we have 25 inputs, is not practical.
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For static regression problems, where we are interested in capturing spatial relationships 
between different variables rather than temporal relationships, we can use the data at the 
slow sample rates. We have adopted this procedure for the models developed in this 
exercise. This reduces the number of samples available for modeling. This problem is 
especially important when considering more complicated nonlinear structures like neural- 
networks in the soft-sensors. Apart from the black-box nature of neural network models 
which impacts the interpretability of the models, the relatively few number of data points 
makes the coefficients used in the model unreliable. Hence we resorted to static-plus-delay 
structures where the optimal delay was obtained using physical quantities like residence 
time.

Estimating time delays in industrial processes: The problem of time-delay estimation 
was found to be particularly challenging. In many process monitoring applications, we 
are interested in developing static-plus-delay models in spite of the presence of dynamic 
elements because of the ease of identification and implementation. In addition, in a 
number of soft-sensor applications, it is not easy to identify dynamic models because of 
the unavailability of lagged output values in contrast to the availability of lagged input 
values. While identifying these models from routine operating data, it may be better to 
lag the process variables using transport delays, known a priori from process knowledge, 
rather than estimating time delays from the data, if we are interested in identifying plant 
relationships rather than correlations which arise from operational and control strategies. 
Transport delays can be estimated based on physical locations of the process elements and 
are functions of the production rate. However, we can make the reasonable assumption 
that these transport delays can be approximated as constants. In addition, care should be 
taken to include recycle effects when transport delays are chosen. In the case of material 
or energy recycle, the model structure should be expanded to accommodate these effects. 
One question that arises in the model identification is the optimal method for handling 
the dynamic elements given the fact that we are interested in identifying static-plus-delay 
models. This question is related to under-modeling and can be solved using a Prediction 
Error Minimization Method (PEM) framework. We present the optimal delay for a Single- 
Input-Single-Output (SISO) process. This result can be extended to a Multiple-Input 
process in a straightforward manner.

PEM approach for selection of time delay: Consider a linear, time invariant (LTI)
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SISO process that can be represented using its impulse response function (Ljung 1999).

OO
y{t) = G(q~1)u(t) +  v(t) =  -  k) + v{t)

fe= 1

y(t) =  g(l)u{t -  1) +  g(2)u(t -  2) +  . . .  +  g(k)u(t -& ) +  . . . +  u(f)

where, u refers to the input, y refers to the output and v refers to unmeasured disturbance.
In the following discussion, we make the assumption that v(t) is a white noise process. The 
optimal delay estimate when the system is subjected to colored disturbances is beyond the 
scope of this thesis.

We are interested in estimating a static-plus-delay predictor for the process shown in 
Eq. 2.21.

y(t) = Ku( t  -  d) (2.22)

The objective is to minimize the prediction error.

(2.23)

where, 0 = {K,d}.  Let us assume for a moment that the input to the process is white noise 
so that,

R u(t ) = Eu(t)u(t  -  t ) — a6To (2.24)

where the ~E operator is defined as follows (Ljung 1999):

<2-25>
t=i

and 5 is the kronecker delta function. It is easy to see in this case that the optimal value for 
d is obtained when it corresponds to the maximum impulse response coefficient.

J  =  E { ( y ( t ) - y ( t ) ) 2}
=  E{(g(l)u(t  -  1) +  g(2)u(t -  2) +  (g(d) -  K)u(t  -  d) +  .. .)2} (2.26)

=  5(1)2 +  P(2)2 +  • • • +  {g(d) — K )2 +  . . .

In order to minimize J , we have to choose K  to be equal to the largest impulse response
coefficient. Hence it is clear that the optimal choice of the delay depends on the impulse 
function of the system.

If the input is not white, a pre-whitening filter W(q~v) can be designed so that u(t) — 
W (g_1)e(t), where e(t) is a white noise sequence (Ljung and Glad 1994). In this case, the

6 = argmin W  =  (v(t) -  y(t))2
I t=i
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optimal choice of the delay is a function of the impulse response coefficients of the filter 
F i q - 1) = G(q~1)W(q~1).

We now present an example of optimal static-plus-delay approximation for a first order, 
delay-free process whose time constant is 15 seconds. The system is subjected to a random 
binary input. The frequency band for the input’s frequency contents is chosen as [0,u>], 
expressed in fractions of the Nyquist frequency (See the idinput command in MATLAB©). 
We modify the frequency characteristics of the input by reducing the value of u, to see its 
effect on the optimal time delay estimate.

MSE as a function of delay
3.7

3.65

3.6
When the input is white noise 
the best estimate for delay is 0

3.55

3.5

3.45

3.4

Delay (Samples)

Figure 2.7: MSE as a function of delay when u  =  1

Fig. 2.7 shows the Mean Squared Error (MSE) as a function of the delay when u> =  1. 
The optimal delay has been identified as 0. Fig. 2.8 shows the MSE values for us =  
1,0.8,0.6,0.4 and 0.2 and Fig. 2.9 shows the MSE values for u> = 0.2. It is clear that 
the optimal delay value tends to move towards the time constant.

Hence it may be concluded that for a system that is subject to inputs which have most 
of their power in the low frequency regime, the optimal choice of the delay is a function of 
the time constant. In practice, approximate residence times may be known for the dynamic 
elements and these may be used to lag the process variables if these elements are known to 
possess low order dynamics. We have used transport delays and residence times to lag the 
variables in the Bitumen recovery soft sensors developed in this project.

Nonlinear transformations:
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MSE as a function of delay
2
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the input's cut-off frequency goes down1
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Figure 2.8: MSE as a function of delay for various u  values
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Figure 2.9: MSE as a function of delay when u  =  0.2

While developing models of systems using linear regression, it is desirable to have 
normally distributed errors affecting the system and a linear relationship between the 
variables in the system. However, in practice these conditions may not hold. For example, 
the presence of a nonlinear relationship between the dependent and independent variables,
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or non-normality of the independent variables or the error manifests itself as non-normality 
of the dependent variable. Hence it is important to check whether it might be inappropriate 
to identify a standard linear model using a given set of data. If nonlinearity is suspected, we 
may need to use suitable transformations of the variables to coax the dependent variable 
to normality or to produce a linear relationship between X and Y. A dependent variable 
may not be normally distributed if its values are bounded, creating a skewed distribution. 
When it comes to inference of parameters from regression, it is important to ensure that 
the errors are normally distributed. A non-normal dependent variable does not necessarily 
mean a non-normal distribution of errors. However, the converse is often encountered. 
This argument is also supported by the common practice of drawing conclusions about 
the error distribution from the distribution of the residuals. When the dependent variable 
is found to be non-normal, one may consider using transformations to normalize the 
dependent variable. A few common transformations that can be used for dependent 
variables, include the logarithmic (Z  — log(Y)), exponential {Z — eY), power (Z — Y p) 

and logistic [ z  =  transformations.

5000 

4500 

„ 4000
4)

I  3500 
.1 3000 

|  2500

I  2000 
|

1500 

1000 

500

° 0 0.16 0.32 0.48 0.64 0.80 0.95 1.11 1.271.43
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Figure 2.10: Tailings distribution shows significant deviation from normality

For the Bitumen recovery separation cell, the distributions of two of the quality variables 
show significant deviation from normality. They are the Bitumen concentrations in the 
Tailings and Flotation tailings. The distribution of the Tailings Bitumen is shown in 
Fig. 2.10 to illustrate this. These quality variables take non-negative values which are 
generally low, except during upsets, which are characterized by large spikes in these 
variables. Performing linear regression without transformation leads to poor prediction

Distnbution of Tailings Bitumen wt%
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Tailings Bitumen Predictions
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Figure 2.11: Linear model does not predict spikes adequately

Tailings bitumen predictions after log transformation
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Figure 2.12: Predictions improve after logarithmic transformation

of these spikes (Fig. 2.11). It is important for the soft-sensor to predict spikes when they 
occur because these represent loss of bitumen into the tailings streams. Predicting the 
exact value of the spikes is relatively unimportant. Due to the nature of the distribution the 
logarithmic transformation has been applied on these dependent variables which led to a 
significant improvement in the quality of the predictions (Fig. 2.12).

2.3.5 Online Results

Soft-sensors were developed for predicting the bitumen concentration (in weight%) in the 
froth, middlings and tailings streams using data collected over a period of three months. 
The soft-sensors used 25 measurements based on the process variables shown in table 2.1.
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Table 2.1: Process variables used in soft-sensor
Feed flow 

Feed density 
Froth density 

Middlings density 
Flotation Tails density 

Underwash 
Cone flush 

Tailings dilution flow 
Dilution water flow 

Middlings flow 
Scavenger tails flow 

Froth flow 
Tailings flow 

Tailings pump amps 
Froth level 

Tailings pump discharge pressure 
Dearator pump amps

The data was split into two portions, training data which was used for developing the 
model and validation data, which was used to test the model. The results of PLS and 
IPCA predictions were compared using the Mean Squared Error (MSE) and Correlation 
Coefficient (CC) performance indices. These are defined as follows:

M S E  = (2.27)

where, Y  refers to the lab measurement of the quality variable and Y  refers to the prediction 
using IPCA or PLS.

~  , < * * * ,* )  (2.28)
y  Var(Y)Var(Y)

where, Y  refers to the lab measurement of the quality variable and Y  refers to the prediction 
using IPCA or PLS, Cov and Var  stand for covariance and variance respectively.

The advantage of using IPCA for developing the soft-sensor is that the number of 
dimensions of the signal space can be easily determined by looking at the plot of the 
singular values. The singular values corresponding to the signal space are greater than 
unity and those corresponding to the residual space are equal to unity. This is illustrated 
in Fig. 2.13 where a portion of the singular value plot is shown. The corresponding
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Table 2.2: Singular values obtained using the IPCA procedure

Factor Singular Values Expected Range
1 39442 > 1
2 2625.6 > 1
3 1043.8 >  1
4 176.5 > 1
5 66.404 > 1
6 36.484 > 1
7 8.8514 > 1
8 6.3739 > 1
9 3.2607 > 1
10 2.8921 > 1
11 2.0172 > 1
12 1.5626 > 1
13 1.3656 > 1
14 1.0648 - 1
15 1.0146 =  1
16 1.0058 =  1
17 0.99491 =  1
18 0.97516 =  1
19 0.94042 =  1

Table 2.3: Performance indices fo r the soft-sensors

Performance Indices 
Tailings Soft Sensor 

IPCA PLS 
MSE 0.1007 0.1171 
CC 0.7202 0.5913 

Flotation Tails Soft Sensor 
IPCA PLS 

MSE 0.2983 0.3757 
CC 0.7221 0.5983
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Figure 2.13: Plot of the singular values obtained through IPCA procedure
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Figure 2.14: Plot of the cumulative X and Y variances captured by successive PLS 
dimensions

singular values are shown in Table 2.2. It is clear from Table 2.2 that the singular values 
of the residual space are close to unity and hence there is no ambiguity in the number 
o f underlying components in the signal space. On the other hand, the plot showing 
the cumulative variance captured by successive dimensions in PLS does not give an 
unequivocal result for deciding the number of underlying signal components (Fig. 2.14).

The results of the predictions are shown for the validation data sets in Figs. 2.15 and 
2.16. The performance indices for the tailings and flotation tailings soft sensor are given
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Figure 2.15: Predictions of Tailings Bitumen using PLS and IPCA techniques

Flotation Tailings Bitumen Predictions
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Figure 2.16: Predictions of Flotation Tailings Bitumen using PLS and IPCA techniques

in Table 2.3. The froth bitumen soft-sensor is based on PLS regression (Fig. 2.17). Poor 
sampling intervals prevent us from getting good predictions for this variable. However, we 
are still able to provide a good monitoring tool using the other two soft sensors as shown 
in Fig. 2.18. From the predictions, it is clear that there is great potential for the use of soft 
sensors for predicting bitumen recovery.

The soft sensors have been implemented online in Suncor Extraction’s Distributed 
Control System (DCS) since June 2002, and their Plant historian (Fig. 2.18). The soft-

.•••«•■■ Meas 
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  PLS

Meas 
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  PLS
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Froth Bitumen Predictions
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Figure 2.17: Predictions of Froth Bitumen using PLS Regression
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Figure 2.18: Online prediction of Bitumen Recovery

sensor based monitoring scheme has been functional for the last two years and the results 
are encouraging. These predictions are being used for monitoring the bitumen recovery 
in the separation cell. This simple tool, which gives an advance warning of an impending 
drop in the efficiency has helped to improve the operation.
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2.4 Steady-state Fault Detection and Isolation (FDI)

When the process remains close to a particular steady-state simple static models identified 
using multivariate statistical techniques on routine operating data can be used for process 
monitoring (Kresta et al. 1991, Wise and Gallagher 1996). While these models and the 
monitoring methods developed using these models are useful for fault detection, they 
are unreliable for fault isolation. In particular, the contribution plot approach for fault 
diagnosis in PCA-based process monitoring has to be supplemented by “cause-and-effect” 
reasoning from the user. Nevertheless, these methods are useful because of their simplicity, 
data-crunching ability and opportunity for involving operating personnel as a part of the 
monitoring scheme.

2.4.1 FDI using PCA and contribution plots

Model identification using PCA has been described in Sec. 2.2. Process monitoring in the 
PCA framework is usually performed by monitoring the T2  and SPE statistics. Following 
Eq. 2.9 the SVD of the data matrix Z yields scores and loadings defined as follows:

where, T s =  U iS i are the scores and P s =  V i are the loadings. Clearly, the scores are 
linear combinations of the variables in the Z matrix. They are also known as the principal 
components.

For purposes of monitoring, PCA can be assumed to achieve a decomposition of the data 
matrix Z =  Zs +  Zr into a signal portion, Zs — U iS iV f =  T ,P j  and a residual 
portion Zr =  U aSaV j. The signal space is ns dimensional and the residual space is nr 
dimensional, i.e., Z., e  $tNxn’ and Zr e  3ftiVxnr. Following the notation used in Sec. 2.2, 
nr = r and ns = m  +  p  — r.

Under the assumption that the underlying signals in the Z matrix are independent and 
identically distributed with Gaussian densities, the T2  statistic can be formulated to monitor 
the components in the signal space.

The T 2  statistic based on the first ns PCs is defined as

Z »  U lS iV f 

U A V f  -  T sP f
(2.29)

ZPS =  T s (2.30)

(2.31)
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where T s(f,i) refers to the tih row and ith column in the T s matrix. Confidence limits 
for T 2  statistic at a level of (1 -  a) can be derived by noticing that this statistic has an 
F-distribution.

rp2 1 ) ^ 5  p
N*n* ~  N  — ns n-*JV"n- ^ *

where FnstN -ns is the upper 100o;% critical point of the F  distribution with ns and (N —n s) 
degrees of freedom.

Similarly, the Squared Prediction Error (SPE) is used to monitor the residual space. Let 
z(t) 6  3 £lx(m+p) denote the t th observation. The r-dimensional residual vector is given by 
r (t) = z ( t)V 2, where V 2  is defined in Eq. 2.9. The SPE is then defined as:

SP E (t) = r(t)r(t)2 (2.33)

The confidence limits for SPE are given by Jackson and Mudholkar (1979). This test 
suggests the existence of an abnormal condition when S P E  > Qa, where Qa is defined 
as:

Q a  =  ©1
1  caho-s/2&^ +  e 2hQ(h0 -  1 )

© 1 0 2

_1_
h0

where,

and

m+p

S  ( ^ ) 4; f o r i  = 1,2,3
j= n » + 1

ho — 1  —2©1 9 3

3© 2

(2.34)

(2.35)

(2.36)

ca is the confidence limit for the 1  — a  percentile in a normal distribution and sj refers 
to the singular value corresponding to the j th component. Fault diagnosis is performed 
in the PCA framework using SPE contribution plots. Notice that the residual r  (t) can be 
decomposed as follows:

r (t) = z ( t)V 2 = [ Zi(t) z2(t) ■ ■ ■ Zm+p(t) ] 

=  Zi(t)V 2 (l, 0 +  h zm+p(t)V 2(m  +  p , :)

~  r l ( ^ )  +  ' ‘ ‘ +  r m + p(^ )

V 2 ( l , :) € 3?lxr 

V 2(m + p , :) e  9ft1* (2.37)

where, V 2 ( i , :) refers to the ith row of the V 2  matrix, r^ t)  can be considered as the 
contribution of the ith variable to the residual. Hence the fractional contribution of the
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ith variable to the SPE is:
(2.38)

2.5 Turbine Failure Diagnosis

In this application, we present the results of PCA and contribution plots for failure diagnosis 
in a unit of a coal-fired power plant. The capacity of the unit was around 500M W  and 
a safety-trip occurred in this unit. Following the trip it was discovered that the turbine 
bearings were damaged. This resulted in nearly two weeks down-time and consequently, a 
significant loss of production. Our objectives of the failure diagnosis were two-fold:

1. Diagnose the reasons for the trip that occurred in the plant.

2. Find a probable cause for fatigue in the bearings of the turbine.

The main reasons for choosing PCA for the diagnosis was the requirement of 
dimensionality reduction and the existence of physical sensor redundancies which made 
the covariance matrix ill-conditioned. The unit under investigation has 12,897 measured 
variables. The analysis was based on one week of data sampled once every 15 seconds. 
Reducing the sampling frequency by \ th resulted in 10,741 values for each of these tags. 
Using process knowledge and averaging, the number of variables was reduced to 97. On 
performing PCA the number of significant dimensions turned out to be 8 . This is a large 
reduction in the dimensionality of the problem.

2.5.1 Immediate reasons for the trip

Using the SPE chart (Fig. 2.19) it was possible to predict the occurrence of the trip with a 
lead time of at least 80 minutes.
Possible reasons for the deviation of the SPE can be found from the contribution plot 
which is the plot of the individual variable contributions (Eq. 2.38) to the SPE. Since the 
fault occurred at the sample 10551, the immediate reasons for the deviation are found by 
looking at samples before this. At sample 10550 the contribution plot (Fig. 2.20) shows 
that the main reason for the deviation is an oil pressure. As noted earlier, diagnosis from 
the contribution plot can be misleading. Hence it is necessary to confirm the diagnosis. To 
improve the confidence in the diagnosis the trend plot of the percentage contribution of the 
oil pressure tag to the SPE and the absolute contribution of the oil pressure tag to the SPE 
are shown in Fig. 2.21 and Fig. 2.22.
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Figure 2.19: Fault detection using the Squared Prediction Error
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Figure 2.20: Contribution plot at sample 10551

Following these results, a look at the trend plot of the variable in question shows an 
abnormal deviation in this variable (Fig. 2.23).

2.5.2 Diagnosis of Bearing Fatigue

A look at the zoomed-in SPE chart (Fig. 2.24) shows that it starts deviating from sample 
9476.
Eccentricity: This abnormal deviation is related to the eccentricity of the turbine shaft and 
an increase in the bearing temperatures. The variable Eccentricity plays an important role
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Figure 2.21: Percentage contribution of oil pressure to SPE
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Figure 2.22: Absolute contribution of oil pressure to SPE
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Figure 2.23: Trend plot of oil pressure
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Figure 2.24: Deviation in SPE - Initial stages

in indicating a measure of the wear of the bearings in the turbine. Eccentricity is a measure 
of the deviation of the shaft from its horizontal position (Fig. 2.25).

HP OH, STM
T»llt|t. 2TURB 0M43AV
1 2STH M511AV

LP ««<l

Figure 2.25: Definition of Eccentricity

Steam enters the turbine from the HP (High Pressure) end at a high pressure and 
temperature and leaves at the LP (Low Pressure) end at a lower pressure and temperature. 
Hence there is more relative expansion of the shaft on the high temperature side than 
on the low temperature side. This is the cause of eccentricity. To take care of this 
relative expansion, the shaft is cold-aligned with an extra tension which depends on the 
temperature of the steam entering the turbine under normal operating conditions. Under 
normal operating conditions, the eccentricity is at its lowest.
Turbine Bearings: There are two types of Bearings in the Turbine - the Thrust Bearing 
and the Journal Bearings. Since there is a difference in pressure between the HP end and
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the LP end of the Turbine, the Impeller-Shaft assembly tends to shift towards the LP end. 
To prevent this, there is a collar in the turbine casing and one in the shaft. This arrangement 
is called the Thrust Bearing. The Front Face (FF) and Rear Face (RF) are named according 
to the convention depicted in Fig. 2.26. There are two sets of Journal Bearings, one on the 
Thrust side (the HP side) and on the Coupling side (the LP side), for vertical support of the 
shaft, when the system is at rest. The bearing assembly is also used to supply lubricating 
oil. The cross-section of the Journal Bearing is also shown. There is a soft material called 
the babbit on which the shaft is supported when the system is at rest. When the shaft 
is being rotated, the film of oil lubricates the system. When the eccentricity of the shaft 
increases, the friction in the bearings increases and hence the bearing temperatures also 
increase. Further, this leads to a gradual wearing down of the bearings.

_  F ront
f?ear Face Face \

Collar
THRUST BEARING

BEARINGS

I H U

JOURNAL BEARING 
(One on Thrust side & 
one on coupling side)

Shaft
Babbiti(soft material)

Path tor
ofl infection

JOURNAL BEARING (CS)

Figure 2.26: Turbine Bearings

When the system operates at a temperature lower than the designed range, the eccentricity 
increases, causing friction in the bearings which leads to higher bearing temperatures. 
There are two ways in which the operation of the system changes. One is by a change in the 
steam flow and the other is by a change in the steam temperature. It is seen that in this plant, 
the steam flow changes with the load which indicates that it is the main manipulation of 
some control mechanism applied to control the load. The steam temperature changes very 
rarely. But when this happens, the eccentricity increases. This is seen in the comparative 
plot of the bearing temperatures, eccentricity and the steam temperature (Fig. 2.27). It 
is clear that the dip in the steam temperature by about 50° F  caused the Eccentricity to 
increase and move out of the normal operating range. This in turn causes fatigue in the 
bearings, increases the turbine bearing temperatures and causes the bearing to fail in the 
long run.

In conclusion, the wearing out of the bearings which is shown by the increase in the 
temperature of the bearings seems to be due to the increase in the Eccentricity, which in
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Figure 2.27: Trend plots of Bearing temperatures, Eccentricity and Steam temperature 

turn is related to the decrease in the steam temperature.
The results of this application demonstrate the applicability of PCA and contribution plot 
based fault diagnosis. These results also point to the fact that these methods require a 
significant amount of process knowledge for diagnosis.

2.6 Isolation enhancements using structured residuals

It is important to note that the contribution plots discussed in Sec. 2.4 do not provide 
reliable diagnosis of the location of the fault (Gertler et al. 1999). They only indicate 
the variables that are most correlated with the fault. More reliable diagnosis is provided 
using the structured residual approach (Gertler and Singer 1990) which has been extended 
to deal with model identified using PCA in the isolation enhanced PCA approach (Gertler 
etal. 1999).

As stated in Sec. 2.4, the r-dimensional residual vector is given by r(t) =  z(f)0 , where, 
© is the steady-state model obtained from first-principles or using a data-based approach

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
Sample

Trend Plot o f  Steam Temperature

976 1952 2928 3904 4880 5856 6832 7808 8784 9760 10736
Sample

Th-brg-ft-temp
Th-brg-rf-temp
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like PCA. Let us consider the transposed form (o(i) =  r (t)T — QTz(t)T =  A z (t)T) of 
this residual vector for convenience. This vector is known as the Primary Residual Vector 
(PRY) and it can be used for fault detection. A fault detection index (%(t)) is constructed 
using the PRV, as follows:

Vd(t) = o(t)TQ~ 1 o(i) (2.39)

where, Qfl is the covariance matrix of the primary residual vector calculated from a training 
data set collected under normal, fault-free, conditions. The fault detection index is a random 
variable with a x 2 distribution with r degrees of freedom under fault-free conditions 
(Romagnoli and Stephanopoulos 1981). Hence fault detection can be performed by simply 
comparing the value of rjd(t) with the threshold limit obtained from a central chi-squared 
distribution at an appropriate confidence level, say 99%.

Fault isolation is performed by transforming the PRV into a set of scalar structured 
residuals s(t) by multiplying it by a transformation matrix W . Each of these structured 
residuals is designed to be insensitive to a specified subset of faults while being sensitive 
to the remaining faults. For example, it is possible to design the W  matrix so that each 
element of s(i) is insensitive to one particular fault while being sensitive to other faults. 
The scalar structured residuals can then be used to construct fault isolation indices.

s?(f)
Vi,A1) = - j—  j  = 1, ■ • ■ > * (2-40)

Hsj
where qsj is the variance of the j th structured residual calculated from a training data set 
collected under normal, fault-free, conditions. These isolation indices are x 2 distributed 
random variables with one degree of freedom. The fault codes of this formulation are 
summarized in an incidence matrix such as the one shown in Table 2.4. In this table, a “0” 
indicates the insensitivity of a structured residual to a fault, while a “1 ” indicates sensitivity 
to the fault.

2.6.1 Maximized sensitivity enhancements

While the structured residual approach provides a framework for performing fault detection 
and isolation, the choice of the structured residual transformation matrix W  is arbitrary. In 
addition, it is possible to design this matrix in a way such that the structured residuals have 
maximized sensitivity to a subset of faults while being insensitive to a particular subset of 
faults (Qin and Li 1999). This leads to the Structured Residual Approach with Maximized 
Sensitivity (SRAMS) design criterion:

Choose the rows w* o f the transformation matrix W  such that s f t )  is insensitive to the 
ith  fault but most sensitive to the others (Qin and Li 1999).
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Table 2.4: Incidence matrix to characterize the isolation logic

h h h h
S i ( t ) 1 0 0 0

S2{t) 0 1 0 0

S3{t) 0 0 1 0

S i { t ) 0 0 0 0

0 1

Mathematically, this leads to

^  (wfa,-) 
w i =  argmax >

j g  K | | 2 | |a J 2
(2.41)

subject to, w f  a* =  0, where, a j refers to the j th column of the A  matrix.
The scalar structured residual and SRAMS formulations are now illustrated by a flow 

network example.

Flow network example

Consider the hypothetical flow network shown in Fig. 2.28. This flow network has 8

M SPL

SPLMIX

M SPL M MIX

Figure 2.28: Flow network with 8  measurements and 3 constraints
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measured flows and 3 constraints. The constraining equations can be summarized as:

Assume that, F  (t) =  [Fi F 2  F8]T. In the absence of measurement noise and faults 
the constraints can be expressed as, A F  (t) =  0 e  5R4, where,

To investigate fault directions, let us consider fault directions orthogonal to the fault 
direction of Fg, [0 0 1]T. Notice immediately, that it is not possible to distinguish a sensor 
fault in Fg from some other process related event, like an accumulation in the mixing device 
immediately preceding this variable, unless additional information is given regarding the 
difference in time trajectories of these events. When a fault A / 8  occurs the primary residual 
vector is o =  [ 0  0  l]T/s, i.e., it is of magnitude fg along the direction indicated by the 
column in the A-matrix corresponding to the variable Fg. The row vector w 8  which is 
used to obtain the structured residual insensitive to a fault in Fs should obviously be of the 
form [tcg(l) Wg(2) 0]. The difference between the structured residual approach and the 
SRAMS approach is in the way w8( 1) and ws(2) are chosen. This is illustrated in Fig. 2.29, 
where the fault directions are indicated in the 2-D residual subspace which is orthogonal to 
faults in Fg. While, the ordinary structured residual approach can choose the w 8  vector in 
an arbitrary direction, the maximized sensitivity approach chooses it in a direction which 
minimizes the angle made to all the fault directions. Hence, while the ordinary structured 
residual vector may inadvertently choose w 8  orthogonal to one of the fault directions, such 
an event cannot happen inadvertently with the maximized sensitivity approach.

Notice however, that the SRAMS approach can also fail. For example, consider the 
situation where F 5  is not measured. In this case, the SRAMS approach chooses w 8  as 
[0 — 1 0]. Hence the structured residual, while being orthogonal to Fg, has also
become orthogonal to F i,F 2 ,F 3  and F4. The problem is that the entire residual space 
orthogonal to Fg has not been captured. Only the principal direction has been captured. 
In order to rectify this deficiency, the Structured Residual Vector (SRV) approach with 
maximized sensitivity (Li and Shah 2002) constructs a 2-D structured residual vector for 
this problem to characterize the entire residual space orthogonal to Fg. It is superior to 
the scalar structured residual approaches in terms of sensitivity. This is illustrated by the 
following simulated case study involving the steady-state FDI in a quadruple tank process.

Ft + F2  = Fg + F4  + F5  

F5  = Fg + F7  

Fg = F4  + F7

(2.42)

1 1 - 1 - 1 - 1 0  0  0  

A =  0 0 0 0 1  - 1  - 1  0
0  0  0  - 1  0  0  - 1  1

(2.43)
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2D Subspace orthogonal 
to fault in F„

^a rb itra ry

Figure 2.29: Fault directions orthogonal to fault in Fg

2.7 FDI in a Quadruple tank process

In this section, the results of Monte Carlo simulations investigating the effect of residual 
generation and decision rule parameters on the steady-state flow network model of the 
quadruple tank process (Johansson 2000) are presented. The objective of these simulations 
was to study the effect of various parameters on the performance of FDI algorithms. 
By choosing these parameters appropriately, desired sensitivity is obtained in the FDI 
algorithm. A schematic diagram of the quadruple tank process is shown in Fig. 2.30. A 
steady-state flow network based on this process is shown in Fig 2.31.

We assume that eight flow rates are measured in this process (Fi - Fg). The mass balance 
can be summarized by the following equations:

F5 = F2 + F 3  

F6 = Fi + F4 

F7 =  Fi +  F 3  

Fg =  F2 + F4

Consequently, we can summarize,

(2.44)

' 0 1 1 0 - 1 0 0 0 '  F\ '

1 0 0 1 0 - 1 0 0 f 2
1 0 1 0 0 0 - 1 0

0 1 0 1 0 0 0 - 1
.  F* .

=  0  =>• A F  =  0 (2.45)
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Tank 3
Tank 4

Tank 1

Pump 2Pump 1 Tank 2

Figure 2.30: Schematic of the four water tank system

WMIX

M SPL

*(MIX

M SPL

Legend 
R -  Reservoir 
SPL -  Splitter 
MIX -  Mixer

Figure 2.31: Steady-state flow network for quadruple tank process

Data sets corresponding to 100 different noise realizations were generated, with 1000 
samples in each data set. This corresponds to 100 x 1000 =  100,000 samples for 
performing FDI. In addition to the no-fault case, faults of sizes (0.5, 1, 2, 3 and 5a) were 
introduced in each of the 8  sensors, where a is the standard deviation of the noise in the 
sensor. This results in 8  different types of data sets with 5 different fault sizes and 1 non- 
faulty data set. Each of these cases has 100,000 samples. To make things simple, only 
the single fault hypothesis was considered. The performance of 6  different FDI settings
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Case Model Isolation Strategy Decision Logic
1 1st principles Scalar Structured Residual (SRS) Multiple testing
2 1st principles SRAMS Multiple testing
3 1st principles Structured Residual Vector (SRV) Multiple testing
4 1st principles Scalar Structured Residual (SRS) Single testing
5 1st principles SRAMS Single testing
6 1st principles Structured Residual Vector (SRV) Single testing

corresponding to different choices of the residual generation approach and decision rule 
was studied. These choices are shown in Table 2.5.

In all cases, the first principles model shown in Eq. 2.45 is used. This model is used 
to generate the primary residual vector o(t) used for fault detection. Once the primary 
residual vector is generated, the structured residual is formed for fault isolation.

In the scalar structured residual method, the transformation matrix used to obtain the 
structured residual is,

W  =

2 1 - 1 1
1 2 1 - 1
1 2 - 1 1
2 1 1 - 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

(2.46)

This results in 8  scalar structured residuals for performing fault isolation.
In the SRAMS approach, the transformation matrix used to obtain the structured residual 

is shown in Eq. 2.47. In this case as well, 8  scalar structured residuals are obtained and fault 
isolation was performed using these.

W  -ms —

-0.71 0 0 -0.71
0 -0.71 -0.71 0

0 -0.71 0 -0.71
-0.71 0 -0.71 0

0 - 0 . 6 8 -0.52 -0.52
- 0 . 6 8 0 -0.52 -0.52
-0.52 -0.52 0 - 0 . 6 8

-0.52 -0.52 - 0 . 6 8 0

(2.47)

In the Structured Residual Vector approach, structured residual vectors, s,(f) G 
5R3, V i =  1, • ■ • , 8  were generated using the transformation matrices shown in Eqs. 2.48 
to 2.55.
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W i =

W 2 =

w , =

w 4 =

w 5 =

w 6 =

w 7 =

w 8 =

-0.71 0 0 -0.71
0.50 --0.50 0.50 -0.50
0.50 0.50 -0.50 -0.50

0 -0.71 -0.71 0

-0.50 0.50 -0.50 0.50
0.50 0.50 -0.50 -0.50

0 -0.71 0 -0.71
-0.50 0.50 0.50 -0.50
0.50 0.50 -0.50 -0.50

-0.71 0 -0.71 . 0

0.50 --0.50 -0.50 0.50
0.50 0.50 -0.50 -0.50

o1o
. 6 8 -0.52 --0.52 '

0  0 -0.71 0.71
_ 0  0 .74 -0.48 --0.48 _

' - 0 . 6 8 0 -0.52 --0.52 ‘
0 0 -0.71 0.71

0.74 0 -0.48 --0.48 _

' -0 .52 - 0 .52 0 -- 0 . 6 8  '
0.71 - 0 .71 0 0

_ -0.48 - 0 .48 0 0.74

' -0.52 - 0 .52 -0 . 6 8  O '
0.71 - 0 .71 0 0

-0 .48 - 0 .48 0.74 0

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

Once the structured residuals are formed, the incidence matrix used to characterize the 
fault codes is given by Table 2.6. As far as the decision making is concerned, there are two 
possibilities, multiple testing (Cases 1 to 3) and single testing (Cases 4 to 6 ). To illustrate 
these testing strategies, let us consider the fault f i .  In the case of multiple testing, the test 
which has to be satisfied is < xK®) and rjitj > xj^a), V j  = 2, • • • , 8 . If all the 
isolation indices are greater than the limits, the fault detection test has been falsified. If 
more than one isolation index is less than the limit, it corresponds to an uncertain fault, 
i.e., the fault code is not present in this incidence matrix. In practice, this leads to a large 
number of uncertain results. In order to avoid these problems, the single testing strategy is 
proposed. In this strategy, we only have to consider the minimum among the fault isolation 
indices. Since, the fault detection test has already established the presence of a fault, we 
simply assign the fault to the minimum among the fault isolation indices.
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Table 2.6: Incidence matrix to characterize the isolation logic

f l /2 /3 h h h f i h
« l ( t ) 0 1 1 1 1 1 1 1

8*(t) 1 0 1 1 1 1 1 1

s3(t) 1 1 1 1 1 1 1

s4(t) 1 1 1 0 1 1 1 1

*5 (*) 1 1 1 1 1 1 1

« e (f) 1 1 1 1 1 0 1 1

s7(t) 1 1 1 1 1 1 0 1

S8(t ) 1 1 1 1 1 1 1 0

The results of these monte-carlo simulations are summarized in the FDI performance 
tables (Tables A.l to A. 12) in the Appendix. The results show that,

•  Fault detection and isolation tests improve with an increase in the size of the fault.

•  The performance of the SRV-based approach is much better than the scalar structured 
residual and the SRAMS approaches.

•  The SRAMS approach is very poor in isolating faults in F5, • • • ,F%.

•  The multiple testing strategy gives rise to a large number of misclassifications in fault 
isolation.

•  The SRV-based approach with single testing minimizes misclassification and 
uncertain results and has the best performance in fault isolation.

2.8 Conclusions

Principles of steady-state model identification and fault diagnosis have been presented 
and illustrated using simulations and industrial case-studies. Two industrial case-studies 
involving PCA and PLS have been presented, to demonstrate the application of multivariate 
statistical techniques for process monitoring. In addition, some of the issues involved 
in developing inferential sensors from archived historical data have also been addressed. 
A novel approach for the joint identification of steady-state models and the noise 
covariance matrix has been described and illustrated using an industrial case-study. The 
superiority of SRV-based fault isolation over scalar structured residual approaches has
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been demonstrated. Optimal choices for the residual generation mechanism and decision 
rule criteria for SRV-based FDI have been established using a simulated quadruple tank 
process.
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3
Discrete-time dynamic model identification 

and fault diagnosis

3.1 Overview

A common problem faced in the process industry is that detailed mathematical models 
of processes are not available. Since all FDD methods require some sort of model this 
constraint has important consequences on the safety and performance of these processes. 
Among the different faults that affect processes, sensor and actuator faults affect the rest of 
the system in an additive way. They can be diagnosed using discrete-time input/output 
(I/O) models of processes since they affect the process at the input or output ports. 
Such I/O models can be identified using techniques such as Prediction Error Methods 
(PEM) or Subspace Identification Methods (SIM). Following the identification of these 
I/O models, sensor and actuator faults can be detected and diagnosed using parity-space or 
observer-based techniques or their extensions. In addition, these methods can be applied 
to plants operating under closed-loop conditions1. In the following sections we describe

1 Sections o f this chapter have been presented or published as:

1. H. Raghavan and S.L. Shah, “Diagnosis o f sensor faults in closed-loop systems”, Presented in AIChE 
Annual Conference, Indianapolis, USA, Nov, 2002.

2. H. Raghavan and S.L. Shah, “Data-driven approaches for detection and diagnosis of Sensor faults”, 
Presented in the Western Canadian Process Control Conference, Calgary, Canada, June, 2002.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I/O faults in open-loop and closed-loop systems 60

the application of Structured Residual Vector (SRV) approaches for the detection and 
diagnosis of sensor and actuator faults using simulations on a quadruple tank process and 
experimental studies on a pilot-scale Continuous-flow Stirred Tank Heater process.

3.2 I/O faults in open-loop and closed-loop systems

In this section, we illustrate the consequences of the occurrence of actuator and sensor 
faults in systems operating under open-loop and closed-loop conditions using simulations 
of a quadruple tank process.

A schematic diagram of the process is shown in Fig. 3.1. The objective is to control 
the level in the lower two tanks using two pumps. The process inputs are v\ and v2 (input 
voltages to the pumps) and the outputs are yu y2 (voltages from the level measurement 
devices) and y3 (voltage from a measurement device providing a redundant measurement 
based on the difference in the levels in Tanks 1 and 2). Mass balances and Bernoulli’s law 
yield (Johansson 2000):

dhi 7 1 & 1  0 1  r— -  o3  f - r -
IT = l h v' ~ +
dh2 72^2 a2 fn—T~ ai
Hi A v2~  1 - V ^ 2  +  T - V ^ 4dt A 2 A 2 A 2 .. ..

dh3 ( 1 - 7 2 ) ^ 2  «3 f z r r
- d t = - ^ - V2~ A 3^
dhi (1 -  7i)ki «4 /t t t

where, Ai - cross-section of tank i, at - cross-section of the ith outlet, and hi - water level 
in the ith tank. The parameters 7 1 , 7 2  € (0,1) are determined from how the valves are set 
prior to an experiment. The flow to Tank 1 is jik iV i, the flow to Tank 4 is (1 — 7 i)fci? 7  

and similarly for Tank 2 and Tank 3. The acceleration due to gravity is denoted by g. The 
measured level signals are kch\, kch2, kch3 and kchi, where kc is a parameter associated 
with the sensor gain.

The parameter values and the chosen operating point of the laboratory process are given 
in Table 3.1.

The introduction of actuator and sensor biases in the process is shown in Figs. 3.2 and 
3.3.

An important factor to study in the comparison of different approaches is the sensitivity 
of the approach. In this study we have quantified the size of the biases in terms of the noise
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Tank 3
Tank 4

Tank 1

Pump 2 

v2

Pump 1 Tank 2

Figure 3.1: Schematic of the four water tank system
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Figure 3.2: Schematic illustrating the introduction of actuator biases 
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dP Process noise
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Bias

Figure 3.3: Schematic illustrating the introduction of sensor biases

level in the system. It is assumed that the system operates subject to

•  Process noise (dp), which can be characterized by zero mean random Gaussian 
process with a standard deviation of a (dp ~  N (0, cr2 I2)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I/O faults ia open-loop and closed-loop systems 62

A \,A 3 cm 28
A 2, A4 cm 2 32
Oi, a3 cm2] 0.071
0,2, O4 cm ] 0.057
ku k2 cm?/Vs] 3.33,3.35
h\,h°2 cm] 12.4,12.7
hi, hi cm] 1.8,1.4
v l,v l v \ 3.00
kc V j cm] 0.50
9 cm/s'2] 981
71,72 0.70,0.60

Table 3.1: Parameter values and chosen operating point o f the Quadruple-tank process

•  Measurement noises (n), which can be characterized by a zero mean random 
Gaussian process with a standard deviation of o (n ~  iV(0, <t2 I3)).

The value of 0.06V is chosen for the standard deviation a of the noise. With this chosen 
value of a, biases are introduced in the actuators and sensors at levels starting from o. The 
sensitivity of different methods is compared in the sense that the size of the smallest bias, 
which can be detected and isolated by a particular method, is quantified.

Trend plots are plots of the variables as a function of time. In the following figures 
introduction of different types of faults is illustrated. The information gathered from the 
trend plots can be misleading under some circumstances as can be gathered from the 
following illustrations.

3.2.1 Open loop - actuator faults - Trend plots

When biases develop in the actuator there is a discrepancy between the intended input to 
the system and the actual input. This is illustrated in Fig. 3.4.

These can be important because they may lead to unforeseen changes in the outputs. 
It is not possible to effectively diagnose the cause of these events from trend plots or 
using univariate methods. This is clear from Fig. 3.5. The use of techniques like PCA for 
diagnosis may sometimes lead to misleading results and classify the event as a change in 
the operating condition caused by some unknown disturbance. However when techniques 
based on open-loop input-output models are used for diagnosis, it is found that the results 
are accurate and sensitive for detection and diagnosis of very small faults.
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Figure 3.4: Actuator Biases: Differences between the expected inputs and true inputs

Trend plots for actuator faults in open loop case;
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Figure 3.5: Actuator Biases: Trend plots of the observed variables
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3.2.2 Open loop - sensor faults - Trend plots

When biases develop in the sensors under open-loop conditions, there is a discrepancy 
between the actual state of the process and the information received about the state of the 
process. This is illustrated in Fig. 3.6.

Observed value 
Actual value

2000 4000 6000 8000 10000 12O0OT400O 16000 18000

7.5 Observed value 
Actual value

5.5 la  2a 3a 6a 10a 15a

2000 4000 6000 8000 10000 12000 14000 16000 18000 
Time (secs)

Figure 3.6: Sensor Biases: Differences between the actual state of process and observed 
state of the process

The trend plots of the observed variables (Fig. 3.7) show changes in the process when there 
are no changes in reality. The manipulations performed based on the observed variables 
may be incorrect and may lead to undesirable situations.
Diagnosis based on comparison of the values of redundant sensors can be effective. 
Diagnosis can also be performed by simple multivariate approaches like PCA or by 
comparing the readings of redundant sensors. In addition, Model-based FDD schemes 
are accurate and sensitive in diagnosing these faults.

3.2.3 Closed loop case - actuator faults - Trend plots

W hen small biases develop in the actuator there is a discrepancy between the intended input 

to the system and the actual input. This is corrected by the controller, which adjusts the 
input to the system so that the output remains at the desired level. Hence an actuator bias
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Trend plotsfor s e n s o r  faults in open loop cafe
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Figure 3.7: Sensor Biases: Trend plots of the observed variables

by itself is not a serious matter if the system is under closed-loop condition. It a problem 
only when the actuator reaches one of its constraints due to this correction.

Expected value 
Actual value

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

--- Ejqjectedvalue 
Actual value

1000 2000 3000 4000 5000 6000 7000 8000 9000 100001100012000

Time (secs)

Figure 3.8: Closed-loop Actuator Biases: Differences between the expected inputs and true 
inputs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I/O faults in open-loop and closed-loop systems 66

The fact that there is an actuator bias in a closed-loop system can be found out by just 
looking at the trend plots (Figs. 3.8 and 3.9) or by using univariate statistics.

Trend pints for actuator faults under closed loop conditions
5.6 6.8 

6.6

5.6
2000 4000 6000 80001000012000 2000 4000 6000 80001000012000

g -0.2
-0.4 
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3  2.5

10.00 2000 3000 4000 5000 6000 7000 8000 9000 100001100012000
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Figure 3.9: Closed-loop Actuator Biases: Trend plots of the observed variables

These faults can also be detected and accurately diagnosed by using model-based FDD 
techniques.

3.2.4 Closed loop case - sensor faults: Trend plots

This is by far the most serious fault among these faults. When biases develop in the sensors 
under closed-loop conditions, there is a discrepancy between the actual state of the process 
and the information received by the controller about the state of the process (Fig. 3.10). 
This leads the controller to perform incorrect manipulations on the process.
The controller performs incorrect manipulations on the process when sensor biases develop 
in the closed loop system. This is potentially dangerous because the manipulations affected 
by the controller may lead the process away from the desired operating point. When the 
process controlled is nonlinear this leads to significant deviations. The movement of the 
process to an undesirable operating point may have disastrous consequences. Fig. 3.11 
shows the trend plots of the observed variables when biases develop in the sensors.
While diagnosis based on trend plots, univariate methods and PCA is not reliable and 
accurate, model-based FDD schemes are accurate and sensitive in detecting and diagnosing
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Figure 3.10: Closed-loop Sensor Biases: Differences between the observed and true 
outputs
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Figure 3.11: Closed-loop Sensor Biases: Trend plots of the observed variables 

these faults.
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3.3 Diagnosis of I/O faults using the SRV approach

The Structured Residual Vector-based (SRV-based) approach is a model-based approach 
that can be used for the detection and isolation of sensor and actuator faults in dynamic 
systems. It can be applied for FDI of processes for which state-space models are available 
from first principles as well as those processes for which models have to be identified from 
input-output data. The advantage of this approach is that fault diagnosis relevant models 
identified using subspace identification can be used directly for sensor and actuator FDI.

Consider a dynamic system which can be represented in the fault-free case by the 
following discrete-time state-space model,

where, u (k) G 3fi*, y  (k) € 9?m are noise-free inputs and outputs respectively; x(/c) g 5ft” is 
the state vector and d(k)  and o(k) are the disturbance and noise vectors respectively, which 
are assumed to be unmeasured multivariate white noise processes with gaussian densities 
and covariances Rd and R e respectively. Further it is assumed that d(k)  and o(k) are 
independent of the initial state x(0) and are mutually independent.

If the sensors or actuators are faulty, their readings will contain fault-free and fault- 
related values.

where, F u G Ulxdu and Fj, G are matrices of fault directions and fu G
and iy G 5R<<B are fault magnitude vectors. To represent a fault in the ith sensor, let 
Fj, =  [0. . .  1 . . .  0]T G Rem, which is the ith column of the identity matrix Im. Similarly, to 
represent a fault in the ith actuator, let F„ =  [0.. .  1 . . .  0]T G Re1, which is the ith column 
of the identity matrix I*. With Eqs. 3.2 and 3.3, the problem of sensor and actuator FDI is 
stated as follows:

•  Fault detection: indicate when fu(k) and/or fy(k) are non-zero; and

•  Fault isolation: identify fault direction matrices F„ and or F y.

Recursion of Eq. 3.2 yields,

x.(k +  1) =  Ax(fc) +  Bu(fc) +  d(&) 

y(k)  =  Cx(fc) +  Du(fc) +  o (k)
(3.2)

u*(fc) =  u(k) + Fufu(k) 

y*(k) = y(k) + Fvfy(k)
(3.3)

y a(k) -  T sx(k  -  s) +  H su s(fc) +  G sd s(A;) +  os(k) (3.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Diagnosis of I/O faults using the SRV approach 69

where,

y  »(k) =

y(k -  s) 
y  {k -  s + 1 )

is the stacked output vector,

rs =
c

C A

C A a

y(*)

is the extended observability matrix,

and
D 0 . . .  0  ' 0 0  ■

H s =
C B D

G s =
C  0

. C A a lB CJ3 D  . . C A S_1 . . . C  0  .

are two lower triangular block Toeplitz matrices. Note that G s is completely dependent 
on the first ms  rows of Therefore, once Ts is identified, G s can be derived from 
it. In addition, in Eq. 3.4, s is defined as the order of the parity space or the maximum 
detectability index of the fault (Liu and Si 1997) and is selected to be equal to n without 
loss of generality. The stacked vectors u  s(k) and d  3(k) are in the similar format as y  s(k). 
It is assumed that the order n  is known.

Define,
H , =  [ l m. |  - H a ]

Hence in the presence of faults,

H .
y  a(k)
u  a(k) = T sx(k - s )  + G sd s(k) + os(k) +  H SF S *fs,z(k) (3.5)

where,

F s
1 S + 1  09  C y  

0

0

*-s+l '
and is>z(k) = [ i j ( k - s ) . . .  f j  (fc)fj (k -  s) . . .  f j  (k)]J

Pre-multiplying Eq. 3.4 by a matrix Wo, which lies in the null space of rs, i.e. 
W 0 r s =  0, produces :

es(k) = P s y s(k) 
u  a(k) =  W 0 G ad  a(k) +  W 0o a(k) + W 0 H aF s,zfs,*(fc) (3.6)

where P s =  W o H s =  [W o| — W o H s] is defined as the Primary Residual Model (PRM) 
for fault detection. Note that W 0H S is the fault model for the primary residual vector
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(PRV) s s(k). Therefore, the sensor and/or actuator fault detection problem can be reduced 
to checking whether es(k) is zero mean. Ts and H a can be identified from training data 
using a subspace identification procedure and Wo can be calculated optimally from the 
identified Ts and H s using the procedure outlined in Li and Shah (2002).

The squared weighted residual (SWR), i.e., rjs(k) = e f  (k)R~les(k) is used as the index 
for fault detection, with es(k) being the PRV filtered using an exponentially weighted 
moving average (EWMA) filter and R<,,c the corresponding covariance matrix obtained 
from training data. r)3(k) follows a central chi-square distribution with (ms -  n) degrees 
of freedom, where m s — m  x (s +1). Hence the limit from a chi-squared distribution with 
an appropriate confidence level can be used to detect the presence of a fault in the system.

For fault isolation, die PRV is transformed into a set of Structured Residual Vectors 
(SRV’s). In such a set, one SRV is designed to be immune to a specified subset of faults, 
but has maximized sensitivity with respect to the remaining faults. Hence the isolation 
indices follow an inverse logic. The details of the generation of the SRV are outlined in Li 
and Shah (2002).

3.4 Closed-loop FDD using the SRV approach

There have been many cases where model-based FDI techniques have been applied 
successfully in simulation studies. However there have been very few reported real-time 
applications even for pilot scale processes (Afonso et al. 1998). Many of these applications 
assume the availability of an accurate and detailed mathematical model of the system. In 
contrast many of the real-life applications require FDI under closed-loop conditions and the 
availability of a mathematical model from first-principles is not guaranteed. Applications 
carried out under such circumstances are not common in FDI literature. However, for 
most process systems, model-based FDI can be successfully performed under closed-loop 
conditions. The open-loop model can be identified through proper excitation of the process 
inputs. In addition, there are a number of methods available for explicitly identifying the 
open-loop model from closed-loop data (Forssell and Ljung 1999, Huang and Shah 1997). 
In the following section, we illustrate sensor FDI in a pilot-scale Continuous-flow Stirred- 
Tank Heater (CSTH) process under closed-loop conditions using an I/O model.
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Figure 3.12: Continuous-flow Stirred Tank Heater

Conventional Control: 0.4 mA Bias in Measured Temperature
11.4

Measured
True

Set]

a io.9

10.7

10.6
Fault Introduced

10.5

10.4
100 200 300 400 500 600 700 800 900

Time (sec)

Figure 3.13: Temperature Sensor Bias under closed-loop conditions
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Tank Level: Measured and simulated model output
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Figure 3.14: Water level: Comparison of model predictions with measured output
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Figure 3.15: Water Temperature: Comparison of model predictions with measured output

3.4.1 Expermimental evaluation on a pilot-scale Continuous-flow 
Stirred Tank Heater (CSTH) process

Consider the schematic of an experimental setup of a Continuous-flow Stirred Tank Heater 
(Fig. 3.12). In this system, the tank level is controlled using the cold water valve position 

and the temperature of water in the tank is controlled using the steam valve position.
When there is a bias in the temperature sensor under closed-loop conditions, it is
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corrected by the controller and is not discemable from the trend plots of the sensor reading 
(Fig. 3.13).

Faults introduced in Temperature sensor
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Figure 3.16: Temperature Sensor Faults introduced under closed-loop conditions
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Figure 3.17: SRV-based FDI indices for -0.1mA sensor bias under closed-loop conditions

While this fault is not detected by looking at the trend plot, it can be detected 
and successfully isolated using model-based methods. One of the problems of 
using correlation-model-based methods where the overall model of the process is not
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Figure 3.18: SRV-based FDI indices for -0.2mA sensor bias under closed-loop conditions
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Figure 3.19: SRV-based FDI indices for -0.3mA sensor bias under closed-loop conditions

decomposed explicitly into the process and the controller is that it is not easy to separate the 
effect of the fault on particular sensors, i.e., it quickly spreads to the other components in the 
system. Hence the location of the fault cannot be accurately isolated. However, when the 
open-loop model is available explicitly, this does not pose a problem. In this case-study, we 
have applied model-based methods to detect and isolate sensor faults in a pilot-scale CSTH 
system. The method is based on a model identified using N4SID (Numerical state-space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Closed-loop FDD using the SRV approach 75
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Figure 3.20: SRV-based FDI indices for -0.5mA sensor bias under closed-loop conditions
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Figure 3.21: SRV-based FDI indices for ramp-type fault under closed-loop conditions

subspace identification), a subspace identification technique under open-loop conditions. 
Comparison plots of the predictions from the model and the actual process output under 
open-loop conditions, are given in Fig. 3.14 and 3.15.

Sensor faults were introduced into the temperature sensor under closed-loop conditions 
according to the Fig. 3.16.
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Diagnosis of Actuator Biases using PCA under open-loop conditions
Bias level Results of Diagnosis Comments

a Detection: T2 detects change in 
operating condition

Fault affects only yl, y2 and
y3.

20 Larger change in operating 
condition detected. Clear detection.

3 a T2 way out of confidence 
bounds. SPE does not cross bounds

6a SPE starts reacting. Contribution plots are 
unreliable.

Table 3.2: Open loop Actuator Bias diagnosis using PCA

Diagnosis of Sensor Biases using PCA under open-loop conditions
Bias level Results of Diagnosis Comments

a Not detected in SPE or T2. Fault too small 
Affects only yl

2o Statistically detected -  3.6% of 
points violate SPE bounds. Detection not clear

3 O Statistically detected -  7% of 
points violate SPE bounds.

Fault not easily discemable 
from trend plots

60
Clear detection from SPE plot 

Isolation is unreliable.
Contribution plots are 

unreliable.

Table 3.3: Open loop Sensor Bias diagnosis using PCA

The results of the SRV-based detection and isolation are presented in Figs. 3.17 to 3.20. 
It is seen that a —0.1mA bias is too small for the SRV method to detect and isolate clearly 
(Fig. 3.17). However, the method is able to detect and isolate biases —0.2mA and larger 
(Figs. 3.18,3.19 and 3.20). It is also able to detect and isolate a ramp-type fault (Fig. 3.21). 
This experiment confirms that it is possible to detect and isolate I/O faults using model- 
based techniques even under closed-loop conditions.

3.5 I/O fault diagnosis in a Quadruple tank process

We now present the results of sensor and actuator fault diagnosis using PCA and the SRV- 
based method under both open-loop and closed-loop conditions. The process description, 
fault introduction and sizes of various faults were discussed in sec. 3.2.

3.5.1 Fault diagnosis using PCA

PCA-based model identification and fault diagnosis were performed using the methodology 
presented in Secs. 2.2 and 2.4.
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Diagnosis of Actuator Biases using PCA under closed-loop conditions
Bias level Results of Diagnosis Comments

o Not detected in SPE or T2. Fault too small 
Affects only ul

20 Not detected in SPE or T2. Fault too small

3o Not detected in SPE or T2. Fault not discemable from trend 
plots

6o
SPE & T2 statistic detect 

fault statistically.
Fault discemable from trend 

plots

Table 3.4: Closed loop Actuator Bias diagnosis using PCA

Diagnosis of Sensor Biases using PCA under closed-loop conditions
Bias level Results of Diagnosis Comments

o Not detected in SPE or T2. Fault too small
2o SPE & T2 statistic detect 

fault statistically.
Fault not discemable from trend 

plots.
3o SPE & T2 statistic detect 

fault statistically.
Fault discemable from trend 

plots.
60 SPE & T2 statistic detect 

fault clearly
Fault discemable from trend 

plots.

Table 3.5: Closed loop Sensor Bias diagnosis using PCA

The results of PCA-based diagnosis are tabulated in Tables 3.2 to 3.5.

SPE

6

5

136 272 408 544 680 816 952 1088 1224 1360 1496
Sample

Figure 3.22: SPE plot for open-loop 1<t actuator bias in u\

Fig. 3.22 shows that the SPE plot fails to detect a lo  actuator bias under open-loop 
conditions, while this can be detected as a change in the operating condition as shown in 
Fig. 3.23. A larger actuator bias can be detected as a change in the operating condition
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Figure 3.24: 2-D score plot for 3<x open loop actuator bias in ui

from the T2  plot and is also clear by looking at the two dimensional score plot as shown in 
Fig. 3.24.

Fig. 3.25 shows that the SPE plot clearly detects a 6 a  sensor fault. However, the isolation 
of this fault is unreliable as shown in Fig. 3.26.

The SPE and T2  plots are unable to detect small actuator faults under closed loop 
conditions. However, larger actuator faults are detected clearly in both these plots. 
Figs. 3.27 and 3.28 clearly show the detection of a 6 a  actuator fault under closed-loop 
conditions. However, the isolation results using contribution plots is unreliable.
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Figure 3.25: SPE plot for 6 a  open loop sensor bias in y\
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Figure 3.26: Contribution plot for 6 a  open loop sensor bias in yi

The SPE and T2  plots clearly detect sensor faults even under closed loop conditions. 
Figs. 3.29 and 3.30 clearly show the detection of a 3<r sensor fault under closed loop 
conditions.

It is clear that PCA has good fault detection capabilities. These capabilities can be 
further enhanced by low-pass filtering using EWMA filters or by multiscale resolution 
using wavelet-based filters. However, fault isolation capabilities of contribution plots are 
poor because they only indicate the variables that are most correlated with the fault and this 
cannot be used to provide an unequivocal decision regarding the location of the fault. On 
the other hand, the structured residual approaches which use residual directions based on 
the identified model have powerful isolation properties. We illustrate this in the following 
section in which we present the results of SRV-based fault detection and diagnosis.
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Figure 3.27: SPE plot for 6 a  closed loop actuator bias in u\
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Figure 3.28: T2  plot for 6 a  closed loop actuator bias in u%

3.5.2 Fault diagnosis using the SRV approach

SRV-based fault detection and diagnosis was performed using the methodology presented 
in Sec. 3.3. The fault detection index was constructed based on the Primary Residual 
Vector. In addition, 5 fault isolation indices insensitive to faults in the sensors and actuators, 
[V\, 2/2 , V3 , u i,  U2] were constructed. The following figures show plots of the fault detection 
and isolation indices. A fault is present in a sensor or actuator if its isolation index is within 
the confidence bounds and all other isolation indices are outside their confidence bounds.

Fig. 3.31 shows that the SRV-based approach is able to successfully detect actuator faults 
under open-loop conditions. Fig. 3.32 shows the successful isolation of a l a  actuator fault
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Figure 3.30: T2  plot for 3cr closed loop sensor bias in y\

in « 2 -
Fig. 3.33 shows that the SRV-based approach is able to successfully detect sensor faults 

under open-loop conditions. Fig. 3.34 shows the successful isolation of a 3cr sensor fault in 
2/2 - Sensor faults smaller than this are not successfully isolated by this approach.

Fig. 3.35 shows that the SRV-based approach is able to successfully detect actuator faults 
under closed-loop conditions. Fig. 3.36 shows the successful isolation of a la  actuator fault 
in it!.

Fig. 3.37 shows that the SRV-based approach is able to successfully detect sensor faults 
under closed-loop conditions. Fig. 3.38 shows the successful isolation of a 3a sensor fault

SPE

136 272 408 544 680 816 952 1088 1224 1360 1496
Sample

Figure 3.29: SPE plot for 3a  closed loop sensor bias in y\
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Figure 3.31: Detection of open-loop actuator faults using the SRV approach

la  fault in u2
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Figure 3.32: Isolation of 1<t actuator fault in u2

in 2/1 . Sensor faults smaller than this are not successfully isolated by this approach.
These results show that the SRV-based approach can be successfully used for detection 

and isolation of sensor and actuator biases under open and closed-loop conditions.
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Detection of sens or biases by SRV-based approach
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Figure 3.33: Detection of open-loop sensor faults using the SRV approach
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Figure 3.34: Isolation of 3<r sensor fault in y2
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Detection of Actuator biases using Chow-Willsky approach: Closed-loop operation
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Figure 3.35: Detection of closed-loop actuator faults using the SRV approach
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Figure 3.36: Isolation of la  actuator fault in ui

3.6 Conclusions

Consequences of the occurrence of actuator and sensor faults in systems operating under 
open-loop and closed-loop conditions have been demonstrated using simulations on a
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Detection o fs e n s o rb ia s e s  using Chow-Willsky approach -c lo sed -loop  operation
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Figure 3.37: Detection of closed-loop sensor faults using the SRV approach
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Figure 3.38: Isolation o f  3<7 sensor fault in y \  

quadruple tank process. The applicability of the SRV-based approach for detection and
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isolation of sensor and actuator faults under closed-loop conditions has been demonstrated 
using laboratory experiments and simulation case-studies. In addition, the superiority of 
the SRV-based isolation scheme over contribution plots traditionally associated with PCA, 
has also been demonstrated.
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Identification of processes with irregular 
output sampling

4.1 Overview

In many chemical processes, variables which indicate product quality are infrequently 
and irregularly sampled. Often, the inter-sample behavior of these quality variables can 
be inferred from manipulated variables and other process variables which are measured 
frequently. Such an inferential mechanism can be developed using a mathematical model 
which relates the manipulated variables and fast-sampled process variables with the slowly 
sampled quality variables. When the quality variables are irregularly sampled, Maximum 
Likelihood Estimation (MLE) of the model parameters can be performed using the 
Expectation Maximization (EM) approach1. A state-space model identification procedure 
based on the EM algorithm yields a Kalman filter-based prediction-correction mechanism

‘Sections of this chapter have been presented or published as:

1. Raghavan, H., A.K. Tangirala, R.B. Gopaluni and S.L. Shah. “Identification of chemical processes 
with irregular output sampling”, submitted to Automatica, Jan 2004.

2. Gopaluni, R.B., H. Raghavan and S.L. Shah, “System Identification from multi-rate data”, In Proc. 
AdCHEM-2003, Hongkong, Jan 2004.

3. Gopaluni, R.B., H. Raghavan and S.L. Shah. “An Iterative approach for the Identification of Multi- 
Rate Chemical Processes”, In Proc. International Symposium on Process Systems Engineering and 
Control (ISPSEC’03), Mumbai, India, Jan 2003.
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which can be used for optimal prediction of the quality variables. In this chapter we 
describe such a state-space model identification and estimation method. Further, we present 
the results of its application on simulation, laboratory-scale and industrial case studies.

4.2 Introduction

In many chemical engineering applications, outputs may not be available as frequently 
as would be desired for satisfactory closed-loop control. For example, key product 
quality variables are available after several hours of lab analysis. The relationship used 
to predict quality variables from other process variables is often called an inferential 
sensor. It is based on state estimation and has many applications including inferential 
control and process monitoring (Li et al. 2002). There have been many reported inferential 
sensor applications based on static models identified using data-driven techniques such as 
principal components analysis and partial least squares (Kresta et al. 1994, Raghavan et 
al. 2003). Alternatively, it might be possible to identify dynamic models using system 
identification techniques, and design state estimators using these dynamic models.

Traditional system identification techniques for sampled-data systems with uniformly 
spaced sampling intervals include, Maximum Likelihood Estimation (Astrom 1980), the 
closely related Prediction Error Methods (PEM) (Ljung 1999), Instrumental Variable 
Techniques (Soderstrom and P. Stoica 1983) and Subspace Identification (Overschee 
and DeMoor 1996). MLE and PEM have been popular because of their well 
established theoretical properties including asymptotic statistical optimality in terms of 
the achievement of the Cramer-Rao lower bound and well researched practical issues 
such as variance and bias distributions. However, MLE suffers from a number of 
practical problems. In general, MLE may involve solving a non-convex optimization 
problem. This is usually tackled using a gradient-based iterative search strategy. Based 
on observed, input-output data, the state-space model of a system can only be identified 
correct to a similarity transformation (Kailath 1980). The shape of the likelihood-based 
objective function depends on the chosen parameterization of the state-space matrices. 
When canonical state-space parameterizations are chosen the iterative techniques based 
on gradient-based search can suffer from serious numerical issues (Deistler 2000). In 
practice the popularly used PEM algorithm (Matlab® SysID toolbox) chooses a free 
parameterization for the state-space matrices, i.e., the elements in the matrices are freely 
adjustable by the estimation routines, though it can be argued that the state-space matrices 
should not be filled with parameters since the corresponding input-output description
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contains fewer number of parameters (3n  parameters in the input-output model compared 
with n 2  -I- 2 n  parameters for the state-space model for a single-input, single-output system). 
On the other hand, Subspace Identification techniques avoid the problem of canonical state- 
space parameterizations and identify state-space models in an arbitrary state-space basis 
which is a function of weighting matrices (Overschee and DeMoor 1996). An important 
advantage of these techniques is that, they are non-iterative and they are implemented 
using efficient algorithms such as SVD and QR-decomposition. However, the statistical 
properties of these techniques vis-a-vis MLE, have not yet been established.

In most chemical processes three classes of measurements can be distinguished 
(Amirthalingam et al. 2000, Ergon 1998); input variables which can be manipulated at 
a “fast-rate” (e.g., control-valve positions, u), output variables measured at the fast-rate 
(e.g., flow rates, temperatures, y x) and output variables measured at a “slow rate” (e.g., 
compositions, y 2 ). Such processes with differing sample rates for the measured variables 
are known as multirate processes and model identification for such processes is of interest 
to the chemical industry. The fastest sample rate is called the base sample rate and 
unavailable data points in the slow measurements are called missing data.

The problem of identifying optimal models when some of the variables are irregularly 
sampled has been studied in statistical literature using the Expectation Maximization (EM) 
approach (Dempster et al. 1977, Shumway and Stoffer 1982, Titterington 1984, Ninness 
and Gibson 2002, Gibson and Ninness 2000). The EM approach has also been used for 
dynamic data rectification using its state estimation properties, in chemical engineering 
literature (Singhal and Seborg 2000).

An excellent overview of the use of various techniques for model identification subject 
to missing data, including traditional MLE and the EM-algorithm, is provided in Isaksson 
(1993). The traditional gradient-based MLE algorithm has been implemented by Isaksson 
(1993) with the observed data likelihood function calculated using a modified form of the 
Kalman filter (Jones 1980, Ansley and Kohn 1983) to account for missing observations. 
This Kalman filter uses non-constant state-space matrices, the time-varying nature of 
which is dictated by the missing observations. In addition, Isaksson (1993) uses a quasi- 
Newton based method with secant update for the Hessian along with a forward-difference 
approximation for the derivatives, with the comment that the numerical optimization 
method for this problem is quite costly. The presence of missing-data can aggravate 
the numerical problems faced by gradient-based iterative search strategies traditionally 
used to solve the MLE problem. While the gradient-based techniques demonstrate faster 
convergence than the EM algorithm in general, Isaksson (1993) shows through simulation
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that the EM can be much faster than the gradient-based techniques when there is a 
significant amount of missing data. While, the work in Isaksson (1993) is restricted to 
the ARX model structure, we present the model identification problem in the presence of 
missing data for the more general state-space class of models in this chapter.

A commonly used approach for the identification of multirate processes is to interpolate 
between available sampled data. Techniques such as linear or quadratic interpolation are 
used (Amirthalingam et al. 2000). However, these arbitrary interpolations are usually 
univariate and do not take the multivariate dynamic nature of the process into account. 
As a result they can lead to sub-optimal models and unreliable predictions.

Another possible approach to deal with system identification from multirate data is 
to use the so-called “direct” continuous-time (CT) model identification. Direct methods 
attempt to identify CT models from discrete-time (DT) signals directly, in contrast to 
indirect methods which identify DT models first and then convert them to equivalent 
CT models. However, there are a number of issues in CT identification from discrete­
time (DT) signals. In comparison with DT model identification, CT model identification 
involves differentiation of the input and output signals (Wang and Gawthrop 2001). 
This differentiation can be implemented using finite differences (Soderstrom et al. 1997) 
with the disadvantage that these operations generally enhance the strength of the noise 
in the signals. Alternatively, these differentiation operations can be avoided using 
techniques such as linear filters, integral methods and modulating function methods 
(Young 1981, Unbehauen and Rao 1990, Sinha and Rao 1991). While there has been a 
considerable amount of research for identifying SISO CT models using these approaches, 
work on MIMO CT model identification is in its infancy. For example, choosing the 
order of the finite horizon multiple integral filter (Sagara and Zhao 1990, Kowalczuk 
and Kozlowski 2000) for MIMO identification and the identification of the CT noise 
model are non-trivial tasks (Wang and Gawthrop 2001). Although there has been some 
progress in establishing the statistical properties of the identified CT model parameters 
for AR and ARMA processes (Soderstrom 1999, Larsson and Larsson 2002, Larsson and 
Larsson 2004) the more general state-space model has not yet been considered.

There have also been attempts at solving the multi-rate identification problem using 
lifting techniques (Li et al. 2001 a). The lifting operator (Kranc 1957, Freidland 1961, 
Khargonekar et al. 1985, Chen and Francis 1995) is used to rearrange the data and 
convert the multi-rate identification problem into a slow-single rate identification problem 
with increased dimensionality. However, there are a few issues here. Firstly, in many 
chemical processes there is a large difference in the sampling rates and this quickly leads
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to unmanageable dimensionality in the lifted model. Secondly, converting the lifted model 
to the base sampling rate is non-trivial (Li et al. 2001a, Wang et al. 2004). Furthermore, 
this method cannot handle irregularly sampled data.

The focus of this chapter is on identifying dynamic models of processes with irregular 
output sampling using the EM algorithm. The problem of identifying state-space models 
using the EM approach has been addressed in Ninness and Gibson (2002), but the authors 
have not considered the missing-data case. Also, while Shumway and Stoffer (1982) and 
Shumway and Stoffer (2000) consider the application of the EM algorithm for state-space 
model identification in the presence of missing data, they outline the procedure only for 
the case with no manipulated inputs, i.e., the time-series model identification problem. 
A similar procedure is outlined in Tanaka and Katayama (1990) for state-space model 
identification for processes without manipulated inputs, where the focus is on identification 
in the presence of outliers which can be treated as missing-data. In addition, in these 
articles, there are no guidelines on choosing the parameters for the initial model though the 
authors state that this is an important step in the MLE procedure. In Isaksson (1993), the 
author restricts his attention to the ARX model structure.

In this chapter, we perform state-space model identification from datasets which have 
irregularly sampled outputs. We use a realization-based subspace identification technique 
to obtain an initial model (Kung 1978, Viberg 1995). The advantage of this technique is 
that it involves a numerically robust SVD implementation without iterative identification. 
This procedure is also used to fix the order of the state-space model using a plot of the 
singular values, and the resulting state-space matrices have a free parameterization. This 
initial model is used in the EM algorithm, modified from Shumway and Stoffer (2000) to 
include manipulated inputs, to obtain estimates of the state-space matrices, conditioned on 
all available input-output data. This procedure can handle both irregularly sampled and 
regularly sampled multirate output data and is appropriate for most chemical processes. 
Expressions for the state-space matrices obtained in the M-step, in the presence of irregular 
observations, are provided. The Kalman filter obtained as a part of the identification 
process is used for predicting the future state and output trajectory. The model parameters 
and predictions obtained are maximum likelihood estimates when the random vectors 
associated with the system have Gaussian densities. In the non-Gaussian case, the state 
estimates obtained using the Kalman filter are minimum mean-squared error estimates 
within the class of linear estimators (Shumway and Stoffer 2000).

The rest of this chapter is as follows. In Sec. 4.3, we present the model structure 
with a brief description of the identification and estimation problems. Following this,
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we present the EM-based state-space model identification procedure in Sec. 4.4 and the 
modifications required to handle irregular output measurements in Sec. 4.6. Sec. 4.5 
contains the description of a subspace identification method which is used to obtain the 
initial model for the EM-procedure. In Sec. 4.7, we present the results obtained on applying 
the proposed identification procedure to simulation, laboratoiy-scale and industrial case 
studies.

4.3 Problem description

4.3.1 Model Structure and Assumptions

Let us assume that the process is represented by the discrete-time state-space model shown 
inEq. 4.1:

x t =  Ax(_i +  B u t_i +  wt 

y« -- C xt +  vt
(4.1)

where, x t € 3?" is the state vector, u t € 3?m is the manipulated input, y t e  3?p is the output, 
and w* 6  3?" and v t G 3ip are the state and measurement noise vectors respectively. We 
assume that the initial state and the noise vectors are i.i.d random variables with a normal 
distribution, xo ~  So), w t ~  N(0,  R ^), v t ~  iV(0, R„). For simplicity we assume 
that the noise vectors are mutually uncorrelated and are also uncorrelated with the initial 
state. Further, the outputs can be classified as fast-sampled outputs (secondary outputs, 
y i € 3?Pl) and slow-sampled outputs (primary outputs, y 2  € 3?^). Hence,

y t = yi,t
Y2,t

c = Ci
C2 v t Vl,t

v2)t
(4.2)

We assume that the fast-sample interval (TS1) is fixed, while the slow-sample interval (TS2) 
is variable corresponding to the irregular sampling case. In addition, we assume that 
TS2 = mi x TSl, mi e  Z +. We also assume that the primary output measurement noise is 
uncorrelated with the secondary output measurement noise.

= RdI 0

o r „ 2
(4.3)

We define, Y s =  {yx, . . . ,  y s}, U s =  { u i , . . . ,  u s} and Zs =  {Ys, U s}. Further, we use 
the following definitions for the conditional expectations of the states and the corresponding
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error covariances:

x | =  E(xit\Zs)

P Lt2 = E  ((X*l -  0 ( Xi2 -  K ) T) (4-4)

=  E  ((xtl -  -  x*2 )r |Zs)

where £ '( )  refers to the expectation operator. For convenience, when ti  = h  = t, P ? 1 ; t 2  is 
written as P®.

With these assumptions, the two main objectives of this work are model identification 
and optimal estimation of the primary outputs from observed data. We described these as 
follows:

4.3.2 Identification problem

In the identification problem we are interested in obtaining optimal estimates for the model 
parameters © =  (/i0, So, A, B, C i, C 2 , Ru,, R„i, R ^ )  using all the available samples in 
the identification data set. The data comprises N  equally spaced samples of u  and yi
and Na unequally spaced samples of y 2 , Na < N.  For optimal estimation we set-up this 
problem as an MLE problem and solve it using an iterative EM-based approach.

4.3.3 Estimation problem

In the estimation problem we are interested in obtaining optimal estimates of the primary 
output vector y 2  at every sampling instant using all the information available up to and 
including that time instant. At this sampling instant, the primary output may or may not be 
measured. Consequently, the optimal estimation mechanism uses the manipulated inputs 
and secondary outputs to predict the primary output when it is not measured and the primary 
output value when it is measured.

4.4 EM-based state space model identification

MLE-based identification algorithms and closely related PEM algorithms are usually 
implemented using gradient-based numerical optimization techniques. The EM algorithm 
provides an alternative to these gradient-based MLE algorithms. It is an iterative estimation 
technique which was developed by Dempster et al. (1977) mainly for MLE from data sets 
with missing observations. However, the EM algorithm can also be used for state-space 
model identification (Shumway and Stoffer 1982). We briefly describe EM-based state- 
space identification after a short summary of the traditional MLE approach for state-space
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model identification. Let us momentarily assume in this section, that all the data records 
are complete and that there are no missing observations. We will relax this assumption later 
when we describe the modifications necessary to handle missing data in the EM algorithm.

4.4.1 Maximization of the likelihood function

The parameters of the state-space model shown in Eq. 4.1 can be estimated by maximizing 
the likelihood function of the observed data (Zjy =  {Yjy, Ujv})- The likelihood function 
can be written in terms of innovations or one-step-ahead prediction errors (Ljung 1999) 
which are defined as follows:

e* =  y  t - E  (yt |Zt_i) =  y t -  Cx * _ 1  (4.5)

Under the distributional assumptions stated in the previous section for the initial state and 
the noise processes, et ~  N (0, £ t), £< =  C P ‘- 1 C r  +  R„. The innovations form of the 
likelihood function (Schweppe 1965) can be written as:

L(e|Z„) -  TT /  ie x p f ^ ( ^ f ) - ^ ( 8 ) )  (4.6)

where, |S t(@)| refers to the determinant of the matrix E t (@). The elements of 0  appear 
in this likelihood function as follows:

ei =  yi -  CAp0
€t =  y« -  CAxJlj; -  C B ut_i, t = 2 , . . . , N

(4.7)
S i  =  C A S 0 At Ct  +  C R ^C 7  +  R„

S ( =  C A P ‘l{ A t Ct  +  CR™CT +  R,,, t — 2 , . . . , N

The quantities xj and P ‘ are calculated using the Kalman filter. In addition, we present 
the Kalman smoother and Lag-one covariance smoother recursions, which will be used 
later in the EM algorithm.

4.4.2 Kalman filter and smoother expressions

The Kalman filter is an optimal, recursive, linear estimator, which estimates the state x t by 
weighting the measurements Y , according to a priori information about their accuracies 
(Sorenson 1985). Depending on the relative values of s and t, the estimation is classified 
as prediction (s < t ) ,  filtering (s =  t )  or smoothing (s > t ) .  We now present the recursive 
expressions for optimal state and covariance estimates corresponding to the situations,
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s = t — 1, s = t, s = N . The proofs for these can be derived on the lines of Shumway and 
Stoffer (2000).

Lemma 4.1 Kalman Filter: For the model defined in Eq. 4.1 and given initial conditions 
xg =  n Q, Pg =  So,

x J - ^ A x f t + B u * - ! ,  P*_1 =  A P ‘:jA r +  R„,

K t =  P ^ C P f C P ^ C 3, +  Ry ] - 1  (4.8)

x* =  x *-1 +  K t(yt -  Cx*-1), P* -  [In -  K t q P * " 1

Lemma 4.2 Kalman Smoother: For the model defined in Eq. 4.1 and with initial conditions 
x $  and P $  obtained from the Kalman filter, smoothed estimates fori =  N —l, iV—2 , . . . ,  1 
can be obtained by the recursions:

j t _ 1  =  p*:}Ar (p * - 1 ) - 1

x £ i  =  x f-i +  J t - 1  ( x f  -  X?-1) (4.9)

p " i  =  p* :i +  J*_i ( p f - p r 1)

Lemma 4.3 Lag-one Covariance Smoother: For the model defined in Eq. 4.1, with 
J t , K t , t  = 1 ,2 , . . . ,  N  and P $  obtained from the filter and smoother, we initialize:

P j U _ 1  =  (I« - K * C ) A P £ : i

For f = iV — 1, iV — 2 , . . . ,  1, (4.10)

P ^  =  P l J l ,  + 3t ( P " lit -  AP*) J U

Maximum likelihood estimates of the model parameters are obtained by maximizing 
the likelihood function, i.e., © =  argmax© L(@\ZN). Because of the monotonicity of 
the logarithmic function, the log-likelihood function, £(0|Zjv) =  logL(QjZ^), can be 
maximized.

Observation 4.1

& m l e  =  argmaxL(@|Zjv) — argm ax^(0|Zjv) (4.11)
0 0

Proof: Let us assume that 0* is a stationary point of the likelihood function, L(0|Z jv), 
and 0(fc) is the kth element of Vec{0}, obtained by applying the vectorization operation 
on 0 .
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e .e -
Applying the chain rule, 9£(&\ZN) dlogL(&\ZN)dL(@\ZN)

d&(k) ~  dL{@\ZN) d@(k)

- 0 => L  —» oo, the stationary points of t\=  0 => L  —> oo, the stationary points of i(@\ZN) are identical to

the stationary points of L(©|Zjy). Hence Eq. 4.11 holds.
Alternatively, the negative log-likelihood function can be minimized:

N N
J(© ) =  -2£(©|Zjv) =  pATlog(27r) +  J > g  |S f(©)| +  £  (et(©)TS f(© )- 1 et (©))

In practice, due to the non-convexity of the optimization problem, it is customary to use 
numerical techniques for the solution (Gupta and Mehra 1974). For example, gradient- 
based iterative techniques use the iteration (Ljung 1999):

where, © ^  refers to the parameters at the ith iteration, gW is the vector of first partial 
derivatives of J(© ) evaluated at 0 (i), R w is related to the inverse of the matrix of second 
partial derivatives of J(@) and p® is a one-dimensional search parameter. While, the 
Newton-Raphson method involves explicit computation of the inverse of the matrix of 
second partial derivatives, the Gauss-Newton approximates it as:

In addition, it is possible to use numerical finite difference approximations for these 
derivatives, instead of obtaining explicit analytical expressions.

Algorithm 4.1 The usual procedure for a gradient-based technique is as follows:

•  Start with an initial guess for the model parameters, ©(0).

•  Generate filtered state estimates and covariances using the Kalman filter.

•  Obtain updated estimates for 0  using Eq. 4.13. This involves calculation of pW, R  W 
and

•  Repeat this procedure until convergence, which can be monitored using the 
likelihood function (Eq. 4.6).

(4.12)

(4.13)

(  dJ(&) \  (  d J (® ) y  
\dV ec{0} J  V5Vec{© }J

(4.14)
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In order to account for missing data, the observed data likelihood function can be 
calculated using a modified Kalman filter (Jones 1980, Ansley and Kohn 1983). This 
Kalman filter uses non-constant state-space matrices, the time-varying nature of which is 
dictated by the missing observations.

4.4.3 Modified Kalman filter for missing data

To handle missing data, let us define, y°bs — D ty(, where,

where, Ip and I,,! refer to the p x p  and pi xpi identity matrices respectively. LetH t =  DfC. 
The system, Eq. 4.1 can now be written as:

x t =  A xt_i +  B u t-i +  wt

Lemma 4.4 The Kalman filter recursions for the model defined in Eq. 4.16 are given by,

Remark 4.1 The gradient-based likelihood techniques implemented using the procedure 
shown above, suffer from a number of problems. For example, the likelihood function need 
not increase from iteration to iteration. This happens when RW is indefinite or negative- 
definite (Gupta and Mehra 1974). On the other hand in EM algorithm the likelihood always 
increases and convergence to a stationary point is guaranteed (Wu 1983). In order to 
improve the chances of convergence to a global maximum, a good choice of the initial 
estimate is critical. Hence, we have chosen to use an efficient subspace identification 
technique to provide a good initial estimate of the model parameters. It is interesting to note 
that, while the gradient-based techniques are generally expected to have faster convergence 
than the EM algorithm, Isaksson (1993) shows through simulation that the EM can be much 
faster than the gradient-based techniques when there is a significant amount of missing data.

4.4.4 EM algorithm

The EM algorithm is a simple and efficient alternative for MLE from incomplete data 
records. It is an iterative approach which involves an Expectation step (E-step) and a

IP if Y2 ,t is measured 
[ I P 1  | 0 ] if y2)t is missing (4.15)

y f s =  H txt +  D tvt
(4.16)

X() — 0 ) ^ 0  — S o

X*-1 =  A x *:}  +  P i 1 =  a p ‘: } a t  +  Ru,

K t =  P r H H H t P r H f  +  D tR uD f r 1

x} =  x } - 1  +  K t( y f s -  Htx}-1), P} =  [L, -  K tH tjP r 1

(4.17)
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Maximization step (M-step). In each iteration, the E-step is used to obtain the expected 
value of the complete-data likelihood function conditioned on all the available data and the 
estimated model parameters from the previous iteration. This is followed by the M-step 
in which a new set of model parameters is obtained by maximizing the E-step likelihood 
function.

Denote the observed data set as Zjv and the unobserved data set a s X N. For example, the 
states can be treated as the unobserved data set. Assume that the complete data set consists 
of both Zjv and X n- Then the idea is to maximize the joint probability density function of 
the observed data, denoted by / 2(Z jv|@ ), where © is the unknown parameter vector. The 
distribution of the complete data can be factored as,

f zx(ZN, X N\@) = f z(ZN\®)fx(X N\ZN, 0 )  (4.18)

Hence, the log-likelihood can be decomposed as,

f(©|Zjv, Xjv) =  t(@\ZN) + log/x(X jv|Zw ,0) (4.19)

This can be rewritten as,

e(@\ZN) = i(@\ZN, X N) -  log /x(Xjv|Zjv, 0 )  (4.20)

The right hand side of Eq. 4.20 depends on the conditional density of the unobserved data, 
X N given Z n  and 0 ,  f x(Xff\Z m, ©)• Consider the expected value of Eq. 4.20 conditioned 
on the observed data Z n , and an estimate of the parameters, 0 f c ” 1  obtained from a previous 
iteration.

^ (0 |Z at) =  <2(©|0fc_1) -  i/X©!©*-1) (4.21)

where,

Q (© |0 fe-1 ) =  E  (log f zx(Zjv, X N10 ) |Zjv, ©fc_1)

H (& I©*-1) =  E ;(log/x(XjV|Z ^ 0 ) |Z 7v)0 fc- 1)

Theorem 4.1 Every EM algorithm increases £(©|Zjv) at each iteration, i.e.,

£(&k |Zjv) > ^ (© fc_1 |Zw) (4.23)

with equality i f  and only i f

<5(©fc|0 fc_1) -  Q (0 fc- 1 | 0 fc- 1) (4.24)
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Proof: This theorem is a key result of Dempster et al. (1977). Consider a sequence of 
iterates, ^ (© °),^ (01) , . . where £(@k) — M(£{®k~1)) for some function M(.). The 
difference in the values of £(@\Zn ) at successive iterates is,

£(@k\ZN) -  ^ (0 fc- 1|ZN) = [ g ( 0 fc|0 fc- 1) -  Q (0 fc- 1 | 0 fc- 1)]

-  [iTX©*!©*-1) -  H(©fc- 1|©fe- 1)] (4'25)

An EM algorithm chooses &k to maximize Q ( 0 |0 fc_1). Hence, the first part of the RHS 
of Eq. 4.25 is positive. For the second part, we have the following lemma:

Lemma 4.5

This result is due to Dempster et al. (1977) and is proved using Jensen’s inequality (Rao 
(2001), p. 58).

Proof:

Definition 4.1 A function g(x) is convex if V a, f3 > 0, a  + (3 — 1,

Remark 4.2 If g(x) has a second derivative in [a, b], then a necessary and sufficient 
condition for it to be convex on that interval is that the second derivative g"(x) > 0  for 
all x  in [a, 6 ].

Observation 4.2 For a convex function g(x), at any point xq, the right and left derivatives, 
g'+(x0) and g'_(x0) exist.

Proof: Let xq < x\ < x^. Choose, a  — —— —, (5 = —— —, x  — xq and

^ ( © l© ^ 1) < # ( © fc- 1 |0 fe- 1) (4.26)

g(ax  +  fiy) < ag(x) +  0 g(y) (4.27)

y = x 2  =» ax  +  0 y =  x x.
From Eq. 4.27,

g(xi) <  ag(xo) +  (3g(x2)

(x2 -  £o)s(zi) < ( ® 2  -  xi)g(x0) +  {xx -  x0)g(x2) 

Add Xog(xo) to both sides and rearrange,

g(xi) -  g(x0) g(x2) -  g(x0)

(4.28)

(4.29)
X i  -  x 0 x 2 -  Xo

This shows that (g{x) — g(xo))/(x — xq) decreases as x  —*■ x 0.
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(4.30)

X i — X0 „ X0 — X -1  ,
Let x-i  < xo < xi. Choose, a  =   , p —  , x =  x_i and

X \ — X_1 X i — X - i
y - x i  => ax  +  P y -  x0.

From Eq. 4.27,

g(xo) < a g(x - 1 ) +  0 g(xi)

(xx -  x-!)g(x0) < (a?i -  x 0)g(x-1) +  (x0  -  x-i)g{xi)

Add x Gg(xG) to both sides and rearrange,

g(g_i) -  g(xo) < g(xi) -  g{x0) 3

X_1  — Xo _  Xi — x0

This shows that (g(x) -  g(xQ))/(x -  x0) is bounded from below.
Since (g(x) -  g(xo))/(x -  xo) decreases as x —> xo and is bounded from below, the

right derivative <?+(xo) exists.
Similarly, g'__(xo) exists and^ (xo ) <  g'+(xo). ■

Observation 4.3 Let K  be such that, g'_(xo) < K <  g'+(xo). Then for all x,

ff(x) >  fif(xo) +  K ( x -  Xo) (4.32)

P r o o f : If x =  Xi > Xo,
g{xi) -  g(xo) ^  ^  K  ( 4  33)

Xi -  Xo
If X =  Xi < Xo,

g(xi) -  ff(xp) 
xi -  x0

< g'_{x0) < K  (4.34)

Observation 4.4 Jensen’s Inequality: I f  x  is a random variable such that E(x)  — p and 
g(x) is a convex function, then

E[g(x) \>g[E(x) \  (4.35)

with equality i f  and only i f  x  is a degenerate distribution at p (A degenerate distribution is 
one which always has the same value, f ( x )  — p).

Proof: Eq. 4.35 can be proved by considering Eq. 4.32 with x0 replaced by p  and applying 
the expectation operator.

g{x) > g{p) + K{x  -  p)

E[g{x)\ > E[g(p) + K ( x -  p)\
( 4 . 3 6 )

E \gix )\ > 9(g) +  K(E[x] -  p)
E[g(x)} > g(E[x])
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Remark4.3 A concave function gi(x) can be considered as the negative of a convex 
function g(x). In this case Jensen’s inequality can be written as, E  [gi(a:)] <  gi [E(x)].

Remark 4.4 The log function is concave in (0, oo) because it has a second derivative in 
(0 , oo) which is always negative.

Eq. 4.26 can be established using,

H(@ I©*-1) =  E  (log/a;(Xjv|Zjv, © ) |Z jv, ©fc_1)

< \ o g E ( f x(KN\ZN, 0)|Zjv, © fc- J) (4.37)

=  /f ( 0 fe_1|@fe_1)

■
Using this lemma, it has been established that the difference in the //-functions in 

Eq. 4.25 is negative. Hence, the likelihood of the observed data increases. It leads to 
the result that Z (0fc|Zjv) converges to a stationary value of i (®\ZN). u

In effect, the EM procedure reduces to finding the expected value of the Q-function at 
each iteration conditioned on all the available data and the estimated parameters from the 
previous iteration, followed by a multivariate regression. Convergence results for the EM 
algorithm under general conditions are given in Wu (1983). From an application point-of- 
view, the convergence can be monitored by calculating the negative-log-likelihood function 
given in Eq. 4.12.

Algorithm 4.2 The EM algorithm can be summarized by the following steps:

•  Obtain an initial estimate of the parameter vector, ©°.

•  Carry out the following steps at each iteration, k, until convergence:

-  Expectation (E-step): Find the expected value of the complete data log 
likelihood function(Q-fimction) given the observed data set, Zjy and the 
previously estimated parameter vector, 0 fe_1. This conditional expectation is 
obtained using Kalman smoothers which are in turn implemented using Kalman 
filters and these expressions were provided in Sec. 4.4.2.

-  Maximization (M-step): Maximize the Q-function with respect to the 
parameter vector. The model parameters estimated in each iteration depend on 
the observed data and the smoothed state estimates and covariances obtained 
in the E-step. Expressions for calculating these parameters are provided in 
Sec. 4.5.1.
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The above steps ensure that the log likelihood function of the observed data increases at 
every iteration. Therefore, the EM algorithm is guaranteed to converge to a local minimum 
of the likelihood function. However, there are a few drawbacks in using this algorithm. It 
can be sensitive to the initial guess and also the rate of convergence can be slow. In order 
to avoid poor initial parameter estimates from irregularly sampled data, identification of an 
FIR model of the process is suggested.

4.5 Identification of the initial model

In this section we present a realization-based subspace identification technique (Kung 1978, 
Viberg 1995) which can be used to identify the initial model. Let us represent the process 
described in Eq. 4.1 as a multivariate FIR model:

m 2s—1

2/t,a =  E E  habcUt—c,b ,a > ^  ^  — 1 > • • • > .P
6=0 c=0

(4.38)

where, v  represents an arbitrary noise process. 2s — 1  is the number of terms involved 
in the FIR expansion and should be much larger than n, the number of states expected 
to be present in Eq. 4.1. The impulse response coefficients in Eq. 4.38 can be estimated 
using a simple linear regression even in the presence of some missing observations. The 
variance of the FIR parameters will be large but the quality of the corresponding state space 
matrices are made better by using a model reduction step which involves singular value 
decomposition. Following the estimation of the impulse response coefficients habc we can 
form a set of matrices of the impulse response coefficients, Hr e  5Rpxm corresponding to 
the lags r — 0 , . . . ,  2s — 1. Using the matrices Hr we can form a Hankel matrix H.

H  = Hi
# 2

Hs
H.

H .8 + 1
6  $lpsxms (4.39)

Hs Hs .̂ i • • • H2S—1 

The matrix H  is the product of the extended observability and controllability matrices,
i.e., H  =  r sf is, where Ts is the extended observability matrix and f l s is the extended 
controllability matrix. Estimates of these matrices can be obtained by performing a singular 
value decomposition of H  (Viberg 1995).

1 ss o' r  v r 1v sJ 0 0 V T. n . (4.40)

f s — QsS j , ST,
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Theoretically, we can choose the appropriate system order by looking at a plot of the 
singular values. However, in practice the singular values will all be positive and hence 
it is difficult to decide on the exact number of zero singular values. In the examples 
used to illustrate these ideas, we make an appropriate choice of the model order so that 
the neglected singular values only reflect the noise variance, since the goal here is not to 
perform analysis with biased, reduced complexity models.

The B and C matrices can be read out from the first block column of f2s and the first 
block row of r s respectively. A can be estimated from the shift invariant structure of either 
f s or Qa (Overschee and DeMoor 1996).

Rem ark 4.5 Using an FIR model structure for the initial model restricts the model to the 
output-error class of models. Hence the identification result yields only the deterministic 
sub-system (i.e., the plant dynamics only). Any additional stochastic states are ignored. In 
order to include these, it is necessary to fit a pre-whitening filter to the residuals, lump the 
deterministic and stochastic states and then perform a model reduction step. An optimal 
method to handle this stochastic realization problem is provided by the EM algorithm 
because we are dealing with residuals which are not regularly spaced in time. The EM 
algorithm to deal with this identification problem can be found in Shumway and Stoffer 
(2000).

4.5.1 Expressions for new model parameters in the M-step

Lemma 4.6 The new model parameters at the end of each iteration are given by,
Ho = x $ , S 0  =  P 0W, [A | B] =  C =  /Sg/Sr1,

where, the quantities /3i,. . .  ,/35  are defined in the proof.

Proof: The new model parameters at the end of each iteration are obtained by solving the 
optimization problem in the M-step, which can be written as:

©fc =  a rg im n {- 2 Q(0 , 0 fc- 1)}

=  arg min{E(N  log |R„| +  Syt|Zw, © fc_1)©
+  £(log |S 0| +  (xo -  /x0 )TS 0- 1 (x0  -  Mo)|Zjv, 0 * " 1) (4-41)

+  E ( N  log |Ru,| +  Sxt|Zjy, ©fc-1)}

=  ( 7 1  +  r 2  +  t 3  +  r 4  +  r 5  +  r 6)
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where,

N
Sxt =  -  A x(-!  -  B ut_ 1 )r R “ 1 (xt -  AX(_i -  B u M )

t= 1  
N

Syt =  5 ^ (y t -  C xt)TR t;1 (yt -  C xt)
t=l

Ti = log |S0|, T2  =  iV log|RU)|, r 3 =  JVTog|R„|

T4 =  t r { £  o 1 ( P *  +  (x ^  -  t*o)(x£ ~ » o f ) }
T5 =  tr {R ~ l {(3i -  (32[A | B]t  -  [A | B ] / f  +  [A | B]ft[A | B]T)} 

T6  =  tr{R ; 1  (/34  -  /35Ct  -  C / f  +  C/3xCr )}

/?i to Pz are functions of the observed data and smoothed estimates.

A  =  £ ( p f  +  x f ( x f ) r )

(4.42)

t=i
a = [  E r =1 ( p ^ i + x f ( x f ^ n  ]

E £ i (p £ i + * £ 1(* £ 1)r )03 — ZLW-ivlxV E£Li«*-î x 
Pa =  J I ( y ty D  a  =  5Z(y*(xf ) T)

(4.43)

t=i t=i

The solution we obtain by setting the first derivatives of —2Q(&, @fe x) to zero is given 
by: ^ 0  =  x *  S 0  =  P ^ , [A | B] =  (32f e \  C =

R™ = UPi ~PiPzxPl\ R, = jjiPi - PsP̂ PD- ■

4.6 Handling missing observations in the EM-based 
identification

The main strength of the EM algorithm lies in its ability to handle missing observations in 
the identification data set. It arises from the provision for including unobserved data which 
is inherent in the EM algorithm formulation. The Missing-data Kalman filter expressions 
(Sec. 4.4.3) can be used in the missing data case.The Kalman smoother can be used with the 
predicted and filtered state estimates and covariances obtained from the modified Kalman 
filter. In addition to these changes, the expressions for estimating the C and IT, matrices 
in the M-step also change. In the M-step of the EM algorithm, the smoothed state and 
covariances from the modified Kalman smoother are used. In addition the expression for
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T6 changes, affecting the expressions for C and R^. Assume that there are Nrn instances in 
which y 2  is not measured and N 0 = N  — Nm observations in which y 2  is measured.

T6 = E  ((y t -  C x t)(yt -  C xt)T|{Y g}, V N} ,® k~1)

= E  ((yt - C x f ) ( y t - C x " f  +  C P f C r ) +  Y  
jv„cases /vm cases

jym
0 Rj,2

(4.44)

where, Sym =  (y i>t — Cix^v)(ylji — Ci~x.^)T +  C iP ^ C f  and Y ^  is the observed data 
set defined according to Eq. 4.16.

4.7 Illustrative applications

In this section we present examples to illustrate the application of the proposed 
identification technique. First, we present an example of a simplified version of the EM 
procedure. Following this, we present the application of the EM algorithm to a computer- 
simulated underdamped system, a pilot-scale Continuous-flow Stirred Tank Heater (CSTH) 
process present in the Computer Process Control laboratory at the University of Alberta 
and to the bleaching unit of Millar-Western’s Bleached-Chemi Thermo-Mechanical Pulp 
(BCTMP) mill in Whitecourt, Alberta.

4.7.1 Example: Simplified version of EM procedure

We now present an example illustrating the use of a simplified version of the EM algorithm 
in estimating models from multi-rate data.

Consider an ARX model,

y{k) =  0.8y(k -  1) +  0.3u(fc -  1) +  e(k) (4.45)

where e(k) is normally distributed white noise with variance a\ — 0.01. Assume that the 
input is sampled regularly, the output is available at every alternate sampling instant and 
that y(l) is known. Then the following objective function based on squared prediction 
errors can be used for identifying the model parameters:

N N
V»Q) - n Y ,  e(*. 0) 2  =  N  £  \y(k) -  -  D -  OMk -  l ) ] 2  (4.46)

k= 1 k= 1

where N  is the data length and 0 =  [0\ O j f . Since only alternate data points are available, 
the above objective function cannot be evaluated. Instead, it is possible to estimate the
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expected value of the above objective function given the estimate of 0 from the previous 
iteration, i.e.,

1 N
E  [vN(0 ) \ fc - l\  Z N\ = E [ -  £  \y(k) -  d2y(k  -  1) -  0lU(k -  l ) ] 2  19 ^ \ Z h

N
I -  ^

k = 1
(4.47)

where ZN denotes all the available data. Now two cases can be considered:
Case I: y(k) is known:

E  [y(k) -  02y{k -  1) -  elU(k -  l ) ] 2  =  (y(k) -  9lU(k -  l ) ) 2  +  ^ ( 0 ? " 1 )u(A: -  2)

+  O t ' V k  -  2))2 +  Q\a\

-  2{y{k) -  Oxu(k  -  1  ))02(e{t l]u(k  -  2 )

+ eii - 1)y { k -  2 ))
(4.48)

Case II: y(k) is unknown:

E  [y(k) -  02y(k  -  1) -  diu(k -  l ) ] 2  =  ( ^ _ 1 )u(fc -  1) +  d ^ y i k  -  l ) ) 2

+  cr2  +  (6iu(k -  1 ) +  02y(k -  l ) ) 2

-  2(0iu(k -  1 ) +  d2y(k -  l ) ) (^ J_1 )u(fc -  1 )

+ § t 1)y ( k - 1 ))
(4.49)

Using Eqs. 4.48 and 4.49 in Eq. 4.47 it is possible to find the model parameters at the 
current ( j th) iteration:

9U) = m in i; ZN] (4.50)
0 L J

The iterations are performed until the parameters converge. A plot showing the two 
parameters in this example and the number of iterations is shown in Fig. 4.1. The 
corresponding decrease in the average prediction error as a function of the iterations is 
shown in Fig. 4.2.

The estimated model parameters converge to the true parameters in spite of the missing 
data. In general, the estimates using EM algorithm need not converge to the true parameters 
when the number of samples is finite. However, the estimated parameters converge to the 
true parameters asymptotically. On the other hand, the parameters of the least squares 
model obtained by interpolating the data are 6\ =  0.83 and 02 = 0.24. These parameters 
are clearly biased. In general, the estimated models are biased if arbitrary interpolation 
methods are used to fill the missing data points.
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Figure 4.1: Plot of 6\ and 02  as a function of number of iterations
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Figure 4.2: Plot of the average prediction error as a function of number of iterations 

4.7.2 Simulated Case-study: 3rd order underdamped system

In this example, we use the proposed EM-based strategy for identifying the underdamped 
system defined by the state-space matrices:
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0.3688 0.4767 0.0114 0.34
A  = -0.5976 0.6095 -0.5408 B  = 0.56

. -0.0156 -0.0686 0.0422 0.78

' 0.0407 0 . 0 0 0 1 0.0015
Rw = 0 . 0 0 0 1 0.0407 - 0 . 0 0 2 0 R  =  0.0398

0.0015 - 0 . 0 0 2 0 0.0428

C = [ 1 . 2  0.96 1.5

Singular values of Markov param eter Hankel matrix
2 .5 1

O 1.5

Q»

0.5

S ta te-space  dimension

Figure 4.3: Singular value plot for order selection

The system is excited using N  = 5000 samples of a random binary input signal 
generated by the Matlab® command idinput. To study the performance of the EM 
algorithm, every 3rd and 5th output sample was dropped. Hence 2333 samples out of the 
5000 samples were dropped. The FIR model was identified with 20 FIR coefficients. Note 
that this choice of the number of coefficients, requires some knowledge of the settling times 
in the system. The singular value plot was used for selecting the order of the initial model 
(Fig. 4.3). It clearly shows that the desired order is n — 3. Following the identification of 
the FIR-based initial model, the EM-algorithm iterations were started and the Negative Log 
Likelihood (NLL) function values were displayed for monitoring convergence. A plot of 
these values, shown in Fig. 4.4 indicates that the NLL values have satisfactorily converged 
in about 30 iterations. A comparison of the step responses of the true system and the 
identified model (Fig. 4.5) shows that the identified model is close to the true system.

In addition, a zoomed-in plot with the true output values, measured observations and the
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Plot of Negative Log Likelihood values
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Figure 4.4: Monitoring convergence using the Negative log likelihood function

Step Response

2.5
  True system
  Identified model

a.
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Time (ifec) 25

Figure 4.5: Comparison of step responses of the underdamped system

Kalman filter predictions is shown in Fig. 4.6. It is clear that the Kalman filter predictions 
track the true output satisfactorily. It is also evident that linear interpolation between 
observed samples would have failed to reconstruct the true output satisfactorily.
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Kalman filter-based output prediction
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Figure 4.6: Comparison of Kalman filter predictions with true output in the underdamped 
system

4.7.3 Laboratory Case-study: Continuous-flow Stirred Tank Heater 
(CSTH) process

We apply the proposed algorithm for the identification of linear time-invariant models for 
a pilot-scale Continuous-flow Stirred Tank Heater (CSTH) process. A schematic of this 
laboratory process is shown in Fig. 4.7.

The system has two manipulated inputs, cold water valve position (U{) and the Steam 
valve position^)- The measured outputs are the water level in the tank (Yi) and the 
temperature of water as it exits from the tank (Y2). The inlet valve positions, level and exit 
temperature are measured on a scale of 4 — 20mA. The system is excited using N  = 5000 
samples of random binary input signals generated by the Matlab® idinput command with 
the input frequency range, 0 to 0.2, expressed as a fraction of the Nyquist frequency. The 
complete data set was first used to identify a 3rd order state-space model using the PEM 
function in Matlab®, for comparative purposes (since we do not have perfect knowledge of 
the true system step responses). Following this, every 2nd and 3rd temperature observation 
was dropped to study the performance of the EM algorithm. Hence, 3333 samples out of the 
5000 samples were dropped. In addition, the samples between t  =  1000 and t  — 1200 were 
dropped. This was done to verify the quality of the Kalman filter predictions in the absence 
of measurements over a period of time. Hence, 3400 samples out of the 5000 samples
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Figure 4.7: Schematic of a pilot-scale CSTH process
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Figure 4.8: Comparison of PEM and EM step responses

were missing. In Fig. 4.8 we compare the step responses obtained after 40 iterations of 
the EM algorithm (with missing data) with the step responses obtained from PEM (with
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Kalman filter-based Temperature predictions
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Figure 4.9: Comparison of Kalman filter predictions with true output

no missing data). It is clear that the performance of the EM algorithm is very good in 
spite of the missing samples. In addition, we present the Kalman filter-based temperature 
predictions with the true data and the measured values in Fig. 4.9. In this plot, there are 
no observations made between t =  1000 and t  =  1200. However, it is clear that the 
Kalman filter predictions continue to remain close to the true output value. This is due to 
the intelligent usage of the available information in the Kalman filter-based predictor. On 
the other hand it is clear that if we had used linear interpolation, the predictions would have 
been erroneous.

4.7.4 Industrial Case-study: Bleaching unit in a BCTMP mill

Finally, we present the results of an industrial application of the proposed identification 
strategy. In this application, identification of dynamic models was performed for the 
bleaching operation of a Bleached-Chemi Thermo-Mechanical Pulp process at Millar 
Western, Whitecourt, AB, Canada. A short description is provided here while the details 

of the process, complexity of the modeling problem, the gray-box modeling procedure and 
the implementation are given in the next chapter.

The bleaching unit consists of two towers, has four manipulated inputs and two measured
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Figure 4.10: Simplified flow sheet of Mechanical Pulp mill
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Figure 4.11: Distribution of the output sampling intervals

disturbances. We show the results for one of the quality variables, the pulp brightness. 
A simplified process schematic is presented in Fig. 4.10. The manipulated inputs were 
chemical add-rates (Peroxide and Caustic) to the two towers. There were two additional 
measurements (Aspen and Freeness) which are classified as measured disturbances. The 
process has plug-flow characteristics (forward path dynamics can be captured by low-order
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delay dominant models) with significant chemical recycle (average fraction of chemical 
being recycled must be captured in model). The presence of the recycle stream alters the 
dynamics of the process significantly. Hence it is necessary to take the recycle effect into 
account, by using input terms lagged by the delay in the loop.

The distribution of the output sampling intervals, i.e., the time interval between 
consecutive samples, is shown in Fig. 4.11. It is clear from the histogram that the time 
interval between consecutive samples is a highly varying quantity. The most common 
values for this time interval are 3.5 or 4.5 hours. However, there are instances when this 
interval can take values as large as 2 0  hours.
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Figure 4.12: Predictions using linear interpolation look good

In addition, we had to use routine operating data for model identification. The main 
reason for using routine operating data was the prohibitive economic consequences of the 
loss of productivity accompanying the down-time caused by plant tests. However, it was 
feasible to use operating data in this case, because it contained enough excitation and a 
high signal-to-noise ratio.

The process models obtained in this identification exercise have to conform to what 
we know about the process from physical knowledge. This qualitative knowledge can be 
summarized as, fast forward-path dynamics, significant recycle and positive gains. When 
we perform identification after linear interpolation, Fig. 4.12 shows the predictions based 
on linear interpolation which look very good (Note that we have masked the output axis 
for confidentiality reasons). The correlation coefficient (CC) between the predicted and 
measured values is 0.97 and the root-mean-squared error (RMSE) value is 1.05. However,
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Figure 4.13: Step responses using interpolated data are not satisfactory

the step responses (Fig. 4.13) are very different from the expected step responses. This 
clearly demonstrates the danger of arbitrary interpolation.

The predictions from the proposed identification strategy are shown in Fig. 4.14 and 
the corresponding step responses are shown in Fig. 4.15 (We have masked the output axis 
for confidentiality reasons). The correlation coefficient (CC) between the predicted and 
measured values is 0.984 and the root-mean-squared error (RMSE) value is 0.87. The 
predictions look good. More importantly, the step responses conform to our qualitative 
knowledge about the process dynamics.

4.8 Conclusions

An EM-based strategy for identification of chemical processes with irregularly sampled 
outputs has been presented. The initial model required for the EM algorithm is obtained 
from FIR coefficients through an SVD procedure. In addition, optimal state estimation 
and prediction are performed using a Kalman predictor-corrector mechanism which is 
constructed during the identification. Applications of the proposed approach to simulation, 
laboratory and industrial case-studies have been presented and these show that the EM- 
based identification strategy is useful for data-based identification of state-space models 
even when some output observations are missing.
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Figure 4.14: Brightness predictions using EM-based strategy
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Figure 4.15: Step responses using EM-based strategy
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Gray-box model identification 
in a pulp mill

5.1 Overview

The development and application of gray-box identification techniques for modeling the 
bleaching operation in a Bleached Chemi-Thermo Mechanical Pulp (BCTMP) mill is 
explained. The process is characterized as a delay dominant recycle process with significant 
input nonlinearities. The identification was carried out using routine operating data in 
which the outputs were measured irregularly. The effects of these characteristics and 
consequent modifications of the system identification techniques are discussed. The 
resulting models are being used for online prediction and model-based controller design 
at the mill with satisfactory performance1.

1 Sections of this chapter have been presented or published as:

1. Raghavan, H., R.B. Gopaluni, S.L. Shah, J. Pakpahan, R.S. Patwardhan and C. Robson, “Gray-box 
identification of dynamic models for the Bleaching operation in a BCTMP mill”, Submitted to Journal 
of Process Control, Dec 2003.

2. Raghavan, H., S.L. Shah, R.S. Patwardhan, J. Pakpahan, G. Sedgwick and C. Robson, “Identification 
of delay-dominant recycle systems”, Presented in CSChE Annual Conference, Vancouver, Canada, 
Oct, 2002.

3. Gopaluni R.B., H. Raghavan, R.S. Patwardhan and S.L. Shah, “On the Identification of Consistent 
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5.2 Introduction

Applications such as advanced control, process monitoring and dynamic simulation of 
chemical processes require the use of dynamic models. Phenomenological models 
developed using physical principles such as mass and energy conservation are accurate 
in representing chemical processes. However, the development of such models is a non­
trivial exercise. Understanding the intricacies of a chemical process requires a significant 
investment of time and money. In the mean time simple, data-based empirical models are 
required to carry-out the day-to-day operations.

Empirical models developed using system identification routines are used to capture the 
average behavior of the process. Typically, these models treat units of the chemical process 
as time-invariant, lumped parameter systems subject to temporal variations in the measured 
inputs and unmeasured disturbances. However, they can be more sophisticated if such 
complexity is necessary to capture the observed dynamics of the process. Such empirical 
models have been widely used to control the system at the desired operating point and 
achieve product quality targets in a large number of chemical processes. Generally, these 
models are built using batches of measured data collected during routine operation or by 
conducting specifically designed experiments. Among the traditional methods of dynamic 
system identification, Prediction Error Methods (PEM) (Ljung 1999), Instrumental variable 
methods (Soderstrom and P. Stoica 1983) and Subspace Identification methods (Overschee 
and DeMoor 1996) are popular.

However it is difficult to apply these techniques directly for the identification of models 
in an industrial setting for a number of reasons. This is evident in the problem under 
consideration, i.e., the problem of identifying a sensible model for the bleaching operation 
in a BCTMP mill from routine operating data. This process can be characterized as a delay- 
dominant process with significant chemical recycle, irregularly sampled outputs, significant 
input nonlinearities. The task is difficult because the complexity of the identification task 
requires the application of ideas used in the solution of a number of challenging problems, 
some of which have not been addressed satisfactorily in traditional system identification 
literature.

Commonly used identification routines assume that the data is available at uniformly 
spaced sample instants. In many chemical processes, variables are measured at differing 
sampling intervals. This may be in part, due to physical and economic constraints 
in measuring certain quality variables, such as brightness of pulp. The problem of 
identifying optimal models when some of the variables are irregularly sampled has been
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studied in statistical literature using the Expectation Maximization approach (Dempster et 
al. 1977, Shumway and Staffer 1982, Ninness and Gibson 2002, Gibson and Ninness 2000). 
The EM approach has also been used for dynamic data rectification using its state 
estimation properties, in the chemical engineering literature (Singhal and Seborg 2000). An 
overview of the use of various techniques for identifying ARX models subject to missing 
data can be found in Isaksson (1993) (Isaksson 1993). In addition sub-optimal techniques 
using approaches like linear interpolation (Amirthalingam et al. 2000) have been proposed 
in chemical engineering literature. Some continuous-time model identification techniques 
(Sinha and Rao 1991), which use simple numerical integration procedures like trapezoidal 
and Simpson’s rules to approximate the inter-sample behavior of the process can also 
be considered as interpolation techniques. There has also been some interest recently in 
using the lifting operator (Kranc 1957, Freidland 1961, Khargonekar et al. 1985, Chen 
and Francis 1995) to convert the multi-rate identification problem into a slow, single­
rate identification problem (Li et al. 2001a). However, performing unconstrained lifted 
system identification using subspace identification techniques leads to sub-optimal models 
in the sense of maximum likelihood estimation. In addition, extracting the fast-rate model 
and ensuring that these models are causal is difficult. Constrained identification of lifted 
systems using gray-box identification tools is also being pursued (Wang et al. 2004). 
However, the final model obtained using these techniques has a strong dependence on 
the initial guess and it is difficult to ensure that these models converge to the global 
optimum because of the nonlinearity of the optimization problem. The identification 
problem discussed here was solved using a two-stage procedure. In the first stage, simple 
FIR-type models were identified using constrained optimization techniques on account of 
irregular sampling, fast dynamics, large time delays and chemical recycle. Following this, 
the EM algorithm was applied with the FIR model as the initial guess to obtain maximum 
likelihood estimates of the model parameters.

Chemical processes operating with material and energy recycle have attracted a lot 
of attention because of the complexity of their dynamics and the consequent challenges 
they pose for controller design (Luyben 1994). Research on the empirical model 
identification, dynamics and control of recycle processes is of great practical importance 
because of the wide use of these systems in the process industry. While most of the 
published work on recycle processes concentrates on dynamics and control, there have 
been relatively few publications which address the corresponding identification problems 
(Kwok et al. 2001, Lakshminarayanan and Takada 2001). When identifying models for 
delay-dominant recycle processes the complexity of the dynamics should be taken into
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account. For instance, these systems have staircase-shaped step responses. Hence the use 
of black-box techniques may lead to the identification of inconsistent models which fail to 
capture these characteristic staircase-shaped step-responses. Considering these arguments, 
an approach which guarantees consistent model identification in delay-dominant recycle 
systems was used for the application under consideration.

Chemical processes often exhibit nonlinear behavior. When the process operates around 
a small region of a fixed operating point, it can be approximated accurately using a linear 
model. When this is not the case, it might be necessary to consider nonlinear effects. The 
term nonlinear is modest in that, it tells us what properties the system lacks instead of 
revealing the properties which the system possesses. Any system that cannot be adequately 
represented using a linear model can be considered as a nonlinear system. Consequently a 
large number of model structures have been proposed to characterize nonlinear systems. In 
addition to simple series expansion models, nonlinear black-box structures can be identified 
using approximators such as neural networks. A number of articles have been published 
in engineering literature which give a process control oriented introduction to nonlinear 
model identification (Pearson and Ogunnaike 1996, Ljung 1999). One of the problems 
with nonlinear identification is the selection of the appropriate model structure. There are a 
number of ways in which the regressor can be parameterized. However, it is recommended 
by experts in the field of model identification (Ljung 1999) that it is better to utilize 
physical insight into the character of possible nonlinearities for constructing suitable model 
structures. Hence, it is better to use gray-box structures developed using process knowledge 
instead of using nonlinear black-box structures because these give the user more confidence 
in the model and a better insight into the process. Based on process knowledge derived from 
operational experience, a truncated second-order volterra series model structure is used in 
the initial model for the BCTMP bleaching operation.

The theory of identification of linear dynamic models from input-output data 
recommends the use of inputs which are persistently exciting (Ljung 1999) up to the desired 
model order. These specially designed inputs are applied to the plant during dynamic plant 
tests, during which the productivity of the plant is greatly affected. In practice however, the 
use of such input signals is avoided in the chemical process industry and in many cases low 
order dynamic models identified through simple step tests or bump tests are used to avoid 
degradation in the process equipment and loss of productivity accompanying these plant 
tests. The loss of productivity is a particularly significant factor for plants which have slow 
dynamics. For example, it may be worthwhile noting that settling times for the bleaching 
operation of the BCTMP process can be of the order of 24 hours. The use of traditional
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plant tests for identifying models for such plants would require weeks of dynamic testing 
which would be prohibitively expensive. The costs of dynamic testing will have to be 
balanced by the savings which are brought in by the implementation of the advanced control 
scheme. Hence, dynamic plant testing will have to be justified using long term economic 
benefit forecasting which is not straightforward. In view of these problems, the use of 
routine operating data which contains enough excitation through deliberate movement of 
the manipulated variables (during grade changes etc.) for identifying low order models 
becomes significant. While identifying models from routine operating data, ensuring that 
these models conform to what we know about the process in terms of gain directions and 
values is veiy important. This is because, these models could easily reflect the moves 
made to the manipulated variables by the operator in response to changes in the output 
caused by unmeasured disturbances. In the current application, we have used constrained 
optimization and gray-box identification routines to ensure that the models obtained have 
correct gain directions.

In the subsequent portions of this chapter, the identification of time-invariant dynamic 
models for the bleaching operation in a BCTMP mill is discussed. The procedures adopted 
to solve some of the problems encountered during this identification exercise and some of 
the issues which are relevant to the online application of the identified models as dynamic 
output predictors are described. The rest of the chapter is organized as follows: The 
BCTMP bleaching operation and the corresponding identification problem is described in 
Sec. 5.3. Following this, the steps taken to solve the problems peculiar to this application 
are described in Secs. 5.4, 5.5 and 5.6. This is followed by a summary of the results in 
Sec. 5.7 and concluding remarks in Sec. 5.8.

5.3 Process Description

In this application, gray-box identification of dynamic models for the bleaching operation 
in a BCTMP process at Millar Western, in Whitecourt, AB, Canada was performed.

Pulp is made from the cellulose fibres of wood chips. There are two basic ways to make 
pulp. The most common process reduces wood chips to their individual fibres through 
strong chemical treatment to produce a type of pulp called kraft. On the other hand, a 
combination of mild chemicals, heat and mechanical action is used to produce, Bleached 
Chemi-Thermo-Mechanical Pulp (BCTMP). The pulp produced in this way is also referred 
to as high-yield pulp, because the manufacturing process produces more pulp per tree than 
traditional pulping methods. Millar Western’s pulp mill at Whitecourt produces pulp of this
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variety. The unit operations in this BCTMP process can be summarized as follows:

•  Chipping: Softwood (Spruce, Pine and Fir) and Hardwood (Aspen) logs are 
converted into chips for ease of processing.

•  Pre-treatment: The wood chips are screened and washed to remove debris. Screw- 
type presses then squeeze water and wood resins from the washed chips. Mild 
chemicals are added to soften the chips, which are then preheated to prepare them 
for the refining stage.

•  Refining and Screening: After treatment and preheating, the chips pass through 
refiners where they are ground between large steel disks to separate their cellulose 
fibres, creating pulp. The wet, refined pulp is screened to sort the separated fibres 
from remaining fibre bundles.

•  Cleaning and De-watering: The screened pulp passes through centrifugal cleaning 
cones. Heavier particles like sand and bark spin to the outside and are discharged. 
The lighter, clean pulp exits through the top of the cone, then passes through a disk 
filter to remove excess water before bleaching.

•  Bleaching: The cleaned and filtered pulp is squeezed in presses and heated before 
entering bleach towers, where it is treated using hydrogen peroxide and caustic. The 
pulp is washed and pressed to extract bleach solution, which is recycled to the first 
stage of bleaching.

•  Drying and Baling: The bleached pulp is fluffed to aid drying. In two stages, 
the fluffed pulp is flash-dried and blown through a series of cyclones before being 
pressed, compacted, wrapped, tied and loaded into railcars for delivery to customers.

The BCTMP mill at Whitecourt, consists of two parallel units which are nearly identical 
in design. These parallel units are named Line 1 and Line 2 respectively. They are subject to 
nearly the same stochastic environment. However, the production and operating conditions 
are different. Line 1 produces pulp which generally has lower brightness targets than Line 2 
because it uses more of softwood as the raw material in contrast with Line 2 where the raw 
material is predominantly of the hardwood variety. This is illustrated in Fig. 5.1, where the 
plot has been re-scaled for confidentiality reasons. However, it is desired to have a single 
model for both the lines for reasons of long-term use. The reason for using a single model 
across two different units is that there might be operational constraints in the future which 
may require the use of either line to produce any of the currently produced grades and it is
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not possible from an economic viewpoint to re-identify models whenever there is a change 
in the operational strategy.

Brightness measurements

■ -  ■ Line 1 Brightness 
—  Line 2 Brightness

f3

O)•c
CD

100 120
Days

Figure 5.1: Line 1 and Line 2 Brightness measurements

A flow-sheet of the bleaching unit is shown in Fig. 5.2. A simplified version of this 
schematic is presented in Fig. 5.3. Each unit has four manipulated inputs, two measured 
disturbance variables and two outputs. The manipulated inputs are chemical add-rates 
(Peroxide and Caustic) to the two towers. There are two additional measurements (Aspen 
and Freeness) which are classified as measured disturbances. The outputs are the irregularly 
measured quality variables viz., Brightness and Tensile strength of pulp. The forward path 
dynamics of the process can be captured by delay dominant low-order models. The unused 
chemicals from the towers are recycled back to the front-end of the bleach plant through the 
White-Water (WW) recycle stream. The presence of the recycle stream alters the dynamics 
of the process significantly. Hence it is necessary to take this into account while building 
a model for the process. Consequently, the average fraction of chemical being recycled 
must be captured in model. In addition there are significant nonlinear effects in the system. 
For instance, caustic addition affects the brightening effect of peroxide on the pulp though 
caustic is used predominantly for controlling the tensile strength of the pulp. Hence, there
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is some insight into the structure of the nonlinearity. In addition, it is not desirable to 
have completely black-box models (like those based on neural-networks) because of the 
difficulties in interpreting and explaining these models to the plant personnel.
Model structure: Based on the above description the following model structure of the 
system was chosen:

4 m  6 4 m

Vi(k) = £  S ( *  -  pt * ) + £  £  &■< £  apr 1uq( k - p T dq)
q = 1 p = l  s = l  q = 1 p —1

6 4 m

x us(k — Tds - { p -  1)2*,) +  ^  7 9sj ^ 2  a ^ U g i k  -  pT ^)  (5.1)
5= 1  g = l  p = l

x (us(k -  Tds -  (p -  l)T d 9 ) ) 2  4- a5iu5 + a 6iu6 +  v(k) 

i =  1,2, g ^ s ,  ar <  1

H202
NaOH

P2 e w To Plash Drytafl

im

Surge
lube

TRP

Tank

Figure 5.2: Flow sheet of BCTMP bleaching unit

In this representation, a qi refers to the gain from the input terms, (3qsi refers to the gain 
from the products of pairs of inputs, 7 qsi refers to the gain from the products of inputs and 
squared input terms and m  refers to the number of terms to which the FIR expansion can be 
carried out without any significant loss of information and ar refers to the average fraction 
of chemical recycled. The formation of this model structure was possible after a number of 
rounds of data analysis and discussion with the process engineers.

The distribution of the sampling intervals, i.e., the time interval between consecutive 
samples, is shown for one of the output variables in Fig. 5.4. It is clear from the histogram
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Figure 5.3: Simplified flow sheet of bleaching operation in a BCTMP mill
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Figure 5.4: Distribution of the sampling intervals for the output variables

that the time interval between consecutive samples is a highly varying quantity. The most 
common values for this time interval are 3.5 or 4.5 hours. However, there are instances 
when this interval can take values as large as 20 hours. Given that the outputs are irregularly 
sampled, special interpolation strategies are required for generating the inter-sample output 
information. Alternatively, other work-around strategies, like constrained FIR-modeling or 
EM-algorithm based methods may be used. Throughout this exercise, routine operating 
data was used for model building. The main reason for using routine operating data was 
the prohibitive economic consequences of the loss of productivity caused by plant tests. It
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was feasible to use operating data in this exercise because it was found to contain enough 
excitation and a high signal-to-noise ratio (see Fig. 5.1). However it is important to note 
that routine operating data contains a number of correlations, including those indicative 
of the plant relationships and additional correlations introduced by control and operational 
strategies. The challenge is to identify useful models from process data. This is made easier 
if we have approximate knowledge of transport delays and gain directions.

From the process description, it is clear that the challenges in this identification problem 
include, using irregularly sampled data, accounting for delay dominated chemical recycle 
and nonlinear interactions. These are commonly encountered problems in chemical 
processes. In the following sections methods are described which can be used to overcome 
these problems.

5.4 Identification of processes with irregularly sampled 
outputs

This discussion is limited to the case where the input is sampled at a faster rate compared 
to the output because this is the commonly encountered situation in practice. The term 
“missing-data” is used to refer to the output value which is not available at a sampling 
instant when the input value is available.

Assume that the true process is of the form

xt =  A xt_i +  B u t-i +  v t
(5.2)

yt =  C x( +  D ut +  w t

where A  € &nXr\ B  € 5Rnx',C  € 9?mxn and D  € 5ftmx' are the system matrices and
xt G SRn is the state vector. Assume that the system is stable. Additionally, assume that 
u (t) G 3?* and y(i) G 3im are the input and output vectors respectively. v t G 5Rn and 
wt G 5Jm are uncorrelated white noise sequences i.e.,

E[wtwJ] =  Q; E[wt\ -  0; E[vtvJ] =  R; E[vt] =  0; £[w tv t] =  0 V t (5.3)

The time series data from t  — 1 to t  — N  for any variable is represented by The
following notation is used for the expected values,

x? := £ ( x t |Y 1:s); P? := E ( x t -  x f ) ( x *  -  x ‘ )T; P?,t_x := £ ( x t -  x ? )(x t_ x -  x f_ x)T

(5.4)
In addition, the following assumptions are made:

Assumptions
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A l. Inputs are sampled uniformly every T  units of time.

A2. Outputs are irregularly sampled and the maximum sampling times are Ti, • • • ,Tn 
respectively.

A3. The input sampling time, is assumed to be the smallest sampling time i.e., T  <
^  Vi.

A4. The initial state is zero. This assumption is just for convenience. The results can 
easily be generalized for the case where the initial state is non-zero.

A5. The eigenvalues of A  are strictly inside the unit circle. The pair {A, C} is observable 
and {A, B} is controllable.

A6 . The system input is an arbitrary, quasi-stationary (Ljung 1999) deterministic 
sequence.

5.4.1 What is wrong with arbitrary interpolation?

The most common method of dealing with data which is irregularly sampled, is to 
interpolate between the known or observed data. This interpolation can be done in a number 
of ways, zero-order-hold interpolation, linear interpolation, quadratic interpolation etc. 
Similarly interpolation is used implicitly in some continuous-time identification methods. 
If there are not too many missing data points or, if the missing data points between any 
two observed data points are small in number then interpolations of above nature may not 
significantly affect the quality of the identified model. However, if the size of missing 
data points is significantly large compared to the number of observed data points, arbitrary 
interpolation can have an adverse effect on the identified model. In fact, there is no 
guarantee that the identified model will be consistent with the real process. Moreover, 
interpolation-based identification methods do not lead to statistically optimal models.

In Fig. 5.5, a typical plot of input-output data is shown. The two diamonds on the 
output signal indicate consecutive samples of the output. It is easy to notice that during 
that period of time, the input varies in a particular fashion. Now if this change in the 
input and the input changes before this period are ignored and arbitrary interpolation is 
performed to fill the missing data points, the filled missing data do not represent the real 
process. Hence, identification using arbitrary interpolation is like using wrong data and 
expecting to obtain the right model. Clearly, the optimal method of filling the missing 
data points is to use the true process model in estimating the missing data. This sounds
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Figure 5.5: Various types of interpolation

illogical because identification of this true model is the problem under consideration. An 
intuitive alternative is to estimate a crude model and use it to estimate the missing data. 
Once the missing data is estimated, a complete data set can be created, which includes both 
the missing and observed data. It is then possible to use standard identification techniques 
on the complete data set. The new model obtained can then be used to re-estimate the 
missing data. This is the philosophy behind some of the approaches proposed in statistical 
literature to handle the missing-data identification problem.

5.4.2 Methods for handling missing data

Some of the possible approaches proposed to handle missing data while performing state 
and parameter estimation are discussed briefly. The most often used methods are (Little 
and Rubin 1987):

1. List-wise Deletion: A large amount of data is deleted in order to create single rate 
data subset. However, by deleting data we would lose valuable information about 
the process. Consequently the model quality is poor and this method can lead to the 
identification of biased models.

2. Mean Imputation: In this method a missing data value is replaced by the sample 
mean of the output calculated using a few samples around the missing sample or 
using all the available samples of the output. However, it is known to lead to biased 
estimates of sample quantities such as variances and covariances and hence may not 
be the appropriate solution.
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3. Maximum Likelihood Estimation (MLE): In this approach, the likelihood function 
of the observed data is maximized in order to estimate the model parameters. This 
is a very general method and hence maximum likelihood estimates can be developed 
for a variety of estimation problems. Once the likelihood function is set up it 
is usually solved using numerical optimization techniques like Newton-Raphson 
method etc. The advantage of performing MLE is that the estimates obtained have 
nice asymptotic properties like unbiasedness (when adjusted for degrees of freedom) 
and minimum variance. However, there are a few disadvantages associated with this 
approach. The computational effort involved may be too much and it is very easy 
to get stuck at local optima especially when there are too many missing samples. 
In addition though maximum likelihood estimates have good asymptotic properties, 
they can be heavily biased for small data sets and the estimates are sensitive to the 
initial guess. Hence methods such as bootstrapping (Shumway and Stoffer 2000) 
may be required to improve the estimates.

4. Expectation Maximization (EM): The EM algorithm provides a simple and 
efficient approach to solve the MLE problem and is especially useful when there are 
missing samples. This is an iterative approach which involves an Expectation step 
(E-step) and a Maximization step (M-step). In each iteration, the E-step is used to 
obtain the expected value of the complete-data likelihood function conditioned on the 
available data and the estimated model parameters from the previous iteration. This is 
followed by the M-step in which a new set of model parameters which maximize the 
likelihood function obtained from the E-step is obtained. The disadvantages include 
the computational time and complexity. The E-step is implemented using Kalman 
filters, predictors and smoothers and hence may be computationally intensive.

5. Multiple Imputation: In multiple imputation (MI) a number of possible
replacements are generated for each missing value, using Monte-Carlo simulations. 
Following this, parameter estimation is performed using standard techniques like 
MLE on each simulated complete dataset and the results are combined to produce 
estimates and confidence intervals that incorporate missing-data uncertainty. MI 
is similar to the EM algorithm and other computational methods for performing 
MLE based on the observed data alone. These methods use the likelihood function 
averaged over the distribution of the missing values. MI performs this same type 
of averaging by Monte Carlo rather than by analytical or numerical methods. In 
general, as the sample size increases, the inferences obtained by MI with sufficiently
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many imputations are nearly the same as those obtained by direct maximization 
of the likelihood. The reason for using Monte-Carlo simulations to generate the 
imputations is closely related to the probability model assumed for the complete 
data set. More often than not, these probability distributions tend to be complicated. 
Hence generating multiple imputations based on these models using analytical or 
numerical techniques (using methods like the EM algorithm) is complicated and 
often intractable. An attractive alternative is offered by the so-called Markov chain 
Monte Carlo (MCMC) methods that have appeared in statistical literature (Shumway 
and Stoflfer 2000).

The above discussion concludes that MI and EM are optimal methods (in the MLE sense) 
to use for model identification from multi-rate or irregularly sampled data. When dealing 
with a linear-in-parameters model with a gaussian noise distribution, it is unnecessary 
to use the MI approach, unless one is interested in online recursive identification. If the 
computational load of the EM approach is considered too high, a constrained FIR model 
identification can be performed using gray-box identification tools to ensure that the model 
parameters obtained are reliable.

5.4.3 The EM algorithm

The EM algorithm is used to solve the problem of obtaining maximum likelihood estimates 
of model parameters. Details of the application of the EM algorithm for the estimation of 
the state-space system matrices are provided in the previous chapter. The expressions for 
the EM procedure for a model with the structure Eq. 5.2 are similar to those provided in 
Sec. 4.4.

5.4.4 How irregular can the sampling be?

One question which arises when using irregularly sampled data or multi-rate data for 
identification is whether there is enough information in the data set to identify the 
parameters of the model structure of interest. While the EM algorithm and other optimal 
methods provide a convenient way for handling missing data, they are still subject to 
sampling constraints. For identifying the parameters of a system, it is still necessary 
to ensure that no information has been lost due to the irregular sampling. A few 
simple models, which can be reconstructed without any loss of information from their 
discrete representations are considered with intuitive arguments to verify the sampling 
requirements.
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1. Steady-state model: For identifying the parameters of a steady-state model, there 
are no restrictions on the sampling interval. The only restriction is in terms of 
the number of samples. As the number of samples increases, the properties of the 
estimates improve. Records containing missing data present two possibilities. One 
is to disregard these samples completely while identifying the parameters and then 
use these incomplete records and the identified model to obtain estimates of the 
missing data. The other possibility is to use the incomplete records to identify the 
relationships which are orthogonal to the relationships involving the missing data. 
This is automatically done if one uses an optimal procedure like the EM algorithm.

2. Gain-plus-delay model: There are two possibilities with this model structure. When 
the delay is known a priori, this model can be reduced to the steady-state model 
structure by time-shifting the input records. The procedure is more complicated in 
the case of multiple outputs. When the delay has to be estimated from the data, 
there could be estimation problems especially for multivariate systems and when 
one is dealing with closed-loop data. From a practical viewpoint, it is better to use 
transport delay estimates based on process knowledge rather than tiying to find time 
delay estimates from data especially when dealing with routine operating data. This 
is because routine operating data contains a number of correlations, and one may be 
more interested in capturing the plant relationships rather than the other correlations.

3. Gain-delay-recycle model: Consider the system illustrated in Fig. 5.6. A simplified 
continuous-time representation of this system is shown in Eq. 5.5.

Figure 5.6: Block diagram of Gain-delay-recycle system

* 2<1 (5'5)

Conjecture 5.1 Let (Ta)max be the largest allowed uniform sampling interval to 
avoid any loss o f identifiability o f  the parameters K \ and K 2. Let (Ts)min be the
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smallest sampling interval required to estimate the parameters K x and K 2. Then

{Tg)max = (Tg)min Td.

Remark 5.1 To intuitively verify these arguments, consider the time domain 
representation o f this system:

y(t) = K iu (t -  Td) +  K 2y(t -  Td) (5.6)

For this purely deterministic system, the parameters K x and K 2 can be estimated 
by considering two output samples, y(ti) and y(t2). Since the input is usually 
implemented using a known hold device, we can assume that the input value in 
Eq. 5.6 is available.

I f  the output sampling interval is Ts — Td, then the parameters K x and K 2 can be 
estimated, fo r  example, using the choice, t2 = t i +  Td.

I f  the output is sampled at a fraction ofTd, i.e., Ts — Td/  f ,  f  being a positive integer, 
it is still possible to solve for the parameters K x and K 2 uniquely.

Alternatively, let us assume that the output is sampled at a multiple o f Td, i.e., 
Ts = f  x Td, f  being a positive integer. For example, i f  the output is sampled at 
Ts =  2Td, Eq. 5.6 can be written as:

y(t) = K lU(t -  Td) +  K xK 2u(t -  2Td) + K 2y(t -  2Td) (5.7)

=  7 iu(t -  Td) +  7 2 u(t -  2Td) +  7 3 y(t -  2Td) (5.8)

Unless a constraint is imposed on 7 2 , it is possible to solve fo r  7 1 , 7 2  and 7 3  by 
choosing 7 2  =  0. Hence it is necessary to impose a constraint on the coefficients i f  
the sampling interval is chosen to be a multiple o fTd.

For the other cases, it is necessary to consider Eq. 5.6 as an infinite sum, i.e.,

00

y{t) =  K i K r2u(t -  (r + 1 )Td) (5.9)
r= 0

In this case, there will always be a finite truncation error when dealing with finite
data lengths and hence it is not possible to estimate the parameters o f the system
perfectly even in the deterministic case unless additional restrictions are imposed on 
the input signals.
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The above conjecture, that it is possible to recover the parameters of the system Eq. 5.6 
when the sampling time is equal to the delay, is important in the current application. If 
this conjecture is true, the estimates of the parameters of the system obtained through 
constrained optimization techniques can be expected to be reasonably close to the true 
values given the fact that a majority of the sampling intervals in the system as shown in 
Fig. 5.4 are smaller than the delay in the system.

5.5 Identification of Delay-dominant recycle processes

Recycle systems consist of a forward path model and a recycle model with a positive 
feedback (Denn and Lavie 1982, Morud and Skogestad 1994). Hence, identification for 
recycle systems are similar to that of closed-loop systems. The dynamic behavior of recycle 
systems can be totally different from the that of systems with no recycle. Presence of 
recycle streams generally lead to a variety of interesting phenomena such as slow response, 
stair-case like step response and sensitivity to disturbances. Luyben (1994) has shown that 
recycle streams can sometimes lead to a snowball effect (a small change in the disturbance 
variable causes a large change in the manipulated variable) especially for certain control 
configurations. The behavior of recycle systems has been well studied in the literature 
and it is also known that due to their atypical behavior, special control algorithms are 
needed to achieve good closed loop performance. Chemical processes can exhibit large 
time delays. When identifying models for delay-dominant recycle processes the complexity 
of the dynamics should be taken into account. The use of black-box techniques may 
lead to models which fail to capture the characteristic staircase-shaped step-responses. In 
traditional identification methods, open-loop data is used for estimating unbiased models. 
Alternatively, there are methods for identifying models from closed-loop data (Forssell 
and Ljung 1999, Huang and Shah 1997). The problem in closed loop identification is 
to estimate both the process model and the controller using the set-point and process 
input/output data. This can be done in a number of ways viz., two-step closed loop 
identification method, joint input-output identification and projection methods (Forssell 
and Ljung 1999). The problem of identification of recycle systems reduces to that of 
closed loop systems. However, recycle systems pose certain challenges in identification. 
Many traditional closed loop identification methods utilize three signals namely - set point, 
process input and process output. On the other hand, for recycle systems process input 
equivalent signal may not be available i.e., there might be no measurements on the recycle 
stream. Hence, in general, it is not possible to obtain consistent estimates of the forward
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and recycle models if the input equivalent signal is not available.

u(t)
■*6-

Figure 5.7: Block diagram of a typical recycle system

A typical recycle system is shown in Fig. 5.7 where G/(q) is the true forward process 
model and Gr(q) is the true recycle model and H(q) is the noise model. The process input 
is represented by u(t), process output by y{t) and the noise, represented by e(t), is assumed 
to be normally distributed and white.

For the sake of simplicity the process is assumed to be SISO. q represents the forward 
shift operator. The estimated model consists of an estimated process model represented 
by Gf(q,0), an estimated recycle model represented by Gr(q, 6) and an estimated noise 
model, H(q, 0) where 6 is the parameter vector. Assume that H  and its inverse are both 
stable and that all the inputs and the outputs are quasi-stationary signals. Also assume that 
G and H  are independent of the data length by defining the identified models as:

G =  lim GnN—>00

H  = lim H nN—*oo

where, GN and H N are models identified from data of length N.  
Let the true model be (see Fig. 5.7)

y(t) = Gfu(t) + Gf Gry(t) +  He(t) 

:= Pu(t ) +  Qy(t — d) + He(t) 

:= TU{k) +  He(t)

(5.10)

(5.11)

P  and Q are defined in an obvious way. d =  df +  dr is the sum of the forward path delay, 
df and the recycle path delay, dr and U(t) =  [u(t) y(t  — d)]T. Assume that u(t) and e(t)
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are independent. The following additional notation is introduced for convenience.

f  (q) := T — f  & H { q ) : = H - H  (5.12)

P  and Q are similarly defined. The data collected from identification experiments on the 
real process are denoted by Z N =  (u (l), y(l), • • • ,u (N),y(N)} .  Example: A typical 
recycle system and its dynamic behavior is illustrated through this example. Consider the 
following recycle process:

ai = T
0.9
0.1 q- lQ 1 — 0.5q_ 1

Both forward and recycle models have relatively fast dynamics and the total delay in the 
loop is much larger than the settling time of the individual delay-free models. The step 
response of this process is shown in Fig. 5.8. The stair-case like step response is due to 
the large delay in the loop and the comparatively fast dynamics in the forward and recycle 
streams.

-2 6 Gr =
0.25

(5.13)

Step reaporme of Dalay-domlnant recycla process

1.5

«
s
sto

Irput
Output

0.5

Figure 5.8: A typical staircase like step response of a recycle system

5.5.1 Estimation of consistent forward and recycle models

It is shown that by treating lagged output as one of the inputs, it is possible to obtain 
consistent estimates of the forward and recycle models for delay dominant processes. 
Consider the model equation in Eq. 5.11. Then the one-step ahead prediction error objective 
function for identification can be written as

VN(d, Z N) =  1  £ ( „ ( *  +  1) -  y(t +  l ) ) 2
t ~ l (5.14)
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(5.15)

(5.16)

where, y(t +  1 ) is the optimal one-step ahead predictor given by:

y(t +  1 ) -  H - 'T U i t  +  1 ) +  ( 1  -  +  1 )

Then the prediction error estimate is given by:

f l ’Z M e ' z X )

Theorem 5.1

Consider the model in Eq. 5.11 and the estimation method in Eq. 5.16. Also assume that,

n m

p  ■= v ~ df E Pk« ~ k k  -  E h ^ k
k= 0  k=0

where, d > n + 1 >  1 and d > m  > 1. Then under the assumptions presented,

On  —> Dc =
arg mm
0 €  D m

“  j T  \H\~2\P\2$ u +  \H\-2\Q\2% d +  \H\~2\H\2$ edu) (5.17)

with probability one. Hence, it is possible to obtain consistent estimates of P  and Q. 
Proof: As the data length, N , tends to infinity, the prediction error identification objective 
function in Eq. 5.14 converges almost surely to (Forssell and Ljung 1999),

lim VN(0, Z N) -► V{&)N—*oo

This objective function can be expanded to:

® k ] s i

§u(u)  $£/eM ' f
_ $ e(w) H

H *)-1 duj

P
Q
H

du

where,
^u(w) Id(y>) 4?ue(tc>)

^  =
$ eu(w) $ e3,d(w) $e(w)

and yd is the delayed output, y(t — d). Notice that the minimum of this objective function 
occurs at the true parameters of the true models i.e., when P  — P ,Q  = Q and H  = H. If Q 
is non-diagonal, it is not possible to guarantee unbiased estimates of the process and noise 
models unless their correct structures are known. Typically, guessing the true structure of
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the noise model is very difficult and as a result, often, minimization of the above objective 
function leads to biased estimates. Let us take a closer look at the off-diagonal terms in the 
spectral matrix:

Term I: Assume that <J>e is constant and that H  = 1 i.e., output-error structures are 
considered. Without loss of generality, assume that the input is white and hence the input 
spectrum is independent of frequency. Then one of the off-diagonal terms in the spectral 
matrix is

Tx := h  f  H - ' P S w Q ' i H - ' y S t d L j  = ^ f  P$uydQ*$ecL; (5.18)

Now note that,

y{t ~ d) = T = W - * q~du{t) +  T ? W ^ eit)

: = ? d d f ' f 'o9kq V * )  +

(5.19)

Qq

for some impulse response coefficients, gk. Therefore,

=  ( * , „ » ) •
00

=  eMd+df ) J 2 gkeik“$ u(uj) (5.20)

k~0

Let us consider the case where P  = q d} '^ ^ p kq k and define Q — ^  qkq k for some
fc=0 k=0

impulse response coefficients pk and qk. Then

Tl := h  f  { e~idfWf ^ Pke ikU)

=«'.(•* 5-i(S“i(s qkeM j  ®e$uduj

(5.21)

Observe that if  d > n  +  1, then the integrand in the above expression can be expressed as 
a summation of infinite exponentials with positive powers i.e.,

ske du  (5.22)

for some constants s k . The integral is zero for all positive k. Therefore, T) is zero if

d > (n +  1 ) and
n

P  = q -d* Y , M ~ k (5 .2 3 )
k=0
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Term II: Now consider the term involving $ yde. This term can be written as

r 2

-  j -  r
~  2t t

<5'24)
Q<&ydeH *$edw

Let us now assume that m

: = X > < T fc
fc= 0

i.e., the error in the impulse response coefficients of the noise model approaches zero after 
m  impulse response coefficients. Then from Eq. 5.19,

Vde 1 - Q ( e ^ ) q - d 
00

:= e~i6u> ^  rke~ikw$ e{(jS)
k= 0

Hence,

% =  b f _  ( £ fee““")

:= E  ̂ r ffc=i /7r

(5.25)

The above integral is again zero for all positive k. Due to the assumption that the input is 
not correlated with the noise, 3>e„(a;) =  0 at all frequencies. Hence, the result in Eq. 5.17 
follows. ■
Remark 1: The conditions on the forward model are clearly satisfied if it is a pure gain 
model with delay. They are approximately satisfied when the impulse response coefficients 
of P  decay very fast compared to the length of the total delay, d. It is straightforward to 
show that other cross terms in the spectral matrix are also zero under these conditions. If 
all the cross terms are zero, then the above objective function reduces to,

V{6) = ± £  \H\-2\P\2$u + \H\~2\Q\2% d +  \H\-2\H \H edw (5.26)

From this expression, it is clear that even if the noise model is fixed to unity, the minimum 
occurs at P  — P  and Q — Q provided the model set includes the true model.

It has been shown that for a delay-dominant recycle system with no measurements in 
the recycle stream, it is possible to obtain consistent estimates of the forward and recycle
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models by using the delayed output as a regressor. However, in the case of irregular 
sampling of the outputs, values of the lagged output might not be available where needed. 
In this case, identification of an FIR model is feasible. In order to ensure that the step 
response of the identified system conforms to the hypothesized pattern, it is necessary to 
perform constrained identification.

5.6 Other practical considerations

In this section other modifications required to improve the quality of the model are 
discussed.

5.6.1 Structure of the nonlinearity

It was found that there were significant nonlinear effects in the process, that needed to 
be accounted for in order to get good predictions. Following the recommendations of 
experts in the field of model identification (Ljung 1999) regarding physical interpretability 
of the model structure we restricted ourselves to simple structures as can be noted from 
Eq. 5.1. The physical reasoning for choosing such a model structure is that there is an 
interaction effect between sets of manipulated variables. For example it is known from 
practical experience that caustic addition affects the brightening ability of peroxide. Hence 
we chose the form:

y(t) = ao(ui(t -  Tdl) +  arui{t -  2Td{) +  • ■ ■)

+  ®i(wi(f — Tdi)u2(t — Td 2) +  arui(t  — 2Tdi)u2{t — Td 1  — Td2) +  • • •)
(5-27)

+  0 2 ( ^ 1  (t — Tdi)v,2(t — Td2) +  arU\{t — 2Tdl)u2(t — Td\ — T^a) + • • • )

+  • • •

However, a number of tests using multiple data sets and physical reasoning were required 
before deciding whether the higher order terms were significant or not. Further, these model 
structures can be reduced to linear-in-parameters models and hence the identification of the 
parameters is similar to linear model identification.

5.6.2 Identification from routine operating data

There are many situations with the need for model identification without the luxury of 
plant tests. Under these circumstances, it might be necessary to get the best possible 
model using historical operating data. Even when it is necessary to perform plant tests,
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historical data can be used to build simple models for experimental design. This is 
especially important when the process has large settling times, like the BCTMP bleaching 
process. The use of historical data which contains enough excitation through grade 
changes etc., becomes significant. However, it is important to ensure that these models 
are physically meaningful. These models could easily reflect the moves made to the 
manipulated variables by the operator in response to changes in the output caused by 
unmeasured disturbances. Hence, the use of gray-box identification, physical reasoning 
and a critical evaluation of the model quality through infinite horizon predictions rather 
than k-step ahead predictions and long-term online testing becomes important. In the 
current application infinite horizon predictions were used for validation because the lab 
information system could not communicate with the main DCS system. However, the 
continued good performance of the infinite horizon predictions over more than 2  years 
enhances our confidence in the quality and reliability in the identified model.

In this section, online brightness and tensile predictions from models developed using 
different techniques are presented. The performance of the identified models is evaluated 
using two indices, the cross-correlation (CC) and the root mean squared error (RMSE) 
which are defined as follows:

5.7.1 Results using black-box identification

Initially black-box routines were used to develop models, without explicitly taking the 
recycle effect into account. These models did not separate the forward dynamics from the 
recycle dynamics. In addition, because black-box routines were used, an approximation 
of the overall dynamics of the process was obtained. For example, brightness predictions 
using a high order model obtained using N4SID a black-box subspace identification routine 
are shown in Fig. 5.9. In this plot, the first two-thirds of the samples were used for 
identification and the final one-third was the validation data set. The predictions look very 
good and hence one might be easily misled into believing that the models are good. In fact 
the converse is true. Even though the predictions are good, the model is not reliable because 
the step-responses, shown in Fig. 5.10, do not match with the expected fast-dynamics and

5.7 Results

RMSE (5.28)
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Comparison of measured output with black-box model simulations

Predictions
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« 7 8

1 20.5 1.5
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Figure 5.9: Predictions from N4SID look good
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Figure 5.10: N4SID step responses are not satisfactory

characteristic staircase shape associated with the recycle effect.

5.7.2 Results using linear interpolation

Following this, it was decided to separate out the recycle effect by including a lagged output 
value as a regressor, as argued in Section 4. Hence y(t — Td) is used like an additional 
input. This leads to consistent models, provided that the impulse response of the delay-free 
forward model and the impulse response of the noise model die down in a time period less 
than the delay in the loop (Gopaluni et al. 2003). However, this method has the requirement 
that the output value y(t — Td) should be available. When the output is irregularly sampled,
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Figure 5.11: Predictions using linear interpolation look good
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Figure 5.12: Step responses using interpolated data are not satisfactory

this requirement cannot be met always. A seemingly simple way to overcome this problem 
is to perform some kind of interpolation like linear interpolation to ensure the availability 
of the output value wherever it is required and not available. In retrospect, this leads to poor 
models, because the interpolation performed on the output is essentially univariate and does 
not take input variations into account. Brightness predictions using linear interpolation are 
shown in Fig. 5.11. Once again, the predictions look very good. However the models are far 
from satisfactory as is evident from the step-responses shown in Fig. 5.12. For example, the 
settling time for the forward paths have been identified to be of the order of 33 hours while 
in reality they are of the order of 20 minutes. Validation on a new data set (Fig. 5.13) shows 
a significant deterioration of predictions from the model based on linearly interpolated data.
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Online validation of model based on Interpolated data
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Figure 5.13: Deterioration of predictions for model based on linearly interpolated data

5.7.3 From black-box models to gray-box model model structures

In order to arrive at the final model structure, multiple iterations of analysis and discussions 
with the mill engineers were required. The observed dynamics were used to characterize 
this process as a time delay dominant recycle process. The following observations justify 
this hypothesis. The inputs are sampled every 10 minutes. The process consists of 2 
towers (PI and P2 tower). The chemical add-rates are manipulated upstream of each 
tower. It is observed that on changing the PI add-rates, the output variables change 5 
hours and 20 minutes later. On changing the P2 add-rates, the output variables change 3 
hours and 40 minutes later. It is also observed that the direct change in the brightness and 
tensile is almost instantaneous, the change occurs within a couple of 1 0  minute sampling 
intervals, after the delays mentioned in the previous point. This characterizes the fast 
dynamics of the process. In addition to the direct change in the brightness and tensile 
there is a change because of the chemicals recycled to the front-end of the bleach plant. 
Given that the process can be characterized as a time-delay dominant recycle process, 
a strategy was needed to accommodate chemical recycling and irregular sampling. As 
shown previously, initial black-box models developed using Prediction Error Methods 
and Subspace Identification using interpolation techniques were not acceptable to the mill 
engineers because the dynamics portrayed by these models were unconvincing. Hence the 
model structure shown in Eq. 5.1 was chosen. Additionally, following the observation that
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by manipulating the caustic add-rate, the brightening effect of peroxide can be modified, 
nonlinearities were introduced into the model structure. It also prompted the investigation 
of other similar nonlinear interactions, which were validated on data sets over a long period 
of time.

5.7.4 Results using constrained FIR and EM algorithm

The final model structure chosen has the advantage of providing interpretable models as 
well as good predictions. This procedure involves the identification of constrained Finite 
Impulse Response (FIR) models as initial models. These models were later used as initial 
models in the EM algorithm following the procedure outlined in Ch. 4.

Structure of FIR models

FIR models of the form given in Eq. 5.29 were identified.

y(t) =  do +  aiUi(t — Tdi) +  aia,RUi(t — 2Tdi) +  • • • 4- 1ui(t  — kTj  i) +  • • •

+  02^2(4 — Td2) +  aiciRUiit — 2Td2) +  • • • +  1v,2(t — kTd2) +  • • •

+  • • • +  cieu^t — Tds) +  v{t)

=  G(q)u(t) + H(q)e(t)
(5.29)

Here, a 0  represents an intercept term, am refers to the coefficient corresponding to the m th 
input, a,R refers to the average chemical recycle fraction and Tdi refers to the total delay in 
the forward and recycle paths from the i th input to the output, k  can be chosen depending 
on the number of past input values, which are hypothesized to affect the current value of 
the output.

Constrained identification of FIR models

The advantages of using an FIR structure for the initial model include the ability to handle 
irregularly sampled outputs, chemical recycling and input nonlinearity. The structure of the 
optimization problem to be solved is as follows:

1  N 1
0N = argmm — - e 2(f, 9) s.t. f ( 6) > 0 (5.30)

t- 1

f(9)  > 0 represents constraints applied on the identified parameters in order to obtain 
physically meaningful model parameters.
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Following Eq. 5.29 and assuming an output-error structure for the model, the optimal one- 
step ahead prediction of y is given by:

y(t\t -  1) =  H ~1(q)G(q)u(t) +  [1 -  H ~ 1(q)]y(t) = G(q)u(t) (5.31)

This implies that the one-step ahead prediction is the same as the infinite horizon prediction. 
Similarly, the fc-step ahead prediction of y is also equal to the infinite horizon prediction, 
y(t\t — k) — G(q)u(t). Hence the optimization problem simplifies to:

1  N
0N =  argmm — ^  (y(t) -  G(q, 9)u(t))2 s.t. f(9) > 0 (5.32)

t=l

G(q) is defined according to Eq. 5.29. For example, it is necessary to impose the constraint 
ai >  0  because it is known that adding more peroxide, increases the brightness of the pulp. 
This constrained identification problem was solved using gray-box identification tools in 
Matlab®. Several trials with different initial guesses for the parameters were required to 
avoid convergence to local optima.

Robust estimation of average recycle fraction and selection of nonlinear effects

The term o r  in Eq. 5.29 represents the average recycle fraction. In order to obtain robust 
model estimates the problem of estimating aR is decoupled from the problem of identifying 
the other parameters. Since, aR is constrained to take a value between 0 and 1, it was 
varied between 0  to 1  in steps of 0 .0 1 , models identified for each of these values and the 
corresponding Root Mean Squared Error (RMSE) values were plotted. Following this, the 
model corresponding to the least RMSE was chosen. The estimated values of aR and other 
model parameters depend on the set of chosen input factors and the interaction terms. For 
example, a list of the possible sets of direct factors and interaction terms for the brightness 
models is given below:

1 . {{«!,••• ,ti 6 } o r{ tii,ti 2 ,(ti 3  +  tl4 ),ti 5 ,ti6}}.

2 . {{ui,--- ,ti 6 }o r{ tii,ti 2 ,(tt 3 4-ti4 ),ii 5 ,ti 6 }}and{tii x tt5 andti2  x %}•

3. {ui, - • • ,ti 6 ,tii x ti3 ,ti 2  x ti4} or {tii,ti2 ,(u 3  +  ti4 ),ti 5 ,ti6, (u3 +  ti4) x tii, (ti3  +  
Ui) x ti2}.

4. {tii, tt2, (ti3  +  u ^ ,  ti5 ,ti6, (u3  +  u4)2}.

In addition, combinations of the above cases can also be considered. In view of the variety 
of possible cases, the following procedure is used to obtain the best possible model:
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•  Choose a particular set of input factors.

•  Find the model which gives the least RMSE value.

•  Compare the RMSE values and find the best model structure.

A sample plot of the RMSE as a function of the average recycle fraction is shown in 
Fig. 5.14. In this case the chosen inputs were ui, u2, (u3 +  u4) and u5.

1.5

Plot of RMSE vs. Average Recycle fraction for Brightness 
with PI & P2 H20 2 & NaOH and Freeness as inputs

1.4

RMSÊ ,, at ar = 0.4
1.3

1.2

1.1
0.2 a,0 0.4 0.6 0.8 1

Figure 5.14: Choosing the best model using minimum RMSE

The FIR models identified for predicting Brightness and Tensile using this procedure are 
summarized below. For confidentiality reasons the coefficients have been re-scaled and the 
intercept term is masked.

2/i(t) =  R(q){ui(t  -  32) +  5.6u2(t -  22) +  6A(u3(t -  32) +  u4(f -  22))

-  0 .2 m  (t -  32)(us(t -  32) +  u4(t -  2 2 )) -  1 .2 u2(t -  2 2 ) 

x (u3(t — 32) +  u4(t — 22))} +  0.2u5 (t) +  0.01ti6(f) T- m

y2(t) = /?((/){—130wi(t -  32) +  30u2(f -  22) +  480u3(t -  32) +  430u4(f -  22) (5.33) 

+  ui(t  — 32)u6(t) — 0Au2(t — 22)u6(t) — 190ui(t -  32)u3(t — 32)

-  300u2(f -  22)u4(t -  22) +  7 6 ^ (i -  32)u3(t -  32)2 

+  1 1 0 u2(t -  2 2 )u4(t -  2 2 )2} -  18u5(t) -  4u6(t) +  a2

where, R(q) =  (1 +  aRq~32 +  a2Rq~64 +  a?Rq~m +  a4Rq~128) and aR = 0.17.
Given such a model, the staircase shaped response of an output can be simulated for a 

unit step change in an input. Such a response is shown for a step change in the peroxide 
add-rate in Fig. 5.15. It is easy to see from Eq. 5.33 that, due the interaction effects, the 
gain is a function of the absolute value of the inputs. For example, the brightening effect of
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Figure 5.15: Step response of Brightness for unit change in PI Peroxide

peroxide depends on the amount of caustic present in the tower. Hence the relation between 
Ui and yi can be expressed as, G n = R(q) (1 — 0.2(w3(f — 32) +  u4(f — 22))) ui(t  — 32). 
Hence the gain from Ui to y\ is K n  w (1.205) x (1 — 0.2(«3(f — 32) +  u4(f — 22))), 
which is a function of the caustic present in the tower. The FIR models identified using this 
gray-box procedure were used as initial models in the EM algorithm. In order to avoid an 
artificial increase in the system order while performing the state-space model identification 
(Amirthalingam et al. 2000), the inputs were time-shifted by the known delays (32 and 22 
samples as is evident from Eq. 5.33).

Implementation

Predictors based on the models developed using the FIR-EM procedure have been 
implemented on the mills’ distributed control system (DCS) and have been running 
satisfactorily for over an year. The implementation was done using Matrikon’s 
ProcessACT® software, which provides an environment for design, development, 
simulation, and implementation of process control applications. A block diagram 
illustrating the implementation is shown in Fig. 5.16. Snapshots of the predictions using 
these models are shown in Fig. 5.17. These models are also being used in the development 
of an advanced process control scheme for controlling brightness and tensile to their desired 
targets.
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Figure 5.17: Snapshot of Line 1 predictions

Online Predictions

The results of prediction of Line 1 and Line 2 Brightness and Line 1 and Line 2 Tensile 
using the constrained FIR-EM strategies are shown in Figs. 5.18, 5.19, 5.21 and 5.22 for a 
period of 12 months. The corresponding step responses are shown in Fig. 5.20. All these 
predictions are infinite horizon predictions. It is clear from the high values of the correlation 
coefficient and the low RMSE values (shown in the respective figures) that the predictions 
are quite satisfactory. In addition because of the imposition of the desired structure, the
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Figure 5.18: Line 1 Brightness Predictions

Brightness Predictions
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Figure 5.19: Line 2 Brightness Predictions

model coefficients are interpretable and conform to what is known from prior knowledge. 
While it would have been insightful to include plots of the manipulated variables, we have 
not been able to do so because o f  confidentiality requirements.

Finally we present the tensile predictions for the period Jan - May 2003 (Figs. 5.23 and 
5.24) to show that the models continue to have a satisfactory performance. These constitute

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Conclusions 150

From: ul From: u2 From: u.> Prom: u4
Recycle
dynamics

0 50 1(H) 0 50 100 0 50 100 0 50 100 0 50 100

Time (minutes)

Figure 5.20: Step responses of FIR-EM Brightness model are satisfactory 

a validation on a new data set and continue to be infinite horizon predictions.

Tensile Predictions
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Figure 5.21: Line 1 Tensile Predictions

5.8 Conclusions
The application of gray-box techniques for model identification of the bleaching operation 
in a BCTMP process from routine operating data, has been presented. Novel techniques
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Figure 5.22: Line 2 Tensile Predictions

Line 1 Tensile Predictions (Jan - May 2003)
*■ Predictions 
-  Lab Meas.

8000 10000 160000 2000 4000 6000 12000 14000

Time (minutes)

Figure 5.23: Line 1 Tensile Predictions (Jan - May 2003)

developed to deal with time-delay dominant recycle processes and irregularly sampled 
outputs have been described. The dangers of using arbitrary interpolation and black-box 
strategies have been demonstrated. Predictors based on the identified models have been 
used in the DCS for online prediction for over two years and are performing satisfactorily.
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Figure 5.24: Line 2 Tensile Predictions (Jan - May 2003)
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6
Diagnosis of additive process faults 

using continuous-time methods

6.1 Overview

In this chapter a novel subspace approach is proposed towards the identification of optimal 
residual models for process fault detection and isolation (FDI) in multivariate continuous­
time systems. The problem is formulated in terms of the state space model of the 
continuous-time system. The motivation for formulating the problem in the continuous­
time framework is that the fault gain matrix, which links the process faults to the system 
under consideration, is always available no matter how the faults vary with time. However, 
in the discrete-time domain, the fault gain matrix is only available when the faults are 
piece-wise constant within one sampling interval. To isolate faults, the fault gain matrix is 
essential1.

The subspace algorithms are developed in the continuous-time domain to directly 
identify the residual models for FDI from sampled noisy data without separate

1 Sections of this chapter have been presented or published as:

1. Li W., H. Raghavan and S.L. Shah. “Subspace identification of residual models for FDI in continuous­
time systems”. In Proc. of CHEMFAS-4, pages 224-229, Jejudo Island, Korea, 2001.

2. Li W., H. Raghavan and S.L. Shah. “Subspace identification of continuous time models for process 
fault detection and isolation”. J. Proc. Cont., 13(5):407-421,2003.
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identification of the system matrices. Furthermore, the proposed approach can also be 
extended in a straightforward manner towards the identification of the system matrices 
if they are needed. The newly proposed approach is applied to a simulated quadruple 
tank system, where leaks from any tanks are successfully detected and isolated. To make 
a comparison, the discrete-time residual models are also applied to the tank system for 
detection and isolation of leaks. It is demonstrated that the continuous-time FDI approach 
is practical and has better performance than the discrete-time FDI approach.

6.2 Introduction

In this chapter a novel subspace approach is proposed for the identification of optimal 
residual models for process fault detection and isolation (PFDI) in a multivariate 
continuous-time (CT) system. The problem is formulated in terms of the CT state space 
model, i.e. {A, B,  C, D}  of the system, because most physical systems are CT by nature. 
Representation of CT systems by discrete-time (DT) models is only an approximation of 
their dynamics. Since it is easier to identify DT models than CT models and in many cases 
a CT system‘s dynamics can be represented well by a DT model, DT models have been 
widely used with success. However, in some cases, e.g. in the isolation of process faults, 
one has to use CT models. For example, while detection and isolation of sensor faults in 
a CT system can be performed using its discrete-time (DT) state space model (Chow and 
Willsky 1984, Li and Shah 2002, Qin and Li 2001), most of the done work on PFDI depends 
on the CT state space model (Ge and Fang 1988, Liu and Si 1997, Massoumnia 1986, White 
and Speyer 1987) of the system. Note that to perform PFDI, besides knowing the normal 
state space model: {A, B,  C , D}  the fault gain matrix that links the process faults to the 
state variables of the system is indispensable. In this chapter it is shown that for the CT 
state space model of the system, the fault gain matrix is always available no matter how 
the faults are varying with time. However, in the DT state space model of the system, the 
fault gain matrix is available only when the faults follow some known functions of time, 
e.g. being piece-wise constant within one sampling interval. Without knowing the fault 
gain matrix, while process fault detection can still be carried out, process fault isolation is 
extremely difficult.

Most of the well known PFDI approaches, e.g. the ChowWillsky approach and the 
observer-based approaches (Frank 1990, Ge and Fang 1988, Liu and Si 1997, Massoumnia 
1986, White and Speyer 1987, Willsky 1976) assume the availability of a CT state space 
model of the considered system. A frequency domain approach for fault detection in
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DT systems is proposed in Zhang et al. (2003) where an analysis of the inter-sample 
behavior is performed in the frequency domain from the viewpoint of fault detection and 
isolation. In a limited number of cases, a CT state space model of the system can be 
obtained from first principles when the mechanisms of the system are well understood. 
However, in complex systems such as chemical engineering processes, building the CT 
state space models by means of the first principles is extremely difficult. Identifying an 
empirical process model by use of subspace methods is a good alternative. Subspace 
Identification has become an active research area. These methods have been successfully 
applied to identify multivariate DT state space models since the late 1980s (Moonen et 
al. 1989, Overschee and DeMoor 1996, Verhaegen and Dewilde 1992a, Verhaegen and 
Dewilde 19926). In comparison with the traditional prediction errors methods (PEM) of 
identification (Ljung 1999), Subspace Identification Methods (SIM) have better numerical 
properties for systems with high dimensionality. For instance detailed remarks regarding 
the advantages of SIM over the PEM can be seen in (Viberg 1995). SIM has also been 
applied to the identification of primary residual models (PRM) for sensor fault detection 
and isolation (Li and Shah 2002, Qin and Li 2001). Recently, SIM for CT models has 
been proposed (Johansson et al. 1999). However, this approach has a drawback: it is 
sensitive to the initial values of CT signals. In this chapter, the numerical integrators 
proposed in (Sagara and Zhao 1990) are used to transform the signals and their derivatives 
in the CT domain into sampled data. An SIM is proposed and applied to the transformed 
signals for identification of the primary residual model (PRM) for process fault detection 
without identifying the system matrices: {A, B , C, D}, explicitly. The chosen numerical 
integrators are immune to initial values of the CT signals, computationally efficient, and 
have sufficient accuracy. Furthermore, the PRM is transformed into a set of structured 
residual models (SRMs) for fault isolation. The SRMs are designed such that each 
structured residual vector (SRV) generated by one SRM is most sensitive to only one single 
fault while remaining insensitive to the other faults.

The newly proposed approach is applied to a simulated tank system, where detection and 
isolation of leaks in any tanks has been successfully conducted. Moreover, although this 
approach is directed towards the identification of residual models, it can be easily extended 
to the identification of the complete system model {A, B , C, D}, if necessary. For example, 
in many control relevant problems, a knowledge of {A, B , C, D} is desired.

The rest of this chapter is organized as follows. Sec. 6.3 is devoted to motivation and 
problem formulation. Sec. 6.4 outlines the numerical integrators to be used to transform 
the CT signals into DT data. Identification of the PRM for fault detection is given in
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Sec. 6.5. In Sec. 6 .6 , identification of a set of SRMs for isolation of any single and multiple 
faults is investigated. The proposed approach is numerically evaluated in Sec. 6.7, where its 
effectiveness in detection and isolation of leaks in a simulated tank system is demonstrated. 
In addition, to make a comparison, the detection and isolation of leaks by means of the DT 
residual models has also been performed. This chapter ends in Sec. 6 . 8  with conclusions 
and remarks.

6.3 Motivation and Problem Formulation

6.3.1 Motivation

As depicted in Fig. 6.1, a four-tank system with leak 5i(t) in the ith tank, V i G [1,4], can 
be represented by the following equations (Johansson 2000):

dhi 7 i/ci ai / ■ a3 / r - j— ei^i
=  n r v ' ~  + m ' W * ~  i t

^  ^at A 2 A 2 A2 A 2
d h 3 (1 -  t 2) k 2 a3 r - r -  ezS3

d h i  (1  -  7 l ) f c l  «4  fT T -T  e 4^4

■ W - - A T - ' a :

where, A { - cross-section of tank i, at - cross-section of the ith outlet hole, and hi - water 
level in the ith tank. Furthermore, in Eq. 6.1, 1 7  is the voltage applied to Pump i, and 
kiVi is the corresponding flow. The parameters 7 1 , 7 2  G (0,1) are determined from how the 
valves are set prior to an experiment. The flow to Tank 1 is 7 1  £ 4  7 7 , the flow to Tank 4 is 
(1—7 i)/cit>i and similarly for Tank 2 and Tank 3. The acceleration due to gravity is denoted 
by g. The measured level signals are kch\, kch2, kch3 and kchi, where kc is a parameter 
associated with the sensor gain. In addition,

_  f 1 , if the ith tank leaks. 
e% ~  \  0 , if the ith tank does not leak.

Eq. 6.1 can be linearized
around an operating point (Johansson 2000): {hi, h%, hi, hi, v\, v%} where h° and v°, V 
i G [1,4] and j  G [1,2], are the values of levels and voltages respectively, resulting in the 
following state-space model:

x(t) =  Ax(t) +  Bu(t) +  Edifdi (t)
(6.2)

y(t) =  Cx(t)
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Figure 6 .1: Schematic of the four water tank system

r£t
where, x(t)  =  [h^(t) (t) h^(t) h^(t)\  is the state variable vector with h^it)  =
hi(t) — h°, V i = 1,4, u(t) =  [ui(t) — v° v2(t) — v%]T is the input vector, y(t) =  
[kch i( t )  kch^it) kch% (t) kch^(t)]T is the output vector and {A, B, C} are system 
matrices, assuming that some or all the elements of x(t) are measurable. Details of A, B, 
and C can be seen in (Johansson 2000). Further, in Eq. 6 .2 , f^ (t) G 3?di is the equivalent

fault magnitude vector containing elements of with S  di standing for the 
'■Jote that S f  (t) =  Si (t) — 8°

Ai An
associated columns of the 4 x 4 identity matrix I4, V d i G [1,4]. 
where 8\  is the value of <5j(t) at an operating point, V i G [1,4].

Although Eq. 6.2 is derived for the four-tank system, it can be generalized to describe a 
wide class of multivariate linear time-invariant CT systems with process faults as follows:

x(f) =  A x(t) +  B u(t) +  a difdt (t ) 

y  (t) = Cx(t) +  D u(i)

where, u(t) G y (t) G 5Rm, x(t) G 5R", fdi(t) G 3?di, Hdi G 5Rnxd<, V d i G [l,n],  

and {A, B, C, D} are similar to those defined in Eq. 6.2 (therein D  =  0) with compatible 
dimensions. It is assumed that {C, A} is observable. Furthermore, in the sequel throughout 
this chapter, it is assumed that the order n is known, because schemes for the order 
determination in the subspace identification framework have been available, (Bauer 2001). 
Note that in Eq. 6.3, the fault model in CT domain is simply E ^ , i.e., columns of the 
identity matrix In G 5ft” xn. However, as will be shown in the next paragraph, the fault 
model in the DT domain is not always available.
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Discretizing Eq. 6.3 with a sampling period Ts leads to (Lewis 1986)

x(k 4-1) =  Adx(k) + B du(k) + eAT‘ /  e ArS difdj(A;Ts +  r )d r
Jo

y (k ) =  Cdx(k)  + D du  (k)

where,
rT.

A d = eAT‘, B d = I eArB dr
(6.5)Jo

C rf =  C, D d =  D

In Eq. 6.4, under the assumption that fdi (kTa +  r )  is constant within a sampling interval, 
i.e., fdj (kTs +  r )  =  fdi (kTa), V r  € [0, Ts], the fault related term is equal to

However, almost invariably this assumption will not hold, and therefore the fault- 
contributed term in the right hand side (RHS) of Eq. 6.4 is eATs J^s e~Ar3 diidi (/cTs+ r)d r . 
In this case, since fdi(kTs +  r )  is time varying, V r  6  [0,1),], the fault model in the DT 
domain is not available. Without such a model, while fault detection can still be carried 
out, nothing can be done with respect to fault isolation. In particular, the assumption can 
be severely misleading if the sampling period Ts is relatively large. To obtain the DT fault 
model, one way is to increase the sampling frequency jr  significantly. However, this can 
increase the cost of collecting data and cause numerical issues in system identification and 
control, as pointed out by Middleton and Goodwin (1990). This problem exists despite the 
tremendous improvement in data processing resources currently available. Therefore, for 
the purpose of process fault isolation in a CT system, a knowledge of its CT model instead 
of a DT model is essential. Note that even if the assumption of piece-wise constancy were 
to hold, as shown in the last equation above, a knowledge of A (the CT state matrix) is 
necessary for DT fault isolation.

6.3.2 Problem Formulation

Recursion of Eq. 6.3 yields

where fdi(kTs) =  fdi(/c). Consequently, the fault model in the DT domain is

y,(t) =  r ,x ( t )  +  H sus(t) +  G sS s,difsA(t) (6.6)
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where, =  I s+i <8 > E di € wjth <g> denoting the Kronecker tensor product,

y s(t) =
y (t) 

y (1)W

yW(i)

€ is the stacked output vector,

r.=
c

CA

C A S

€ 3f?msXn is the extended observability matrix,

and

D 0 . . .  0  ' 0 0  '

H s = CB D e r « ^ ,  g s = C 0

. C A s lB CB D  . . C A 8 - 1  . . . C  0 _

6  3?maXna

are two lower triangular block Toeplitz matrices. Note that G s is completely dependent 
on the first m s  rows of IV  Therefore, once Ts is identified, G s can be derived from 
it. In addition, in Eq. 6 .6 , s is defined as the order of the parity space or the maximum 
detectability index of the fault (Liu and Si 1997) and is selected to be equal to n  throughout 
this chapter without loss of generality; yW (t) is the sth derivative of y(f); m s — (s + l)m; 
ns — (s + 1 )n; and qa =  (s +  1 )q. The stacked vectors u s(t) e  5i9s and fs>di (t) are in the 
similar formats to y s(t). It is assumed that the order n  is known.
The following definition is made for simplicity:

Hs = [ ImJ —Hs ] e sRm*x(m*+<?a) 

where Im< € 5RmsXms is an identity matrix. Hence Eq. 6 . 6  can be rewritten as

H , y.(*)
U  a(t) = rsx(t) + Gss S)d<fSidi(t) (6.7)

Pre-multiplying Eq. 6.7 by a matrix Wo, which lies in the null space of rs, i.e. W o rs =  0, 
produces:

y s(t)es(t) = P s
u  «(*)

=  WoGsa s,difSidi(i) € SR8" (6 .8)

where P s =  W 0 H a =  [W01 -  W 0 H S] is defined as the PRM for fault detection. Note that 
W qG s is the fault model for the primary residual vector (PRY) es(t).
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By extending the Chow-Willsky scheme in the DT domain (Chow and Willsky 1984) to 
the CT domain, es(t) is defined as the PRV in the CT domain, because it is zero if no fault 
occurs, i.e., f^ (t) =  0; or nonzero if a fault occurs, i.e., f^ (t) ^  0. In order to ensure 
that the process fault f^ (t) is detected with highest sensitivity, Wo is designed to have 
maximum covariance with G s while being orthogonal to Ts. Mathematically the following 
objective functions are established, V i , j  — {l,Rank(Gs)} fl { i ^  j} .

Jj =  max W o(i,:)G,GfW 0T(*,:)-Wo(*,:)rsA*-Ai(||Wo(i,:)||2- l ) - A J2Wo(*,:)W^(i,:) 
W o(* ,:)

(6.9)
where W 0( i ,:) and W 0( j , :) are the iih and j th rows of Wo, respectively; and Aq € 5R™, Â  
and A|, are the Lagrangian multipliers; and || ||2 is the 2-norm of a vector. Note that in the 
objective functions, the conditions W 0(i, :)rs =  0 and the orthonormality among the rows 
of Wo have been taken into consideration.
Similar to (Li and Shah 2002), the optimal solution to W 0 can be obtained as follows:

Wg — Eigenvectors associated with non-zero eigenvalues o f the matrix T ^G sG f

where Tf- =  Ima — Tsr+  and + indicates the Moore-Penrose pseudo inverse of the 
argument. Note that rj-GsGg is a non-symmetric matrix. To calculate Wo, this non- 
symmetric eigenproblem is first translated into a symmetric eigenproblem. Then existing 
algorithms can be used. The calculation of Wo is given in the Appendix. Since Ts has 
rank n, Tf- will have rank ms — n. Furthermore, note that G sG j  has a rank equal to 
Rank(Gs). As a result, W 0 will have min{ms -  n,Rank(Gs)} non-zero eigenvalues. 
Assume that m =  n and Rank(C) =  n. This leads us to conclude that Rank(Gs) =  sn 
and min{ms — n, Rank(Gs)} =  sn, which is the number of independent rows in Wo, i.e.,
W 0 € $ftsnxms.

Assume that both the sampled inputs u °(k) and outputs y °(k) are corrupted by 
independently identically distributed white noise vectors with gaussian densities v(/c) € 
and o(k) € 5Rm, which have covariance matrices R„ and R 0 respectively, i.e.,

u °(k) =  u (k) +  v(k),  y °(k) = y (k) +  o(k) (6.10)

This is referred to as the EIV case (Chou and Verhaegen 1997). Note that the two noise 
vectors are mutually independent and are independent of u(k) and y(k).  The problem of 
residual model identification can then be stated as follows:
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Given the sampled inputs and outputs when fdi(t) =  0, identify the PRM: P s, which 
includes the consistent identification o fT a, calculation o fW 0, and identification o/W 0Hs. 
Furthermore, design a set o f  SRMs for fault isolation from the PRM.

6.4 Overview of the Numerical Integrators

To identify Ts and WoHs, u s(t) and y s(t), which contain the CT signals {u(i), y(f)} and 
their derivatives from the 1st up to the sth order are needed. The derivatives are not directly 
measurable and many approaches have been developed to deal with them (Whitfield and 
Messali 1987, Johansson 1994, Chou et al. 1999). In this work, the numerical integrator 
proposed in (Sagara and Zhao 1990) is used to transform the derivatives into discrete 
data. This integrator has a number of attractive features: simplicity of implementation, 
insensitivity to initial values of the CT signals, and high accuracy.

The integral of a CT signal, e.g., u(t), over the time interval [t — ITS, t) can be
approximately calculated by

r t I
Gi(u( t) )=  u(r)dr m u>0u(t) +  • • • +  wju(t -  ITS) = V ]  Uiq~lu(t) (6.11) 

J t - iT a i=0

where Ts is the integration step size, chosen to be the same as the sampling interval for ease 
of implementation; I is considered as the length factor of die integrator (a natural number); 
and q~l is the unit delay operator, i.e., <z_1u(t) =  u (t — Ts). The filter coefficients u 
depends on the type of numerical integration methods to be employed. For instance, when 
the trapezoidal integration rule is used, the filter coefficients are (Sagara and Zhao 1990):

Ts
ojo =  ui =  -y , u>i =  Ts, i =  1 • • • I — 1

Similarly, the sth multiple integral of the ith derivative u ^ ( i)  of u(i) can be defined as
follows:

Gs (u (i)(f)) =  f  I  . . .  f  u w (r)drs . . .  dru i =  0 • • • s. (6.12)
J t —ITg v  t i —ITg J t8~ i —IT's

Furthermore, Eq. 6.12 can be approximately calculated by

Gs (u (i)W) = ( 9 '1) «(*). » = 0 • ■ • a. (6.13)

where,

<l>s,i (9_1) = (! -  <T1) 1 (wo + Wiq~x + • • • + m - * ) ~  =  ^ 2
i / = 0
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with Pi being the vth coefficient in the polynomial ( r 1)- A rigorous proof of Eq. 6.13 
and comments on the numerical integrator can be found in Sagara and Zhao (1990). Note 
that the optimal choice of the filter length is an open issue especially for multivariate 
systems. The approach of minimizing the prediction error (Wang and Gawthrop 2001), 
might provide a solution.

6.5 Identification of the PRM

This section is mainly devoted to the identification of the PRM, which can be directly 
obtained by performing a QR decomposition followed by a singular value decomposition 
(SVD) on an augmented data matrix. In addition, identification of the system matrices 
{A, B, C, D} is investigated, because in many situations a knowledge of these matrices is 
necessary. As will be shown later, identification of {A, B, C, D} depends on Ts and H s. 
The key to the identification of the PRM is to obtain consistent estimates of r s and H , first.

6.5.1 Description of the Identification problem

When fs,di{t) =  0, Eq. 6.6 is reduced to

ys(t) =  r ,x ( t )  +  H sus(t) (6.14)

Performing multiple integration of Eq. 6.14 s times by using Eq. 6.13 yields,

<t>s (g-1) y(i) =  r a(j>a (gr-1) x(t) +  H s<t>s (q” 1) u(t) +  ea(t,Ta) (6.15)

where,

4>s,o(q x) <!>sfl{q x)

4>a (q x) y (t) =
4>s, i (?-1)

®y(t) G (t>a (q x) u(t) =
<t>s,i (q )

^s.s {q ) <l>s,s ( r 1)

and es(t, Ts) is a truncation-error due to numerical integration of inputs and outputs.
With available sampled data {u°(k),y°(k)},  substituting Eq. 6.10 into Eq. 6.15 with 
t  = kTa yields

<Ps O r 1) Y°(k) =  r a<pa (,q- 1) x(Ar) +  H ^ s (? -x) u °(k) +  E .(*) (6.16)

where
E S(A:) =  - H ,^ .  ( r 1) v(A:) +  <t)s O r1) o(k) + ea(k, T.) €
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The first term in E S(A;) is a moving average (MA) process of v(A;) and o (k). In addition, as 
addressed in (Sagara and Zhao 1990), the truncation error es(k, Ts) can be controlled with 
the sampling interval Ta. For simplicity, in the following analysis, it is assumed that a small 
Ts is used so that the influence of es(k,Ts) on the identification of P s can be negligible,
i.e., es(k,Ta) sa 0.
The following data matrix is formed from the inputs u°(A;)

U£,s,Jv = [ < M ‘r 1)u°(fc) ••• <t>s(q-l )u°(k + N - l ) ] € W ‘*N

where N  is the number of data samples in the matrix. Similarly, the output data matrix 
Y l'S N €  3fJmsXW is formed. The use of the newly formed data matrices in Eq. 6.16 gives

Y l !3tN = rsXfciJV +  H SU l !StN +  E fejS)jv € ^ XJV (6.17)

where,
X k,N =  d>a (i?- 1) [x(k) ■ ■ • x(fc + N  -  1)] G 3TxiV

and E fc>3,7v € resembles U  1>S<N in format.
After the establishment of Eq. 6.17, the following remarks can be made:

Remark 6.1 The data matrices U£ N and Y £aJV are composed of sampled inputs and 
outputs and their time-lagged values, respectively. Further, each data matrix has s +  1 row 
blocks and N  columns. For example, in the ith column of U £<s>N, one row block contains 
the linear combination of u°(A; -M' — 1) and the time-lagged values (u°(A:+i —2) ■ ■ - u 0(k + 
i — 1 — si)} for i = 1,N.

Rem ark 6.2 The observability matrix Ts and the lower triangular block Topeliz matrix 
H s in Eq. 6.17 are exactly the same as those in the CT model given by Eq. 6.14, showing 
that although the numerical integrator transforms the CT signals into discrete data, it 
preserves the original CT system model in the DT domain. This is in contrast to other 
CT identification approaches (Johansson 1994, Chou et al. 1999), which transform the CT 
signals and result in a different DT model at the same time.

Remark 6.3 The matrix Xk,N is not measurable. As will be shown later, one does not have 
to know it in order to identify the models considered here.

Rem ark 6.4 Similar to U£>siJV, E k<a,N € has s +  1 row blocks and N  columns.
To obtain consistent estimates of Ts and H s, one has to remove the effect of E ^ ^  on the 
identification.
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Remark 6.5 With the identified P s, one can generate the PRV for fault detection. From 
Eqs. 6.6 and 6.16, the PRV is

es(k) = P s (q-1) y°(*0 1 _  J  W 0ES(A:), no fault.
\  W0Es{k) + W 0G sEsACs(fs,di(k)) with fault.<Ps (q * )  u ° ( & )

(6.18)
where on the RHS, (i) the first and the second lines are the computational and the internal 
forms of the PRV, respectively; and (ii) Cs % ,di(k ))  is the s th multiple integral of ^ ( t )  
with t ranging from kTs — ITS to kTs, i.e.

pkT a rT\ pTa- 1

C  ({s,di(k )) =  I  /  • • • /  fs,di(T)dTs ■■■dr1
J k T a—lT8 J T\— ITS J Tg—\ —lTa

Rem ark 6.6 The fault-free value of £s(k) and the fault-contributed term are represented 
bye*(A;) =  W 0E s(/c) and e{(/c) =  W 0G aS S)diCs (^ ( fc ) ) ,  respectively. Apparently 
e*(k) is also a moving-average process of the noise vector [vT(£;) oT(/c)]T, and follows 
a zero mean multivariate Gaussian distribution, due to the assumed distribution of 
[vT(/c) ot (A:)]T. Consequently, it turns out from Eq. 6.18 that

W frt -  J  ~  N  (°> Re’s) ’ no fault
I  e{(k) +  ei(k) ~  N  R e,s) , with fault.

where R e s is the covariance of £*s(k). From Eq. 6.16,

R e,s =  Wo (HsCov {(j>a (q- 1) v(fc)) H f +  Cov {<j>s (q~l ) o{k))) W\

where, Cov( ) is the covariance of the argument. Therefore, one can perform fault 
detection by simply checking if es(k) is zero mean. A chi-square distributed variable 
Vs,o(k) =  £s(k)^7, l^s(k)  is defined. If r]St0(k) > Xains) with a  being the selected level 
o f significance, e.g., a  = 0.01, it indicates that a fault has occurred.

Rem ark 6.7 The fault gain matrix in £s(k) is WoGs, depending on which a set of SRMs 
can be designed for fault isolation.

6.5.2 Consistent Estimation of r,s

A choice of k = 1 in Eq. 6.17 gives us,

Y°hatN = r sX ltN +  H sU ° S)Ar +  E 1;S)jv (6.19)
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Post-multiplying Eq. 6.19 by £  [U£rs JV Y°LTStN] gives 

N
1 [u £ j ,  y £ , n ] =  i r . x , , „  [u £ , n  y £ ,„ ]N

+  [ u £ A y £ „ ]

+  ^ W [ u £ „ Y £ j ,]

(6.20)

Since the numerical integrator is an (sl)th order filter, selecting L = si +  2 in Eq. 6.20 
makes the last term on the RHS asymptotically vanish as N  —> oo.
Substituting the following QR decomposition

U O
1 ,s,N

Y °
. 1  1 ,a,N

into Eq. 6.20 leads to

R 11 0 Qi
R21 R22 Q2

[Im» | =  T sX 1>n [ V Z , n  YZ , n ] (6.21)R.2 1 Q 1  +  R 2 2 Q 2  

R 1 1 Q 1  

where
n r n  _  J I, i = j ,  h i  =  1,2.

0j i j t j ,  i , j  = 1,2.
has been employed with I standing for an identity matrix of appropriate dimensions.
Post-multiplying Eq. 6.21 by Q 2  results in

R22 -  r sx hN [ y ^ ,n  } Q2

Applying singular value decomposition (SVD) to R 2 2 ,

R 22 =  U ;A V j (6.22)

Therefore, the first n  vectors of U/ give a consistent estimate of Ts (up to a similarity 
transformation), i.e., Ts =  U;(:, 1 : n), assuming that X i)jV [ U S ,  ,N  TV ]  Q 2

has rank n. The validity of this assumption depends on the validity of the consistency 
conditions which need further investigation.

Remark 6.8 In this formulation, in Eq. 6.3 we have neglected the effect of disturbances. 
In the presence o f disturbances, the multiple integration performed in Eq. 6.11 will result 
in a relatively high order moving-average disturbance process. In this case it might be 
necessary to consider a large value of L in Eq. 6.20 in order to obtain a consistent estimate 
of rs. In addition, in order to minimize the effect of the disturbances on the fault diagnosis 
result, it might be necessary to use robust procedures such as the ones proposed in Frank 
and Ding (1997).
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6.5.3 Calculation of Wo

To calculate the eigenvectors of T ^G sG f, the problem is expressed as:

rj-G .G jV * =  Xui

where is the ith column of the matrix Wq , and A* is the associated eigenvalue. 
Introducing = T^u>i leads to

r j - G s G j r ^  =  AJ^w*

Further, since Tj- is idempotent,

= X iT f r i

r j G sG ^ r ^ i  = A,-*/,.

Hence, is the ith eigenvector corresponding to the ith non-zero eigenvalue of

r J - G . G ^ .
Eventually, W q =  Eigenvectors associated with all the non-zero eigenvalues of the matrix
r ^ G sG f r f .

6.5.4 Identification of W qHs.

With the identified Ts, one can derive G s and calculate W 0 following the steps shown 
earlier. Further, post-multiplying Eq. 6.21 by Wo yields

R2lQl +  R 2 2 Q 2  

R 1 1 Q 1
=  0[W0| - W 0H S

where W o rs =  0 is employed. Post-multiplying Eq. 6.23 by Q f gives

W 0 R 2 1  -  W oH .R n

Consequently

W oH , =  W o R aiR i

Eventually, P s =  [W0| -  W 0H J.

(6.23)
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6.5.5 Consistent Estimation of {A , B , C , D }

In many scenarios, e.g., in the design of controllers, knowledge of the system matrices 
is crucial. Therefore, the identification of {A T, B T, O r, D t}  from Ts and W 0H S is 
discussed here. Note that the identified system matrices { A t , B t , C t , D t }  are in fact 
the similarity transformations of the original ones, e.g.,

A r  =  T A T 1, Bt =  TB , C r  =  C T 1, D T -  D

where T  e  9t"x" is a non-singular matrix.
The estimate of C T is simply equal to the first m  rows of U;(:, 1 : n), i.e., C T =  U /(l : 

m, 1 : n), where U; is given by Eq. 6.22. On the other hand, observing that

U i(m +  1 : m s, 1 : n ) —
c t a t Cr

Ct A  st C tA^T1
A t  — U ;(l : m s — m,  1 : n )A T

one arrives at
A t  =  U/"(l : ms — m, 1 : n)U;(m +  1 : m s, 1 : n )

In order to estimate B t  and D t,  a series of matrix equations are constructed from 
WoHs. As illustrated earlier in matrix H, all the elements above the main diagonal are 
zero. As a consequence, for each column block with q columns in W 0HS, it can be clearly 
seen, V i =  0, s, that

W0 (:, mi + 1 : ms)H s(mi +  1 : m s, qi + 1 : qi + q)

— W 0(:,rra 4-1 : ms) 

=  W 0(:,rm +  1 : ms)

0 D t
0 r . - i - i T - 1 B t

0
(6.24)

0 U ;(l : m s — mi — m, 1 : n)
D t ---1Es

ffli

where T_i =  0. 
Denoting,

Nj =  W 0(:, mi  +  1 : ms)H s(rm +  1 : m s, qi +  1 : qi +  q)

and
M i =  W 0(:, mi  +  1 : m s) I  m 0

0 U i(l : m s — mi  — m, 1 : n)
from Eq. 6.24, the following set of equations are established:

D t
B t

'N 0 '

1---O2i

Ni Mi

.  N‘ .

-----
1

05
-

s
»

(6.25)
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Therefore, the ordinary least squares (OLS) solution to {By, D T} is (Verhaegen 1994):

- l
Dj*
B j * E m JM ,

.j=0 .3=0

6.6 Design of the SRMs for Fault Isolation

With the identified P s, the PRV required for fault detection can be generated. Further, to 
isolate faults, the PRV can be transformed into a set of structured residual vectors (SRVs) 
(Li and Shah 2002), where one SRV is designed to be immune to a specified subset of faults, 
but has maximized sensitivity to the remaining faults. The performance of the vector-based 
fault isolation is much better than the performance of the scalar residual based isolation 
(Li and Shah 2002). Here the SRVs are extended for the isolation of process faults in the 
CT systems. To generate SRVs, a set of SRMs are designed. This includes the selection 
of an incidence matrix to characterize the SRVs. The incidence matrix is dependent on the 
number of faults to be isolated, the system order n  and the order of the parity space, and is 
not unique. A detailed discussion with respect to the selection can be found in (Gertler and 
Singer 1990, Li and Shah 2002).
In the system under consideration given in Eq. 6.2, the dimension of the fault magnitude 
vector idt (t) can be up to n, i.e., 1 <  di < n. In the simplest case, only a single fault 
needs to be isolated. However, in the most difficult case, it might be necessary to isolate 
up to n  multiple faults, although the probability for multiple faults to occur simultaneously 
is small. Hence there are X)"=0 C" =  5D"=o scenarios in total, where C” is the
combination of i from n and i! is the factorial. To isolate these scenarios, an ideal design 
is to transform the PRV into n  SRVs, where the ith SRV is affected with highest sensitivity 
only by the i th fault, while it is immune to all the other faults, V i e  [1, n]. As will be 
analyzed later, such an ideal design can be achieved provided that certain conditions are 
satisfied.
Computationally, the ith SRV is equal to

r.,i(fc) =  W i£s(fc) =  W*PS y°s(k) =  W< (*:(*) + eft*)) (6.26)

by G s.where W ;P., is defined as the ith SRM. Denote WoG., e

«/(*) =  W o G .S .,* C .(W * )) .  _

Hence, rfs i (k) =  'Wie{(k) =  W iG sHSidiCs (fStdi(k)). This is the fault-contributed term 
in rSti(k). Note that the last n columns of G s are zeros, G s has ns  non-zero columns.
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Apparently, if r8ti(k) is designed to be insensitive to all but the ith fault f f t ) ,  W * should 
be orthogonal to the (n — l)s  columns associated with . . .  / j- i(f)  f i+i( t) . . .  f n(t)]T 
in G s, V i € [l,n].
Denote

G Sii =  [Gs(:, i) | G s( : , n +  *) ,. . . ,  G .(:, (s -  l)n  +  *)] € V i = 1, n

and the remaining columns in Gs after leaving out G si by G~,- € sjjsnx((n-i)s); 
respectively. It is desired that W* have maximized covariance with G s under the constraint 
W iG ^  =  0. Since G “, e  W* will have sn -  (n — l)s  =  s independent
rows. Similarly, it can be shown that, V i € [1, n]:

W f =  Eigenvectors corresponding to the n non-zero eigenvalues o f  G ^ G g G j  

where, G " ^  =  I s„ -  e  & “ »«■»>.

Eq. 6.26 can be further expressed as

rs>i(k) = r l i(k) + rl'i ( k ) e  W  (6.27)

where, r*,- =  W i£*(k) follows a zero mean Gaussian distribution with covariance R* s =  
W jR e.sW f. Hence f i ( t) f  0 can be detected and uniquely isolated by checking if rSii(k) 
is non-zero mean. Moreover, the following chi-square distributed random variable can be 
defined: rjSti(k) =  r ^ ( k )  ( R ^ ) -1 rSti(k). Then r]sf k )  > x l ( n ) indicates the presence of 
\fi(t)\ f  0, while T}Sti(k) < Xa(n) indicates | f  (t)| =  0. In addition multiple faults can 
be isolated, e.g., {fi(t) f  0} fl {fj(t) f  0}, by checking whether rjs>i{k) and r]sj (k )  are 
greater that x«(n ) simultaneously.

For the sake of easy reference, Table 6.1 gives the incidence matrix to describe how the 
n SRVs are correlated with the n  faults [fi (t), . . . ,  f n(t)]T. In this table, a “0” indicates the 
insensitivity of an SRV to a fault, while a “1” indicates that the SRV has highest sensitivity 
to the fault.

Eventually, given a set of training data the complete procedure for the identification of 
the PRM and the SRMs for FDI is summarized as follows:

1. Construct { Y J ^ . U ; ^ }  and { Y l tS N,TJ°L^ N} with L = si +  2.

2. Identify Ts. Derive G s from and calculate W 0. Identify W 0H S. Then obtain
P s =  [Wo| -  WoH,].

3. Select an incidence matrix as illustrated in Table 6.1 to characterize the SRVs.
Subsequently calculate W j, V i € [l,n]. Consequently, the ith SRM is W jP s.
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/l( t) h i t ) /s(t) fn(t)
rs,i(k) 1 0 0 0
*s,2(k) 0 1 0 0

r S)3 (k) 0 0 1 0

0 0 0 • . 0

; ; • . i
0 1

Table 6.1: Incidence matrix to characterize the isolation logic

6.7 Numerical Results

In this section, the quadruple-tank system (Johansson 2000) illustrated in Fig. 6.1 is used 
to demonstrate the effectiveness of the proposed approach for the identification of FDI- 
oriented residual models. Further, to make a comparison DT residual models are also used 
to carry out detection and isolation of leaks in the tanks. As will be shown, the CT residual 
models are much more powerful than their DT counterparts at isolating fast time-varying 
faults.

The parameter values and the chosen operating point of the laboratory process are given 
in Table 6.2:

A\, A 3
-----
cm 28

to V 0* cm* 32
ai,ci3  cm2 0.071
02,04 [cm2 0.057
k i ,k2 [cm3/Vs] 3.33,3.35
h \,h l [cm] 12.4,12.7
hi, hi [cm] 1.8,1.4

3.00
kc [V/cm] 0.50
9 [cm/s2 981
71.72 0.70,0.60

Table 6.2: Parameter values and chosen operating point o f the Quadruple-tank process 

Consequently linearizing Eq. 6.1 under these conditions gives the following CT state
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space equations (Johansson 2000):

x(i) =

' -0.0159 0 0.0419 0 ' ' 0.0833 0
0 -0.0111 0 0.0333 x(f) + 0 0.0628
0 0 -0.0419 0 0 0.0479
0 0 0 -0.0333 0.0312 0

' 0.5 0 0 0
0 0.5 0 0

x(t)0 0 0.5 0
0 0 0 0.5

u  (i)

y (*) =

(6.28)

The inputs to the system are simulated by pseudo random binary signals with a small 
magnitude. The frequency band for the frequency contents of the inputs is chosen to be 
[0,0.03], expressed as a fraction of the Nyquist frequency (see the idinput command in 
MATLAB©). Using SIMULINK© directly in the CT domain, training data is generated for 
model identification and test data for FDI. In this simulation the CT input and output signals 
are sampled with a sampling interval Ts. Further, an independent identically distributed 
noise vector with gaussian density characterized by the covariance matrix 0.12l6, i.e., 
N(0,0.12Ie) is generated and introduced to the discrete noise-free inputs and outputs, 
resulting in a set of noise-contaminated training data with 5000 samples. Subsequently, 
we compute P s.

Sampling 
rsT. (sec)

0.1

Figure 6.2: Selection of Ta and I for continuous time system

In the CT SIM, two important parameters: the sampling time, Ts and the length 
parameter of the integral filter I need to be determined. The effect of Ta and I on the 
estimation of the CT model parameters is shown in Fig. 6.2, where the estimation error is 
defined by:

eeat = ||eig(Aeat) -  eig(A) ||2
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with e ig ( ) standing for a vector containing all the eigenvalues of a matrix in a descending 
order and || ||2 standing for the 2-norm of a vector. Ts and I are chosen to be equal to 2 sec 
and 14, respectively in this case.

With the chosen I and Ts, using the training data Ts € 5ft20x4 is identified, from which 
G s € ft20*20 is derived. Further W0 € 5ft16x2° is calculated and W0H, e 5R16xl° 
identified, resulting in P s =  [Wo| — WoHs] 6 5ft16x3°. R £ S G 5ft16x16 is estimated and 
the four transformation matrices {Wi, W2, W 3, W 4 } are calculated. Eventually the four 
SRMs: W jP s € 5ft4 x30 and four covariances, s G 5ft4x4 V i G [1,4] are obtained.

Faults are introduced as leaks in the tanks. In accordance with the laws of fluid 
mechanics, a leak is proportional to the square root of the water level in the tank, and 
is time-varying, i.e.,

6i(t) = a{y/2ghi{t), V i =  1,4

where, a{ is the size of the leak orifice. Clearly such a fault is not piece-wise constant 
because hi(t) can be very time-varying within one sampling interval.

x  6 0 0

3 0 0 01000 2000

1000 2000 3 0 0 01000 3 0 0 0

3 0 0 010003 0 0 01000

Figure 6.3: CT residual model-based detection and isolation of a leak in Tank 1

FDI is conducted in the following four cases:

Case 1: A leak simulated by selecting a{ — 0.01 cm2 is introduced to a single tank after 
the 10004/l second and the relevant FDI results are shown in Fig. 6.3, where for the
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3 0 0

a  100

1000 2000
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3 0 0 0

3 0 0 0
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ta
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3 0 0 01000 2000

S  0 .5

1000 2000 3 0 0 0

10
i
x<D

§
8

3 0 0 020001000

Figure 6.4: CT residual model-based detection and isolation of two simultaneous leaks in 
Tanks 3 and 4

8 0 0

=  6 0 0
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1 20
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Figure 6.5: CT residual model-based detection and isolation of three simultaneous leaks in 
Tanks 2, 3 and 4
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X  10 0 0  a>H
c
i 5 0 0

2000 3 0 0 01000

30
l—
g 20 
*2
c0

1
10

2000 3 0 0 01000

10
i
a>

!
2000 3 0 0 01000

4 0

' 30
4)

20
0
1  10

3 0 0 01000 2000

10

i
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I
1000 2000 3 0 0 0

Figure 6.6: CT residual model-based detection and isolation of simultaneous leaks in all 4 
Tanks

3 0 0

S 100

1000

1000 2000

3 0 0 0

3 0 0 0

•S 4

2000 3 0 0 01000

1.5

S  0 .5

1000 2000 3 0 0 0

1000 2000 3 0 0 0

Figure 6.7: CT residual model-based detection and isolation of two simultaneous incipient 
leaks in tanks 3 and 4.
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sake of better visualization, all the isolation indices have been scaled to have unit 
confidence limit, i.e., — • Note that in the following cases, all the* AG! \ / I Gl—0,01
fault isolation indices have also been scaled to have unit confidence limits. Since 
r]°A(k) is greater than its confidence limit 1, but r)°ai(k), V i G [2,4], are all less than 
their confidence limits, it can be inferred that Tank 1 is leaking.

Case 2: Two leaks simulated with the choice of af =  aj =  0.01 cm2 are introduced to 
two different tanks simultaneously after the 1000tft second. As shown in Fig. 6.4, 
the faults are detected promptly. Furthermore, since r)°3(k) and rfsA(k) are greater 
than their confidence limits 1, but rfsA(k) and rj°2(k) are lower than their confidence 
limits, it is indicated that Tanks 3 and 4 are leaking at the same time.

Case 3: Three leaks with a{ =  a j =  a{ =  0.01 cm2 V i, j,  k  € [1,4] are introduced to 
three different tanks simultaneously after the 1000t/l second and the FDI results are 
shown in Fig. 6.5. After the detection of faults, since rj°2(k), rj°3(k) and r]°A(k) 
are greater than their confidence limits 1 simultaneously, but i)°i(k) is lower than its 
confidence limit, it can be concluded that Tanks 2, 3 and 4 are leaking.

Case 4: Leaks with a{ =  a* =  a[ =  a* =  0.01 cm?, V i , j ,  k , r  e  [1,4] are introduced to 
all four tanks simultaneously after the 1000t/l second. As Fig. 6.6 shows, the faults 
are detected promptly. Furthermore, since rfs i{k), V i = 1,2,3,4, are all greater than 
their confidence limits 1, it is known that all the tanks are leaking.

Case 5: Two leaks simulated with the choice of =  a{2 =  0.01 x (t — 1000)/2000cm2 
are introduced to two different tanks simultaneously after the 1000th second. In this 
case, note that the magnitude of a leak increases slowly. The detection of such an 
incipient fault is generally regarded as difficult. As shown in Fig. 6.7, the proposed 
scheme is still able to detect the incipient faults after these faults have developed over 
a period of time. Furthermore, it is clearly indicated that tanks 3 and 4 are leaking 
simultaneously.

Mathematically, the PRM and the fault gain matrix in the DT domain can be derived 
from their counterparts in the CT domain by replacing the CT system matrices as follows: 

To make a comparison, the DT model is used to design the PRM and SRMs. With 
Ts = 2, Ad = eAT*, Bd =  Jq” eArB dr, C<j =  C, D d =  D are obtained. The fault model 
is eATs / 0r° e ”ArS d.dr assuming piece-wise constancy of the faults, where the true values 
of A, B, C, and D  are used. Subsequently, the DT PRM and four SRMs are computed by 
simply replacing {A, B, C, D} with {A^B^C^D,*}, respectively.
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CT Domain A B C D 2di
DT Domain A d Bd c d D d eATa f* ' e~ATdT3di

Table 6.3: Correspondences between the PRM and the fault gain matrix in the CT domain 
and their counterparts in the DT domain

CT C ase with time -  varying fault
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Figure 6.8: The CT residual model-based FDI scheme successfully detects and isolates a 
time-varying leak in Tank 3

A single leak to a tank is introduced followed by the application of the CT and DT 
residual models to the same test data. It is shown in Figs. 6.8 and 6.9 that while the 
identified CT residual models successfully detect and isolate a leak in Tank 3, the DT 
residual models fail to detect and isolate the time-varying fault even if they are calculated 
from the exactly known A, B, C and D. Following this a ZOH is introduced to the fault, 
assuming that the fault is piece-wise constant within each sampling interval. As depicted 
in Fig. 6.10, in this case, the DT-FDI performance has improved. However, it is still much 
worse than the CT-FDI performance shown in Fig. 6.8.
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DT C ase — Time varying fault
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Figure 6.9: The DT residual model-based FDI scheme fails to detect and isolate a time- 
varying leak in Tank 3

DT C ase with p iecew ise constant fault
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Figure 6.10: The DT residual m odels can detect and isolate a leak with a ZOH in Tank 3 , 
with relatively poor performance
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6.8 Conclusions

In this chapter, a novel subspace approach to the identification of the PRM for fault 
detection and the design of a set of SRMs for fault isolation in multivariate CT systems 
has been proposed. When the number of outputs is equal to the system order, single and 
multiple faults can be uniquely isolated by the use of n  SRVs, where one SRV is made 
affected only by a single fault but unaffected by the other faults. The proposed scheme 
is computationally robust and efficient, without the need to separately identify the system 
matrices {A, B, C, D}. The newly proposed approach is applied to a simulated water tank 
system, where detection and isolation of leaks in a single tank at one time and in multiple 
tanks simultaneously has been successfully conducted. In addition, to make a comparison, 
the results of detecting and isolating leaks in the tanks using DT PRM and SRMs are also 
shown. It is shown that the DT-FDI approach can just barely detect and identify only the 
piece-wise constant fault. In contrast the CT-FDI scheme works well for detecting and 
isolating single as well as multiple leaks from any tank.
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Conclusions

7.1 Summary

This thesis has presented the use of quantitative techniques for fault detection and diagnosis 
in process industries. The thesis has confirmed the applicability of existing data-driven 
and model-based techniques and introduced a number of novel techniques for model 
identification, fault detection and diagnosis.

A simulation case-study was presented in Chapter 1 to demonstrate the importance of 
FDD especially in closed-loop systems. Two industrial case-studies were presented in 
Chapter 2 to demonstrate the applicability of multivariate statistical techniques for process 
monitoring.

The results of the PCA-based failure diagnosis are being used in an early-warning 
scheme to prevent bearing damage in the turbine in a thermal power plant in Missouri, USA. 
This early-warning scheme is used to send alerts to process engineers through electronic 
mail when large shifts in the turbine bearing temperatures or the turbine-shaft eccentricity is 
detected. The inferential sensor-based bitumen recovery monitoring scheme is being used 
in Suncor’s oil sands extraction facility in Fort McMurray, AB, Canada, to supplement 
laboratory analysis and provide advance warning of an impending fall in the operating 
efficiency of the separation cell. This study also helped improve our understanding of 
some of the practical issues in developing steady-state models for processes from archived, 
historical data. In particular, understanding the effects of settings in the data historian and
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the effect of sample consolidation and the role of nonlinear transformation were found to be 
very important in improving the quality of the model. In addition, this application helped 
us develop new techniques for time-delay estimation and test the applicability of a powerful 
new iterative PCA technique. The simulation studies on the quadruple tank process have 
resulted in the development of optimal choices for the residual generation mechanism and 
decision rule criteria which result in maximized sensitivity of the SRV approach.

In Chapter 3, we have demonstrated, using laboratory experiments and simulation case- 
studies, that the SRV approach can be applied successfully to detect and isolate sensor and 
actuator faults under closed-loop conditions. We have also demonstrated that this approach 
is more powerful than the contribution plots associated with PCA for the diagnosis of sensor 
and actuator faults.

In practice, we have come across a number of situations where a model is not 
readily available. The bitumen separation cell in Suncor’s oil sands extraction facility 
and the bleaching unit in Millar Western’s BCTMP mill are two examples. There is 
ongoing effort in the engineering community to understand these processes and develop 
phenomenological models using physical principles. However, the development of such 
models requires a significant investment of time and money. In the meantime, for a 
number of applications such as, control and fault diagnosis, data-based empirical models 
are required. It is difficult to apply currently existing system identification techniques to 
these processes mainly because of the multirate nature of these processes. The solutions 
proposed to this problem, like linear interpolation, are unsatisfactory, because the large 
difference in the sampling rates falsify the hypothesis involved in such interpolations. 
When we tried to use the existing techniques to develop models for the BCTMP mill, 
the model quality was terrible even though the predictions of the quality variables, like 
brightness and tensile strength, looked good. We soon realized that we were trying to 
identify the right model with the wrong data. Indeed there was hardly any justification for 
assuming that we could draw a straight line, or an nth order polynomial for that matter, 
between available output samples and expect the unavailable data to closely match this 
interpolation. On the other hand, valuable information regarding the output was available 
in the input. Hence, a more intelligent form of interpolation, a model-based interpolation, 
was required. The next question was, where do we get the model from? This sounded like 
the classic chicken and egg problem. We soon discovered that this problem was tackled 
about 25 years ago in statistical literature, by Dempster et al. (1977), in an iterative fashion. 
After identifying a suitable gray-box model structure which takes the recycle and nonlinear 
effects into account, we applied the EM algorithm to this structure.
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The predictors developed using this model have been functioning successfully for over 
one-and-a-half years at the mill. The identification technique has also been successfully 
tested in other simulation and experimental studies.

In Chapter 6, a novel subspace approach for the identification of fault diagnosis relevant 
models for fault isolation in multivariate continuous-time systems has been proposed. This 
approach is successfully applied for the detection and isolation of leaks in a simulated water 
tank system.

7.2 Contributions of this thesis

The key contributions of this study are as follows:

•  Two industrial case-studies involving PCA and PLS are presented to demonstrate 
the applicability o f multivariate statistical techniques for process monitoring and to 
illustrate some of the issues involved in developing inferential sensors from archived 
historical data.

•  A powerful novel approach for the joint identification of steady-state models and 
the noise covariance matrix (Iterative Principal Components Analysis (IPCA)) was 
successfully tested in an industrial setting.

•  An averaging mechanism to compensate for sample consolidation in multivariate 
static model identification has been developed. A PEM-based optimal transport- 
delay estimation technique for multivariate static model identification has been 
developed.

•  The superiority of SRV-based fault isolation over scalar structured residual 
approaches has been demonstrated.

•  Optimal choices for the residual generation mechanism and decision rule criteria 
have been established using extensive simulation studies on a quadruple tank process.

•  The applicability of the SRV-based approach for detection and isolation of sensor and 
actuator faults under closed-loop conditions has been demonstrated using laboratory 
experiments and simulation case-studies. The superiority of the SRV-based isolation 
scheme over contribution plots has also been demonstrated.

•  A novel EM-based approach for the identification of multivariate state-space models 
for processes with irregularly sampled outputs has been developed. Its superiority
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over ad-hoc interpolation schemes has been demonstrated using simulations, 
laboratory experiments and industrial case-studies.

•  A novel subspace approach for the identification of fault diagnosis relevant models 
for fault isolation in multivariate continuous-time systems has been developed. This 
approach is demonstrated through leak detection and isolation in a simulated water 
tank system.

7.3 Recommendations for future work

The results and issues identified during the course of this work give rise to a number of 
possible directions for future work. Some of these are briefly summarized below.

•  A new static model identification method (IPCA) has been introduced in this thesis. 
The theoretical properties of this approach and related EIV modelling techniques 
such as PLS are yet to be established. In particular, the highly convoluted procedure 
used in the PLS algorithm has to be studied with the objective of establishing its 
properties.

•  Optimal settings for the SRV-based fault isolation method have been recommended. 
Alternately one can use the Generalized Likelihood Ratio (GLR) approach for 
fault isolation. Intuitively, the GLR and SRV approaches seem to be perfectly 
complementary. Hence, by a proper choice the decision rule and residual generation 
mechanism, they can give exactly the same results. However a theoretical proof for 
this is lacking and will help establish these methods on an equal footing. In addition, 
while intuitive arguments establish that parity space approaches are equivalent to 
observer-based approaches, a more theoretical investigation into the conditions for 
equivalence have to be established.

•  The use of the SRV-based approach for sensor and actuator FDI under closed-loop 
conditions has been demonstrated. However, the effect of disturbances and model- 
plant-mismatch has not been considered in this thesis. These are important factors 
to consider when these methods are used in an online FDD scheme and these effects 
have to be investigated.

•  We have considered fault types, such as sensor, actuator and additive process faults, 
in isolation and not simultaneously. A theoretical study of the isolability of these
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faults when they occur simultaneously will help improve the maturity of online fault 
diagnosis. In particularly, the study of redundancy classes will help in avoiding fault 
misclassification.

• We have introduced the EM algorithm for identification of state-space models from 
irregularly sampled data. In addition, it provides an optimal alternative to the existing 
PEM and Subspace identification methods for multivariate system identification from 
regularly sampled data. The model parameters estimated using this approach are 
known to possess maximum likelihood properties asymptotically. However, work 
on obtaining confidence interval and establishing finite sample properties is yet to 
be done in this area. In addition, a theoretical comparison of this approach with 
subspace identification will help in establishing asymptotic properties of various 
subspace algorithms.
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A
Comparison of structured residual fault 

isolation techniques

A.1 FDI performance tables

The following tables summarize the results of monte-carlo simulations performed to study 
the performance of structured residual based fault detection and isolation on the quadruple 
tank process. The performance of 6 different settings corresponding to different choices 
of the residual generation approach and decision rule are summarized. In each table, each 
row shows the detection and isolation results for 100000 cases corresponding to different 
realizations of the noise sequences. Different rows correspond to different faults sizes 
(0.5cr, la,  2a, 3a  and 5cr) and fault locations (Flt ■ ■ ■ , Fg).
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Fault Description: No fault Number o f samples: 100000

Size Detection Fault Present? Isolation
No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

N/A 9NNI 1032 #17 4 1 2 3 0 0 0 0 705
Faul Description: F lA h d t i Num Der of samples: 100000

Size Detection Fault Present? Isolation
No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98929 302 1 3 1 4 1 0 0 0 756
la 98557 1443 357 1 2 2 2 4 3 0 0 1065
2 a 96302 674 ■ 3 6 15 3 6 0 0 2953
3a 89961 10039 1310 117 1 13 22 6 21 0 0 8549
5a 55514 aaxbb 2247 3 16 47 5 45 0 0 41131
Fault Description: Fault in F2 Number o f samples: 100000

Size Detection Fault Present? Isolation
No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98921 291 1 2 4 0 1 0 0 777
la 98427 1573 358 4 i 1 3 7 1 0 0 1192
2a 95577 747 5 11 6 10 2 0 0 3617
3 a 87843 12157 1288 3 SHI 18 8 22 0 0 0 10710
5a 49755 CfVVJC 2130 0 Kmam. 18 10 36 0 0 0 47182
Fault Description: Fault m F3 Number of samples: 100000

Size Detection Fault Present? Isolation
No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98911 1089 315 2 7 s 4 1 1 0 0 758
la 98501 1499 361 6 4 Im 3 3 1 0 0 1119
2a 95875 M2S 761 9 12 20 3 3 0 0 0 3317
3a 88750 11250 1436 13 24 m 2 23 3 0 0 9642
5a 51781 2537 14 48 Bigg

S i 0 55 2 0 0 44654
Fault Description: | Number o f samples: 100000

Size Detection Fault Present? Isolation
No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98967 {M& 282 1 1 2 if 2 1 0 0 739
la 98455 1545 354 5 2 1 H 5 3 0 0 1166
2a 95594 4406 759 5 8 2 imm34 4 4 0 0 3590
3a 87923 1207? 1420 18 10 3 i s 5 19 0 0 10490
5a 50072 M M 2246 24 21 0 Ssiis 0 35 0 0 46720

Table A. 1: Results o f  FDI using scalar structured residual approach with multiple testing 
- Parti
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Fault Description: Fault in F5 Number o f samples: 100000

Size Detection Fault Present? Isolation
No Yes No FI F2 F3 F4 F5 F6 F7 F8 u

0.5a 98836 1164 342 1 2 2 1 Hm 0 0 0 813
la 98047 m u 538 4 3 5 2 mm 1 0 0 1393
2a 93302 M i 1707 2 17 9 0 m 6 0 0 4914
3a 79683 20317 4352 2 26 21 1 m 4 0 0 15714
5a 28033 71967 8046 1 32 23 0 1663 6 0 0 62196
Fault Description: Fault in F6 Number of samples: 100000

Size Detection Fault Present? Isolation
No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98862 1138 355 0 1 2 1 0 i 0 0 776
la 98175 1825 568 2 1 0 4 3 I 0 0 1238
2a 93591 M U 1723 9 4 5 16 14 ■ 0 0 4599
3a 80310 M i 4453 22 5 1 28 16 185 0 0 14980
5a 28950 71050 8568 30 0 0 42 4 1626 0 0 60780

Fault Description: Fault in F 7 Number o f samples: 100000

Size Detection Fault Present? Isolation
No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98886 t114 354 0 2 1 1 1 1 1 0 754
la 98201 w w 639 0 1 2 1 2 1 P 0 1153
2a 93816 filftA 2568 3 1 2 4 1 1 0 3604
3a 81358 18642 8325 0 0 4 2 0 0 M 0 10311
5a 30369 M l 27530 3 0 2 0 0 0 i 0 42090

Fault Description: 1 Number o f samples: 100000

Size Detection Fault Present? Isolation
No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98894 &0B 347 0 5 1 1 1 1 0 1 750
la 98208 1792 639 0 3 2 1 1 0 0 1 1146
2a 93690 a a i 2637 3 2 0 2 1 0 0 1 3665
3a 80760 19240 8770 2 1 0 1 0 0 0 n■ 10466
5a 29823 70177 28402 0 0 0 1 0 0 0 1 41766

Table A.2: Results o f  FDI using scalar structured residual approach with multiple testing 
- Part2
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Fault Description: No fault Number of samples: 100000
Size Detection Fault Present? Isolation

No | Yes No FI F2 F3 F4 F5 F6 F7 00 u
N/A mm 1 1032 365 4 2 4 5 0 0 0 0 652

Fault Description: Fault in FI Number o f samples: 100000
Size Detection Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5c 98929 419 Bi 4 5 3 0 0 0 0 635

la 98557 t W 478 n 4 5 12 0 0 0 0 933

2a 96302 3698 744 f z 5 18 24 0 0 0 0 2835

3a 89961 1146 253 8 37 39 0 0 0 0 8556

5a 55514 44486 1145 ! ■ 6 46 54 0 0 0 0 41301

Fault Description: Fault in F2 Number o f samples: 100000
Size Detection Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98921 401 3 s■ 3 4 0 0 0 0 664

la 98427 1573 483 6 13 5 4 0 0 0 0 1062

2a 95577 H i s 759 6 65 13 16 0 0 0 0 3564

3a 87843 1119 4 30 31 0 0 0 0 10715

5a 49755 M i 969 3 1803 32 31 0 0 0 0 47407

Fault Description: § Number of samples: 100000
Size Detection Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98911 428 5 3 s 5 0 0 0 0 ■mm
Tmrnm

la 98501 — 465 6 8 m
1 1 0 0 0 0 1012

2a 95875 4125 743 22 25 gg 9 0 0 0 0 3267

3a 88750 DNfe 1164 37 38 ■ 6 0 0 0 0 ■ K
5a 51781 48219 1069 41 49 1860 2 0 0 0 0 45198

Fault Description: 1 Number of samples: 100000
Size Detection Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5c 98967 HMH 393 4 3 5 1 0 0 0 0

la 98455 ■MR 491 8 5 7 ■■mm 0 0 0 0 1024

2a 95594 44C® 820 13 21 5 73 0 0 0 0

3a 87923 1260 34 42 7 —M l 0 0 0 0 10476

5a 50072 49928 1086 41 60 2 1842 0 0 0 0 mm
Table A.3: Results o f  FDI using scalar structured residual approach with maximized 
sensitivity and multiple testing - Parti
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Fault Description: haul! in F5 Number o f samples: 100000

Size Detection Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 u

0.5a 98836 468 3 7 2 3 1 0 0 0 681

la 98047 1953 813 2 13 3 3 H 0 0 0 1119

2a 93302 BUB 3078 5 24 10 3 HM 0 0 0 I
3 a 79683 20317 9354 3 46 34 0 I 0 0 0 10880

5a 28033 I 25703 1 105 63 2 1 0 0 0 —

Fault Description: Fiult in F6 Number o f samples: 100000
Size Detection Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98862 iW 472 0 3 2 7 0 i 0 0 ■
la 98175 1825 804 4 4 1 11 0 H 0 0 1091

2a 93591 6499 3136 13 5 2 22 0 1 0 0 3231

3a 80310 19690 9512 35 6 7 49 0 H 0 0 10081

5a 28950 tW k 26933 93 3 0 112 0 8 0 0 43909

Fault Description: $$j9|in F7 Number o f samples: 100000
Size Detection Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98886 1114 467 3 4 4 4 0 0 i 0 632

la 98201 1799 817 3 8 7 8 0 0 H 0 956

2a 93816 6184 3093 14 7 20 6 0 0 1 0 3044

3a 81358 — 9422 37 8 43 3 0 0 1 0 9129

5a 30369 69631 27228 105 3 126 1 0 0 i 0 42168

Fault Description: Fault in F8 Number of samples: 100000
Size Detection Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5 a 98894 a m 437 0 2 2 2 0 0 0 1 ■
la 98208 1792 743 3 8 2 3 0 0 0 R m
2a 93690 m 2861 3 22 3 13 0 0 0 1 3408

3a 80760 19240 8599 1 47 3 39 0 0 0 i 10551

5a 29823 m n 24230 1 121 0 82 0 0 0 0 45743

Table A.4: Results o f  FDI using scalar structured residual approach with maximized 
sensitivity and multiple testing - Parti
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Fault Description: No fault Number o f samples: 100000

Size Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U
N/A ■ M idOvOO 1032 0 6 1 0 5 4 3 7 7 999

Fault Description: Number o f samples: 100000
Size Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5c 98929 m 0 mm 2 1 6 3 3 5 5 1040

l c 98557 1443 0 9 3 2 9 7 11 11 7 1381

2 c 96302 3698 0 128 11 11 14 10 26 28 13 3457

3 c 89961 D M 0 M l 25 30 24 17 58 63 31 9025

5c 55514 w m 0 10651 48 58 58 30 118 126 34 33363

Fault Description: Number o f samples: 100000
Size Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5c 98921 f j t g s
1079 0 6 1 1 7 6 4 5 10 1035

l c 98427 mm 0 4 40&5.IS8 5 8 10 6 6 11 1511

2 c 95577 4423 0 11 165 14 13 21 10 15 35 ■ *

3o 87843 121*7 0 17 m 33 26 48 21 27 62 10967

5 c 49755 50245 0 25 12359 67 48 100 22 30 118 3747*

Fault Description: Number o f samples: 100000
Size Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5c 98911 w m 0 5 1 i 7 3 4 5 8 1053

l c 98501 1499 0 5 4 IS 8 9 7 9 9 1429

2 c 95875 1111111 0 7 8 mmm p 15 28 9 32 16 mmm
3 c 88750 iH H 0 19 25 ■ 24 62 16 57 25 10096

5 c 51781 48219 0 44 50 11869mmsSmmm. 34 115 17 129 35 MPfPIl
Fault Description: Number o f samples: 100000

Size Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 u
0.5C 98967 # # 0 7 2 0 1i 3 6 5 9 993

l c 98455 1545 0 7 3 0 ■ 4 11 4 10 1485

2 c 95594 m m 0 9 7 3 m 15 31 16 23 4 m
3 o 87923 i W f 0 19 32 10 25 55 23 43 10359

5a 50072 0 50 59 40 12419'hX'iSaSl<M’ 24 108 28 115 mmm

Table A.5: Results o f FDI using structured residual vector approach with maximized 
sensitivity and multiple testing - Parti
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Fault Description: Fault in F5 Number of samples: 100000
Size Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U
0.5a 98836 0 6 3 1 4 12 5 5 5 1123

la 98047 1953 0 7 6 4 5 61 8 10 10 1842

2 a 93302 fipppl 0 8 32 22 7 14 27 23 sm
3a 79683 20317 0 13 78 60 22 3397 29 47 48 16623

5a 28033 M l 0 6 132 111 9 Hi 30 50 48 39903

Fault Description: Fault in F6 Number of samples: 100000
Size Fault Present? Isolation

No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98862 0 5 1 2 5 6 17 6 9 1087

la 98175 1825 0 7 4 3 14 11 ■ 9 14 1701

2  a 93591 '§M 0 23 9 8 32 27 $70 25 30 5685

3a 80310 mm 0 52 16 14 76 37 3344 43 54 —

5a 28950 71050 0 110 16 16 149 27 31690 43 70 MM
Fault Description: Fault in F7 Number of samples: 100000

Size Fault Present? Isolation
No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98886 IS 0 6 3 0 7 6 4 ■ 6 1066

la 98201 1799 0 7 4 7 9 9 8 55 10 1690

2 a 93816 Mfff 0 18 11 33 9 25 29 ■ 24 5479

3a 81358 mm 0 44 20 75 16 49 43 3319 33 15043

5 a 30369 SBSSB 0 101 19 127 19 62 46 32224 32 37001
Fault Description: Fault in F8 Number of samples: 100000

Size Fault Present? Isolation
No Yes No FI F2 F3 F4 F5 F6 F7 F8 U

0.5a 98894 1,10$ 0 5 2 0 6 3 3 7 m 1065

la 98208 1792 0 4 6 0 9 9 6 7 m»»»£ 
■ M

2 a 93690 0 6 28 13 30 29 24 17 526 5637

3a 80760 M l 0 14 76 25 63 65 50 33 a m 15615

5a 29823 mm 0 12 152 15 129 66 54 24 31556 38169

Table A.6: Results o f FDI using structured residual vector approach with maximized 
sensitivity and multiple testing - Part2
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Fault Description: No fault Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8
N/A 1032 153 149 149 130 144 136 78 93

Fault Description: $ f|j^ § |fj| Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5c m 98929 m 147 133 144 167 157 75 100

lc 1443 98557 270 145 194 189 195 220 121 109

2c mmm
M n im 96302 fP e 140 614 409 236 640 354 127

3 C 10039 89961 4384 96 1644 824 295 1717 941 138

5c 4 4 m 55514 26873 36 7350 1460 229 5432 3028 78

Fault Description: f Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5c IS# 98921 110 195 134 153 175 132 67 113

lc i m 98427 119 391 171 233 274 149 73 163

2o mmm
m m 95577 96 — 374 731 802 194 90 444

3c 12157 87843 70 — 789 2060 1954 269 112 1034

5c M i 49755 15 31191 1312 8215 5808 198 78 3428

Fault Description: |p !pf£||§ | Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5C J M 98911 138 166 152 126 180 146 82 99

lc 1499 98501 200 218 i l l 121 279 156 126 91

2 C m u 95875 611 462 1378 123 828 200 392 131

3 C 88750 1812 918 5024 87 1946 281 1047 135

5c 48219 51781 7933 1625 ■mmm: 34 6045 209 3242 82

Fault Description: Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5c 1033 98967 107 172 117 162 153 156 68 98

lc 1545 98455 144 280 115 ■ 180 249 77 158

2c 4406 95594 327 807 111 1619 262 719 127 434

3c 87923 705 2183 72 mm 328 1909 150 1084

5c 49928 50072 1277 8602 29 30570 232 5706 77 3435

Table A.7: Results o f  FDI using scalar structured residual approach with single testing - 
Parti
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Fault Description: Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a 98836 122 179 143 128 227 182 83 100

la ms 98047 137 321 259 174 ■ 266 120 135

2 a 6698 93302 217 1128 920 251 2714 727 352 389

3a 79683 286 3077 2635 311 10477 1689 849 993

5a 71967 28033 151 8963 8030 176 47318 3759 1802 1770

Fault Description: | Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a TiH 98862 119 160 109 152 185 219 83 111

la i l l s 98175 228 186 125 271 274 455 144 142

2 a 6409 93591 816 291 212 1015 776 347 405

3a iM 80310 2437 361 286 2958 1890 9949 853 956

5a 71050 28950 7979 214 155 8909 3946 46294 1759 1794

Fault Description: j Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a iis 98886 118 158 135 143 176 164 mzwmam 102

la a nm m 98201 180 230 234 215 284 260 24b 156

2 a w 93816 801 678 837 617 774 673 1373 431

3 a 18642 81358 2428 1884 2451 1778 1854 1681 5657 915

5a 30369 8394 5904 8419 5770 4255 4083 31310 1496

Fault Description: j Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a 1106 98894 112 184 113 151 179 168 75 ■
la 98208 168 318 186 263 270 235 111 ■
2 a 6310 93690 556 1004 563 965 708 696 368 1450

3a 1— 80760 1629 2889 1679 2735 1756 1665 812 6075

5a rtm 29823 5418 8898 5311 8616 4065 3920 1363 32586

Table A .8 : R e s u l t s  o f  F D I  u s in g  s c a la r  s tr u c tu r e d  r e s id u a l a p p r o a c h  w ith  s in g le  te s t in g  - 
P a r t2
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Fault Description: No fault Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

N/A 1032 | 98968 161 161 179 159 102 85 88 97
Fault Description: fa u lt i r ^ j Number of samples: 100000

Size Fault Present? Isolation
Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a 98929 111 178 179 186 85 103 75 104

la m 98557 ■ 165 235 236 118 142 129 107

2 a 3698 96302 1375 130 502 552 149 432 398 160

3a w 89961 sus 77 1079 1096 184 1276 1153 168

5a — 55514 29166 26 2286 2304 131 5311 5150 112

Fault Description: J Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a m 98921 115 226mm&sm 172 173 107 93 72 121

la am 98427 120 471 232 235 155 95 89 176

2a 4423 95577 79 a n
MB 532 577 508 147 123 493

3a m 87843 40 6629 1116 1237 1444 194 141 1356

5a 50245 49755 13 33780 2141 2339 5855 122 102 5893

Fault Description: Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a 98911 139 213 ■ 161 104 94 92 90

la 1499 98501 196 281 393wKm 142 173 96 130 88

2a 4125 95875 451 651 1640 100 535 142 454 152

3a 11250 88750 1057 1275 i f # 53 1475 190 1284 168

5a M i 51781 2274 2513 31634 9 6013 114 5549 113

Fault Description: j|n^QP^|| Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a w 98967 142 200 137 196 96 92 61 109

la 1545 98455 207 282 137 B 103 169 78 157

2a —̂
KSpI!I 95594 485 695 104 1846 144 488 155 489

3a 1207=? 87923 1074 1393 58 69% 212 1440 168 1430
5a —

RMraiill 50072 2116 2721 12 32912 131 5820 87 6129

Table A.9: Results o f  FDI using scalar structured residual approach with maximized 
sensitivity and single testing - Parti
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Fault Description: Number o f samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a m m 98836 136 s e 3 E 174 125 102 79 115

la 1953 98047 181 m m 213 224 134 143 206

2a 93302 373 m m 386 ■ 315 547 635

3a 20317 79683 561 b e e b e e 649 3233 572 1655 1831

5a 71967 28033 580 B 3 SM B 570 1 773 4906 5426

Fault Description: fault in F$ Number of samples: 100000

Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a HUB 98862 SEE 184 155 BBS 111 77 120

la 1825 98175 M 229 214 BEE 148 •BBSS 136 199

2a
lllilfl

93591 BBB 448 386 1 334 925 548 616

3a — 80310 SEES! 770 639 SHE! 667 3128 1631 1781

5a 71BS0 28950 687 600 E M 817 12717 4947 5351

Fault Description: | Number of samples: 100000

Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a iW 98886 m 183 3 E 152 96 113 103 106

la 1799 98201 BBS 226 BBS 202 189 188 MB 176

2a 6184 93816 IEEE 488 m m 407 668 614 ■ 339

3a 81358 m m . 741 EBB 661 2030 1797 2829 733

5a 30369 BEkTtl 721 BEEBE 615 5581 5274 12118 861

Fault Description: Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a 1196 98894 126 BE 152 I B 107 125 71

la 98208 172 BBS 185 aaa 172 153 122 ■

2a — 93690 403 B 384 ip 635 607 303 871

3a 19240 80760 587 EEB1 595 BESE 1836 1751 597

5a W m 29823 538 555 W M B 5234 5007 768 12175

Table A. 10: Results o f  FDI using scalar structured residual approach with maximized 
sensitivity and single testing - Part2
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Fault Description: No fault Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8
N/A 1032 s u m 116 121 132 128 140 118 142 135

Fault Description: Fault in FI Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a 1971 98929 m 126 113 136 151 134 158 129

la 144a 98557 288 156 138 162 158 179 217 145

2 a mmm
WBSmi 96302 — 224 297 290 199 487 417 192

3a m m 89961 PwlfP 323 531 483 259 1045 945 247

5a mmm 55514 37716 352 796 758 225 2278 2114 247

Fault Description: jjjSjjjliffl? Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a 1079 98921 79 187 125 133 144 126 140 145

la 1573 98427 89 ■ 161 164 230 132 158 200
2a M S 95577 137 2217 285 331 581 171 197 504

3a 87843 191 flnflommm 510 604 1208 217 286 1049

5a 50245 49755 209 43519 716 826 2382 162 219 2212
Fault Description: ( Number of samples: 100000

Size Fault Present? Isolation
Yes No FI F2 F3 F4 F5 F6 F7 F8

0.5a 1089 98911 86 121 171 129 156 140 158 128

la 1499 98501 113 161 135 210 145 210 136

2a 4125 95875 206 327 2008 208 545 190 466 175

3a 88750 422 533 m um m m 325 1119 218 1065 274

5a 4 m 51781 679 775 41489 330 2318 182 2233 213

Fault Description: Number of samples: 100000
Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8
0.5a ■ u s 98967 77 118 106 182 136 133 144 137

la 1545 98455 99 172 124 m 161 192 150 205

2a —
I H M i 95594 192 364 200 2207 223 522 226 472

3a * 2 8 » 87923 367 639 303 263 1163 280 1009

5a 49028 50072 575 875 291 4 3 2 4 2 192 2363 216 2174

Table A.11: Results o f  FDI using structured residual vector approach with maximized 
sensitivity and single testing - Parti
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Fault Description: Fault in F5 Number o f  samples: 100000

Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0 .5a jm 98836 76 159 135 132 254 138 138 132

l a 1953 98047 85 261 231 140 699 163 190 184

2 a 6698 93302 138 765 663 170 4028 261 340 333

3 a 79683 156 1665 1422 209 15539 348 525 453

5 a HiK 28033 71 2260 1979 86 mutuumBor 02 172 376 321

Fault Description: fa u lt  in F6 Num ber o f  samples: 100000

Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0 .5a 98862 84 122 113 158 137 225 153 146

l a 1825 98175 157 130 142 243 173 mi 195 184

2 a 8$® 93591 497 183 173 693 297 3885 350 331

3 a HM§ 80310 1105 234 251 1582 425 15034 555 504

5 a 71050 28950 1744 113 119 2229 207 65848 400 390

Fault Description: Number o f  samples: 100000

Size Fault Present? Isolation

Yes N o FI F2 F3 F4 F5 F6 F7 F8

0.5 a i1U 98886 92 119 134 125 155 127 232 130

l a 1IS9 98201 137 156 215 150 182 185 611 163

2 a 6184 93816 458 230 610 227 388 373 3R43 255

3 a 18842 81358 1059 292 1319 291 595 594 14177 315

5 a MSB 30369 1677 130 2006 167 457 476 64540 178

Fault Description: 1 Num ber o f  samples: 100000

Size Fault Present? Isolation

Yes No FI F2 F3 F4 F5 F6 F7 F8

0 .5a tftt 98894 74 155 105 151 143 128 128 222

l a 1792 98208 81 279 117 254 177 172 162 HP
2 a 93690 161 697 187 679 359 330 249 3648

3 a 1 I» Q 80760 182 1500 227 1391 559 522 300 M
5 a w m 29823 97 2167 109 2049 433 409 165 mm

Table A. 12: Results o f  FDI using structured residual vector approach with maximized 
sensitivity and single testing - Part2
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Sample Matlab programs for the EM 
algorithm

The following Matlab programs are used for EM-based model identification using 
irregularly sampled data obtained from a simulated 3rd order underdamped system.

The Matlab program for the EM algorithm is provided in Section B. 1. It uses the Matlab 
function Kpfs.m (Section B.2) to obtain Kalman filter, predictor and smoother estimates 
and their covariances and the Matlab function firjndl.m  (Section B.3) to obtain the initial 
model.

These Matlab programs can be used for model identification using data from other 
systems after a effecting a small number of changes based on the theory provided in Chapter 
4.

B.l Matlab code for EM algorithm
1 % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

2 % E x a mp l e  — 3 r d  o r d e r  SISO s y s t e m .
3 % = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

4 c l e a r ;
5 c l c ;
6 % S i m u l a t i o n  p a r a m e t e r s
7 N = 500 0 ;
8 Tim e = [1 :N]
9 % S y s t e m d e f i n i t i o n

10 muO =  z e r o s  ( 3 , 1 ) ;  % I n i t i a l  s t a t e  mean;

197
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11 SigmaO = z e r o s ( 3 , 3 ) ;  % I n i t i a l  s t a t e  c o v a r ia n c e
12 n = 3; % number o f  s t a t e s
13 m = 1; % number o f  inpu ts
14 p = 1; % number o f  ou tputs
15 phi  = [ 0 . 3 6 8 8  0 . 4 7 6 7  0 .01 14; - 0 . 5 9 7 6  0 . 6095  - 0 . 5 4 0 8 ; . . .
16 —0.0156 —0.0686 0 . 0 4 2 2 ] ;  % Dynamic t r a n s i t i o n  matrix
17 gama = [ 0 . 3 4 ; 0 . 5 6 ; 0 . 7 8 ] ;  % Input t r a n s f o r m a t i o n  matrix
18 A = [ 1 . 2  0 . 96  1 . 5 ] ;  % Output t r a n s f o r m a t i o n  matrix
19 Rw = [ 0 . 0 4 0 7  0 .0001 0 . 0 0 1 5 ;  0 .0001  0 .0 4 0 7  - 0 . 0 0 2 0 ; . . .
20 0 .0 015  —0.0020 0 . 0 4 2 8 ] ;  % S ta t e  n o i s e  c o v a r ia n c e  matrix
21 Lrw = [ c h o l ( R w ) ] ’ ; % Cholesky  f a c t o r  o f  Rw
22 Rv = 0 . 0 3 9 8 ;  % Measurement n o i s e  c o v a r ia n c e  matrix
23 Lrv = c h o l ( R v ) ;  % Cholesky  f a c t o r  o f  Rv
24 sys  = s s ( p h i , g a m a , A , 0 , 1 ) ;
25 % S im u la t io n  data
26 u =  i d i n p u t  (N,  ’ rbs ’ , [0  1 ] );  % D e f i n i t i o n  o f  input  sequence
27 rand n( ’ s t a t e ’ , 4 8 5 4 0 8 2 ) ;
28 w = randn (N, 3 )  * Lrw;
29 randn(  ’ s t a t e ’ , 1 2 4 6 9 8 3 ) ;
30 v = r a n d n ( N , l ) *  Lrv;
31 % S im u la t io n
32 % I n i t i a l i z a t i o n
33 x ( l , : )  = [ p h i * m u 0 ] ’ + w ( l , : ) ;
34 y (1 , : )  = [ A * [ x ( l  , : ) ]  ’ + [ v ( l  , : ) ]  ’ ] ’ ;
35 % R ec ur s io n
36 for t = 2:N
37 x ( t  , : )  = [ p h i * [ x ( t - 1  , : ) ] ’] ’+ [gama *[u( t  - 1  , : ) ] ’ ] ’ + w ( t , : ) ;
38 y ( t  , : )  = [ A * [ x ( t  , : ) ]  * + [ v ( t  , : ) ]  ’ ] ’ ;
39 end
40 % M'issing data
41 Nm = 0;
42 for t = 1:N
43 % Dr o p  e v e r y  3 r d  a nd  5 t h  o b s e r v a t i o n .
44 i f  (m o d (t ,3 ) =  = 0 ) | ( m o d ( t  , 5 ) = = 0 )
45 yn tCt , 1) = NaN;
46 Nm = Nm + 1;
47 e l s e
48 y m ( t  , 1 )  = y ( t , 1 ) ;
49 end
50 end
51
52 %===========================================
53 % Model i d e n t i f i c a t i o n  us ing  the EM a lgo r i thm
54  %============================================
55 % I n i t i a l i z a t i o n
56 [ s y s i n i ] =  f i r . m d l  ( y m , u , 2 0 ) ;
57 s t e p ( s y s , s y s i n i ) ; p a u s e ( 2 ) ;
58
59 phi = s y s i n i  .A;
60 gama = s y s i n i  .B;
61 A = s y s i n i . C ;
62 muO = z e r o s ( n , l ) ;
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63 SigmaO = ze r o s  ( n , n ) ;
64 Rw = e y e ( n ) ;
65 Rv = e y e ( p ) ;
66 % R e c u r s i o n
67 for n i t e r  = 1:30

69 % S t a t e  e s t i m a t i o n  -  Ka l man  P r e d i c t o r  , F i l t e r  , S m o o t h e r
70 % a nd  L a g - o n e  c o v a r i a n c e  s m o o t h e r
71 %=========================================================
72 [ X p ,P p , Yp,XfO , PfO , X f , P f , Yf , K, Xs O, PsO , JO , Xs ,  Ps , Ys,  J , . . .
73 P sL l ]  = K pfs(m u0, SigmaO , phi , g a m a , R w , A , R v ,n ,m ,p ,y m , u , N ) ;

75 % C a l c u l a t i o n  o f  N e g a t i v e  Log L i k e l i h o o d  (NLL) f u n c t i o n  .
76 % Us e d  t o  m o n i t o r  t h e  c o n v e r g e n c e  o f  EM a l g o r i t h m .

78 % I n i t i a l i z a t i o n
79 N v e . l o g . l k h d  = 0;
80 % R e c u r s i o n
81 for t = 1:N
82 i f  ' i s n a n ( y m ( t  , : ) )
83 % I n n o v a t i o n
84 e p s i l o n ( t , : )  = y m ( t , : )  — Y p ( t , : ) ;
85 % C o v a r i a n c e  o f  i n n o v a t i o n
8 6  S igm aK {t} = A * P p { t } * A ’ + Rv;
87 % C o n t r i b u t i o n  o f  c u r r e n t  s a m p l e  to NLL f u n c t i o n
88  O f - t  = p * l o g ( 2 * p i )  + l o g ( d e t ( S i g m a K { t  } ) )  + e p s i l o n ( t  .
89 ( S i g m a K { t } \ e y e (  s i z e  (S igm aK {t } ) ) ) * [  e p s i l o n  ( t  ) ]
90 e l s e
91 O f . t  = 0;
92 end
93 N v e . l o g . l k h d  = N v e . l o g . l k h d  + O f . t ;
94 c l e a r  O f . t ;
95 end
96 L k ( n i t e r , l )  = N v e . l o g . l k h d ;
97 s p r i n t f  ( ’ I t e r  JSk>: —  w%dw~Objfn: „^% 0.2f ’ , n i t e r  - 1 , N v e . l o g . l k h d )
98 < ^ ===^==================================================:============:=
99 % C a l c u l a t i o n  o f  d a t a - d e p e n d e n t  r e g r e s s i o n  m a t r i c e s    a l p h a l  t o  a l p h a 6

ioo % ================================i=========,===================== = = =

102  a l p h a l  = z e r o s ( n , n ) ;
103 for t = 1:N
104 Tempi = X s ( t , : )  ’ * X s ( t  , : )  + P s { t } ;
105 a l p h a l  = a lp ha l  + Tempi;
106 c l e a r  Tempi;
107 end
108 %==:===========================================
109 a lpha2 = X s ( l  , : )  ’ * X s 0 ’ + PsLl { 1 } ;
110 for t = 2:N
111 Temp2 = X s( t  , : )  ’ * X s( t  -  1 , :)  + P s L l { t } ;
112 alpha2  = alpha2 + Temp2;
113 c l e a r  Temp2;
114 end
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115 ^ ============================================

116 a lpha3 = X s0*X s0’ + PsO;
117 for  t = 2:N
118 Temp3 = X s( t  - 1 , : )  ’ * X s( t  - 1 , : )  + P s{ t  — 1};
119 alpha3 = alpha3 + Temp3;
120 c l e a r  Temp3;
121 end

123 a lpha4  = z e r o s ( n , m ) ;
124 for t = 2:N
125 Temp4 = X s ( t , : )  ’ * u ( t - 1
126 a lpha4 = a lpha4 + Temp4;
127 c l e a r  Temp4;
128 end

130 a lpha5 = z e r o s ( n , m ) ;
131 for  t = 2:N
132 Temp5 = X s( t  - 1 , : )  ’* u ( t  -  1
133 a lpha5 = alpha5 + Temp5;
134 c l e a r  Temp5;
135 end
136 % = = = = = = = = = = = = = = = = = = = = = = = = = = = = : = = = = = = =
137 a lp ha 6  = ze r o s  (m ,m );
138 for  t  = 2:N
139 Temp6  = u ( t  —1 , : ) ’ * u ( t  — 1
140 a lp ha 6  = a lp ha6  + Temp6 ;
141 c l e a r  Temp6 ;
142 end

144 PSI = [ a lpha2 a lp h a 4 ] ;
145 QAMA1 = [ a lp ha 3  a l p h a 5 ; alpha5 ’ a lpha6 ];
146 < ^ ===============================================:=============
147 % C a l c u l a t i o n  o f  d a t a - d e p e n d e n t  r e g r e s s i o n  m at r ic e s  b e t a l  to be ta4
148 ^ =^===========================r=======;=============;===========:==
149 b e t a l  = 0;
150 for t = 1:N
151 i f  " i s n a n ( y m ( t  , : ) )
152 Tempi = y m ( t , ’ *ym(t  , : ) ;
153 b e t a l  = b e t a l  + Tempi;
154 c l e a r  Tempi;
155 end
156 end

158 beta2  = 0;
159 for t = 1:N
160 i f  ~ i s n a n ( y m ( t  , : ) )
161 Temp2 = ym( t , : )  ’ * Xs(  t , : ) ;
162 beta2 = beta2  + Temp2;
163 c l e a r  Temp2;
164 end
165 end
166 %=============================================
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167 beta3 = 0;
168 for t = 1:N
169 i f  * i s n a n ( y m ( t  , : ) )
170 Temp3 = X s ( t , : ) ’ * X s ( t , : )  + P s { t } ;
171 beta3 = beta3 + Temp3;
172 c l e a r  Temp3;
173 end
174 end
175 %=============================================
176 beta 4  = Nm*Rv;
177 %=============================================
178 % N e w  m o d e l  p a r a m e t e r s
179 %=============================================
180 muO = XsO;
181 SigmaO = z e r o s ( n , n ) ;  % F i x e d  at 0
182 phigam a = PSI *(GAM Al\eye( s i z e  (GAMAl) ) ) ;
183 phi  = phigam a (1 :  n , 1: n );
184 gama = phigam a (1 :n ,n+l :n- tm);
185 Rw = ( a l p h a l  -  PSI *(GAMA1\eye ( s i z e  (GAMAl)))* PSI ’ ) /N;
186 A =  beta2  * ( b e t a 3 \ e y e (  s i z e  ( be ta 3  ) ) ) ;
187 Rv = ( b e t a 4  + b e t a l  — beta2 * ( b e t a 3 \ e y e (  s i z e  ( be ta3  ) ) ) *  beta2 ’ ) /N;
188 %==============================================================
189 s y s f  = s s ( p h i  ,ga ma ,A ,0  , 1 ) ;
190 s tep  ( sys , s y s f  ); pause ( 2 ) ;
191 end

B.2 Matlab code for Kalman Smoother
1 f u n c t i o n  [ X p ,P p , Yp,XfO, PfO , X f , P f , Y f , K , X s 0 , PsO , JO , Xs,  P s , Ys ,  J
2 Ps L l ]  = K pfs(m u0, SigmaO , phi , gama, Rw, A,  Rv ,n  , m , p , y m , u , N ) ;
3 %
4 % F u n c t i o n  u s e d  f o r  s t a t e  e s t i m a t i o n  .
5 % S y s t e m D e s c r i p t i o n
6 % M u l t i v a r i a t e  Dy na mi c  s y s t e m  w i t h  m a n i p u l a t e d  i n p u t s .
7 % R e p r e s e n t e d  by n t h  o r d e r  d i s c r e t e - t i m e  s t a t e —s p a c e  mod e l
8 %
9 % S t a t e  e q u a t i o n :  x ( t )  = ph i  * x ( t - I )  + gama * u ( t 1) + w(  t )

10 % O u t p u t  e q u a t i o n :  y ( t )  = A * x ( t )  + v ( t )
11 %
12 % U s a g e :
13 % [ Xp,  P p , Yp,  XfO , PfO , X f , P f , Yf  , K , Xs 0  , PsO , JO , X s , Ps . Y s , J
14 % P s L l  ] = Kp f s ( mu O,  SigmaO , ph i  , g a m a , R w , A , R v , n  , m , p  , y m , u  , N)  ;
15 %
16 % I n p u t s  :
17 %

muO,  Si gmaO:  I n i t i a l  s t a t e  mean and c o v a r i a n c e :  ( n  x 1 ) ,  ( n  x n ) .
18 % p h i :  D y n a mi c  t r a n s i t i o n  m a t r i x :  ( n  x n ) .
19 % g a ma :  I n p u t  t r a n s f o r m a t i o n  m a t r i x :  ( n  x m) .
2 0 % A:  O u t p u t  t r a n s f o r m a t i o n  m a t r i x :  ( p  x n ) .
21 % Rw: S t a t e  n o i s e  c o v a r i a n c e :  ( n  x n ) .
22 % Rv:  M e a s u r e m e n t  n o i s e  c o v a r i a n c e :  (p x p ) .
23 % n :  Numb e r  o f  s t a t e s :  (1 x 1) .
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24 % m:  Nu mb e r  o f  i n p u t s :  (1 x 1) .
25 %  p :  n u mb e r  o f  o u t p u t s :  (1 x I ) .
26 % ym:  O u t p u t  d a t a  m a t r i x :  (N x p ) .
27 % u :  I n p u t  d a t a  m a t r i x :  (N x m) .
28 % N:  Numbe r  o f  s a m p l e s :  (1 x 1) .
29 %
30 % O u t p u t s  :
31 % Xp:  P r e d i c t e d  s t a t e s :  (N x n ) .
32 % P p : P r e d i c t e d  s t a t e  c o v a r i a n c e :  N  c e l l s ,  ( n  x n ) ,
33 % Yp:  P r e d i c t e d  o u t p u t s :  (N x p ) .
34 % XfO:  F i l t e r e d  e s t i m a t e  o f  i n i t i a l  s t a t e :  ( n  x 1) .
35 % PfO:  F i l t e r e d  e s t i m a t e  o f  i n i t i a l  s t a t e  c o v a r i a n c e :  ( n  x n ) .
36 % X f :  F i l t e r e d  s t a t e s :  ( N x n ) .
37 %  P f :  F i l t e r e d  s t a t e  c o v a r i a n c e :  N c e l l s  , ( n  x n ) .
38 % Yf :  F i l t e r e d  o u t p u t s :  ( N x p ) .
39 % K:  Ka l ma n  G a i n :  N c e l l s  , ( n  x p ) .
40 % XsO:  S m o o t h e d  e s t i m a t e  o f  i n i t i a l  s t a t e :  ( n  x  I ) .
41 % PsO:  S mo o t h e d  e s t i m a t e  o f  i n i t i a l  s t a t e  c o v a r i a n c e :  ( n  x n ) .
42 % JO:  I n i t i a l  U p d a t e  g a i n  i n  s m o o t h e r :  ( n  x n ) .
43 % Xs :  S mo o t h e d  s t a t e s :  (N x n ) .
44 % p s ; S mo o t h e d  s t a t e  c o v a r i a n c e :  N c e l l s  , ( n  x n ) .
45 % Ys :  S m o o t h e d  o u t p u t s :  (N x p ) .
46 % J :  U p d a t e  g a i n  i n s m o o t h e r :  (N--1)  c e l l s ,  ( n  x n ) .
47 % P s L l :  L a g - o n e  c o v a r i a n c e  s m o o t h e r :  N c e l l s  , ( n  x n ) .
48
4 9  %====================================================================
50 % S t a t e  e s t i m a t i o n  — Ka l ma n  P r e d i c t o r ,  F i l t e r  and  S m o o t h e r .
51 % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

52 % Ka l ma n  P r e d i c t o r  a n d  F i l t e r .

54 % A r r a n g e m e n t  o f  r e s u l t s
55  ^ ============================================:========
56 % Ka l ma n  P r e d i c t o r
57 %==========================================================
58 % P r e d i c t e d  s t a t e :  X p ( t , : )
59 % P r e d i c t e d  s t a t e  c o v a r i a n c e :  P p { t }
60 % P r e d i c t e d  o u t p u t :  Y p ( t , : )
61 % ========================================================
62 % Ka l ma n  F i l t e r
63 % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = , = = =

64 % F i l t e r e d  s t a t e :  X f ( t , : )
65 % F i l t e r e d  s t a t e  c o v a r i a n c e :  P f { t )
66 % F i l t e r e d  o u t p u t :  Y f ( t , : )
67 %==========================================================
68 % Ka l man  g a i n
69 %==========================================================
70 % U p d a t e  g a i n :  K { t }
71  % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

73 % I n i t i a l i z a t i o n  

75 XfO = muO;
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76 PfO = SigmaO;
77 % P r e d i c t i o n
78 X p ( l  , : )  = [ph i*XfO]
79 P p { l }  = p h i * P f O * p h i ’+Rw;
80 Yp( 1 , : )  = [A *[ X p ( l  , : ) ]  ’ ]
81 % U p d a t e  g a i n
82 Temp = ( A * P p { l } * A ’+Rv) ;
83 Temp = T em p \eye( s i z e  ( T em p )) ; % M a t r i x  i n v e r s i o n
84 K{1}  = P p { l} * A ’*Temp;
85 c l e a r  Temp;
86 % F i l t e r i n g
87 X f (1 , : )  = [ [ Xp(1 , : ) ]  ’+K{  1 }* ([ym ( 1 , :)]  ’ — A *[X p( 1 , : ) ]  ’ ) ]  ’ ;
88  P f { l } = ( ey e ( n )—K{ 1} * A) * Pp { 1 } ;
89 Y f (1 , : )  = [ A *[ X f(  1 , : ) ]  ’ ] *;

91 % =======================================================
92 % Rec urs ion
93 % ======================================================
94 for t = 2:N
95 i f  ~ i s n a n ( y m ( t  , : ) )
96 % yt is  observed
97 % P r e d i c t i o n
98 Xp( t  , : )  = [ph i  * [ X f ( t  — 1 ,:)]  ’ + gama*[u( t  -  1 , : ) ] ’ ] ’ ;
99 P p { t }  = p h i * P f { t  —l } * p h i ’+Rw;

100 Y p ( t , : )  = [A*[Xp( t  , : ) ] ’ ] ’ ;
101 % Update gain
102 Temp = ( A *P p {t }* A ’+Rv) ;
103 Temp = T em p \eye( s i z e  (Temp)) ;  % Matrix i n v e r s i o n
104 K { t }  = P p { t}* A ’*Temp;
105 c l e a r  Temp;
106 % F i l t e r i n g
107 X f ( t  ,: ) = [ [ X p ( t ,  : ) ] ’ + K { t } * ( [ y m ( t , : ) ] ’ - A * [ X p ( t , : ) ] ’ ) ]  ’ ;
108 P f { t }  = ( e y e ( n ) —K { t } * A ) * P p { t };
109 Y f ( t  , : ) -  [ A * [ X f( t  , : ) ] • ]  •;
110  e l s e
111 % yt  i s  m is s i n g
112 % P r e d i c t i o n
113 Xp( t  , : )  = [ phi * [ X f ( t - 1 , : ) ] ’ ] ’ + [gama *[u( t  -  1 , : ) ] ’ ] ’ ;
114 P p { t }  = p h i * P f { t  —l } * p h i ’+Rw;
115 Y p ( t , : )  = [A* [ X p ( t , : ) ] ’ ] ’ ;
116 % Update gain
117 K { t }  = z e r o s ( n , p ) ;
118 % F i l t e r i n g
119 X f ( t  , : )  = Xp( t  , : ) ;
120 P f { t }  = P p { t };
121 Y f ( t , : )  = [A*[Xf(  t , : ) ] ’ ] ’ ;
122  end
123 end

125 % r===========================================================
126 % Kalman Smoother and Lag-one c o v a r ia n c e  smoother
127 %==============================================================
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128 % A r r a n g e m e n t  o f  r e s u l t s  

130 % K alm an  S m o o t h e r

132 % S m o o t h e d  s t a t e :  X s ( t „ : )
133 % S m o o th ed  s t a t e  c o v a r i a n c e :  P s { t }
134 % S m o o th ed  o u t p u t :  Y s ( t , : )

136 % Ka l ma n  S m o o t h e r  Ga i n

138 % U p d a t e  G a i n :  J { t }
139 % =======================================================================
140 % L a g -o n e  C o v a r i a n c e  S m o o t h e r
141 % = = = = = = = = = = = === ==== ===== ==== ==== ===== ==== ==== ==== ===== ==== ==== ==== =====
142 % L a g -o n e  c o v a r i a n c e :  P s L l { t }
143 % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = -= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = -= = -

145 % I n i t i a l i z a t i o n

147 X s ( N , : )  = X f ( N , : ) ;
148 Ps{N } = P f{ N } ;
149 Y s ( N , : )  =  [ A * [ X s ( N , : ) ] ’ ] ’ ;

151 % R e c u r s i o n
152 % ==================================================================
153 for  t  =  N:  — 1 :2
154 J { t  —1} =  P f { t —l } * p h i ’ * [ P p {  t } \ e y e (  s i z e  ( P p { t  } ) ) ] ;
155 X s ( t  — 1 , : )  =  [ [ X f  ( t — 1 ’ + J { t - l } * ( [ X s ( t  , : )  -  X p ( t , : ) ]
156 P s { t - 1 }  = P f { t - 1 }  + J { t  — l} * ( P s { t} —P p { t  } ) * J { t  —1 } ’;
157 Y s ( t  — 1 , : )  = [ A * [ X s ( t - 1
158 e nd
159 % =======================================================================
160 % F i n a l  e l e m e n t
161 % =======================================================================
162 JO =  P f 0 * p h i ’ * [ P p { 1} \ e y e ( s i z e ( P p { 1 } ) ) ] ;
163 XsO = XfO +  J O * ( [ X s (  1 , : )  -  X p ( l  , : ) ]  ’ ) ;
164 PsO = PfO + J O * ( P s { l }  -  P p { l } ) * J 0
165 % ========================================================================
166 % I n i t i a l i z a t i o n
167 % = = = = = = = === ==== ==== ===== ==== ==== ===== ==== ==== ==== ===== ==== ==== ==== =====
168 P sL l{ N }  = ( e y e ( n )  -  K { N } * A ) * p h i* P f{ N - l} ;
169 % ========================================================================
170 % R e c u r s i o n
171 % ========================================================================
172 f o r  t  = N —1: —1:2
173 P s L l { t } =  P f { t } * J { t - l } ’ + J  { t } *(  P sL l { t + 1} -  p h i * P f { t } ) * J { t —1 } ’ ;
174 e n d
175 o/^= = = = = = = = = ^ ^ ^ ==^ =^ ============================================
176 % F i n a l  e l e m e n t
177 % =======================================================================
178 P s L l {1} = P f { l } * J 0 ’ + J { 1 } * ( P s L l {2} -  p h i  * P f { 1 } ) *  J O ’ ;
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B.3 Matlab code for Initial FIR model

1 f u n c t i o n  s y s i n i = f i r . m d l  (y  , u ,  n f );
2 %
3 % T h i s  f u n c t i o n e s t i m a t e s  an i n i t i a l  s t a t e - s p a c e  mo d e l b a s e d
4 % FI R c o e f f i c i e n t s  u s i n g  k u n g ’ s s vd  t e c h n i q u e .
5 %
6 % U s a g e :  s y s i n i =  f i r . m d l  ( y  , u , n f )
7 %
8 % O u t p u t :  s y s i n i — I n i t i a l  s t a t e  s p a c e  m o d e l .
9 %

10 % I n p u t s  : y  — S y s t e m o u t p u t  d a t a  m a t r i x  .
11 % ( ’Nxm’ m a t r i x  w h e r e  ’N ’ i s  n u mb e r  o f  s a m p l e s and
12 % ’mi" i s  n u mb e r  o f  o u t p u t s ) .
13 % u -  M a n i p u l a t e d  i n p u t  d a t a .
14 % ( ’ N x p ’ m a t r i x  w h e r e  ’N '  i s  n u mb e r  o f  s a m p l e s and
15 % ’p ’ i s  n u mb e r  o f  i n p u t s ) .
16 % n f  — N um ber o f  FIR c o e f f i c i e n t s  t o  be u s e d .
17 % FI R Mode l  o f  t h e  f o r m H ( z )  = h { 0 }• + h { l }  z “ — l +
18 % + h { n f }  z" — n f ,  w i l l  be u s e d .
19 %
20 % T h i s  f u n c t i o n c a n  h a n d l e  m i s s i n g  d a t a  i n t h e  o u t p u t
21 % i f  t h e  m i s s i n g s a m p l e s  a r e  r e p l a c e d  by N aN ’ s
22
23 N = s i z e ( y  , 1 );
24 ny = s i z e ( y  , 2 );
25 nu = s i z e ( u , 2 );
26
27 % n f  s h o u l d  be  an  odd n u mb e r  f o r  e a s y  f o r m a t i o n  o f  t he h a n k e l
28 i f  m o d ( n f , 2 ) = = 0
29 n f  = n f + 1 ;
30 end
31 es = ( n f + l ) / 2 ;
32
33 % T h e r e  w i l l  be {nu x ny x ( n f + 1 ) }  FI R c o e f f i c i e n t s
34
35 f  = { } ;
36
37 % Find,  t h e  l e a s t s q u a r e s  e s t i m a t e  f o r  t h e  FIR c o e f f i c i e n t s
38
39 for i = 0 : n f
40 for j = l : n y
41 for k = 1 :nu
42 Y1 = y ( i + l : N , j );
43 U1 = u (1 : N - i , k ) ;
44
45 % C l e a n  t h e s e  m a t r i c e s
46 sz = s i z e ( Y 1 ,1 );
47 Y2 = [ ] ;
48 U2 = [ ] ;
49 for e l  = 1 : sz
50 i f  ~ i s n a n ( Y l ( e l  , 1 ) )
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51 Y2 = [ Y 2 ; Y l ( e l  , 1 ) ] ;
52 U2 = [ U 2 ; U l ( e l  , 1 ) ] ;
53 end
54 end
55 t h e t a  = p inv(U2)*Y2;
56
57 Ftemp(j  , k )  = t h e t a ;
58
59 % c l e a r  the used v a r i a b l e s
60 c l e a r  t h e ta  Y2 U2 sz e l  U1 Y1 ;
61 end
62 end
63 F { i + 1 }  = Ftemp ;
64 c l e a r  Ftemp;
65 e n d
66
67 % The  s t a t e —s p a c e  m a t r i c e s
68
69 % ’D ’ m a t r i x  can  b e  r e a d  o u t  as  t h e  f i r s t  FIR c o e f f i c i e n t  m a t r i x
70 % o r  t h e  FI R c o e f f i c i e n t  m a t r i x  at  z e r o  l a g .
71 D . e s t  =  z e r o s  ( s i z e  ( F  { 1 } ) ) ;
72
73 % A ssum e f o r  t h e  t i m e  b e i n g  t h a t  t h e  i n d i c e s  go f r om 0 t o  2s  —1.
74 %
75 %  T hen  t h e  h a n k e l  m a t r i x  i s :
76 % He = [ F { 1} F{2}  . . . F { s }
77 % F{2}  F {3}  . . . F { s + 1 }
78 % .................................................
79 % F { s } F { s +1} . . . F { 2 s  —1} ]
80 %
81 % H o w e v e r ,  t h e  i n d i c e s  go fro m  1 t o  2 s  w i t h  t h e  f i r s t  i n d e x
82 % c o r r e s p o n d i n g  t o  t h e  l a g  z e r o  i m p u l s e  r e s p o n s e  c o e f f i c i e n t .
83 %
84 % H en ce  t h e  h a n k e l  m a t r i x  i s  :
85 % He =  [ F { 2 }  F {3}  . . . F { s • 1}
86 % F {3}  F {4}  . . . F { s + 2 }
87 % . . . . . .
88 % F { s  + 1} F { s +2} . . . F { 2 s } ]
89
90 He = [ ] ;
91 % Form  t h e  He m a t r i x
92 f o r  i =  F e s
93 Htemp = [ ] ;
94 for  j = F e s
95 Htemp = [Htemp;F{ i+j  } ] ;
96 end
97 He = [He Htem p];
98 c l e a r  Htemp;
99 end 

100
101 % Perform  SVD on the He matrix
102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Matlab code for Initial FIR model 207

103 [ U l l , SI 1 , V I 1 ] = sv d (H c) ;
104
105 % Choos ing  the order
106 p l o t ( d i a g ( S l l ) , ’*— ’ ) ; x l a b e l  ( ’ S t a t e —space „ d imens ion  ’ );
107 y l a b e l  ( ’ S i n g u l a r - v a l u e ’ );
108 t i t l e  ( ’ S i ng u la r „ v a lu e s„ o f „ M a rk o v ~ p a ra m et e r„ H a n k e l„ m a tr ix  ’ );
109
110 en = input  ( ’ E n t e r „ t h e - d e s i r e d  „ sy s t em _ or d er  );
111 
112
113 % Truncate  the SVD ac co rd in g  to the chosen order
114 U l l  = U1 1 (: , 1: e n );
115 S l l  = SI 1 (1:  en , 1: e n );
116 V l l  = V l l  (: ,1 : e n ) ;
117
118
119
120 Sval  = d i a g ( S l l ) ;
121 for i = 1: s i z e  ( Sval , 1)
122 S v a l ( i , l )  = re a l  ( s q r t ( S v a l ( i  , 1 ) ) ) ;
123 end
124 S l l r  = d i a g ( S v a l ) ;
125
126 % Extended o b s e r v a b i l i t y  matrix
127 Gamma_s = U l l * S l l r ;
128
129 % Extended c o n t r o l l a b i l i t y  matrix
130 O m ega.s = S l l r *  V l l ’ ;
131
132
133 % ’B ’ and ’C’ m a tr ic e s  are ob ta in ed  from f i r s t  b lock  column
134 % and f i r s t  b lock  row o f  the extended  c o n t r o l l a b i l i t y
135 % and extend ed  o b s e r v a b i l i t y  m a tr ic e s  r e s p e c t i v e l y .
136
137 B . e s t  = conj (Omega_s( :  , 1 : n u ) ) ;
138 C . e s t  = conj  (Gamm a.s( 1 :ny , : ) ) ;
139
140 % ’A' matrix is ob ta i ne d  from the s h i f t  i n v a r i a n t  s t r u c t u r e
141 % o f  the ex tend ed  o b s e r v a b i l i t y  or ex tended  c o n t r o l l a b i l i t y
142 % matr ix  .
143 %
144 % O bserve th a t :
145 % 1. Gamma_s(ny+1: end , : )  = Gamma_s( 1: end-ny  , : )*A
146 % 2. Om ega.s ( : ,  nu + 1 : end)  = A*Om ega„s(: , 1: end—nu)
147
148 A . e s t l  = conj (Gamma_s( 1: end— ny , : )  \  Gamma_s(ny + 1 : end , : ) )  ;
149 A_est2  = [ conj (O m ega.s ( : ,  1: end—n u ) ’ \O m eg a . s  ( : , nu + 1: e n d ) ’ ) ] ’ ;
150 A . e s t  = ( A . e s t l  + A _ e s t 2 ) / 2 ;
151
152 s y s i n i  = ss ( A . e s t  , B . e s t  , C .e s t  , D .e s t  , 1);
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