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Abstract

Signal detection in non-Gaussian noise is fundamental sigdesignal processing systems like
decision making or information extraction. The optima#ireptimal detector for this problemis the
likelihood ratio test (LRT) or generalized LRT (GLRT). Howes, since the noise is non-Gaussian,
sometimes has unknown pdf, the LRT or GLRT suffers high im@etation cost, low robustness,
and possible poor performance. In this thesis, to deal vidis¢ challenges, we investigate two
techniques. One is to propose simple and robust detectimig thseshold system (TS) and bistable
system (BS). The other is to exploit the noise-enhancedteffe improve performance by adding
noise to the observation, for suboptimal detectors.

For the detector design using TS or BS, first, we propose pif&rbased detector (TD) under
Neyman-Pearson (NP) criterion to detect a known DC signiahown non-Gaussian noise. The op-
timal TS's, including simple binary TS and composite bin@8;, are derived analytically. Secondly,
we propose a TD for detecting any known signal in independentGaussian noise whose pdf is
unknown but is symmetric and unimodal. The optimality of phheposed TD is proved. It is shown
that even without the knowledge of the noise pdf, the progpdde has close performance to the
optimal detector designed with precise noise pdf infororatirhe practical implementation and ro-
bustness of the proposed TD are also investigated. Thirihwestigate the BS based detector (BD)
for watermark extraction. There is no existing efficient agstematic BS design method except ex-
haustive search. We propose to use the cross-correlatibie efatermark signal and the BS output
as the criterion. Based on this, we develop a practical B&rpater optimization method, which
leads to a BS adaptive to various watermark extraction swend he extraction performance based
on the adaptive BD is compared with the white Gaussian n¥i&&N) based maximum likelihood
(ML) detector and other BDs used in watermark extraction.

For the noise-enhanced effect, we focus on the generalybimgnothesis test problem using a
binary TD. We adopt the AUC, which refers to the area undegivec operating characteristic (ROC)
curve, as the performance measure for its simplicity andstitess. The optimal TS design that
maximizes the AUC has been derived. For a given binary TSoptienal noise pdf that maximizes
the AUC is shown to be a delta function. Properties of thevéerresults and comparisons with

other designs are presented.
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Chapter 1

Introduction

1.1 Signal Detection and Binary Hypothesis Testing Problem

Signal detection, also called hypothesis testing, is taddeitom an observation which event of in-
terest occurs [1]-[3]. One example is the radar system, ahergoal is to determine the presence or
absence of an approaching aircraft based on the receivesfovav(observation) of the radar. More
applications can be found in communication system, somege processing, control system, to list
a few. Detection problems in these applications can beifieg$nto two types: one is to decide
between two hypotheses; the other is to decide among manewlwehypotheses. Correspondingly,
the former is termed as binary hypothesis testing probleHiT({B) and the latter is termed as multi-
ple hypothesis testing problem. Since BHTP is basic anchéasewe will focus on BHTP in this
thesis.

In general, a BHTP can be formulated as follows:

: (1.1)

Hy: X=W
Hi: X=s+W

where Hy and H; represent the two hypotheseX,s, W are N-dimensional real vectors, i.e.,
X,s,W € R¥, and sometimes we represent themrés, s[n],w[n],n = 0,1,...,N — 1. X is
the observation.W represents the noise, which in this thesis, is assumed tadepéndent and
identically distributed (i.i.d.).s represents the discrete-time signal. Hetiferefers to the noise
only hypothesis (or null hypothesis) aifj refers to the signal and noise hypothesis (or alternative
hypothesis).

For BHTPs, we wish to use the received datatb make a decisionH, or H;) as reliable or

costless as possible. The decision making process is ctletector or a test. It is composed of a



test statisticI’(x) and a decision thresholg shown as

Iil
T(x) = n. (1.2)

Hy
The test statisti@’(x) is a function of the observation which is typically a numerical summary of

the observation that reduces the observation data to ofer sedue [1]-[3]. It is common to use a

critical function (decision functionj(x) to completely characterize the detector as follows [3].

1: T(x)>n
p(x) =14 v: T(x)=n , (1.3)
0: T(x)<n

where0 < v < 1.

Let the probability density functions (pdf)s & underH, and H, be respectivelyfx (x; Ho)
and fx (x; H1). The probability of detection) can be calculated as

Pp = /]RN B(x) fx (x; Hy)dx.

(1.4)
The probability of false alarmi{r 4) can be calculated as

Pra = /R 00x)fx (x; Ho)dx. (1.5)

For BHTPs, the goal is to desidh(x) and determine) optimally. It is well known that the
optimal detector is the likelihood ratio test (LRT) [1]-[8}hich is

(1.6)

L(x) is called the likelihood ratio function, which is the optihtast statistic. The optimal value of

n depends on the optimality measure. For example, under Bayesterion, to have the minimum
Bayesian cost, the optimalis derived to be

_ (G0 = Coo)P(Hy)
! (Cor — C11)P(Hy)’

(1.7)
whereCj;,4,5 € {0,1} are the costs if we decidH; when H; is true andP(H;) is the a-priori

probability of H;. Under Neyman-Pearson (NP) criterion, to have the maxinfgnsubject to the
constraintPr 4 < «, the optimal) can be calculated from

P = / 6(x) fx (x; Ho)dx = a. (1.8)
L(x)>n



NP criterion is more popular than Bayesian criterion as tstst”; ; and a-priori probabilitie®(H;)
required for Bayesian criterion need not to be known.

In the next two sections, we will present some common BHTIelglagir conventional detectors.

1.2 BHTP with Gaussian Noise

In this section, we consider BHTPs with i.i.d. Gaussian @gi€., the pdf of entries &V, denoted

as fw (w), is Gaussian. Gaussian noise can be observed very ofterexBomple, in wireless and
wired communication systems, the channel noise is usualyeted as Gaussian. The reason is that
the noises in real world are often the sum of many indeperdeniom events. Based on the central
limit theorem, they follow Gaussian distribution [4]. Foa@ssian noise, the optimal detector is easy
to design and implement. Two BHTPs with Gaussian noise agid tbnventionally used detectors

are given below.

BHTP | Simple Gaussian-based BHTP, where the known sighadlis in white Gaussian noise
(WGN) w[n] with variances?. WGN is defined as zero mean Gaussian process with auto-

correlation function,,,, (k) = E(w[n]w[n + k]) = 026(k), whered (k) is the discrete delta

function. In another wordsfy (w) = —2— exp (—%) £ N(w;0,0?%). Hence we have

2o
fx(x;Ho) = TI\5 fw(xln]) and fx(x; Hi) = [1Z fw(z[n] — sn]). L(x) can be
calculated using (1.6), based on which the optimal testiisele as [1]

N—-1 H,
T(x) = 3 (alnlsln)) Z n. (L9)
n=0 Hy

The optimal test statisti@'(x) is a linear function ok. It is also linear ins. This detector
is typically termed as the matched filter (MF) or replicaretator [1]. The schematic of this
test is illustrated in Fig. 1.1.

—

] T 0 S

<n —H,

n=

s[n]

Fig. 1.1. Schematic of the matched filter (replica-cormat

BHTP Il Composite Gaussian-based BHTP, where signal is ilNM@h some unknown parameters
in the signal and/or the noise. In this caga;(w), fx(x; H;),i = 0,1 are identical to the

ones in BHTP |, but there are some parametergyin and fyy (w) that are unknown. This



composite BHTP is more realistic than the simple one. Theegdized LRT (GLRT) is
commonly used for the composite BHTP [1]. It first calculdtesmaximum likelihood (ML)
estimations of the unknown parameters from the obserna{ijrand then use the estimated
parameters to design the LRT. GLRT cannot be proved to benapkiut it works well in many

applications [1], [2].

We now present a particular composite BHTP, which is thedfiete of a sinusoidal signal
with known frequencyf, but unknown amplitude and phase in WGN. This detection bl
is of great interest in passive sonar system and radar s\dferf6]. The GLRT for this

detection problem is a quadrature MF [1] and is shown asvallo

2

LS Hy
T(x) = N Z x[n] exp(—j27 fon) E 7. (1.10)
n=0 Hy

Its schematic is shown in Fig. 1.2.

—

x[n] - 1 p| T® [57 |-H
“ N <n —H,

exp(—j27fyn)

Fig. 1.2. Schematic of the quadrature matched filter.

From Figs. 1.1 and 1.2, we can see that the detectors for BMItRINGN do not depend on

the parameters of the WGN. Also, the test statistics aratinequadratic in the observations. The

detectors are thus simple, easy to implement, and prone tohbwst due to their independence of

the noise pdf.

1.3 BHTP with Non-Gaussian Noise

In this section, we consider BHTPs with non-Gaussian ndism-Gaussian noises are revealed in

many applications as well. For example, a type of Gaussiatung pdf has been used to model

the ocean acoustic noise [7], [8]. In nature, infrequentdamvterful events, such as thunderstorms,

iceberg breakup, tsunami, cause the “noise spikes", wisch@ads to non-Gaussian noise [1]. Two

BHTPs with non-Gaussian noise and the corresponding @eseate given below.

BHTP Il Simple non-Gaussian based BHTP, where the knowmedign| is in white non-Gaussian

noise with known pdffy (w). Since fx(x; Ho) = [1\— fw(z[n]) and fx(x; Hi) =

]_[7]::01 fw(x[n] — s[n]) are known completely, using (1.6), the optimal detector lbamb-



tained as [1]

N-1 H
To(x) =Y gn(z[n]) = n, (1.11)
n=0 Hog

1y, fw(z[n]—s[n])
whereg, (z[n]) = In 252

In general, thel'n (x) in (1.11) is nonlinear i and inx, which complicates the design and
implementation of the detector. To simplify this detec@isuboptimal test statisti€y, (x)

that is linear ins with the following structure has been proposed [1]:

N—-1
Tr(x) = Y g(x[n])sln], (1.12)
n=0

whereg(x) is generally nonlinear when the noise is non-Gaussian. tierean observe that
the design of an appropriaiéx) is crucial to the detectability, complexity, and robustes
this detector. One possibigx) is obtained by calculating the first order Taylor expansibn o

gn(x) about the signat[n], which is

1 dfw(x).

gro(x) = — Fr@) dx (1.13)
Thisgro(x) design leads to the locally optimal (LO) detector [1], shagn
N—-1 H;
Tro(x) =Y gro(aln])sln] Z , (1.14)
n=0 Hy

which is illustrated in Fig. 1.3. When the signal is weak camgal with the noise level, i.e.,
|s[n]| < o, whereo is the standard deviation of the noise, the LO detector igebgul to
perform close to optimal. Hence, this LO detector is widedgdiin signal detection in non-

Gaussian noise.

Matched filter

x[n]

Lo® [T —n
—> g(x)

1

<n —>H,

dip(x) Lo—————— -

___ dx
g(x) = ) s[n]

Fig. 1.3. Schematic of the LO detector for known signal in«@aussian noise.

BHTP IV Composite non-Gaussian based BHTP, where signalign-Gaussian noise with some
unknown parameters in the signal and/or the noise. Thati&new the structure of the signal

and the pdf form of the non-Gaussian noise. Thereffxd; H;),: = 0,1 are identical to



the ones in simple non-Gaussian BHTP, but some paramettrsrimare unknown.

As a special example of practical interests, we consided#tection of the sinusoidal signal
with known frequency but unknown amplitude and phase in knoan-Gaussian noise [6].

The GLRT is shown in Fig. 1.4, which is composed of a nonlim@anponent and a quadrature
MF [1]. Compared with the schematic in Fig. 1.2, if the noisé ghanges from Gaussian to

non-Gaussian, this detector is added with a nonlinear coemig(x) before the quadrature

MF.
Quadrature MF
x[n]
—1 g(x)
dfyr (%)
dx

gx) =~

@ exp(—j2afyn)

Fig. 1.4. Schematic of the LO detector for unknown sinudasmal detection in non-Gaussian noise.

For non-Gaussian noise, the detectors depend on the kngevtgdhe noise pdf via the compo-

nentg(x), and the detector design is more complicated compared kétbne for Gaussian noise.

1.4 Research Goals and Methodology

This thesis focuses on signal detection in non-Gaussiaendn this section, we present the chal-
lenges in this field, the goals of research, and the methggiatachieve the goals.
Conventionally, the following three strategies are usesignal detection in non-Gaussian noise,

with known or unknown pdf.

Strategy | The noise is viewed as Gaussian, and the MF, wkidptimal for Gaussian noise, is
used to detect the signal. This is equivalent to using (lwd®reg(x) = x. This detector
design, referred to as the MF, is unrelated to the noise pdfité performance is generally

poor for non-Gaussian noise [1], [9].

Strategy Il LRT and GLRT are employed. If signal and noiselarewn, LRT is employed and
is the optimal test, as shown in the simple non-GaussiandbBs& P. More practical case
is the composite non-Gaussian based BHTP in Sec. 1.3, wh&r®wn parameters exist in
the givenfx (x; H;),7 = 0,1. For this composite BHTP, GLRT can be used [1], [2], [10].
Even though LRT or GLRT is commonly used to achieve optimalear-optimal detection
performance, for many applications, LRT or GLRT is unapddie or impractical due to the

following reasons.



1. As shown in (1.11), LRT needs to knofx (x; H;),i = 0,1, i.e., the full knowledge of the
signal and the noise. In many real applications, there is mawkedge or only imprecise
knowledge on the noise pdf and the signal. Thus LRT or GLRhavmilable for these cases.
If the form of the noise pdf and the signal is known but with nakn parameters, GLRT can
be employed using estimations of the unknown parameteraieiAer, accurate estimation of
the noise pdf and the signal is difficult because the noigeldision may vary with time and
the signal fades in traveling. Consequently, GLRT suffeesiinprecise noise pdf and signal

information, and thus risks poor performance.

2. LRT and GLRT are in general complex in implementation fetedtion problems with non-
Gaussian noise. The test statistics of LRT or GLRJ(x) in (1.11),7%.(x) in (1.12), and
Tro(x) in (1.14), are nonlinear in the observation and have highgexity in implementa-
tion. This further leads to the cost and delay issues in tlmtdesign. Many times, we would
like to sacrifice a certain level of performance and seekifopk and cheap systems instead

of the complicated optimal/local-optimal ones.

3. LRT and GLRT have low robustness. For applications whaesenbise keeps changing with
time, the performance obtained from LRT and GLRT can degsagteficantly because their

performance is sensitive to the noise pdf and the estimateahpeters.

Strategy Ill Specific nonlinear system based detector is@med. Comparing the LO detectors de-
signed for non-Gaussian noise in Sec. 1.3 with the detefdoiGaussian noise in Sec. 1.2,
we see that the LO detector has an extra nonlinear fungtionas shown in Figs. 1.3 and 1.4.
Thereforeg(z) is crucial for signal detection in non-Gaussian noise. Rk arise in LRT
and GLRT because they calculatér) from noise pdf that could be unknown or unprecise.
In Strategy lll,g(x) is specified as a certain nonlinear function [6], [11], whpaeameters
can be optimized based on the knowledge of the signal ancpanbwledge of the noise, if
available. Compared with Strategy Il, this strategy is expeto be more robust and less sen-
sitive to errors in the noise pdf form and/or parameters. vi&utn the noise pdf information
is available, it is expected to perform worse than Stratéggrnd hence it is more desirable
for systems with unknown or constantly changing noise pdfother advantage of it over
Strategy Il is its complexity. For Strategy II, the complgxilepends on the noise pdf, and
non-Gaussian noises usually lead to highly complex detsttocture. With Strategy Ill, we
can control the implementation complexity via the desigthefnonlinear functiog(x) and
achieve the desired balance between complexity and peafuzen Compared with Strategy |,
which uses a detector structure optimal to Gaussian noigeStnategy Il can achieve better

performance for problems with non-Gaussian noise.

A summary of the comparison between the above three steastegpresented in Tab. 1.1, which



TABLE 1.1
COMPARISON OF DIFFERENT STRATEGIES IN DETECTOR DESIGN

Character I-MF [I-GLRT [l-specifig(z)
Performance  Generally poor Excellent or poor, dependi@pod

on accuracy level of estimated

noise pdf
Complexity Low High Low
Robustness High Low Could be high

shows that Strategy Il has potential in detection problerits non-Gaussian noise. In this thesis,
we choose some specific systems, including threshold sy§i€jnand bistable system (BS) as the
¢(x) to obtain a simple and robust detector with a comparablepegnce to the optimal or near-

optimal detectors. The detector based on TS is abbreviat@daand the detector based on BS is
abbreviated as BD. An introduction on TS and BS and the reasbiy we choose TS and BS are
presented in Sec. 2.1. A literature review on TD and BD wilgbeen in Sec. 2.2.

Up to this point, we have introduced the first method in thisth, which is to use TD or BD
for BHTPs with non-Gaussian noise. However, when TD or BDnipkyed, there are two types
of non-optimality. One non-optimality is induced by TS or BScause they are not the optimal
nonlinearity in general. The other is that the TS or BS mayondh some cases, cannot be designed
optimally. In some circumstances, the detector alreadst&rind cannot be adjusted. For example,
in the human sensor systems like ears and eyes, the neusomstarptimal as far as the perception
ability is concerned, but cannot be adjusted easily. Indage, we cannot conventionally design the
detector, but need to consider other methods to improvedtecthbility.

If the optimal detector is unavailable or the detector degglifficult, an alternative method is
to adjust the input. We can add an additional noise to thdr@ignput in the hope of improving
the performance. This method can be more convenient thamalgdetector design in some appli-
cations. For example, in some broadcast communicatioemsgstit is easier to add an additional
noise at the transmitter side than to adjust the distribteediver at the receiver side.

Because noises are seen as destructive in general, teebigue been developed to filter noises.
In some systems, however, the noise can play a construdiige This nonintuitive physical phe-
nomenon observed in some nonlinear systems that adding cemsmprove the system performance
was termed as stochastic resonance (SR) [12], [13]. In the=gbof signal detection, it has been
shown that injecting additional noise to the input can inverihe detectablity for some nonlinear de-
tectors [14]-[20]. This effect was termed as “SR effect” noise enhanced effect” interchangeably
used in literature [14]-[20]. The corresponding detedi®téction are called “SR detector/detection”
or “noise-enhanced detector/detection”. We use “noiseecéd effect” and “noise enhanced de-

tector/detection” in this thesis because they are moreogpiate. A clarification on the differences



between “SR detection” and “noise enhanced detection”elpresented in Sec. 2.1.3.

In this thesis, we use the noise-enhanced effect as thedewetnod, adding independent noise
to the original observation to improve the performance.s®ifect is investigated in a binary TD
for a general BHTP. A literature review on noise-enhancedal®n will be given in Sec. 2.2.3.

To summarize, for signal detection in non-Gaussian nofse,challenges arise mainly from
the cost/complexity consideration, the robustness totke ehanging signal and noise parameters,
and constraints in the detector adjustment. In this thegsaim at designing simple and robust
detectors that still enjoy a detection performance conigata LRT or GLRT. For this purpose, the
methodology, including two techniques: TD or BD designitgst S or BS ag(x)), noise-enhanced
effect (adding noise to the input), is demonstrated in Fig. 1

2 Add 1 Design g(x)
noise V using TS or BS
. [ ]
Input 2 . Output
> |g(X)—> ... >
\Y Detector

Fig. 1.5. Research methodology: design of TD and BD, ancereidhanced effect.



Chapter 2

Background, Literature Review, and

Summary of Contributions

In this chapter, we provide the background and the liteeateview of TD, BD, and the noise-
enhanced detection in non-Gaussian noise. Then we sunmarthgzmajor contributions of this
thesis. This chapter is organized as follows. First, the&kgeond is introduced. The TS is briefly
presentedin Sec. 2.1.1. Followed is the introduction oBfén Sec. 2.1.2. In Sec. 2.1.3, we explain
the basic ideas of stochastic resonance (SR), SR basediaetemnd noise-enhanced detection.
Second, we present the literature review. The TD desigrviswed in Sec. 2.2.1. Followed is the
review of BD designin Sec. 2.2.2. We then review the noideaaned detection in Sec. 2.2.3. Third,
in Sec. 2.3, to clarify the concept of the SR detection andesthe possible influence to this thesis
due to the misuse of SR detection, we explain our undersigrafithe SR detection and clarify its
differences to noise-enhanced detection and detectayrddsourth, the contributions of this thesis

are summarized in Sec. 2.4. Finally, we conclude this clnayite a summary.

2.1 Background

2.1.1 Threshold System

In general, threshold system (TS) can be considered as dizgrait converts a continuous input to
one of multiple discrete values.

TS is one class of system that is ubiquitous in nature and im-made systems. For example,
human sensory systems can be modeled as a TS because tHestienuomes detectable only when
the energy exceed a threshold [13]. Another TS example idebision making in detectors, which

can be find in any test in Secs. 1.2 and 1.3. In addition, TSefulifor detector design due to its
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clipping behavior. In many applications, the non-Gaussi@ree commonly exhibits “spikes”, which
reveals heavy pdf tails. To reduce these “spikes”, goodctiatetypically include nonlinearities like
clipper [1]. Failure to do so leads to poor detectabilityr Bome special cases, for example, if the
noise is Laplacian, TS is the optimal nonlinear functiontfar detection. Finally, TS is simple in
implementation, which is one major concern in our design.

We present the typically used TS’s in detection in the follogv We assume one-dimensional
inputz € R and one-dimensional outpytce R when formulating these TS'’s. But these TS’s can be

extended to multiply-dimensional ones straightforwamlhen needed.

1. Simple binary TS. It is defined as,

1 xr>T
y = , (2.1)
0 r<T
wherer is the threshold of the TS. Here, “binary” refers to the twssgible outputs 0 or 1;
“simple” refers to the fact that the TS has one thresholth other words, the input space is

divided by into two continuous intervals corresponding to the two fe®utputs.

2. Composite binary TS. It is defined as,

1 xeD

o 0 x ¢ D 7 =2
whereD is a subset oR. This TS is named in contrast to simple binary TS. It stillpauis
binary values 0 or 1 but there are more than one thresholdst i§hthe input space may be
divided by multiple thresholdsy, ..., 7, ..., into multiple continuous intervals, where for the
x in each interval, the TS outputs one of the two binary vales exampleD = {z| — 0o <
x < —1,1 <z < oo}. Inthis TS, there are two thresholds= —1 andr, = 1. The TS is
equivalent to

1 x € (—o0,—1]U[1,00)
y =
0 otherwise

Note that the simple binary TS is one special case of the ceitgdoinary TS.

3. Three-level TS. A three-level TS has 3 possible outputeslrepresented as

-1 < —7
Yy = 0 —T<r<T , (2.3)
1 xr>T

wherer > 0 is the threshold. This three-level TS has been used in Sdhtgstor in [6].
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4. Multi-level quantizer. Itis a staircase function with linlevel discrete outputs corresponding
to multiple input regions. Conventional quantizer is a monéally increasing function of
the input. However, to be more general, this constraint ca¢spply to the TS mentioned

here. The TS’s listed in 1, 2 and 3 are all special cases of thit-favel quantizer.

2.1.2 Bistable System

A typical bistable system (BS) describes the overdampedmaf a ball that is in a bistable po-
tential [21]. The BS is chosen as the nonlinear system irgdesj the detector because it is a good
candidate as a “clipper” or “limiter”, which is the importacharacter in dealing with the “spikes”
in non-Gaussian noise. In addition, the BS has been widedy ursexploiting the noise enhanced
effect in signal detection.

The BS details are presented below. The speed of the balj glangoverned by
§(t) = =U'(y) + =(t), (2.4)
whereU (y) denotes the quartic bistable potential

U = (2) v+ (2) gt (2.5)

The bistable potential is shown in Fig. 2.1. Two parameters) decide the size of the bistable

U(y)

u(0)

Fig. 2.1. Bistable potential.

potential, as shown in (2.5). The barrier heighflig| = a*/4b. The potential minima are located

aty = +¢ = +/a/b.

The inputto the BS ig(¢), and the outputig(¢), the position of the ball in the bistable potential.
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The motion of the ball in the bistable potential can be sunwedras follows. Ifz(t) is absent,
because the ball is overdamped, the ball will go down slowlgrie of the two equilibrium points at
y = £e. If 2(t) is present, the ball moves with the speed given by (2.4), amglhmp between the
two wells.
When this BS is used in signal detection, the input(i), which iss(t) + w(t) (a signals(t)
embedded in noise(t)) for H; or only w(t) (noise) forH,. For both cases, the BS outpy(t) is
a random process that is not wide sense stationary. Therefolvingy(¢) from (2.4) is impossible
in general. We can only obtayin| for the inputz[n],n € [0, N — 1] using numerical method.
According to (2.4), the discrete time simulation model of 8S can be obtained. Given a
starting position of the balj[0] and discrete time input[n], the discrete version of (2.4) can be

obtained using Euler’'s method [22]:
yln + 1] = yln] + At(ay[n] — by’[n] + 2[n)), (2.6)

where At is the time interval (betweepn[n] and y[n + 1]) during which one sample applies to
the system. If the parametefs, b) and At are known andy[0] is given,y[n] can be calculated
recursively using (2.6). It is worthy mentioning that thelghl truncation error caused by Euler’'s
method is proportional té\¢, denoted a®)(At). To improve the accuracy, we use a variation of the

fourth-order Runge-Kutta’s method [22], [23] in this thgsivhich is
1
y[n + 1] = y[n] + E(kl + 2ko + 2k3 + k4), (2.7)

where

_|_

ro|

k1 = At(ay[n] — by®[n] + z[n]),

)
kQ_At<a<y[n]+%) b(y[n] 1>3—|—x[n—|—1]>,
kngt<a<y[n]+%) b(y[n]+k2)3+x[n+1]>,
by = At <a (y[n] + %) s (y[n] + %)3 +x[n+2]> .

This method can reduce the global erroi@0At*) [22]. Another consideration is the stability of

|3

the numerical solution of (2.4). The numerical solutionagdsto be unstable if the error grows
exponentially since there is a bounded solution for (2.4).eMplicit condition on the stability can

be derived. However, reducinyt is always helpful to have a stable solution.
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2.1.3 Stochastic Resonance, Stochastic Resonance Detectand Noise-enhanced

Detection

As stated in Sec. 1.4, the second method of our researchnistbe-enhanced detection. In this part,
we focus on the basic idea behind the noise-enhanced aeteEtrst, we present the conception of
stochastic resonance (SR) because it invokes researchdet8&tion and noise-enhanced detection.
Secondly, we present the concepts on SR detection. It iswitlechoise-enhanced detection inter-
changeably in literature. But the two have significant défece. At the same time, noise-enhanced
signal detection is introduced, and its difference to SRctain is clarified. Here we only present

the basics of these concepts. A more detailed note on SRtidetedll be given in Sec. 2.3.

2.1.3.1 Stochastic Resonance

Stochastic Resonance (SR) was originally proposed by Benzl. to model the periodic recur-
rences of the earth’s ice ages [24]-[26]. To explain theavirig of the earth’s climate between
ice ages and periods of relative warmth with a periodic ofuali®0,000 years, the earth’s orbit is
assumed as the cause because it varies with this period.ygawlge variation is not strong enough
to cause such a significant climate change. Therefore, ttegoped a bistable “climatic potential”
and the climate shall locate at one of the two stable states: dge” and “warm age”. Only the
earth’s orbit variation cannot cause the climate jump froma stable state to another. However, with
the help of other random fluctuations, strong climate chamgay happen. There is a cooperative
phenomenon between the weak periodic variation (the “$igaad the random fluctuations (the
“noise”). The output (the strong climate change) is “resehwith the “signal” with the help of the
“noise”, and hence this phenomenon is termed as “stochastimance”.

In general, SR can be illustrated using Fig. 2.2. When a siga@plied to a nonlinear system, if
the nonlinear system is in a form of threshold and the signailibthreshold, all input information
is blocked and the output has no information related to tpetisignal. In this case, by injecting
additional noise to the subthreshold signal, the outpuigeam some information on the signal. The
system gain, which can be signal-to-noise ratio (SNR), mluttformation, or cross-correlation,
reveals an increase with the increase of the additionaknaignsity until to a level resulting in
the maximum system gain. After that level, further increafsine noise intensity leads to decrease
of the system gain. The non-monotonic relationship betwsetem gain and noise intensity is
considered as the signature of SR effect.

Fig. 2.2 shows that the SR effect requires three basic ingméex[21]: (1) a nonlinear system (in
a form of threshold); (2) a subthreshold (weak) input; (3parse of noise. Because the signal is

subthreshold, not surprisingly, adding noise may provigessible way to enhance the signal at the

1A subthreshold signal is a signal that is not strong enougivés-pass the threshold.
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Subthreshold

signal '
g ‘CP _| Nonlinear Improved
system performance

Additional
noise

Fig. 2.2. lllustration of SR.

output side. SR mechanism can be used in detectors with TS.d8R has been studied intensively
in 1980’s and 1990’s. Some review papers can be found in [12], [21], [27].

2.1.3.2 Stochastic Resonance Detection and Noise-Enhash&etection

Since SR effect can amplify weak signal in noise through dinear system as shown in Fig. 2.2, it
can bring potential improvement for signal detection in+@eussian noise. A typical SR detector
is given in Fig. 2.3, which is composed of a nonlinear systeih @ followed detector [28]. The

output of the nonlinear system is not a detection decisidmerdfore, for the sake of detection, a
detector uses the output of the nonlinear system as the amglimake a decision. We term it as

“inner detector” in this thesis because it is the detectsidi@ the SR detector.
Original
input

Nonlinear . Inner —— H,
system detector —+—>11,

1
Additional H
noise

SR detector

Fig. 2.3. General model of SR detector.

SR detector is termed because the SR effect occurs in théneanlsystem in the detector.
However, the improvement in system gain, such as SNR, tlirdlug nonlinear system, does not
guarantee an improvement in detection performance [29], [B1 addition, the SR detection put
more efforts on the SR effect than the detection performaHeace, to have the SR effect occur,
it suffers many constraints and is difficult to have a contpetidetectability. In this thesis, we do
not address much on SR detection. Instead, we focus on tBe-eahanced detection to achieve
optimal detectability.

Unlike the SR detection, the noise-enhanced detectiorsixon the optimal detectability via
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adding noise to the original input. Comparing with SR detextin noise-enhanced detection, the
major difference is that we do not need to consider the caimi&'in SR detection. For example,
in SR detection, signal should be subthreshold, SR effemildioccur. Noise-enhanced detection
can occur for any signal (subthreshold or superthreshatd),does not require SR effect. Without
these constraints, noise-enhanced detection provide efficeent and practical solution than SR

detection in robust signal detection.

2.2 Literature Review

In this part, we review the literature on TD design, BD desaymd noise-enhanced signal detection.

2.2.1 Detector Design Using Threshold System

As we stated in Sec. 2.1.1, TS is a promising candidate fontdrdinear componenj(z) in a
detector designed for non-Gaussian noise. The objectising TS is to achieve a detector with the
following desired features: simple implementation, highustness, good detectability, or a balance
among these features. In this section, we will review the Ppimposed for different detection
problems. At the end of this section, we represent a tablertovsarize the features of these TDs.

Thomas derived a nonparametric detector in [31], which mpased of a sign function and a
replica-correlator. The sign function is one simple bin@gy, described in (2.1). This TD offers
advantages in implementation simplicity and robustnessifmecision in signal information. But
its performance is poor compared with the optimal detector.

In [32], an optimum multi-level quantizer or TS was propof&dy(x). As introduced in (1.13),
when the noise pdf is knowg,o(-) is the locally optimal nonlinear function. The optimum quan
tizer in [32] is designed to minimize the mean squared eMBE) between the quantized output
and the output of the. o (+) for a given number of the quantization levels. The detecased on this
guantizer can achieve superior detectability to the detdzdsed on the usual minimum distortion
guantizer when the noise is non-Gaussian.

Miller et al. [33] investigated the detectability and romess of the detectors using sign function,
amplifier limiter, six-level and four-level TS as thér). The detectability is measured by asymptotic
relative efficiency (ARE) and the robustness is measuretdgé¢gradation of ARE. The parameters
of these nonlinear systems are calculated to maximize the. AR

In [14], Jung addressed the SNR behavior when inputting avkrsinusoidal signal in Gaussian
color noise with known pdf to the simple binary TS. The expi@s of the output SNR shows that
there is an optimal threshold of the TS, which yields to th&imam SNR. The SNR behavior of the
simple binary TS was also investigated in [15] when the inpatperiodic train of pulse embedded in

arbitrarily distributed white noise. By using the outputfSlss the performance measure, it showed
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that there is an optimal threshold that leads to maximum Siti,adding noise can improve the
output SNR if the input signal is subthreshold to the given Hi@vever, as explained in [29], [30],
high SNR at the TS output does not guarantee high detedyabili

Sahaetal. in [6] proposed to use a three-level TS as shown3dhfpllowed by a quadratic MF to
detect sinusoidal signals with known frequency but unknemplitude and phase in non-Gaussian
noise with known pdf. The expression of the SNR at the outptii@three-level TS was derived
and used to calculate the optimal parameter of the thres-k%. It was shown that the proposed
detector has superior detectabitlity to the quadratic MiRHe Gaussian mixture noise and general
Gaussian noise.

Chapeau-Blondeau [11] proposed a simple binary TS base@maxa-posteriori probability
detector to detect DC signals in non-Gaussian noise. Theetigtwas shown to have better perfor-
mance than the linear MF.

A brief summary of the features of the TDs reviewed aboveasided as Tab. 2.1. It shows that
these TDs are usually designed in certain senses of optymBlit for all these works, the pdfs of
the non-Gaussian noises are assumed to be known perfebta$sumption leads to impractical
issue because the noise pdf usually cannot be obtainectpgrfeurthermore, the design based on
this assumption can result in complex implementation, lolbustness, and poor detectability when
applying the TDs. Even though the TS has simple implemantatihe optimal parameters of the TS
need to be calculated from the noise pdf, which adds comyléxithe TD. Also, because the TD
design depends on the noise pdf and the signal, the robssifitgese detectors to the change of the
noise and signal is expected to be low. When the noise pdfrirdtion is imprecise, the detection
performance may degrade severely. These weakness liraitgpilications of these TDs. We will

address these problems in this thesis.

2.2.2 Detector Design Using Bistable System

BD uses BS to replace the nonlinear compongn) in a detector designed for non-Gaussian noise
(see Figs. 1.3 and 1.4). In other words, a BD is composed of arl8iS conventional detector, such
as the linear MF in Fig. 1.3 or the quadrature MF in Fig. 1.4erEffiore, the BD design is to find the
optimal or near optimal parameters of the BS to achieve thienafity in a certain sense.

BS has been used in exploiting the SR effect in signal dete¢#3], [29], [30], [34]. For this
purpose, the BS design is subject to the constraints aptali&&R. However, it has been shown that
better performance can be obtained without these conttif@8]. Hence, we will consider the BS
design for high detectability without considering any doaisits related to SR detection.

Since analytical optimization of the BS parameters is difficthe BS parameters are commonly
determined by brute-force simulation or experiments [}

In [36], the detection of a known signal in WGN was consideaed Xu et al. proposed to
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TABLE 2.1
COMPARISON OF REVIEWEDTDS.

Reference Signal Noise Optimalitymplemen Robust  Detect
measure tation ness ability

[31] DC Gaussian NP Simple Good Poor
unknown unknown

[32] Arbitrary Non-Gaussian MSE Complex Poor Good
known known

[33] Arbitrary Known Gaussian- ARE Depends Good Good
known Laplace mixture

[14] Sinusoidal Colored Gaussian SNR Simple N/A N/A
known known

[15] Periodic pulse Arbitrary noise SNR Simple N/A N/A
known known

[6] Sinusoidal Gaussian mixture SNR Complex Poor Good
known freq. & Generalized
unknown Gaussian
amp., phase  known

[11] Known DC Non-Gaussian  probability Good Good Good

known of error

N/A: Not applicable

obtain the maximum output SNR via tuning the BS parameters¥pgriments. In [37], Duan et
al. used a BS as a receiver to decode a bhinary pulse amplitodelation (PAM) signal passing
through a WGN. The BS parameters were chosen from the giviele gules for an acceptable (not
minumum) bit error rate (BER) in decoding. For the same moblXu, Duan et al. [35] compared
the performance of two methods, noise-enhanced effect &deign, when using a BS as the
receiver. It was pointed out that using noise-enhancedtetfn be viewed as a special case of the
BS design, thus the BS design achieves better performaanentiise-enhanced effect. However, in
this investigation, the performance of the proposed recsizannot exceed linear MF, the optimal
receiver for WGN channel.

BD can have superior detection performance to linear MFgnalidetection with non-Gaussian
noise. For example, in watermark detection in discreteneosansform (DCT) domain, the signal is
the watermark (or a signature), while the DCT coefficien@oinage is the noise, whose pdfis non-
Gaussian and unknown in general [43], [44]. Hence the watdtimxtraction can be considered as a
detection problem of a known signal in non-Gaussian noisg BD has been used for this problem
[38]-[42]. Sun et al. first proposed to use BD in watermarkation [38], [39], [42]. Wu et al. [40]
employed the same strategy but extended the idea by usingGheof 8 x 8 blocks and adding
an effective permutation of DCT coefficients. Duan et al][dbposed to use an array of BS's to
further improve the performance of BD. These BD’s were cb8& detector in [38]-[42]. But they
are more suitable to be considered as nonlinear BS desi§fo3BD because no SR effect occurs

in these BDs.
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In watermark extraction, the BDs reviewed above achieveebgerformance than the linear
MF. However, no analytical and systematic parameter opétian for the BS is proposed. The BS
parameters were given either arbitrarily in [38]-[40],]J42via exhaustive search in [41], [45]. The
former cannot guarantee performance. For the latter, finttie optimal parameters by numerical
tuning is generally infeasible for watermark extractioreda the difficulties in estimating the ex-
traction performance. We will address these problems aopgse a practical technique on the BD

design.

2.2.3 Noise-Enhanced Detection

Noise-enhanced detection attempts to improve the detepgoformance via adding noise to the
original observation. Hence, the major design problem denve the optimal noise.

Kay initiated noise-enhanced signal detection in [16]. disvshown that a suboptimal TD can
have an improved probability of detection via adding a WGHY. &fixed test, denoted d¥x), and
a fixed critical functionp(x) in (1.3), Kay et al. [17] showed that the pdf of the optimalsefor
minimizing the probability of decision error under Beyes@iterion is a Dirac delta function, thus
the optimal noise is a constant.

For a general binary detection problem with an arbitrariiieg detector, under the NP criterion,
Chen et al. [18], [46] investigated the noise-enhancedtéffied derived the optimal pdf form of the
noise. The results are summarized as follows.

Consider a BHTP with knowpg(x) £ fx(x; Hy) andp(x) £ fx(x; H;). For a fixed test
and critical functiony(x), Pp and Pp4 can be calculated by (1.4) and (1.5). l8t= X + V,
whereV is the noise added to the original inpXit The goal is to find the optimal pdf fov' that
can maximizePp subject toPr 4 < a.

Becausefy(u; H;),7 = 0,1 are the convolution op;(x) and fv (x), when applyingU to the

fixed detectorPY andP¥, are

Py = [ v ([ otwmu =) ax= [ FiGofvixix =By (),

RN RN

PEa= [ oo ([ otwmbu = xau) dx = [ Falo (i = By (7o),

whereEv {} stands for the expectation ov€randF;(v) £ [Lx ¢(u)pi(u — v)du,i = 0,1. Note
that ', (v) and Fy(v) are thePp and Pr4 when a giveru = x + v is applied to the detector. In
particular,F;(0) andF;(0) are thePp and Pr 4 when the original inpukX is applied to the detector.
Fy(v), Fy(v) are functions in domaiV € RY. Let fo = Fy(v) andf, = Fi(v). fo € [0,1] and
f1 € [0,1] are both one-dimensional scalars and there is a many-tg-mapping betweerf, and
/1 based on same.

The optimang is obtained from twd fo, f1) pairs, denoted asfo1, f11) and(foz, f12), which
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are located in the top region of the convex hull of all tifg, f1) pairs and should satisfiy, =
Afor + (1 = X) foo = afor A € [0,1]. Correspondingly, the optimal noise pf (v) = A\é(v —

vi)+ (1 — A\)d(v — va), wherev; andv, are determined by

Fy(vi) = for
Fi(vi) = fu
Fo(va) = foz
Fi(va2) = fi2

It shows that the optimal noise is randomization betweendwstants/; andv, with probabilities

Aandl — ), respectively. The maximum detection probability 5y = A f11 + (1 — ) fi2 Where
A= el

In the same spirit, the theory of the noise-enhanced deteati[18] was extended to variable
detectors [19]. For fixed detectors, &}, f1) pairs are obtained for all the possible While for
variable detectors, allfy, f1) pairs are obtained for all possibleand all variable parameters, such
asn andPr 4. With this new set of /o, f1) pairs, the optimal noise is obtained as did for the fixed
detectors.

The theory in [18], [19] gives the optimal noise pdf under Niffecion. It evokes a lot interest in
the study of noise-enhanced signal detection. Chen et@laj@ Guerriero et al. [48] demonstrated
that noise-enhanced effect can improve detection perfocmaf sequential detectors. Kay in [49]
pointed out that optimal noise-enhanced detection can &ged as a randomized decision rule,
which is a commonly used technique in signal detection P}, Bayram exploited noise-enhanced
effect under NP criterion [50], in the minimax framework [5&nd in Bayesian framework [52].
Patel et al. [20], [53] exploited the necessary and sufftaenditions for the existence of the optimal
noise effect under NP criterion, and proposed a numericahgutechnique to find a near-optimal
noise.

We point out that the major problem in existing results orsaeénhanced detection for a general
detector is its practicability. First, in [18]-[20], the tipal noise pdf was derived. The noise pdf
results however are in implicit form and numerical methodsraquired to use the results in real
applications. Generally speaking, closed-form is hardrd.fiSecondly, under NP criterion, for
different Pr 4’s, the optimal noise pdf can be different. Thus, the optinmse pdf can be sensitive
to parameter valueBr 4 and the decision thresholgin the critical functiong(-). It is difficult to
use the noise-enhanced effect, especially for applicatiath imperfect information (on noise or
signal parameters) or changing environment. Finally, flogxasting results, numerical methods are

required in finding the optimal noise, the computational ptaxity is in general high.
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2.3 A Note on SR Detection

In this part, we clarify the concept of SR detection and itsusée in two perspectives: one is noise-
enhanced detection; the other is detector design. Firsiyiaw on SR detection is presented. Sec-
ondly, we provide our understanding of SR detection. Fnale clarify the relationship and the

difference of SR detection, noise-enhanced detectiongdatettor design.

2.3.1 Review on SR Detection

The early SR detection aimed at detecting weak periodiatign Gaussian noise using TS or BS.
Inchiosa et al. [29] used SR detector for the detection groBHTP Il shown in Sec. 1.2. The SR
detector uses a BS as the nonlinear system and the quadviuas the inner detector. Given that
the signal is subthreshold to the BS, it was demonstratedtbad’, increases with the increase of
the WGN variance until a critical level, then t&, decreases with further increase of the WGN
variance. Note that the original input (observation) inles signal and noise. This showed that
adding WGN noise to the original input can incredsg if the variance of the WGN noise in the
original input is weaker than the critical level. Galdi et 0] addressed the sinusoidal signal
detection in WGN. The proposed SR detector also used a BSeasothlinear system but simple
mean or sign counting was used as the inner detector. Instetaching the noise variance, the
authors proposed to choose suitable parameters of the B&tthrihe noise level in the original
input. In other words, the BS is adjusted for the purposetti@hoise level in the original input is
the critical level in the adjusted BS.

However, these attempts are generally unsuccessful iniéve of signal detection. Because
for the systems with WGN, the linear MF is optimal. Any aduaital nonlinearity, such as the
nonlinearity induced by a TS or a BS, only degrades the dabédity.

SR detectors were then used for signal detection in non<€kausoise. In [15], Chapeau-
Blondeau derived the expression of the SNR at the output & &l detecting a rectangular pulse
signal embedded in a known noise. It was pointed out thaetisean optimal threshold of the TS
to have the maximum SNR. Also, if the threshold is not setroaliy, adding noise can increase the
SNR. Saha et al. [6] proposed to use a SR detector, composethade-level TS and a quadrature
MF, for the detection problem BHTP IV in Sec. 1.3. The expi@s®sf the SNR gain of the three-
level TS is derived, which depends on the noise pdf and théfeShold. The optimal threshold was
solved to maximize the SNR gain. It was shown that this detexsn have a superior performance
to the quadratic MF. Also for non-Gaussian noise, Zozor.g6d] demonstrated that SR effect can
occur in LO detector. Rousseau et al. [55] investigated fReeffect in a TD to detect a known
deterministic signal in a noise with known pdf. It showedtthdding a WGN can decrease the

probability of error.
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The SR detectors reviewed above can be divided into two groupone group, SR effect is
obtained by tuning the noise level [15], [29], [54], [55]; tine other group, the effect is obtained
by tuning the parameters of the detector [6], [15], [30],][34owever, the term SR detection was
misused for some cases [36]-[42] because in these detezs@nd, no SR effect occurs. For a
correct and clear presentation on these concepts, we shostaer the following two questions: 1)
what is the difference between the SR detection via tunieghthise level and the noise-enhanced
detection? 2) what is the difference between the SR detewtd tuning system parameters and

detector design?

2.3.2 Understanding of SR Detection

In the following, taking BD as an example, we demonstrate3Reeffect via adding noise and the
SR effect via tuning parameters in SR detectors, respégtive

We first show the SR effect via adding noise in SR detectorssuée that the noise in the
original input/ is WGN with variancer2, the additional nois& is also WGN with variance?.
Thus, the adjusted noigé = W + V has a variance? = o2 + o2. As demonstrated in [29], we
plot a diagram of the detection performance versus the waisances? in Fig. 2.4. For a given SR
detector, for example, a BS followed by a quadratic MF in [2B¢ noise variance in the original
inputisco2 and its performance ig,,;. We increase? until o2 reaches the critical levei?, and
the optimal performance, denotedB,%;itd—”, is obtained as marked in Fig. 2.4. We can see that by

adding noise, the performance is improved. Thus, SR effggpéns.

A

Performance

o
qw
qw
.

Fig. 2.4. SR effect via adding noise in SR detector.

Next we explain the SR effect induced by parameter tuningRndStectors, as in [30]. We
present the performance of the BDs with different BS paramseatersus noise variance in Fig. 2.5.

BS; is what we used in Fig. 2.4. We can change the BS parametees#oBt such that for B,
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its critical noise leveb? coincides with the original noise levef . Under this situation, the SR

effect is obtained by tuning the BS parameters, and the pedioce is denoted d\%;jf—”—SR.

Performance

o

Fig. 2.5. SR effect via tuning parameters in BS based detecto

We should note here that for the given input,;B®1d BS both work at the SR regime because
the constructive role of the noise can be observed. Fqr B&ding noise will increase its perfor-
mance. For B§ the noise amount in the original input is just what the systeeds for the optimal
SR effect. B$ and BS based detectors have SR effect and are no doubt to be callddt8&tor.

However, if we can adjust the BS parameters optimally/stibadly as did in [36], [37], [42],
we will have a Bg whose achievable performance is denotedjgjst,”—p. This P(f;jt”—p is superior
to P(f;fgl—”—SR for any noise variance. For BSnoise does NOT play a constructive role, as shown
in Fig. 2.5. Therefore, we would like to clarify that this tng on BS parameters follows detector
design rather than SR detector (although claimed to be S&tte) because no SR effect occurs in

BS;.

2.3.3 Relationship of SR Detector, Noise-Enhanced Detect@nd Detector

Design

SR detector has the signature that SR effect occurs in thiénean system. For the sake of SR
effect, the input signal should be subthreshold to the givamlinear system, which results in the
constructive role of the noise. As we presented in Sec. 2tBe2e are two types of SR detection
based on two methods of achieving SR effects: via addingeranisl via tuning parameters.
Noise-enhanced detector does not has the constraintsdétathe SR effect. It can be any type
of detector, linear or nonlinear. If it is nonlinear, the finear system can be arbitrary, and needs

not to have the signal subthreshold to the system. The signaf the noise-enhanced detector is
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that adding an extra noise can improve the performance.efdrey, noise-enhanced detection can
be viewed as an extension of SR detection based on adding nois

Detector design is to determine the system or subsystemeieatdr and hence is more general
than SR detection based on tuning parameters, without@emsg the constraints of SR effect.

In summary, there is no overlap between the noise-enharetedtobn and the detector design.
The SR detection via adding noise is a special case of the+soisanced detection. The SR detec-
tion via tuning parameters is a special case of the deteegign. This relationship can be illustrated

in Fig. 2.6.

detegtion

Via tuning
parameters

Via adding
noise

SR detection

Fig. 2.6. Relationship of SR detection, noise-enhanceelctieh, and detector design.

According to the above clarification, we point out that [1[45], [23], [29], [30], [34] should
be classified as SR detectors. [16]-[18], [20], [46]-[53Jwd be classified as the noise-enhanced
signal detection. [6], [36]-[42] should be classified ased&ir design.

2.4 Thesis Contributions

This thesis aims at designing robust and simple detectdts seitisfying detection performance
through TD design, BD design, and noise-enhanced effecounview of the contributions of this
thesis is shown in Fig. 2.7. The four major contributionslated as follows.

Contribution I: an optimal TD design under NP criterion for a known DC signal in known
non-Gaussian noise.The TD is composed of a TS and a linear MF, and hence the majhr ta
is to design the TS. The optimal TS’s, including simple byn@6 and composite binary TS, are
derived analytically. Experimental results show the vglidf the derived optimal TS. For non-
Gaussian noise with heavy pdf tails, the proposed TD sigmiflg outperforms the linear MF, and

has comparable performance to the LO detector. This worlbbas published as [56], [57] and is
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Thesis
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Threshold Bistable
system based system based
detector design detector design
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TD TI.) : BD design
. design Noise-
design for
for any enhanced
for DC , watermark
. known TD design )
signal . extraction
signal

Fig. 2.7. Overview of the thesis contributions.

presented in Chap. 3.

Contribution II: a robust TD of any known signal in unknown no n-Gaussian noise.We
design a TD for detecting any known deterministic signahihdpendent non-Gaussian noise whose
pdf is unknown but is symmetric and unimodal. Under the agdioms of white noise, small signal,
and a large number of samples, the proposed TD is shown tonmmexthe AUC, which is the ab-
breviation for area under receiver operating characte(lBOC) curve. While previous TD designs
need accurate information of the noise pdf, the proposedTiiependent of the noise pdf. The de-
tection probability and the ROC of the proposed TD are arealymoth theoretically and numerically.
It is shown that even without knowing the noise pdf, the psgabTD has close performance to the
optimal detector designed with precise noise pdf inforomatilt also performs significantly better
than the linear MF when the noise pdf has heavy tails. Thetipedémplementation, robustness to
both the noise pdf and the signal, and region of validity @ pinoposed TD are also investigated.
This work has been published as [58] and is presented in Ghap.

Contribution I11: optimal design of noise-enhanced TD under AUC measure. We investigate
the noise-enhanced effect for a general BHTP using a bin@ryVe adopt AUC as the performance
measure for its implementation simplicity and robustndssst the optimal TS design that maxi-
mizes the AUC has been derived. Then we consider the nolsarerd effect in this detector. The
optimal noise pdf that maximizes the AUC is shown to be a detiation, indicating that the optimal

noise is deterministic. Performance of the proposed desigihcomparison with other designs are
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shown via an example. This work has been submitted as [5@] d€kails are presented in Chap. 5.

Contribution IV: an adaptive BD for watermark extraction. In this part, we focus on BD
design for watermark extraction. Since a BD is composed oSaaBd a matched filter, we only
need to consider the BS design, i.e., optimizing BS paramsefehere is no existing efficient and
systematic BS design method except exhaustive search. dp@ge to use the cross-correlation
between the watermark signal and the BS output as the meastegermining the BS parameters.
A key observation is that the optimal BS parameters depeittldeonoise and the watermark level but
are not sensitive to the noise pdf form and the watermarkesezpy This feature provides an easy
and practical way to build an adaptive BS since the signatla@doise level can be estimated easily.
Experimental results in watermark extraction show thapér@ormance obtained from the proposed
adaptive BD is satisfactory to various extraction scersargmd performs better than existing BD’s
and the WGN-based ML detector for most cases. This work has paeblished as [28], [60]-[62]
and is presented in Chap. 6.

Contribution I, Il, and IV follow the technique of TD and BD sign in the methodology stated

in Sec. 1.4. Contribution Il follows the technique of neisehanced effect.

2.5 Summary

In this chapter, we have presented a comprehensive revieliDodesign, BD design, and noise-
enhanced detection. We first introduced the background oi8$Sand noise-enhanced detection.
Followed is the literature review on the topics addressetiimthesis, which are detector designs
using TS or BS, and noise-enhanced detection. As SR dateditiys emerges when discussing
these two topics and can bring confusion in concepts, weigedvan extra note on the SR detec-
tion to clarify its relationship with the topics of this thes The contributions of this thesis were

summarized at the end of this chapter.
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Chapter 3

Optimal Design of Threshold
Detector for a DC Signal in

Non-Gaussian Noise

TS is widely used in nonlinear signal detection for a simpdust, and suboptimal solution. The
optimal design of the TS is crucial for good detection parfance. In this chapter, we propose the
optimal TS design in the detection of a DC signal in non-Giamgsoise under NP criterion. First, we
propose a novel performance indicator to replace the pilityadf detection as the design criterion.
Using this indicator, we derive the optimal design of simipileary TS and composite binary TS,
respectively. Experiments show that the proposed TD cafoperclose to the LO detection with
much simpler implementation and much less computationaipdexity. It performs significantly

better than the MF for non-Gaussian noise with heavy pdi.tail

3.1 Introduction

The problem of detecting a known signal in additive noisénwitown distribution has well-known
solutions, which is LRT or GLRT [1]. But LRT or GLRT can be higltomplex in implementation,
and has low robustness to parameter changes, thus has pfwn@ce when there is imprecision
or change in the noise or signal information. As stated iréisearch methodology in Sec. 1.4, for
many applications, suboptimal but robust detectors peowidre practical choices [31]. Threshold
system (TS) based detector, or TD in short, is one of the dirhapdetectors widely used in many
applications [6], [11], [31]-[33], [63]. TD has several ahtages: high speed, low resource (com-
puting capacity, memory, storage) requirement, simpldempgntation, high robustness, and good

detection performance, as reviewed in Sec. 2.2.1.
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Consider the BHTP described in (1.1). In this chapter, weirassthat the signal is a known
DC signal, i.e.s = A is a constant. The noises are i.i.d., whose gidf(w), is known. It is also
assumed that the signal is weak compared to the noisedi<. o, wheres is the standard deviation
of the noise. For a good performance, lafg&N > 1) is conventionally assumed in weak signal
detection applications [1].

The schematic of the proposed TD is shown in Fig. 3.1. It isposed of a TS, followed by a
simple mean calculator. Note that the MF for DC signal is eagjeint to the simple mean. As shown
in Fig. 1.3, the LO detector for simple non-Gaussian base@Bli$ a nonlinear system,o ()

defined in (1.13) followed by a MF. Here, we use TS to replaeecttmplicated nonlinear system

gro(x).
x[n] i N-1 ’ >H
.| Threshold S 1- | -7 T
system N = <7 >H,
TS
TD

Fig. 3.1. Schematic of the proposed TD.

For the TS, we choose to use the simple binary TS shown in §2d the composite binary TS
shown in (2.2) since implementation simplicity is the majonsideration in our design. Note that
simple binary TS can be viewed as a special case of compas#eybr'S. Its design is represented
separately since it has simpler implementation than themgteomposite binary TS and is widely
used in practical applications.

If we use the simple binary TS in (2.1), the only parametedsée be designed is the threshold
7. For later convenience, we present the complemental verdicthe simple binary TS, called

complemental simple binary TS, as

(en)
=
S,
IV

2

yln] = : (3.1)

H

=,

=
A
\]

Naturally, when the DC signal is positive, i.el,> 0, we use the simple binary TS in (2.1); when
the DC signal is negative, we use the complemental simpkpiiS in (3.1). Using this alternative,
we can derive identical statistical feature of the TS ouigut’s for eitherA > 0 or A < 0. As
shown in Fig. 3.1, the test statistic> + ij;ol y[n] is the simple mean af[n]'s. A decisionH;

or Hy is made ifz > norz < n.

Similar TD based on simple binary TS has been used in [11]}-[18]. In [16]-[18], the TD
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is used to show the occurrence of noise-enhanced effecfppeaiaBlondeau in [11] demonstrated
that the TD can achieve better detection performance thafioviRon-Gaussian noises. However,
the optimal design of the TS parameter has not been addre$sate best of our knowledge, no
optimal design of the composite binary TS was availabletérditure.

In this chapter, we use the NP criterion to design the TS peirans for both simple binary TS
(the one in (2.1) or its complement form in (3.1)) and comfmkinary TS. That is, we design the
thresholdr for simple binary TS and the s&t for composite binary TS to have the maximutp
subject toPr4 < «. We first derivePp and Pr 4 formulas for the proposed TD, based on which
a simpler indicator ofPp, is discovered. Using the proposed indicator as the desitgrion, we
proposed a low-complexity algorithm to calculate the opfithiresholdr,,; of the TS in (2.1) or
(3.1) for simple TS. Also based on the indicator, we deteentlire optimal seD,. if the composite
TS in (2.2) is used. Experimental results demonstrate ti@ptoposed optimal TD design can
perform very close to the LO detector, and much better tharMR, for non-Gaussian noise with
heavy pdf tails.

This chapter is organized as follows. In Sec. 3.2, we dehed?, formula of the TD and pro-
pose a new indicator dPp. We then present the optimal design of simple binary TS antbosite
binary TS in Sec. 3.3. In Sec. 3.4, we discuss the situatioarmthe noise pdf is unknown. In
Sec. 3.5, simulation results show the performance of theqeed optimal TD, and the comparison

with LO detector and MF. Finally, we conclude this chapteséet. 3.6.

3.2 An Indicator of Pp

In this section, we derive the formula 6%,. Since it is too complicated to be used in the optimal TS
Design, a simpler indicator is proposed, of whiep is approximated as monotonically increasing

function.

3.2.1 Calculations ofPp

We first calculatef;(z; Hy) and fz(z; Hy). Recall thatfx (x; Hy) and fx (x; Hy) are the pdf’s

of each entryz[n],n € [0, N — 1] under the hypothesdd, and H;, respectively. Since the sig-
nal A and the noise pdfyy (w) are known,fx (x; H;) are both known as well anflx (z; Hy) =
fw(w), fx(z; H1) = fw(w — A). Given the threshold for the simple binary TS described in
(2.1), or the seD for the composite binary TS in (2.2); = y[n] is a random variable (RV) taking
only two values0 or 1. Hence,Y can be considered as an output of a Bernoulli trial. When the

simple TS is used, we have the following probabilities.

P(Y = 0; Ho) = /j fx(z; Ho)dx = qo, (3.2)
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P(Y =1;Ho) = /OO fx(w; Ho)dx = po, (3.3)
]P)(Y:O;Hl):/T fx(z; Hy)dx 2 ¢, (3.4)

P(YI1;H1)=/Oofx(f£;H1)dl‘ép1, (35)

wherepy + go = 1 andp; + g1 = 1. Observe thap, andp, are the probability o™ = 1 under
the conditions ofH, and H; respectively. If the DC signall > 0, fx(x; H;) is a right shift of
fx(z; Hp), and the TS in (2.1) is employed. It can be verified fhat- p,. For A < 0, we use the
complemental TS in (3.1) to haye > po. Without loss the generality, we only consider the case
for A > 0. While for A < 0, the same results can be obtained.

If the composite binary TS is used, we have

P(Y = 0; Ho) = o fx (w; Ho)dz = qo, (3.6)

P(Y =1;Hp) = / ” fx (5 Ho)dx £ po, (3.7
e

P(Y =0;Hy) = ) fx(w; Hy)dz = q1, (3.8)
z¢D

P(Y =1; Hy) :/ fx (z; Hy)dz = py. (3.9)
z€D

Let m € [0, N] be the number of 1's in the TS output sequence. Under hypstliks the

distribution ofm is a binomial distribution, and its probability mass fuocti(pmf) is fy;(m) =

< Zn\; ) pigy ~™. Notice that: = % ij;ol y[n] = %, we then have the following pmf fdr; Hy

N z —z 1 2
[z (z;Hy) = ( N )poNqév N 2= O’N’N’“"l' (3.10)
UnderH., similarly, we have
N z —z 1 2
fZ (Z;Hl): ( AN >pqu{V Na ZZOaNaNa--'al- (311)

Notice thatf;(z; H;),i = 0, 1 are discrete functions that are valid for= 0,1/N,2/N, ..., 1
only. However, whernV approaches infinity, the functions approach continuous.o8mceN > 1,

for the tractability of analysis, we use the continuous faf{B.10) as the pdf of underH in the
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Pr 4 calculation, which is shown as follows.

. _ N-T(N+1) 2N _N—zN
J2(z ) = Fr I r (N N P ze 1]
wherel'(-) is theGamma function defined as,
F(n):/ t" e tdt.
0
Similarly, we obtain
fae ) = o LINED gy e

TN+ DN — N+t D o

For a givenPr 4 = «, n can be calculated using the following equation

PFA: fz(Z;Ho)dZZCY.
z>n
With the above), Pp can be calculated by

PD = fz(Z;Hl)dZ.
z>n

(3.12)

(3.13)

(3.14)

(3.15)

Since we consider continuoyg (z; H;),7 = 0, 1, we use integrals in (3.14) and (3.15) to calcu-
late P4 andPp. Note that for discret¢ (z; H;),i = 0, 1, the integrals in (3.14) and (3.15) should

be replaced by summations.

3.2.2 A Detectability Indicator Ap

Define
Ap 2 p; —po=P(Y =1;H,) — P(Y = 1; Hp),

(3.16)

wherepg, p; are defined in (3.3) and (3.5) for simple binary TS, in (3.7) 8.9) for composite

binary TS, respectively. In this subsection, we show thais a good indicator of detectability.

Under NP criterion, the TS design problem for the TD is
Topt = argmax Pp, s.t. Ppa(7) <«
when simple binary TS is used, and
Dopt = arg max Pp, s.t. Ppa(D) < a
when composite binary TS is used.
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We first consider the case of simple binary TS. By using thévedérresults in the previous
section, (3.14), (3.15), (3.12) (3.13), (3.2)-(3.5), thg can be calculated by

N-T(N+1 No=N
= Hy)d Hy)d dz,
Topt argmf‘x/z>nr(zN+1)r(N—zN+1 (/ P (s Hy x) (/ Jx(a; Hy) x) i

Pp

(3.19)

N -T(N +1 N==n
S't'/z>nF(ZN—|—1)F(N—zN+1</ fx(x; Hp) da:) (/ fXa:HO)da:) dz = a.

fz(z:Ho)

(3.20)
In general, it is difficult to find the close form solution feg,.. The complicated formulas even
make advanced numerical methods difficult to find. One nhtuethod is an exhaustive search
of 7. Assume thaty is given. First, for a giver, we can calculatey numerically from (3.20).
With this , we can then calculate th&, shown in (3.19) numerically. The two steps above are
repeated for all the possibtevalues in exhaustive search, and thihat leads to the maximuifip
is Topt. HOwever, exhaustive search has very high computatiomapéexity and is impractical in
real applications.

For the case of the composite binary TS, similarly, we have

zN N—2zN
fX(x;Hl)dx) ( fX(x;Hl)dx) dz,

z€D z¢D

N-T(N+1
Dopt:argmgx/ (N +1) (

sl (2N +1)I'(N — 2N +1)

Pp
(3.21)

N-T(N +1) . N . N==n
st L>nF(zN + 1)I(N —zN + 1)( zebe(I’HO)dI) ( ngfX(I’HO)dI) dZ(; :2)

For this optimization problem, there is even no way to con@éxbaustive search since the set of all
possibleD is the set of all subsets &, which has infinite dimensions.
For tractable TS design, in the following, we propose anaattir of P, and use it as the design

criterion.

Lemma 3.1. WhenA <« o andN > 1, for any givenPr 4, Pp is approximately a monotonically

increasing function ofAp.

Proof. We first represenPp as a monotonically decreasing function@fwhere© is a function of
Ap andp;. We then show tha|tg—2| <1 andaaT@p < 0, which shows tha® is approximately a

monotonically decreasing function &fp, and hencé’p is approximately a monotonically increas-
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ing function of Ap.
WhenN > 1, using DeMoivre-Laplace theorem [4]z(z; Hy) and fz(z; Hy) in (3.12) and

(3.13) can be approximated by the normal distributions,
fz(z; Ho) = N (2;po, po(1 — po)/N), (3.23)

fz(z; Hy) = N(z;p1,pi(1 = p1)/N), (3.24)

whereN (z; u, 0?) is the normal distribution with meam and variancer?. Using (3.23) in (3.14)

gives

__N=bPo ) _ a, 32
© (\/Po(l—Po)/N> (8:29)

whereQ(z) = f;o N(z;0,1)dz, which is the complementary cumulative distribution fuoet(cdf)

of standard normal pdf. We solvefrom (3.25) and obtain

n=rpo+Q ' (a)y/po(1—po)/N, (3.26)

where@Q 1 is the inverse function of)(-). Substituting (3.26) into (3.15), we obtain

_ n—Dp1 _ po —p1+Q ' (a)y/po(1 — po)/N 39
=0 <\/p1(1—p1)/N> Q( p1(1—p1)/N ) (827)

Substitutingpy = p1 — Ap into (3.27) gives

Py =0 (—Ap +Q ()l —Ap)(L—p1 + Ap)/N)
pi(1=p1)/N '

Because)(-) is a monotonically decreasing function, we can considey tiréd argument inside

theQ(-) function, which is denoted as

—Ap+ Q" (a)V/(p1 — Ap)(1 —p1 + Ap)/N

CE (3.28)
p1(1—p1)/N
The partial derivatives ap with respect taAp andp; can then be obtained as follows:
00 1 “1, y—1+2p —2Ap
Ty 1 ( VN + Q7 a) o ) (3.29)
-1 1-2 L2 LAp| —tApVN
00 Q') [(1-2p) (£ — 5) + tAp] —tApVYN (3.30)

apr 2 ’

wheres £ \/(p1 — Ap)(1 — p1 + Ap) andt = \/p1(1 — p1).

In the following, we show that Claim 1%‘“ < 1, which means that the changing of has
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little influence to® and therefore® can be approximated as a function of odly; and Claim

2. ;T@p < 0, which means tha® monotonically decreases withp.

Claim 1.

Claim 2.

|§—§| < 1. Becaused < o, andfx(x; Hy) = fx(x — A; Hy) = fw(z — A), for simple

binary TS, we have, from (3.16) and using (3.3) and (3.5),

Ap = /OO fx(z; Hi)dx — /OO fx(; Ho)dx
- / fow (o — A)da / fw (@)
r r (3.31)
~ [ Uwle) = Afiy(@) - fiwla))ds
~ Afw () < p1,po, L.

For composite binary TS, using (3.7) and (3.9) also gi%@s< p1, po, 1. There we have

t S

2s 2t

1 2p1 — 1 2p1 — 1
——t2—82‘= P1 - P1

— = Ap + O[(Ap)?] < 1.
573 (L —p1) P [(Ap)7]

2ts

HereO|(Ap)?] is a value proportional to th&p raised to the second power. Thus from (3.30),
§21=0(Ap) < 1.

;—fp < 0. To show this, we recast (3.29) as,

90 1 Q 'a)(po —1/2)
0Ap — \/pi(1—p1) < V/Po(1 = po) ﬁ) ' (852

Because/p1 (1 — p1) is positive, we only need to decide the sign of the followinga&tion,

U(po,a, N) = <Q_1(a)(p0 —12) \/N> : (3.33)

po(1 = po)

Sincepy € (0,1) for any givenPr4 = a € (0,1), whenN is large enough¥ (po, o, N) is

always negative.

From Claim 1 and Claim 2, we conclude that for small signal kmge V, © is approximately a

monotonically decreasing function é&fp. HencePp is approximately a monotonically increasing

function of Ap. O

Simulation are conducted to justify the result in Lemma he of the examples is shown in

Fig. 3.2. In this example, we user4, = 0.1 and N = 100. We calculatePp with respect to

p1 andpy using (3.12)-(3.15), and plot the contour Bf, in the (p1, po) plane in Fig. 3.2. Since

Pr4 = 0.1, the contour linePp = 0.1 is the linepg = p;. It can be observed that the other contour

lines,

such a®’p = 0.2, are like straight lines parallel to the lipg = p;. Because the contour lines
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is parallel to the liney = p1, the points in the same contour line have the sdxpe Also because
the points in the same contour line have the s@pewe can observe that the sate leads to the
samePp, regardless of thg; or py values, which verifies Claim 1 in the proof of Lemma 3.1. We
also observe that thB, monotonically increases from top isoliig, = 0.1 to the bottom isoline
Pp = 0.9 with the increase ofAp, which verifies Claim 2 in the proof of Lemma 3.1. The resultin
Lemma 3.1 is proved for small signal and lafyeonly. Simulation shows that the result works well

in practical situations even for moderate

Fig. 3.2. Contour ofPp with respect tdp1, po).

Lemma 3.1 shows thd?y, is approximately a monotonically increasing function’gf. There-
fore in our TS optimization, instead @fp, we can use\p as the optimization criterionAp has a
much simpler format tha®, and the optimization based on it is more tractable. The apétion
of simple TS overPp needs an exhaustive searchrofind optimization of composite TS ovep
has no available solution. While withp, the design complexity can be largely reduced as will be

demonstrated in the next section.

3.3 Optimal TS Design UsingAp

In this section, using\p, we calculater,, if simple binary TS is employed. We also determine

Doyt if composite binary TS is used.
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3.3.1 Optimal Design of Simple Binary TS

Under the NP criterion, if simple binary TS is usegl,; is the solution of the optimization in (3.19)
and (3.20). From Lemma 3.1, we see that approximatglymonotonically increases withyp for
any givenPr4 = « # 0. Therefore, for tractable TS design, we repldge by Ap and study the
following design.

arg max Ap(T). (3.34)

Notice that unlikePp, Ap is independent ofe. Thus the constraint in the original problem (3.20) is

not needed for the new problem in (3.34).

Lemma 3.2. Letz;,i = 1, ..., K be theK intersections betweefi (x; Hy) and fx (z; Hy), i.€.,
fx(zi; Ho) = fx(zi; H1). The solution of (3.34) is,p, = arg m{ax} Ap(7), which is independent
TELT,

of Pra. WhenA < o, 7opt ~ arg max fy (w).

Proof. The solution of (3.34) is the global maximum pointsof(7). Becausé\p(t) = p1 —po =
[ [fx (@ Hy) — fx(x; Ho)] du, the local extreme points @fp should satisfy% = fx(m; Ho)—
fx(r; Hy) = 0. Thereforep is the one of ther;,i = 1,..., K that maximizesAp, which is
independent o 4.

If A< o,accordingto (3.31), we have
Topt & arg max A fyy (1) = arg max fyy (w). (3.35)

In other words;r, is the value that has the maximum probability in the noise pelf, the mode

that has the largest pdf value. O
Based on Lemma 3.2, we can deriyg; for some specific cases, which is shown below.

Corollary 3.1. If the noise pdf is unimodal and symmetric, we hayg = wo + A/2, wherewy is

the only mode of noise pdf andl is the signal amplitude.

Proof. From Lemma 3.2, we know thag,; locates at one intersection §f (z; Hy) andfx (x; Hy).
Unimodal pdf means that the distribution has a single marimthus there is only one intersection
betweenfx (x; Hy) and fx (x; Hy). If the noise pdf is further symmetric, the only intersentitas

to bex = wy + A/2. O

Corollary 3.1 shows that,,; can be obtained in easy close-form if the noise pdf is unirhoda
and symmetric. For arbitrary noise pdf, we can findthg = 1, ..., K, the intersections between
fx(x; Hy) and fx (z; Hy), by solving% = fx(r; Hy) — fx(r; Hy) = 0. This could be fulfilled
using fast numerical methods like Newton-Raphson methat [2
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In the following, we compare the complexity of the propos&idesign using\p with that of
usingPp. As we explained in Sec. 3.2, Bp is used, to find, one natural method is exhaustive
search. To be able to compare the complexity of the desigmgu3i with that usingAp, we
consider exhaustive search for both with the same rangeesadution. If usingAp, po(7) and
p1(7) need to be calculated for every If using Pp, beside the calculation gk (7) andp; (1), it
needs two numerical integrals for everyo calculate the for the givenPr 4 and the corresponding
Pp as shown in (3.14) and (3.15). This shows that the compuatmmplexity ofr,,, calculation
usingAp is significantly reduced compared to that usifg. For a specific example, the computer

running times to find; usingAp and usingPp will be given in Sec. 3.5.1.

3.3.2 Optimal Design of Composite Binary TS

For composite binary TS, we similarly replaé®, by Ap in the TS design problem and study the
following problem:

arg max Ap(D). (3.36)
The result is presented in the following lemma.
Lemma 3.3. The optimal set that maximizesp is Do = {z; fx(x; H1) > fx(v; Ho)}-

Proof. If composite binary TS is employed, usipg andp; in (3.7) and (3.9), we have

Dopt = argmgx/ (fx(z; Hy) — fx (w3 Ho))dx = {x; fx (x; H1) > fx(z; Ho)}.
x€D

For a DC signal, the result can be further simplified.
Corollary 3.2. Assume that the DC signal > 0. Denote the ascending sorted intersections of
fx(z;Hy) and fx (x; H1) asz;,i = 1,2,..., K. Doy = {z;2; < x < xj41 foroddj,j < K},
wherez k1 = oo. WhenA <« o, x; = w;, wherew;,i = 1,2, ..., K is the ascending sorted modes
of fiw (w).
Proof. SinceA > 0, fx(z; Hy) is a right shift of fx(x; Hy). Hence we havefx(z; Hy) >
fx(z;Hp) ifand only if z; < x < x4, for j odd.

The intersectiongz;} satisfy fx(z; Hy) = fx(z; Hy). If A < o, we havefx(z; H;) =
fx(x—A;Hy) = fx(z; Hy) — Af’ (x; Hy). Hence

{zi} =~ {m; fx (mi; Ho) = 0}, (3.37)

which means that the intersections can be approximatecasaddes offy (w).
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From Corollary 3.2, we can see that if there is only one imtetion, the optimal composite bi-
nary TS will reduce to a simple binary TS. If there are mudipitersections, the optimal composite
binary TS design will result in better performance than thgmal simple TS design, which will be

demonstrated in Sec. 3.5.

3.4 Discussion on Detection with Unknown Noise pdf

In Sec. 3.2, we proposed an indicator Bf and in Sec. 3.3, we derived the optimal designs of
simple binary TS and composite binary TS. These results latasreed assuming that noise pdf is
known. In practice, nevertheless, we often need to deal dathction with unknown noise pdf. In

this section, we will discuss this practical issue. We d¢fggbe noises into two categories.

1. The noises have unimodal and symmetric pdf, which weTgak | noise. This type of noise
covers a wide range of applications and the assumptionstappear to be overly restrictive
for practical applications [64]. For example, the generdi Gaussian (GG) and unimodal
Gaussian mixture (GM) [1] belong to this type. Note that G liding Gaussian, Laplacian,
uniform) and unimodal GM are widely used noise types in aetgrof applications [1], [6]—
(8], [43], [44].

For Type | noise, as we show in Corollaries 3.1 and 3.2, either usinglsirbinary TS or
composite one leads to identical optimal TS with threshold wy + A/2. Therefore, as-
suming that the noise pdf is symmetric and unimodal, thewgdtTS design only depends on
the mode of the noise pdf and the amplitude of the DC signakhuhsually can be estimated

with good precision. In particular, ity = 0, the TS design does not depend on the noise pdf.

2. Other noises. For noises that do not belongyjee | noise, referred to asype Il noise, the
optimal TS is not as straightforward as that Tgpe | noise. For example, in Sec. 3.5.2, we
show an example with a bimodal Gaussian mixture (GM) notse (fdf has two modes). For
these noises, we need to calcutajg for simple binary TS using Lemma 3.2, or to determine
Doyt for composite binary TS using Corollary 3.2. For these designstead of the full
knowledge of the pdf, only the intersectionsfof (x; Hy) and fx (x; Hy), or approximately,
only the modes of (w), are needed as shown in Corollary 3.1 and Corollary 3.2itingly,
the less the noise pdf knowledge is needed in design, thehtgh robustness of the design
to the noise pdf. The modes can be obtained via estimatia@nytfig], which is easier than

obtaining the full knowledge of the pdf needed for the LO d&ieand Saha'’s detector in [6].
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3.5 Simulation Results

Two examples are presented in this section to illustrateérrmance of the proposed TD based
on simple binary TS and composite binary TS, respectivetye @&ample is a DC signal detection
in unimodal GM noise, and the other one is a DC signal detedtiobimodal GM noise. The

unimodal GM noise is widely used in signal detection to madelerwater noise [7], [8] and DCT

coefficients of images [43], [44]. The bimodal GM noise ialgdely used in research, especially
when investigating the noise-enhanced effect [18], [19F W¥e a bimodal GM noise in second
example to demonstrate the potential performance imprem¢of using composite TS over that of

simple TS.

3.5.1 Mean-Shift Unimodal Gaussian Mixture Detection

We consider a DC signal detection in unimodal GM noise [1],\ihich is defined as,

Fur(w) = —2 {aexp< CQwQ)—i-l_—anp( 02“}2)], (3.38)

o2 C 202 3 23202

wherec = [a + (1 — )3?]*/2,0 < a < 1,3 > 0. ADC signalA = 0.1 is embedded in GM noise
with o = 0.9, 8 = 5, ando = 1. The number of the observationsis= 100.

Since the GM is unimodel and symmetric, there is only onersetetion betweerfx (z; Hp)
and fx (z; Hy), located ai.05. For this case, according to Corollary 3.2, the optimal cosite
TS reduces to the optimal simple TS witk,, = 0.05. Using the simple binary TS, we show the
theoretical and simulateftp, with respect tor for different Pr 4 in Fig. 3.3. Theoretical results
are calculated based on (3.12) and (3.13). For a givend Pr 4, simulatedPp, is calculated from
fz(z; Hy) andfz(z; Hy), which are approximated based on the histograms of thewvali¢ under
Hy andH, generated from the multiple simulations. We can see thahwhe 0.05, the maximum
Pp is obtained and is independent®f 4. This provides a justification of Lemma 3.2.

Next, in Fig. 3.4, we show the ROC of the TD with the proposedrog Monte-Carlo simula-
tions and compare it with the theoretical one calculatenhff®.12) and (3.13). Consistency between
the simulated ROC and the theoretical one is revealed. The &@he LO detector is also shown
as the upper bounder since it is the optimal detector forlssigaials, along with the ROC of the
MF used as the lower bounder. To quantify the performanderdifice, we calculate the average

uniform loss (AUL) between two ROCs (detectand detector) in dB, defined as

1 L
AUL;é/ 101og,y (22 ) dPps. (3.39)
0 Pp

A positive and large AUL means that the performance of deteds significantly better than that of
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Probability of detection (PD)
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o

Fig. 3.3. Pp with respect tor and Pr 4 for detection of a DC signall = 0.1 in GM noise withaw = 0.9, 8 = 5, and
o=1.

detectors. It is shown that the TD with optimal TS (simple binary TS with= 0.05) has an AUL

of only 0.17dB (4% degradation) compared with the LO detector. Note that thelet@ctor design
needs full knowledge of the noise pdf, while the proposed ©Bsthot require any information of
the noise. In addition, the proposed TD has a much lower cexitglin implementation. Compared
to the proposed TD, the MF has an AUL@595dB (15% degradation).

We note that thé’p curve obtained from simulations has a staircase shape.isThecause the
pmf’s f(z; H;),i = 0,1 obtained from simulated histograms are discrete. We usedahtinuous
pdf’s (3.12) and (3.13) instead of pmf’s for the theoretiR&IC calculation.

We now compare the computational complexity of derivinggpgmal TS fromPp, with that of
the proposed TS design. Because the GM (unimodaji)as | noise (zero mean), we can obtain the
Topt = A/2 = 0.05 without any calculation. However, to show the simplicityAp with respect
to Pp, we use exhaustive search even in the proposed design, r@aseeted in Sec. 3.3. In the
exhaustive search af the range [-5,5] is considered with a resolution of 0.01e &herage running
time (Matlab) is about 0.189 secondHY, is used as the criterion in TS design and 0.034 second if
the proposed design is used in a computer with AMD 8450 tgples processor (2.1GHz) and 4GB

memory.
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Fig. 3.4. ROCs from LO detector, MF and the proposed TD foedt@n of a DC signald = 0.1 in GM noise with
a=0.9,08=5ando = 1.

3.5.2 Mean-Shift Bimodal Gaussian Mixture Detection

In this section, we show the optimal design and ROC of the gged TD for the detection of a DC

signal in a bimodal GM noise, which has the following pdf:

Jw(w) = %N(w;u,ch) + %N(w; —p,07). (3.40)
Thus
1 1
fX(x; HO) = fW(x) = 5-/\[(‘%.7/% 02) + EN(xv —H 02)7 (341)
and
P Hy) = SN (it A,0%) + SN (@ —p+ A,07), (3.42)

where A is the DC signal. Fop: = 3,02 = 1,4 = 0.1, two modes of this GM noise can be
calculated asv; = —3 andws = 3, and the three intersections are = —2.95, 25 = 0.05, 23 =

3.05.

We first use simple binary TS and calculaterits;. For a givenr, we have

s 4[o (7=274) -(52) va(~224) o(22)].

andAp(t = x1) = Ap(t = x3) = 0.0199, Ap(T = z3) = 0.0004. Thereforer,p,, = 1 Or
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Topt = X3
We then use composite binary TS. According to Corollary &2 haveD,,; = {z;—2.95 <
2z < 0.05 and3.05 < z}. Thus, the optimal composite TS can be represented as

1 x€[-2.95,0.05 U[3.05,00) (3.43)

0 elsewhere

TSOptZ Y—{

The Ap of this TS,,¢ is 0.0394, which is calculated by

s 5 () -o(5%) o (=224) o(=24)].

=1

In Fig. 3.5, we show the ROCs obtained from simulations ferb with the optimal simple TS,
the TD with the optimal composite TS, the LO detector, and\iielt reveals that the TD with the
optimal composite TS performs very close to the LO detectioity has an AUL of 0.1553 (3.64%
degradation). The TD with the optimal simple TS has simpieplementation than the TD with
the optimal composite TS, but the performance degradasiobvious, with an AUL of 0.7304dB
(18.32% degradation). Compared to the MF, both TDs haversrgerformance. Compared to the
TD with optimal composite TS, the MF has an AUL of 1.4972dB.(4Po degradation). Compared
to the TD with the optimal simple TS, the MF has an AUL of 0.76B819.31% degradation).

1
=
o
< 08 .
c A
Q ’
3
g 06 *
o S
y— #'!\
2 04 A f
= £ - LO detector
S 02 # —TD with optimal simple TS
g ---TD with optimal composite TS
->-Matched filter

5 02 04 06 08 1
Probability of false alarm (P_,)

Fig. 3.5. ROCs from LO detector, MF and the proposed TD in #teation of a DC signall = 0.1 in the bimodal GM
noise withy = 3, 0 = 1, andN = 100.
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In the above two examples, the proposed designs are comyitethe LO detector to show
that its performance is close to optimal. They are not coegbaiith the optimal LRT. But note that

for weak signal detection, the LRT and the LO detector hawmat the same performance [1], [2].

3.6 Conclusions

In this chapter, we considered the optimal TD design for ctetg a known DC signal in non-
Gaussian noise with known pdf. Under NP criterion, we shothetlPp can be represented by an
indicatorAp in the optimal design of the TS. We investigated two types®ETsimple binary TS
and composite binary TS. For simple binary TS, using thecaioir Ap, we derived an easy and
fast way to calculate the optimal TS threshold. For compdsitary TS, the otpimal TS structure
was derived, also with the help dfp. Experimental results show the validity of the proposed
TS designs. The performance of the proposed TDs are showa $oiferior to the MF, for non-
Gaussian noises with heavy pdf tails, and can perform vesecto the LO detector, with a much

simpler implementation than the LO detector.
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Chapter 4

A Robust Detector of Known Signal
IN Non-Gaussian Noise Using

Threshold Systems

In this chapter, we propose a TD for detecting a known detgsti¢c signal in independent non-
Gaussian noise whose pdf is unknown but is symmetric and aoidin The optimality of the pro-
posed TD is proved under the assumptions of white noise,| sigalal, and a large number of
samples. While previous TD designs need accurate infoomali the noise pdf, the proposed TD
is independent of the noise pdf, and thus is robust to theermd$. The detection probability and
the ROC of the proposed TD are analyzed both theoreticatlynamerically. It is shown that even
without knowing the noise pdf, the proposed TD has closegperdince to the optimal detector de-
signed with the noise pdf information. It also performs #figantly better than the MF when the
noise pdf has heavy tails. The practical implementatiobhystness to both the noise pdf and the

signal, and region of validity of the proposed TD are als@stigated.

4.1 Introduction

The detection of a known deterministic signal in unknown +@aussian noise is a problem of
great interest in many fields, such as communications angemeocessing [1], [2]. For example,
in watermark detection in discrete cosine transform (DCainelin, the signal is the watermark
(or a signature), which is usually knowh while the DCT coefficients of an image is the noise,

whose pdf is non-Gaussian and unknown in general [43], [62], Other applications include the

1The watermark sequence is unknown for blind watermark. Wewavhen extracting one watermark bit in the water-
mark sequence, this watermark bit is usually known signait.eample, for binary watermark, the watermark bit is eithe
or 1, which is known.
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feature extraction in images [65] and underwater commutioics, where we can have precise signal
information or obtain a reliable estimation of the signahjle the noise pdf is non-Gaussian and is
difficult to estimate [6]—-[8].

Consider the BHTP described in (1.1). As stated in Sec. Inéed RT or GLRT results in
complex detector with low robustness and poor performarfmvihe knowledge of the signal and
noise is imprecise, we resort to TD for a suboptimal solutigve reviewed the existing TD’s in
Sec. 2.2.1 and proposed optimal TD designs for DC signattetein known non-Gaussian noise
in Chap. 3.

However, the aforementioned TD and the LO detector neediioliviedge of the noise pdf. This
makes its application limited. They cannot be used for @pfithtns where the noise pdf cannot be
obtained perfectly. Furthermore, the assumption on peneise pdf information causes problems
in simplicity, robustness, and detectability when apgytine TDs in real systems. Even though the
TS can be implemented simply, the optimal parameters of ®ieded to be calculated from the
noise pdf, which adds complexity to the TD. The robustnessaigo been influenced because the
TD design depends on the noise pdf and the signal. As to thextdélity, degradation cannot be
avoid because practically speaking we only have impreasésenpdf. These weakness limits the
applications of these TDs. We will address these problertissrchapter.

To the best of our knowledge, there is no previous work on THdl&tecting an arbitrary signal in
non-Gaussian noise with unknown pdf, which is the focusisf¢hapter. Our goal is to find a robust
and low complexity detector that also enjoys near-optineafgrmance. We consider detection
problems where the noise pdf is unimodal and symmetric. dbvers a wide range of noise pdfs,
for example, the Gaussian mixture (GM) and the generalizads&ian (GG). We propose a TD
composed of a binary TS array and a linear correlator thatdependent of the noise pdf. The
optimality of the design is analyzed for the case of whitesapsmall signal, and a large number of
samples. Simulation results show that the proposed TD pagwoery close to the LO detector and
is much better than the MF for noises with heavy pdf tails.pertes of the proposed detector such
as robustness, complexity, and region of validity are algestigated.

The remainder of the chapter is organized as follows. In 8&. we present the detection
problem and the proposed TD structure. The optimality of TRedesign including the binary
TS and the linear correlator is also proved. In Sec. 4.3, wival¢he detection probability of the
proposed TD and present simulation results. In Sec. 4.4 jseaisk the robustness, implementation
complexity, and region of validity of the proposed TD. Figalve draw conclusions in Sec. 4.5.

Involved proofs are included in the appendices.
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4.2 Problem Statement and Proposed Detector Structure

In this section, we explain the detection problem and thepsed detector.

4.2.1 Problem Statement

Consider the detection problem described in (1.1). Theasign|'s are assumed to be known. The
noise is assumed unknown but subject to the following caimgs: 1) fi (w) is symmetric about
w=0,i.e., fw(—w) = fw(w); 2) fw(w) is unimodal; and 3)y (w) is continuous. Thusfy (w)
has a unique maximum at = 0; and is non-decreasing whan< 0, non-increasing whew > 0.
The above assumptions are not overly restrictive for prattapplications [64]. For example, for
underwater communication and DCT-domain watermarkingtioeed in Sec. 4.1, the noise pdfs,
although unknown, are shown to satisfy these assumptign8]7[43], [44]. Furthermore, we also
assume that compared with the noise standard deviatitime signal is weak [1], i.e|s[n]| < o
forn=0,1,..., N — 1.

Becausefy (w) is unknown and sometimes ever-changing, the optimal anddt€ctbrs, which
require the noise pdf information, cannot be realized. Weatidesigning a detector whose param-
eters are independent of the noise pdf, thus robust to theermiif; but at the same time, good

detection probability is desired.

4.2.2 Proposed TD Structure

The proposed TD is shown in Fig. 4.1, in which each data pejin} is separately quantized at
the thresholds[n]/2 (by a TS with binarization threshole[n]/2) to yield a binaryy[n]. Then
linear correlation is performed between the sequefieeand the absolute value of the signal to be

detected, i.es[n]|. A decision is made via comparing the correlation regultith the threshold.

________

ot TS[0] |1 vio]
Input | x[0] ! VI H,
xin] | /om0t T[] FEs z [2n s
S | I(y) <n [ Ho,
XIN-T}, : E /s Threshold
oo B JS[N_l]_ILV_[l\’_f]/
| | 1 N-1
. Lo————— - T -
IVIuI‘Flway TS array: y) v ;y[n] | s[n]|
switch

s[n]

Fig. 4.1. Proposed TD structure.
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Here are more detailed explanations on different partseoptbposed TD. The multiway switch
directs the observatiarn] to its corresponding TS, denotedES[r|, and outputg[n]. For sim-
plicity in implementation, we use the simple binary TS shaw(2.1), denoted as T,%r), and the
complemental binary TS shown in (3.1), denoted ag(T§H wherer is the threshold in TS. We use
TS, (7) whens[n] > 0, and use T&(r) otherwise. The binarization threshold is set tospg /2 for

both cases, i.er, = s[n|/2. The linear correlator produces

Coape . 1
Z =T "(y) = N Z y[n]|s[n]]. (4.1)
n=0

The threshold) of the test statistic is calculated from the desired falamalevel using/;]OO fz(z; Hy)dz =

Pr4.

4.2.3 Optimality of the Proposed TD

In this subsection, we prove the optimality of the binaiathreshold of the TS and the correlator
designin (4.1).

Our TS design problem can be stated as follows: for the omedsional binary detection prob-
lem wherez[n] is the observation angln] (output of theT'S[n]) is the detection result, find the
optimal binarization threshold. For the optimality measWP criterion is widely used, i.e., to find
the maximum detection probabilify, for a givenPr 4. However, with the NP criterion, the thresh-
old optimization requires the noise pdf, which is unknowour model. Furthermore, for different
values ofPr 4, the optimal threshold will be different, which complicatée implementation of the
TD. Therefore, in this chapter, we use the area under thevexagperating characteristic (ROC)
curve, denoted as AUC, as the optimality measure [66]. Iy ftharacterizes the detectability of a
detector and is shown to be a good detectability measuredingato Area Theorem [67]. Most
importantly, it results in an optimal binarization threhimdependent oz 4.

We first prove the optimality of the optimal binarizatione¢kholds|r]/2.

Theorem 4.1. For each observation[n], consider the binary detection problem with the binary
TS outputy[n] as the test statistic. The binarization threshold thatdeéadhe maximum AUC is
T = s[n]/2.

Proof. See Appendix 4.A. O

It is noteworthy that the proposed binarization threshsldptimal only for the single observa-
tion z[n] and may not be globally optimal for the overall detectiontpjeon. As will be shown later,
however, this design leads to a robust TD and close-to-@bterformance.

Next, we prove the optimality of the test statistic in (4.1).
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Theorem4.2. Consider the detection problem with observatoithe outputs of the TS array in the
proposed TD. Whefs[n]| < o andN > 1, the test statisti@??(y) in (4.1) is the optimal LRT.

Proof. See Appendix 4.B. O

The proposed TD has simple structure, which is easy in imptgation. Theorems 4.1 and 4.2

in addition show its advantage in performance.

4.3 Investigation on Detection Probability

In this section, the detection probability of the propos&li§ analyzed and simulation results are

presented. The performance of previously proposed degdstalso investigated for comparison.

4.3.1 Detection Probability of the Proposed TD

To obtain thePp, of the proposed TD for a giveRr 4, we need to derive the pdfs @f ”(y) under

Hy andHy. TTP(y) is the summation oV independent random variablgs],n = 0,1,..N — 1

with a weight of|s[n]|. Because[n]'s are independent, according to the central limit theorehen

N is large, the distribution o' 7P (y) can be approximated as Gaussian. Therefore, we only need
to calculate the mean and the variancd 6t (y).

Denote the probabilities af[n] = 1 under Hypothesig¢l, and H,, respectively, as
poln] £ P(yln] = 15 Ho), pi[n] £ P(y[n] = 1; Hy). (4.2)

It can be derived that (see Appendix 4.B for the calculadions

poln] ~ L — Bl o (0), pifn] ~ L+ B g (0). (4.3)

The probability ofy[n] = 0 under Hypothesid?; is 1 — p;[n] for i = 0,1. The mean and the

variance ofy[n] under Hypothesigl; are

E{y[n]; H;} = 1-pi[n] +0- (1 — p;[n]) = pi[n], (4.4)
Var{y[n]; H;} = 17 - pi[n] + 0* - (1 — ps[n]) — E*{y[n]); H;} = ps[n](1 — pi[n]),  (4.5)

whereE stands for the expectation. With (4.4), (4.5), and the irtelence of/[n]’s, the mean and

variance of'"'P (y) are

o = E{TTP(y): H,) = E{% 3 y[nns[nn} = =3 niballslll @5)
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N

—1 N—-1
o = Var{TT2(y); Hi} = v{% )» y[nns[nn} = 3 2 Sl = piln)). @.7)

n=0

Thus,
fz(z;Ho) = N(z; o, 05),  fz(2 Hi) = N(z; 1, 07), (4.8)

whereN (z; 1, 02) is the Gaussian distribution with mearand variancer2. The pdfs in (4.8) are
the same as those for a standard Gaussian binary detectibleipr. It can be derived that for a

given Pr 4, the Pp of the proposed TD can be expressed as

PID — (UOQ_I(PFA) + o — M1) ’ (4.9)

g1

whereQ(+) is the complementary cumulative distribution functionffaaf the standard normal pdf
andQ~(-) is the inverse of)(-).

ForaDC signal,i.es[n] = A,n =0,1,..., N — 1, p;[n]’s are identical, denoted as. We have
wi =A-p;ande? = A2 -p; - (1 —p;)/N. The resultin (4.9) reduces to the one in (3.27).

4.3.2 Detection Probability of the MF and the LO Detector
If the MF is used, which is optimal for Gaussian noise, thégestistic is given by
1 N-1
MF(y\ _ *
THH(x) = N ngo s[n)z[n].
Again, according to the central limit theoreffi’ ¥ (x) is Gaussian. We have

E{T™F(x); Ho} = %]E { Z_ s[n]w[n]} =0.

n=0

. 1 N-1 52 V-l ,
Var {TM*"(x); Ho} = mVar Z s[nwin] » = — s%[n].
n=0

E{TMF(x); Hy } = %]E { z_: s[n)(s[n] +w[n])} = % - s°[n].

n=0 n=0
1 N—-1 0_2 N-—1
Var {TM¥(x); Hi } = 3 Var { Z s[n](s[n] + w[n])} = — s%[n).
n=0 n=0
Therefore, for a givetPr 4, the Pp of the MF can be expressed as
N-1 o
_ n—o S°IN
PYT = Q (Q (Pea) - %) | (@10)
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For comparison, we also present the detection probabiflityeoL O detector [1]:

N—-1
P50 =Q (Q‘l(PFA) 1> 52[n]) : (4.11)
n=0
where
- ()
I= /_Oo o) (4.12)

4.3.3 Simulation Results

In this section, we present and compareftgs and the ROCs of the proposed TD, the MF, the LO
detector, and the detector in [6] via simulation. Note thatperformance of the MF is utilized as
the lower bound benchmark and the one of the LO detector agiier bound benchmark.
We consider two signals:
1) sinusoidal signal
s[n] = Asin(0.027n + ¢), (4.13)

whereA = 0.1 and¢ = 0 unless otherwise stated;
2) arandomly generated signal

s[n] = B -l[n], (4.14)

wherel[n|'s are randomly generated by the uniform distributiorf@r] and B = 0.1 unless other-
wise stated. The sinusoidal signal is largely used in sigatdction. The random signal is used to
model a known signal with an arbitrary structure. WeSet 100.

As to the noise, GM noise and GG noise are considered bedasare widely used in practical
applications such as underwater noise [6]-[8] and DCT amefits [43], [44]. The GM pdf has three
parametersy, 3, ando, and is defined in (3.38). The GG pdf has two parameteasdo, and is

defined as
2
fwrtw) = 20 e (—02(6) ‘E ”B) , (4.15)
g g
1
wherec, (3) = M% ca(f) = {%] "7 andr'(-) is the Gamma function. We

set(«, 8,0) = (0.3,5,1) for GM noise and 3, o) = (0.9, 1) for GG noise unless otherwise stated.
First we compare the theoretical results Ba for both the sinusoid signal (4.13) and the ran-
dom signal (4.14) in the GM noise (3.38Fr4 is set to bed.01. We show the detection proba-
bilities of the proposed TD and other schemes for differemrgy-to-noise ratios (ENRs) defined
as10log;, (Zﬁlvz_ol 82[n]/02) dB. By having the magnitudd of the sinusoidal signal range from
0.045 to 0.45, and the magnitudkeof the random signal range from 0.055 to 0.55, the ENR ranges
from -10dB to 10dB. ThePp’s of the proposed TD, the MF, and the LO detector are caledlat

50



using (4.9), (4.10), and (4.11), respectively. Note thatlie proposed TD, when calculatidg),?
using (4.9)u;, 04, = 0, 1 are calculated by (4.6) and (4.7), in whigHn],i = 0, 1 are calculated
according to (4.3). For the LO detector, the valuel/dfiven in (4.12) is calculated numerically.
From Fig. 4.2 we can see that the proposed TD has close peraerto the LO detector and is
significant better than the MF for both signals. At = 0.3, the proposed TD is about 4dB better
than the MF, and is only 1dB worse than the LO detector. Thamtdge of the proposed TD over
the MF is even bigger at highétp levels.

1 ; 1 :

<-LO detector <-LO detector
-+ Proposed TD - Proposed TD

5 0.8f|eMF 5 0.8re-MF

.§ _§

Lo0.6r Lo0.6r

S S

2 2

5045 5045

© ©

g g

Q0.2 & 0.2

ENRO(d B) ENRO(d B)
(a) Sinusoidal signal (b) Random signal

Fig. 4.2. Pp versus ENR of the proposed TD, the MF, and the LO detector inrdlde witha = 0.3, 3 = 5, ando = 1
for N = 100 andPg 4 = 0.01.

We now compare the theoretical ROCs calculated by (4.9) thtROCs obtained from Monte
Carlo simulations for the proposed TD. To obtain the ROC fidonte Carlo simulations, obser-
vations are generated unddp and H; (20000 times for each) and the test statistic is calculated
asZ = TTP(y) for all observationsfz(z; H;),i = 0,1 are approximated as the normalized his-
tograms of the 20000 outputs for both hypothesis, from wiiehROC is generated. We use the
sinusoid signal (4.13) and the random signal (4.14) in GM@and GG noise, respectively. Fig. 4.3
shows that the ROCs calculated from (4.9) are consistehttiué ROCs obtained from simulations
for all cases.

Next, we compare the ROCs of the proposed TD, the MF, the L&ctlat and the detector in
[6] called Saha’s detector, obtained from Monte Carlo satiohs in Fig. 4.4. Saha’s detector has
the detection structure in Fig. 1.3, in whighr) is designed as a three-level TS and a quadrature MF
is used instead of the replica-correlator due to unknowarpaters in signal. The optimal design
of the three-level TS requires noise pdf information, this tetector can only be used when the
noise pdf is available. Here, we change the quadrature Miéad MF, which is a better design
for the detection of known signals, and to make it comparalitle the proposed TD. The optimal

thresholds of the 3-level TS in [6] are numerically calcethto be 0.08 for the GM noise and 0.01
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Fig. 4.3. Comparison between theoretical and simulated R0Cthe proposed TD. GM is with = 0.3, 8 = 5,0 = 1,
GGiswith3 = 0.9,0 = 1; and N = 100.

for the GG noise. We show the ROCs for the detection of thessiidal signal (4.13) in GM noise
in Fig. 5(a) and GG noise in Fig. 5(b), respectively. It carsben that the ROCs of the proposed
TD are close to those of the LO detector and Saha’s detesfoecelly for the GG noise, although
it requires no noise pdf information. The proposed TD hagaitant improvement compared to
the MF. For the sinusoidal detection in GM noise, compareti wie LO detector, the proposed
TD has an AUL 0f0.195dB (4.59% degradation). Compared with the proposed TD, the MF has an
AUL of 0.642dB (15.93% degradation). Compared with the detector in [6], the predd&D has an
AUL of 0.0265dB (0.61% degradation). For the sinusoidal detection in GG noise,pared with
the LO detector, the proposed TD has an AULOdf493dB (1.14% degradation) only. Compared
with the proposed TD, the MF has an AUL @B86dB (9.29% degradation). Compared with Saha’s
detector, the proposed TD has an AUL®6059dB (0.14% degradation). It should be mentioned
that the closeness of the proposed TD to the optimal detgat@s with the noise pdf parameters.
In general, the proposed TD performs closer to the optimi&lader when the noise pdf has heavier
tails.

In the next experiment, we compare the ROCs for the deteofitine random signal (4.14) in
GM noise and GG noise. The ROCs are shown in Fig. 4.5. Againamesee that the proposed
TD has close performance to the LO detector and Saha’s detecid is a lot better than the MF.
For the detection in GM noise, compared with the LO detedts,proposed TD has an AUL of
0.199dB (4.69% degradation). Compared with Saha’s detector, the prop®BeHas an AUL of
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Fig. 4.4. Comparison of the ROCs obtained from Monte Carauttions in detecting the sinusoid signal (4.13) in GM

and GG noiseN = 100.
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Fig. 4.5. Comparison of the ROCs in detecting the randomesighl14) in GM and GG nois€y = 100.

0.04dB (0.93% degradation). Compared with the proposed TD, the MF has an &i.597dB
(14.74% degradation). For the detection in GG noise, compared Wah O detector, the proposed
TD has an AUL 010.016dB (0.37% degradation) only. Compared with Saha’s detector, theqeegp

TD has an AUL of—0.031dB (0.72% increase). Compared with the proposed TD, the MF has an
AUL of 0.41dB (9.9% degradation).

4.4 Discussions

In this section, we discuss properties of the proposed T@udhing the robustness, implemental

complexity, and region of validity.
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4.4.1 Robustness

The robustness in signal detection refers to the stablifith@ detection performance to changes in
parameters in the system. For example, we can observe frdm)(@nd (4.12) that the detection
probability of the LO detector depends &% 4, s[n], the form of fy (w) and its parameters. Let
pm,m = 1,..., M be the set of parameters involved in the robustness evatudti this paper, we

use a quantitative measure proposed in [68] to evaluatethestness, which is defined as

P2 <1 +§:1 (%)2>_ . (4.16)

It reflects howPp fluctuates with changes/inaccuracyp,’s. It is normalized to be between 0

Nl=

and 1. A lowerd means lower robustness. Note that we assume unknown ndige the design
of the proposed TD. But as shown in (4.16), we can only evaltred quantitative robustness with
respect to a specific noise pdf form. Thus, in what follows carsider GM noise and calculate the
robustness of the detectors with respect to the pdf form ofrdide.

We derive the expressions &f for the proposed TD, the MF, and the LO detector in the case
of the sinusoidal signal (4.13) in GM noise. We consider tiaistness with respect to inaccuracy
in the noise parameters.(3, ) and the signal parameterd (¢), respectively. Analysis on the

robustness with respect to other factors, such as the ndfsemn, is more involved and left for

<1>n£<1+ 3 (%];fy)é, (4.17)

Pn:{aaﬁ70}

future work. We define

which is the robustness to the noise parameigrs: {«, 3,0}; and

q>s£<1+ 3 (%1;?)2)%, (4.18)

ps={A,¢}

which is the robustness to the signal parameters {A, ¢}.

For the proposed TDPZP depends om;[n] via u;, o7 for i = 0,1 as shown in (4.6) and (4.7).
From (4.3), we can see tha{[n| only depends on the sign&lln| and the value of the noise pdf at O.
Using (4.3), (4.6), and (4.7), we obtain

1 N-1 1 N—-1
Ho~ 53z > sl = sl fw (O)], o8 = 15 > s* [l = s*[nl £ (0)]
| N o
= g O sl + [slnllfw ()], of = 55 D7 Sl - £l f7(0)] = o7
n=0 n=0
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Using these approximation in (4.9), we have

PEP ~Q (Q_l(PFA) - %) ) (4.19)
v—Uu w

where we have defined
(4.20)

>
\gh

cn)b

=

N-1
vE Z s*[n] u
n=0

For any parameter,, € {«, 3,0}, we have

2
—1 - 2UfW(0) 6fW (O)
<Q (Pra) — uf%(())) } 9pn (4.21)

c [a + 1*70‘} ,wherec = \/a+ (1 — a)32. Thus

From (3.38), we obtairfy, (0) = pvor

wlw

N | =

v? exp |:—

aPTD -
s S R R0)

9fw(0) _ ¢ 1 1— 32

da oV2r (1 - B) * <2(a+ (1— a)52)> fw (0), (4.22)
ofw(0) ¢ e (1—a)3

aﬁ N 0'\/% <_ 62 > + <a+ (1 _ a)52> fW(O)v (423)
8fgva(0) B _éfW(m' (4.24)

Using (4.21)-(4.24) in (4.17), we can obtab?.
For the robustness to the signal, far= {4, ¢}, we have

2 v 2 ou
oPEP _ fw© | 1 pap o 20fw(®) [v = 2uff (0] 7 + v /iy (0) 5,
ps Var P [ 2 <Q Fra) = o= ufiy (0) (v — uf2,(0)? ’
(4.25)
where
Ov i ou =
1 2A n; sin?(0.027n + ¢), 91" 4A3 n; sin®(0.027n + ¢), (4.26)
v N—-1 ou N—-1
5= AN " sin(0.047n + 2¢), 76 = 4A4* Y " sin®(0.027n + ¢) cos(0.02mn + ). (4.27)
n=0 n=0

Using (4.26) and (4.27) in (4.25) and using (4.25) in (4.98) can obtairb??.
For the MF, the detection probability is shown in (4.10), @hdepends on the noise parameter

o2 and the signal parametess = { A, ¢}. It can be shown that

81;,%” - \/12_7T exp <—% <Q1(PFA) - g>2> <_§> ' (4.28)



angF — \/% exp (—% (Q_I(PFA) - 4)2> (_ 20—1\/5) (5—:5) s

®MF can be calculated by using (4.28) in (4.18)/F" can be calculated by using (4.26) and (4.27)
in (4.29) and using (4.29) in (4.18).

For the LO detector?’, relies onsand! defined in (4.12), and is influenced by all parameters
a, 3,0in (3.38). Forp,, = {«, 8,0}, we have

oPEC 1 [w 1/, 2 oI

dpm -3 ﬁexp <—§ (Q (Pra) — \/ﬁ) ) ((r“)—pn> ) (4.30)
where o)

o1 [ [ 26 (w)ZBEE fw (w) — (fiy (w))? 2520

o /_ ) e D (4.31)

Note that we resort to numerical calculation because theediorm result of (4.31) is unavailable.

For the signal parameteps = { A, ¢}, we have

25— ew (- (@7 () - o)) ( ﬁ) (52). @32

aps A\ 2w a 2\/1_1 aps

By using (4.30) in (4.17) and (4.32) in (4.1&%° and®X© can be calculated.

For Saha’s detector, since its close faFip is not available, its robustness measure is not calcu-
lated here. But simulation results are provided for conguerin Fig. 4.7.

In Fig. 4.6, we plo®1 D, eMF §LO and@TP oMF $LO as functions ob?, o, 3, A, andg.

We setPr4 = 0.1, N = 100. In each subfigure of Fig. 4.6, the robustness measures ane s
functions of one of the parameters while the other pararmaterfixed. The fixed parameters values
aresettobe? =1,a =0.3,8 =5, 4 = 0.1, = 0. For example, in Fig. 4.6 (a), the values
of the robustness measure are showmasanges from 1 to 9 whilee = 0.3, 3 = 5, A = 0.1,

¢ = 0. It can be observed that among the three detectors, the Mdyaliaas the highest robustness
to the noise parameters. The robustness of the proposed dupésior to that of the LO detector,
and is close tabM ¥ for some parameter values. In term of the signal, not sungflig due to its
dependency on the signal, the robustness of the proposed @lbt worse than the MF. It is also
worse than the LO detector for all phase values and smalliardplvalues, but the difference is
small. For large amplitude, the proposed TD is more robusigioal than the LO detector.

In Fig. 4.7, we show the ROCs obtained via Monte Carlo sinutainder inaccurate parameters
of the noise pdf and the signal for the sinusoidal signal3ywlith A = 0.1, ¢ = 0 in the GM noise
with o = 0.3,8 = 5,0 = 1. In Fig. 4.7 (a), the ROCs based on accurate signal infoondtut
an inaccurate estimation of the noise pdf, where- 0.4, 3 = 2.5,0 = 1, are shown. We can see

that the performance of the LO detector and the performah&aloa’s detector is worse than the
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Fig. 4.6. Comparison of robustness measure.

proposed TD due to inaccurate noise estimation. Compartdthheé ROCs shown in Fig. 4.4, the
AUL of the LO detector i€.392dB (9.45% degradation) and the AUL of Saha’s detectod.isdB
(9.65% degradation). The AUL of the proposed TD and the MF, iml@ich shows that they are
immune to inaccuracy in noise pdf. In Fig. 4.7 (b), the ROCselleon accurate noise information
but an inaccurate estimation of the signal amplitude and@hahered = 0.12,¢ = 0.1x, are
shown. We can observe that the proposed TD still perforngéith)i worse than the LO detector,
comparable to Saha'’s detector, and significantly betterttiaMF. Compared with the ROCs shown
in Fig. 4.4, the AULs of the LO detector, the proposed TD, Satietector, and the MF afe022dB
(0.5% degradation)).034dB (0.7% degradation)).022dB (0.5% degradation), and.018dB (0.4%
degradation), respectively. This reveals that the prophd$®, although is based on perfect signal
information, can bear inaccuracy in signal to some extenpalrticular, we compare the robustness
of the proposed TD with Saha’s detector, which depends oh tiat noise and the signal. The
above simulation shows that the proposed TD is significamthye robust to the noise pdf. As to
the robustness to the signal, the proposed TD is inferiagxpected, but still comparable to Saha’s

detector.

4.4.2 Implementation Complexity

In this part, the implementation complexity of the propo3$&dis discussed. The multiway switch

and the binary TS array can both be easily implemented initidesign. The correlator is also easy
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Fig. 4.7. ROCs under inaccurate estimations of the noisapdtfhe signal.

in implementation, since it is linear in both the absolutiigaf the signals[n]| and the TS output.
In addition, the structure of the proposed TD can be furtimepkfied. In the proposed TD, an array
of TS’s instead of one TS is used becaugéd can take different values, which requires different
binarization thresholds. Thus, for different samples mdfgnal sequence with the same value, the
same TS can be used. If the signal is DC, only one TS is needbtharmultiway switch is not
necessary. In this case, the proposed TD structure redodke bne we proposed in [56]. If the
signal is periodic and the sampling time is appropriate, nlg need to consider the samples in one
period and the required number of TSs can be reduced. In@ebeased on the givesin], we can
divide the range of[n]’s values into groups. For example, thi@]'s whose value is betweefi — e
andC + ¢ can be put into one group and the TS with binarization thries6g2 is applied, where
C'is a constant and is a positive scalar. This reduces the implementation cexifyl with some
penalty on the performance. One can balance performanceoamolexity by adjusting the number
of groups.

For the LO detector, in general, tlh¢x) component in (1.13) is nonlinear in the observations,
and its implementation can be highly complicated. Furtbiece it requires perfect noise pdf infor-
mation, its complexity even increases if the noise pdf esfiiom component is taken into account.
Saha’s detector in [6] is simple in implementation, but #catequires noise pdf estimation and, in
addition, a numerical optimization of the three-level T&#hold [69]. Hence it may be even more

complicated in implementation than the LO detector.

4.4.3 Region of Validity

The proposed TD is applicable for noises with zero-meamodal, and symmetric pdf. However,

it may not perform efficiently for all noises in this categofherefore, it is helpful to address the
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validity of the proposed TD corresponding to the form andgheameters of the noise pdf. Using
the MF as the benchmark, we define the validity of the prop@&eHased on whether it has a higher
detection probability than the MF. Accordingly, for a giviipe of noise pdf, the validity region is
defined as the set of the parameters of the noise pdf with wh&lproposed TD is superior to the
MF.

In general, theoretical derivation of the validity regisrdifficult because for a certain noise pdf,
the close-form of the ROC is usually unavailable. We oftead® resort to numerical method and
conduct simulation for a large number of noise pdf paransedad signal forms. Nevertheless, we
show in the following theorem that when the signal is weakl, i@ number of samples is large, the
validity region reduces to a simple form, which is indepertaé the signak[n|, Pr 4, and for some

cases, even the noise variance

Theorem 4.3. If |s[n]| < o andN > 1, the validity region of the proposed TD with respect to
the MF is independent of the signal sequerieé’s and Pr 4, and can be approximated as the set of

noise pdf parameters that satigfy (0) > ..

Proof. To find the validity region, we need to solve

PgD > ngF =Q (UOQ—l(PFA) + po — Ml) ) (Q_l(PFA) B 271:7;01 52[n]

g1

Using (4.19), we can recast (4.33) as

Q (Q-I(Pm - LW(O’) > Q (Q-l(PFA> - @) , (4.38)
o —uf,(0)) o

wherev, v are defined in (4.20). Sinde[n]| < o, ignoring the second order termyf3, (0) in (4.34),

we have

Theorem 4.3 shows that the validity region only dependgipi0) ando, but is independent of
Pr4 ands[n]. For the GM noise and the GG noise, we further investigatealfidity region in the

following corollary and show that it is also independentof

Corollary 4.1. For the GM noise, the validity region of the proposed TD is

{(a,m‘m(wl%‘) >3} (4.35)
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For the GG noise, the validity region of the proposed TD is

(816 € [0.42,1]}. (4.36)

For both cases, the validity region of the proposed TD ispeaelent of the noise variance.

Proof. For the GM noise in (3.38), according to Theorem 4.3, we have

1 c 11—« 1
fW(O)>% & fW(O):U 27T<04+ 3 >>%

& L(oz—i——l_a)>l & a+(1—a)ﬁ2(oz+1_a>> z
Vor 8 )72 E 2

Similarly, for the GG noise in (4.15), we have

() > o= o fw) =405 L
__ 2 (E0+) 1
& al@) = AT G0+ 9) >5 e {Bl8e 0421}

O

Corollary 4.1 provides a simply way to calculate the vajidigions for the two noise pdf’s. In
the remaining of this subsection, we show simulation resuidtthe region of validity.

First, for the GM noise, we justify the analytical resultsTtheorem 4.3 and Corollary 4.1.
We setPr4 = 0.1 and N = 100, and simulate the validity regions for three detection pents.
Problem I: sinusoidal signal (4.13) in GM noise with = 1; Problem II: sinusoidal signal (4.13)
in GM noise witho? = 4; and Problem IIl: random signal (4.14) in GM noise with = 1. For all
problems, we obtaif},”’s from simulation for different«, 3)’s, and determine the validity regions
by PIP > PMF = (0.2828. These validity regions are compared with the analyticltesthich
is calculated using (4.35) in Corollary 4.1. The validitgiens are shown in Fig. 4.8, where the
ones for Problems I, 11, lll, and Corollary 4.1 are markedexd, green, blue, and gray, respectively.
For better demonstration, we shape the regions by the ofderatytical region (gray), Problem 1lI
(blue), Problem Il (green), and Problem | (red) due to the sizthe regions. It is observed that the
borders of the validity regions of all three problems areadtrthe same and match the analytical
one obtained from (4.35) precisely. Comparing the valicktyions of Problem | and Problem I, we
see that the validity region is independent of noise vagartc Comparing the validity regions of
Problem | and Problem Ill, we see that the validity regiomidapendent of signaln]. Comparing
the validity regions obtained from simulation and the atie one, we see that the (4.35) is a sound
approximation in determining the validity region of the posed TD.

We then turn to the GG noise. We consider the detection ofithesgidal signal (4.13) in GG
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A Problem | (red)
O Problem Il (green)
¢ Problem IlI (blue)

* Analytical region (gray)

Fig. 4.8. The validity regions for different detection pledn with GM noise.

noise witha? = 1, obtain PZ? for different 3 by simulation, and show them in Fig. 4.9. It can
be observed that the validity region is abd#3 € [0.44, 1]} obtained fro 3| PLP > PAE =
0.2828}, where PA/ " is calculated from (4.10). This is close to the result (4i86%orollary 4.1,
which is{3|3 € [0.42, 1]}.

45 Conclusions

In this chapter, we proposed a low-complexity thresholdesyshased detector to detect any known
deterministic signal embedded in independent unknown@®aussian noise. We assumed that the
noise pdf is unimodal and symmetric, the signal is small carag to the noise variance, and there
are a large number of samples. The optimality of the two partise proposed detector, the binary
threshold system and the correlator, was proved. The dmbeptobability and the ROC of the
proposed TD were investigated both analytically and nucadlyi. For noises with heavy pdf tails,
simulation showed that the performance of the proposed Hboaehes that of the LO detector and
Saha’s detector, the design of which need exact noise palfriretion, and is much better than the
MF. Through a robustness measure, we showed that the pip@ses highly robust to the noise
pdf. On the other hand, its robustness to the signal is imfdnit comparable to the LO detector
and Saha’s detector. The implementation complexity of tlopased detector was discussed and

compared with other detection designs. The validity regibthe proposed detector was defined
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Fig. 4.9. PgD versusg for the sinusoidal signal detection in GG noise.

and analyzed using the MF as the benchmark.

Appendix 4.A Proof of Theorem 4.1

Without loss of generality, we assume that] > 0 and show that the binarization threshald=
s[n]/2 maximizes the AUC. The case ofn] < 0 can be proved similarly.
Sincex[n] > 0, T'S1(7) is applied. With the binarization threshatdwe definepy(7) andp; (1)

as follows:

po(T) é ]P’(Y[n] = 1;H0) = /Oo fx(CU;Ho)dm, (437)

pi(7) 2P(Y[n] =1;Hy) = /OO fx (x; Hy)dx. (4.38)

Sincefx(x; Hy) = fw(w), fx(x; Hi) = fw(w — s[n]) ands[n] > 0, fx(x; Hy) is a right shift
of fx(x; Hy) by s[n]. Thus,py(r) < p1(7) forall 7's.
The TS output[n] has two possibilitieg[n] = 0 or y[n] = 1, based on which we will decide

on Hy or H;. Therefore the likelihood ratio values of the binary detatproblem are as follows:

Pyl =0;H)  1—pi(7)

Llylnl =0) = e o =0 o) ~ T=po(r)
B _]P’(y[n]:l,H) D (T)

Lyl =1) = o = 1;H(1)) a p;(T)



Since0 < po < p1 < 1, we have) < L(y[n] = 0) <1 < L(y[n] = 1), and the decision rule of

the binary detection problem is

Hy if L(y[n])
o(yln]) = Ho if L(y[n])
HO orH1 if L(y[n]) =7

>
< (4.39)

If v < L(y[n] = 0), we havePr4 = 1 andPp = 1. If L(y[n] = 0) < v < L(y[n] = 1), we have
Pra = po(t) andPp = p1(7). If v > L(y[n] = 1), we havePr4 = 0 andPp = 0. With the

help of randomization decision functions, the ROC of theedbn problem is the combination of

the segment fron0, 0) to (po(7), p1 (7)) and the segment frorpo (7), p1 (7)) to (1, 1).

A=(p,,p,) when using TS, (t=s[n}/2) D |
B=(p0,p1) when using TSl(T>s[n]/2) ~
B will be between CD and Ol, o5

larea of A OAl>area of A OBI e

o
e

o
S

o
=

S’ —ROC using TSl(r=s[n]/2)

. ---ROC using TSl(t>s[n]/2)

C o/ — Auxiliary line CD: parallel to Ol passing A
O — Auxiliary line OI: (0,0) to (1,1)

0 0.2 0.4 0.6 0.8 1
Probability of false alarm

Probability of detection

o
AN

Fig. 4.10. ROCs of the TS with different

Now we show that whem = s[n]/2, the AUC is the largest. Denote tf{e,0) point in the
Pra — Pp square a%), the (1, 1) point asI, and the(po (#) , D1 (#)) point asA, which
are shown in Fig. 4.10. For another# s[n]/2, denote th€py (1) ,p1 (7)) point asB. It is thus
sufficient to show that the area 6fO AI is no smaller than that chOB1.

Without loss of generality, assume that> s[n]/2. The other case can be proved similarly.
Note thatpy(7) andp;(7) are decreasing functions ef Define Ap, = po (#) — po(r) =
J5ye fw(w)dw and Apy 2 py (4) —pr(r) =[] f(w = sn])dw. Since fu-(w) is
symmetric atv = 0 and unimodal, we havéy (w — s[n]) > fw (w) for # < w < 7, and hence

Ap; > Apg. This means that the poit is on or under the segment CD in Fig. 4.10, where segment
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CD includes pointd and is parallel to the segme@t. Thus, the area ofO AT is no smaller than
that of AOBI.

Appendix 4.B Proof of Theorem 4.2
For the binary detection problem with observatigithe optimal test is the LRT, defined as

1

_ P(y; Hy

T

L = 4.40
() Ply: Ho) 5077 (4.40)
Since entries of are independent, we have
N—-1 N-—-1
P(y[n]; H1)
L(y) = AL L(y[n]), 4.41
v) gp(y[nh%) I:[O (vln)) (4.41)
whereL (y[n]) & F4EY.

Notice thaty[n] only takes O or 1, we calculate the valued@f[n]) for y[n] = 1 andy[n] = 0,
respectively. First, we consider the casespf] > 0, for which the optimal TS i€'S; (#)
Becausefx (z; Hy) = fx(z — sn|; Ho), fx(z; Hy) = fw(w), and fy (w) is unimodal and sym-

metric atw = 0, we have

P(y[n] = 1;H1)=/;:] Fx (@ Hy)de = /

[ fwtwyw+ [ | wledw=1 |7 e

[n] 2
o o sln] s[n]
P(y[n] = 1;H0)=/% fx(x; Ho)dx :/o fw (w)dw —/0 sz(w)dw = % 7, 2fW(w)dw,
e
P(yin] = 0: H)=1 ~ Byl = 1) = 5 = [ fwlw)du.
L
P(y{n] = 0: Ho)=1 = B(yfn] = 1 o) = 5 + [ fuwluw)du.

For small signal, i.e/s[n]| < o, we have
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i 2000 = )~ In (20 ) 1 1+ lal i (0) = 0 (1 slalar(0)

= s[n] fw (0) — (=s[n]fw (0)) + O((s[n] fw (0))%) = 2s[nl fw (0),  (4.43)

1_ s[n]
In L(y[n] = 0)~ In (%W“”) ~ —2sn] fw (0).
2

P(y[n] = 1; H1) = % + /07 i fw (w)dw,
_sln]
P(y[n] = 1; Hy) = % —/0 fw (w)dw,

s[n]

- /0 T fww)dw,

P(yln] =0;H1) =1—-P(y[n] = 1; H1) =

P(y[n] = 0; Ho) = 1 = P(y[n] = 1; Ho) =

For small signal, i.e/s[n]| < o, we have

L H) ~ 5 — L fw(0), Pyln] = 15 Ho) ~ 5 + <54 i (0) (4.44)
P(yln] = 0; 1) ~ § + Ly (0),  P(yln] = 0; Ho) = § — 2 fu(0),
and thus
1, s[n]
In L(y[n] = )~ In ( 152703 ) ~ —2s[n] fu (0),
NS 1_enl g (o) (4.45)
In L(y[n] = 0)~ In ( 22 ) ~ 2s[n] fu (0)
Combining (4.43) and (4.45), for aryn], we have
In L(y[n] = 1) = 2|s[n]| fw(0), InL(y[n] = 0) = —2|s[n]|fw(0). (4.46)

Note that the values df L(y[n] = 1) andln L(y[n] = 0) are independent af[n| but only depend
on the signals[n]| and the value of the noise pdf at 0.

For a giveny vector, letD be the number of 1's ig. The number of O’s is thud’ — D. From

(4.41) and (4.46), we have

lnL(y)z2( Z |s[n]| — Z |S[n]|)fw(0)

{nly[n]=1} {nly[n]=0}
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N-1
—2[ > IS[n]I—(;IS[n]I— > IS[nllﬂfw(O)

{nly[n]=1} {nly[n]=1}
=4 > s[n]lfw(0) -2 Z |s[n]| fw (0
{n|y[n]=1}

~4 (Z_ |s[n]|y[n1> 2 Z sl fw 0 (@.47)

Note that the second term in (4.47) afigt(0) are constants, independent of the hypotheses and the

observation, Thus from (4.40), the optimal test rule become

T D A 1 gy Iil
" "(y) = N Z y[n|s[n]| = n,
n=0 Hy

which shows that the propos&d P (y) is the optimal test statistic.
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Chapter 5

Optimal Design and Noise-Enhanced
Effect for Binary Threshold Detector

under AUC Measure

This chapter considers the binary threshold system (TScbdstector for a general binary testing
problem. First, the optimal binary TS that maximizes AUC &ided. Then the noise-enhanced
effect is investigated. The optimal noise that can achikeertaximum AUC is derived and shown

to be deterministic. An example is shown to justify the dedivesults.

5.1 Introduction

As explained in Sec. 1.4, threshold system (TS) based detectTD in short, is one widely used
suboptimal detector for detection problems with non-Giamssoise [11], [56], [58]. For a DC
signal detection with known noise, Chapeau-Blondeau i} ftéposed a maximum a-posteriori
probability detector for a given binary TS, but did not addréhe optimal design of the TS. We
filled this gap in Chap. 3 to design the optimal TS using NRedon. In Chap. 4, for an arbitrary
known signal detection in non-Gaussian noise with unknodfn\ywe proposed an optimal TD and
analyzed its properties. In this chapter, we consider argérmaultiple dimensional binary detection
problem, and derive the optimal composite binary TS thatimees the AUC, where AUC stands
for the area under the receiver operating characteris@)Rcurve.

We also investigates the noise-enhanced effect in thigyinB. The idea of noised-enhanced
effect arises from the phenomena that the noise sometimgdaaa constructive role. For example,
when paddlefish try to catch a bug, its perceptive abilitresmproved if an external noise is added

in his ambient environment [13]. Many other interestingseeénhanced examples can be found in
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[12], [13]. In the context of signal detection, noised-emted effect refers to improved performance
obtained from injecting additional independent “noisgbithe observation [16]-[20]. Kay in [16]
showed that when the threshold of the binary TS in a TD is nttrag, for a givenPr 4, Pp of the
TD can be increased by adding WGN. Kay et al. also calculdte@ptimal pdf for minimizing the
probability of decision error under Bayesian criterion][1For a general binary detection problem
with an arbitrarily given detector, under the NP criteri@@hen et al. [18], [19] and Patel [20]
investigated the noise-enhanced effect and derived thmalppdf form of the noise. However, the
results suffer the following disadvantages. The derivetihogd noise pdf is implicitly represented
as a function of the conditional probabilities, which in geal are difficult to be obtained in closed-
form. An numerical method for finding the optimal noise pdfsaaroposed in [20]. But it is
computationally expensive. With the NP criterion, the oyati noise pdf depends on the desired
level of Pr4. This adds on more computational cost, especially for apptins with changing
environment or requirements.

In this chapter, for a general binary detection problem Wwittary TD, we derive the optimal TD
and the noise pdf for the best noise-enhanced effect und&UIC measure. A simple closed-form
of the optimal noise pdf is derived. The computational codiriding the optimal noise is very low.
The properties of the noise-enhanced effect are also disdus\n illustrative example is presented

as well.

5.2 Problem Statement and AUC Measure

In this section, we introduce the detection problem, thayiff D structure, and the AUC measure.

5.2.1 Detection Problem and Detector Structure

We recast the BHTP in (1.1) as

(5.1)

Hy : X ~ fx(x; Hy) £ fo(x)
Hy : X ~ fx(x; Hy) = f1(x)

whereX represents thé/-dimensional observatiorfx (x; H;),7 = 0, 1 are the pdf's ofX under
hypothesedi;,i = 0, 1, abbreviated ag;(x),: = 0, 1 for later convenience.

For this detection problem, we will use a binary TD with pb#sinoise-enhanced effect. The
structure is shown in Fig. 5.1. First an-dimensional nois&/ is added to the original observation
X to produce the new observatith ThenU is applied to the binary TS and converted into a binary
signalY” € {0,1}. Finally a decisionfl; or H, will be made based on the ru;d;e%l 7.

Hy
In this detector design, we use a multiple-dimensional aastip binary TS as the test statistic for
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its low complexity. For a binary testing problem, the optitest statistic is the LR, which requires
fo(x) andf; (x) to be perfectly known. When there are unknown parametergiegheralized LR can
be used. These detectors however generally have high critymed low robustness [1]. Binary
TD, other than its low complexity, has been shown to achieaslgletectability and high robustness,
especially for noises with a heavy-tail pdf [58].

The noiseV is introduced to improve the detector performance, whersiptes called the
noised-enhanced effect. Noise-enhanced effect in siggtalction was first proposed in [16] and

further developed in [17], [18], [20].

X U Binary Y| >n SH
>m > threshold > < !
system n >H,
vV TS
D

Fig. 5.1. Noise-enhanced binary TS based detector.

Here are the detailed formulation of different parts of tliepmsed noise-enhanced TD. Let
fv(x) be the pdf of the additional noié. SinceU = X + V, we have

fo'(w) £ fu(w; Ho) = fo(u) * fy(u) = /RN Jolu —x) fv (x)dx,
PO 2 foluH) = filw) « fvl) = [ filn =) fux.

where fU (u) is the pdf ofU underH; for i = 0,1 andx stands for convolution. The function of

the binary TS can be expressed as

1 ueD
Y =T(u) = 7 (5.2)
0 elsewhere

whereD is a subset iR, This binary TS is a high-dimensional generalization of tbenposite
binary TS in (2.2). The decision of the TD can be represenyatidcritical function:

n
p(u,n) =qv:T(u) =9 ; (5.3)
n

wherev € [0, 1].
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The detection probability and false alarm probability carchiculated as

Po(o) = [ stwn P = [ ot ([ At xsveax) du
= [ vt ([ etwnn-ni)ac= [ R 64

Peat) = [ 2w ([ otwnotn i) ax= [ pmoi (65)

where we define

Fen) 2 [ o) fiu = 56)

fori =0, 1. Note that ifV = 0 (no added noise), we ha¥é = X, and thus

Pp(n) = F1(0,m) Pra(n) = Fo(0,n). (5.7)

The detection model is a general one since it applies to pnablof any dimension with any
conditional probabilities. The binary TS model is also agrahone, which includes the TS'’s used

in [16]-[18], [56], [58] as 1-dimensional special cases.

5.2.2 AUC Measure and Design Problems

One widely used criterion in signal detection is NP critaridNith NP criterion, the optimal TS
design depends on the given levelBf 4. In general, the optimization of the test statisfi¢u)
is computationally costly and sensitive to the valueRaf, [1], [56]. Similar problems exists in
finding the best noise pdf for the noise-enhanced effect.

In this chapter, we use AUC as the performance measure td #weiexcessive computational
load and produce practical and robust designs. The AUC ofesctte is defined as the area enclosed
by the curve(Pr 4, Pp) together with the line?, = 0 and Pr4 = 1. When bothPp(n) and

Pr 4(n) are continuous piecewise differentiable functions, thesaaan be calculated through either

1 o oP
AUC = / PpdPra = — / PD(n)%(mdn (5-8)
O — 00
or
1 1/ !
AUC=—+—(/ PDdPFA—/ PFAdPD)
2 2 0 0 (5 9)
1 L™ OPp(n) OPra(n) '
5+ 3 /_ N (Pm(n)i&7 PD(n)i877 dn.

The latter formula follows from Green’s formula. When thadtions involved are not continuous,

however, the two formulas are not equivalent anymore. Ih sases, (5.8) often leads to incorrect
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answers. Nevertheless, one can verify through smoothing that (5i®)g#/es the correct answer
even for discontinuou®p (7)), Pra(n), due to the total cancellation of the ill-defined terms. In the
following we will use (5.9) whenever analytic calculatiohAJC is needed.

AUC represents the average performance of the detectoatiymrssiblePr 4’s and is indepen-
dent of a particular one. The AUC is shown to be a valid meastidetection capacity [66], [67].
We use AUC as the performance measure for tractable dessgitsend performance analysis.
With the AUC measure, the optimal TS and the optimal noiseapelindependent of ther 4 level.

In this chapter, for the signal detection problem in (5.5ing the TD shown in Fig. 5.1, we

investigate the following two design problems:

1. When there is no added noise, design the optimal binarynTt8e TD that maximizes the

AUC.

2. Foragiven TS, derive the optimal noise pdf for the TD thakimizes the AUC.

5.3 Optimal Binary TS Dedsign

We first consider the optimal binary TS design that maximibesAUC when there is no added
noise. Since the TS is binary, this is equivalent to the desf@® in (5.2).

Theorem5.1. The AUC maximizingD for the binary TS isD,, = {x : fi1(x) > fo(x)}. Equiva-
lently, the optimal binary TS that maximizes the AUC is

Y = T(x) = 1 X € Dopt = {x : fl(x) > fO(X)} ' (5.10)

0 elsewhere

Proof. For a TS specified in (5.2) and the critical function in (58¢, have

0 n>lor(0<n<1l,u¢D)
pu,n)=qv (p=1lueD)or(n=0,u¢gD). (5.11)
1 n<0or(0<n<1l,ueD)

1The underlying reason is that in such cases, the integratdviedd become products of the Dirac delta function and
discontinuous functions. Such pairings are in generaldfined.
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Definep; = |

u

ca filu)du,i=0,1. Using (5.11) in (5.7) gives

(0,0) n>1
(o, p1) 0<n<l1

(Pra,Pp) =1 (1,1) n<0 : (5.12)
(vpo,vp1) n=1
(v+po(l=v),v+pi(1-v)) n=0

Sincerv € [0, 1], the ROC obtained from this TD is the combination of the twgnsents: the
segment from(0, 0) to (po, p1), and the segment frortpy, p1) to (1,1). With this ROC, we can

calculate that

AUC = % + Area of triangle of A (0,0)(po,p1)(1,1) = = +

(p1 — po)-

N | =
N —

Therefore, maximizing AUC is equivalent to maximizipg— pg. We have

Do = axg g (o1 —po) = s [ [760) = ol = {2 () > foo0)}

O

Remark 5.1. Straightforward calculation shows that in the above sintplee, Formula (5.8) gives
2+ 2220 4 (1 — D)[(p1po + (1 — p1)(1 — po)] which is wrong unless = 1, while (5.9) gives the

correct answer as the extra terms cancel.

5.4 Optimal Noise-Enhanced Effect

In this section, we investigate the noise-enhanced effettarive the optimal noise pdf that max-
imizes the AUC. With the additive nois¥, using (5.4) and (5.5) in (5.9), we have the following

AUC calculation.

AUC=§+%/R( [ R n)dx) (/ v 2 )dn

(L o) ] o 0)

fvx) fvly o(x n)i’dn— Fl(Xaﬁ)idﬁ dxdy
// (/ - on /R an ) )

/ o fv(x)fv(y)H (x,y)dxdy, (5.13)
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where we define

OF (y, OFy(y,
H(x,y) =1+ / Fo(x,n)Mdn - / Fl(xan)ﬂdn
R on R on
The noise pdf optimization problem is thus
1
arg max / &) fv(y)H (x,y)dxdy
fvx) 2 Jpy Jrw
s.t. fv(x)dx =1, fv(x)>0.
RN
The conditions in (5.16) are because tffia(x) is a pdf.
Theorem5.2. For the binary TS given in (5.2), define
G2 [ [filu=x) = folu~x)ldu
D
Let x,p¢ be the maximum point off(x), i.e.,
Xopt = arg max G(x).
The optimal noise pdf that maximizes the AUC of the TD in Fid. B
SVt (%) = 0(x — Xopt),
whered(-) is the Kronecker delta function.
Proof. Using (5.11) in (5.6) gives
0 n>1
Juep Vfi(u = x)du n=
Fi(x,n) =9 [iep filu=x)du 0<n<1
Juep filu=x)du+ [ pvfi(a—x)du  7=0
1 n<0

We then have

ann [/ fu _xdu} h—1) U fi(u —xdu]()
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(5.15)

(5.16)

(5.17)

(5.18)

(5.19)



Thus

OFy(y,n)
— [ Fi(x, d
/R 1(x,1) an n

=Fi(x,1) /GD fo(u—y)du+ Fi(x,0) 5 fo(u—y)du

=v fi(u—x)du folu— ydu+/ fi(u—x) du/ fo(u—y)du

ueD ueD

+u/ filu— xdu/ folu—y)d

~[[_ ntw-xau ueDfo(u—ydqu/ flu—xdu/@fo(u—Y)du]
o nwexa- [ pesm [ -y

/ filu —xdu+u/ filu —xdu/ folu—y)d

Similarly, we can show that,

[ Fotxn 3F1 - —/UGD fou = x)du — ”/u@fl(“‘”d“/u@ folu — x)du

+a-n [ _ (u=y)du / _Jola =)

(5.20)

(5.21)
Now using (5.20) and (5.21) in (5.14), we have
1
Hocy) =5+ [ lpila—x) = polu—x)]du+ K(xy) (522)
ueD

where

Ky 2o [ it / o=y (1) / _ (u—x)du / _fu=y)du
[ RS / | ol x)du s (1) / _h(u=y)du / _fu=du

It can be shown straightforwardly that(x, y) is skew-symmetric, i.e K (x,y) = —K(y,x). Now
we calculate the object function (5.15) using (5.22). Beeatlne integral of the skew-symmetric

terms is zero, we have

AUC — / o RN ) H e yixdy = 5 + / NG, (523)
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whereG(x) is defined in (5.17). By using Holder’s inequality,

| 0GR < [ (I G0 e = max Glx)

with equality whenfv,,, (x) = 6(x — Xopt) Wherex, is defined in (5.18).
O

This theorem says that the optimal addéds deterministic, whose value (as-dimensional
vector) is thex,,; defined in (5.18). This is equivalent to conduct an optimaamshift on the
observation for the largest AUC. This is due to the binary e TD, which functions as the test
statistic of the problem. Once the structure of the deltation of the optimal pdf is found, the
determination of the optimal point is straightforward. hthe main contribution of the theorem is
to discover that the optimaV is deterministic. Note that,,: may not be unique. Ang,: that
leads to the same maximu@(x) will have identically maximum AUC.

From the proof of Theorem 5.2, for a deterministic addedemjsve have, from (5.23),

AUC = —[1 + G(v)]. (5.24)

N =

We can thus determine whether noise-enhanced effect &yistsmparing=(v) with G(0).
Corollary 5.1. (Existence of noise-enhanced effect)
1. Forv € R*, if G(v) > G(0), the AUC of the TD will be improved by adding the constant

2. Ifthe TS is designed to be optimal as in Theorem 5.1, the AtiGe TD cannot be increased

via adding noise.

Proof. The first part of the corollary can be seen directly from theCAldrmula in (5.24). Now we
prove the second part. It has been shown in Theorem 5.2 thétetst noise is deterministic. With
the optimal TS design in Theorem 5(2(0) is the maximum of7(v), thus the AUC can no long be
improved by any. O

Corollary 5.1 shows that the AUC can be increased via addaigenf G(0) is not the global
maximum. It also shows that if the TS is designed to be optiadding noise will not improve the
AUC. For some non-optimal TS, if it§(0) is the global maximum point, we also cannot increase
its AUC.

Now we discuss how to fing,,; defined in (5.18), the global maximum pointG{x). First,
candidatex.'s should satisfyG’(x.) = 0 andG"” (x.) < 0. Thus we first solve.’s from G’ (x.) =
0 andG”(x.) < 0, thenx,p is one of thex.'s resulting in the largest value 6¢#(x). This can be

done efficiently using standard numerical algorithms sucNewton’s method.
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In [18], [19], the noised-enhance effect was investigatedewn NP criterion. In this letter, we
investigate the same problem under the AUC measure. In[[19],for a general given test statistic,
the optimal noise pdf under NP criterion was proved to be abioation of maximum two delta
functions. Although the noise pdf structure was found,@ibform is rarely available. In this work,
we derived the optimal noise pdf in a semi-closed form, tHeutation of which is significantly
simpler. Under the NP criterion, the optimal noise pdf chemgithn and Pr 4, and hence the
design is sensitive tg and Pr 4. AUC leads to an optimal noise that is independeni ahd Pr 4,
and intuitively can be more sustainable to errors in theesgstWe would also like to note that for
a givenPr 4 and under perfect design, the proposed scheme may be inferity to those in [18],
[19] since the goal of the proposed noise-enhanced TD is tamize the AUC not thePp for a

particularPr 4.

5.5 An Example

In this section, we use an example to illustrate the resnlSecs. 5.3 and 5.4. We consider the
detection of a DC signal in bimodal GM noise, as in Sec. 3.%%re fx(x; H;),i = 0,1 are
shown in (3.41) and (3.42) witd = 0.5, x = 3 ando = 1. The optimal TS, denoted as J;, can
be derived using Theorem 5.1 to be

1 T € |11, T2 U|T3,00

TSope: ¥ = 71, 72} U3, 00) , (5.25)

0 elsewhere

wherer; = —2.75, 75 = 0.25, andr = 3.25. That isD,,; = [—2.75,0.25] U [3.25, c0).
First we consider the TD with T3;. We can calculate th€(z) according to (5.17) to be

6o = 3>t [ (PR g (nEr)

+Q(Ti+2c;5_x) _Q<Ti+§>—x)]

Solving G'(z.) = 0 subject toG”(z.) < 0 numerically, we haver, € {£6.04,0}. Since
G(6.04) = G(—6.04) = 0.0975, G(0) = 0.1945, we havez,,; = 0. This justifies the second

(5.26)

part of Corollary 5.1 that noise-enhanced effect cannotioiéehe TD is optimal.

Next, we consider the TD with a non-optimal TS, denoted ag,J:Sgiven by

1 x>0
Y = . (5.27)
0 elsewhere
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According to (5.17), for this case, we have

o-o(257)-o(352) ra(27)-o(52)] e

Solving G'(z.) = 0 subject toG” (xz.) < 0, we obtain two candidate points for the maximum:
{—3.25,2.75}. SinceG(—3.25) = G(2.75) = 0.0987, We have two optimal solutionst,p; =
—3.25 0r zopy = 2.75. They both result in a highe¥ value than=(0) = 0.0024. Based on the first

part of Corollary 5.1, the noise-enhanced effect appears.

We can analytically find the ROCs of the TD for the six casesislng TSy, 2) using TSope.
3) using TS, and addingV,,, = —3.25, 4) using TS,,: and adding the optimal WGN with
pdf fv(z) = N(z;0,0?), 5) using TS,,+ and adding the optimal noises under NP criterion for
Pra = 0.1, and 6) using T+ and adding the optimal noises under NP criterionffpry = 0.5,

respectively. For Case 4, by adding the Gaussian noise, vee ha

folw) = GN(@:3,1 4 0%) + TN (2 =3,1 407,

1 1
fi(z) = 5]\/(:0; 3.5,1+0%) + §N(:c; —2.5,1+ 0?).
We can calculate the the optimalo be,
oopt = argmax AUC = arg max/ (f1(x) = fo(z))dx = 2.81.
o o 0

For Case 5, we hav¢y, ,(v) = d(v + 3.86); For Case 6,fy,,,(v) = 0.40125(v + 3.25) +
0.59886(v — 2.75) using results in [18].

The ROCs of the 6 detectors are shown in Fig. 5.2. We can sewliem using TS, the AUC
is 0.5975 which is larger than the AUC of using L, which is 0.5015. This justifies Theorem
5.1. When TS, is used, noise-enhanced effect happens by addjng The AUC of using TS+
andV,p¢ is 0.5494, which is lower than that of T,s. This is because the structure of L5 is not
optimal. With TS,,,:, adding the best deterministiG,. is better than adding the best WGN, whose
AUC is 0.5202. This justifies Theorem 5.2. Finally, under Necion [18], diﬁerentVOﬁtP’s are
needed for differenPr 4’s, which is shown in the previous paragraph. At the spectfic, value,
the achievedPp using VVF is higher than that usingf,,.: (see theP, when Pr4, = 0.1 and

opt

VNE calculated forPr4 = 0.1 is added, and the one whé?r4 = 0.5 and V)" calculated for
Pra = 0.5 is added). However, addirlg,,; achieves a AUC no smaller than addW@tP. Also,
at otherPr 4 values, theP;, obtained via addingY” may be lower than that one via addibig,.

opt
(e.9.,Pra =0.2).
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Fig. 5.2. ROC's obtained from the optimal TS, the non-optiiits, adding optimal nois&sp under AUC criterion, adding
optimal WGN, addingVOI;’f under NP criterion folP’r 4 = 0.1 and Pr 4 = 0.5, respectively.

5.6 Conclusions

In this chapter, we investigated the general BHTP using arifD. We adopted the AUC as the
performance measure for its implementation simplicity aoloustness. First the optimal multi-
dimensional binary TS that maximizes the AUC was deriveceriive considered noise-enhanced
effect of the detector. The optimal noise pdf that maximittes AUC was shown to be a delta
function, indicating that the optimal noise is determiicisPerformance of the proposed design was

shown via an example and comparisons with other designswade.
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Chapter 6

An Adaptive Bistable System Based

Detector for Watermark Extraction

In this chapter, we explore a bistable system (BS) basectdetéBD) to detect a binary pulse
amplitude modulation (PAM) signal embedded in unknown @&aussian noise. This BD has been
used in discrete cosine transform (DCT) domain watermattaetion, where the watermark is the
signal embedded in the DCT coefficients, and the DCT coefffisiare the noises. In existing BD
designs for watermark extraction, the BS parameters asgrdated using two methods: one is to
find a set of the parameter values from extraction experisyand this fixed set is used for different
watermarks, images, and watermark extraction scenatiespther is to obtain the best parameter
values from exhaustive search of the parameters. Howeedemonstrate that one specific set
of BS parameter values may not provide good performanceiffareint extraction cases. Also,
exhaustive search has prohibitively high computationadglexity and is inapplicable for unknown
watermark sequence, i.e., blind watermark. To discovemetdable method for the BD design,
we propose to use the cross-correlation of the watermarabki@nd the output of the BS as the
performance measure, and the BS parameters are optimizéne fimaximum cross-correlation. Via
experiments, we observe that the 3-dimensional optinuraif the BS parameters can be reduced
to a 1-dimensional optimization problem, which has redun@dplexity. Further, when the noise
pdf is unimodal and symmetric and with heavy tails, anotlegrdbservation based on experiments
is that the optimal BS parameters are sensitive to the \egiaih the noise and the amplitude of
the watermark only, but not other noise statistics, suchagpdf form and the watermark sequence.
Based on this observation, it is possible to generate algdieble of the BS parameters for different
watermark amplitudes and noise variances. With the helfmisflbok-up table, an adaptive BD
designis constructed, whose BS parameters are adaptheéstimated amplitude of the watermark

and the variance of the DCT coefficients. Experimental tessiiow that the performance of the
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proposed adaptive BD is superior to those of the existing &ikthe white Gaussian noise (WGN)-

based maximum likelihood (ML) detector.

6.1 Introduction

DCT-domain watermark extraction [38]-[42] can be consdess a BHTP, where the watermark
sequence is the signal and the DCT coefficients of the hogjeraee the i.i.d. noise samples. Con-
sider a binary watermark sequence. When detecting a sphitific the watermark, the signal is a
binary DC signal (0 or 1), or in general, a binary PAM signathnainknown amplitude. The noise,
which are the DCT coefficients of the host image, is shown todreGaussian with heavy pdf tails
[44]. Itis usually modeled as some pdf forms, such as gemerhGaussian or Cauchy in [43], [44].
This kind of non-Gaussian noise exhibits spikes and a gotettte typically includes a nonlinear
limiter to reduce the noise spikes [1]. The BS can be a swthiliter [28], [60]. Hence, the BD
composed of a BS and a summation has been employed in wakeextaaction [38]-[42]. The
main results have been reviewed in Sec. 2.2.2.

It has been shown that BD can provide good performance inrmaid extraction [38]—[42].
The BD design is to determine the BS parameters which isatitin obtaining a good extraction
performance. There are two methods in BS parameter desithreifiterature. In the designs in
[38]-[40], [42], the BS parameters are fixed for differentevenarked images and for watermarked
images suffered from different attacks such as JPEG comipreand adding Gaussian noise. The
BS parameters are determined by experimental experieRoegxample, one parameter set of the
BS is chosen if by some experiments it leads to a satisfiedrtut eate (BER) in extraction [38],
[40]. Different works [38]-[40], [42] use different BS pangter values. The other was proposed
by Duan et al. in [41], [45] to obtain the appropriate BS pagtars for the minimum BER using
exhaustive search. However, both of the aforementioneldadstrequire the watermark sequence to
be known for the calculation of the BER in experiments or ihaxstive search. But the watermark
sequence is often not available in applications and thermwatek is called a blind watermark. In
addition, for the first method, one fixed BS parameter settisuitable for all scenarios in watermark
extraction. For the second method, exhaustive searchrstiften high computational complexity.
To summarize, there is no systematic and practical metha@s@mn the BS parameters for blind
watermark extraction in literature.

In this chapter, we first propose to use the cross-correlafahe watermark signal and the
output of the BS as the performance measure in designing $1élBe main advantage of using
cross-correlation measure to replace the BER measure ja[fi28 is that the BS design is isolated
out of the overall BD. Although this may lead to some perfang@penalty, it largely simplifies the

design complexity so that the design can be used in realagtiolns. It also leads to efficient extrac-
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tion for blind watermark as will be shown later in this chapfEhe BER measure in [38]-[42] only
applies to applications with known watermark, and the BERimizing design is computationally
prohibitive for real applications. We investigate how thess-correlation is affected by the BS pa-
rameters via experiments, based on which, we propose agtoni@ parameter (TOP) technique to
determine the BS parameter values with manageable congmabtomplexity. Furthermore, under
the cross-correlation measure, we observe that the BS pteadesign is sensitive to the variance
of the noise and the amplitude of the signal only, not othegistics of the noise and the signal, such
as the noise pdf form and the specific (watermark) signalesecgi Hence, via off-line experiments,
we can generate a look-up table containing the desired BSwmers in term of different noise vari-
ances and signal amplitude values. We then design a BD whegmBameters are adaptive to the
input (watermark image) based on the look-up table. Itistlated that applying one BS parameter
set for various watermark extraction cases cannot guaaetdéormance and the proposed BD with
adaptive BS parameters performs better.

The organization of this chapter is as follows. In Sec. 6 2 priefly review watermark embed-
ding and extraction using BD. In Sec. 6.3, we present thectieteproblem in watermark extraction,
and demonstrate the limitation of keeping the BS parameterhanged for different scenarios. In
Sec. 6.4, we propose new BS design, including BS parametiniaption and the design of the

adaptive BS. We then present the simulation results in Secfd@lowed by conclusionsin Sec. 6.6.

6.2 Review of Watermark Embedding and Extraction Using BD

A watermarking scheme includes two stages: embedding analctéion. Note that the BD is used
only in the extraction. In this section, we present a brigfaew of the watermarking scheme and the

use of BD in watermark extraction [40].

6.2.1 Embedding Algorithm

The schematic of the watermark embedding algorithm [4dj@sw in Fig. 6.1 (a). The hostimade
is divided intoK blocks, each witls x 8 pixels. The DCT coefficients of thé” block also have size
8 x 8, which are zigzag scanned from low frequency to high frequén obtain a one-dimensional
sequence denoted &*,k = 1,2,..., K. The middler DCT coefficients inX* are denoted by
XF(U, < u < Uy), whereU, is the starting index/; is the ending index, and = Uy — Uy + 1.
X%s are then cascaded to generate a sequ&naéth a length ofr K.

X is then permuted t&” as follows. First, generate a random sequeRaeith the same length
of X using a specific key. Second, gener&teby sorting elements oR in ascending order. Let
L contain the index of the ascendent ordering. Finallyis obtained via permuting by L. For

example,X = {10,65,43,20}, R = {0.3,—0.1,—0.2,3}, thenR’ = {-0.2,-0.1,0.3,3}, L =
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{3,2,1,4}, andV = {43,65,10,20}.

Assume thatv[m], m € [1, M] is a binary watermark sequence consisting of -1 and 1. Note
that a binary watermark should be a sequence of 0 and 1. Heredhverted to -1, such that the
least energy of watermark can be available for a required. SNRry bit inw[m] is repeatedS

times to generate the sequentel, i.e., s[n] is {w[1], ..., w[1],w[2], ..., w[2], ..., w[M], ..., w[M]},

S times S times S times
n = 1,2,...,5M. Note thatSM < rK should be satisfied to have enough DCT coefficients for
s[n] to be embedded.
The watermark embedding algorithm is given Ky,[n] = v[n] + As[n], whereA is the wa-
termark amplitude X, is the watermarked DCT coefficients(,, containsM segments, each of
which contains one watermark bit. The watermarked imageigrated by replacing the original

DCT coefficients withX,, [n], then conducting an inverse DCT transform.

U.U Key Watermarked
l o2 l Permuted Ppermuted
Host oefficients coefficients
image Depermute
DCT Sglgct Perlmlute & replace
transform coefficients coefficients o
x[n] coefficients
watermark Inverse
Interpo_le_lte DCT
& amplified
transform
Watermarked
image
(a) Embedding algorithm
BD
U,U, | Key
1°Y2
Watermarked Pe?‘fte‘:
; coefficients
Image Select .
DCT - | Bistable
transform >| coefficients | system
and permute X, [n]
pln]
watermark Internal
——
Wim] detector

(b) Extraction algorithm

Fig. 6.1. Schematic of the BD based watermarking scheme.

As an example, we consider the embedding tf & 16 binary “W” watermark shown in Fig. 6.2
(a) into the512 x 512 Lena imagew|[m],m = 1,2, ..., 256 is binary sequence obtained by zigzag
scanning the “W” watermark. Let = 3, Uy = 9, Us = 44, M = 256 and.S = 500. Using the
embedding scheme in Fig. 6.1 (a), we have the watermarked inggge shown in Fig. 6.2 (b).
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()16 x 16 binary watermark image (b) 512 x 512 watermarked Lena image

Fig. 6.2. Embedded watermark “W” and watermarked Lena image

6.2.2 Extraction Algorithm

The schematic of watermark extraction is shown in Fig. 6)1 {the first two steps are exactly the
inverse of the last two steps of the embedding scheme. AfeentX,, [n], the sequence containing
watermarked DCT coefficients, is obtained. A BD is followedktract the watermark. ThE,,[n]

is applied to a BS to obtain the outpyiiz]. y[n] is the input to the internal detector, wheye)| is
first partitioned intal/ segments, each of which includ€samples corresponding to one bit of the

watermark, then a value is calculated for one segment as

mS
pml= > ylnl. (6.1)
n=(m—1)S+1
The watermark bitv[m] is recovered by,
1 >0
Wlm] = plml 20 6.2)
-1 pulm] <0

One evaluation of the extraction performance is the BERnddfas

& Somey |wlm] — [m]]
BER 2 1 i . (6.3)

BERe [0, 1]. Smaller BER means better extraction performance.
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6.3 Design Problems of BD in Watermark Extraction

In this section, we first model the watermark extraction asHfB in Sec. 6.3.1 and derive the
optimal ML detector that minimizes the probability of errdin Sec. 6.3.2, we demonstrate the
non-Gaussian nature of DCT coefficients, which motivatesutse of BD. In Sec. 6.3.3, we show
that the means and variances of the segments in one watetniankge after certain attacks vary
significantly, which motivates the use of adaptive BS. Hinah Sec. 6.3.4, we present the design

problems of the BS.

6.3.1 Detection Problem in Watermark Extraction and Optima ML Detector
for WGN

In this subsection, we formulate the binary watermark etiva into a BHTP and represent the
optimal ML detector if the noise is WGN. In Sec. 6.2, we rewewhe watermark embedding
and extraction algorithms in [40]. The watermark bearingiDi@efficients sequenck,, [n| hasiM
segments. Each segment Itasamples, and thesesamples in the same segment can be considered
as addingA if watermark is 1 or—A if watermark is 0 taS permuted DCT coefficients. Therefore,

the watermark extraction can be represented by a BHTP, sheviallows.
(6.4)

For this detection problem, we want to find a detector thatimmires the probability of error,
which is
Pe = P(Ho|H1)P(H1) + P(H:|Ho)P(Ho), (6.5)

whereP(H;|H;),i,j = 0,1 is the conditional probability of deciding; whenH; is true. In blind
watermark extraction, the prior probabilit§( Hy) andP(H;), is usually considered equal, i.e.,
P(Hy) = P(H,) = 1/2. Therefore, the optimal detector reduces to the maximueiiikod (ML)
detector, which is

fv(x—A)

M =R

1. (6.6)

TAlVE

To implement the ML detector in real applications, we neekirtow fy (v). Here, the nois&”
is DCT coefficient of a host image. Its mean is 0, which can lmsvshfrom the definition of DCT
[70]. However, it is difficult to modelfy (v) as a specific pdf. The simplest way is to assume that
fv(v) = N(v;0,02) [1], [9], based on which the ML detector reduces to

S H;
T(x)=> z[n] Z 0. (6.7)
n=1 Ho
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Since this detector is based on white Gaussian noise (WG&zall it WGN-based ML detector.
Becausexr[n]'s are Gaussian under eith&f, or Hy, the pdf of the output of (x) is also Gaussian.

Therefore, via straightforward calculations, we have

P = [P(T(x) > 0[Ho) + P(T(x) < 0|H1)] -Q (ﬁ) . (6.8)

For the example considered in Sec. 6.2, whdre= 3, 02 = 100, andS = 500, we have
P. = 9.85 x 10712 from (6.8), which shows that errors occur very rarely.

The WGN-based ML detector is simple and easy to implemeritigvever, it is not optimal
whenV[n] is not Gaussian. It is used as a benchmark because othetadsteave no use if they
cannot have superior performance to the WGN-based ML dmtedtext, we will show that the
distribution of DCT coefficients is far from Gaussian, whitlotivates the use of BD instead of

WGN-based ML detector in watermark extraction.

6.3.2 Investigation on Noise Distribution and Motivation d Using BD

120
80r
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8 8o 8 60"
c c
8 o
> >
o 60+ o
8 8 40
© i)
w401 1
20r
20r
—910 -20 0 20 40 —910 -20 0 20 " 40
Value of the sample Value of the sample
(a) First segment (b) 161" segment

Fig. 6.3. Histograms of two segmentsif, [n] of the watermarked image.

If the noise is white Gaussian, the ML detector is linear asshin (6.7), and is optimal in the
sense of BER. But it has been shown in [43], [44] tfiafv) is not Gaussian. Itis bell-shaped with
heavy pdf tails. In this thesis, a bell-shape pdf is unimadal symmetric about zero. Hence, if
the WGN-based ML detector is used, the performance is eggeéctbe suboptimal and many time,
unsatisfactory. The non-Gaussifn(v) is modeled by generalized Gaussian distribution in [44] and
Cauchy distribution in [43]. Based on these models withnested parameters, the corresponding
LO detectors were employed in watermark extraction, whiehagtually GLRTs. However, these

detectors are complex in implementation and have low rofesstto changes in the noise pdf.
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In this subsection, we first show by experiments thatv) is not Gaussian but has heavy pdf
tails. We then show that the distribution Bfn] changes significantly after the watermarked Lena
image? in Fig. 6.2 (b) is attacked by JPEG compression and Gaussise,nwhich causes diffi-
culties for GLRT. We also show that BD can have a better paréoce than the WGN-based ML

detector. These motivate the use of BD in watermark extracti
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Fig. 6.4. pdfs of two segments K., [n] and Gaussian pdfs.

We again use the example illustrated in Fig. 6.2, where week “W” is embedded in Lena
image. Fig. 6.3 shows the histograms of the samples of twmeats (the 1st and 161th segments)
in X,,[n] corresponding to two embedded watermark bits with valuesd— A respectively, where
A = 3. To show that the pdf of the DCT coefficients is not Gaussiamplet the pdfs estimated

from the two segments and the Gaussian pdfs with identicahmaad variance in Fig. 6.4. We can

10nly the results from Lena image are presented in this th&%isnote that this claim applies for other watermarked
images.

2This is performed by Matlab function “[vBin,xOut]=hist(g100)" to have the occurrence times xOut in the 100 bins
whose central values are in vBin. Then xOut is divided by tiiegral of (vBin,xOut) sequence and normalized xOut, deghot
as xOut?", is obtained. The estimated pdf is the lines connecting dietp (vBin,xOut°").
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see that the pdfs of the DCT coefficients are largely differei@aussian pdfs, but is approximately

unimodal and symmetic with heavy pdf tails, as stated in,[3]].
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Fig. 6.5. Histograms and pdfs of two segmentsXin [n] of the JPEG compressed watermarked image with quality of 50.

A good watermark scheme should be robust to attacks, sucRES gompression, clipping,
adding Gaussian noise, adding pepper salt noise, etc. Newtuay the distribution of the DCT co-
efficients when the watermarked Lena image is attached b§ d@mpression and adding Gaussian
noise, respectively. The histograms and pdfs along witlessian pdfs with the same means and
variances of the samples in the same two segments afterigieadwatermarked image is attacked

by JPEG compressiochand Gaussian noise are shown in Figs. 6.5 and 6.6, respectively.

3The JPEG compression is performed by the Matlab functiomfite(imageDate, 'savedFile’, 'JPEG’, 'Quality’, qual-
ityValue)”, which compresses the imageData into a JPEG @idgnamed as “savedFile.jpg” with “Quality"=qualityVau
The “Quality” is a number between 0 and 100, where a higherbmirimduces higher quality (less image degradation due to
compression), but the size of the resulted “savedFile.ipdgirger [71].

4The Gaussian noise is added into the watermarked image iy th& Matlab function “imnoise (imageDate, 'gaussian’,
mean, variance)”. We choose zero mean and variance=0.0® iitiustrated example. The mean and variance parameters
for 'Gaussian’ noise are always specified as if the image weotass double in the range [0, 1]. Therefore it can be shown
if the noise variance is 0.03, a quite strong noise is addé¢ldetimage when the noisy image is converted back to the same
class of the input [71].
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Fig. 6.6. Histograms and pdfs of two segmentsin [n] of the watermarked image added Gaussian noise with variaince
0.03.

We can observe from Fig. 6.5 (c) and (d) that after JPEG cossfome, the pdfs less resemble
Gaussian pdfs. That is because when the watermarked imege@essed, many DCT coefficients
are truncated to zero. As a consequence, both the waternfarkiation embedded and the original
DCT coefficients degrade. Therefore, we observe that manples are zeros and non-zero samples
are scattered. For the case of adding Gaussian noise, weedrom Fig. 6.6 (c) and (d) that the
distributions of the samples in these two segments are thoSaussian. This is because the added
Gaussian noise is much stronger than the original DCT caaxifis, thus dominates the noise.

Through the above experiments, we first show fh&tv) is not Gaussian. Thus, the WGN-based
ML detector may have poor performance. We also observefih@at) is approximately unimodal
and symmetric with heavy tails in all cases. For non-Gaugsigse with heavy pdf tails, a good de-
tector should include a limiter to elute the spikes. SineeBB can be a nonlinear limiter illustrated
in Sec. 2.1.2, the BD with appropriate BS parameters is @ggdo have better performance than

the ML detector. In the following, we show an example to jiystis.
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We use the BD structure shown in Fig. 6.1 (b) to extract wasekrhits from watermarked Lena
image and calculate the BERs. The discrete BS is presen{@dbinwith parameter&, b, At). We
seta = 1, At = 0.01. For differentd’s, the BER obtained from the BD is shown in Fig. 6.7 for the
watermarked Lena image after JPEG compression with quaIB® and 50, respectively. The BER
of the WGN-based ML detector is also shown for referenceeveals that the BD with suitable
parameters, i.eb, € [15, 110] for quality 30 andb > 70 for quality 50, can have better performance
than WGN-based ML detector.

0.2 0.09
---WGN-based ML detector ---WGN-based ML detector

0.191 —BD —BD
0.08r

0.18f

@ @

0.16 0.06

0.15¢
0.05¢

0.14f

01% 50 A 100 150 %% 50 A 100 150

(a) Quality 30 (b) Quality 50

Fig. 6.7. BERSs of the extracted watermark from watermarkedaLimage after JPEG compression with quality 30 and 50
using BD with fixeda, At, and differenty’s.

6.3.3 Investigation on Mean and Variance of Watermark Bit Baring Seg-

ments and Motivation of Using Adaptive BS

In this subsection, we investigate via experiments the mead variances of the segments (each
will be used to extract one watermark bit) ¥, [n], and motivate the use of adaptive BS based on
the observations.

Consider the watermarked Lena image in Fig. 6.2 (b). In wadek bearing sequence,, [n],
there are 256 segments, each having 500 samples corresgpdoddne watermark bit. Now we
present histograms of the means and variances of the 25@&ségim Fig. 6.8, Fig. 6.9 and Fig. 6.10,
for the watermarked Lena image, the watermarked Lena imiagiel®EG compression, and water-
marked Lena image after adding Gaussian noise, respactivel

For the original watermarked Lena image, Fig. 6.8 showsttiemeans of the samples in the
256 segments gather around 3 and -3 and the variances vam3fdo 120. For this case, every
segment bearing one watermarking bit contains 500 samipdésate the summation of 500 DCT

coefficients and 3 if the watermark bit is 1 and the summatfd00 DCT coefficients and -3 if the
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Fig. 6.8. Histograms of the means and variances of the 256es#g inX ., [n] of the original watermarked Lena image.
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Fig. 6.9. Histograms of the means and variances of the 256es&g inX,, [n] of the watermarked Lena image after JPEG
compression with quality of 50.

watermark bit is -1. Naturally, the segments whose meanseae-3 correspond to the watermark
-1 in watermark embedding, and the segments whose meansarg correspond to 1 in watermark

embedding. From Fig. 6.8, watermark bits can be extractddgaod performance because there is
a big gap between the two categories.

When the watermarked image is attacked by JPEG compressionadding Gaussian noise,
it reveals in Figs. 6.9 and 6.10 that there is no obvious iimigor the mean values. For JPEG
compression, the watermark information is filtered heawhowing that the means gather around
zero, but the variances has little change compared withetbbshe original watermarked image.
With Gaussian noise attack, similarly, there is no obvioivssibn by the mean values. This is

because the added noise, which is much stronger than thiaarigpise, masks the watermark
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Fig. 6.10. Histograms of the means and variances of the 25ifiesats inX ., [n] of the watermarked Lena image after
adding zero-mean Gaussian noise with variance 0.03.

information. This can be seen from the noise variance, whidibout 2000, while for original
watermarked Lena image, it is about 50.

Since the mean of the DCT coefficients is zero, the mean oftimpkes in a segment correspond-
ing to one bit of the watermark can be used to estimate thematé& amplituded, and the variance
o? of the samples can be used to estimate the noise strengthn lte observed from Figs. 6.8,
6.9 and 6.10, thatl varies from very weak (such as 0.1) to very strong (such as?3j|so varies
from very weak (such as 30) to very strong (such as 2300), iffarent situations. Although the
variety of the mean and the variance is represented herbdorvatermarked Lena image attacked
by JPEG compression and Gaussian noise only, further empets show that this variety exists for
other watermarked images and watermarked images subjethéo attacks, such as clipping. It
is thus expected that for different segments in watermadkibg DCT coefficients with different
means and variances, the optimal BS design should be diffeFais motivates the use of adaptive
BS, where the BS parameteis b, At) are adaptive to the different segments with different means
and variances.

If for simplicity consideration, it is desirable to used prdne set of BS parameters for all
different segments in one extraction case. It can be obdéha for different extraction cases, the
sample means and variances change dramatically. Thus,peetdr choose different BS parameter
values for different watermarked images. This motivatesubed of adaptive BS. A justification is
shown in Fig. 6.11. We show the BERs obtained from the BD uB8gvitha = 1, At = 0.01, and
differentd for the watermark bearing Lena image attacked by JPEG casipreand Gaussian noise.
For the watermarked Lena after JPEG compression, thebtssiuld be larger than 80; While for
the watermarked Lena after adding Gaussian noise, théIsbsiuld be less than 10. This justifies

that for different situations, the BS parameters shouldhmsen differently for good performance.
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Using only one seta, b, At) for different situations will lead to degraded performance

0.14

0.12

01| 1
: — After JPEG compression

0.08: ---After adding Gaussion

BER

0.06¢

0.04 50 . 100 150

Fig. 6.11. BERSs of the extracted watermark from watermaikexa image after JPEG compression with quality 50 and
after adding Gaussian noise with variance of 0.03 using Bth fised a, At, and different’s.

Although not shown in Fig. 6.11, experiments for differantiges has been done to show similar
results . The above investigations motive adaptive BD, BE. whose BS parameters are adaptive

to different segments, different watermarked images, dem@arked images with different attacks.

6.3.4 BS Design Problems

It has been shown that the pdf of the DCT coefficients of an anagnimodal and symmetric with
heavy tails at the both sides [43], [44]. We also demonddrtite pdfs, means, and variances of the
samples in the segments of the watermark bearing DCT caaffiin Secs. 6.3.2 and 6.3.3. With

these observations, our detection problem is the one shoy4) with the following assumptions.
1. Ais a unknown DC signal.
2. fy(v) is unknown, but is unimodal and symmetric about zero with/igalf tails.

For this detection problem, we present the reason of usingDthe reason of having the BS
parameters adaptive to the different situations in Se8s2 @&nd 6.3.3 respectively. Since the BD is
a BS followed by a summation, the BD design is basically thegieof the adaptive BS. We will

address this design problem in the next section.
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6.4 Proposed BS Design

The values of the BS parameteiis b, At) are crucial for the BD to have a good performance.
However there is no systematic method for the BS paramesggmie literature. In this section, we
first propose to use the cross-correlation of the watermgriasand the BS output as the measure
in finding the optimal values of the BS parameters. Secongdypbserve that the optimization of
the 3-tuple ¢, b, At) can be reduced to the optimization of only one parameteith fixed « and
At. We also observe that the optimal value of parametigpends on the signal amplitude and the
noise variance only, but does not depend on signal sequaddie noise pdf form, assuming that
the noise pdf is unimodal, symmetric, and with heavy pdétaiflence, a look-up table of optimal
values ofb in term of the signal amplituded and the noise varianeg? can be generated via off-
line simulations. This look-up table is then used to chobseBS parameters adaptively according
to various segments of one watermarked image or variousrmvatked images according to the

estimated4 ando?.

6.4.1 Cross-Correlation as the Design Criterion

As shown in (6.3), BER measures the difference between thermark and the extracted water-
mark in the BD output. BER is the direct performance measureatermark extraction, and was
used in the BD design [38]-[42]. However, the calculatioB&R requires the watermark informa-
tion, which is not available for blind watermark. More imgamtly, due to the complexity of BER
calculation and analysis, no systematic method has beemfioudesigning the BER-minimizing
BS, other than exhaustive search. But the computationaptxity of exhaustive search is pro-
hibitive. Thus, in this thesis, for a tractable BS designoeesider the function of the BS itself, not
the overall BER performance of the BD. The observatipr] is composed of the watermark signal
s[n] and the noise[n]. For a good BS, the outpy{n| should be correlated with the watermark
informations[n| as much as possible. Therefore, we use cross-correlattoreée the watermark
signals[n] and BS outpuy[n] as a measure to determine the BS parameters, which is defined a

follows,

o slnlyln +m]

\/ZNm12 \/Zle 2[n + m]

wherem > 0 is the time lagJE(-) denotes the average over the noises, realized via averagéng

: (6.9)

multiple experiments. The BS introduces system lag. Theesy$ag of the BS, denoted is them

that results in the maximum cross-correlation, which is

¢ = argmax C,. (6.10)
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We attempt to find théa, b, At) to maximizeC., which is

(a, b, At)opt = arg (ﬁfigt) C. = arg (ﬁfii(t) max Chm. (6.11)

It is noteworthy that in this BS design, watermark inforroatis required. However, our ex-
perimental results, which will be shown later, illustratat the BS design using cross-correlation
measure depends on the amplitude of the watermark only,diuha specific sequence of the wa-
termark. Thus, for blind watermark extraction, one can fistin the BS parameters off-line via
a known training watermark, whose amplitude is the sameeaegtimation of the watermark to be

extracted, then use this BS parameter values in the watkewaaction.

6.4.2 Observations on the Connection between Cross-Coretlon and (a, b, At)

The task in (6.11) in general is difficult because of the caxplature of the BS. We cannot have
analytical solution of (6.11). Exhaustive search is a radtomethod for the optimization, but it has
high computational complexity. It is also impractical fdindl watermark extraction. We propose
an empirical method in designing the BS parameters baseldeoaliservations on the relationship
between the cross-correlation and BS parameters, whiciiaae below.

We first conduct experiments on known PAM signals with WGN an@modal Gaussian mix-
ture (GM) noise whose pdf is shown in (3.38). In the simulatithe signal is a 20 bit random
binary PAM with A = 0.1. Every bit in the PAM signal is interpolated 50 times to geattera se-
quences[n] with length of 1000 samples|n] is embedded in (a) WGN samples, and (b) GM noise
(e, B,0) = (0.9,5,1)) samples, to generate the input to the BS. Cross-correlé&icalculated
from 1000 simulations using (6.9) and (6.10), which is shawirig. 6.12 (a) for WGN and (b)

for GM noise. We try on numerous fixed values(af At) and calculate the cross-correlationbas
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Fig. 6.12. Cross-correlation versbigind numerous fixeth, At) for WGN and GM noise.
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changes. The optimalthat maximizes the cross-correlation with respect to éacht) value can
be found. We observe that for both cases, regardless @fith®t) values used in the experiments,
the same (or very close) maximum cross-correlation is nbthi The optimab values for different
(a, At)’s are nevertheless different.

Based on the above observation, we propose a simplified @atiion of the BS parameters
by reducing the 3-dimensional optimization to a 1-dimenal®mptimization. First, we fix, e.g.,
a = 1. Second, we determine a suitalle mainly in consideration of the stability of the BS. For the
pre-determineda, At), we can conduct a 1-dimensional optimization to find &teat maximizes
the cross-correlation. This can be done by exhaustive Isedrignited simulation results shown
in Fig. 6.12 indicate that this reduction in optimizatiommginsion induces little cross-correlation
degradation. We only need to tune one parameter (TOP) inntkthod, thus it is called TOP

method.

6.4.3 Observations on the Connection between Cross-Coretlon and Wa-

termark Signal and Noise

Even though we can use 1-dimensional optimization to deterthe BS parameter, the computa-
tional complexity can still be too high in watermark extiantbecause exhaustive search is needed
for every extraction task. Also, to calculate the crosg-aation, watermark signal must be known,
which makes it impossible for blind watermark extractiore @Wbtain another important observation
that the BS parameters are only sensitive to the signal &ndplid and noise variance?, but not
sensitive to other parameters, such as the signal sequeddbkeapdf form of the noise if the noise
pdf is symmetric and unimodal with heavy tails.

To see this, in Fig. 6.13, we show the cross-correlationugetse BS parametérfor several
PAM signals with different amplitudes and several noiseth @ifferent variances. Simulation set-
ting is the same as previous example, whose results are shdvig. 6.12. In (a), the PAM signal
#1is[11-111-1-1111-111-11-1-1111]amd= 0.1. We choose 4 noises: Gaussian,
GM, Laplacian, and uniform noises witif = 1. The pdf of GM is defined in (3.38) withh = 0.9
andg = 5. GM, Laplacian, and uniform noises are unimodal and synimweith heavy pdf tails.

In (b), the PAM signal#2is[1-111111-11-11-1-1-1-111-11-1]again with=0.1. The
same set of noises are used. Comparing (a) with (b), acgptalicross-correlation measure, we can
observe that the optimal BS paramétés not sensitive to the PAM signal sequence.

Since the optimal BS parameters are not sensitive to the Fghaksequence, the only pa-
rameter related to PAM signal is the amplitude We illustrate the cross-correlation for randomly
generated PAM signal witll = 0.4 in Fig. 6.13 (c). Compared (c) with (a) and (b), the influence
of A to the BS parametércan be observed.

For the noise, from (a), (b), and (c), we can observe that fitenal BS parameteb is not
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Fig. 6.13. Cross-correlation versbior different PAM signals with different amplitudes andfdient noises with different
variances.

sensitive to the noise pdfs if they are unimodal and symmetith heavy tails and have the same
variance, because for GM, Laplacian, and uniform noisesselariances are the same, the optimal
b are the same. Compared with the optirh&br PAM signal in Gaussian noise, the optinbaior
GM, Laplacian, and uniform noises is larger. That is expegbecause GM, Laplacian, and uniform
noises have heavy pdf tails and need strong “limiter”, whschulfilled by increasing value. The
optimal BS parametdris sensitive to the noise varianeé. We demonstrate the influence®ft to

the cross-correlation in (d), where a randomly generated Bignal with A = 0.1 is used, and for
the noisesg? = 16. The optimab is changed by comparing (d) with (a) and (b).

This observation, the optimal BS parameters are not seasitithe watermark sequence (PAM
signal) and the pdf form of the noise, but to the amplitudehefPAM signal and the noise variance
only, provides an easy way to determine the BS parametefineff\We can generate a random PAM
signal embedded in any noise whose pdf is unimodal, symepeamd has heavy tails, and apply this
to the BS to find the optimal BS parameters. Combining withTt@& technique in Sec. 6.4.2, for

a fixed(a, At) set, we can construct a look-up table containing the optpasameteb in term of

96



A (amplitude of watermark) ane? (power of the noise). In this thesis, we use the GM noise with
a = 0.9 andg = 5 in the simulation to generate the look-up table.
Next we will show how to use the look-up table to construct dapgive BD and use it in

watermark extraction.

6.4.4 Adaptive BS

Based on the previous observations and designs, insteasingf ane set ofa, b, At) for all seg-
ments of a watermarked image, various watermarked imagesin@ages under different attacks
[39], [40], we propose a BD whose BS parameters are adatidéferent segments or different
watermarked images.

The proposed watermark extraction algorithm is similaihtat shown in Fig. 6.1 (b), except the
BS module. The BS module in Fig. 6.1 (b) is changed to an agapt and its schematic is shown
in Fig. 6.14. There are 4 sub-modules in the adaptive BS de3igese sub-modules are explained

below.

X, [n]

Data
segmentation

Xl yin]

BS —

X (a,b,At)s

(A[m],6%[m))
Parameter Choose the
estimation optimal BS
parameter

Fig. 6.14. Schematic of adaptive bistable system.

1. Data segmentatiorX,, [n] is partitioned intal/ segments, denoted &3'[i], m € [1, M],i €
[1,S]. X™'[i] = X,[(m — 1)S + 4] contains the samples that thé" bit of the watermark is

embedded in.

2. Parameter estimation of the meafmn| and variancé?2[m]. We use the maximum likelihood
estimation (MLE) of the embedded watermark amplitulend the noise varianag? in the

m*" segment, which are shown as follows.

(6.12)
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SRS (Xm - gzxm) . (613)

3. Choose the optimal BS parameter: We choose an appropfiata the look-up table accord-

ing to the estimated/i, 52). Note thatz andAt are previously fixed.

4. BS: The watermark bearing sequence is processed by thétBSwe chosen parameters. The
outputy[n] is generated, which is used to extract watermark informaaiccording to (6.1)
and (6.2).

The proposed BD has a BS whose parameters are adaptive yosegenentX " [i]. For every
segments, théd[m], 52[m]) are estimated and the suitable parameters are chosen fedoottup
table. For systems with stringent processing limitatiod dalay tolerance, for simplicity, we can
only estimate oneA, &2) for one image (not for every segment) and use only one BS peearset

for the whole image. The MLE of thed, o2) of one image is shown below:

==
M=

A= Alm], (6.14)
m=1
1 M
~2 ~2
=7 > 6% [m], (6.15)

3
I

whereA[m] andé?[m)] are the estimated watermark amplitude and variance ofiffiesegment as
shown in (6.12) and (6.13).

We name BS-I for the BD that chooses one set of BS parametérdmnone image (using
(6.14) and (6.15)). We name BS-II for the BD that chooses @&BS parameters for every seg-
ment. Compared to existing BD designs in [38]—-[42], our secbehooses BS parameters adaptively
based on théfl, 52) estimated from different images or different segments &fiomage. The per-
formance is expected to be better than the BD with fixed patensieln addition, the design of the

BS parameters is very fast and practical.

6.5 Experimental Results

In this section, experimental results are given to illustrilne BERs when extracting watermark
from the watermarked images attacked by JPEG compressibiGanssian noise. The images,
Lena, Peppers, Goldhill, and Baboon are chosen as the hagesnwhich are shown in Fig. 6.15.
We embed watermark “W” shown in Fig. 6.2 (a) into host imaggshe embedding algorithm
presented in Sec. 6.2 with = 3, U; = 9, Uy = 44, M = 256, S = 500. We present the
performance results from the WGN-based ML detector (abated as ML detector below), Wu's
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method [40], Sun’s method [38], BS-I detector, and BS-lledttr. Wu's method [40] and Sun'’s
method [38] used different and fixed BS parameters in extnacThe peak SNRs (PSNRs) of the

A it
(c) Goldhill. (d) Baboon.

Fig. 6.15. Hostimages used in watermark experiments.

watermarked images are all 41.07 dB. PSNR is defined as

2
PSNR= 101og;, (%)

Here, Max is the maximum possible pixel value of the original image.aNlthe pixels are repre-

sented using 8 bits per sample, Mag 255. MSE is the mean square error between the pixels of
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the original imagd and the pixels of watermarked imadei.e.,

1

1 A=
MSE = Z

m=0

N-1
> (I(m,n) = J(m,n))*,
n=0

whereM, N are the numbers of pixels in every column and row, respdgti@mparing the orig-
inal Lena image in Fig. 6.15 (a) and the watermarked Lena @mnad-ig. 6.2 (b), we can hardly
distinguish any difference between them. That means thaanéave satisfactory transparency of
the watermark for the watermark embedding with PSNR of 41B.7

First, we show the extraction performance for the waterea@iknages attacked by JPEG com-
pression. The BERSs for the 4 images and means are shown ir6Takvith respect to the five
techniques and the compression qualities from 80 to 30. HfesBare all 0 when the compression
qualities are 100 and 90 for all five techniques. Note thdtéf¢dompression quality is 100, no com-
pression attack is applied to the watermarked image. ThesBERold font are the minimum values
for a specific case. The parameters used in Wu's methothabeAt) = (4000,3 x 10'%,1079).
The parameters used in Sun’s method(até, At) = (500,3 x 10*°, 10~°). For BS-I, the parame-
ters used arét = 0.01, a = 1, andb = [40, 40, 45, 45, 50, 60] for Lena image corresponding to the
six compression qualities,= [30, 30, 40, 40, 30, 45] for Peppers imagé,= [15, 15, 15,15, 30, 30]
for Goldhill image, and = [3, 3, 3, 3, 3, 3] for Baboon image. For BS-II, differemtis chosen for
every segment with fixecht = 0.01 anda = 1. From Tab. 6.1, it is observed that the performance
of WGN-based ML detector is always better than Wu’'s methath'sSmethod can provide a better
performance than the ML detector. The performance of thpgsed BS-I and BS-Il detectors are
shown in the two right-most columns. It is observed that teggrmance of the proposed BDs are
generally better than the ML detector Wu’'s method, and Seethod. Especially, we can see from
the mean values of BER that BS-I1 is better than other designs

Second, we conduct experiments on the watermarked imageked by Gaussian noise with
variances from 0.01 to 0.03. The parameters used in Wu’'sadethd in Sun’s method are identical
to the parameters used previously. For BS-I, the paramesad areAt = 0.01, a = 1, and
b = [40,20, 15,10, 5] for Lena image corresponding to the five variances of theteddWGN,
b = [40,40, 20,15, 10] for Peppers imagég); = [40, 40,15, 10, 10] for Goldhill image, andh =
[20, 15, 10, 5, 5] for Baboon image. For BS-Il, differeritis chosen for every segment with fixed
At = 0.01 anda = 1. The results are shown in Tab. 6.2. The WGN-based ML detéetobetter
performance than other designs. We can see from the meagsval BER, the proposed BDs are
better than Wu’s method and Sun’s method, and closely rédecBER of the ML detector.

We show that the BD has an improved performance comparecetdlth detector when the
watermarked images are attacked by JPEG compression. ldowhe BD cannot have a better

performance than the ML detector when the image is attacke@dussian noise. This can be
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TABLE 6.1

BERS (IN %) OF THE EXTRACTED WATERMARK FOR THE FOUR WATERMARKED IMAGES ATACKED BY JPEG
COMPRESSION WITH DIFFERENT QUALITIES

Image  Quality Methods
ML method Wu’'s method Sun’s method BS-I BS-II
80 0 0.39 0 0 0
70 0 0.43 0 0 0
Lena 60 1.56 9.38 1.56 1.95 1.95
50 6.25 14.45 6.64 6.25 6.64
40 10.55 18.75 9.77 9.77 8.98
30 16.8 26.56 14.45 16.41 16.41
80 0 1.56 0 0 0
70 2.73 4.69 1.56 1.56 1.17
Peppers 60 7.03 10.16 2.34 1.56 1.95
50 12.5 18.36 8.98 9.38 8.98
40 18.75 25.39 16.41 16.41 15.23
30 30.86 35.55 25 24.61 25
80 0 0.39 0 0.39 0.39
70 0.39 1.56 0 0 0
Goldhill 60 1.17 3.52 0.78 0.78 0.78
50 1.95 5.47 1.95 2.34 1.95
40 7.42 7.42 4.69 4.69 4.69
30 13.67 14.06 10.16 10.55 9.77
80 1.17 1.56 1.17 1.17 0.78
70 1.95 1.95 1.56 1.95 1.56
Baboon 60 2.73 3.52 2.73 3.13 2.73
50 4.3 6.25 4.3 3.91 3.91
40 5.86 7.81 5.47 5.08 5.08
30 10.94 11.33 11.72 10.16 9.77
80 0.29 0.98 0.29 0.39 0.29
70 1.27 2.16 0.78 0.88 0.69
Mean 60 3.12 6.65 1.85 1.86 1.85
50 6.25 11.13 5.47 5.47  5.37
40 10.65 14.84 9.09 8.99 8.5
30 18.07 21.88 15.33 15.43 15.24

seen from the mean values of BER. The reasons are depictetiaxsst If the noise is WGN, the

WGN-based ML detector is the optimal detector. When the griaggompressed by JPEG, many

coefficients are converted to O that leads to the loss of theas(watermark) as well as the noise.
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TABLE 6.2
BERSs (IN %) OF THE EXTRACTED WATERMARK FOR THE FOUR WATERMARKED IMAGES ATACKED BY GAUSSIAN
NOISE WITH DIFFERENT VARIANCES

Image  Variance Methods
ML method Wu’s method Sun’s method BS-I BS-II
0.01 0.39 0.39 0.39 0.39 0.39
Lena 0.015 2.73 2.73 3.52 2.73 3.13
0.02 4.69 5.47 3.91 3.52 3.52
0.025 3.91 3.13 3.13 2.34 2.73
0.03 8.2 8.59 7.42 7.81 7.81
0.01 0.78 1.95 1.17 1.17 1.56
Peppers 0.015 2.34 3.91 2.34 2.34 3.13
0.02 3.91 7.03 5.08 4.3 5.08
0.025 8.2 8.2 6.25 7.42 7.03
0.03 7.81 9.77 8.59 8.98 9.38
0.01 1.56 1.56 1.56 1.56 1.56
Goldhil  9-015 2.34 3.52 2.34 2.34 2.73
0.02 4.69 4.3 5.47 5.47 5.47
0.025 5.47 5.47 7.81 6.64 6.64
0.03 8.59 11.33 9.77 10.55 10.94
0.01 3.52 3.52 3.52 3.52 3.91
Baboon ©0-015 5.08 6.25 6.64 6.25 6.25
0.02 5.86 7.03 7.42 7.03 6.64
0.025 5.86 7.42 6.25 5.86 7.03
0.03 10.55 10.94 9.77 10.55 10.94
0.01 1.56 1.86 1.66 1.66 1.86
Mean 0.015 3.12 4.35 3.71 3.66 3.81
0.02 4.79 5.96 5.47 5.07 5.18
0.025 5.86 6.06 5.86 5.52 5.86
0.03 8.79 10.16 8.89 9.47 9.77

The coefficients in each segment is not WGN but with heavg,taihich is shown in Fig. 6.5. The

WGN-based ML detector is not optimal detector, and the BDvigies an improved performance
due to the clipping feature of BS. When adding Gaussian rioidee watermarked image, the noise
is dominated by the added Gaussian. Hence, the noise pdise th Gaussian (see Fig. 6.6). In
this case, the WGN-based ML detector tends to be the optistactbr. The BD cannot have an

improved performance. However, the BD has comparable pagoce to the ML detector.
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6.6 Conclusions

The motivation for the research in this chapter is to find génand practical method to determine
the BS parameters when itis used in a BD in watermark extnactVe first proposed to use the cross
correlation of the watermark signal and the BS output as &s&gth measure. We then observed that
the same maximum cross-correlation can be obtained by oigthe besb for different(a, At)’s.
Hence, the optimization of the BS parameters can be reducatthe 3-dimensional optimization
of (a,b, At) to the 1-dimensional optimization éfwhile fixing a« and At. We also observed that
the optimalb depends only on the signal amplitude and the noise varidiierce, a look-up table
of the optimalb in term of the signal amplitude and noise variance can bergétvia off-line
simulations. Using this look-up table, we proposed a BD glgsivhose BS parameter values are
adaptive to the various watermarked images or even theussiegments in one watermarked image.
It showed that the proposed BD performs better than the W@$eth ML detector and the BD with a
fixed BS when the watermarked images are attacked by JPEGressign. When adding Gaussian
noise, the proposed BD has BERSs close to the ones of using kéictde. Note that in this scenario

ML detector is optimal .

103



Chapter 7

Conclusions and Future Work

7.1 Conclusions

For signal detection in non-Gaussian noise, the challeagee mainly from the cost/complexity
consideration and the robustness in the ever-changingoemaent. In this thesis, we aim at de-
signing simple and robust detectors that still enjoy a dete@erformance comparable to LRT or
GLRT. For this purpose, two techniques: (1) TD or BD desigd &) noise-enhanced effect, are
investigated.

In Chap. 3, we considered the optimal TD design for detectitkgpown DC signal in known
non-Gaussian noise. Under NP criterion, we showed thatétection probability monotonically
increases with an alternative indicator. Based on this nmocte tractable indicator, we derived the
optimal designs when using simple binary TS and compositarkiTS. Experimental results show
the validation of the optimal TS design. The performancehefgiroposed TDs were shown to be
superior to the MF for non-Gaussian noise with heavy pd$taihd can perform very close to the
LO detector with a much simpler implementation.

In Chap. 4, we proposed a low-complexity TD to detect any kmdeterministic signal embed-
ded in independent unknown non-Gaussian noise. The ojitynodlthe two parts of the proposed
detector, the binary TS array and the correlator, was provied detection probability and the ROC
of the proposed TD were investigated both analytically amaherically. For noises with heavy pdf
tails, simulation showed that the performance of the pregd@® approaches that of the LO detector
and Saha’s detector in [6], in which the two designs needtex@ise pdf information, and is much
better than that of the MF. Through a robustness measurdjoveesl that the proposed TD is highly
robust to the noise pdf. On the other hand, its robustnesseteignal is inferior but comparable to
the LO detector and Saha’s detector. The implementatiorptxity of the proposed detector was

discussed and compared with other detecter designs. Thityakgion of the proposed detector
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was defined and analyzed using the MF as the benchmark.

In Chap. 5, we investigated the noise-enhanced effect éogémeral BHTP using a binary TD.
We adopted the AUC as the performance measure for its siitypdind robustness potential. First
the optimal TS that maximizes the AUC was derived. Then thevagh noise pdf that maximizes
the AUC was shown to be a delta function, indicating that {htneal noise is deterministic. Experi-
ments showed that the noise-enhanced effect can be emgtmysame fixed non-optimal detectors.

In Chap. 6, we considered the use of BD in watermark extractiée first proposed to maximize
the cross-correlation of the watermark signal and the BSudum the BS design for the BD. We ob-
served that the same maximum cross-correlation can benebitaihen we reduce the 3-dimensional
optimization of the BS parameters to a 1-dimensional ogitidn. We also observed that the opti-
mal BS parameter values depend only on the watermark ameldnd the noise variance, but not
on other parameters. These motivated the use of a look-lgdabptimal BS parameters in term of
the watermark amplitude and noise variance. Based on thisup table, we proposed a BS design
that is adaptive to various watermarked images or evenwgigegments in one watermarked image.
Experiments showed that the adaptive BD can achieve a lpetttarmance than WGN-based ML

detector and existing BDs in DCT domain watermark extractio

7.2 Future Work

We have proposed several possible robust detectors withlesimplementation, including TD, BD,
and noise-enhanced TD. One future work is how to further aw@the proposed detectors and their
practical use in real applications.

The proposed robust TD for known signal in unknown noise imjCht provides potentials in
real applications, such as communication and image priovggsshere the signal information is
more reliable than the noise information. However, the qgrenfince of the proposed TD depends
on the noise pdf even the design does not. In some applisattbe noise pdf or its form can
be obtained from estimation. Thus, GLRT can have very gootbpaance. For some noise pdf
with certain parameters, the proposed TD can have worserpaahce than the MF, as shown in
Sec. 4.4.3. This leads to the following detection desigmyhiich GLRT, proposed TD, and MF are
used alternatively for different situations, i.e., a hgbstrategy to choose among MF, GLRT, and
proposed TD, based on the accuracy level of the pdf estimaBbRT has ideal performance if the
noise pdf information is accurate. But with imperfect ngist information, GLRT detector does
not work well. For this case, we resort to a more robust deteptoposed TD or MF, whichever
results in better performance.

For a specific application, we may have a certain pdf form tdehthe noise. For example, the

GM can be used to model the ocean acoustic noise [7], [8]. W&tknown noise pdf form, we can
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estimate the parameters of the noise pdf based on obserwatiée then evaluate the quality of the
estimation by comparing the observations with the estichptd. If the quality level is larger than a
threshold, the pdf is considered as well fitted and GLRT wélidnosen [1], [2]. If the quality level
is smaller than the threshold, we consider the noise pdfimidion to be inaccurate and resort to
proposed TD or MF. To choose between proposed TD and MF, gstimated noise pdf parameters
are within the validity region of proposed TD, proposed Tsed; otherwise, MF is used.

Using this hybrid strategy, we can take advantage of theetetectors: GLRT, proposed TD,
and MF. We expect an improved overall performance from theidystrategy compared with using
any one detector only. The practical implementation of therid strategy, for example, how to
evaluate the accuracy level of the estimated pdf, simple twaghoose between proposed TD and
MF without knowing exact pdf, need to be studied further.

Another future work is to design a simple, robust detectottfe BHTP IV presented in Sec. 1.3.
BHTP IV is a more realistic model for radar and sonar applicest We are seeking and designing
suitable simple systems that lead to robust detector, wtachalso have comparable performance

to the optimal detector.
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