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Abstract

Signal detection in non-Gaussian noise is fundamental to design signal processing systems like

decision making or information extraction. The optimal/near-optimal detector for this problem is the

likelihood ratio test (LRT) or generalized LRT (GLRT). However, since the noise is non-Gaussian,

sometimes has unknown pdf, the LRT or GLRT suffers high implementation cost, low robustness,

and possible poor performance. In this thesis, to deal with these challenges, we investigate two

techniques. One is to propose simple and robust detectors using threshold system (TS) and bistable

system (BS). The other is to exploit the noise-enhanced effect, to improve performance by adding

noise to the observation, for suboptimal detectors.

For the detector design using TS or BS, first, we propose binary TS based detector (TD) under

Neyman-Pearson (NP) criterion to detect a known DC signal inknown non-Gaussian noise. The op-

timal TS’s, including simple binary TS and composite binaryTS, are derived analytically. Secondly,

we propose a TD for detecting any known signal in independentnon-Gaussian noise whose pdf is

unknown but is symmetric and unimodal. The optimality of theproposed TD is proved. It is shown

that even without the knowledge of the noise pdf, the proposed TD has close performance to the

optimal detector designed with precise noise pdf information. The practical implementation and ro-

bustness of the proposed TD are also investigated. Third, weinvestigate the BS based detector (BD)

for watermark extraction. There is no existing efficient andsystematic BS design method except ex-

haustive search. We propose to use the cross-correlation ofthe watermark signal and the BS output

as the criterion. Based on this, we develop a practical BS parameter optimization method, which

leads to a BS adaptive to various watermark extraction scenarios. The extraction performance based

on the adaptive BD is compared with the white Gaussian noise (WGN) based maximum likelihood

(ML) detector and other BDs used in watermark extraction.

For the noise-enhanced effect, we focus on the general binary hypothesis test problem using a

binary TD. We adopt the AUC, which refers to the area under receiver operating characteristic (ROC)

curve, as the performance measure for its simplicity and robustness. The optimal TS design that

maximizes the AUC has been derived. For a given binary TS, theoptimal noise pdf that maximizes

the AUC is shown to be a delta function. Properties of the derived results and comparisons with

other designs are presented.
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Chapter 1

Introduction

1.1 Signal Detection and Binary Hypothesis Testing Problem

Signal detection, also called hypothesis testing, is to decide from an observation which event of in-

terest occurs [1]–[3]. One example is the radar system, where the goal is to determine the presence or

absence of an approaching aircraft based on the received waveform (observation) of the radar. More

applications can be found in communication system, sonar, image processing, control system, to list

a few. Detection problems in these applications can be classified into two types: one is to decide

between two hypotheses; the other is to decide among more than two hypotheses. Correspondingly,

the former is termed as binary hypothesis testing problem (BHTP) and the latter is termed as multi-

ple hypothesis testing problem. Since BHTP is basic and essential, we will focus on BHTP in this

thesis.

In general, a BHTP can be formulated as follows:







H0 : X = W

H1 : X = s + W
, (1.1)

whereH0 and H1 represent the two hypotheses.X, s,W areN -dimensional real vectors, i.e.,

X, s,W ∈ R
N , and sometimes we represent them asx[n], s[n], w[n], n = 0, 1, ..., N − 1. X is

the observation.W represents the noise, which in this thesis, is assumed to be independent and

identically distributed (i.i.d.).s represents the discrete-time signal. HenceH0 refers to the noise

only hypothesis (or null hypothesis) andH1 refers to the signal and noise hypothesis (or alternative

hypothesis).

For BHTPs, we wish to use the received data (x) to make a decision (H0 or H1) as reliable or

costless as possible. The decision making process is calleda detector or a test. It is composed of a
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test statisticT (x) and a decision thresholdη, shown as

T (x)
H1

R
H0

η. (1.2)

The test statisticT (x) is a function of the observationx, which is typically a numerical summary of

the observation that reduces the observation data to one scalar value [1]–[3]. It is common to use a

critical function (decision function)φ(x) to completely characterize the detector as follows [3].

φ(x) =







1 : T (x) > η

ν : T (x) = η

0 : T (x) < η

, (1.3)

where0 ≤ ν ≤ 1.

Let the probability density functions (pdf)s ofX underH0 andH1 be respectivelyfX(x; H0)

andfX(x; H1). The probability of detection (PD) can be calculated as

PD =

∫

RN

φ(x)fX(x; H1)dx. (1.4)

The probability of false alarm (PFA) can be calculated as

PFA =

∫

RN

φ(x)fX(x; H0)dx. (1.5)

For BHTPs, the goal is to designT (x) and determineη optimally. It is well known that the

optimal detector is the likelihood ratio test (LRT) [1]–[3], which is

L(x) =
fX(x; H1)

fX(x; H0)

H1

R
H0

η. (1.6)

L(x) is called the likelihood ratio function, which is the optimal test statistic. The optimal value of

η depends on the optimality measure. For example, under Bayesian criterion, to have the minimum

Bayesian cost, the optimalη is derived to be

η =
(C10 − C00)P(H0)

(C01 − C11)P(H1)
, (1.7)

whereCij , i, j ∈ {0, 1} are the costs if we decideHi whenHj is true andP(Hi) is the a-priori

probability ofHi. Under Neyman-Pearson (NP) criterion, to have the maximumPD subject to the

constraintPFA ≤ α, the optimalη can be calculated from

PFA =

∫

L(x)≥η

φ(x)fX(x; H0)dx = α. (1.8)
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NP criterion is more popular than Bayesian criterion as the costsCij and a-priori probabilitiesP(Hi)

required for Bayesian criterion need not to be known.

In the next two sections, we will present some common BHTPs and their conventional detectors.

1.2 BHTP with Gaussian Noise

In this section, we consider BHTPs with i.i.d. Gaussian noise, i.e., the pdf of entries ofW, denoted

asfW (w), is Gaussian. Gaussian noise can be observed very often. Forexample, in wireless and

wired communication systems, the channel noise is usually modeled as Gaussian. The reason is that

the noises in real world are often the sum of many independentrandom events. Based on the central

limit theorem, they follow Gaussian distribution [4]. For Gaussian noise, the optimal detector is easy

to design and implement. Two BHTPs with Gaussian noise and their conventionally used detectors

are given below.

BHTP I Simple Gaussian-based BHTP, where the known signals[n] is in white Gaussian noise

(WGN) w[n] with varianceσ2. WGN is defined as zero mean Gaussian process with auto-

correlation functionrww(k) = E(w[n]w[n + k]) = σ2δ(k), whereδ(k) is the discrete delta

function. In another words,fW (w) = 1√
2πσ

exp
(

− w2

2σ2

)

, N (w; 0, σ2). Hence we have

fX(x; H0) =
∏N−1

n=0 fW (x[n]) andfX(x; H1) =
∏N−1

n=0 fW (x[n] − s[n]). L(x) can be

calculated using (1.6), based on which the optimal test is derived as [1]

T (x) =

N−1∑

n=0

(x[n]s[n])
H1

R
H0

η. (1.9)

The optimal test statisticT (x) is a linear function ofx. It is also linear ins. This detector

is typically termed as the matched filter (MF) or replica-correlator [1]. The schematic of this

test is illustrated in Fig. 1.1.

Fig. 1.1. Schematic of the matched filter (replica-correlator).

BHTP II Composite Gaussian-based BHTP, where signal is in WGN with some unknown parameters

in the signal and/or the noise. In this case,fW (w), fX(x; Hi), i = 0, 1 are identical to the

ones in BHTP I, but there are some parameters ins[n] andfW (w) that are unknown. This
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composite BHTP is more realistic than the simple one. The generalized LRT (GLRT) is

commonly used for the composite BHTP [1]. It first calculatesthe maximum likelihood (ML)

estimations of the unknown parameters from the observations [5] and then use the estimated

parameters to design the LRT. GLRT cannot be proved to be optimal but it works well in many

applications [1], [2].

We now present a particular composite BHTP, which is the detection of a sinusoidal signal

with known frequencyf0 but unknown amplitude and phase in WGN. This detection problem

is of great interest in passive sonar system and radar system[1], [6]. The GLRT for this

detection problem is a quadrature MF [1] and is shown as follows.

T (x) =
1

N

∣
∣
∣
∣
∣

N−1∑

n=0

x[n] exp(−j2πf0n)

∣
∣
∣
∣
∣

2
H1

R
H0

η. (1.10)

Its schematic is shown in Fig. 1.2.

Fig. 1.2. Schematic of the quadrature matched filter.

From Figs. 1.1 and 1.2, we can see that the detectors for BHTPswith WGN do not depend on

the parameters of the WGN. Also, the test statistics are linear or quadratic in the observations. The

detectors are thus simple, easy to implement, and prone to berobust due to their independence of

the noise pdf.

1.3 BHTP with Non-Gaussian Noise

In this section, we consider BHTPs with non-Gaussian noise.Non-Gaussian noises are revealed in

many applications as well. For example, a type of Gaussian mixture pdf has been used to model

the ocean acoustic noise [7], [8]. In nature, infrequent butpowerful events, such as thunderstorms,

iceberg breakup, tsunami, cause the “noise spikes", which also leads to non-Gaussian noise [1]. Two

BHTPs with non-Gaussian noise and the corresponding detectors are given below.

BHTP III Simple non-Gaussian based BHTP, where the known signals[n] is in white non-Gaussian

noise with known pdffW (w). SincefX(x; H0) =
∏N−1

n=0 fW (x[n]) and fX(x; H1) =
∏N−1

n=0 fW (x[n] − s[n]) are known completely, using (1.6), the optimal detector canbe ob-
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tained as [1]

TO(x) =
N−1∑

n=0

gn(x[n])
H1

R
H0

η, (1.11)

wheregn(x[n]) = ln fW (x[n]−s[n])
fW (x[n]) .

In general, theTO(x) in (1.11) is nonlinear ins and inx, which complicates the design and

implementation of the detector. To simplify this detector,a suboptimal test statisticTL(x)

that is linear ins with the following structure has been proposed [1]:

TL(x) =
N−1∑

n=0

g(x[n])s[n], (1.12)

whereg(x) is generally nonlinear when the noise is non-Gaussian. Herewe can observe that

the design of an appropriateg(x) is crucial to the detectability, complexity, and robustness of

this detector. One possibleg(x) is obtained by calculating the first order Taylor expansion of

gn(x) about the signals[n], which is

gLO(x) = − 1

fW (x)

dfW (x)

dx
. (1.13)

ThisgLO(x) design leads to the locally optimal (LO) detector [1], shownas

TLO(x) =
N−1∑

n=0

gLO(x[n])s[n]
H1

R
H0

η, (1.14)

which is illustrated in Fig. 1.3. When the signal is weak compared with the noise level, i.e.,

|s[n]| ≪ σ, whereσ is the standard deviation of the noise, the LO detector is expected to

perform close to optimal. Hence, this LO detector is widely used in signal detection in non-

Gaussian noise.

Fig. 1.3. Schematic of the LO detector for known signal in non-Gaussian noise.

BHTP IV Composite non-Gaussian based BHTP, where signal is in non-Gaussian noise with some

unknown parameters in the signal and/or the noise. That is, we know the structure of the signal

and the pdf form of the non-Gaussian noise. Therefore,fX(x; Hi), i = 0, 1 are identical to
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the ones in simple non-Gaussian BHTP, but some parameters inthem are unknown.

As a special example of practical interests, we consider thedetection of the sinusoidal signal

with known frequency but unknown amplitude and phase in known non-Gaussian noise [6].

The GLRT is shown in Fig. 1.4, which is composed of a nonlinearcomponent and a quadrature

MF [1]. Compared with the schematic in Fig. 1.2, if the noise pdf changes from Gaussian to

non-Gaussian, this detector is added with a nonlinear componentg(x) before the quadrature

MF.

Fig. 1.4. Schematic of the LO detector for unknown sinusoidal signal detection in non-Gaussian noise.

For non-Gaussian noise, the detectors depend on the knowledge of the noise pdf via the compo-

nentg(x), and the detector design is more complicated compared with the one for Gaussian noise.

1.4 Research Goals and Methodology

This thesis focuses on signal detection in non-Gaussian noise. In this section, we present the chal-

lenges in this field, the goals of research, and the methodology to achieve the goals.

Conventionally, the following three strategies are used insignal detection in non-Gaussian noise,

with known or unknown pdf.

Strategy I The noise is viewed as Gaussian, and the MF, which is optimal for Gaussian noise, is

used to detect the signal. This is equivalent to using (1.12)whereg(x) = x. This detector

design, referred to as the MF, is unrelated to the noise pdf, but its performance is generally

poor for non-Gaussian noise [1], [9].

Strategy II LRT and GLRT are employed. If signal and noise areknown, LRT is employed and

is the optimal test, as shown in the simple non-Gaussian based BHTP. More practical case

is the composite non-Gaussian based BHTP in Sec. 1.3, where unknown parameters exist in

the givenfX(x; Hi), i = 0, 1. For this composite BHTP, GLRT can be used [1], [2], [10].

Even though LRT or GLRT is commonly used to achieve optimal ornear-optimal detection

performance, for many applications, LRT or GLRT is unapplicable or impractical due to the

following reasons.
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1. As shown in (1.11), LRT needs to knowfX(x; Hi),i = 0, 1, i.e., the full knowledge of the

signal and the noise. In many real applications, there is no knowledge or only imprecise

knowledge on the noise pdf and the signal. Thus LRT or GLRT is unavailable for these cases.

If the form of the noise pdf and the signal is known but with unknown parameters, GLRT can

be employed using estimations of the unknown parameters. However, accurate estimation of

the noise pdf and the signal is difficult because the noise distribution may vary with time and

the signal fades in traveling. Consequently, GLRT suffers the imprecise noise pdf and signal

information, and thus risks poor performance.

2. LRT and GLRT are in general complex in implementation for detection problems with non-

Gaussian noise. The test statistics of LRT or GLRTTO(x) in (1.11),TL(x) in (1.12), and

TLO(x) in (1.14), are nonlinear in the observation and have high complexity in implementa-

tion. This further leads to the cost and delay issues in detector design. Many times, we would

like to sacrifice a certain level of performance and seek for simple and cheap systems instead

of the complicated optimal/local-optimal ones.

3. LRT and GLRT have low robustness. For applications where the noise keeps changing with

time, the performance obtained from LRT and GLRT can degradesignificantly because their

performance is sensitive to the noise pdf and the estimated parameters.

Strategy III Specific nonlinear system based detector is employed. Comparing the LO detectors de-

signed for non-Gaussian noise in Sec. 1.3 with the detectorsfor Gaussian noise in Sec. 1.2,

we see that the LO detector has an extra nonlinear functiong(x) as shown in Figs. 1.3 and 1.4.

Therefore,g(x) is crucial for signal detection in non-Gaussian noise. Problems arise in LRT

and GLRT because they calculateg(x) from noise pdf that could be unknown or unprecise.

In Strategy III,g(x) is specified as a certain nonlinear function [6], [11], whoseparameters

can be optimized based on the knowledge of the signal and partial knowledge of the noise, if

available. Compared with Strategy II, this strategy is expected to be more robust and less sen-

sitive to errors in the noise pdf form and/or parameters. Butwhen the noise pdf information

is available, it is expected to perform worse than Strategy II, and hence it is more desirable

for systems with unknown or constantly changing noise pdf. Another advantage of it over

Strategy II is its complexity. For Strategy II, the complexity depends on the noise pdf, and

non-Gaussian noises usually lead to highly complex detector structure. With Strategy III, we

can control the implementation complexity via the design ofthe nonlinear functiong(x) and

achieve the desired balance between complexity and performance. Compared with Strategy I,

which uses a detector structure optimal to Gaussian noise only, Strategy III can achieve better

performance for problems with non-Gaussian noise.

A summary of the comparison between the above three strategies is presented in Tab. 1.1, which
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TABLE 1.1
COMPARISON OF DIFFERENT STRATEGIES IN DETECTOR DESIGN.

Character I-MF II-GLRT III-specificg(x)

Performance Generally poor Excellent or poor, depending
on accuracy level of estimated
noise pdf

Good

Complexity Low High Low
Robustness High Low Could be high

shows that Strategy III has potential in detection problemswith non-Gaussian noise. In this thesis,

we choose some specific systems, including threshold system(TS) and bistable system (BS) as the

g(x) to obtain a simple and robust detector with a comparable performance to the optimal or near-

optimal detectors. The detector based on TS is abbreviated as TD and the detector based on BS is

abbreviated as BD. An introduction on TS and BS and the reasons why we choose TS and BS are

presented in Sec. 2.1. A literature review on TD and BD will begiven in Sec. 2.2.

Up to this point, we have introduced the first method in this thesis, which is to use TD or BD

for BHTPs with non-Gaussian noise. However, when TD or BD is employed, there are two types

of non-optimality. One non-optimality is induced by TS or BSbecause they are not the optimal

nonlinearity in general. The other is that the TS or BS may notor, in some cases, cannot be designed

optimally. In some circumstances, the detector already exists and cannot be adjusted. For example,

in the human sensor systems like ears and eyes, the neurons are not optimal as far as the perception

ability is concerned, but cannot be adjusted easily. In thiscase, we cannot conventionally design the

detector, but need to consider other methods to improve the detectability.

If the optimal detector is unavailable or the detector design is difficult, an alternative method is

to adjust the input. We can add an additional noise to the original input in the hope of improving

the performance. This method can be more convenient than optimal detector design in some appli-

cations. For example, in some broadcast communication systems, it is easier to add an additional

noise at the transmitter side than to adjust the distributedreceiver at the receiver side.

Because noises are seen as destructive in general, techniques have been developed to filter noises.

In some systems, however, the noise can play a constructive role. This nonintuitive physical phe-

nomenon observed in some nonlinear systems that adding noise can improve the system performance

was termed as stochastic resonance (SR) [12], [13]. In the context of signal detection, it has been

shown that injecting additional noise to the input can improve the detectablity for some nonlinear de-

tectors [14]–[20]. This effect was termed as “SR effect” or “noise enhanced effect” interchangeably

used in literature [14]–[20]. The corresponding detector/detection are called “SR detector/detection”

or “noise-enhanced detector/detection”. We use “noise enhanced effect” and “noise enhanced de-

tector/detection” in this thesis because they are more appropriate. A clarification on the differences
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between “SR detection” and “noise enhanced detection” willbe presented in Sec. 2.1.3.

In this thesis, we use the noise-enhanced effect as the second method, adding independent noise

to the original observation to improve the performance. This effect is investigated in a binary TD

for a general BHTP. A literature review on noise-enhanced detection will be given in Sec. 2.2.3.

To summarize, for signal detection in non-Gaussian noise, the challenges arise mainly from

the cost/complexity consideration, the robustness to the ever-changing signal and noise parameters,

and constraints in the detector adjustment. In this thesis,we aim at designing simple and robust

detectors that still enjoy a detection performance comparable to LRT or GLRT. For this purpose, the

methodology, including two techniques: TD or BD design (using TS or BS asg(x)), noise-enhanced

effect (adding noise to the input), is demonstrated in Fig. 1.5.

Fig. 1.5. Research methodology: design of TD and BD, and noise-enhanced effect.
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Chapter 2

Background, Literature Review, and

Summary of Contributions

In this chapter, we provide the background and the literature review of TD, BD, and the noise-

enhanced detection in non-Gaussian noise. Then we summarize the major contributions of this

thesis. This chapter is organized as follows. First, the background is introduced. The TS is briefly

presented in Sec. 2.1.1. Followed is the introduction of theBS in Sec. 2.1.2. In Sec. 2.1.3, we explain

the basic ideas of stochastic resonance (SR), SR based detection, and noise-enhanced detection.

Second, we present the literature review. The TD design is reviewed in Sec. 2.2.1. Followed is the

review of BD design in Sec. 2.2.2. We then review the noise-enhanced detection in Sec. 2.2.3. Third,

in Sec. 2.3, to clarify the concept of the SR detection and elude the possible influence to this thesis

due to the misuse of SR detection, we explain our understanding of the SR detection and clarify its

differences to noise-enhanced detection and detector design. Fourth, the contributions of this thesis

are summarized in Sec. 2.4. Finally, we conclude this chapter with a summary.

2.1 Background

2.1.1 Threshold System

In general, threshold system (TS) can be considered as a quantizer. It converts a continuous input to

one of multiple discrete values.

TS is one class of system that is ubiquitous in nature and in man-made systems. For example,

human sensory systems can be modeled as a TS because the stimulus becomes detectable only when

the energy exceed a threshold [13]. Another TS example is thedecision making in detectors, which

can be find in any test in Secs. 1.2 and 1.3. In addition, TS is useful for detector design due to its
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clipping behavior. In many applications, the non-Gaussiannoise commonly exhibits “spikes”, which

reveals heavy pdf tails. To reduce these “spikes”, good detectors typically include nonlinearities like

clipper [1]. Failure to do so leads to poor detectability. For some special cases, for example, if the

noise is Laplacian, TS is the optimal nonlinear function forthe detection. Finally, TS is simple in

implementation, which is one major concern in our design.

We present the typically used TS’s in detection in the following. We assume one-dimensional

inputx ∈ R and one-dimensional outputy ∈ R when formulating these TS’s. But these TS’s can be

extended to multiply-dimensional ones straightforwardlywhen needed.

1. Simple binary TS. It is defined as,

y =







1 x ≥ τ

0 x < τ
, (2.1)

whereτ is the threshold of the TS. Here, “binary” refers to the two possible outputs 0 or 1;

“simple” refers to the fact that the TS has one thresholdτ . In other words, the input space is

divided byτ into two continuous intervals corresponding to the two possible outputs.

2. Composite binary TS. It is defined as,

y =







1 x ∈ D
0 x /∈ D

, (2.2)

whereD is a subset ofR. This TS is named in contrast to simple binary TS. It still outputs

binary values 0 or 1 but there are more than one thresholds. That is, the input space may be

divided by multiple thresholds,τ1, ..., τn, ..., into multiple continuous intervals, where for the

x in each interval, the TS outputs one of the two binary values.For example,D = {x|−∞ <

x ≤ −1, 1 ≤ x < ∞}. In this TS, there are two thresholdsτ1 = −1 andτ2 = 1. The TS is

equivalent to

y =







1 x ∈ (−∞,−1] ∪ [1,∞)

0 otherwise
.

Note that the simple binary TS is one special case of the composite binary TS.

3. Three-level TS. A three-level TS has 3 possible output values, represented as

y =







−1 x ≤ −τ

0 −τ < x < τ

1 x ≥ τ

, (2.3)

whereτ > 0 is the threshold. This three-level TS has been used in Saha’sdetector in [6].
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4. Multi-level quantizer. It is a staircase function with multi-level discrete outputs corresponding

to multiple input regions. Conventional quantizer is a monotonically increasing function of

the input. However, to be more general, this constraint doesnot apply to the TS mentioned

here. The TS’s listed in 1, 2 and 3 are all special cases of the multi-level quantizer.

2.1.2 Bistable System

A typical bistable system (BS) describes the overdamped motion of a ball that is in a bistable po-

tential [21]. The BS is chosen as the nonlinear system in designing the detector because it is a good

candidate as a “clipper” or “limiter”, which is the important character in dealing with the “spikes”

in non-Gaussian noise. In addition, the BS has been widely used in exploiting the noise enhanced

effect in signal detection.

The BS details are presented below. The speed of the ball along y is governed by

ẏ(t) = −U ′(y) + x(t), (2.4)

whereU(y) denotes the quartic bistable potential

U(y) = −
(a

2

)

y2 +

(
b

4

)

y4. (2.5)

The bistable potential is shown in Fig. 2.1. Two parameters(a, b) decide the size of the bistable

U
(y

)

C

0

C

U(0)

y

Fig. 2.1. Bistable potential.

potential, as shown in (2.5). The barrier height is|U0| = a2/4b. The potential minima are located

aty = ±c = ±
√

a/b.

The input to the BS isx(t), and the output isy(t), the position of the ball in the bistable potential.
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The motion of the ball in the bistable potential can be summarized as follows. Ifx(t) is absent,

because the ball is overdamped, the ball will go down slowly to one of the two equilibrium points at

y = ±c. If x(t) is present, the ball moves with the speed given by (2.4), and may hop between the

two wells.

When this BS is used in signal detection, the input isx(t), which iss(t) + w(t) (a signals(t)

embedded in noisew(t)) for H1 or onlyw(t) (noise) forH0. For both cases, the BS outputy(t) is

a random process that is not wide sense stationary. Therefore, solvingy(t) from (2.4) is impossible

in general. We can only obtainy[n] for the inputx[n], n ∈ [0, N − 1] using numerical method.

According to (2.4), the discrete time simulation model of the BS can be obtained. Given a

starting position of the bally[0] and discrete time inputx[n], the discrete version of (2.4) can be

obtained using Euler’s method [22]:

y[n + 1] = y[n] + ∆t(ay[n] − by3[n] + x[n]), (2.6)

where∆t is the time interval (betweeny[n] and y[n + 1]) during which one sample applies to

the system. If the parameters(a, b) and∆t are known andy[0] is given,y[n] can be calculated

recursively using (2.6). It is worthy mentioning that the global truncation error caused by Euler’s

method is proportional to∆t, denoted asO(∆t). To improve the accuracy, we use a variation of the

fourth-order Runge-Kutta’s method [22], [23] in this thesis, which is

y[n + 1] = y[n] +
1

6
(k1 + 2k2 + 2k3 + k4), (2.7)

where

k1 = ∆t(ay[n] − by3[n] + x[n]),

k2 = ∆t

(

a

(

y[n] +
k1

2

)

− b

(

y[n] +
k1

2

)3

+ x[n + 1]

)

,

k3 = ∆t

(

a

(

y[n] +
k2

2

)

− b

(

y[n] +
k2

2

)3

+ x[n + 1]

)

,

k4 = ∆t

(

a

(

y[n] +
k3

2

)

− b

(

y[n] +
k3

2

)3

+ x[n + 2]

)

.

This method can reduce the global error toO(∆t4) [22]. Another consideration is the stability of

the numerical solution of (2.4). The numerical solution is said to be unstable if the error grows

exponentially since there is a bounded solution for (2.4). No explicit condition on the stability can

be derived. However, reducing∆t is always helpful to have a stable solution.
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2.1.3 Stochastic Resonance, Stochastic Resonance Detection, and Noise-enhanced

Detection

As stated in Sec. 1.4, the second method of our research is thenoise-enhanced detection. In this part,

we focus on the basic idea behind the noise-enhanced detection. First, we present the conception of

stochastic resonance (SR) because it invokes research in SRdetection and noise-enhanced detection.

Secondly, we present the concepts on SR detection. It is usedwith noise-enhanced detection inter-

changeably in literature. But the two have significant difference. At the same time, noise-enhanced

signal detection is introduced, and its difference to SR detection is clarified. Here we only present

the basics of these concepts. A more detailed note on SR detection will be given in Sec. 2.3.

2.1.3.1 Stochastic Resonance

Stochastic Resonance (SR) was originally proposed by Benzi, et al. to model the periodic recur-

rences of the earth’s ice ages [24]–[26]. To explain the switching of the earth’s climate between

ice ages and periods of relative warmth with a periodic of about 100,000 years, the earth’s orbit is

assumed as the cause because it varies with this period. However, the variation is not strong enough

to cause such a significant climate change. Therefore, they proposed a bistable “climatic potential”

and the climate shall locate at one of the two stable states: “ice age” and “warm age”. Only the

earth’s orbit variation cannot cause the climate jump from one stable state to another. However, with

the help of other random fluctuations, strong climate changes may happen. There is a cooperative

phenomenon between the weak periodic variation (the “signal”) and the random fluctuations (the

“noise”). The output (the strong climate change) is “resonate" with the “signal” with the help of the

“noise”, and hence this phenomenon is termed as “stochasticresonance”.

In general, SR can be illustrated using Fig. 2.2. When a signal is applied to a nonlinear system, if

the nonlinear system is in a form of threshold and the signal is subthreshold1, all input information

is blocked and the output has no information related to the input signal. In this case, by injecting

additional noise to the subthreshold signal, the output cangain some information on the signal. The

system gain, which can be signal-to-noise ratio (SNR), mutual information, or cross-correlation,

reveals an increase with the increase of the additional noise intensity until to a level resulting in

the maximum system gain. After that level, further increaseof the noise intensity leads to decrease

of the system gain. The non-monotonic relationship betweensystem gain and noise intensity is

considered as the signature of SR effect.

Fig. 2.2 shows that the SR effect requires three basic ingredients [21]: (1) a nonlinear system (in

a form of threshold); (2) a subthreshold (weak) input; (3) a source of noise. Because the signal is

subthreshold, not surprisingly, adding noise may provide apossible way to enhance the signal at the

1A subthreshold signal is a signal that is not strong enough toover-pass the threshold.
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Fig. 2.2. Illustration of SR.

output side. SR mechanism can be used in detectors with TS or BS. SR has been studied intensively

in 1980’s and 1990’s. Some review papers can be found in [12],[13], [21], [27].

2.1.3.2 Stochastic Resonance Detection and Noise-Enhanced Detection

Since SR effect can amplify weak signal in noise through a nonlinear system as shown in Fig. 2.2, it

can bring potential improvement for signal detection in non-Gaussian noise. A typical SR detector

is given in Fig. 2.3, which is composed of a nonlinear system and a followed detector [28]. The

output of the nonlinear system is not a detection decision. Therefore, for the sake of detection, a

detector uses the output of the nonlinear system as the inputand make a decision. We term it as

“inner detector” in this thesis because it is the detector inside the SR detector.

Fig. 2.3. General model of SR detector.

SR detector is termed because the SR effect occurs in the nonlinear system in the detector.

However, the improvement in system gain, such as SNR, through the nonlinear system, does not

guarantee an improvement in detection performance [29], [30]. In addition, the SR detection put

more efforts on the SR effect than the detection performance. Hence, to have the SR effect occur,

it suffers many constraints and is difficult to have a competitive detectability. In this thesis, we do

not address much on SR detection. Instead, we focus on the noise-enhanced detection to achieve

optimal detectability.

Unlike the SR detection, the noise-enhanced detection focuses on the optimal detectability via
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adding noise to the original input. Comparing with SR detection, in noise-enhanced detection, the

major difference is that we do not need to consider the constraints in SR detection. For example,

in SR detection, signal should be subthreshold, SR effect should occur. Noise-enhanced detection

can occur for any signal (subthreshold or superthreshold),and does not require SR effect. Without

these constraints, noise-enhanced detection provide moreefficient and practical solution than SR

detection in robust signal detection.

2.2 Literature Review

In this part, we review the literature on TD design, BD design, and noise-enhanced signal detection.

2.2.1 Detector Design Using Threshold System

As we stated in Sec. 2.1.1, TS is a promising candidate for thenonlinear componentg(x) in a

detector designed for non-Gaussian noise. The objective ofusing TS is to achieve a detector with the

following desired features: simple implementation, high robustness, good detectability, or a balance

among these features. In this section, we will review the TDsproposed for different detection

problems. At the end of this section, we represent a table to summarize the features of these TDs.

Thomas derived a nonparametric detector in [31], which is composed of a sign function and a

replica-correlator. The sign function is one simple binaryTS, described in (2.1). This TD offers

advantages in implementation simplicity and robustness toimprecision in signal information. But

its performance is poor compared with the optimal detector.

In [32], an optimum multi-level quantizer or TS was proposedfor g(x). As introduced in (1.13),

when the noise pdf is known,gLO(·) is the locally optimal nonlinear function. The optimum quan-

tizer in [32] is designed to minimize the mean squared error (MSE) between the quantized output

and the output of thegLO(·) for a given number of the quantization levels. The detector based on this

quantizer can achieve superior detectability to the detector based on the usual minimum distortion

quantizer when the noise is non-Gaussian.

Miller et al. [33] investigated the detectability and robustness of the detectors using sign function,

amplifier limiter, six-level and four-level TS as theg(x). The detectability is measured by asymptotic

relative efficiency (ARE) and the robustness is measured by the degradation of ARE. The parameters

of these nonlinear systems are calculated to maximize the ARE.

In [14], Jung addressed the SNR behavior when inputting a known sinusoidal signal in Gaussian

color noise with known pdf to the simple binary TS. The expression of the output SNR shows that

there is an optimal threshold of the TS, which yields to the maximum SNR. The SNR behavior of the

simple binary TS was also investigated in [15] when the inputis a periodic train of pulse embedded in

arbitrarily distributed white noise. By using the output SNR as the performance measure, it showed
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that there is an optimal threshold that leads to maximum SNR,and adding noise can improve the

output SNR if the input signal is subthreshold to the given TS. However, as explained in [29], [30],

high SNR at the TS output does not guarantee high detectability.

Saha et al. in [6] proposed to use a three-level TS as shown in (2.3) followed by a quadratic MF to

detect sinusoidal signals with known frequency but unknownamplitude and phase in non-Gaussian

noise with known pdf. The expression of the SNR at the output of the three-level TS was derived

and used to calculate the optimal parameter of the three-level TS. It was shown that the proposed

detector has superior detectabitlity to the quadratic MF for the Gaussian mixture noise and general

Gaussian noise.

Chapeau-Blondeau [11] proposed a simple binary TS based maximum a-posteriori probability

detector to detect DC signals in non-Gaussian noise. The detector was shown to have better perfor-

mance than the linear MF.

A brief summary of the features of the TDs reviewed above is provided as Tab. 2.1. It shows that

these TDs are usually designed in certain senses of optimality. But for all these works, the pdfs of

the non-Gaussian noises are assumed to be known perfectly. This assumption leads to impractical

issue because the noise pdf usually cannot be obtained perfectly. Furthermore, the design based on

this assumption can result in complex implementation, low robustness, and poor detectability when

applying the TDs. Even though the TS has simple implementation, the optimal parameters of the TS

need to be calculated from the noise pdf, which adds complexity to the TD. Also, because the TD

design depends on the noise pdf and the signal, the robustness of these detectors to the change of the

noise and signal is expected to be low. When the noise pdf information is imprecise, the detection

performance may degrade severely. These weakness limits the applications of these TDs. We will

address these problems in this thesis.

2.2.2 Detector Design Using Bistable System

BD uses BS to replace the nonlinear componentg(x) in a detector designed for non-Gaussian noise

(see Figs. 1.3 and 1.4). In other words, a BD is composed of a BSand a conventional detector, such

as the linear MF in Fig. 1.3 or the quadrature MF in Fig. 1.4. Therefore, the BD design is to find the

optimal or near optimal parameters of the BS to achieve the optimality in a certain sense.

BS has been used in exploiting the SR effect in signal detection [23], [29], [30], [34]. For this

purpose, the BS design is subject to the constraints appliedto SR. However, it has been shown that

better performance can be obtained without these constraints [35]. Hence, we will consider the BS

design for high detectability without considering any constraints related to SR detection.

Since analytical optimization of the BS parameters is difficult, the BS parameters are commonly

determined by brute-force simulation or experiments [35]–[42].

In [36], the detection of a known signal in WGN was consideredand Xu et al. proposed to
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TABLE 2.1
COMPARISON OF REVIEWEDTDS.

Reference Signal Noise Optimality
measure

Implemen
tation

Robust
ness

Detect
ability

[31] DC
unknown

Gaussian
unknown

NP Simple Good Poor

[32] Arbitrary
known

Non-Gaussian
known

MSE Complex Poor Good

[33] Arbitrary
known

Known Gaussian-
Laplace mixture

ARE Depends Good Good

[14] Sinusoidal
known

Colored Gaussian
known

SNR Simple N/A N/A

[15] Periodic pulse
known

Arbitrary noise
known

SNR Simple N/A N/A

[6] Sinusoidal
known freq.
unknown
amp., phase

Gaussian mixture
& Generalized
Gaussian
known

SNR Complex Poor Good

[11] Known DC Non-Gaussian
known

probability
of error

Good Good Good

N/A: Not applicable

obtain the maximum output SNR via tuning the BS parameters byexperiments. In [37], Duan et

al. used a BS as a receiver to decode a binary pulse amplitude modulation (PAM) signal passing

through a WGN. The BS parameters were chosen from the given guide rules for an acceptable (not

minumum) bit error rate (BER) in decoding. For the same problem, Xu, Duan et al. [35] compared

the performance of two methods, noise-enhanced effect and BS design, when using a BS as the

receiver. It was pointed out that using noise-enhanced effect can be viewed as a special case of the

BS design, thus the BS design achieves better performance than noise-enhanced effect. However, in

this investigation, the performance of the proposed receivers cannot exceed linear MF, the optimal

receiver for WGN channel.

BD can have superior detection performance to linear MF in signal detection with non-Gaussian

noise. For example, in watermark detection in discrete cosine transform (DCT) domain, the signal is

the watermark (or a signature), while the DCT coefficients ofan image is the noise, whose pdf is non-

Gaussian and unknown in general [43], [44]. Hence the watermark extraction can be considered as a

detection problem of a known signal in non-Gaussian noise, and BD has been used for this problem

[38]–[42]. Sun et al. first proposed to use BD in watermark extraction [38], [39], [42]. Wu et al. [40]

employed the same strategy but extended the idea by using theDCT of 8 × 8 blocks and adding

an effective permutation of DCT coefficients. Duan et al. [41] proposed to use an array of BS’s to

further improve the performance of BD. These BD’s were called SR detector in [38]–[42]. But they

are more suitable to be considered as nonlinear BS design [35] for BD because no SR effect occurs

in these BDs.
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In watermark extraction, the BDs reviewed above achieve better performance than the linear

MF. However, no analytical and systematic parameter optimization for the BS is proposed. The BS

parameters were given either arbitrarily in [38]–[40], [42] or via exhaustive search in [41], [45]. The

former cannot guarantee performance. For the latter, finding the optimal parameters by numerical

tuning is generally infeasible for watermark extraction due to the difficulties in estimating the ex-

traction performance. We will address these problems and propose a practical technique on the BD

design.

2.2.3 Noise-Enhanced Detection

Noise-enhanced detection attempts to improve the detection performance via adding noise to the

original observation. Hence, the major design problem it toderive the optimal noise.

Kay initiated noise-enhanced signal detection in [16]. It was shown that a suboptimal TD can

have an improved probability of detection via adding a WGN. For a fixed test, denoted asT (x), and

a fixed critical functionφ(x) in (1.3), Kay et al. [17] showed that the pdf of the optimal noise for

minimizing the probability of decision error under Beyesian criterion is a Dirac delta function, thus

the optimal noise is a constant.

For a general binary detection problem with an arbitrarily given detector, under the NP criterion,

Chen et al. [18], [46] investigated the noise-enhanced effect and derived the optimal pdf form of the

noise. The results are summarized as follows.

Consider a BHTP with knownp0(x) , fX(x; H0) andp1(x) , fX(x; H1). For a fixed test

and critical functionφ(x), PD andPFA can be calculated by (1.4) and (1.5). LetU = X + V,

whereV is the noise added to the original inputX. The goal is to find the optimal pdf forV that

can maximizePD subject toPFA ≤ α.

BecausefU(u; Hi), i = 0, 1 are the convolution ofpi(x) andfV(x), when applyingU to the

fixed detector,PU

D andPU

FA are

PU

D =

∫

RN

fV(x)

(∫

RN

φ(u)p1(u − x)du

)

dx =

∫

RN

F1(x)fV(x)dx = EV{F1(x)},

PU

FA =

∫

RN

fV(x)

(∫

RN

φ(u)p0(u − x)du

)

dx =

∫

RN

F0(x)fV(x)dx = EV{F0(x)},

whereEV{} stands for the expectation overV andFi(v) ,
∫

RN φ(u)pi(u − v)du, i = 0, 1. Note

thatF1(v) andF0(v) are thePD andPFA when a givenu = x + v is applied to the detector. In

particular,F1(0) andF0(0) are thePD andPFA when the original inputX is applied to the detector.

F1(v), F0(v) are functions in domainV ∈ R
N . Let f0 = F0(v) andf1 = F1(v). f0 ∈ [0, 1] and

f1 ∈ [0, 1] are both one-dimensional scalars and there is a many-to-many mapping betweenf0 and

f1 based on samev.

The optimalPU

D is obtained from two(f0, f1) pairs, denoted as(f01, f11) and(f02, f12), which
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are located in the top region of the convex hull of all the(f0, f1) pairs and should satisfyPU

FA =

λf01 + (1 − λ)f02 = α for λ ∈ [0, 1]. Correspondingly, the optimal noise pdffV(v) = λδ(v −
v1) + (1 − λ)δ(v − v2), wherev1 andv2 are determined by







F0(v1) = f01

F1(v1) = f11

F0(v2) = f02

F1(v2) = f12

.

It shows that the optimal noise is randomization between twoconstantsv1 andv2 with probabilities

λ and1 − λ, respectively. The maximum detection probability is:PU

D = λf11 + (1 − λ)f12 where

λ = α−f02

f01−f02
.

In the same spirit, the theory of the noise-enhanced detection in [18] was extended to variable

detectors [19]. For fixed detectors, all(f0, f1) pairs are obtained for all the possiblev. While for

variable detectors, all(f0, f1) pairs are obtained for all possiblev and all variable parameters, such

asη andPFA. With this new set of(f0, f1) pairs, the optimal noisev is obtained as did for the fixed

detectors.

The theory in [18], [19] gives the optimal noise pdf under NP criterion. It evokes a lot interest in

the study of noise-enhanced signal detection. Chen et al. [47] and Guerriero et al. [48] demonstrated

that noise-enhanced effect can improve detection performance of sequential detectors. Kay in [49]

pointed out that optimal noise-enhanced detection can be viewed as a randomized decision rule,

which is a commonly used technique in signal detection [1], [2]. Bayram exploited noise-enhanced

effect under NP criterion [50], in the minimax framework [51], and in Bayesian framework [52].

Patel et al. [20], [53] exploited the necessary and sufficient conditions for the existence of the optimal

noise effect under NP criterion, and proposed a numerical tuning technique to find a near-optimal

noise.

We point out that the major problem in existing results on noise-enhanced detection for a general

detector is its practicability. First, in [18]–[20], the optimal noise pdf was derived. The noise pdf

results however are in implicit form and numerical methods are required to use the results in real

applications. Generally speaking, closed-form is hard to find. Secondly, under NP criterion, for

differentPFA’s, the optimal noise pdf can be different. Thus, the optimalnoise pdf can be sensitive

to parameter valuesPFA and the decision thresholdη in the critical functionφ(·). It is difficult to

use the noise-enhanced effect, especially for applications with imperfect information (on noise or

signal parameters) or changing environment. Finally, for all existing results, numerical methods are

required in finding the optimal noise, the computational complexity is in general high.
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2.3 A Note on SR Detection

In this part, we clarify the concept of SR detection and its misuse in two perspectives: one is noise-

enhanced detection; the other is detector design. First, a review on SR detection is presented. Sec-

ondly, we provide our understanding of SR detection. Finally, we clarify the relationship and the

difference of SR detection, noise-enhanced detection, anddetector design.

2.3.1 Review on SR Detection

The early SR detection aimed at detecting weak periodic signals in Gaussian noise using TS or BS.

Inchiosa et al. [29] used SR detector for the detection problem BHTP II shown in Sec. 1.2. The SR

detector uses a BS as the nonlinear system and the quadratureMF as the inner detector. Given that

the signal is subthreshold to the BS, it was demonstrated that thePD increases with the increase of

the WGN variance until a critical level, then thePD decreases with further increase of the WGN

variance. Note that the original input (observation) includes signal and noise. This showed that

adding WGN noise to the original input can increasePD if the variance of the WGN noise in the

original input is weaker than the critical level. Galdi et al. [30] addressed the sinusoidal signal

detection in WGN. The proposed SR detector also used a BS as the nonlinear system but simple

mean or sign counting was used as the inner detector. Insteadof tuning the noise variance, the

authors proposed to choose suitable parameters of the BS to match the noise level in the original

input. In other words, the BS is adjusted for the purpose thatthe noise level in the original input is

the critical level in the adjusted BS.

However, these attempts are generally unsuccessful in the view of signal detection. Because

for the systems with WGN, the linear MF is optimal. Any additional nonlinearity, such as the

nonlinearity induced by a TS or a BS, only degrades the detectability.

SR detectors were then used for signal detection in non-Gaussian noise. In [15], Chapeau-

Blondeau derived the expression of the SNR at the output of a TS for detecting a rectangular pulse

signal embedded in a known noise. It was pointed out that there is an optimal threshold of the TS

to have the maximum SNR. Also, if the threshold is not set optimally, adding noise can increase the

SNR. Saha et al. [6] proposed to use a SR detector, composed ofa three-level TS and a quadrature

MF, for the detection problem BHTP IV in Sec. 1.3. The expression of the SNR gain of the three-

level TS is derived, which depends on the noise pdf and the TS threshold. The optimal threshold was

solved to maximize the SNR gain. It was shown that this detector can have a superior performance

to the quadratic MF. Also for non-Gaussian noise, Zozor et al. [54] demonstrated that SR effect can

occur in LO detector. Rousseau et al. [55] investigated the SR effect in a TD to detect a known

deterministic signal in a noise with known pdf. It showed that adding a WGN can decrease the

probability of error.
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The SR detectors reviewed above can be divided into two groups: in one group, SR effect is

obtained by tuning the noise level [15], [29], [54], [55]; inthe other group, the effect is obtained

by tuning the parameters of the detector [6], [15], [30], [34]. However, the term SR detection was

misused for some cases [36]–[42] because in these detector designs, no SR effect occurs. For a

correct and clear presentation on these concepts, we shouldanswer the following two questions: 1)

what is the difference between the SR detection via tuning the noise level and the noise-enhanced

detection? 2) what is the difference between the SR detection via tuning system parameters and

detector design?

2.3.2 Understanding of SR Detection

In the following, taking BD as an example, we demonstrate theSR effect via adding noise and the

SR effect via tuning parameters in SR detectors, respectively.

We first show the SR effect via adding noise in SR detectors. Assume that the noise in the

original inputW is WGN with varianceσ2
w, the additional noiseV is also WGN with varianceσ2

v.

Thus, the adjusted noiseU = W + V has a varianceσ2
u = σ2

w + σ2
v. As demonstrated in [29], we

plot a diagram of the detection performance versus the noisevarianceσ2 in Fig. 2.4. For a given SR

detector, for example, a BS followed by a quadratic MF in [29], the noise variance in the original

input isσ2
w and its performance isPori. We increaseσ2

v until σ2
u reaches the critical levelσ2

c , and

the optimal performance, denoted asP add_n
opt , is obtained as marked in Fig. 2.4. We can see that by

adding noise, the performance is improved. Thus, SR effect happens.

Fig. 2.4. SR effect via adding noise in SR detector.

Next we explain the SR effect induced by parameter tuning in SR detectors, as in [30]. We

present the performance of the BDs with different BS parameters versus noise variance in Fig. 2.5.

BS1 is what we used in Fig. 2.4. We can change the BS parameters to have BS2 such that for BS2,
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its critical noise levelσ2
c coincides with the original noise levelσ2

w. Under this situation, the SR

effect is obtained by tuning the BS parameters, and the performance is denoted asP tun_p_SR
opt .

Fig. 2.5. SR effect via tuning parameters in BS based detector.

We should note here that for the given input, BS1 and BS2 both work at the SR regime because

the constructive role of the noise can be observed. For BS1, adding noise will increase its perfor-

mance. For BS2, the noise amount in the original input is just what the system needs for the optimal

SR effect. BS1 and BS2 based detectors have SR effect and are no doubt to be called SRdetector.

However, if we can adjust the BS parameters optimally/suboptimally as did in [36], [37], [42],

we will have a BS3 whose achievable performance is denoted asP tun_p
opt . This P tun_p

opt is superior

to P tun_p_SR
opt for any noise variance. For BS3, noise does NOT play a constructive role, as shown

in Fig. 2.5. Therefore, we would like to clarify that this tuning on BS parameters follows detector

design rather than SR detector (although claimed to be SR detector) because no SR effect occurs in

BS3.

2.3.3 Relationship of SR Detector, Noise-Enhanced Detector, and Detector

Design

SR detector has the signature that SR effect occurs in the nonlinear system. For the sake of SR

effect, the input signal should be subthreshold to the givennonlinear system, which results in the

constructive role of the noise. As we presented in Sec. 2.3.2, there are two types of SR detection

based on two methods of achieving SR effects: via adding noise and via tuning parameters.

Noise-enhanced detector does not has the constraints related to the SR effect. It can be any type

of detector, linear or nonlinear. If it is nonlinear, the nonlinear system can be arbitrary, and needs

not to have the signal subthreshold to the system. The signature of the noise-enhanced detector is
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that adding an extra noise can improve the performance. Therefore, noise-enhanced detection can

be viewed as an extension of SR detection based on adding noise.

Detector design is to determine the system or subsystem in a detector and hence is more general

than SR detection based on tuning parameters, without considering the constraints of SR effect.

In summary, there is no overlap between the noise-enhanced detection and the detector design.

The SR detection via adding noise is a special case of the noise-enhanced detection. The SR detec-

tion via tuning parameters is a special case of the detector design. This relationship can be illustrated

in Fig. 2.6.

Fig. 2.6. Relationship of SR detection, noise-enhanced detection, and detector design.

According to the above clarification, we point out that [14],[15], [23], [29], [30], [34] should

be classified as SR detectors. [16]–[18], [20], [46]–[53] should be classified as the noise-enhanced

signal detection. [6], [36]–[42] should be classified as detector design.

2.4 Thesis Contributions

This thesis aims at designing robust and simple detectors with satisfying detection performance

through TD design, BD design, and noise-enhanced effect. Anoverview of the contributions of this

thesis is shown in Fig. 2.7. The four major contributions arelisted as follows.

Contribution I: an optimal TD design under NP criterion for a known DC signal in known

non-Gaussian noise.The TD is composed of a TS and a linear MF, and hence the major task

is to design the TS. The optimal TS’s, including simple binary TS and composite binary TS, are

derived analytically. Experimental results show the validity of the derived optimal TS. For non-

Gaussian noise with heavy pdf tails, the proposed TD significantly outperforms the linear MF, and

has comparable performance to the LO detector. This work hasbeen published as [56], [57] and is
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Fig. 2.7. Overview of the thesis contributions.

presented in Chap. 3.

Contribution II: a robust TD of any known signal in unknown no n-Gaussian noise.We

design a TD for detecting any known deterministic signal in independent non-Gaussian noise whose

pdf is unknown but is symmetric and unimodal. Under the assumptions of white noise, small signal,

and a large number of samples, the proposed TD is shown to maximize the AUC, which is the ab-

breviation for area under receiver operating characteristic (ROC) curve. While previous TD designs

need accurate information of the noise pdf, the proposed TD is independent of the noise pdf. The de-

tection probability and the ROC of the proposed TD are analyzed both theoretically and numerically.

It is shown that even without knowing the noise pdf, the proposed TD has close performance to the

optimal detector designed with precise noise pdf information. It also performs significantly better

than the linear MF when the noise pdf has heavy tails. The practical implementation, robustness to

both the noise pdf and the signal, and region of validity of the proposed TD are also investigated.

This work has been published as [58] and is presented in Chap.4.

Contribution III: optimal design of noise-enhanced TD under AUC measure.We investigate

the noise-enhanced effect for a general BHTP using a binary TD. We adopt AUC as the performance

measure for its implementation simplicity and robustness.First the optimal TS design that maxi-

mizes the AUC has been derived. Then we consider the noise-enhanced effect in this detector. The

optimal noise pdf that maximizes the AUC is shown to be a deltafunction, indicating that the optimal

noise is deterministic. Performance of the proposed designand comparison with other designs are
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shown via an example. This work has been submitted as [59]. The details are presented in Chap. 5.

Contribution IV: an adaptive BD for watermark extraction. In this part, we focus on BD

design for watermark extraction. Since a BD is composed of a BS and a matched filter, we only

need to consider the BS design, i.e., optimizing BS parameters. There is no existing efficient and

systematic BS design method except exhaustive search. We propose to use the cross-correlation

between the watermark signal and the BS output as the measurein determining the BS parameters.

A key observation is that the optimal BS parameters depend onthe noise and the watermark level but

are not sensitive to the noise pdf form and the watermark sequence. This feature provides an easy

and practical way to build an adaptive BS since the signal andthe noise level can be estimated easily.

Experimental results in watermark extraction show that theperformance obtained from the proposed

adaptive BD is satisfactory to various extraction scenarios, and performs better than existing BD’s

and the WGN-based ML detector for most cases. This work has been published as [28], [60]–[62]

and is presented in Chap. 6.

Contribution I, II, and IV follow the technique of TD and BD design in the methodology stated

in Sec. 1.4. Contribution III follows the technique of noise-enhanced effect.

2.5 Summary

In this chapter, we have presented a comprehensive review onTD design, BD design, and noise-

enhanced detection. We first introduced the background on TS, BS, and noise-enhanced detection.

Followed is the literature review on the topics addressed inthis thesis, which are detector designs

using TS or BS, and noise-enhanced detection. As SR detection always emerges when discussing

these two topics and can bring confusion in concepts, we provided an extra note on the SR detec-

tion to clarify its relationship with the topics of this thesis. The contributions of this thesis were

summarized at the end of this chapter.
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Chapter 3

Optimal Design of Threshold

Detector for a DC Signal in

Non-Gaussian Noise

TS is widely used in nonlinear signal detection for a simple,robust, and suboptimal solution. The

optimal design of the TS is crucial for good detection performance. In this chapter, we propose the

optimal TS design in the detection of a DC signal in non-Gaussian noise under NP criterion. First, we

propose a novel performance indicator to replace the probability of detection as the design criterion.

Using this indicator, we derive the optimal design of simplebinary TS and composite binary TS,

respectively. Experiments show that the proposed TD can perform close to the LO detection with

much simpler implementation and much less computational complexity. It performs significantly

better than the MF for non-Gaussian noise with heavy pdf tails.

3.1 Introduction

The problem of detecting a known signal in additive noise with known distribution has well-known

solutions, which is LRT or GLRT [1]. But LRT or GLRT can be highly complex in implementation,

and has low robustness to parameter changes, thus has poor performance when there is imprecision

or change in the noise or signal information. As stated in theresearch methodology in Sec. 1.4, for

many applications, suboptimal but robust detectors provide more practical choices [31]. Threshold

system (TS) based detector, or TD in short, is one of the suboptimal detectors widely used in many

applications [6], [11], [31]–[33], [63]. TD has several advantages: high speed, low resource (com-

puting capacity, memory, storage) requirement, simple implementation, high robustness, and good

detection performance, as reviewed in Sec. 2.2.1.
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Consider the BHTP described in (1.1). In this chapter, we assume that the signal is a known

DC signal, i.e.,s = A is a constant. The noises are i.i.d., whose pdf,fW (w), is known. It is also

assumed that the signal is weak compared to the noise, i.e.,A ≪ σ, whereσ is the standard deviation

of the noise. For a good performance, largeN (N ≫ 1) is conventionally assumed in weak signal

detection applications [1].

The schematic of the proposed TD is shown in Fig. 3.1. It is composed of a TS, followed by a

simple mean calculator. Note that the MF for DC signal is equivalent to the simple mean. As shown

in Fig. 1.3, the LO detector for simple non-Gaussian based BHTP is a nonlinear systemgLO(x)

defined in (1.13) followed by a MF. Here, we use TS to replace the complicated nonlinear system

gLO(x).

Fig. 3.1. Schematic of the proposed TD.

For the TS, we choose to use the simple binary TS shown in (2.1)and the composite binary TS

shown in (2.2) since implementation simplicity is the majorconsideration in our design. Note that

simple binary TS can be viewed as a special case of composite binary TS. Its design is represented

separately since it has simpler implementation than the general composite binary TS and is widely

used in practical applications.

If we use the simple binary TS in (2.1), the only parameter needs to be designed is the threshold

τ . For later convenience, we present the complemental version of the simple binary TS, called

complemental simple binary TS, as

y[n] =







0 x[n] ≥ τ

1 x[n] < τ
. (3.1)

Naturally, when the DC signal is positive, i.e.,A > 0, we use the simple binary TS in (2.1); when

the DC signal is negative, we use the complemental simple binary TS in (3.1). Using this alternative,

we can derive identical statistical feature of the TS outputy[n]’s for eitherA > 0 or A < 0. As

shown in Fig. 3.1, the test statisticz , 1
N

∑N−1
n=0 y[n] is the simple mean ofy[n]’s. A decisionH1

or H0 is made ifz > η or z < η.

Similar TD based on simple binary TS has been used in [11], [16]–[18]. In [16]–[18], the TD
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is used to show the occurrence of noise-enhanced effect. Chapeau-Blondeau in [11] demonstrated

that the TD can achieve better detection performance than MFfor non-Gaussian noises. However,

the optimal design of the TS parameter has not been addressed. To the best of our knowledge, no

optimal design of the composite binary TS was available in literature.

In this chapter, we use the NP criterion to design the TS parameters for both simple binary TS

(the one in (2.1) or its complement form in (3.1)) and composite binary TS. That is, we design the

thresholdτ for simple binary TS and the setD for composite binary TS to have the maximumPD

subject toPFA ≤ α. We first derivePD andPFA formulas for the proposed TD, based on which

a simpler indicator ofPD is discovered. Using the proposed indicator as the design criterion, we

proposed a low-complexity algorithm to calculate the optimal thresholdτopt of the TS in (2.1) or

(3.1) for simple TS. Also based on the indicator, we determine the optimal setDopt if the composite

TS in (2.2) is used. Experimental results demonstrate that the proposed optimal TD design can

perform very close to the LO detector, and much better than the MF, for non-Gaussian noise with

heavy pdf tails.

This chapter is organized as follows. In Sec. 3.2, we derive thePD formula of the TD and pro-

pose a new indicator ofPD. We then present the optimal design of simple binary TS and composite

binary TS in Sec. 3.3. In Sec. 3.4, we discuss the situation when the noise pdf is unknown. In

Sec. 3.5, simulation results show the performance of the proposed optimal TD, and the comparison

with LO detector and MF. Finally, we conclude this chapter inSec. 3.6.

3.2 An Indicator of PD

In this section, we derive the formula ofPD. Since it is too complicated to be used in the optimal TS

Design, a simpler indicator is proposed, of whichPD is approximated as monotonically increasing

function.

3.2.1 Calculations ofPD

We first calculatefZ(z; H0) andfZ(z; H1). Recall thatfX(x; H0) andfX(x; H1) are the pdf’s

of each entryx[n], n ∈ [0, N − 1] under the hypothesesH0 andH1, respectively. Since the sig-

nal A and the noise pdffW (w) are known,fX(x; Hi) are both known as well andfX(x; H0) =

fW (w), fX(x; H1) = fW (w − A). Given the thresholdτ for the simple binary TS described in

(2.1), or the setD for the composite binary TS in (2.2),Y = y[n] is a random variable (RV) taking

only two values,0 or 1. Hence,Y can be considered as an output of a Bernoulli trial. When the

simple TS is used, we have the following probabilities.

P(Y = 0; H0) =

∫ τ

−∞
fX(x; H0)dx , q0, (3.2)
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P(Y = 1; H0) =

∫ ∞

τ

fX(x; H0)dx , p0, (3.3)

P(Y = 0; H1) =

∫ τ

−∞
fX(x; H1)dx , q1, (3.4)

P(Y = 1; H1) =

∫ ∞

τ

fX(x; H1)dx , p1, (3.5)

wherep0 + q0 = 1 andp1 + q1 = 1. Observe thatp0 andp1 are the probability ofY = 1 under

the conditions ofH0 andH1 respectively. If the DC signalA > 0, fX(x; H1) is a right shift of

fX(x; H0), and the TS in (2.1) is employed. It can be verified thatp1 > p0. ForA < 0, we use the

complemental TS in (3.1) to havep1 > p0. Without loss the generality, we only consider the case

for A > 0. While for A < 0, the same results can be obtained.

If the composite binary TS is used, we have

P(Y = 0; H0) =

∫

x/∈D
fX(x; H0)dx , q0, (3.6)

P(Y = 1; H0) =

∫

x∈D
fX(x; H0)dx , p0, (3.7)

P(Y = 0; H1) =

∫

x/∈D
fX(x; H1)dx , q1, (3.8)

P(Y = 1; H1) =

∫

x∈D
fX(x; H1)dx , p1. (3.9)

Let m ∈ [0, N ] be the number of 1’s in the TS output sequence. Under hypothesis H0, the

distribution ofm is a binomial distribution, and its probability mass function (pmf) isfM (m) =
(

N
m

)

pm
0 qN−m

0 . Notice thatz = 1
N

∑N−1
n=0 y[n] = m

N , we then have the following pmf forZ; H0

fZ (z; H0) =




N

zN



 pzN
0 qN−zN

0 , z = 0,
1

N
,

2

N
, ..., 1. (3.10)

UnderH1, similarly, we have

fZ (z; H1) =




N

zN



 pzN
1 qN−zN

1 , z = 0,
1

N
,

2

N
, ..., 1. (3.11)

Notice thatfZ(z; Hi), i = 0, 1 are discrete functions that are valid forz = 0, 1/N, 2/N, ..., 1

only. However, whenN approaches infinity, the functions approach continuous ones. SinceN ≫ 1,

for the tractability of analysis, we use the continuous formof (3.10) as the pdf ofZ underH0 in the
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PFA calculation, which is shown as follows.

fZ(z; H0) =
N · Γ(N + 1)

Γ(zN + 1)Γ(N − zN + 1)
pzN
0 qN−zN

0 , z ∈ [0, 1], (3.12)

whereΓ(·) is theGamma function defined as,

Γ(n) =

∫ ∞

0

tn−1e−tdt.

Similarly, we obtain

fZ(z; H1) =
N · Γ(N + 1)

Γ(zN + 1)Γ(N − zN + 1)
pzN
1 qN−zN

1 , z ∈ [0, 1]. (3.13)

For a givenPFA = α, η can be calculated using the following equation

PFA =

∫

z>η

fZ(z; H0)dz = α. (3.14)

With the aboveη, PD can be calculated by

PD =

∫

z>η

fZ(z; H1)dz. (3.15)

Since we consider continuousfZ(z; Hi), i = 0, 1, we use integrals in (3.14) and (3.15) to calcu-

latePFA andPD. Note that for discretefZ(z; Hi), i = 0, 1, the integrals in (3.14) and (3.15) should

be replaced by summations.

3.2.2 A Detectability Indicator ∆p

Define

∆p , p1 − p0 = P(Y = 1; H1) − P(Y = 1; H0), (3.16)

wherep0, p1 are defined in (3.3) and (3.5) for simple binary TS, in (3.7) and (3.9) for composite

binary TS, respectively. In this subsection, we show that∆p is a good indicator of detectability.

Under NP criterion, the TS design problem for the TD is

τopt = arg max
τ

PD, s.t. PFA(τ) ≤ α, (3.17)

when simple binary TS is used, and

Dopt = argmax
D

PD, s.t. PFA(D) ≤ α, (3.18)

when composite binary TS is used.
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We first consider the case of simple binary TS. By using the derived results in the previous

section, (3.14), (3.15), (3.12) (3.13), (3.2)-(3.5), theτopt can be calculated by

τopt=argmax
τ

∫

z>η

N · Γ(N + 1)

Γ(zN + 1)Γ(N − zN + 1)

(∫ ∞

τ

fX(x; H1)dx

)zN(∫ τ

−∞
fX(x; H1)dx

)N−zN

dz

︸ ︷︷ ︸

PD

,

(3.19)

s.t.
∫

z>η

N · Γ(N + 1)

Γ(zN + 1)Γ(N − zN + 1)

(∫ ∞

τ

fX(x; H0)dx

)zN(∫ τ

−∞
fX(x; H0)dx

)N−zN

︸ ︷︷ ︸

fZ (z;H0)

dz = α.

(3.20)

In general, it is difficult to find the close form solution forτopt. The complicated formulas even

make advanced numerical methods difficult to find. One natural method is an exhaustive search

of τ . Assume thatα is given. First, for a givenτ , we can calculateη numerically from (3.20).

With this η, we can then calculate thePD shown in (3.19) numerically. The two steps above are

repeated for all the possibleτ values in exhaustive search, and theτ that leads to the maximumPD

is τopt. However, exhaustive search has very high computational complexity and is impractical in

real applications.

For the case of the composite binary TS, similarly, we have

Dopt = argmax
D

∫

z>η

N · Γ(N + 1)

Γ(zN + 1)Γ(N − zN + 1)

(∫

x∈D
fX(x; H1)dx

)zN(∫

x/∈D
fX(x; H1)dx

)N−zN

dz

︸ ︷︷ ︸

PD

,

(3.21)

s.t.
∫

z>η

N · Γ(N + 1)

Γ(zN + 1)Γ(N − zN + 1)

(∫

x∈D
fX(x; H0)dx

)zN(∫

x/∈D
fX(x; H0)dx

)N−zN

dz = α.

(3.22)

For this optimization problem, there is even no way to conduct exhaustive search since the set of all

possibleD is the set of all subsets ofR, which has infinite dimensions.

For tractable TS design, in the following, we propose an indicator ofPD and use it as the design

criterion.

Lemma 3.1. WhenA ≪ σ andN ≫ 1, for any givenPFA, PD is approximately a monotonically

increasing function of∆p.

Proof. We first representPD as a monotonically decreasing function ofΘ, whereΘ is a function of

∆p andp1. We then show that| ∂Θ
∂p1

| ≪ 1 and ∂Θ
∂∆p < 0, which shows thatΘ is approximately a

monotonically decreasing function of∆p, and hencePD is approximately a monotonically increas-
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ing function of∆p.

WhenN ≫ 1, using DeMoivre-Laplace theorem [4],fZ(z; H0) andfZ(z; H1) in (3.12) and

(3.13) can be approximated by the normal distributions,

fZ(z; H0) ≈ N (z; p0, p0(1 − p0)/N), (3.23)

fZ(z; H1) ≈ N (z; p1, p1(1 − p1)/N), (3.24)

whereN (z; µ, σ2) is the normal distribution with meanµ and varianceσ2. Using (3.23) in (3.14)

gives

Q

(

η − p0
√

p0(1 − p0)/N

)

= α, (3.25)

whereQ(x) =
∫∞

x
N (z; 0, 1)dz, which is the complementary cumulative distribution function (cdf)

of standard normal pdf. We solveη from (3.25) and obtain

η = p0 + Q−1(α)
√

p0(1 − p0)/N, (3.26)

whereQ−1 is the inverse function ofQ(·). Substituting (3.26) into (3.15), we obtain

PD = Q

(

η − p1
√

p1(1 − p1)/N

)

= Q

(

p0 − p1 + Q−1(α)
√

p0(1 − p0)/N
√

p1(1 − p1)/N

)

. (3.27)

Substitutingp0 = p1 − ∆p into (3.27) gives

PD = Q

(

−∆p + Q−1(α)
√

(p1 − ∆p)(1 − p1 + ∆p)/N
√

p1(1 − p1)/N

)

.

BecauseQ(·) is a monotonically decreasing function, we can consider only the argument inside

theQ(·) function, which is denoted as

Θ ,
−∆p + Q−1(α)

√

(p1 − ∆p)(1 − p1 + ∆p)/N
√

p1(1 − p1)/N
. (3.28)

The partial derivatives ofΘ with respect to∆p andp1 can then be obtained as follows:

∂Θ

∂∆p
=

1

t

(

−
√

N + Q−1(α)
−1 + 2p1 − 2∆p

2s

)

(3.29)

∂Θ

∂p1
=

Q−1(α)
[
(1 − 2p1)

(
t
2s − s

2t

)
+ t

s∆p
]
− t∆p

√
N

t2
, (3.30)

wheres ,
√

(p1 − ∆p)(1 − p1 + ∆p) andt ,
√

p1(1 − p1).

In the following, we show that Claim 1.| ∂Θ
∂p1

| ≪ 1, which means that the changing ofp1 has
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little influence toΘ and thereforeΘ can be approximated as a function of only∆p; and Claim

2. ∂Θ
∂∆p < 0, which means thatΘ monotonically decreases with∆p.

Claim 1. | ∂Θ
∂p1

| ≪ 1. BecauseA ≪ σ, andfX(x; H1) = fX(x − A; H0) = fW (x − A), for simple

binary TS, we have, from (3.16) and using (3.3) and (3.5),

∆p =

∫ ∞

τ

fX(x; H1)dx −
∫ ∞

τ

fX(x; H0)dx

=

∫ ∞

τ

fW (x − A)dx −
∫ ∞

τ

fW (x)dx

≈
∫ ∞

τ

(fW (x) − Af ′
W (x) − fW (x))dx

≈ AfW (τ) ≪ p1, p0, 1.

(3.31)

For composite binary TS, using (3.7) and (3.9) also gives∆p ≪ p1, p0, 1. There we have

∣
∣
∣
∣

t

2s
− s

2t

∣
∣
∣
∣
=

1

2ts

∣
∣t2 − s2

∣
∣ =

2p1 − 1

2ts
=

2p1 − 1

2p1(1 − p1)
∆p + O[(∆p)2] ≪ 1.

HereO[(∆p)2] is a value proportional to the∆p raised to the second power. Thus from (3.30),

| ∂Θ
∂p1

| = O(∆p) ≪ 1.

Claim 2. ∂Θ
∂∆p < 0. To show this, we recast (3.29) as,

∂Θ

∂∆p
=

1
√

p1(1 − p1)

(

Q−1(α)(p0 − 1/2)
√

p0(1 − p0)
−
√

N

)

. (3.32)

Because
√

p1(1 − p1) is positive, we only need to decide the sign of the following equation,

Ψ(p0, α, N) =

(

Q−1(α)(p0 − 1/2)
√

p0(1 − p0)
−
√

N

)

. (3.33)

Sincep0 ∈ (0, 1) for any givenPFA = α ∈ (0, 1), whenN is large enough,Ψ(p0, α, N) is

always negative.

From Claim 1 and Claim 2, we conclude that for small signal andlargeN , Θ is approximately a

monotonically decreasing function of∆p. HencePD is approximately a monotonically increasing

function of∆p.

Simulation are conducted to justify the result in Lemma 3.1.One of the examples is shown in

Fig. 3.2. In this example, we usePFA = 0.1 andN = 100. We calculatePD with respect to

p1 andp0 using (3.12)-(3.15), and plot the contour ofPD in the (p1, p0) plane in Fig. 3.2. Since

PFA = 0.1, the contour linePD = 0.1 is the linep0 = p1. It can be observed that the other contour

lines, such asPD = 0.2, are like straight lines parallel to the linep0 = p1. Because the contour lines
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is parallel to the linep0 = p1, the points in the same contour line have the same∆p. Also because

the points in the same contour line have the samePD, we can observe that the same∆p leads to the

samePD, regardless of thep1 or p0 values, which verifies Claim 1 in the proof of Lemma 3.1. We

also observe that thePD monotonically increases from top isolinePD = 0.1 to the bottom isoline

PD = 0.9 with the increase of∆p, which verifies Claim 2 in the proof of Lemma 3.1. The result in

Lemma 3.1 is proved for small signal and largeN only. Simulation shows that the result works well

in practical situations even for moderateN .
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Fig. 3.2. Contour ofPD with respect to(p1, p0).

Lemma 3.1 shows thatPD is approximately a monotonically increasing function of∆p. There-

fore in our TS optimization, instead ofPD, we can use∆p as the optimization criterion.∆p has a

much simpler format thanPD and the optimization based on it is more tractable. The optimization

of simple TS overPD needs an exhaustive search ofτ , and optimization of composite TS overPD

has no available solution. While with∆p, the design complexity can be largely reduced as will be

demonstrated in the next section.

3.3 Optimal TS Design Using∆p

In this section, using∆p, we calculateτopt if simple binary TS is employed. We also determine

Dopt if composite binary TS is used.
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3.3.1 Optimal Design of Simple Binary TS

Under the NP criterion, if simple binary TS is used,τopt is the solution of the optimization in (3.19)

and (3.20). From Lemma 3.1, we see that approximately,PD monotonically increases with∆p for

any givenPFA = α 6= 0. Therefore, for tractable TS design, we replacePD by ∆p and study the

following design.

arg max
τ

∆p(τ). (3.34)

Notice that unlikePD, ∆p is independent ofα. Thus the constraint in the original problem (3.20) is

not needed for the new problem in (3.34).

Lemma 3.2. Let xi, i = 1, ..., K be theK intersections betweenfX(x; H0) andfX(x; H1), i.e.,

fX(xi; H0) = fX(xi; H1). The solution of (3.34) isτopt = arg max
τ∈{xi}

∆p(τ), which is independent

of PFA. WhenA ≪ σ, τopt ≈ arg max
w

fW (w).

Proof. The solution of (3.34) is the global maximum points of∆p(τ). Because∆p(τ) = p1−p0 =
∫∞

τ
[fX(x; H1) − fX(x; H0)] dx, the local extreme points of∆p should satisfyd∆p

dτ = fX(τ ; H0)−
fX(τ ; H1) = 0. Therefore,τopt is the one of thexi, i = 1, ..., K that maximizes∆p, which is

independent ofPFA.

If A ≪ σ, according to (3.31), we have

τopt ≈ arg max
τ

AfW (τ) = arg max
w

fW (w). (3.35)

In other words,τopt is the value that has the maximum probability in the noise pdf, i.e., the mode

that has the largest pdf value.

Based on Lemma 3.2, we can deriveτopt for some specific cases, which is shown below.

Corollary 3.1. If the noise pdf is unimodal and symmetric, we haveτopt = w0 + A/2, wherew0 is

the only mode of noise pdf andA is the signal amplitude.

Proof. From Lemma 3.2, we know thatτopt locates at one intersection offX(x; H0) andfX(x; H1).

Unimodal pdf means that the distribution has a single maximum. Thus there is only one intersection

betweenfX(x; H0) andfX(x; H1). If the noise pdf is further symmetric, the only intersection has

to bex = w0 + A/2.

Corollary 3.1 shows thatτopt can be obtained in easy close-form if the noise pdf is unimodal

and symmetric. For arbitrary noise pdf, we can find thexi, i = 1, ..., K, the intersections between

fX(x; H0) andfX(x; H1), by solvingd∆p
dτ = fX(τ ; H0) − fX(τ ; H1) = 0. This could be fulfilled

using fast numerical methods like Newton-Raphson method [22].
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In the following, we compare the complexity of the proposed TS design using∆p with that of

usingPD. As we explained in Sec. 3.2, ifPD is used, to findτopt, one natural method is exhaustive

search. To be able to compare the complexity of the design using PD with that using∆p, we

consider exhaustive search for both with the same range and resolution. If using∆p, p0(τ) and

p1(τ) need to be calculated for everyτ . If usingPD, beside the calculation ofp0(τ) andp1(τ), it

needs two numerical integrals for everyτ to calculate theη for the givenPFA and the corresponding

PD as shown in (3.14) and (3.15). This shows that the computational complexity ofτopt calculation

using∆p is significantly reduced compared to that usingPD. For a specific example, the computer

running times to findτopt using∆p and usingPD will be given in Sec. 3.5.1.

3.3.2 Optimal Design of Composite Binary TS

For composite binary TS, we similarly replacePD by ∆p in the TS design problem and study the

following problem:

arg max
D

∆p(D). (3.36)

The result is presented in the following lemma.

Lemma 3.3. The optimal set that maximizes∆p isDopt = {x; fX(x; H1) > fX(x; H0)}.

Proof. If composite binary TS is employed, usingp0 andp1 in (3.7) and (3.9), we have

Dopt = argmax
D

∫

x∈D
(fX(x; H1) − fX(x; H0))dx = {x; fX(x; H1) > fX(x; H0)}.

For a DC signal, the result can be further simplified.

Corollary 3.2. Assume that the DC signalA > 0. Denote the ascending sorted intersections of

fX(x; H0) andfX(x; H1) asxi, i = 1, 2, ..., K. Dopt = {x; xj < x < xj+1 for oddj, j ≤ K},

wherexK+1 = ∞. WhenA ≪ σ, xi ≈ wi, wherewi, i = 1, 2, ..., K is the ascending sorted modes

of fW (w).

Proof. SinceA > 0, fX(x; H1) is a right shift offX(x; H0). Hence we havefX(x; H1) >

fX(x; H0) if and only if xj < x < xj+1 for j odd.

The intersections{xi} satisfyfX(x; H0) = fX(x; H1). If A ≪ σ, we havefX(x; H1) =

fX(x − A; H0) ≈ fX(x; H0) − Af ′
X(x; H0). Hence

{xi} ≈ {mi; f
′
X(mi; H0) = 0}, (3.37)

which means that the intersections can be approximated as the modes offW (w).
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From Corollary 3.2, we can see that if there is only one intersection, the optimal composite bi-

nary TS will reduce to a simple binary TS. If there are multiple intersections, the optimal composite

binary TS design will result in better performance than the optimal simple TS design, which will be

demonstrated in Sec. 3.5.

3.4 Discussion on Detection with Unknown Noise pdf

In Sec. 3.2, we proposed an indicator ofPD and in Sec. 3.3, we derived the optimal designs of

simple binary TS and composite binary TS. These results are obtained assuming that noise pdf is

known. In practice, nevertheless, we often need to deal withdetection with unknown noise pdf. In

this section, we will discuss this practical issue. We classify the noises into two categories.

1. The noises have unimodal and symmetric pdf, which we callType I noise. This type of noise

covers a wide range of applications and the assumptions do not appear to be overly restrictive

for practical applications [64]. For example, the generalized Gaussian (GG) and unimodal

Gaussian mixture (GM) [1] belong to this type. Note that GG (including Gaussian, Laplacian,

uniform) and unimodal GM are widely used noise types in a variety of applications [1], [6]–

[8], [43], [44].

For Type I noise, as we show in Corollaries 3.1 and 3.2, either using simple binary TS or

composite one leads to identical optimal TS with thresholdτ = w0 + A/2. Therefore, as-

suming that the noise pdf is symmetric and unimodal, the optimal TS design only depends on

the mode of the noise pdf and the amplitude of the DC signal, which usually can be estimated

with good precision. In particular, ifw0 = 0, the TS design does not depend on the noise pdf.

2. Other noises. For noises that do not belong toType I noise, referred to asType II noise, the

optimal TS is not as straightforward as that forType I noise. For example, in Sec. 3.5.2, we

show an example with a bimodal Gaussian mixture (GM) noise (the pdf has two modes). For

these noises, we need to calculateτopt for simple binary TS using Lemma 3.2, or to determine

Dopt for composite binary TS using Corollary 3.2. For these designs, instead of the full

knowledge of the pdf, only the intersections offX(x; H0) andfX(x; H1), or approximately,

only the modes offW (w), are needed as shown in Corollary 3.1 and Corollary 3.2. Intuitively,

the less the noise pdf knowledge is needed in design, the higher the robustness of the design

to the noise pdf. The modes can be obtained via estimation theory [5], which is easier than

obtaining the full knowledge of the pdf needed for the LO detector and Saha’s detector in [6].
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3.5 Simulation Results

Two examples are presented in this section to illustrate theperformance of the proposed TD based

on simple binary TS and composite binary TS, respectively. One example is a DC signal detection

in unimodal GM noise, and the other one is a DC signal detection in bimodal GM noise. The

unimodal GM noise is widely used in signal detection to modelunderwater noise [7], [8] and DCT

coefficients of images [43], [44]. The bimodal GM noise is also widely used in research, especially

when investigating the noise-enhanced effect [18], [19]. We use a bimodal GM noise in second

example to demonstrate the potential performance improvement of using composite TS over that of

simple TS.

3.5.1 Mean-Shift Unimodal Gaussian Mixture Detection

We consider a DC signal detection in unimodal GM noise [1], [6], which is defined as,

fW (w) =
c

σ
√

2π

[

α exp

(

−c2w2

2σ2

)

+
1 − α

β
exp

(

− c2w2

2β2σ2

)]

, (3.38)

wherec = [α + (1 − α)β2]1/2, 0 < α < 1, β > 0. A DC signalA = 0.1 is embedded in GM noise

with α = 0.9, β = 5, andσ = 1. The number of the observations isN = 100.

Since the GM is unimodel and symmetric, there is only one intersection betweenfX(x; H0)

andfX(x; H1), located at0.05. For this case, according to Corollary 3.2, the optimal composite

TS reduces to the optimal simple TS withτopt = 0.05. Using the simple binary TS, we show the

theoretical and simulatedPD with respect toτ for differentPFA in Fig. 3.3. Theoretical results

are calculated based on (3.12) and (3.13). For a givenτ andPFA, simulatedPD is calculated from

fZ(z; H0) andfZ(z; H1), which are approximated based on the histograms of the values ofZ under

H0 andH1 generated from the multiple simulations. We can see that when τ = 0.05, the maximum

PD is obtained and is independent ofPFA. This provides a justification of Lemma 3.2.

Next, in Fig. 3.4, we show the ROC of the TD with the proposed TSfrom Monte-Carlo simula-

tions and compare it with the theoretical one calculated from (3.12) and (3.13). Consistency between

the simulated ROC and the theoretical one is revealed. The ROC of the LO detector is also shown

as the upper bounder since it is the optimal detector for small signals, along with the ROC of the

MF used as the lower bounder. To quantify the performance difference, we calculate the average

uniform loss (AUL) between two ROCs (detectorι and detectorκ) in dB, defined as

AUL ι
κ ,

∫ 1

0

10 log10

(
P ι

D

P κ
D

)

dPFA. (3.39)

A positive and large AUL means that the performance of detector ι is significantly better than that of
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Fig. 3.3. PD with respect toτ andPF A for detection of a DC signalA = 0.1 in GM noise withα = 0.9, β = 5, and
σ = 1.

detectorκ. It is shown that the TD with optimal TS (simple binary TS withτ = 0.05) has an AUL

of only 0.17dB (4% degradation) compared with the LO detector. Note that the LOdetector design

needs full knowledge of the noise pdf, while the proposed TD does not require any information of

the noise. In addition, the proposed TD has a much lower complexity in implementation. Compared

to the proposed TD, the MF has an AUL of0.595dB (15% degradation).

We note that thePD curve obtained from simulations has a staircase shape. Thisis because the

pmf’s fZ(z; Hi), i = 0, 1 obtained from simulated histograms are discrete. We used the continuous

pdf’s (3.12) and (3.13) instead of pmf’s for the theoreticalROC calculation.

We now compare the computational complexity of deriving theoptimal TS fromPD with that of

the proposed TS design. Because the GM (unimodal) isType I noise (zero mean), we can obtain the

τopt = A/2 = 0.05 without any calculation. However, to show the simplicity of∆p with respect

to PD, we use exhaustive search even in the proposed design, as represented in Sec. 3.3. In the

exhaustive search ofτ , the range [-5,5] is considered with a resolution of 0.01. The average running

time (Matlab) is about 0.189 second ifPD is used as the criterion in TS design and 0.034 second if

the proposed design is used in a computer with AMD 8450 triple-core processor (2.1GHz) and 4GB

memory.
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Fig. 3.4. ROCs from LO detector, MF and the proposed TD for detection of a DC signalA = 0.1 in GM noise with
α = 0.9, β = 5, andσ = 1.

3.5.2 Mean-Shift Bimodal Gaussian Mixture Detection

In this section, we show the optimal design and ROC of the proposed TD for the detection of a DC

signal in a bimodal GM noise, which has the following pdf:

fW (w) =
1

2
N (w; µ, σ2) +

1

2
N (w;−µ, σ2). (3.40)

Thus

fX(x; H0) = fW (x) =
1

2
N (x; µ, σ2) +

1

2
N (x;−µ, σ2), (3.41)

and

fX(x; H1) =
1

2
N (x; µ + A, σ2) +

1

2
N (x;−µ + A, σ2), (3.42)

whereA is the DC signal. Forµ = 3, σ2 = 1, A = 0.1, two modes of this GM noise can be

calculated asw1 = −3 andw2 = 3, and the three intersections arex1 = −2.95, x2 = 0.05, x3 =

3.05.

We first use simple binary TS and calculate itsτopt. For a givenτ , we have

∆p(τ) =
1

2

[

Q

(
τ − µ − A

σ

)

− Q

(
τ − µ

σ

)

+ Q

(
τ + µ − A

σ

)

− Q

(
τ + µ

σ

)]

,

and∆p(τ = x1) = ∆p(τ = x3) = 0.0199, ∆p(τ = x2) = 0.0004. Thereforeτopt = x1 or
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τopt = x3.

We then use composite binary TS. According to Corollary 3.2,we haveDopt = {x;−2.95 ≤
x ≤ 0.05 and3.05 ≤ x}. Thus, the optimal composite TS can be represented as

TSopt : Y =







1 x ∈ [−2.95, 0.05]∪ [3.05,∞)

0 elsewhere
. (3.43)

The∆p of this TSopt is 0.0394, which is calculated by

∆p =
1

2

3∑

i=1

(−1)i−1

[

Q

(
xi − µ − A

σ

)

− Q

(
xi − µ

σ

)

+ Q

(
xi + µ − A

σ

)

− Q

(
xi + µ

σ

)]

.

In Fig. 3.5, we show the ROCs obtained from simulations for the TD with the optimal simple TS,

the TD with the optimal composite TS, the LO detector, and theMF. It reveals that the TD with the

optimal composite TS performs very close to the LO detection, only has an AUL of 0.1553 (3.64%

degradation). The TD with the optimal simple TS has simpler implementation than the TD with

the optimal composite TS, but the performance degradation is obvious, with an AUL of 0.7304dB

(18.32% degradation). Compared to the MF, both TDs have superior performance. Compared to the

TD with optimal composite TS, the MF has an AUL of 1.4972dB (41.16% degradation). Compared

to the TD with the optimal simple TS, the MF has an AUL of 0.7668dB (19.31% degradation).
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Fig. 3.5. ROCs from LO detector, MF and the proposed TD in the detection of a DC signalA = 0.1 in the bimodal GM
noise withµ = 3, σ = 1, andN = 100.
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In the above two examples, the proposed designs are comparedwith the LO detector to show

that its performance is close to optimal. They are not compared with the optimal LRT. But note that

for weak signal detection, the LRT and the LO detector have almost the same performance [1], [2].

3.6 Conclusions

In this chapter, we considered the optimal TD design for detecting a known DC signal in non-

Gaussian noise with known pdf. Under NP criterion, we showedthatPD can be represented by an

indicator∆p in the optimal design of the TS. We investigated two types of TS’s: simple binary TS

and composite binary TS. For simple binary TS, using the indicator∆p, we derived an easy and

fast way to calculate the optimal TS threshold. For composite binary TS, the otpimal TS structure

was derived, also with the help of∆p. Experimental results show the validity of the proposed

TS designs. The performance of the proposed TDs are shown to be superior to the MF, for non-

Gaussian noises with heavy pdf tails, and can perform very close to the LO detector, with a much

simpler implementation than the LO detector.
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Chapter 4

A Robust Detector of Known Signal

in Non-Gaussian Noise Using

Threshold Systems

In this chapter, we propose a TD for detecting a known deterministic signal in independent non-

Gaussian noise whose pdf is unknown but is symmetric and unimodal. The optimality of the pro-

posed TD is proved under the assumptions of white noise, small signal, and a large number of

samples. While previous TD designs need accurate information of the noise pdf, the proposed TD

is independent of the noise pdf, and thus is robust to the noise pdf. The detection probability and

the ROC of the proposed TD are analyzed both theoretically and numerically. It is shown that even

without knowing the noise pdf, the proposed TD has close performance to the optimal detector de-

signed with the noise pdf information. It also performs significantly better than the MF when the

noise pdf has heavy tails. The practical implementation, robustness to both the noise pdf and the

signal, and region of validity of the proposed TD are also investigated.

4.1 Introduction

The detection of a known deterministic signal in unknown non-Gaussian noise is a problem of

great interest in many fields, such as communications and image processing [1], [2]. For example,

in watermark detection in discrete cosine transform (DCT) domain, the signal is the watermark

(or a signature), which is usually known1, while the DCT coefficients of an image is the noise,

whose pdf is non-Gaussian and unknown in general [43], [44],[62]. Other applications include the

1The watermark sequence is unknown for blind watermark. However, when extracting one watermark bit in the water-
mark sequence, this watermark bit is usually known signal. For example, for binary watermark, the watermark bit is either 0
or 1, which is known.
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feature extraction in images [65] and underwater communications, where we can have precise signal

information or obtain a reliable estimation of the signal, while the noise pdf is non-Gaussian and is

difficult to estimate [6]–[8].

Consider the BHTP described in (1.1). As stated in Sec. 1.4, since LRT or GLRT results in

complex detector with low robustness and poor performance when the knowledge of the signal and

noise is imprecise, we resort to TD for a suboptimal solution. We reviewed the existing TD’s in

Sec. 2.2.1 and proposed optimal TD designs for DC signal detection in known non-Gaussian noise

in Chap. 3.

However, the aforementioned TD and the LO detector need fullknowledge of the noise pdf. This

makes its application limited. They cannot be used for applications where the noise pdf cannot be

obtained perfectly. Furthermore, the assumption on perfect noise pdf information causes problems

in simplicity, robustness, and detectability when applying the TDs in real systems. Even though the

TS can be implemented simply, the optimal parameters of the TS need to be calculated from the

noise pdf, which adds complexity to the TD. The robustness has also been influenced because the

TD design depends on the noise pdf and the signal. As to the detectablity, degradation cannot be

avoid because practically speaking we only have imprecise noise pdf. These weakness limits the

applications of these TDs. We will address these problems inthis chapter.

To the best of our knowledge, there is no previous work on TD for detecting an arbitrary signal in

non-Gaussian noise with unknown pdf, which is the focus of this chapter. Our goal is to find a robust

and low complexity detector that also enjoys near-optimal performance. We consider detection

problems where the noise pdf is unimodal and symmetric. Thiscovers a wide range of noise pdfs,

for example, the Gaussian mixture (GM) and the generalized Gaussian (GG). We propose a TD

composed of a binary TS array and a linear correlator that is independent of the noise pdf. The

optimality of the design is analyzed for the case of white noise, small signal, and a large number of

samples. Simulation results show that the proposed TD performs very close to the LO detector and

is much better than the MF for noises with heavy pdf tails. Properties of the proposed detector such

as robustness, complexity, and region of validity are also investigated.

The remainder of the chapter is organized as follows. In Sec.4.2, we present the detection

problem and the proposed TD structure. The optimality of theTD design including the binary

TS and the linear correlator is also proved. In Sec. 4.3, we derive the detection probability of the

proposed TD and present simulation results. In Sec. 4.4, we discuss the robustness, implementation

complexity, and region of validity of the proposed TD. Finally, we draw conclusions in Sec. 4.5.

Involved proofs are included in the appendices.
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4.2 Problem Statement and Proposed Detector Structure

In this section, we explain the detection problem and the proposed detector.

4.2.1 Problem Statement

Consider the detection problem described in (1.1). The signal s[n]’s are assumed to be known. The

noise is assumed unknown but subject to the following constraints: 1)fW (w) is symmetric about

w = 0, i.e.,fW (−w) = fW (w); 2) fW (w) is unimodal; and 3)fW (w) is continuous. Thus,fW (w)

has a unique maximum atw = 0; and is non-decreasing whenw < 0, non-increasing whenw > 0.

The above assumptions are not overly restrictive for practical applications [64]. For example, for

underwater communication and DCT-domain watermarking mentioned in Sec. 4.1, the noise pdfs,

although unknown, are shown to satisfy these assumptions [7], [8], [43], [44]. Furthermore, we also

assume that compared with the noise standard deviationσ, the signal is weak [1], i.e.,|s[n]| ≪ σ

for n = 0, 1, ..., N − 1.

BecausefW (w) is unknown and sometimes ever-changing, the optimal and LO detectors, which

require the noise pdf information, cannot be realized. We aim at designing a detector whose param-

eters are independent of the noise pdf, thus robust to the noise pdf; but at the same time, good

detection probability is desired.

4.2.2 Proposed TD Structure

The proposed TD is shown in Fig. 4.1, in which each data pointx[n] is separately quantized at

the thresholds[n]/2 (by a TS with binarization thresholds[n]/2) to yield a binaryy[n]. Then

linear correlation is performed between the sequencey[n] and the absolute value of the signal to be

detected, i.e.,|s[n]|. A decision is made via comparing the correlation resultZ with the thresholdη.

Fig. 4.1. Proposed TD structure.
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Here are more detailed explanations on different parts of the proposed TD. The multiway switch

directs the observationx[n] to its corresponding TS, denoted asTS[n], and outputsy[n]. For sim-

plicity in implementation, we use the simple binary TS shownin (2.1), denoted as TS1(τ), and the

complemental binary TS shown in (3.1), denoted as TS2(τ), whereτ is the threshold in TS. We use

TS1(τ) whens[n] ≥ 0, and use TS2(τ) otherwise. The binarization threshold is set to bes[n]/2 for

both cases, i.e.,τ = s[n]/2. The linear correlator produces

Z = T TD(y) =
1

N

N−1∑

n=0

y[n]|s[n]|. (4.1)

The thresholdη of the test statistic is calculated from the desired false alarm level using
∫∞

η
fZ(z; H0)dz =

PFA.

4.2.3 Optimality of the Proposed TD

In this subsection, we prove the optimality of the binarization threshold of the TS and the correlator

design in (4.1).

Our TS design problem can be stated as follows: for the one-dimensional binary detection prob-

lem wherex[n] is the observation andy[n] (output of theTS[n]) is the detection result, find the

optimal binarization threshold. For the optimality measure, NP criterion is widely used, i.e., to find

the maximum detection probabilityPD for a givenPFA. However, with the NP criterion, the thresh-

old optimization requires the noise pdf, which is unknown inour model. Furthermore, for different

values ofPFA, the optimal threshold will be different, which complicates the implementation of the

TD. Therefore, in this chapter, we use the area under the receiver operating characteristic (ROC)

curve, denoted as AUC, as the optimality measure [66]. It fully characterizes the detectability of a

detector and is shown to be a good detectability measure according to Area Theorem [67]. Most

importantly, it results in an optimal binarization threshold independent ofPFA.

We first prove the optimality of the optimal binarization thresholds[n]/2.

Theorem 4.1. For each observationx[n], consider the binary detection problem with the binary

TS outputy[n] as the test statistic. The binarization threshold that leads to the maximum AUC is

τ = s[n]/2.

Proof. See Appendix 4.A.

It is noteworthy that the proposed binarization threshold is optimal only for the single observa-

tion x[n] and may not be globally optimal for the overall detection problem. As will be shown later,

however, this design leads to a robust TD and close-to-optimal performance.

Next, we prove the optimality of the test statistic in (4.1).
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Theorem4.2. Consider the detection problem with observationy, the outputs of the TS array in the

proposed TD. When|s[n]| ≪ σ andN ≫ 1, the test statisticT TD(y) in (4.1) is the optimal LRT.

Proof. See Appendix 4.B.

The proposed TD has simple structure, which is easy in implementation. Theorems 4.1 and 4.2

in addition show its advantage in performance.

4.3 Investigation on Detection Probability

In this section, the detection probability of the proposed TD is analyzed and simulation results are

presented. The performance of previously proposed detectors is also investigated for comparison.

4.3.1 Detection Probability of the Proposed TD

To obtain thePD of the proposed TD for a givenPFA, we need to derive the pdfs ofT TD(y) under

H1 andH0. T TD(y) is the summation ofN independent random variablesy[n], n = 0, 1, ...N − 1

with a weight of|s[n]|. Becausey[n]’s are independent, according to the central limit theorem,when

N is large, the distribution ofT TD(y) can be approximated as Gaussian. Therefore, we only need

to calculate the mean and the variance ofT TD(y).

Denote the probabilities ofy[n] = 1 under HypothesisH0 andH1, respectively, as

p0[n] , P(y[n] = 1; H0), p1[n] , P(y[n] = 1; H1). (4.2)

It can be derived that (see Appendix 4.B for the calculations)

p0[n] ≈ 1
2 − |s[n]|

2 fW (0), p1[n] ≈ 1
2 + |s[n]|

2 fW (0). (4.3)

The probability ofy[n] = 0 under HypothesisHi is 1 − pi[n] for i = 0, 1. The mean and the

variance ofy[n] under HypothesisHi are

E{y[n]; Hi} = 1 · pi[n] + 0 · (1 − pi[n]) = pi[n], (4.4)

Var{y[n]; Hi} = 12 · pi[n] + 02 · (1 − pi[n]) − E
2{y[n]; Hi} = pi[n](1 − pi[n]), (4.5)

whereE stands for the expectation. With (4.4), (4.5), and the independence ofy[n]’s, the mean and

variance ofT TD(y) are

µi = E{T TD(y); Hi} = E

{

1

N

N−1∑

n=0

y[n]|s[n]|
}

=
1

N

N−1∑

n=0

pi[n]|s[n]|, (4.6)
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σ2
i = Var{T TD(y); Hi} = Var

{

1

N

N−1∑

n=0

y[n]|s[n]|
}

=
1

N2

N−1∑

n=0

s2[n]pi[n](1 − pi[n]). (4.7)

Thus,

fZ(z; H0) = N (z; µ0, σ
2
0), fZ(z; H1) = N (z; µ1, σ

2
1), (4.8)

whereN (z; µ, σ2) is the Gaussian distribution with meanµ and varianceσ2. The pdfs in (4.8) are

the same as those for a standard Gaussian binary detection problem. It can be derived that for a

givenPFA, thePD of the proposed TD can be expressed as

PTD
D = Q

(
σ0Q

−1(PFA) + µ0 − µ1

σ1

)

, (4.9)

whereQ(·) is the complementary cumulative distribution function (cdf) of the standard normal pdf

andQ−1(·) is the inverse ofQ(·).
For a DC signal, i.e.,s[n] = A, n = 0, 1, ..., N − 1, pi[n]’s are identical, denoted aspi. We have

µi = A · pi andσ2
i = A2 · pi · (1 − pi)/N . The result in (4.9) reduces to the one in (3.27).

4.3.2 Detection Probability of the MF and the LO Detector

If the MF is used, which is optimal for Gaussian noise, the test statistic is given by

T MF (x) =
1

N

N−1∑

n=0

s[n]x[n].

Again, according to the central limit theorem,T MF (x) is Gaussian. We have

E
{
T MF (x); H0

}
=

1

N
E

{
N−1∑

n=0

s[n]w[n]

}

= 0.

Var
{
T MF (x); H0

}
=

1

N2
Var

{
N−1∑

n=0

s[n]w[n]

}

=
σ2

N2

N−1∑

n=0

s2[n].

E
{
T MF (x); H1

}
=

1

N
E

{
N−1∑

n=0

s[n](s[n] + w[n])

}

=
1

N

N−1∑

n=0

s2[n].

Var
{
T MF (x); H1

}
=

1

N2
Var

{
N−1∑

n=0

s[n](s[n] + w[n])

}

=
σ2

N2

N−1∑

n=0

s2[n].

Therefore, for a givenPFA, thePD of the MF can be expressed as

PMF
D = Q



Q−1(PFA) −

√
∑N−1

n=0 s2[n]

σ2



 . (4.10)
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For comparison, we also present the detection probability of the LO detector [1]:

PLO
D = Q



Q−1(PFA) −

√
√
√
√I

N−1∑

n=0

s2[n]



 , (4.11)

where

I =

∫ ∞

−∞

(
dfW (w)

dw

)2

fW (w)
dw. (4.12)

4.3.3 Simulation Results

In this section, we present and compare thePD ’s and the ROCs of the proposed TD, the MF, the LO

detector, and the detector in [6] via simulation. Note that the performance of the MF is utilized as

the lower bound benchmark and the one of the LO detector as theupper bound benchmark.

We consider two signals:

1) sinusoidal signal

s[n] = A sin(0.02πn + φ), (4.13)

whereA = 0.1 andφ = 0 unless otherwise stated;

2) a randomly generated signal

s[n] = B · l[n], (4.14)

wherel[n]’s are randomly generated by the uniform distribution on[0, 1] andB = 0.1 unless other-

wise stated. The sinusoidal signal is largely used in signaldetection. The random signal is used to

model a known signal with an arbitrary structure. We setN = 100.

As to the noise, GM noise and GG noise are considered because they are widely used in practical

applications such as underwater noise [6]–[8] and DCT coefficients [43], [44]. The GM pdf has three

parametersα, β, andσ, and is defined in (3.38). The GG pdf has two parametersβ andσ, and is

defined as

fW (w) =
c1(β)

σ
exp

(

−c2(β)
∣
∣
∣
w

σ

∣
∣
∣

2
1+β

)

, (4.15)

wherec1(β) =
Γ1/2( 3

2 (1+β))

(1+β)Γ3/2( 1
2 (1+β))

, c2(β) =
[

Γ( 3
2 (1+β))

Γ( 1
2 (1+β))

] 1
1+β

andΓ(·) is the Gamma function. We

set(α, β, σ) = (0.3, 5, 1) for GM noise and(β, σ) = (0.9, 1) for GG noise unless otherwise stated.

First we compare the theoretical results onPD for both the sinusoid signal (4.13) and the ran-

dom signal (4.14) in the GM noise (3.38).PFA is set to be0.01. We show the detection proba-

bilities of the proposed TD and other schemes for different energy-to-noise ratios (ENRs) defined

as10 log10

(
∑N−1

n=0 s2[n]/σ2
)

dB. By having the magnitudeA of the sinusoidal signal range from

0.045 to 0.45, and the magnitudeB of the random signal range from 0.055 to 0.55, the ENR ranges

from -10dB to 10dB. ThePD ’s of the proposed TD, the MF, and the LO detector are calculated

50



using (4.9), (4.10), and (4.11), respectively. Note that for the proposed TD, when calculatingPTD
D

using (4.9),µi, σi, i = 0, 1 are calculated by (4.6) and (4.7), in whichpi[n], i = 0, 1 are calculated

according to (4.3). For the LO detector, the value ofI given in (4.12) is calculated numerically.

From Fig. 4.2 we can see that the proposed TD has close performance to the LO detector and is

significant better than the MF for both signals. AtPD = 0.3, the proposed TD is about 4dB better

than the MF, and is only 1dB worse than the LO detector. The advantage of the proposed TD over

the MF is even bigger at higherPD levels.
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Fig. 4.2. PD versus ENR of the proposed TD, the MF, and the LO detector in GMnoise withα = 0.3, β = 5, andσ = 1
for N = 100 andPF A = 0.01.

We now compare the theoretical ROCs calculated by (4.9) withthe ROCs obtained from Monte

Carlo simulations for the proposed TD. To obtain the ROC fromMonte Carlo simulations, obser-

vations are generated underH0 andH1 (20000 times for each) and the test statistic is calculated

asZ = T TD(y) for all observations.fZ(z; Hi), i = 0, 1 are approximated as the normalized his-

tograms of the 20000 outputs for both hypothesis, from whichthe ROC is generated. We use the

sinusoid signal (4.13) and the random signal (4.14) in GM noise and GG noise, respectively. Fig. 4.3

shows that the ROCs calculated from (4.9) are consistent with the ROCs obtained from simulations

for all cases.

Next, we compare the ROCs of the proposed TD, the MF, the LO detector, and the detector in

[6] called Saha’s detector, obtained from Monte Carlo simulations in Fig. 4.4. Saha’s detector has

the detection structure in Fig. 1.3, in whichg(x) is designed as a three-level TS and a quadrature MF

is used instead of the replica-correlator due to unknown parameters in signal. The optimal design

of the three-level TS requires noise pdf information, thus this detector can only be used when the

noise pdf is available. Here, we change the quadrature MF to linear MF, which is a better design

for the detection of known signals, and to make it comparablewith the proposed TD. The optimal

thresholds of the 3-level TS in [6] are numerically calculated to be 0.08 for the GM noise and 0.01
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Fig. 4.3. Comparison between theoretical and simulated ROCs for the proposed TD. GM is withα = 0.3, β = 5, σ = 1;
GG is withβ = 0.9, σ = 1; andN = 100.

for the GG noise. We show the ROCs for the detection of the sinusoidal signal (4.13) in GM noise

in Fig. 5(a) and GG noise in Fig. 5(b), respectively. It can beseen that the ROCs of the proposed

TD are close to those of the LO detector and Saha’s detector, especially for the GG noise, although

it requires no noise pdf information. The proposed TD has a significant improvement compared to

the MF. For the sinusoidal detection in GM noise, compared with the LO detector, the proposed

TD has an AUL of0.195dB (4.59% degradation). Compared with the proposed TD, the MF has an

AUL of 0.642dB (15.93% degradation). Compared with the detector in [6], the proposed TD has an

AUL of 0.0265dB (0.61% degradation). For the sinusoidal detection in GG noise, compared with

the LO detector, the proposed TD has an AUL of0.0493dB (1.14% degradation) only. Compared

with the proposed TD, the MF has an AUL of0.386dB (9.29% degradation). Compared with Saha’s

detector, the proposed TD has an AUL of0.0059dB (0.14% degradation). It should be mentioned

that the closeness of the proposed TD to the optimal detectorvaries with the noise pdf parameters.

In general, the proposed TD performs closer to the optimal detector when the noise pdf has heavier

tails.

In the next experiment, we compare the ROCs for the detectionof the random signal (4.14) in

GM noise and GG noise. The ROCs are shown in Fig. 4.5. Again we can see that the proposed

TD has close performance to the LO detector and Saha’s detector, and is a lot better than the MF.

For the detection in GM noise, compared with the LO detector,the proposed TD has an AUL of

0.199dB (4.69% degradation). Compared with Saha’s detector, the proposedTD has an AUL of
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(a) GM noise withα = 0.3, β = 5, σ = 1
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(b) GG noise withβ = 0.9, σ = 1

Fig. 4.4. Comparison of the ROCs obtained from Monte Carlo simulations in detecting the sinusoid signal (4.13) in GM
and GG noise,N = 100.
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(a) GM noise withα = 0.3, β = 5, σ = 1
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(b) GG noise withβ = 0.9, σ = 1

Fig. 4.5. Comparison of the ROCs in detecting the random signal (4.14) in GM and GG noise,N = 100.

0.04dB (0.93% degradation). Compared with the proposed TD, the MF has an AUL of 0.597dB

(14.74% degradation). For the detection in GG noise, compared with the LO detector, the proposed

TD has an AUL of0.016dB (0.37% degradation) only. Compared with Saha’s detector, the proposed

TD has an AUL of−0.031dB (0.72% increase). Compared with the proposed TD, the MF has an

AUL of 0.41dB (9.9% degradation).

4.4 Discussions

In this section, we discuss properties of the proposed TD, including the robustness, implemental

complexity, and region of validity.

53



4.4.1 Robustness

The robustness in signal detection refers to the stability of the detection performance to changes in

parameters in the system. For example, we can observe from (4.11) and (4.12) that the detection

probability of the LO detector depends onPFA, s[n], the form offW (w) and its parameters. Let

ρm, m = 1, ..., M be the set of parameters involved in the robustness evaluation. In this paper, we

use a quantitative measure proposed in [68] to evaluate the robustness, which is defined as

Φ ,

(

1 +

M∑

m=1

(
∂PD

∂ρm

)2
)− 1

2

. (4.16)

It reflects howPD fluctuates with changes/inaccuracy inρm’s. It is normalized to be between 0

and 1. A lowerΦ means lower robustness. Note that we assume unknown noise pdf in the design

of the proposed TD. But as shown in (4.16), we can only evaluate the quantitative robustness with

respect to a specific noise pdf form. Thus, in what follows, weconsider GM noise and calculate the

robustness of the detectors with respect to the pdf form of GMnoise.

We derive the expressions ofΦ for the proposed TD, the MF, and the LO detector in the case

of the sinusoidal signal (4.13) in GM noise. We consider the robustness with respect to inaccuracy

in the noise parameters (α, β, σ) and the signal parameters (A, φ), respectively. Analysis on the

robustness with respect to other factors, such as the noise pdf form, is more involved and left for

future work. We define

Φn ,



1 +
∑

ρn={α,β,σ}

(
∂PD

∂ρn

)2




− 1
2

, (4.17)

which is the robustness to the noise parametersρn = {α, β, σ}; and

Φs ,



1 +
∑

ρs={A,φ}

(
∂PD

∂ρs

)2




− 1
2

, (4.18)

which is the robustness to the signal parametersρs = {A, φ}.

For the proposed TD,PTD
D depends onpi[n] via µi, σ

2
i for i = 0, 1 as shown in (4.6) and (4.7).

From (4.3), we can see thatpi[n] only depends on the signals[n] and the value of the noise pdf at 0.

Using (4.3), (4.6), and (4.7), we obtain

µ0 ≈ 1

2N

N−1∑

n=0

|s[n]|[1 − |s[n]|fW (0)], σ2
0 ≈ 1

4N2

N−1∑

n=0

s2[n][1 − s2[n]f2
W (0)],

µ1 ≈ 1

2N

N−1∑

n=0

|s[n]|[1 + |s[n]|fW (0)], σ2
1 ≈ 1

4N2

N−1∑

n=0

s2[n][1 − s2[n]f2
W (0)] ≈ σ2

0 .
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Using these approximation in (4.9), we have

PTD
D ≈ Q

(

Q−1(PFA) − 2vfW (0)
√

v − uf2
W (0)

)

, (4.19)

where we have defined

v ,
N−1∑

n=0

s2[n] u ,
N−1∑

n=0

s4[n]. (4.20)

For any parameterρn ∈ {α, β, σ}, we have

∂PTD
D

∂ρn
=

√

2

π

[
v − uf2

W (0)
]− 3

2 v2 exp



−1

2

(

Q−1(PFA) − 2vfW (0)
√

v − uf2
W (0)

)2



∂fW (0)

∂ρn
.(4.21)

From (3.38), we obtainfW (0) = c
σ
√

2π

[

α + 1−α
β

]

, wherec =
√

α + (1 − α)β2. Thus

∂fW (0)

∂α
=

c

σ
√

2π

(

1 − 1

β

)

+

(

1 − β2

2
(
α + (1 − α)β2

)

)

fW (0), (4.22)

∂fW (0)

∂β
=

c

σ
√

2π

(

−1 − α

β2

)

+

(
(1 − α)β

α + (1 − α)β2

)

fW (0), (4.23)

∂fW (0)

∂σ
= − 1

σ
fW (0). (4.24)

Using (4.21)-(4.24) in (4.17), we can obtainΦTD
n .

For the robustness to the signal, forρs = {A, φ}, we have

∂PTD
D

∂ρs
= − fW (0)√

2π
exp



−1

2

(

Q−1(PFA) − 2vfW (0)
√

v − uf2
W (0)

)2



[v − 2uf2

W (0)] ∂v
∂ρs

+ vf2
W (0) ∂u

∂ρs

(v − uf2
W (0))

3
2

,

(4.25)

where

∂v

∂A
= 2A

N−1∑

n=0

sin2(0.02πn + φ),
∂u

∂A
= 4A3

N−1∑

n=0

sin4(0.02πn + φ), (4.26)

∂v

∂φ
= A2

N−1∑

n=0

sin(0.04πn + 2φ),
∂u

∂φ
= 4A4

N−1∑

n=0

sin3(0.02πn + φ) cos(0.02πn + φ). (4.27)

Using (4.26) and (4.27) in (4.25) and using (4.25) in (4.18),we can obtainΦTD
s .

For the MF, the detection probability is shown in (4.10), which depends on the noise parameter

σ2 and the signal parametersρs = {A, φ}. It can be shown that

∂PMF
D

∂σ
=

1√
2π

exp

(

−1

2

(

Q−1(PFA) −
√

v

σ

)2
)(

−
√

v

σ2

)

. (4.28)
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∂PMF
D

∂ρs
=

1√
2π

exp

(

−1

2

(

Q−1(PFA) −
√

v

σ

)2
)(

− 1

2σ
√

v

)(
∂v

∂ρs

)

. (4.29)

ΦMF
n can be calculated by using (4.28) in (4.17).ΦMF

s can be calculated by using (4.26) and (4.27)

in (4.29) and using (4.29) in (4.18).

For the LO detector,PD relies onsandI defined in (4.12), andI is influenced by all parameters

α, β, σ in (3.38). Forρn = {α, β, σ}, we have

∂PLO
D

∂ρn
= −1

2

√
v

2πI
exp

(

−1

2

(

Q−1(PFA) −
√

vI
)2
)(

∂I

∂ρn

)

, (4.30)

where

∂I

∂ρn
=

∫ ∞

−∞




2f ′

W (w)
∂f ′

W (w)
∂ρm

fW (w) − (f ′
W (w))2 ∂fW (w)

∂ρm

f2
W (w)



 dw. (4.31)

Note that we resort to numerical calculation because the close form result of (4.31) is unavailable.

For the signal parametersρs = {A, φ}, we have

∂PLO
D

∂ρs
=

1√
2π

exp

(

−1

2

(

Q−1(PFA) −
√

vI
)2
)(

−
√

I

2
√

v

)(
∂v

∂ρs

)

. (4.32)

By using (4.30) in (4.17) and (4.32) in (4.18),ΦLO
n andΦLO

s can be calculated.

For Saha’s detector, since its close formPD is not available, its robustness measure is not calcu-

lated here. But simulation results are provided for comparison in Fig. 4.7.

In Fig. 4.6, we plotΦTD
n , ΦMF

n , ΦLO
n andΦTD

s , ΦMF
s , ΦLO

s as functions ofσ2, α, β, A, andφ.

We setPFA = 0.1, N = 100. In each subfigure of Fig. 4.6, the robustness measures are shown as

functions of one of the parameters while the other parameters are fixed. The fixed parameters values

are set to beσ2 = 1, α = 0.3, β = 5, A = 0.1, φ = 0. For example, in Fig. 4.6 (a), the values

of the robustness measure are shown asσ2 ranges from 1 to 9 whileα = 0.3, β = 5, A = 0.1,

φ = 0. It can be observed that among the three detectors, the MF always has the highest robustness

to the noise parameters. The robustness of the proposed TD issuperior to that of the LO detector,

and is close toΦMF
n for some parameter values. In term of the signal, not surprisingly, due to its

dependency on the signal, the robustness of the proposed TD is a lot worse than the MF. It is also

worse than the LO detector for all phase values and small amplitude values, but the difference is

small. For large amplitude, the proposed TD is more robust tosignal than the LO detector.

In Fig. 4.7, we show the ROCs obtained via Monte Carlo simulation under inaccurate parameters

of the noise pdf and the signal for the sinusoidal signal (4.13) with A = 0.1, φ = 0 in the GM noise

with α = 0.3, β = 5, σ = 1. In Fig. 4.7 (a), the ROCs based on accurate signal information but

an inaccurate estimation of the noise pdf, whereα = 0.4, β = 2.5, σ = 1, are shown. We can see

that the performance of the LO detector and the performance of Saha’s detector is worse than the
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Fig. 4.6. Comparison of robustness measure.

proposed TD due to inaccurate noise estimation. Compared with the ROCs shown in Fig. 4.4, the

AUL of the LO detector is0.392dB (9.45% degradation) and the AUL of Saha’s detector is0.4dB

(9.65% degradation). The AUL of the proposed TD and the MF is 0, which shows that they are

immune to inaccuracy in noise pdf. In Fig. 4.7 (b), the ROCs based on accurate noise information

but an inaccurate estimation of the signal amplitude and phase, whereA = 0.12, φ = 0.1π, are

shown. We can observe that the proposed TD still performs slightly worse than the LO detector,

comparable to Saha’s detector, and significantly better than the MF. Compared with the ROCs shown

in Fig. 4.4, the AULs of the LO detector, the proposed TD, Saha’s detector, and the MF are0.022dB

(0.5% degradation),0.034dB (0.7% degradation),0.022dB (0.5% degradation), and0.018dB (0.4%

degradation), respectively. This reveals that the proposed TD, although is based on perfect signal

information, can bear inaccuracy in signal to some extent. In particular, we compare the robustness

of the proposed TD with Saha’s detector, which depends on both the noise and the signal. The

above simulation shows that the proposed TD is significantlymore robust to the noise pdf. As to

the robustness to the signal, the proposed TD is inferior, asexpected, but still comparable to Saha’s

detector.

4.4.2 Implementation Complexity

In this part, the implementation complexity of the proposedTD is discussed. The multiway switch

and the binary TS array can both be easily implemented in circuit design. The correlator is also easy
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Fig. 4.7. ROCs under inaccurate estimations of the noise pdfand the signal.

in implementation, since it is linear in both the absolute value of the signal|s[n]| and the TS output.

In addition, the structure of the proposed TD can be further simplified. In the proposed TD, an array

of TS’s instead of one TS is used becauses[n] can take different values, which requires different

binarization thresholds. Thus, for different samples in the signal sequence with the same value, the

same TS can be used. If the signal is DC, only one TS is needed and the multiway switch is not

necessary. In this case, the proposed TD structure reduces to the one we proposed in [56]. If the

signal is periodic and the sampling time is appropriate, we only need to consider the samples in one

period and the required number of TSs can be reduced. In general, based on the givens[n], we can

divide the range ofs[n]’s values into groups. For example, thes[n]’s whose value is betweenC − ǫ

andC + ǫ can be put into one group and the TS with binarization threshold C/2 is applied, where

C is a constant andǫ is a positive scalar. This reduces the implementation complexity with some

penalty on the performance. One can balance performance andcomplexity by adjusting the number

of groups.

For the LO detector, in general, theg(x) component in (1.13) is nonlinear in the observations,

and its implementation can be highly complicated. Further,since it requires perfect noise pdf infor-

mation, its complexity even increases if the noise pdf estimation component is taken into account.

Saha’s detector in [6] is simple in implementation, but it also requires noise pdf estimation and, in

addition, a numerical optimization of the three-level TS threshold [69]. Hence it may be even more

complicated in implementation than the LO detector.

4.4.3 Region of Validity

The proposed TD is applicable for noises with zero-mean, unimodal, and symmetric pdf. However,

it may not perform efficiently for all noises in this category. Therefore, it is helpful to address the
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validity of the proposed TD corresponding to the form and theparameters of the noise pdf. Using

the MF as the benchmark, we define the validity of the proposedTD based on whether it has a higher

detection probability than the MF. Accordingly, for a giventype of noise pdf, the validity region is

defined as the set of the parameters of the noise pdf with whichthe proposed TD is superior to the

MF.

In general, theoretical derivation of the validity region is difficult because for a certain noise pdf,

the close-form of the ROC is usually unavailable. We often need to resort to numerical method and

conduct simulation for a large number of noise pdf parameters and signal forms. Nevertheless, we

show in the following theorem that when the signal is weak, and the number of samples is large, the

validity region reduces to a simple form, which is independent of the signals[n], PFA, and for some

cases, even the noise varianceσ2.

Theorem 4.3. If |s[n]| ≪ σ andN ≫ 1, the validity region of the proposed TD with respect to

the MF is independent of the signal sequences[n]’s andPFA, and can be approximated as the set of

noise pdf parameters that satisfyfW (0) > 1
2σ .

Proof. To find the validity region, we need to solve

PTD
D > PMF

D ⇔ Q

(
σ0Q

−1(PFA) + µ0 − µ1

σ1

)

> Q



Q−1(PFA) −

√
∑N−1

n=0 s2[n]

σ2



 .

(4.33)

Using (4.19), we can recast (4.33) as

Q



Q−1(PFA) − 2vfW (0)
√

v − uf2
W (0))

)



 > Q

(

Q−1(PFA) −
√

v

σ

)

, (4.34)

wherev, u are defined in (4.20). Since|s[n]| ≪ σ, ignoring the second order termuf2
W (0) in (4.34),

we have

Q
(
Q−1(PFA) − 2fW (0)

√
v
)

> Q

(

Q−1(PFA) −
√

v

σ

)

⇔ fW (0) >
1

2σ
.

Theorem 4.3 shows that the validity region only depends onfW (0) andσ, but is independent of

PFA ands[n]. For the GM noise and the GG noise, we further investigate thevalidity region in the

following corollary and show that it is also independent ofσ.

Corollary 4.1. For the GM noise, the validity region of the proposed TD is

{

(α, β)

∣
∣
∣
∣

√

α + (1 − α)β2

(

α +
1 − α

β

)

>

√
π

2

}

. (4.35)
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For the GG noise, the validity region of the proposed TD is

{β |β ∈ [0.42, 1]} . (4.36)

For both cases, the validity region of the proposed TD is independent of the noise variance.

Proof. For the GM noise in (3.38), according to Theorem 4.3, we have

fW (0) >
1

2σ
⇔ fW (0) =

c

σ
√

2π

(

α +
1 − α

β

)

>
1

2σ

⇔ c√
2π

(

α +
1 − α

β

)

>
1

2
⇔

√

α + (1 − α)β2

(

α +
1 − α

β

)

>

√
π

2
.

Similarly, for the GG noise in (4.15), we have

fW (0) >
1

2σ
⇔ fW (0) =

c1(β)

σ
>

1

2σ

⇔ c1(β) =
Γ1/2

(
3
2 (1 + β)

)

(1 + β)Γ3/2
(

1
2 (1 + β)

) >
1

2
⇔ {β|β ∈ [0.42, 1]}.

Corollary 4.1 provides a simply way to calculate the validity regions for the two noise pdf’s. In

the remaining of this subsection, we show simulation results on the region of validity.

First, for the GM noise, we justify the analytical results inTheorem 4.3 and Corollary 4.1.

We setPFA = 0.1 andN = 100, and simulate the validity regions for three detection problems.

Problem I: sinusoidal signal (4.13) in GM noise withσ2 = 1; Problem II: sinusoidal signal (4.13)

in GM noise withσ2 = 4; and Problem III: random signal (4.14) in GM noise withσ2 = 1. For all

problems, we obtainPTD
D ’s from simulation for different(α, β)’s, and determine the validity regions

by PTD
D > PMF

D = 0.2828. These validity regions are compared with the analytic result, which

is calculated using (4.35) in Corollary 4.1. The validity regions are shown in Fig. 4.8, where the

ones for Problems I, II, III, and Corollary 4.1 are marked as red, green, blue, and gray, respectively.

For better demonstration, we shape the regions by the order of analytical region (gray), Problem III

(blue), Problem II (green), and Problem I (red) due to the size of the regions. It is observed that the

borders of the validity regions of all three problems are almost the same and match the analytical

one obtained from (4.35) precisely. Comparing the validityregions of Problem I and Problem II, we

see that the validity region is independent of noise variance σ2. Comparing the validity regions of

Problem I and Problem III, we see that the validity region is independent of signals[n]. Comparing

the validity regions obtained from simulation and the analytical one, we see that the (4.35) is a sound

approximation in determining the validity region of the proposed TD.

We then turn to the GG noise. We consider the detection of the sinusoidal signal (4.13) in GG
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Fig. 4.8. The validity regions for different detection problem with GM noise.

noise withσ2 = 1, obtainPTD
D for differentβ by simulation, and show them in Fig. 4.9. It can

be observed that the validity region is about{β|β ∈ [0.44, 1]} obtained from{β|PTD
D > PMF

D =

0.2828}, wherePMF
D is calculated from (4.10). This is close to the result (4.36)in Corollary 4.1,

which is{β|β ∈ [0.42, 1]}.

4.5 Conclusions

In this chapter, we proposed a low-complexity threshold system based detector to detect any known

deterministic signal embedded in independent unknown non-Gaussian noise. We assumed that the

noise pdf is unimodal and symmetric, the signal is small compared to the noise variance, and there

are a large number of samples. The optimality of the two partsof the proposed detector, the binary

threshold system and the correlator, was proved. The detection probability and the ROC of the

proposed TD were investigated both analytically and numerically. For noises with heavy pdf tails,

simulation showed that the performance of the proposed TD approaches that of the LO detector and

Saha’s detector, the design of which need exact noise pdf information, and is much better than the

MF. Through a robustness measure, we showed that the proposed TD is highly robust to the noise

pdf. On the other hand, its robustness to the signal is inferior but comparable to the LO detector

and Saha’s detector. The implementation complexity of the proposed detector was discussed and

compared with other detection designs. The validity regionof the proposed detector was defined
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and analyzed using the MF as the benchmark.

Appendix 4.A Proof of Theorem 4.1

Without loss of generality, we assume thatx[n] ≥ 0 and show that the binarization thresholdτ =

s[n]/2 maximizes the AUC. The case ofx[n] < 0 can be proved similarly.

Sincex[n] ≥ 0, TS1(τ) is applied. With the binarization thresholdτ , we definep0(τ) andp1(τ)

as follows:

p0(τ) , P(Y [n] = 1; H0) =

∫ ∞

τ

fX(x; H0)dx, (4.37)

p1(τ) , P(Y [n] = 1; H1) =

∫ ∞

τ

fX(x; H1)dx. (4.38)

SincefX(x; H0) = fW (w), fX(x; H1) = fW (w − s[n]) ands[n] ≥ 0, fX(x; H1) is a right shift

of fX(x; H0) by s[n]. Thus,p0(τ) ≤ p1(τ) for all τ ’s.

The TS outputy[n] has two possibilitiesy[n] = 0 or y[n] = 1, based on which we will decide

onH0 or H1. Therefore the likelihood ratio values of the binary detection problem are as follows:

L(y[n] = 0) =
P(y[n] = 0; H1)

P(y[n] = 0; H0)
=

1 − p1(τ)

1 − p0(τ)
,

L(y[n] = 1) =
P(y[n] = 1; H1)

P(y[n] = 1; H0)
=

p1(τ)

p0(τ)
.
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Since0 < p0 ≤ p1 < 1, we have0 < L(y[n] = 0) ≤ 1 ≤ L(y[n] = 1), and the decision rule of

the binary detection problem is

δ(y[n]) =







H1 if L(y[n]) > γ

H0 if L(y[n]) < γ

H0 or H1 if L(y[n]) = γ

. (4.39)

If γ < L(y[n] = 0), we havePFA = 1 andPD = 1. If L(y[n] = 0) < γ < L(y[n] = 1), we have

PFA = p0(τ) andPD = p1(τ). If γ > L(y[n] = 1), we havePFA = 0 andPD = 0. With the

help of randomization decision functions, the ROC of the detection problem is the combination of

the segment from(0, 0) to (p0(τ), p1(τ)) and the segment from(p0(τ), p1(τ)) to (1, 1).
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Fig. 4.10. ROCs of the TS with differentτ .

Now we show that whenτ = s[n]/2, the AUC is the largest. Denote the(0, 0) point in the

PFA − PD square asO, the (1, 1) point asI, and the
(

p0

(
s[n]
2

)

, p1

(
s[n]
2

))

point asA, which

are shown in Fig. 4.10. For anotherτ 6= s[n]/2, denote the(p0 (τ) , p1 (τ)) point asB. It is thus

sufficient to show that the area of△OAI is no smaller than that of△OBI.

Without loss of generality, assume thatτ > s[n]/2. The other case can be proved similarly.

Note thatp0(τ) andp1(τ) are decreasing functions ofτ . Define∆p0 , p0

(
s[n]
2

)

− p0(τ) =
∫ τ

s[n]/2
fW (w)dw and∆p1 , p1

(
s[n]
2

)

− p1(τ) =
∫ τ

s[n]/2
fW (w − s[n])dw. SincefW (w) is

symmetric atw = 0 and unimodal, we havefW (w − s[n]) ≥ fW (w) for s[n]
2 < w < τ , and hence

∆p1 ≥ ∆p0. This means that the pointB is on or under the segment CD in Fig. 4.10, where segment
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CD includes pointA and is parallel to the segmentOI. Thus, the area of△OAI is no smaller than

that of△OBI.

Appendix 4.B Proof of Theorem 4.2

For the binary detection problem with observationy, the optimal test is the LRT, defined as

L(y) =
P(y; H1)

P(y; H0)

H1

R
H0

η′. (4.40)

Since entries ofy are independent, we have

L(y) =

N−1∏

n=0

P(y[n]; H1)

P(y[n]; H0)
=

N−1∏

n=0

L(y[n]), (4.41)

whereL(y[n]) , P(y[n];H1)
P(y[n];H0)

.

Notice thaty[n] only takes 0 or 1, we calculate the values ofL(y[n]) for y[n] = 1 andy[n] = 0,

respectively. First, we consider the case ofs[n] ≥ 0, for which the optimal TS isTS1

(
s[n]
2

)

.

BecausefX(x; H1) = fX(x − s[n]; H0), fX(x; H0) = fW (w), andfW (w) is unimodal and sym-

metric atw = 0, we have

P(y[n] = 1; H1)=

∫ ∞

s[n]
2

fX(x; H1)dx =

∫ ∞

− s[n]
2

fX(x; H0)dx =

∫ ∞

− s[n]
2

fW (w)dx

=

∫ ∞

0

fW (w)dw +

∫ 0

− s[n]
2

fW (w)dw =
1

2
+

∫ s[n]
2

0

fW (w)dw,

P(y[n] = 1; H0)=

∫ ∞

s[n]
2

fX(x; H0)dx =

∫ ∞

0

fW (w)dw −
∫ s[n]

2

0

fW (w)dw =
1

2
−
∫ s[n]

2

0

fW (w)dw,

P(y[n] = 0; H1)=1 − P(y[n] = 1; H1) =
1

2
−
∫ s[n]

2

0

fW (w)dw,

P(y[n] = 0; H0)=1 − P(y[n] = 1; H0) =
1

2
+

∫ s[n]
2

0

fW (w)dw.

For small signal, i.e.,|s[n]| ≪ σ, we have

P(y[n] = 1; H1) ≈ 1
2 + s[n]

2 fW (0), P(y[n] = 1; H0) ≈ 1
2 − s[n]

2 fW (0),

P(y[n] = 0; H1) ≈ 1
2 − s[n]

2 fW (0), P(y[n] = 0; H0) ≈ 1
2 + s[n]

2 fW (0),
(4.42)
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and thus

lnL(y[n] = 1)≈ ln

(
1
2+

s[n]
2 fW (0)

1
2−

s[n]
2 fW (0)

)

= ln (1 + s[n]fW (0)) − ln (1 − s[n]fW (0))

= s[n]fW (0) − (−s[n]fW (0)) + O
((

s[n]fW (0)
)2) ≈ 2s[n]fW (0),

lnL(y[n] = 0)≈ ln

(
1
2−

s[n]
2 fW (0)

1
2+

s[n]
2 fW (0)

)

≈ −2s[n]fW (0).

(4.43)

Now, for the case ofs[n] < 0, the optimal TS isTS2

(
s[n]
2

)

. Similarly, we can show that

P(y[n] = 1; H1) =
1

2
+

∫ − s[n]
2

0

fW (w)dw,

P(y[n] = 1; H0) =
1

2
−
∫ − s[n]

2

0

fW (w)dw,

P(y[n] = 0; H1) = 1 − P(y[n] = 1; H1) =
1

2
−
∫ − s[n]

2

0

fW (w)dw,

P(y[n] = 0; H0) = 1 − P(y[n] = 1; H0) =
1

2
+

∫ − s[n]
2

0

fW (w)dw.

For small signal, i.e.,|s[n]| ≪ σ, we have

P(y[n] = 1; H1) ≈ 1
2 − s[n]

2 fW (0), P(y[n] = 1; H0) ≈ 1
2 + s[n]

2 fW (0)

P(y[n] = 0; H1) ≈ 1
2 + s[n]

2 fW (0), P(y[n] = 0; H0) ≈ 1
2 − s[n]

2 fW (0),
(4.44)

and thus

lnL(y[n] = 1)≈ ln

(
1
2 +

s[n]
2 fW (0)

1
2−

s[n]
2 fW (0)

)

≈ −2s[n]fW (0),

lnL(y[n] = 0)≈ ln

(
1
2−

s[n]
2 fW (0)

1
2 +

s[n]
2 fW (0)

)

≈ 2s[n]fW (0).
(4.45)

Combining (4.43) and (4.45), for anys[n], we have

lnL(y[n] = 1) ≈ 2|s[n]|fW (0), lnL(y[n] = 0) ≈ −2|s[n]|fW (0). (4.46)

Note that the values oflnL(y[n] = 1) andlnL(y[n] = 0) are independent ofx[n] but only depend

on the signal|s[n]| and the value of the noise pdf at 0.

For a giveny vector, letD be the number of 1’s iny. The number of 0’s is thusN − D. From

(4.41) and (4.46), we have

lnL(y)≈ 2




∑

{n|y[n]=1}
|s[n]| −

∑

{n|y[n]=0}
|s[n]|



 fW (0)
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= 2




∑

{n|y[n]=1}
|s[n]| −





N−1∑

n=0

|s[n]| −
∑

{n|y[n]=1}
|s[n]|







 fW (0)

= 4
∑

{n|y[n]=1}
|s[n]|fW (0) − 2

N−1∑

n=0

|s[n]|fW (0)

= 4

(
N−1∑

n=0

|s[n]|y[n]

)

fW (0) − 2

N−1∑

n=0

|s[n]|fW (0). (4.47)

Note that the second term in (4.47) andfW (0) are constants, independent of the hypotheses and the

observation, Thus from (4.40), the optimal test rule becomes

T TD(y) ,
1

N

N−1∑

n=0

y[n]|s[n]|
H1

R
H0

η,

which shows that the proposedT TD(y) is the optimal test statistic.
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Chapter 5

Optimal Design and Noise-Enhanced

Effect for Binary Threshold Detector

under AUC Measure

This chapter considers the binary threshold system (TS) based detector for a general binary testing

problem. First, the optimal binary TS that maximizes AUC is derived. Then the noise-enhanced

effect is investigated. The optimal noise that can achieve the maximum AUC is derived and shown

to be deterministic. An example is shown to justify the derived results.

5.1 Introduction

As explained in Sec. 1.4, threshold system (TS) based detector, or TD in short, is one widely used

suboptimal detector for detection problems with non-Gaussian noise [11], [56], [58]. For a DC

signal detection with known noise, Chapeau-Blondeau in [11] proposed a maximum a-posteriori

probability detector for a given binary TS, but did not address the optimal design of the TS. We

filled this gap in Chap. 3 to design the optimal TS using NP criterion. In Chap. 4, for an arbitrary

known signal detection in non-Gaussian noise with unknown pdf, we proposed an optimal TD and

analyzed its properties. In this chapter, we consider a general multiple dimensional binary detection

problem, and derive the optimal composite binary TS that maximizes the AUC, where AUC stands

for the area under the receiver operating characteristic (ROC) curve.

We also investigates the noise-enhanced effect in this binary TD. The idea of noised-enhanced

effect arises from the phenomena that the noise sometimes can play a constructive role. For example,

when paddlefish try to catch a bug, its perceptive abilities are improved if an external noise is added

in his ambient environment [13]. Many other interesting noise-enhanced examples can be found in
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[12], [13]. In the context of signal detection, noised-enhanced effect refers to improved performance

obtained from injecting additional independent “noise" into the observation [16]–[20]. Kay in [16]

showed that when the threshold of the binary TS in a TD is not optimal, for a givenPFA, PD of the

TD can be increased by adding WGN. Kay et al. also calculated the optimal pdf for minimizing the

probability of decision error under Bayesian criterion [17]. For a general binary detection problem

with an arbitrarily given detector, under the NP criterion,Chen et al. [18], [19] and Patel [20]

investigated the noise-enhanced effect and derived the optimal pdf form of the noise. However, the

results suffer the following disadvantages. The derived optimal noise pdf is implicitly represented

as a function of the conditional probabilities, which in general are difficult to be obtained in closed-

form. An numerical method for finding the optimal noise pdf was proposed in [20]. But it is

computationally expensive. With the NP criterion, the optimal noise pdf depends on the desired

level of PFA. This adds on more computational cost, especially for applications with changing

environment or requirements.

In this chapter, for a general binary detection problem withbinary TD, we derive the optimal TD

and the noise pdf for the best noise-enhanced effect under the AUC measure. A simple closed-form

of the optimal noise pdf is derived. The computational cost in finding the optimal noise is very low.

The properties of the noise-enhanced effect are also discussed. An illustrative example is presented

as well.

5.2 Problem Statement and AUC Measure

In this section, we introduce the detection problem, the binary TD structure, and the AUC measure.

5.2.1 Detection Problem and Detector Structure

We recast the BHTP in (1.1) as







H0 : X ∼ fX(x; H0) , f0(x)

H1 : X ∼ fX(x; H1) , f1(x)
, (5.1)

whereX represents theN -dimensional observation,fX(x; Hi), i = 0, 1 are the pdf’s ofX under

hypothesesHi, i = 0, 1, abbreviated asfi(x), i = 0, 1 for later convenience.

For this detection problem, we will use a binary TD with possible noise-enhanced effect. The

structure is shown in Fig. 5.1. First anN -dimensional noiseV is added to the original observation

X to produce the new observationU. ThenU is applied to the binary TS and converted into a binary

signalY ∈ {0, 1}. Finally a decisionH1 or H0 will be made based on the ruley
H1

R
H0

η.

In this detector design, we use a multiple-dimensional composite binary TS as the test statistic for
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its low complexity. For a binary testing problem, the optimal test statistic is the LR, which requires

f0(x) andf1(x) to be perfectly known. When there are unknown parameters, the generalized LR can

be used. These detectors however generally have high complexity and low robustness [1]. Binary

TD, other than its low complexity, has been shown to achieve good detectability and high robustness,

especially for noises with a heavy-tail pdf [58].

The noiseV is introduced to improve the detector performance, when possible, called the

noised-enhanced effect. Noise-enhanced effect in signal detection was first proposed in [16] and

further developed in [17], [18], [20].

Fig. 5.1. Noise-enhanced binary TS based detector.

Here are the detailed formulation of different parts of the proposed noise-enhanced TD. Let

fV(x) be the pdf of the additional noiseV. SinceU = X + V, we have

fU

0 (u) , fU(u; H0) = f0(u) ∗ fV(u) =

∫

RN

f0(u − x)fV(x)dx,

fU

1 (u) , fU(u; H1) = f1(u) ∗ fV(u) =

∫

RN

f1(u − x)fV(x)dx,

wherefU

i (u) is the pdf ofU underHi for i = 0, 1 and∗ stands for convolution. The function of

the binary TS can be expressed as

Y = T (u) =







1 u ∈ D
0 elsewhere

, (5.2)

whereD is a subset inRN . This binary TS is a high-dimensional generalization of thecomposite

binary TS in (2.2). The decision of the TD can be represented by the critical function:

φ(u, η) =







1 : T (u) > η

ν : T (u) = η

0 : T (u) < η

, (5.3)

whereν ∈ [0, 1].

69



The detection probability and false alarm probability can be calculated as

PD(η) =

∫

R

φ(u, η)fU

1 (u)du =

∫

RN

φ(u, η)

(∫

RN

f1(u − x)fV(x)dx

)

du

=

∫

RN

fV(x)

(∫

RN

φ(u, η)f1(u − x)du

)

dx =

∫

RN

fV(x)F1(x, η)dx, (5.4)

PFA(η) =

∫

RN

fV(x)

(∫

RN

φ(u, η)f0(u − x)du

)

dx =

∫

RN

fV(x)F0(x, η)dx, (5.5)

where we define

Fi(x, η) ,
∫

RN

φ(u, η)fi(u − x)du, (5.6)

for i = 0, 1. Note that ifV = 0 (no added noise), we haveU = X, and thus

PD(η) = F1(0, η) PFA(η) = F0(0, η). (5.7)

The detection model is a general one since it applies to problems of any dimension with any

conditional probabilities. The binary TS model is also a general one, which includes the TS’s used

in [16]–[18], [56], [58] as 1-dimensional special cases.

5.2.2 AUC Measure and Design Problems

One widely used criterion in signal detection is NP criterion. With NP criterion, the optimal TS

design depends on the given level ofPFA. In general, the optimization of the test statisticT (u)

is computationally costly and sensitive to the value ofPFA [1], [56]. Similar problems exists in

finding the best noise pdf for the noise-enhanced effect.

In this chapter, we use AUC as the performance measure to avoid the excessive computational

load and produce practical and robust designs. The AUC of a detector is defined as the area enclosed

by the curve(PFA, PD) together with the linesPD = 0 andPFA = 1. When bothPD(η) and

PFA(η) are continuous piecewise differentiable functions, this area can be calculated through either

AUC =

∫ 1

0

PDdPFA = −
∫ ∞

−∞
PD(η)

∂PFA(η)

∂η
dη (5.8)

or

AUC =
1

2
+

1

2

(∫ 1

0

PDdPFA −
∫ 1

0

PFAdPD

)

=
1

2
+

1

2

∫ ∞

−∞

(

PFA(η)
∂PD(η)

∂η
− PD(η)

∂PFA(η)

∂η

)

dη.

(5.9)

The latter formula follows from Green’s formula. When the functions involved are not continuous,

however, the two formulas are not equivalent anymore. In such cases, (5.8) often leads to incorrect
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answers.1 Nevertheless, one can verify through smoothing that (5.9) still gives the correct answer

even for discontinuousPD(η), PFA(η), due to the total cancellation of the ill-defined terms. In the

following we will use (5.9) whenever analytic calculation of AUC is needed.

AUC represents the average performance of the detector overall possiblePFA’s and is indepen-

dent of a particular one. The AUC is shown to be a valid measureof detection capacity [66], [67].

We use AUC as the performance measure for tractable design results and performance analysis.

With the AUC measure, the optimal TS and the optimal noise pdfare independent of thePFA level.

In this chapter, for the signal detection problem in (5.1), using the TD shown in Fig. 5.1, we

investigate the following two design problems:

1. When there is no added noise, design the optimal binary TS in the TD that maximizes the

AUC.

2. For a given TS, derive the optimal noise pdf for the TD that maximizes the AUC.

5.3 Optimal Binary TS Dedsign

We first consider the optimal binary TS design that maximizesthe AUC when there is no added

noise. Since the TS is binary, this is equivalent to the design ofD in (5.2).

Theorem5.1. The AUC maximizingD for the binary TS isDopt = {x : f1(x) ≥ f0(x)}. Equiva-

lently, the optimal binary TS that maximizes the AUC is

Y = T (x) =







1 x ∈ Dopt = {x : f1(x) ≥ f0(x)}
0 elsewhere

. (5.10)

Proof. For a TS specified in (5.2) and the critical function in (5.3),we have

φ(u, η) =







0 η > 1 or (0 < η ≤ 1,u /∈ D)

ν (η = 1,u ∈ D) or (η = 0,u /∈ D)

1 η < 0 or (0 ≤ η < 1,u ∈ D)

. (5.11)

1The underlying reason is that in such cases, the integrals involved become products of the Dirac delta function and
discontinuous functions. Such pairings are in general ill-defined.
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Definepi ,
∫

u∈A fi(u)du, i = 0, 1. Using (5.11) in (5.7) gives

(PFA, PD) =







(0, 0) η > 1

(p0, p1) 0 < η < 1

(1, 1) η < 0

(νp0, νp1) η = 1

(ν + p0(1 − ν), ν + p1(1 − ν)) η = 0

. (5.12)

Sinceν ∈ [0, 1], the ROC obtained from this TD is the combination of the two segments: the

segment from(0, 0) to (p0, p1), and the segment from(p0, p1) to (1, 1). With this ROC, we can

calculate that

AUC =
1

2
+ Area of triangle of△ (0, 0)(p0, p1)(1, 1) =

1

2
+

1

2
(p1 − p0).

Therefore, maximizing AUC is equivalent to maximizingp1 − p0. We have

Dopt = arg max
S⊂RN

(p1 − p0) = arg max
S⊂RN

∫

S
[f1(x) − f0(x)]dx = {x : f1(x) ≥ f0(x)} .

Remark 5.1. Straightforward calculation shows that in the above simplecase, Formula (5.8) gives

1
2 + p1−p0

2 + (ν − 1
2 )[(p1p0 + (1− p1)(1− p0)] which is wrong unlessν = 1

2 , while (5.9) gives the

correct answer as the extra terms cancel.

5.4 Optimal Noise-Enhanced Effect

In this section, we investigate the noise-enhanced effect and derive the optimal noise pdf that max-

imizes the AUC. With the additive noiseV, using (5.4) and (5.5) in (5.9), we have the following

AUC calculation.

AUC=
1

2
+

1

2

∫

R

(∫

RN

fV(x)F0(x, η)dx

)(∫

RN

fV(y)
∂F1(y, η)

∂η
dy

)

dη

−1

2

∫

R

(∫

RN

fV(x)F1(x, η)dx

)(∫

RN

fV(y)
∂F0(y, η)

∂η
dy

)

dη

=
1

2
+

1

2

∫

RN

∫

RN

fV(x)fV(y)

(∫

R

F0(x, η)
∂F1(y, η)

∂η
dη−

∫

R

F1(x, η)
∂F0(y, η)

∂η
dη

)

dxdy

=
1

2

∫

RN

∫

RN

fV(x)fV(y)H(x,y)dxdy, (5.13)
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where we define

H(x,y) , 1 +

∫

R

F0(x, η)
∂F1(y, η)

∂η
dη −

∫

R

F1(x, η)
∂F0(y, η)

∂η
dη. (5.14)

The noise pdf optimization problem is thus

arg max
fV(x)

1

2

∫

RN

∫

RN

fV(x)fV(y)H(x,y)dxdy (5.15)

s.t.
∫

RN

fV(x)dx = 1, fV(x) ≥ 0. (5.16)

The conditions in (5.16) are because thatfV(x) is a pdf.

Theorem5.2. For the binary TS given in (5.2), define

G(x) ,
∫

D
[f1(u − x) − f0(u − x)]du. (5.17)

Let xopt be the maximum point ofG(x), i.e.,

xopt = arg max
x

G(x). (5.18)

The optimal noise pdf that maximizes the AUC of the TD in Fig. 5.1 is

fVopt(x) = δ(x − xopt), (5.19)

whereδ(·) is the Kronecker delta function.

Proof. Using (5.11) in (5.6) gives

Fi(x, η) =







0 η > 1
∫

u∈D νfi(u− x)du η = 1
∫

u∈D fi(u − x)du 0 < η < 1
∫

u∈D fi(u − x)du +
∫

u/∈D νfi(u − x)du η = 0

1 η < 0

.

We then have

−∂Fi(x, η)

∂η
=

[∫

u∈D
fi(u− x)du

]

δ(η − 1) +

[∫

u/∈D
fi(u − x)du

]

δ(η).
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Thus

−
∫

R

F1(x, η)
∂F0(y, η)

∂η
dη

=F1(x, 1)

∫

u∈D
f0(u− y)du + F1(x, 0)

∫

u/∈D
f0(u − y)du

=ν

∫

u∈D
f1(u − x)du

∫

u∈D
f0(u − y)du +

∫

u∈D
f1(u − x)du

∫

u/∈D
f0(u − y)du

+ ν

∫

u/∈D
f1(u − x)du

∫

u/∈D
f0(u − y)du

=ν

[∫

u∈D
f1(u − x)du

∫

u∈D
f0(u − y)du +

∫

u/∈D
f1(u − x)du

∫

u/∈D
f0(u − y)du

]

+

∫

u∈D
f1(u − x)du −

∫

u∈D
f1(u − x)du

∫

u∈D
f0(u − y)du

=

∫

u∈D
f1(u− x)du + ν

∫

u/∈D
f1(u − x)du

∫

u/∈D
f0(u − y)du

− (1 − ν)

∫

u∈D
f1(u − x)du

∫

u∈D
f0(u − y)du.

(5.20)

Similarly, we can show that,

∫

R

F0(x, η)
∂F1(y, η)

∂η
dη = −

∫

u∈D
f0(u − x)du − ν

∫

u/∈D
f1(u − y)du

∫

u/∈D
f0(u − x)du

+ (1 − ν)

∫

u∈D
f1(u − y)du

∫

u∈D
f0(u − x)du.

(5.21)

Now using (5.20) and (5.21) in (5.14), we have

H(x,y) =
1

2
+

∫

u∈D
[p1(u − x) − p0(u − x)] du + K(x,y), (5.22)

where

K(x,y) , ν

∫

u/∈D
f1(u − x)du

∫

u/∈D
f0(u − y)du − (1 − ν)

∫

u∈D
f1(u− x)du

∫

u∈D
f0(u − y)du

−ν

∫

u/∈D
f1(u − y)du

∫

u/∈D
f0(u− x)du + (1 − ν)

∫

u∈D
f1(u− y)du

∫

u∈D
f0(u − x)du

It can be shown straightforwardly thatK(x,y) is skew-symmetric, i.e.,K(x,y) = −K(y,x). Now

we calculate the object function (5.15) using (5.22). Because the integral of the skew-symmetric

terms is zero, we have

AUC =

∫

RN

∫

RN

fV(x)fV(y)H(x,y)dxdy =
1

2
+

∫

RN

fV(x)G(x)dx, (5.23)
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whereG(x) is defined in (5.17). By using Holder’s inequality,

∫

RN

fV(x)G(x)dx ≤ ||fV(x)||1||G(x)||∞ = max G(x)

with equality whenfVopt(x) = δ(x − xopt) wherexopt is defined in (5.18).

This theorem says that the optimal addedV is deterministic, whose value (anN -dimensional

vector) is thexopt defined in (5.18). This is equivalent to conduct an optimal mean shift on the

observation for the largest AUC. This is due to the binary TS in the TD, which functions as the test

statistic of the problem. Once the structure of the delta function of the optimal pdf is found, the

determination of the optimal point is straightforward. Thus, the main contribution of the theorem is

to discover that the optimalV is deterministic. Note thatxopt may not be unique. Anyxopt that

leads to the same maximumG(x) will have identically maximum AUC.

From the proof of Theorem 5.2, for a deterministic added noisev, we have, from (5.23),

AUC =
1

2
[1 + G(v)]. (5.24)

We can thus determine whether noise-enhanced effect existsby comparingG(v) with G(0).

Corollary 5.1. (Existence of noise-enhanced effect)

1. Forv ∈ R
n, if G(v) > G(0), the AUC of the TD will be improved by adding the constantv.

2. If the TS is designed to be optimal as in Theorem 5.1, the AUCof the TD cannot be increased

via adding noise.

Proof. The first part of the corollary can be seen directly from the AUC formula in (5.24). Now we

prove the second part. It has been shown in Theorem 5.2 that the best noise is deterministic. With

the optimal TS design in Theorem 5.1,G(0) is the maximum ofG(v), thus the AUC can no long be

improved by anyv.

Corollary 5.1 shows that the AUC can be increased via adding noise if G(0) is not the global

maximum. It also shows that if the TS is designed to be optimal, adding noise will not improve the

AUC. For some non-optimal TS, if itsG(0) is the global maximum point, we also cannot increase

its AUC.

Now we discuss how to findxopt defined in (5.18), the global maximum point ofG(x). First,

candidatexc’s should satisfyG′(xc) = 0 andG′′(xc) < 0. Thus we first solvexc’s from G′(xc) =

0 andG′′(xc) < 0, thenxopt is one of thexc’s resulting in the largest value ofG(x). This can be

done efficiently using standard numerical algorithms such as Newton’s method.
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In [18], [19], the noised-enhance effect was investigated under NP criterion. In this letter, we

investigate the same problem under the AUC measure. In [18],[19], for a general given test statistic,

the optimal noise pdf under NP criterion was proved to be a combination of maximum two delta

functions. Although the noise pdf structure was found, closed-form is rarely available. In this work,

we derived the optimal noise pdf in a semi-closed form, the calculation of which is significantly

simpler. Under the NP criterion, the optimal noise pdf changes withη andPFA, and hence the

design is sensitive toη andPFA. AUC leads to an optimal noise that is independent ofη andPFA,

and intuitively can be more sustainable to errors in the system. We would also like to note that for

a givenPFA and under perfect design, the proposed scheme may be inferior in PD to those in [18],

[19] since the goal of the proposed noise-enhanced TD is to maximize the AUC not thePD for a

particularPFA.

5.5 An Example

In this section, we use an example to illustrate the results in Secs. 5.3 and 5.4. We consider the

detection of a DC signal in bimodal GM noise, as in Sec. 3.5.2,wherefX(x; Hi), i = 0, 1 are

shown in (3.41) and (3.42) withA = 0.5, µ = 3 andσ = 1. The optimal TS, denoted as TSopt, can

be derived using Theorem 5.1 to be

TSopt : Y =







1 x ∈ [τ1, τ2] ∪ [τ3,∞)

0 elsewhere
, (5.25)

whereτ1 = −2.75, τ2 = 0.25, andτ3 = 3.25. That isDopt = [−2.75, 0.25]∪ [3.25,∞).

First we consider the TD with TSopt. We can calculate theG(x) according to (5.17) to be

G(x) =
1

2

3∑

i=1

(−1)i−1

[

Q

(
τi − 3.5 − x

σ

)

− Q

(
τi − 3 − x

σ

)

+Q

(
τi + 2.5 − x

σ

)

− Q

(
τi + 3 − x

σ

)]

.

(5.26)

Solving G′(xc) = 0 subject toG′′(xc) < 0 numerically, we havexc ∈ {±6.04, 0}. Since

G(6.04) = G(−6.04) = 0.0975, G(0) = 0.1945, we havexopt = 0. This justifies the second

part of Corollary 5.1 that noise-enhanced effect cannot occur if the TD is optimal.

Next, we consider the TD with a non-optimal TS, denoted as TSnopt, given by

Y =







1 x ≥ 0

0 elsewhere
. (5.27)
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According to (5.17), for this case, we have

G(x) =
1

2

[

Q

(−3.5 − x

σ

)

− Q

(−3 − x

σ

)

+ Q

(
2.5 − x

σ

)

− Q

(
3 − x

σ

)]

. (5.28)

Solving G′(xc) = 0 subject toG′′(xc) < 0, we obtain two candidate points for the maximum:

{−3.25, 2.75}. SinceG(−3.25) = G(2.75) = 0.0987, We have two optimal solutions:xopt =

−3.25 or xopt = 2.75. They both result in a higherG value thanG(0) = 0.0024. Based on the first

part of Corollary 5.1, the noise-enhanced effect appears.

We can analytically find the ROCs of the TD for the six cases: 1)using TSopt, 2) using TSnopt,

3) using TSnopt and addingVopt = −3.25, 4) using TSnopt and adding the optimal WGN with

pdf fV(x) = N (x; 0, σ2), 5) using TSnopt and adding the optimal noises under NP criterion for

PFA = 0.1, and 6) using TSnopt and adding the optimal noises under NP criterion forPFA = 0.5,

respectively. For Case 4, by adding the Gaussian noise, we have

f0(x) =
1

2
N (x; 3, 1 + σ2) +

1

2
N (x;−3, 1 + σ2),

f1(x) =
1

2
N (x; 3.5, 1 + σ2) +

1

2
N (x;−2.5, 1 + σ2).

We can calculate the the optimalσ to be,

σopt = argmax
σ

AUC = arg max
σ

∫ ∞

0

(f1(x) − f0(x))dx = 2.81.

For Case 5, we havefVopt(v) = δ(v + 3.86); For Case 6,fVopt(v) = 0.4012δ(v + 3.25) +

0.5988δ(v − 2.75) using results in [18].

The ROCs of the 6 detectors are shown in Fig. 5.2. We can see that when using TSopt, the AUC

is 0.5975 which is larger than the AUC of using TSnopt, which is 0.5015. This justifies Theorem

5.1. When TSnopt is used, noise-enhanced effect happens by addingVopt. The AUC of using TSnopt

andVopt is 0.5494, which is lower than that of TSopt. This is because the structure of TSnopt is not

optimal. With TSnopt, adding the best deterministicVopt is better than adding the best WGN, whose

AUC is 0.5202. This justifies Theorem 5.2. Finally, under NP criterion [18], differentV NP
opt ’s are

needed for differentPFA’s, which is shown in the previous paragraph. At the specificPFA value,

the achievedPD using V NP
opt is higher than that usingVopt (see thePD whenPFA = 0.1 and

V NP
opt calculated forPFA = 0.1 is added, and the one whenPFA = 0.5 andV NP

opt calculated for

PFA = 0.5 is added). However, addingVopt achieves a AUC no smaller than addingV NP
opt . Also,

at otherPFA values, thePD obtained via addingV NP
opt may be lower than that one via addingVopt

(e.g.,PFA = 0.2).
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Fig. 5.2. ROC’s obtained from the optimal TS, the non-optimal TS, adding optimal noiseVopt under AUC criterion, adding
optimal WGN, addingV NP

opt under NP criterion forPF A = 0.1 andPF A = 0.5, respectively.

5.6 Conclusions

In this chapter, we investigated the general BHTP using a binary TD. We adopted the AUC as the

performance measure for its implementation simplicity androbustness. First the optimal multi-

dimensional binary TS that maximizes the AUC was derived. Then we considered noise-enhanced

effect of the detector. The optimal noise pdf that maximizesthe AUC was shown to be a delta

function, indicating that the optimal noise is deterministic. Performance of the proposed design was

shown via an example and comparisons with other designs weremade.
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Chapter 6

An Adaptive Bistable System Based

Detector for Watermark Extraction

In this chapter, we explore a bistable system (BS) based detector (BD) to detect a binary pulse

amplitude modulation (PAM) signal embedded in unknown non-Gaussian noise. This BD has been

used in discrete cosine transform (DCT) domain watermark extraction, where the watermark is the

signal embedded in the DCT coefficients, and the DCT coefficients are the noises. In existing BD

designs for watermark extraction, the BS parameters are determined using two methods: one is to

find a set of the parameter values from extraction experiments, and this fixed set is used for different

watermarks, images, and watermark extraction scenarios; the other is to obtain the best parameter

values from exhaustive search of the parameters. However, we demonstrate that one specific set

of BS parameter values may not provide good performance for different extraction cases. Also,

exhaustive search has prohibitively high computational complexity and is inapplicable for unknown

watermark sequence, i.e., blind watermark. To discover a tractable method for the BD design,

we propose to use the cross-correlation of the watermark signal and the output of the BS as the

performance measure, and the BS parameters are optimized for the maximum cross-correlation. Via

experiments, we observe that the 3-dimensional optimization of the BS parameters can be reduced

to a 1-dimensional optimization problem, which has reducedcomplexity. Further, when the noise

pdf is unimodal and symmetric and with heavy tails, another key observation based on experiments

is that the optimal BS parameters are sensitive to the variance of the noise and the amplitude of

the watermark only, but not other noise statistics, such as the pdf form and the watermark sequence.

Based on this observation, it is possible to generate a look-up table of the BS parameters for different

watermark amplitudes and noise variances. With the help of this look-up table, an adaptive BD

design is constructed, whose BS parameters are adaptive to the estimated amplitude of the watermark

and the variance of the DCT coefficients. Experimental results show that the performance of the
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proposed adaptive BD is superior to those of the existing BDsand the white Gaussian noise (WGN)-

based maximum likelihood (ML) detector.

6.1 Introduction

DCT-domain watermark extraction [38]–[42] can be considered as a BHTP, where the watermark

sequence is the signal and the DCT coefficients of the host image are the i.i.d. noise samples. Con-

sider a binary watermark sequence. When detecting a specificbit in the watermark, the signal is a

binary DC signal (0 or 1), or in general, a binary PAM signal with unknown amplitude. The noise,

which are the DCT coefficients of the host image, is shown to benon-Gaussian with heavy pdf tails

[44]. It is usually modeled as some pdf forms, such as generalized Gaussian or Cauchy in [43], [44].

This kind of non-Gaussian noise exhibits spikes and a good detector typically includes a nonlinear

limiter to reduce the noise spikes [1]. The BS can be a suitable limiter [28], [60]. Hence, the BD

composed of a BS and a summation has been employed in watermark extraction [38]–[42]. The

main results have been reviewed in Sec. 2.2.2.

It has been shown that BD can provide good performance in watermark extraction [38]–[42].

The BD design is to determine the BS parameters which is critical in obtaining a good extraction

performance. There are two methods in BS parameter design inthe literature. In the designs in

[38]–[40], [42], the BS parameters are fixed for different watermarked images and for watermarked

images suffered from different attacks such as JPEG compression and adding Gaussian noise. The

BS parameters are determined by experimental experiences.For example, one parameter set of the

BS is chosen if by some experiments it leads to a satisfied bit error rate (BER) in extraction [38],

[40]. Different works [38]–[40], [42] use different BS parameter values. The other was proposed

by Duan et al. in [41], [45] to obtain the appropriate BS parameters for the minimum BER using

exhaustive search. However, both of the aforementioned methods require the watermark sequence to

be known for the calculation of the BER in experiments or in exhaustive search. But the watermark

sequence is often not available in applications and the watermark is called a blind watermark. In

addition, for the first method, one fixed BS parameter set is not suitable for all scenarios in watermark

extraction. For the second method, exhaustive search suffers from high computational complexity.

To summarize, there is no systematic and practical method todesign the BS parameters for blind

watermark extraction in literature.

In this chapter, we first propose to use the cross-correlation of the watermark signal and the

output of the BS as the performance measure in designing the BS. The main advantage of using

cross-correlation measure to replace the BER measure in [38]–[42] is that the BS design is isolated

out of the overall BD. Although this may lead to some performance penalty, it largely simplifies the

design complexity so that the design can be used in real applications. It also leads to efficient extrac-
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tion for blind watermark as will be shown later in this chapter. The BER measure in [38]–[42] only

applies to applications with known watermark, and the BER-minimizing design is computationally

prohibitive for real applications. We investigate how the cross-correlation is affected by the BS pa-

rameters via experiments, based on which, we propose a tuning one parameter (TOP) technique to

determine the BS parameter values with manageable computational complexity. Furthermore, under

the cross-correlation measure, we observe that the BS parameter design is sensitive to the variance

of the noise and the amplitude of the signal only, not other statistics of the noise and the signal, such

as the noise pdf form and the specific (watermark) signal sequence. Hence, via off-line experiments,

we can generate a look-up table containing the desired BS parameters in term of different noise vari-

ances and signal amplitude values. We then design a BD whose BS parameters are adaptive to the

input (watermark image) based on the look-up table. It is illustrated that applying one BS parameter

set for various watermark extraction cases cannot guarantee performance and the proposed BD with

adaptive BS parameters performs better.

The organization of this chapter is as follows. In Sec. 6.2, we briefly review watermark embed-

ding and extraction using BD. In Sec. 6.3, we present the detection problem in watermark extraction,

and demonstrate the limitation of keeping the BS parametersunchanged for different scenarios. In

Sec. 6.4, we propose new BS design, including BS parameter optimization and the design of the

adaptive BS. We then present the simulation results in Sec. 6.5, followed by conclusions in Sec. 6.6.

6.2 Review of Watermark Embedding and Extraction Using BD

A watermarking scheme includes two stages: embedding and extraction. Note that the BD is used

only in the extraction. In this section, we present a brief review of the watermarking scheme and the

use of BD in watermark extraction [40].

6.2.1 Embedding Algorithm

The schematic of the watermark embedding algorithm [40] is shown in Fig. 6.1 (a). The host imageI

is divided intoK blocks, each with8×8 pixels. The DCT coefficients of thekth block also have size

8 × 8, which are zigzag scanned from low frequency to high frequency to obtain a one-dimensional

sequence denoted asXk, k = 1, 2, ..., K. The middler DCT coefficients inXk are denoted by

Xk
u(U1 ≤ u ≤ U2), whereU1 is the starting index,U2 is the ending index, andr = U2 − U1 + 1.

Xk
u ’s are then cascaded to generate a sequenceX with a length ofrK.

X is then permuted toV as follows. First, generate a random sequenceR with the same length

of X using a specific key. Second, generateR′ by sorting elements ofR in ascending order. Let

L contain the index of the ascendent ordering. Finally,V is obtained via permutingX by L. For

example,X = {10, 65, 43, 20}, R = {0.3,−0.1,−0.2, 3}, thenR′ = {−0.2,−0.1, 0.3, 3}, L =
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{3, 2, 1, 4}, andV = {43, 65, 10, 20}.

Assume thatw[m], m ∈ [1, M ] is a binary watermark sequence consisting of -1 and 1. Note

that a binary watermark should be a sequence of 0 and 1. Here 0 is converted to -1, such that the

least energy of watermark can be available for a required SNR. Every bit in w[m] is repeatedS

times to generate the sequences[n], i.e.,s[n] is {w[1], ..., w[1]
︸ ︷︷ ︸

S times

, w[2], ..., w[2]
︸ ︷︷ ︸

S times

, ..., w[M ], ..., w[M ]
︸ ︷︷ ︸

S times

},

n = 1, 2, ..., SM . Note thatSM ≤ rK should be satisfied to have enough DCT coefficients for

s[n] to be embedded.

The watermark embedding algorithm is given byXw[n] = v[n] + As[n], whereA is the wa-

termark amplitude,Xw is the watermarked DCT coefficients.Xw containsM segments, each of

which contains one watermark bit. The watermarked image is generated by replacing the original

DCT coefficients withXw[n], then conducting an inverse DCT transform.

(a) Embedding algorithm

(b) Extraction algorithm

Fig. 6.1. Schematic of the BD based watermarking scheme.

As an example, we consider the embedding of a16×16 binary “W” watermark shown in Fig. 6.2

(a) into the512 × 512 Lena image.w[m], m = 1, 2, ..., 256 is binary sequence obtained by zigzag

scanning the “W” watermark. LetA = 3, U1 = 9, U2 = 44, M = 256 andS = 500. Using the

embedding scheme in Fig. 6.1 (a), we have the watermarked Lena image shown in Fig. 6.2 (b).
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(a)16 × 16 binary watermark image (b) 512 × 512 watermarked Lena image

Fig. 6.2. Embedded watermark “W” and watermarked Lena image.

6.2.2 Extraction Algorithm

The schematic of watermark extraction is shown in Fig. 6.1 (b). The first two steps are exactly the

inverse of the last two steps of the embedding scheme. After them,Xw[n], the sequence containing

watermarked DCT coefficients, is obtained. A BD is followed to extract the watermark. TheXw[n]

is applied to a BS to obtain the outputy[n]. y[n] is the input to the internal detector, wherey[n] is

first partitioned intoM segments, each of which includesS samples corresponding to one bit of the

watermark, then a value is calculated for one segment as

µ[m] =

mS∑

n=(m−1)S+1

y[n]. (6.1)

The watermark bitw[m] is recovered by,

ŵ[m] =







1 µ[m] ≥ 0

−1 µ[m] < 0
. (6.2)

One evaluation of the extraction performance is the BER, defined as

BER ,
∑M

m=1 |w[m] − ŵ[m]|
2M

. (6.3)

BER∈ [0, 1]. Smaller BER means better extraction performance.
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6.3 Design Problems of BD in Watermark Extraction

In this section, we first model the watermark extraction as a BHTP in Sec. 6.3.1 and derive the

optimal ML detector that minimizes the probability of error. In Sec. 6.3.2, we demonstrate the

non-Gaussian nature of DCT coefficients, which motivates the use of BD. In Sec. 6.3.3, we show

that the means and variances of the segments in one watermarked image after certain attacks vary

significantly, which motivates the use of adaptive BS. Finally, in Sec. 6.3.4, we present the design

problems of the BS.

6.3.1 Detection Problem in Watermark Extraction and Optimal ML Detector

for WGN

In this subsection, we formulate the binary watermark extraction into a BHTP and represent the

optimal ML detector if the noise is WGN. In Sec. 6.2, we reviewed the watermark embedding

and extraction algorithms in [40]. The watermark bearing DCT coefficients sequenceXw[n] hasM

segments. Each segment hasS samples, and theseS samples in the same segment can be considered

as addingA if watermark is 1 or−A if watermark is 0 toS permuted DCT coefficients. Therefore,

the watermark extraction can be represented by a BHTP, shownas follows.







H0 : x[n] = −A + v[n] n = 1, 2, ..., S

H1 : x[n] = A + v[n] n = 1, 2, ..., S
. (6.4)

For this detection problem, we want to find a detector that minimizes the probability of error,

which is

Pe = P(H0|H1)P(H1) + P(H1|H0)P(H0), (6.5)

whereP(Hi|Hj), i, j = 0, 1 is the conditional probability of decidingHi whenHj is true. In blind

watermark extraction, the prior probability,P(H0) andP(H1), is usually considered equal, i.e.,

P(H0) = P(H1) = 1/2. Therefore, the optimal detector reduces to the maximum likelihood (ML)

detector, which is

L(x) =
fV(x − A)

fV(x + A)

H1

R
H0

1. (6.6)

To implement the ML detector in real applications, we need toknowfV (v). Here, the noiseV

is DCT coefficient of a host image. Its mean is 0, which can be shown from the definition of DCT

[70]. However, it is difficult to modelfV (v) as a specific pdf. The simplest way is to assume that

fV (v) = N (v; 0, σ2) [1], [9], based on which the ML detector reduces to

T (x) =

S∑

n=1

x[n]
H1

R
H0

0. (6.7)
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Since this detector is based on white Gaussian noise (WGN), we call it WGN-based ML detector.

Becausex[n]’s are Gaussian under eitherH0 or H1, the pdf of the output ofT (x) is also Gaussian.

Therefore, via straightforward calculations, we have

Pe =
1

2

[

P
(
T (x) > 0|H0

)
+ P

(
T (x) < 0|H1

)]

= Q

(

A
√

σ2/S

)

. (6.8)

For the example considered in Sec. 6.2, whereA = 3, σ2 = 100, andS = 500, we have

Pe = 9.85 × 10−12 from (6.8), which shows that errors occur very rarely.

The WGN-based ML detector is simple and easy to implemented.However, it is not optimal

whenV [n] is not Gaussian. It is used as a benchmark because other detectors have no use if they

cannot have superior performance to the WGN-based ML detector. Next, we will show that the

distribution of DCT coefficients is far from Gaussian, whichmotivates the use of BD instead of

WGN-based ML detector in watermark extraction.

6.3.2 Investigation on Noise Distribution and Motivation of Using BD
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(b) 161th segment

Fig. 6.3. Histograms of two segments inXw[n] of the watermarked image.

If the noise is white Gaussian, the ML detector is linear as shown in (6.7), and is optimal in the

sense of BER. But it has been shown in [43], [44] thatfV (v) is not Gaussian. It is bell-shaped with

heavy pdf tails. In this thesis, a bell-shape pdf is unimodaland symmetric about zero. Hence, if

the WGN-based ML detector is used, the performance is expected to be suboptimal and many time,

unsatisfactory. The non-GaussianfV (v) is modeled by generalized Gaussian distribution in [44] and

Cauchy distribution in [43]. Based on these models with estimated parameters, the corresponding

LO detectors were employed in watermark extraction, which are actually GLRTs. However, these

detectors are complex in implementation and have low robustness to changes in the noise pdf.
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In this subsection, we first show by experiments thatfV (v) is not Gaussian but has heavy pdf

tails. We then show that the distribution ofV [n] changes significantly after the watermarked Lena

image1 in Fig. 6.2 (b) is attacked by JPEG compression and Gaussian noise, which causes diffi-

culties for GLRT. We also show that BD can have a better performance than the WGN-based ML

detector. These motivate the use of BD in watermark extraction.

−40 −20 0 20 40
0

0.05

0.1

Value of sample

P
ro

ba
bi

lit
y

 

 

Estimated pdf
Gaussian

(a) First segment

−40 −20 0 20 40
0

0.05

0.1

Value of sample

P
ro

ba
bi

lit
y

 

 

Estimated pdf
Gaussian

(b) 161th segment

−40 −20 0 20 40
0

0.01

0.02

0.03

0.04

0.05

Value of sample

P
ro

ba
bi

lit
y

 

 

Estimated pdf
Gaussian

(c) Enlargement of the boxed area in (a)
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Fig. 6.4. pdfs of two segments inXw[n] and Gaussian pdfs.

We again use the example illustrated in Fig. 6.2, where watermark “W” is embedded in Lena

image. Fig. 6.3 shows the histograms of the samples of two segments (the 1st and 161th segments)

in Xw[n] corresponding to two embedded watermark bits with valuesA and−A respectively, where

A = 3. To show that the pdf of the DCT coefficients is not Gaussian, we plot the pdfs estimated2

from the two segments and the Gaussian pdfs with identical mean and variance in Fig. 6.4. We can

1Only the results from Lena image are presented in this thesis. We note that this claim applies for other watermarked
images.

2This is performed by Matlab function “[vBin,xOut]=hist(data,100)” to have the occurrence times xOut in the 100 bins
whose central values are in vBin. Then xOut is divided by the integral of (vBin,xOut) sequence and normalized xOut, denoted
as xOutnor, is obtained. The estimated pdf is the lines connecting the points (vBin,xOutnor).
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see that the pdfs of the DCT coefficients are largely different to Gaussian pdfs, but is approximately

unimodal and symmetic with heavy pdf tails, as stated in [43], [44].
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Fig. 6.5. Histograms and pdfs of two segments inXw[n] of the JPEG compressed watermarked image with quality of 50.

A good watermark scheme should be robust to attacks, such as JPEG compression, clipping,

adding Gaussian noise, adding pepper salt noise, etc. Now, we study the distribution of the DCT co-

efficients when the watermarked Lena image is attached by JPEG compression and adding Gaussian

noise, respectively. The histograms and pdfs along with theGaussian pdfs with the same means and

variances of the samples in the same two segments after the original watermarked image is attacked

by JPEG compression3 and Gaussian noise4, are shown in Figs. 6.5 and 6.6, respectively.

3The JPEG compression is performed by the Matlab function “imwrite(imageDate, ’savedFile’, ’JPEG’, ’Quality’, qual-
ityValue)”, which compresses the imageData into a JPEG image file named as “savedFile.jpg” with “Quality”=qualityValue.
The “Quality” is a number between 0 and 100, where a higher number induces higher quality (less image degradation due to
compression), but the size of the resulted “savedFile.jpg”is larger [71].

4The Gaussian noise is added into the watermarked image by using the Matlab function “imnoise (imageDate, ’gaussian’,
mean, variance)”. We choose zero mean and variance=0.03 in the illustrated example. The mean and variance parameters
for ’Gaussian’ noise are always specified as if the image wereof class double in the range [0, 1]. Therefore it can be shown
if the noise variance is 0.03, a quite strong noise is added tothe image when the noisy image is converted back to the same
class of the input [71].
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Fig. 6.6. Histograms and pdfs of two segments inXw [n] of the watermarked image added Gaussian noise with varianceof
0.03.

We can observe from Fig. 6.5 (c) and (d) that after JPEG compression, the pdfs less resemble

Gaussian pdfs. That is because when the watermarked image iscompressed, many DCT coefficients

are truncated to zero. As a consequence, both the watermark information embedded and the original

DCT coefficients degrade. Therefore, we observe that many samples are zeros and non-zero samples

are scattered. For the case of adding Gaussian noise, we can see from Fig. 6.6 (c) and (d) that the

distributions of the samples in these two segments are closeto Gaussian. This is because the added

Gaussian noise is much stronger than the original DCT coefficients, thus dominates the noise.

Through the above experiments, we first show thatfV (v) is not Gaussian. Thus, the WGN-based

ML detector may have poor performance. We also observe thatfV (v) is approximately unimodal

and symmetric with heavy tails in all cases. For non-Gaussian noise with heavy pdf tails, a good de-

tector should include a limiter to elute the spikes. Since the BS can be a nonlinear limiter illustrated

in Sec. 2.1.2, the BD with appropriate BS parameters is expected to have better performance than

the ML detector. In the following, we show an example to justify this.
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We use the BD structure shown in Fig. 6.1 (b) to extract watermark bits from watermarked Lena

image and calculate the BERs. The discrete BS is presented in(2.6) with parameters(a, b, ∆t). We

seta = 1, ∆t = 0.01. For differentb’s, the BER obtained from the BD is shown in Fig. 6.7 for the

watermarked Lena image after JPEG compression with qualityof 30 and 50, respectively. The BER

of the WGN-based ML detector is also shown for reference. It reveals that the BD with suitable

parameters, i.e.,b ∈ [15, 110] for quality 30 andb > 70 for quality 50, can have better performance

than WGN-based ML detector.
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Fig. 6.7. BERs of the extracted watermark from watermarked Lena image after JPEG compression with quality 30 and 50
using BD with fixeda, ∆t, and differentb’s.

6.3.3 Investigation on Mean and Variance of Watermark Bit Bearing Seg-

ments and Motivation of Using Adaptive BS

In this subsection, we investigate via experiments the means and variances of the segments (each

will be used to extract one watermark bit) inXw[n], and motivate the use of adaptive BS based on

the observations.

Consider the watermarked Lena image in Fig. 6.2 (b). In watermark bearing sequenceXw[n],

there are 256 segments, each having 500 samples corresponding to one watermark bit. Now we

present histograms of the means and variances of the 256 segments in Fig. 6.8, Fig. 6.9 and Fig. 6.10,

for the watermarked Lena image, the watermarked Lena image after JPEG compression, and water-

marked Lena image after adding Gaussian noise, respectively.

For the original watermarked Lena image, Fig. 6.8 shows thatthe means of the samples in the

256 segments gather around 3 and -3 and the variances vary from 30 to 120. For this case, every

segment bearing one watermarking bit contains 500 samples that are the summation of 500 DCT

coefficients and 3 if the watermark bit is 1 and the summation of 500 DCT coefficients and -3 if the

89



−10 −5 0 5 10
0

5

10

15

20

25

Mean values of the 256 segments

# 
of

 o
cc

ur
an

ce

(a) Mean

0 500 1000 1500 2000
0

5

10

15

Variance values of the 256 segments

# 
of

 o
cc

ur
an

ce

(b) Variance

Fig. 6.8. Histograms of the means and variances of the 256 segments inXw[n] of the original watermarked Lena image.
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Fig. 6.9. Histograms of the means and variances of the 256 segments inXw[n] of the watermarked Lena image after JPEG
compression with quality of 50.

watermark bit is -1. Naturally, the segments whose means arenear -3 correspond to the watermark

-1 in watermark embedding, and the segments whose means are near 3 correspond to 1 in watermark

embedding. From Fig. 6.8, watermark bits can be extracted with good performance because there is

a big gap between the two categories.

When the watermarked image is attacked by JPEG compression or by adding Gaussian noise,

it reveals in Figs. 6.9 and 6.10 that there is no obvious division for the mean values. For JPEG

compression, the watermark information is filtered heavily, showing that the means gather around

zero, but the variances has little change compared with those of the original watermarked image.

With Gaussian noise attack, similarly, there is no obvious division by the mean values. This is

because the added noise, which is much stronger than the original noise, masks the watermark
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Fig. 6.10. Histograms of the means and variances of the 256 segments inXw[n] of the watermarked Lena image after
adding zero-mean Gaussian noise with variance 0.03.

information. This can be seen from the noise variance, whichis about 2000, while for original

watermarked Lena image, it is about 50.

Since the mean of the DCT coefficients is zero, the mean of the samples in a segment correspond-

ing to one bit of the watermark can be used to estimate the watermark amplitudeA, and the variance

σ2 of the samples can be used to estimate the noise strength. It can be observed from Figs. 6.8,

6.9 and 6.10, thatA varies from very weak (such as 0.1) to very strong (such as 3),σ2 also varies

from very weak (such as 30) to very strong (such as 2300), for different situations. Although the

variety of the mean and the variance is represented here for the watermarked Lena image attacked

by JPEG compression and Gaussian noise only, further experiments show that this variety exists for

other watermarked images and watermarked images subject toother attacks, such as clipping. It

is thus expected that for different segments in watermark bearing DCT coefficients with different

means and variances, the optimal BS design should be different. This motivates the use of adaptive

BS, where the BS parameters(a, b, ∆t) are adaptive to the different segments with different means

and variances.

If for simplicity consideration, it is desirable to used only one set of BS parameters for all

different segments in one extraction case. It can be observed that for different extraction cases, the

sample means and variances change dramatically. Thus, we expect to choose different BS parameter

values for different watermarked images. This motivates the used of adaptive BS. A justification is

shown in Fig. 6.11. We show the BERs obtained from the BD usingBS witha = 1, ∆t = 0.01, and

differentb for the watermark bearing Lena image attacked by JPEG compression and Gaussian noise.

For the watermarked Lena after JPEG compression, the bestb should be larger than 80; While for

the watermarked Lena after adding Gaussian noise, the bestb should be less than 10. This justifies

that for different situations, the BS parameters should be chosen differently for good performance.
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Using only one set(a, b, ∆t) for different situations will lead to degraded performance.
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Fig. 6.11. BERs of the extracted watermark from watermarkedLena image after JPEG compression with quality 50 and
after adding Gaussian noise with variance of 0.03 using BD with fixeda, ∆t, and differentb’s.

Although not shown in Fig. 6.11, experiments for different images has been done to show similar

results . The above investigations motive adaptive BD, i.e., BD whose BS parameters are adaptive

to different segments, different watermarked images, or watermarked images with different attacks.

6.3.4 BS Design Problems

It has been shown that the pdf of the DCT coefficients of an image is unimodal and symmetric with

heavy tails at the both sides [43], [44]. We also demonstrated the pdfs, means, and variances of the

samples in the segments of the watermark bearing DCT coefficients in Secs. 6.3.2 and 6.3.3. With

these observations, our detection problem is the one shown in (6.4) with the following assumptions.

1. A is a unknown DC signal.

2. fV (v) is unknown, but is unimodal and symmetric about zero with heavy pdf tails.

For this detection problem, we present the reason of using BDand the reason of having the BS

parameters adaptive to the different situations in Secs. 6.3.2 and 6.3.3 respectively. Since the BD is

a BS followed by a summation, the BD design is basically the design of the adaptive BS. We will

address this design problem in the next section.
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6.4 Proposed BS Design

The values of the BS parameters(a, b, ∆t) are crucial for the BD to have a good performance.

However there is no systematic method for the BS parameter design in literature. In this section, we

first propose to use the cross-correlation of the watermark signal and the BS output as the measure

in finding the optimal values of the BS parameters. Secondly,we observe that the optimization of

the 3-tuple (a, b, ∆t) can be reduced to the optimization of only one parameterb with fixed a and

∆t. We also observe that the optimal value of parameterb depends on the signal amplitude and the

noise variance only, but does not depend on signal sequence and the noise pdf form, assuming that

the noise pdf is unimodal, symmetric, and with heavy pdf tails. Hence, a look-up table of optimal

values ofb in term of the signal amplitudeA and the noise varianceσ2 can be generated via off-

line simulations. This look-up table is then used to choose the BS parameters adaptively according

to various segments of one watermarked image or various watermarked images according to the

estimatedA andσ2.

6.4.1 Cross-Correlation as the Design Criterion

As shown in (6.3), BER measures the difference between the watermark and the extracted water-

mark in the BD output. BER is the direct performance measure in watermark extraction, and was

used in the BD design [38]–[42]. However, the calculation ofBER requires the watermark informa-

tion, which is not available for blind watermark. More importantly, due to the complexity of BER

calculation and analysis, no systematic method has been found in designing the BER-minimizing

BS, other than exhaustive search. But the computational complexity of exhaustive search is pro-

hibitive. Thus, in this thesis, for a tractable BS design, weconsider the function of the BS itself, not

the overall BER performance of the BD. The observationx[n] is composed of the watermark signal

s[n] and the noisev[n]. For a good BS, the outputy[n] should be correlated with the watermark

informations[n] as much as possible. Therefore, we use cross-correlation between the watermark

signals[n] and BS outputy[n] as a measure to determine the BS parameters, which is defined as

follows,

Cm = E





∑N−m−1
n=0 s[n]y[n + m]

√
∑N−m−1

n=0 s2[n]
√
∑N−m−1

n=0 y2[n + m]



 , (6.9)

wherem > 0 is the time lag,E(·) denotes the average over the noises, realized via averagingover

multiple experiments. The BS introduces system lag. The system lag of the BS, denotedς, is them

that results in the maximum cross-correlation, which is

ς = argmax
m

Cm. (6.10)

93



We attempt to find the(a, b, ∆t) to maximizeCς , which is

(a, b, ∆t)opt = arg max
(a,b,∆t)

Cς = arg max
(a,b,∆t)

max
m

Cm. (6.11)

It is noteworthy that in this BS design, watermark information is required. However, our ex-

perimental results, which will be shown later, illustrate that the BS design using cross-correlation

measure depends on the amplitude of the watermark only, but not the specific sequence of the wa-

termark. Thus, for blind watermark extraction, one can firstobtain the BS parameters off-line via

a known training watermark, whose amplitude is the same as the estimation of the watermark to be

extracted, then use this BS parameter values in the watermark extraction.

6.4.2 Observations on the Connection between Cross-Correlation and (a, b, ∆t)

The task in (6.11) in general is difficult because of the complex nature of the BS. We cannot have

analytical solution of (6.11). Exhaustive search is a natural method for the optimization, but it has

high computational complexity. It is also impractical for blind watermark extraction. We propose

an empirical method in designing the BS parameters based on the observations on the relationship

between the cross-correlation and BS parameters, which aregiven below.

We first conduct experiments on known PAM signals with WGN andunimodal Gaussian mix-

ture (GM) noise whose pdf is shown in (3.38). In the simulation, the signal is a 20 bit random

binary PAM withA = 0.1. Every bit in the PAM signal is interpolated 50 times to generate a se-

quences[n] with length of 1000 samples.s[n] is embedded in (a) WGN samples, and (b) GM noise

((α, β, σ) = (0.9, 5, 1)) samples, to generate the input to the BS. Cross-correlation is calculated

from 1000 simulations using (6.9) and (6.10), which is shownin Fig. 6.12 (a) for WGN and (b)

for GM noise. We try on numerous fixed values of(a, ∆t) and calculate the cross-correlation asb
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Fig. 6.12. Cross-correlation versusb and numerous fixed(a, ∆t) for WGN and GM noise.
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changes. The optimalb that maximizes the cross-correlation with respect to each(a, ∆t) value can

be found. We observe that for both cases, regardless of the(a, ∆t) values used in the experiments,

the same (or very close) maximum cross-correlation is obtained. The optimalb values for different

(a, ∆t)’s are nevertheless different.

Based on the above observation, we propose a simplified optimization of the BS parameters

by reducing the 3-dimensional optimization to a 1-dimensional optimization. First, we fixa, e.g.,

a = 1. Second, we determine a suitable∆t mainly in consideration of the stability of the BS. For the

pre-determined(a, ∆t), we can conduct a 1-dimensional optimization to find theb that maximizes

the cross-correlation. This can be done by exhaustive search. Limited simulation results shown

in Fig. 6.12 indicate that this reduction in optimization dimension induces little cross-correlation

degradation. We only need to tune one parameter (TOP) in thismethod, thus it is called TOP

method.

6.4.3 Observations on the Connection between Cross-Correlation and Wa-

termark Signal and Noise

Even though we can use 1-dimensional optimization to determine the BS parameter, the computa-

tional complexity can still be too high in watermark extraction because exhaustive search is needed

for every extraction task. Also, to calculate the cross-correlation, watermark signal must be known,

which makes it impossible for blind watermark extraction. We obtain another important observation

that the BS parameters are only sensitive to the signal amplitudeA and noise varianceσ2, but not

sensitive to other parameters, such as the signal sequence and the pdf form of the noise if the noise

pdf is symmetric and unimodal with heavy tails.

To see this, in Fig. 6.13, we show the cross-correlation versus the BS parameterb for several

PAM signals with different amplitudes and several noises with different variances. Simulation set-

ting is the same as previous example, whose results are shownin Fig. 6.12. In (a), the PAM signal

#1 is [1 1 -1 1 1 -1 -1 1 1 1 -1 1 1 -1 1 -1 -1 1 1 1] andA = 0.1. We choose 4 noises: Gaussian,

GM, Laplacian, and uniform noises withσ2 = 1. The pdf of GM is defined in (3.38) withα = 0.9

andβ = 5. GM, Laplacian, and uniform noises are unimodal and symmetric with heavy pdf tails.

In (b), the PAM signal#2 is [1 -1 1 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 1 -1] again withA = 0.1. The

same set of noises are used. Comparing (a) with (b), according to cross-correlation measure, we can

observe that the optimal BS parameterb is not sensitive to the PAM signal sequence.

Since the optimal BS parameters are not sensitive to the PAM signal sequence, the only pa-

rameter related to PAM signal is the amplitudeA. We illustrate the cross-correlation for randomly

generated PAM signal withA = 0.4 in Fig. 6.13 (c). Compared (c) with (a) and (b), the influence

of A to the BS parameterb can be observed.

For the noise, from (a), (b), and (c), we can observe that the optimal BS parameterb is not
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Fig. 6.13. Cross-correlation versusb for different PAM signals with different amplitudes and different noises with different
variances.

sensitive to the noise pdfs if they are unimodal and symmetric with heavy tails and have the same

variance, because for GM, Laplacian, and uniform noises, whose variances are the same, the optimal

b are the same. Compared with the optimalb for PAM signal in Gaussian noise, the optimalb for

GM, Laplacian, and uniform noises is larger. That is expected because GM, Laplacian, and uniform

noises have heavy pdf tails and need strong “limiter”, whichis fulfilled by increasingb value. The

optimal BS parameterb is sensitive to the noise varianceσ2. We demonstrate the influence ofσ2 to

the cross-correlation in (d), where a randomly generated PAM signal withA = 0.1 is used, and for

the noises,σ2 = 16. The optimalb is changed by comparing (d) with (a) and (b).

This observation, the optimal BS parameters are not sensitive to the watermark sequence (PAM

signal) and the pdf form of the noise, but to the amplitude of the PAM signal and the noise variance

only, provides an easy way to determine the BS parameters off-line. We can generate a random PAM

signal embedded in any noise whose pdf is unimodal, symmetric, and has heavy tails, and apply this

to the BS to find the optimal BS parameters. Combining with theTOP technique in Sec. 6.4.2, for

a fixed(a, ∆t) set, we can construct a look-up table containing the optimalparameterb in term of
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A (amplitude of watermark) andσ2 (power of the noise). In this thesis, we use the GM noise with

α = 0.9 andβ = 5 in the simulation to generate the look-up table.

Next we will show how to use the look-up table to construct an adaptive BD and use it in

watermark extraction.

6.4.4 Adaptive BS

Based on the previous observations and designs, instead of using one set of(a, b, ∆t) for all seg-

ments of a watermarked image, various watermarked images, and images under different attacks

[39], [40], we propose a BD whose BS parameters are adaptive to different segments or different

watermarked images.

The proposed watermark extraction algorithm is similar to that shown in Fig. 6.1 (b), except the

BS module. The BS module in Fig. 6.1 (b) is changed to an adaptive BS and its schematic is shown

in Fig. 6.14. There are 4 sub-modules in the adaptive BS design. These sub-modules are explained

below.

Fig. 6.14. Schematic of adaptive bistable system.

1. Data segmentation:Xw[n] is partitioned intoM segments, denoted asXm
w [i], m ∈ [1, M ], i ∈

[1, S]. Xm
w [i] = Xw[(m − 1)S + i] contains the samples that themth bit of the watermark is

embedded in.

2. Parameter estimation of the meanÂ[m] and variancêσ2[m]. We use the maximum likelihood

estimation (MLE) of the embedded watermark amplitudeA and the noise varianceσ2 in the

mth segment, which are shown as follows.

Â[m] =
1

S

∣
∣
∣
∣
∣

S∑

i=1

Xm
w [i]

∣
∣
∣
∣
∣
, (6.12)
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σ̂2[m] =
1

S

S∑

j=1

(

Xm
w [j] − 1

S

S∑

i=1

Xm
w [i]

)2

. (6.13)

3. Choose the optimal BS parameter: We choose an appropriateb from the look-up table accord-

ing to the estimated(Â, σ̂2). Note thata and∆t are previously fixed.

4. BS: The watermark bearing sequence is processed by the BS with the chosen parameters. The

outputy[n] is generated, which is used to extract watermark information according to (6.1)

and (6.2).

The proposed BD has a BS whose parameters are adaptive to every segmentXm
w [i]. For every

segments, the(Â[m], σ̂2[m]) are estimated and the suitable parameters are chosen from the look-up

table. For systems with stringent processing limitation and delay tolerance, for simplicity, we can

only estimate one(Â, σ̂2) for one image (not for every segment) and use only one BS parameter set

for the whole image. The MLE of the(A, σ2) of one image is shown below:

Â =
1

M

M∑

m=1

Â[m], (6.14)

σ̂2 =
1

M

M∑

m=1

σ̂2[m], (6.15)

whereÂ[m] andσ̂2[m] are the estimated watermark amplitude and variance of themth segment as

shown in (6.12) and (6.13).

We name BS-I for the BD that chooses one set of BS parameters only for one image (using

(6.14) and (6.15)). We name BS-II for the BD that chooses a setof BS parameters for every seg-

ment. Compared to existing BD designs in [38]–[42], our scheme chooses BS parameters adaptively

based on the(Â, σ̂2) estimated from different images or different segments of one image. The per-

formance is expected to be better than the BD with fixed parameters. In addition, the design of the

BS parameters is very fast and practical.

6.5 Experimental Results

In this section, experimental results are given to illustrate the BERs when extracting watermark

from the watermarked images attacked by JPEG compression and Gaussian noise. The images,

Lena, Peppers, Goldhill, and Baboon are chosen as the host images, which are shown in Fig. 6.15.

We embed watermark “W” shown in Fig. 6.2 (a) into host images by the embedding algorithm

presented in Sec. 6.2 withA = 3, U1 = 9, U2 = 44, M = 256, S = 500. We present the

performance results from the WGN-based ML detector (abbreviated as ML detector below), Wu’s
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method [40], Sun’s method [38], BS-I detector, and BS-II detector. Wu’s method [40] and Sun’s

method [38] used different and fixed BS parameters in extraction. The peak SNRs (PSNRs) of the

(a) Lena. (b) Peppers.

(c) Goldhill. (d) Baboon.

Fig. 6.15. Host images used in watermark experiments.

watermarked images are all 41.07 dB. PSNR is defined as

PSNR= 10 log10

(
Max2

I

MSE

)

Here, MaxI is the maximum possible pixel value of the original image. When the pixels are repre-

sented using 8 bits per sample, MaxI is 255. MSE is the mean square error between the pixels of
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the original imageI and the pixels of watermarked imageJ , i.e.,

MSE =
1

MN

M−1∑

m=0

N−1∑

n=0

(I(m, n) − J(m, n))2,

whereM, N are the numbers of pixels in every column and row, respectively. Comparing the orig-

inal Lena image in Fig. 6.15 (a) and the watermarked Lena image in Fig. 6.2 (b), we can hardly

distinguish any difference between them. That means that wecan have satisfactory transparency of

the watermark for the watermark embedding with PSNR of 41.07dB.

First, we show the extraction performance for the watermarked images attacked by JPEG com-

pression. The BERs for the 4 images and means are shown in Tab.6.1 with respect to the five

techniques and the compression qualities from 80 to 30. The BERs are all 0 when the compression

qualities are 100 and 90 for all five techniques. Note that if the compression quality is 100, no com-

pression attack is applied to the watermarked image. The BERs in bold font are the minimum values

for a specific case. The parameters used in Wu’s method are(a, b, ∆t) = (4000, 3 × 1011, 10−6).

The parameters used in Sun’s method are(a, b, ∆t) = (500, 3× 1010, 10−5). For BS-I, the parame-

ters used are∆t = 0.01, a = 1, andb = [40, 40, 45, 45, 50, 60] for Lena image corresponding to the

six compression qualities,b = [30, 30, 40, 40, 30, 45] for Peppers image,b = [15, 15, 15, 15, 30, 30]

for Goldhill image, andb = [3, 3, 3, 3, 3, 3] for Baboon image. For BS-II, differentb is chosen for

every segment with fixed∆t = 0.01 anda = 1. From Tab. 6.1, it is observed that the performance

of WGN-based ML detector is always better than Wu’s method. Sun’s method can provide a better

performance than the ML detector. The performance of the proposed BS-I and BS-II detectors are

shown in the two right-most columns. It is observed that the performance of the proposed BDs are

generally better than the ML detector Wu’s method, and Sun’smethod. Especially, we can see from

the mean values of BER that BS-II is better than other designs.

Second, we conduct experiments on the watermarked images attacked by Gaussian noise with

variances from 0.01 to 0.03. The parameters used in Wu’s method and in Sun’s method are identical

to the parameters used previously. For BS-I, the parametersused are∆t = 0.01, a = 1, and

b = [40, 20, 15, 10, 5] for Lena image corresponding to the five variances of the additive WGN,

b = [40, 40, 20, 15, 10] for Peppers image,b = [40, 40, 15, 10, 10] for Goldhill image, andb =

[20, 15, 10, 5, 5] for Baboon image. For BS-II, differentb is chosen for every segment with fixed

∆t = 0.01 anda = 1. The results are shown in Tab. 6.2. The WGN-based ML detectorhas better

performance than other designs. We can see from the mean values of BER, the proposed BDs are

better than Wu’s method and Sun’s method, and closely reach the BER of the ML detector.

We show that the BD has an improved performance compared to the ML detector when the

watermarked images are attacked by JPEG compression. However, the BD cannot have a better

performance than the ML detector when the image is attacked by Gaussian noise. This can be
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TABLE 6.1
BERS (IN %) OF THE EXTRACTED WATERMARK FOR THE FOUR WATERMARKED IMAGES ATTACKED BY JPEG

COMPRESSION WITH DIFFERENT QUALITIES.

Methods
Image Quality

ML method Wu’s method Sun’s method BS-I BS-II

80 0 0.39 0 0 0

70 0 0.43 0 0 0

60 1.56 9.38 1.56 1.95 1.95

50 6.25 14.45 6.64 6.25 6.64

40 10.55 18.75 9.77 9.77 8.98

Lena

30 16.8 26.56 14.45 16.41 16.41

80 0 1.56 0 0 0

70 2.73 4.69 1.56 1.56 1.17

60 7.03 10.16 2.34 1.56 1.95

50 12.5 18.36 8.98 9.38 8.98

40 18.75 25.39 16.41 16.41 15.23

Peppers

30 30.86 35.55 25 24.61 25

80 0 0.39 0 0.39 0.39

70 0.39 1.56 0 0 0

60 1.17 3.52 0.78 0.78 0.78

50 1.95 5.47 1.95 2.34 1.95

40 7.42 7.42 4.69 4.69 4.69

Goldhill

30 13.67 14.06 10.16 10.55 9.77

80 1.17 1.56 1.17 1.17 0.78

70 1.95 1.95 1.56 1.95 1.56

60 2.73 3.52 2.73 3.13 2.73

50 4.3 6.25 4.3 3.91 3.91

40 5.86 7.81 5.47 5.08 5.08

Baboon

30 10.94 11.33 11.72 10.16 9.77

80 0.29 0.98 0.29 0.39 0.29

70 1.27 2.16 0.78 0.88 0.69

60 3.12 6.65 1.85 1.86 1.85

50 6.25 11.13 5.47 5.47 5.37

40 10.65 14.84 9.09 8.99 8.5

Mean

30 18.07 21.88 15.33 15.43 15.24

seen from the mean values of BER. The reasons are depicted as follows. If the noise is WGN, the

WGN-based ML detector is the optimal detector. When the image is compressed by JPEG, many

coefficients are converted to 0 that leads to the loss of the signal (watermark) as well as the noise.
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TABLE 6.2
BERS (IN %) OF THE EXTRACTED WATERMARK FOR THE FOUR WATERMARKED IMAGES ATTACKED BY GAUSSIAN

NOISE WITH DIFFERENT VARIANCES.

Methods
Image Variance

ML method Wu’s method Sun’s method BS-I BS-II

0.01 0.39 0.39 0.39 0.39 0.39

0.015 2.73 2.73 3.52 2.73 3.13

0.02 4.69 5.47 3.91 3.52 3.52

0.025 3.91 3.13 3.13 2.34 2.73

Lena

0.03 8.2 8.59 7.42 7.81 7.81

0.01 0.78 1.95 1.17 1.17 1.56

0.015 2.34 3.91 2.34 2.34 3.13

0.02 3.91 7.03 5.08 4.3 5.08

0.025 8.2 8.2 6.25 7.42 7.03

Peppers

0.03 7.81 9.77 8.59 8.98 9.38

0.01 1.56 1.56 1.56 1.56 1.56

0.015 2.34 3.52 2.34 2.34 2.73

0.02 4.69 4.3 5.47 5.47 5.47

0.025 5.47 5.47 7.81 6.64 6.64

Goldhill

0.03 8.59 11.33 9.77 10.55 10.94

0.01 3.52 3.52 3.52 3.52 3.91

0.015 5.08 6.25 6.64 6.25 6.25

0.02 5.86 7.03 7.42 7.03 6.64

0.025 5.86 7.42 6.25 5.86 7.03

Baboon

0.03 10.55 10.94 9.77 10.55 10.94

0.01 1.56 1.86 1.66 1.66 1.86

0.015 3.12 4.35 3.71 3.66 3.81

0.02 4.79 5.96 5.47 5.07 5.18

0.025 5.86 6.06 5.86 5.52 5.86

Mean

0.03 8.79 10.16 8.89 9.47 9.77

The coefficients in each segment is not WGN but with heavy tails, which is shown in Fig. 6.5. The

WGN-based ML detector is not optimal detector, and the BD provides an improved performance

due to the clipping feature of BS. When adding Gaussian noiseto the watermarked image, the noise

is dominated by the added Gaussian. Hence, the noise pdf is close to Gaussian (see Fig. 6.6). In

this case, the WGN-based ML detector tends to be the optimal detector. The BD cannot have an

improved performance. However, the BD has comparable performance to the ML detector.
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6.6 Conclusions

The motivation for the research in this chapter is to find a simple and practical method to determine

the BS parameters when it is used in a BD in watermark extraction. We first proposed to use the cross

correlation of the watermark signal and the BS output as the design measure. We then observed that

the same maximum cross-correlation can be obtained by choosing the bestb for different(a, ∆t)’s.

Hence, the optimization of the BS parameters can be reduced from the 3-dimensional optimization

of (a, b, ∆t) to the 1-dimensional optimization ofb while fixing a and∆t. We also observed that

the optimalb depends only on the signal amplitude and the noise variance.Hence, a look-up table

of the optimalb in term of the signal amplitude and noise variance can be generated via off-line

simulations. Using this look-up table, we proposed a BD design, whose BS parameter values are

adaptive to the various watermarked images or even the various segments in one watermarked image.

It showed that the proposed BD performs better than the WGN-based ML detector and the BD with a

fixed BS when the watermarked images are attacked by JPEG compression. When adding Gaussian

noise, the proposed BD has BERs close to the ones of using ML detector. Note that in this scenario

ML detector is optimal .
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

For signal detection in non-Gaussian noise, the challengesarise mainly from the cost/complexity

consideration and the robustness in the ever-changing environment. In this thesis, we aim at de-

signing simple and robust detectors that still enjoy a detection performance comparable to LRT or

GLRT. For this purpose, two techniques: (1) TD or BD design and (2) noise-enhanced effect, are

investigated.

In Chap. 3, we considered the optimal TD design for detectinga known DC signal in known

non-Gaussian noise. Under NP criterion, we showed that the detection probability monotonically

increases with an alternative indicator. Based on this muchmore tractable indicator, we derived the

optimal designs when using simple binary TS and composite binary TS. Experimental results show

the validation of the optimal TS design. The performance of the proposed TDs were shown to be

superior to the MF for non-Gaussian noise with heavy pdf tails, and can perform very close to the

LO detector with a much simpler implementation.

In Chap. 4, we proposed a low-complexity TD to detect any known deterministic signal embed-

ded in independent unknown non-Gaussian noise. The optimality of the two parts of the proposed

detector, the binary TS array and the correlator, was proved. The detection probability and the ROC

of the proposed TD were investigated both analytically and numerically. For noises with heavy pdf

tails, simulation showed that the performance of the proposed TD approaches that of the LO detector

and Saha’s detector in [6], in which the two designs need exact noise pdf information, and is much

better than that of the MF. Through a robustness measure, we showed that the proposed TD is highly

robust to the noise pdf. On the other hand, its robustness to the signal is inferior but comparable to

the LO detector and Saha’s detector. The implementation complexity of the proposed detector was

discussed and compared with other detecter designs. The validity region of the proposed detector
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was defined and analyzed using the MF as the benchmark.

In Chap. 5, we investigated the noise-enhanced effect for the general BHTP using a binary TD.

We adopted the AUC as the performance measure for its simplicity and robustness potential. First

the optimal TS that maximizes the AUC was derived. Then the optimal noise pdf that maximizes

the AUC was shown to be a delta function, indicating that the optimal noise is deterministic. Experi-

ments showed that the noise-enhanced effect can be employedfor some fixed non-optimal detectors.

In Chap. 6, we considered the use of BD in watermark extraction. We first proposed to maximize

the cross-correlation of the watermark signal and the BS output in the BS design for the BD. We ob-

served that the same maximum cross-correlation can be obtained when we reduce the 3-dimensional

optimization of the BS parameters to a 1-dimensional optimization. We also observed that the opti-

mal BS parameter values depend only on the watermark amplitude and the noise variance, but not

on other parameters. These motivated the use of a look-up table of optimal BS parameters in term of

the watermark amplitude and noise variance. Based on this look-up table, we proposed a BS design

that is adaptive to various watermarked images or even various segments in one watermarked image.

Experiments showed that the adaptive BD can achieve a betterperformance than WGN-based ML

detector and existing BDs in DCT domain watermark extraction.

7.2 Future Work

We have proposed several possible robust detectors with simple implementation, including TD, BD,

and noise-enhanced TD. One future work is how to further improve the proposed detectors and their

practical use in real applications.

The proposed robust TD for known signal in unknown noise in Chap. 4 provides potentials in

real applications, such as communication and image processing, where the signal information is

more reliable than the noise information. However, the performance of the proposed TD depends

on the noise pdf even the design does not. In some applications, the noise pdf or its form can

be obtained from estimation. Thus, GLRT can have very good performance. For some noise pdf

with certain parameters, the proposed TD can have worse performance than the MF, as shown in

Sec. 4.4.3. This leads to the following detection design, inwhich GLRT, proposed TD, and MF are

used alternatively for different situations, i.e., a hybrid strategy to choose among MF, GLRT, and

proposed TD, based on the accuracy level of the pdf estimation. GLRT has ideal performance if the

noise pdf information is accurate. But with imperfect noisepdf information, GLRT detector does

not work well. For this case, we resort to a more robust detector, proposed TD or MF, whichever

results in better performance.

For a specific application, we may have a certain pdf form to model the noise. For example, the

GM can be used to model the ocean acoustic noise [7], [8]. Withthe known noise pdf form, we can
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estimate the parameters of the noise pdf based on observations. We then evaluate the quality of the

estimation by comparing the observations with the estimated pdf. If the quality level is larger than a

threshold, the pdf is considered as well fitted and GLRT will be chosen [1], [2]. If the quality level

is smaller than the threshold, we consider the noise pdf information to be inaccurate and resort to

proposed TD or MF. To choose between proposed TD and MF, if theestimated noise pdf parameters

are within the validity region of proposed TD, proposed TD isused; otherwise, MF is used.

Using this hybrid strategy, we can take advantage of the three detectors: GLRT, proposed TD,

and MF. We expect an improved overall performance from the hybrid strategy compared with using

any one detector only. The practical implementation of the hybrid strategy, for example, how to

evaluate the accuracy level of the estimated pdf, simple wayto choose between proposed TD and

MF without knowing exact pdf, need to be studied further.

Another future work is to design a simple, robust detector for the BHTP IV presented in Sec. 1.3.

BHTP IV is a more realistic model for radar and sonar applications. We are seeking and designing

suitable simple systems that lead to robust detector, whichcan also have comparable performance

to the optimal detector.
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