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" which have neither initisl conditions nor synchronous

mu stﬁdy prenents a- thoorotica; lnvutiqation of
tbo um-dnpondont. oouplod oonduqdon-couvoction heat .
transtor problom of ‘ heated radial rxn rotating simulv;,
taneously wit.h its surrounding. at a oonltant anqultr -

velocxty about a Horizontal axis. Mathematical formulation

reveals that this is a periodic problem’ governed by a set

of nnsteady—state, nonlinear,. partial differential egquations
- . N :
)

‘ . , v

solutione.

Through an order¥o§-magnitude annlysis, six para-
neters’ appear in the dimensionless governlng equatxons and

boundary conditions. The Prandtr number: Pr. is an 1nd1catxon

of the relative lmportance of viscous d1551pat1on and heat °
conductlon in the fluid flow: the Froude number Fr is the e
ratio of the centrlfu al acceleratxon to the grav1tat10nal
acceleratlon,,the geoil

tric parameter is the ratio of the
fin length to -the dlst ante between the(fdn tip and the center

of rotation;\ the response parameters Kl and K2 are the

Measures of tpe transient responses in the fluid and solid,

~respect1Ve1y, the sixth parameter C is an zndlcatlon of the

L3t

degree of coup11ng between the conductlon and free convectlon

'heat‘transfer problems. o . A.'

v C e Av . . : -



. "') chovro-tyge ttansfo:mation°is.utili:odito,alle-f

| _viate the cftoct ot Prmdtl mmbor on the -oluttona. The

“prandtl number of air. 1... Pr=0.72, s thon upod thropgh-

out- ﬂu ana.}yai;. o : . .
‘ ‘rhc flqptuatinq anplitudo of tho perIodic noiutions
decreases ‘inversely with the Froude’ numbar. @ In the limitinq

case of very large Froude number, the quasi-s!eady-atate .

A}

solutions, which are xndependent of the parameters K; and 2\

_are obtained

These quasl steady-state solutxons are presented over
the range ot 0. leSO 5 and 0. 01$C$lo The results are dn
6od agreement wlth thdse of prevxous work.
S ?erturbatlon solutxons are used to s tudy the periodic
heat transfer phenomena of small fluctuatxons. The 1nvesti—
gation 1s conducted over the range of 10<Fr<l00, O. 01<C<10,
0. l<y<0 5. 0 1<Kl<100, and 0. 1<K2<1000. In general perlodlc
fluctuatlon in the velocity sQlutions 1s apprec1able when
Fr=10, but‘negllglble when Fr=x00. On the other hand, no
signlflcant ﬁantuatlon is present-in the temperature solu-
tions. . ' .

The oeriodic solutions under small and modepate fluc-

tuations are obtained by directly integrating the unsteady-

., state Qoz&rnlng equations for this heat transfer problem.

Because of the expensive.nu@erlcal work reguired in the

|

|
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eppr ¢h of direct 1ntegrd.£on, solutions are' only presented

2-100. Tha tluctuating ’ ‘_i'F "_e solutions decreases

_ inv.r-ely with the ‘Proud A ‘,_ ever, the tptel

heat transfer rate inoreases with -'e'latter. .

Analysxs alpo shows th:t the coolxng effect of - a

[ 4

fbtating fin is_approximately Frl/‘ tlmes that of a conven-

tzonel stat1onary fin. .In other words, one can double the‘
N\ .
efficiency of a stationary cooling fin if it is technlcally'

and economicelly perqissible to rotate the system_to l6g
(i.e. Fr=16). S |

Study of the solutxon applicability reveals that xf
.
~ the critical Raylé;gh number for a stable langinar free con-’

vection "flow is 108 the'eolutions presenged in this work

2 "

are applicable to a rotatlng system w1th the centrlfugal
facceleration nbt greater than SOg. Should the actural
crltxcaL Raylelgh,humber obtained freonm the stablllty study
of this perlodlc heat transfer~9rob1em be greater than 10
the presented solutlons may haVe some "application to the

Ihlgh speed turblnes.,. j

A ratlonal approach ‘has been developed to solve thls
periodic heat transfer problem governed by the diffusion-
type, nonlinear partial differential equations, of whigh

v . . %

the initial SOnditionssare missing and the synchronous

.“
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solutions under the finite-amplitude fluctuations are not

?btainﬁble. This approach can be used as a guideline to

solve otgher periodic prdblems, which occu; in ;he physical
worid but re aﬂ§~untouched because of the.la€§e'fluétuationi '
in the non:i ncﬁ&onqug salutio;s‘or because of the misgiﬁg“:
initial condgégons.
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pressure
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: . s
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t time . | T

T temperature ' '

u,l - radial velocity
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W ,A root half-width \
X, X rag;al displacement from fin tip .
Y.Y 1;3@;&1 displacement from fin surface
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3,% - odd and eVen perturbatiqn solutions for temperature
€ fin effectiveness -

A sign variable "

n i similarity variable
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'CHAPTER T .

« o INTRODUCTION

R L ]
Free convection phenomena occur in a non;iaothcrmgl

<

fluid undqr the influence ofabbafvforce., For cxgmplé when
a’Gerticgl n‘tal fin is’ hoctod in an, brxginally qurelcent

fluid, heat is conducted into{}he surtoun¢1ng fluid to
“
cause tenperature dlffefghce, which in turn gen::?tes the

- density variations in the fluid; a boundary layer flow

adjacent to the fin is then'formed as a . result of the
densxty variations and the body force ¢iela, ana conse- b

quently more heat is transferred from he fin to the fluid.

. . In practical application, statlonary flns have been

w

frequenrly.employed to increase e total heat- transfer
rate between a golid body and it$ Surroundlng fluid of
different temperature by increasing the area ofvthe gontact
surface. The free convectlon phenomena. assocxated with
these stationary fins are normally subjectﬂto the unlform
gravitational force field. ‘ '

In thlS thesis, the ‘heat transfer problem of a
heated radial fin rotating simultaneously with ambient air
about a horizontal axis is studied. 'The fin i's located at

a certain distance from the center of rotation soO that the

centrifugal acceleration at the fin root can always be set



greater than the periodically changinq effect‘of,graﬁitg-
tional force by adjusting the rotating speed. | Formulation -
of ' this problem show! that periodic terms cory lated'%o the.'
gravitational acceleration appear in. the derived governing "
‘equations and the'sofgtionl may have £1nite tludtuatin;\
‘amplitnéoa. . ) o )

Durlngfrecent years éonsiderable interest has been
shown in periodlc phenomena associated with fluxd flow and
convebtion‘heat transfer [1-25]*.' In most of these studles,
the periodicity w1th respect to time normally originates'
from a given oscillating boundary condltlon (1- lf': for
example, oscillation of a SOlld wall or 1ts temperature,
fluctuation of the free stream fluxd velocity or temperature.
Very few works [16-25) have dealt thh problems in which the
periodicity appears solely in tﬁg governing equations. In
general, it is very difficult to solve the complete set of
governing equatlons of these periodic pr;blems directly.
Because qf this, seyaral particular techniques have been
developed. |

The method of euccessive approximation consists of
splitting the solutions into two ro more time-dependent :
components, each of which satisfies a different set of equa-
tions sropllfled from the original governiné equations after

‘careﬁgi;.physical reasoning. Usually, these §implified

* Numbers designate references gixen on page 143

~ @ ‘

-~
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oquations'are nuch easleé to solve;' for inséance, they may
consxst of synchronous solutions w\xch can be obtained by
‘means of separation of variables ‘or Laplace transformatlon.
However, this method demands artxslxcally intuitive skill
on separatlng “the equations and their solutzons. Such
technrque becomes‘vety complicated and tedious if higher-
order approximations are requlred to produce mo;e accurate
results.

The best-known method for solving unsteady problems
with small fluctuations ig the per;urbation expansion in
powers of the oscillation amplitude which has first been
normalized «with respect to the. mean amolitude. Tne zeroth-
order equations of the expansion are related to the steady
basic flow while the higher-order perturbation ejuations
are associated with the superimposed fluctuations. The
accuracy of the solutions obtained can easily be,estimatéd,
from the order of perturbation been used. 1In other words,
this method is powerful only when the oscillation amplitude
is small; otherwise work~may increase considerably in order
to include higher-order perturbations for more accurate
solutions. It is also very likely that the method will fail
completely if the normalized oscillation amplrtude is not
muc% less than unity.

A powerful techrique to handle problems with finite

anplitude oscillations has been introduced by C.C. Lin [26)

L 4 N -



.who divides the governing equations, as w?ll.as their solu-
tions, ;nto time-average and'time—dependent parts. The
complete set of time—average,eﬂuations déscribing the mé@n
flow is retain?d; theqtime-ddﬁendent equations, usually
linear and uncoupled from each other, are simplified to
such convenient forms that their solhtions can be.optainéd
analytically. These approximate, time-dependent results
are then substituted into time-aver;ge eguations to gét
mean-flow solutions. Hence, the accuracy of the overall
solutiohs depends stroné&y upon tﬁe prbpér simplification
of the time-dependent equations. This simplification
generally reguires a coRdition of very high osciilatingi
fregqlency if the oscillating amplitudé i; relatively large
in comparison with the mean value. This requiréhent becomes
a sevéfe limitation on Lin's method. It appears that no
formulation using Lin's methodvcan be successfully applied
to periodic problems under low-freguency, finite-amplitude
oscillations (11, 12, 15J]. .

In this study, the perLédic heat transfer problem
are governed by a get qf tihe—dependent, nonlinear partial
_‘differénpial equaﬁions, and none of the three methods above
is considered to be proper for seeking the solutions under

N

low fregquency, moderate-amplitude fluctuations. .
y)

. : (
Benefiting from the availability of high-speed elec-

tronic computers numerical methods provide a good possibility



for solving such 2 perxodxc problem. A’consequent challenge
-ls the numerxcal 1ns|.b111ty of the governing equations
heightened by the need far unknown initial solutlons at an
undetermined time Qf the period; a poorly chosen *pitxal
time level, or an 1naccurate1y guessed initial result can
easxly lead to solution dzvergence or numerical overflow.

A proper. approach is developed in this study to alleviate
such difficulties in starting the numerical integration.

At each time level, the governing equations express

a distinct, coupled conduction—convection heat transfer
preblem, and solution matching at the solid—fluid inte;face
is necessary. The transformation developed in a similar
work [55] is applied so that the coupled governing equations
can be solved numerically with a "local simiiarity"\ﬁechnique
fij—BO]: As a result, not only the matching problem of
interfacial temperature and heat flux at each time level ie
resolved spatially in a few iterative loops, but also the
perlodlc conditions of'temperature, velocity, and their
derivatlves with respect to either time or any base vector -

are successfully satisfied at every time step through a

couple of timewise iteratiqns.

/
/
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CHAPTER Il

J
THEORETICAL FORMULATION

The system under consideration.is illustrated
Schematicjhly in Figure 2.1 which indicates a triangular
‘fin in a surtounding :1uid fotatinq at cdnstaht speed about '
‘a horizental axis. Heat is supéii;d at the root of the fih
and conducééd into the fluid from the tiﬁ surface. As a.
result, a free»conyec;ioh'problem indgéed b& a.periodic
gravitational force and a spatially'varying centrifugal
force takes place. . . i

2.1 BOUNDARY LAYER PROBLEM

It is assumed that:

(1) TheAfluid is Newtonian;

(2) The flow is laminar.

(3) The flow is two dimensional in space.

(4) Fluid properties are constant, with the -
exception of fluid density to»which the
Oberback-Boussinesqg Approximation can be

. applied. .

(5) There is nB’heat generation in the fluid.
(6) Wall effect and the trailing-edge effect
| are insignificant. . -

(7) Radiation is insignificant.
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(8) The mechanical work against the body. force field

* is iﬁ‘piqni ficant. “
(9) The £in slenderness is large and the effect of
inclination and curvature become negligible (44)
i (10) The rotation of the system is 80 fast that the

centrifugal accol‘raiion is al*ly¢ greater ;han
the gravitational acceleration. .

The governing equations of this periodic free-
convection problem have been- derived in Appendix A. Referring \
to equaﬁions (A.lA)-(A.l?) in Appendi; A, one can easily
obtain th; following unsteady boundary layer equations (see
also Agpendii'n):

S Ux + vY = 0’ (201)

1
Ut + UUX'+ VUY - -~ 5 ZX + vUYY - 22wV

\ (2.2)
+ Bl(R-X)w + g cos (wt) ] (T-T,),

v 4+ UV, + VWV, = - % P, + VW + 220U
[ -]

t X Y -Y YY
. (2.3)
. - B[Yw - Ag sin(wt)](T-T,),
and . ”\ww/}
* ) /

T; + UT, + VTy = xeTyy (2.4)
where A=l or -1 for the leading and trailing faces,
respectively. The imposed boundary conditions are:

X =20 : U =20 T=T, |

Y = 0(I>X>0): U=V =0 T=T X* (2.5)

'
o
"

. o]
® : v=0 T=T, B=0
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, .where T (X,t) is the interfacial temperature ‘*u:(buuou 6
of tho solid £in and the adjacent fluid. ' '
2.2 CONDUCTION PROBLEN * | | /"

The basic notation and the eoordinuu of the
condéction heat transtex prehblem ia ” 2in are ulutnm
in figure (2.2). It has been shown in p:oviom work [27)
that if the Biot number (Bi) is much 18ss thién order one,
Yhis conduction problem becomes apatially.quali-onoédin.nlional,
i.e. tho.latcral temperature gradient across the £in is
comparatively small. A tacit implication of this small,
lateral temperature variation is that the thermal boundary -
layers on both sides of the fin are symmetric about the
'x-axis. It is known that this symmetry holds when the
whole system is spinning at very high.angular velocity
[27 28], and the, convective heat transfer ocefficients hy (X,t)
and h, (X,t), shown in figure (2.2), are .identical and equal to

P -K!T (X,0,t)
hy (X,t) = h2(X,t) = T——-(——-,——To X, €) - T. (2.6)
Moreover, if there is no heat generation within th? fin and
the properties of the fin are constant, the temperature

T, (X,t) of this high- speed rotating fin satisfies the

following unsteady, quasx—one-dimensxonal conduction eguation:

.
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.
In this study, the rotation speed of the system

is not very high and h;(X,t) may not equal h,(X,t) unless
thermal boundary-layer on both sides of the fin are
symmetric. Further study of the boundary layer equations
(2.1)-(2.4) is required before the validity of the guasi-
one-dimensional equation (2.7) can be confirmed.

2.3 SEPARATION OF EQUATIONS

A lack of initial conditions is a unique challenge
in the present problem. The governing equations (é.l)-(2.4)
are a set of strongly -coupled, nonlinear partial differential
equations with periodic coefficients. The physical conditions
imposed on the solutions indicate that this is a two dimen-
sional, boundary value problem varying periodically with
time. In principle, a periodic problem like this does
not necessitate any initial conditions; this substantial
difference from the ordinary transient-type unsteady problem
can lead to great difficulty in obtaining a solution.

Only in some special cases when the periodic solutions

are synchronous, i.e. in the product forms of a'time—
dependent and a time-independent functions, does such an
absence of initial conditions not cause any technical
problem. Unfortunately, synchronous solutions are not
obtainable in the present problem, and the powerful method

of similarity transformations can neither remove the time



dependency/from the governing equatiqns as ‘well as their
boundar§ conditions, nor simplify the problem by mapping
_if onto a two-dimensional domain. It is thus imperative
to overcome the difficulty in obtaining proper initial

conditions so that a successful method ensﬁring accur ate

solutions can be applied.

A perturbation method can provide the first dégree'

approximation to.the solutions. When the cgntrifugal
acceleration is very large [27, 28], the problem reaches
guasi-steady state and does not need any initial.condition,
it is logical to start with problems under the influence

of relatively large cent;ifugal force field. The solutions
are first expanded into a series of linearly independent,
synchronous functions. Second, the guasi-steady-state
solutions can be used as the first terms of these series
expansions. Although in principle, £he‘accuracy of each
approximate solution can be improved by including more
synchronous terms in the series, this method is regarded

as neither reliable nor economical if the rotating speed

is reduced considerably. Direct integration of the
governing equations (2.1)-(2.4) by means of a numerical
technique is certainly a rational alternative for handling

such moderate rotating-speed problem. In order to directly

12
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\

integrate equations (2.1)-(2.4), all the missing initial

conditions have to be guessed at every point on the X-Y

plane. These guessed values should be accurate enough

so that after reasonable timewise iterations, not only

all the depéndent variables but also their derivatives

have to be matched at each point throughout the two

dimensional domain. Otherwise, all the effort may only

lead to long computation, solution oscillation and,

very possibly, numerical overflow. Apparently, the high

rotating speed sol;tions, if available, may be'a

suitable approximation to these guessed initial cohditions.
Although product-form solutions are not obtainable

in this problem, one can easily split the solutions into

steady and periodic parts denoted respectively by super-

scripts s and p. If 0=T-T_, substitutions of

.
¥

0(x,Y,t) = 0°(x,¥) + oP(x,Y,t)
UX,Y,t) = US(X,¥Y) + UP(X,Y,t)
' s b (2.8)
VX,Y,t) = vHX,¥) + VP (X,Y,t)
and P(X,Y,t) = PS(X,¥) + PP(X,Y,¢t)

into equations (2.1)-(2.4), and separations of these
equations into time-dependent and time-independent parts

lead to ' v



-
13 ' )
_ . . .
58 4 v® = uP + VP '
Ux + VY Ux + VY ._ . (2.9) ,
S..S s.8 ,'1 _s - ] -] ‘z s
U Ux +V UY + 5 15'x -,vt:Jn + 2AwV- - Bu (R=-X)O

= P 4 uSuP 4+ uPuS 4+ vBUP 4 vPuS + uPyP 4 vPyP 4 1.
{%t'+ Utuy + UFUy + viug + vPug + UPuD + vROP 4 3;25

)

- wub + 2P - [Bgcos(wt)1e® - 8w’ (r-x)OP

’,
- [Bgcos (wt)lel;J (2.10)

uSvs + vSvS + L p5 _ wS - 22wuS 4 Bu?yeS
Y P Y Yy : (2.11)

<
X

= _[uP 4 (1SuP 4uSuP 4+ oPuS 4 wPyS . 1PyP 4 uByP 4 L P
Vt?U‘VX +V vy+U'v +VVY+UVX+VVy + ’me¥

- wP - 2XwuP - [ABgsin(wt)]10% + Bu®yeP _ [xegsincmt>10§]

and
SAS SoS _ oS - _loP SoP SAP PaS - o)
U ex + V GY KfOYY [ét + U X + Vv O¥'+ U Ox + Vv 93
PgP PoP _ Pl -
+ U GX + VvV @Y_ KfOYY] i (2:]:23

The right-hand-sides of these equations are functions

of time and, individually, become zer¢o in the steady case.

In other words, the steady so}utio_ns OS,’ Us,‘ Vs, and PS
satisfy the equations

up + v; =0 (2.13)
vSug + vSu§ = %f PS +WUS, - 2xwvs + swz(R—g)es (2.14)
uSvS + vSvS = 2L pS 4 WS 4+ 2wt - Bw?veS ~‘~(2.15)

»
<
©
<

YY

8
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vied + utcl = koefy |  @ae
“~and the boundary conditions
X‘O, u® =0 =0 - oo
Y=0 x>01: US=viao & =T (2.17)

way

Y=e; UP=a0D . =0 P®=0
This satisfication is always found ‘because of the

the steady solutions are defined. Conse@uentiy,.the

periodjc §art of the boundary layer problem is governéd by
equations .
P P _ ' ;
qx + Vg 0 (2.18)
P -3 o S..p PyS P S PP PP
U£'+ U UX + V_UY + U Ux + Vv UY + U UX + Y UY

< . .

= ?29,‘2% Wy - 23uVF + [Bgcos(wt) 16° + Bu? (R-X)OF

+ [Bgcos (wt)]6P, o N (2.19)

oy .

9

P S.,P S, P PyS" s Py, P P, P
vE 4+ ufvy + viVY + uPvy + vpvy + uPvE + vPvy

R .
=’%i Pg + Vvsy + 2aeUP + [xsgsin(mt)]es - smiyep

+ [xggsin (ot)]16P,. e (2.20)
and |
ei'+ uSel + voeh + uPof + vFey + PP + vPoP = ohy

(2.21)

15



The associated boundary conditions are . -

’

X =0 : uP = o oP = ¢
Y = 0(L>X>0): UP avPap, oPa. oPx,t)  (2.22)

Y=o: UPwo oPag pPag

Soldtions of equatiqps (2.13)-~(2.16) and boundary
conditions (2;17).Péve been studied in previous work [27,28]
where the conduction probleﬁ in the fin is found €p be also
quasi-one-dimensidnal. As mentioned in section 2.2, one
of the necessary cdnditions for a qdasi-one-dimensional
fir equations is the symmetry of the two thermal boundary
layers adjacent to thlS solid fin. 1In the study, there is
a need for further 1nvestlgat10n of the separate boundary
layer equations (2. 13)—(2 L6) and (2.18)-(2.21).

2.4 NORMALIZED EQUATIONS

L]

Upon using the normalized variables [27)]

X = X/L y = ¥ Ral/% L
us = USL/Kf Ra'/? vS = VSL/Kf Ral/* (2.23)
ps = ps/pwxf mRal/~ ¢S = es/or R

it has been shown in Appendix B that for air, the quasi-
steady boundary layer equations (2.13)-(2.16) can be
siﬁplified through the processes of normalization'andy S

ordering. By referring to équations (B.14)-(B.17) in

L]

16
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section B.l, these simplified boundary layer equations in-

the normalized fofm are

+.
.

ul + v; =0, " \ (2.24)
.' ? ,
L (u®ud + Ve = W+ - yx) 6%, ©  (2.25)
: p% = 2au®, CE (2.26)
| y . L
and
ue> * vs¢; = ¢§Y T (2.27)

Equatlon (2.26) indicates that the Coriolis force
merely lnduces the lateral pressure gradient in _this
quasi-steady part of the problem. .Having suppressed the
pressure term from equatlon (2 25), one can f&nd the
pressure distribution p w1thout any dlfflculty once the
solution u® is at hand. Hence eQuatlon {(2.26) can be
ignored in this quasi-steady problem unless one is interested
in the pressure profile. Herelnafter, the steady problem
becomes that of solving the other three partial dlfferentlal

equations with the ass001ated boundary cqnditions:

x =0 : w® =0 6% =0

g =0 (1>x>0): uS = v =0 ¢S =

I
o
ow
L)
x

(2.28)

y = ® ¢ - u- =0 ¢~ =0 ) . ‘

Similarly, the periodic boundary layer equations

(2.18) - (2.21) cap be simplified after the following norm

variables, obtained in section B.2 , have been introducead:



x =X/L  y= YR&‘/“/L T = wt/27
uP = Upor/KfRa’/z vP - vpLFr/Kth‘/‘ ¢P = (0P/0 )Fr
--and O )
. P = PPra'/p g6 gL if sol1],
or |
pP = 2mPPrr/p_k wRa!/* if $>0(1],
where-parameter
S=1__( Y.)I/Z
27 *Prgo

) )
. r

)

is the magnitude ratio of the Coriolis force term, 24UP, to

the buoyance force term, 8g05sin(wt), in equation (2.20).

-

Physically, this parameter S indicates whether the 2,UP

or BgOSSin(mt) term gives rise to the pressure fluctuation
Pp‘of this periodic problqu

with refe;ence to equétions XBTZOb), (B.21b), and
(B.23b) in Appendix B, the simplified-forms of equations

(2.18)-(2.20) are -
\ .

ui + v? 9, ' C(2.29)

l 1,.p s ,P .P,,S s.,P P L, (,P,P p,P
F?{[A]ur +uug 4+ ufug 4y u, +viug + [E) (u us + v uy)}

y
= u§y + ¢5cos (2n1) + (1 - yx)oP = [%;J¢pcos(2nr), (2.30)

18



and

1..p, .S,P s,p PyS Pys . ]

[A]¢T+u¢x+v¢y+u¢x+v¢y

1 1 (uP.P 4 PPy o P 5 4
+ [is?] (u ¢ TV ¢Y) ¢YY: ‘(2...'31)_ ‘ .

subject to the associated boundary conditions: , v -

X =0 : uP = 0 ¥ =0

y =0 (12x20) = uwP=vP =0 6P = ¢Pix,1). (2.32)

y = ® up=0 .‘¢p=0

As described in section B.1l, the reciprocai of the

parameter A, i.e. v,

1/2

l1_1 Pry
X—'f?r'( r) ’

indicates how intensively transient behavior is induced by .
the periodic effect of the gravitational force.
The lateral equation of motion is,.again} "de-coupled”

from the other boundary layer equations (2.29)-(2.31)., and

the pressure fluctuatiQ? can be calculated either from

o

pP = 2auP + [é]x¢s sin(271) a (2.33)

if s>0(1l], or from

.

p§ = [s12xuP + 2¢% sin2mr) 2.3
if s<oll]. 1In other words, this periodic portibn of the
problem is governed by equations (2.29)-(2.31) and the
boundary condition (2.32) if one isinot intefes;ed in the

pressure distribution at all. '

Equations (2.29)-(2.31) show that the'périodic

thermal boundary layers on either side of -the fin afe

<

-



symmetric to each other. This is consistent with the .
possibility thgt the periodic conduction in the solid fin
may be quasi-one-dimension‘& in space. ;

Reunion of the split, steady andhperiodic solutions

generates the normalized solutions of the overall problem:

u(x,y,t) = u® (x,y) + [%;l up(x;y,f)

vix,y, 1) = viix,y) + [%—r-] vP(x,y, 1) (2. 34)
$(x,y, 1) = 65 (x,y) + [gz) Py, )

These solutions satisfy the combined governing equations

of the boundary layer problem:

u, o+ vy = 0, | 4 . (2.35)
i—{[ilu + ua_ + vu_ } = u + (l-yx)¢ + [l—]¢cos(2n1)
Pr A" "1 X Y YY Y Fr !
(2.36)
1 =6 (2.3
(100 + udy + voy = bgy : ))
’_;__,_and~thé'bbagaé£y conditions:
x = O:  u=0 ¢ = ©
y = 0(0<x<1): u=v =20 ¢ = ¢o(x,r) (2. 38)
y = o, u = 0 ¢ = 0

Again, equations (2.35)-(2.37) indicate the symmetry
of the two thermal boundary layers; hence the gquasi-one-
dimensional, unsteady fim equation (2.7) may be employed

providing, of course, the Biot number (Bi) of the problem

20



is small. By using the dimensionless variables

X = X/L y=Y rRa'/"/L

21

and o = (T-T,)/(T,-T), rr/ -

equation (2.7) can be written as

1, %% -3’00 % .
[E]XW + x e MR + (C)OY(X,O) = 0 (2.39)
where
B = 2'rn<s/mLz
and
K
C = % R£ Ral/® )
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CHAPTER III
NUMERICAL TECHNIQUES

' [ ]
In equations (2.36) and (2.37), if the transient
term are expressed by 1 P
. Ye "[!"r'] Ur
_ (3.1)
- (1 P '
and 0‘, [F?] 01
where ug and 92 are normalized quantities, the boundary

layer equations. (2.35)-(2.37) can be written ingo

u, + vy = 0, (3.2)
%;{[K%;] ug + uu + vuy} = uyy + (l-yx)¢
(3.3)
+ [%;] ¢cos (271),
and
[p=] o0 + ue_ + vé_ = o (3.4)
r’ 't x Y Yy '’ )

T@e first approach is to solve these equations for
large Fr values. It can be seen. from the above equations
that the fluctuation is introduced into the problem
through the gravitational force term, ¢cos (2nt), the
magnitude of which is controlled by the parameter 1/Fr.

When the angular velocity w of the system is extremely high,

2
Frgnl.-»n

implies that the problem becomes quasi-steady [27,28].

s
.
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In general, the rr value is finite and the pzoblcl
'f‘;on.- periodic and much more difficult to solve.
Hence, it is natural to seek solutions *for very large
-values of Pr in the first place and then progress tﬁ
cases wh;n Fr il of érdor one.

g

3.1 QUASI-STEADY-STATE SOLUTIONS

It is imperative to dov.iop an efficient method
of obtaining the high speed solutions. As described in .
ref.t.née (27]), this is a steady, two-dimensional, free
convection problem coupled with another quasi-one-dimensional
conduction problem through their interfacial boundary
conditjons; the numerical solutfions are obtainable through
the iterative matchings of both temperature and heat flux
at the solid-fluid interface. Although use of the local
similarity transformation and the numerical technique |
employed in previous work (27,28} has assured this solutidn
matching, an improved scheme to provide faster numofical
integration as well as solution convergence is still
necessary because in solving, the low rotating speed probicns,
numerical compg}ation may increase enormously in seeking
the periodic solution éigough timewise iterations. The
development of a faster scheme in obtaining solugion at
each time{step can drastically reduce the computation time.

To this end, a slightly different method is described below.



3.1.1 BOUNDARY LAYER EQUATIONS

It is convenient to transform thé governing eguations
(2.24), (2.25), and (2.27) into another set of partial

differential equations by putting [29]

E =.'Yx n =( irr)l/k(gi)'l/‘oy
' _ (3.5)
Vo) = () (58) et e
and 6% (x,y) = 05(¢,n)
where ws(x,y) is a stream function, defined by
s _ s s _ _,S
u- = wy and Vo= -y (3.6)

such that equation (2.24) is automatically satisfied. The

newly transformed equations are

s S¢S 2 S, 2 ]
Pr frmn + £ - T (fn) + (l+Pr)¢
(3.7)
4 SS9 S .S s
= - + +
E{§(fnfn€ fnnfi) (1+Pr) ¢~
s S,S 4 S,S S .S
+ = - .
onn f ¢n T E(fn®E ¢nf5) (3 8)
subject to the associated boundary conditions.
n =0 (0<E<Y): £ = £5 =0, % =0l()
(3.9)
s ]
= : = ’ o = .
n ® fn 0 0

It is worthwhile mentioning that transformation
(3.5) is a combination of the Lefevre type [31] and the
Blasius-Howarth type [32-34] transformations. The Blasius~-

Howarth transformation stretches the coordinates [(45] in such



a wﬁy that the g-directional dependency of the problem is

gfeatly reduced, and hence all the g-derivatives of the

solutions can be replaced more accurately by finite

difference approximations. The transformation of Lefevre

serves the purpose of reducing the effect of the Prandtl

number on the obtained results [35] and thus removing

the need to_deterﬁgne separate solutions for a large

range of fluids. .
Tpe integrating scheme of this problem is very

similar to that of the previous work [27-29]. First, the

whole region is discretized along the g-direction into

parallel g-levels. Second*/the'ﬁdscrete-valugg\gﬁ the

unknown interfacial temperature ¢2(€) are guessed at éach -

E-level. Physically, this set of guessed values must

increase monotonically from the tip of the - fin. Third, by

use of a fourth-order Runge-Kutta method equations (3.7)

and (3.8) are integrated in n-direction at the first £E-level,

where the right hand sides of these equations have been

suppressed because of £=0. Fourth, the integration at each

subsequent £-level is carried out laterally across the

boundary after the g-directional derivatives in equations

(3.7) and (3.8) have been replaced by finite difference

approximations. %inally, the discrete values of interfacial

heat flux, corresponding to the guessed interfacial tempera-

ture ¢O(£), are obtained.
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An initial-value technique was used in combination
with the Runge-Kutta method to integrate equations (3.7)
and (3.8) in n-direction. Experience showed that numerical
integfation of these boundary layer equations was very

sensitive to the missing initial values of f: and Qi at n=0;

n
an inaccurate initial guess could easily lead to solution
overflow. This numerical instability was overcome by the
continuation method [36)] with a least-squares convergence
criterion on satisfying the asymptotic boundary conditions
at the edge of the boundary layer [37].

Numerical experiment was conducted to determine
the step size An for the above integration. By varying
An from 0.5 to 0.005, integrated solutions were obtained
and compared; it is found that as An reduced to 0.005, both
fin(g,O) and ¢i(£,0) converged asymptotically to tyo
corresponding values. A step size of An=0.04 was then used
in the integration so that the accuracies of f:n(E,O) and

| '

¢§(£,0) were within one percent of thgsr asymptotic values.

t

3.1.2 FIN EQUATION

Equations (2.24)-(2.27) shows that the steady
thermal boundary layers on wh sides of the fin are
symmetric with each other; hence, the conduction problen
becomes quasi-one-dimensional when the Biot number (Bi)

1is much less than one.



”

Introducing the normalized variables of the
boundary layer problem: > ’

«

x = X/L, y = YRa!'/*/L, T = wt/2n

and ¢ = 0/6, = (T-T_)/(T_-T_),

into eqﬁation (2.7) and separating the rasulting dimension-

less equation after the substitution of

¢y, 0 = 6% x,y) + (316P(x,y, 1),
and
4o (%, 1) = 05 x) + [F=10P (x,1),

[

one obtains the quasi-steady fin equation:

2.8 S © .

4795 dé g ) s i

+ + = . .
X Py Ix [C]¢y(x,0) 0 (3.10)

and the periodic fin equation: .
P 24P P

[l]xaq)O + xa % + o + [C)oP(x,0,7) =0 (3.11)

B 731 2 ax gy e ! :

X

The parameter C, already defined in previous work [27] -as

K
_ L 7f 1/»
C-W-K—S-Ra ’

is a determining factor of the coupling between conduction
and convection systems; the new parameter B defined by

S 2

B = ZﬂKs/wL

indicates the insensitivity of the fin temperature in
response to the heat flux fluctuation imposed on the fin

surface.
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By virtue of the transformation (3.5), equation

(3.10) can be written as -

azes  ges '
o) o -1/4,8
+ K ¢ 0) =0 oo (3.12)
§d€z+af— K3t n (€0 | : .
?’F 8 . - N
ds . .

; d o) g1/ wgS = 3.13)
< HE(EEE“) + K48 0 (£,0) =0 ( :
subject to the boundary conditions T L

) s
£ = v: Oo = 1
aes - :
E = 0 Ea’z‘a'—' 0. . (3.142

Since the fin equation, either in the form of'(5.12) or
(3.13), is singular at £=0, difficulty bccurs during its
numerical integrétion. To accommodate this, one may use
the following approach.

I1f the functions F (£) and H({) are defined,
respectively, as

q | aes | 3¢S

F(§) = ar (Ear-) and H(§) = Ear— '
equation (3.13) can be integrated from £=yY to £=Af with
a fourth-order Runge-Kutta method after ége missing boundary
condition H(y) is guessed. Once the discrete values of F (&)

and H(§) at each § level other than £=0 are at hand, one

- can calculate H(0) with the aid of the extropolation formula

NS
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(46l :
H(0) = H(AE) - 5 [55F(AE) - S9F(288)

»

‘ + 37F (3AE) - 9F (48E)] + o[Ae‘] .
and then modify H(y) so that thqboufhiary condxtibn‘(O)so
e
is satlsfled The evaluation of F(E) in_ the abové formula

is sxmple since equation (3.13) Lndxcates that F(E) isd a

function of neither H(§) nor 0 (8). Consequently, the ¢

integral of this F(§), i.es H(E) , is also nqthing more ghan
a function of & and the_known functiom °H(E'°)'. The .\{alue
of H(0) calculated from formula aboye is directly related ',
to the initial guess H(Y): the exact'value of H(y), which
leads to the satisfication of H(0)=0, can then be found from
H(y)-H(0). With AE<ECY, as® ﬂ(zi'. :, ’
are obviously obtainable; furthér ini:egration gi.;res a new
set of discrete temperatures Q , among whi'ch the value

of o(s)(O) is again obtained through extropolatlon. That is,

03(0) = o3088) - 87

do (AE). dod (24E)
55 59
[_T_ —dg -

+ 37 _ -9
at dg

d¢2(3A5) doz(ug)]

= OSO(AE) - %T SSH(AE) - %2- H(2AE)

7 9
+ %— H(3AE) - zﬁ(4Agﬂ .
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3.1.3 MATCHING S | ¥

The whole probiem of.tbis steady heat transfer
model has been shown to consist of two sub-problems
coupled together through;thei; inte;facial temperature and
interfacial heat flux. .TQS twa;dim.nsional free-convection
problem is goveruéd‘by two boun8ary layer equations (3.7)
and (3 8y ; the guasl-one-dimen51onal conduction problem
is descrlbed by the fin equatlon (3.12) or (3.13). The
matchlng of the 1nterfac1al heat flux has been considered
tin the formulation of equations (3.12) and (3.13); hence,
the- only intergzzial‘m;tching left to be done is on the
temperatur®. In other words, the assumed wall temperature
¢Z(E) of the boundary layer problem must satisfy the
conduction equation of the fin and its- associated boundary
conditions.

An jteration method is applfed to obtain the
interfacial temperature profile ¢S (£,0). At first 95 (£,0)
is guessed and treated as a known boundary conditlon of
jthe boundéry layer egquations; the integration of these
equatidns‘can, in turn, provide the unknown interfacial
heat flux Oi(E,O) corresponding to the guessed 0% (£,0).

In distinctiou to previous work [27,28), only the obtained

¢ (£,0) is fed into the fin equation to generate a new

1nterfac1al temperature distribution QO(E). The guessed



¢3(£,0) is then compared with this]Og(E) and modification
- of the former is required whenever a difference greater
than 10> ls detected. Witﬁ the hewly modified 9% (£,0),
the procedure is repeated in the hope that a new 0 (§)
can match this o® (£,0) to a better degree. Hence, this
interfacial matching problem technically becomes a matter
of finding an efficient ;ay‘to improve the initial guess
25 (£,0). |

_Practicai experierce indicates that if the para-
merer C of eguation (3.11) is less than one, the
average value of the previous 05(5,0) and the calculated
‘02(5) is a good initial Juess of Qs(g,O) for the next
iteration loop; generally, the interfacial matching is
achievable in a few iterations. Thiilis not true, however,
when the parameter C is greater than one. On the
contrary, this modification method by averaging may some-
times lead to'the oscillation or even divergence of the
interfacial temperatdre. To accommodate this, this averaging
method can only be used in the first iteration loop and |
after that, a linear or nonlinear optimisation éechnique
(38] should be employed in gerting the improved inrtial
Yuess QS(E,O). It has been found that in this way the
convergent criterion of the interfacial temperature profile
cen be satisfied to an accuracy of 10'-5 within 3-10 iteration

loops.
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The result of previous work [27,28] can provide
good initial guess for QS(E,O). Although the local
similarity transformations of the present and previous

2

studies.are different, a closer inspection of these
transformations disclosés‘that the interfacial temperature
profile is a function of the same & variable in both cases
and, .hence, does not vary with the transformation. For
-this reason, it is a great advantage to use the existing
interfacial temperature of previous work as the initial
guess in the present study so that the converged solution
can be obtained almost immediately. Aqother advantage
which stems from previous observations is that in the non-
dimensionalized domain (x,y), the converged interfacial

temperature profiles are insensitive to the variation of

parameter’'y. 1In other words, once the interfacial tempera-

. ture corresponding to a small Yy value is obtained, it can

be used as a good initial guess for problems of the same
parameéér C but larger vy values. Both advantages are very
favourable as far as the computing time is concerned.

Several numerical experiments had been carried out
before the present computer program was thoroughly applied
to this study. A linear interfacial temperature was chosen
as the initially guessed input profile to a testing case

of vy=0.3, C=1.0, and Pr=0.72. Excellent agreement between

the obtained solution and the previous result (27,28]) was

32
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obtained. Stepsizes of 0.05 and 0.025 were chosen for the
£ variable when y=0.5 which,was the greatest y values used ’

in this study; Coﬁpargson of thd results. showedlthat ﬁot
, . N o .
only the individual values of two-solutions but also their

total heat transfer rates did not ‘differ by gore than 0.5% °

from each other. To save computer time and storage, eleven .
£-steps corresp?nding to AE=0.05 were used for y=0.5.
For convenience, same pumber of{E-levéls was used

. ‘ . . “ A
throughout the study even for the cases of’ smaller y values.

3.2 PERIODIC SOLUTIONS

‘o

Two methods can be used to solve, this periodic
problem pending on the fluctuating magnitude of the -
solutions. The boundary layer equation (2.-36) indicates

that the periodic source of éhis problem comes from the
gravitational force term,'¢COS(2ﬂT$, which increases its
effect with the parameter l/fr. If thisg paraméter is mugh
less than unity, a perturbation-type series expansion is
a proper method of simplifying the governing equations
before the use of the numerical.integration technique.

If this Parameter 1/Fr is not much less than unity, the
perturbation method becomes tedious and uneconhomical
because of the necessary inclusion of more series terms;
a direct approach of solving the unsteady problem is then
inevitable. In other words, the periodic solutions are

divided into two categories: those of small amplitudes

and those of moderate amplitudes.



3.2.1 SMALL AMPLITUDE

Referring to transformation (3.5), one can intro-

duce a local similarity transformation [29]

£ = X, n = (s /(88 7y
vix,y) = (Igg;)1/~(§5)’/'f<g,n> (3.15)

o(x,y) = ¢(g,n),
where y(x,y) is the stream function defined by

u o= gy and Vo= ¥y, : (3.16)

into the boundary layer equations (2.35)-(2.37). The
continuity equation (2.35) is then satisfied completely by
definition (3.16); the other two boundary layer equations

(2.36) and (2.37) are respectivelx,converted into

2 2
pre o+ £E -3 et (].+Pr)[l:v-cos(21m)/Fr]®
) (3.17)
setde e, - £ _£) + (L+PD)0] + (K s2m) et/ 2f
I 'n"ng nn-§ 1 nt
and
o 4+ f£0 =S E(£, -0 f) + (K s2m e/ 2e (3.18)
nn n 3 n,§ ng 1 T
where
_ 27,4 1+Pr -1y1/2
Ky = X_(T B ! ) :

Similarly, the conduction equation (2.39) of the fin can

be transformed into

L 4
30 a%e_ 9, —\/ ‘
(K2/2ﬂ)£§?— + & * o5 + K3€ ¢n(5,0,1) =0 (3.19)

3g?
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where 1/

oK = ZW/BY‘z and K, = (% I%;;q—’ c.
Response parameters Kl and Kz represent; respectively, the
significance of the transient responses in the fluid anad
solid to the beriodic effect imposed on the system, while
‘parameter Kg indicates the degree of coupling between
conduétion and free convection. Transformation of the
boundary conditions (2.38) leads to

n = 0(0%E<y): £ = £'=0, 0(,0,7T) =& (5,1

n = «; ) £ =0, ¢ = 0. (3.20)

n

The associated boundary conditions of equation (3.19) are

30
£ =0: Sy~ = 0
£ = v: o =1 (3.21)

If 1/Fr is small the solutions may be written in the

perturbation series of the form (Appendix D) :

f(E,n;r) = £5(g,n) + %;[E(E,H)COS(ZﬂT)
+ T msin2r0] + o[—]

Fr?
¢(E,n,T) = S (g, n) + %;[E(E,n)cos(Zwt)

+ 3(E,m)sin(270)] + o[—i;J « (3.22)
Fr

where fS(E,n) and QS(E,n) are the quasi-steady solutions

obtained in section 3.1.
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The first order perturbation solutions £, ?, $,

~

and ¢ etc. satisfy the simultaneous eﬁuatfons:

P + (1+P + - + f+¢f
.rfnnn ( r)(o 0° ) 5 f f ?nn fnn

(3.23)
- 1/2% L 87(¢% 3 - ¢%¢ - £% p
315 f + gi(fngtn fﬁfnn £onfe t t ne) * (1+Pr)E°

% S5 ST . 1/a3 4 r _ #%F -
T o £ k6770 + 3£ (0, fn°£ ¢ fe F. n)’
(3.24)
A £ s 2 s2
prf . + (1+P - 2 + 2 £+ £ £
T ann (1+Pr) 8 3' nn nn
z 4 s % 82 s % 8%
VT I VT otk JE TR 3¢ P IE UK S L
15 n 35 ng n ng nn & £ nn
+ (1+4Pr)ES, (3.25)
~ s SA sl\ - - l/z~ 4 S‘A sh _ sh _ SA
an + ¢ fn+ £ Qn KlE ® + SE(OEfn + anE onfE fEQn)
(3.26)
- -
2 a’9, dé, -1/%3 '
xzaoo + £ T + a.E—-+ x3£ on(E,O) =0, (3.27)
- d23o d?bo /e
-KZEOO +.€ dgz + a-g'— + K3E en(t,0) =0 (3.28)
and the associated boundary conditions:
n = 0: £ =f = fn = fn = 0
¢ = 00(5), ¢ = QO(E)
n=o fn = fn =0 = ¢ =0
as a@
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Higher order corrections can be obtained in a similar manner
(Appendix D) but are not éonsidoroﬂ here. .
Periodic solutions of la:q’ jmplitudes (1/rr>l)
excluded from.this study due to the fact that a dittorobt
physical problem can be expected if the periodic, gravits- 0o
tional force term ¢cos(2#1)/Fr prevails over th; centrifugal ‘
force term (l-yx)¢ in equation (2.36). This nay'bofﬁiﬁlainod
by conpidering a typical case of Fr=1l. At the moment the

ically downward (1=0) poniéion,

rotating fipb?? in its
£

aforesaid twd?forces a the same direction and promote.

a boundary layer flow leading edge located at the

1y

fin t&gé however when the fin rotates to its verticaliy
upwardlposition (t=1/2), these two body forces act against
each other and the prevailing gravitational force fonds;ﬁa

develop a backward flow with a new leading edge. located at
“ '\ * ) -
the fin root. This alternating leading edge problem is -

discussed further as a topic >Qf future research in

section 5.2. ) ' N

®
New difficulty in solving equations (3.23)-(3.28)

is encountered after the domain ({,n) is discretized into

°
*»

eleven {-levels. Comparison between the quasi-steady and . .
\
perturbation problems indicates that not only the number

S

of governing equations but also the number of unknown

interfacial boundary cbnditions is doubled in the latter.



B

~

That is, the integration of boundary layer equations (3.23)-
(3.26) at each £-level requires the surmise of four
eigenvalues: £, (£,0), £ (£,0), ® (£,0), and ¢ (£,0).
Most of all, the doubllng of the interfacial matchlng
requirements between two conduction and four convection
equations is the main source of new difficulty.
’ Owing to thé linearity of the perturbation equations
(3.23)—(3.26), the search for the four eigenvalues at each
£-level was accomplished within one 1teratlon by using
the method of adjoints [36].

The overall problem was successfully solved by
means of an iterative scheme. At first, two interfacial
teméeraturé profiles 5°'and 30 which satisfied the
‘perturbed boundary conditions of the fin equation were
assumed. Based on these temperatures, equations (3.23)-
(3.26) were integrated simultaneously at each £-level to
Yield two temperature g;adients 5n andyffn at the solid-
fluid interface. These‘temperature gradients were then
used in the integration of the coupled conductive fin
equations (3.27) and (3.28) to give two pew interfacial
temperature profiles. 1If these newly obtalned tempera;ures
did not agree with their Previously assumed values to 10 -3

14

their mean values were then used as refined values. The
o

whole procedure was repeated until the convergen!p

Criterion of 10 =2 for both interfacial tempgg;tures had

beqn fulfilled.
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3.2.2 MODERATE AMPLITUDE

A direct numerical approach is used to solve the
problems of the Froude number being not much greater
than one. Reconsideratien is given to the following

governing equations:

2

Prf + £ - %4

2
nnn nn n

+ (1+4Pr) ([l + cos(2mt)/Fr] ¢
<

_ 4 1/ 2
= Elg(E £ - £onfe) (1+4Pr) 9] + (K /2mM)&° "f (3.17)

_ 4 1/ 2
O+ £0 = gE(E 0 - O fg) ¥ (ky/2m g 7o (3.18)
30 az¢o 39 iy
(Ky/2m) b + & + g+ Ka8 Ve (50,1 =0 (3:19)

ag?

and their boundary conditions:

30

b =0 S T B

E o= vy o, = 1 |

n % 0: £ =0, £ =0, ®(£,0,1) = 0_(£,1)
no= e £ =0, ©=0

Now , i% one knows the exact values of time-derivatives
fnr and OT at every point (§,n) and at a specific time T,
these equations pose a two dimensional problem which 1s
much easier to solve. Once the solutions at this initial
time level have been obtaihed, the time-derivatives fnT and

¢T at the sgcond time level can be approximated by béckward

N~
Fnd
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finite differences. Again, a two-dimensional problem is
produced. Similar approximations can be conducted in the
successive levels over a whole period of time.

The main difficulty of this approach is in the
judicious choice of the initial time derivatives fnt
and @T at every point (g,n). Tis choice should avoid
causing any numerical instability during follow-up
integration, and should lead EP fast convergehce of the
solutions. A consequent problem is to.determine the
proper time level for T, so that higher accuracy in approxi-
mating those transient terms fnT and OT may be achieved
at least at this initial level, and even better if it can
also be done at subsequent time levels.

when :the Froude number is moderate and much greater
than one, previously obtained perturbation solutions are
relatively reliable and hence provide good approximations
to the initial values of £ and ¢ . The remdining problem

nt T

is "to determine a proper initial time 8o that good approxi-

g Al

mations can also be obtaiqed at subsequent time levels.

At the s;condfkime'lebel, the accuracy of the two;
point finite Q}fference formg;a"in approximating those
time dergéqtﬂggé dep&nds';t;o;;ly upon the product of the

0 . .
tdme interva% A1 and the magnitude of the second order

time-dérivatives. Because of the long computatién required

&
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in solving the two-dimensional problem at each tlevel, the

time interval AT should be as large as possible. Hence,

the‘only alternative to obtain higger accuracy in using

the two-point finite difference approximation is tastart

solving the problem at the specific. time level, after

0 ‘
which the perturbation method detects the minimum magnitudes

rate reflects the overail features of the problem, the

time level where the total heat transfer rate of pertur-

bation result indicates a straight line, or a point of

lnflexlon with respect to time, is an appropriate point

for the second time level if Fr is slightly greater than

order one. In other words, the appropriate initial time *
level is just the level one time isterval ahead of this

point. )

When Fr is not much greater than unity, the pertur;
bation results are unreliable; indiscriminate use of them
in either approximating initial transient terms or deter-
mining the initial time level can easily lead to numerical
overflow. Hogever, a proper decision may be deduced from
careful comparison of various manifestations among:

(1) the perturbation result Pl of the larger Fr case,
(2) the predicted solution Sl of Pl, where Sl is obtained
throughrthe direct integration of periodic equations

(3.17)-1(3.19), and

L3
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.

(3) the perturbation result P2 of the present (small Fr)
problem.

The total heat transfer rate Q can be used in
selecting the initial time leveli It is logical tb assume
that™wariation in the value of Q is in phase with the |
overall chahging trends of system temperature and velocity.
A zero variation in Q indicates a momentarily unchanged
system which, in turn, correspondg to zero or extremély
small transient terms in equations: (3.17)-(3.19).
If.comparison among solutions Pl, P2, and S1 does not
reveal severe or irregular phasé éhifts, i® is reasonablé
to choose\initial time leyequrom those of maximum or
minimum Q values so that fhe inevitable errors in approxi-
mating transient terms bdbbﬁe less effective because of
their comparatively smals magnitudes in the equations.
Several most typical cases are illustratéﬁ?in the following
paragraphs and the guideline on determination of iniﬁial
time level will be reinforced by these examples as the
discussion proceeds.

Figure (3.1) shows one of the most favorable cases.
The éerturbation result Pl for a large Froude number is in
phase with its predicted solution S1; in addition, the
perturbation result P2 for a moderate Froude number does
not reveal significant phase-shift from either Pl or S1.

In this case, the solution S2 predicted by P2 for the

moderate Froude number can be expected, with more confidence,
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L Y
to be in phasé with all the solutions in Figure (3.1).
More specifically, both levels of t=1/4 and T=3¥4 can be

However, the t=1/4 level is considered to

io

chosen as =t

be proper b use of its smaller magnitude-difference
bethen Pl and l.l Once this initial time level has been
.deﬁgrmine§, the transient terms in equations (3.17)-(3.19)
can be approximafed by using its perturbatioﬁ solution P2.
On the oﬁher hand, one can choose ™=0 or 1/2 as T; and use
S1 for the initial solutions if higher accuracy in the
initial finite difference approximétion is more desirable.
Sometimes, the phasg of the solution may be

sensitive to the variation of Froude number, as is shown

in Figure (3.2). Although the perturbation result Pl

for a large Froude number is in phase with its correspénding
solution S1, it is significantly out of phase from P2.
Since there is no phase-shift between S1 and Pl, it is
plausible to expect that no phase-shift between P2 and
S2, and both 1=0 and t=1/2 cap.be the candidates for T
However, 17=0 is properer because of its smaller curvature?
The reason behind this is that'yhen the curvature of the
selected extreme point is small, the error in approximating
those transient term of governing equations (3.17)-(3.19)

with P2 becomes less susceptib any unpredeicted, but

possible, phase-shift between P2 ﬁﬁd S2. 'In addition, the
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second order time—denfvatives are proportional to the
curvature and a smallar curvature means the possibility
of smaller truncation errors in the use of two-point
finite-difference approximation at the second time-level.

ébncerning the example of Figure (3.3}, the :
perturbation approximation Pl is about one-eighth of a
period out of phase from its predicted solution S1.
Fortunately, this Pl curve is in phase with the pertur-
bation solution P2. If Pl and P2 are not very far apart
in theif magnitudes of Froude number, one can assume that
the Froude number does not have a significant phase-shift
effect to the solutions either. 1In contrast with two
previous examples, S1 in lieu of P2 is more suitable for
determining the initial time level as well as for
approximating all th'e transient terms of the governing
equations (3.17)-(3.19). Again, the level of t=3/8 rather
than t=7/8 is a better choice for T because of its
smaller curvature.

A more difficult case is illustrated in Figure
(3.4), where the perturbation solution Pl is in phase with
neither its precicted result S1 nor the perturbation solution
P2 corresponding to a smaller Fr. However, comaprison
between S1 and Pl shows that the extreme point§ of the

former locate about one-eithth of the period behind their

1) [
-

*v
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corresponding points of the latter. Assuming t!:xcw;‘m 'p
correlation also exists between P2 and its predicted o

solution S2 for a small Froude number, one can choose )
_ 7

P

the level of t=5/8 as T and start solving equatjions

>

(3.17)-(3.19) by approximating all the transient terms

with P2,

Sometimes, the change of Froude.;umber can caus$
a different phase-shift iq the solutions. The dischssion
of'the'four examples above is based on the assumption that
the correlation observed between solution S1 and its
approximation Pl corresponding to a large Froude numb€r
also holds for smaller Froude numbers. This is not always .
true and the correlation may vary with;the Froude number.
As depicted in Figure (3.5), the solution S1 cbrrésponding
to. a large Froude number has a time-lag of L1 behind its
perturbation approxipation Pl, whereas the unknown solution
S2 for a small Froude numbe} may have a double time-lag
of L2 behind its perturbation approximation P2. Apparently
this is a good example of poor accuracy in Qerturbatidh
solution when the Froude number is not large. If one
wrongly chooses ri-level to be tr=3/8 instead of t=1/2, the
numerical integration may eventually lead to divergence of
the solution. To overcome this, a proper correlation

between the solution phase-shift and the variation’of

Froude number should be established by observing additional
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® ' -
solutions correspoading to one or two intermediate Provde

numbers. ‘' N )

rigure (3.6) indicates a °uv\x:o ease where not only -
the perturbation result Pl corresponding to a large Frowde
number deviates signi'!'ic;ntly Ain magnitude ftp- its npproai,- .
mated solution S1, but also no correlation exists betveen
extreme points Qf Pl and{ll. Mordover, comparing Pl with
the perturbation solutiqQn P2 corresponding to a smaller
Froude number, one notici.‘that no con.ist.nt“pﬁalo-shitt,
holds between tHeir extreme points. That is, the maximum
point of P2 is one-eighth of a period behind its corresponding
point (at t=1/4) of'Pl while the nidgsﬁn point of P2 is one
quarter of a period ‘behind its corresponding point lat t=3/4)
of él. Iﬁ is recommended that a series gt prcbli; with-
gradually decreasing Froudé .?\écr be solved. Owing tt;“to
lack of accuracy in the perturbation epptoxinatioh!‘one
should use S1 instead of P2 in determining the initiai
time level, as well as in approximating those transient
terms of equations (3.17)-(3.19) corresponding to the {
new but slightly smaller Froude number. In addition,
the time level of 7-5/4 in Figure (3.6) is an apprépri?te
choice for 1 because of its fmallest curvature among all

the extreme points of the S1 curve.

Once the initial time level T and its assofiated
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time-derivatives fnT and QT are properly determined,
integration of the governing equations_at this initial and

subsequent time levels can be carr without any

difficulty. At the end of-one time riod, the timewise
convergence of solutions is checked. Thedretically,

this convergence can be checked at e;ch time lével after
the first timewise iteration, provided that the solutions
obtained at egch time level have been previously stored.
'However, the immense size of computer memory required

 for storing such not-yet-converged solutions makes it
impractical to check the convergence of the solutions at
every time level. In this work, the check was performea
only at the end of each period and the timewise convergence

was achieved within 3 iterations to an accuracy of 1074,

'
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CHAPTER IV
» v‘.ﬁ
RESULTS AND DISCUSSION
w
T
PR A

As demonstrated in the previous chapter, the results
of this pe;iodic heat transfer‘problem can be divided .into
quasi-steady solutions, perturbat&on approximations, and |
"exact" solutions obtained from the direct integration of'
the governing equations (3.17)-(3I19). These egu’.fons
and their associated boundary conditions indicate that the
problem contains six parameters: Pr, Fr, Y, Kl, Kz, and

C (or K3). Among them, the effect of Prandtl number (Pr)

on the solutions is removed by use of the Lefevre-type
transformation (Appendix C); hence ﬁ fixed vaiu‘ of 0.72
is used (as the Prandtl number of air) throughout this
studk; and the‘number of parameters is therefore reduced
to f;yg.' . |

The Frqude number Fr ai.the most important:
parameter in this study. Since solving’ﬁhis coupled
mnvection-congu_ct‘i’én heat tfangferﬁ:biem with the‘
necessity of additional time-wise iterations requires
expensive numerical work even for one set of pa;ameter
values, it is uneconomical to study the effect of all the
remaining five parameters; only the parameter of greatest
interest in the present study should be considered. One
of the main objectives of the present work is the develop-

ment of a technique for handling periodic probléms of
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moderated fluctuating amplitude, which strictly depends

on the magnitude of Fr. For this reason,

“

although some

attention is also given to the study of otﬂer parametefé,

the investigation is mostly centered around the Froude
) 1)

number. ’

-

4.1 QUASI-STEADY RESULTS

.00
information to the problem. Although this

case has been previously investigated (27

results are obtained in a new coordinate

The quasi-steady results can provide the basic

quasi-steady

,28], the present

system using

different transformations. 1In addition, these quasi-steady

solutions are the base in .constructing per

turbation approxi-

mation which, in turn, may be the key,to the solutions of

the periodic equations (3.17)-(3.19). Thu
of these new quasi-steady res8lts is not ©

purpose of comparlsdn but also for the sak

s, presentation
nly for the

e of completeness.

For convenience, these quasi-steady solutions are divided

into three parts.

In order that the present results

Q V\ &
can“be compared

with those of previous work, parameter C rather than K5 is

used here. This is certainly acceptable because for a

fixed Prandtl number of 0.72, parameter K3 expressed‘by'

1/!.
KB = ('4' I+P#* *

(4.1)

is, in fact, a function "of parameters C and y. 1In this

’

s tudy, inyestigation into the effect of th

T

L

ese two parameters

-
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is carried out with six values of C (0.01, 0.1, 1.0, 3.0 o

/

/
5.0 and 10.0) and five values of y (0.1, 0.2, 0.3, 0.4 and |

0.5).

.4.1.1 SOLUTIONS OF BOUNDARY LAYER PROBLEM

As far as'tﬁe study of this free convectiod
problem is concé%ned,;the investigation encompasses the
solutions within the momentum and thermal boundary layers.
The shapes of these boundary layers are sketchéd as,dashéd
lines in figure (2.1); namely, the boundary layer thickness
increasesggﬁbp zero at the fin tip (xéo) to finite value
at the ﬁi; root (x=1). However the definition of new
coordinate variable n of transformation (3.5) indicates that
in the transformed éoordinates (£,n), the closer.the fluid
flow to the fin tip the greater the stretch of boundary

»

léyer in n-direction, A proper transformation should

g

107

thefore stretch the boundary layer in such a way that (

its thicknesses., at different E~levels are of the.same

‘ o;der of magnitude. These boundary layer thicknesses

become independent of { only if similarity solutions exist.
The possible existence of similarity solutions for this

boundary layer problem is certainly worth considering.

4.1,]-1 DEPARTURE FROM SIMILARITY
’ Figure (4.1) shows the velocity and temperature
profileé at three £ 'levels along a high-speed fin with

parameters C and y respectively equal to 5.0 and 0.5;
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- 0.1
0.0
10.0
E )

Figure 4.1 Departure of Quasi-Steady Boundary Layer
Solutions From Similarity



apparently, departure from similarity is quite gignificant'
in bozh profilei of this boundary layer probleém. However,
the fact t oth “thermal and momentum boundary layer
thickngsség remain almost unchanged‘alqﬂg the kin diqegtion
iﬁ/the £-n ddmain, sdbstantiatei tﬁe coor%inate stretching

feature of the Blasius-Howarth type transformation (3.5).

4,1.1-2 EBFFECT OF PARAMETER Yy

To study this effect, velocity and temperature
profiles at thé root of the rotating fin with paraméter
C=1.0 are plotted in figufe (4;5) for three—valu;s ;f
Yy (0.1, 0.3 and 0.5). The velocity varies généiderably
with y, but the temperature.changes only slightl&. Moreover,
the thicknesses bf_ the t).lermal and momentum boundary layers-"
are nearly unaffected by Y.

»

4.1.1-3 EFFECT OF PARAMETER C

since'the maénitudé of parameter C represents the
degree of coupling between convection and conduction, inves-
tigation of this pafameter efféct coveps four o'rder-off
magnitudes of C (0.01, 0.1, 1.0 and 10.0)°for y=0.1, as
sgown in figure (4.3). Appérently, parameter C dpes produce
a significant effect on both velbci?y and temperature profiles
at the root of the fin. 1In addition; the efifect on the former

profiles is bg far more noticeable ﬁhan on the latter. 1In
contrast to these, néi{!pr the fhermal nor the momentum

boundary layer thicknesg at this fin root varies noticeab

. . ’ ’
‘with the parameter C. - - ) .

. .
. ~ . L
© , oo 5
2 a
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‘fgi y=0.1

Figure 4.2 Effect of y on Quasi-Steady Boundary
Layer Solutions



p——
* *
1.2
1.0 Pr=0.72
£E=v (x=1.0)
vy=0.1
0.8 ¢
oS
0.6
0.4
0.2
0.0 : l
‘3
0.0 2.0 4.0 6.0 8?&-
n .'Jf
’."*'.& :

Figure 4.3 Effect of C on Quasi-Steadygﬁoundary
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1L:.1.2 SOLUTIONS OF CONDUCTION PROBLEM

The main interest of this investiéation is on the
temperature distribution along the fin. In most studies
of the free conv;ction problems [39-43], heat conduction
in the solid is ignored, and either a power law or an
exponential temperature distribution is assumed along the
solid-fluid interface. It is logical t§ inspect the
validity of these assumption; for such a coupled conduction-

convection problem.

4.1.2-1 EFFECT OF PARAMETER Y

Figure (4.4) shows the interfacial temperature
along the fin for four values of C (0.01, 0.1, 1.0 and 10.0)
and two values of Y (0.1 and 0.5). The actual investiga-
tion includes five values of y (0.1, 0.2, 0.3, 0.4 and 0.5)
for each value of C. All temperature profiles of y=0.2,
0.3 and 0.4 fall between that of y=0.1 and 0.5. For the
sake of clearness, only profiles of y=0.1l and 0.5 are
-presented on this plot.

The insensitivity of normalized fin temperature
to the effect of y provides a favourable feature from the
economic point of view; that is, once a matched interfacial
temperature for a prob?em with specific values of C and

S

guess of the interfacial temperature for all other problems .

Y is obtained, it can be used as an extrémely good initial



1.0

C=0.01(y=0.1 and 0.5)

C=0.1(y=0.1 and 0.5)

Pr=0.72

Figure 4.4 Effect of C and y on Quasi-Steady
Interfacial Temperature
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of the same C value but with different parameter Y. Large

amounts of computation are hence saved due toO the fast con-
vergence af the interfacial temperature.

4.1.2-2 EFFECT OF PARAMETER C

Figure (4.4) also shows the significant effect of

C on the solid fin temperature. It is clear that an

~

isothermal surface temperature is a good assumption to

" the boundary condition of a free convection problem only

if the parameter C is very small. AS the value of C

v

_increases, the assumption of constant fin temperature

becomes increasingly invalid; but for c=0(1l), a linear
profile with a non-zero temperature at the tip of the fin
is still the character of the fin temperature. Thé assump-
tion of zero tip temperature for the fin is only a valid
approximation when ‘the magnitude of C,is much dreater than
order one. .

’

4.1,2-3 COMPARISON WITH POWER LAW ASSUMPTION

1f the matched interfacial temperature ¢z follows
the conventional power law assumption ¢Z=axn of free con-
vection problem, it should have the following features:
. (1) ¢2=0 at x=0, except for the isothermal case whe}e
n=0. According to figure (4.4), this is only possible
when C>>01(1].
(ii) The plot 6f ¢2 vs. X on a log—lqg scale should reveal

. a straight line.



To check the validity of this power law assdpption\ -
to the interfacial temperature of this quasi-steady con- AeX
duction-convection heat tflhster problem, the matched
temperature along a fin of =0.3 is plotted in figure (4.5)
on a log-log ‘scale for six values of C (0.01, 0.1, 1.0,

3.0, 5.0 and 10.0). It is obvious that linearity only

occurs when the value of C is very small. In other words,

-a power law temperature digtribution is a good assumption

in the present problem only if the value of n is«extremely
small, that is, when it is close to an isothermal fin problem.
In general, the power law interfacigl temperature does not

exist for C equal to or greater than one.

4.1.2-4 COMPARISON WITH EXPONENTIAL ASSUMPTION

Lock [44]) has shown that in two-dimensional free
convection problems, the exponential surface temperature,
¢=emx, for similarity, is merely an asymptote of the con-
ventional power law d;stribution ¢=x" when n approaches
infinity. 1In order to check the possibility of the
#tched interfacial temperature following such an exponential

;;Qgﬁlgﬁlogarithmic values of ¢z are plotted against x in
figure (4.6). |

Again, the linear relationship is achievable only
when the value of C is much less than one. 1In addition,
the profile for C=10 is almost a straight line near the
root of the fin (x=1); this jndicates that when the

magnitude of C is much greater than one, an exponential
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assumption may be a good approximation to the temperature

distribution near the root.

4.1.3 SOLUTIONS OF OVERALL PROBLEM

o

4.1.3-1 TOTAL HEAT TRANSFER RATE N - A
'y Cu. -
If the base area of fip is 2wD (see fﬁq‘ure‘&‘?}f,  Bhe - -
L ) .
total quasi-steady heat transfer rate, Qs, through this fin is
‘ ar? (L)
Q® = 2wbK _—2

(4.2)

and the heat transfer rate per unit area is

- . s s
s dTO(L) - Kser doo(y)
g = KS X m N (4.3)
;fi '.‘ .

therefore h&t‘xb‘g bothttha 'lh;nen31ons angpthe temperatur‘e

, are flxed at the fin bhse, the total heat transfer rate
of this quasx-steady problem~can be expressed by the’ tem-
Perature gradient ;’EE(-Y—) at the f1n root

A plot of this heat transfer rate versus parameter
C is presented in f1gure (4.7) for five values of v(0.1,
0.2, 0.3, 0.4 and 0.5). As expected, the stronger the
coupling of the convection and conduction Problems, the » . :
higher the total heat transfer .rate A much more .mterest,ing
result is gshown in fJ.gure (4.8) where Plotting t-;ota,l/ he‘a%\a t V-
transfer rate against narameter vy on a‘log—loq scalg rqw * 4

(v) -
that lineanty betwcgn 1n —OEY— and 1n v can be Jbtaincd for

-

¢
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- every C value. 1In other word®: the total heat transfer -rate
can be expressed by |

de? (v) o

—ar " aY ) ) (4.4)
where both "a" and "m" iare functions ‘of parameter C. For
‘anyl straight 11& in figure (4.8), "m" is its slope and ;"a'
is the exponent of heat trahsfer rate at the intersegtion
of this line and the vertical line 1n y=0. Moreover, the
parallel character of all the strai lines in figure (4.8)
frquests"that "m" can be a.common slope for all these lines . »
"*i; t*no.ﬁ ir?éepindent of parameter C.

In 'oz'ée}r o@d’,/termine \:vhether the slope m is w

fixed constant for'al}*&d}ues"of parameter C within the ¢
range of this- study, a least-squarelsﬂethod has been used
to calculate the bes; fitted va‘las og “.',‘a" ancl‘&n" for each.
strajight line. Calculated results ‘and associated fitang ’ «

errors are listed in table below: s

LS

Table 4.1 Curve Pitting for Total -Heat Transfef Rate

Versus y Plot lbifterent Slopes.

§

c a(c) _' m (C) Sum of Least-
/ Sqguares Errors

0.01 0.00461 . -1.0324 v~ . 1.3 x 1074

0.10 0.04518 -1.0324 1.3 x 1074

1.00 0.38132 -1.0332 1.4 x 1074 .

3.00 0.90409 -1.0349 1.6 x 1074

5.00 1.89554 - -1.0364 1.8 x 1074 -
10.00 2.06882 - -1.0319 " 0.5 x 1074

- A Y

A 3
'R




TS

_These results suggest a much simpler form of’ the

empirical oquati’:ﬁn .

errors are alll in tﬁé order of 10:‘: this indicates the
goodness of these linear c’urve fittings on the log-log
’ scale. In addition, al{ these slopés. agree with' each

other_to the second deoimal pI‘ace.

® v
the lines. The Tesult

?
4

Table 4.2 Cu

»

Common Slope.

The tabu,late& sums of least-squares

that is, with less

m = -1.03386

C { a(C) o of Least-
s »*ares Errors
0 o -
0.01 0.004g} 1.4 x 10‘:
0.10. 0.04509 1.4 x 10
- . 1.00 0.38095 1.4 x 1072
O O . 300 0.90538 1.7 x 107°
5.00 1.30000 2.0 x 1074
10.00 .6 x 1074

2.06170

o

Sums 5f leasf-squares errors remainin§ in the orde

10”4 subs: iates that an empirical equation takes the
. {l',’_‘ ; . s } . K .
R oL ~1.03386 .
e - \

P Y

X :

2
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- .
: - , B
‘A further attempt was to express “a’" :Lm.tcrms of .

4 [

powers’ o! parameter C. - A multipla linear regressim , .

,techni‘gpq [47] was applied%o fit a polyncmial in the

form . . 2 4 . oca
a:(c‘)‘ - bo + b;C + bC” + 53‘c + b, C" + bsc ‘ "o
The best fitted polynomial ws found to be SN
. C e S s
a(C) = 0.44066C - p.06700%C + 0.007993c> - 0.00036377c? "

which yielded a total least-squares X‘m: of 0.015887 to
Jw ‘. .:“_‘ v 3

the empirical equation-(4.5). .

on

’

An alternative attempt w‘a’s t’_,;fiit an empirical
equation in a simpler form of |

gl

as® (y)
—Sr—e= 2 (v~} . . 'q“.su;
* o
where funct:.on a' (C) was again expressed as a polynomial
of parameter C The result of the same multlple linear

regression analys:.s program suggdsted a\polynomial‘
~

a'(C) = 0.46123C - 0.070065C2 + 0.00834C3 - 0.00037781C4

/ 2‘;1,
Based on this polynomial, ithe total least-squares error in

fitting equation (4.5a) wa#l 0.589297 and the maximum
percentage error was 10%. ke

4.1.3-2 NUSSELT NUMBER. ‘ ;

LN

For the classical lm)plnar free convectlon problem
- b

adjacent to a vertical plate z.n a uniform gravitational

\



| _number can. be expnesaed by Nu = iﬂ(lg.;lk). ’

force field (39- 43]; conduction heat transfer in the

solid wall or plate is not considered and tha Nusselt

Pn,vious study [27 25] has shown that when the free con-

vection in the tlu‘d is coupled with th. conduction heat
4l

sfer along the vall €hna éhe g;avititipnal force field

is replacgd byna ¢entrifugal forcg field, such as in the

:.“{;‘!'pr"e@&?qiﬁsifsteady problem, the Nusselt nmn}:!er is also
¥ % "o, .

~a function of parameter Y and C. 1I#$ Nﬁ represents the

local Nusselt number at the fin root,, theén fore®Pr=0.72,."

) » .
it is found that -t . °

»

NG = na‘/’(rl - FéY) (4.6)

where Ra-GrPf, and Fl and F2 are functions of the

parameter {. : _ -

For comparison, the local Nusself number of

. present study is defined by

‘ .« 1/~' :
onf = Ei%%k or N = -[;%%;%%7] 0 (v,0) (4.7)

»

Figure (4.9) shows.that when ~¢® (v,0) is plotted agalnst

par%peter Y on a linear scale, data poxnts for every value

of parameter C can be fitted accurately into least-squares

/
line. In other words,

-1/
O

-«
. -
where Gl and G2 are functions of the parameter C. The

calculated values of G, and G, are listed in Table {4.3).

3>

N
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Figure 4.9 Nusselt Number of Quasi-Steady-State
Solutions
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Table 4.3 Curve FittingWor Nusselt Number Versus

Parameter y Plot.:

, é :{ G, G, Sum of Least-
‘ ? Squqres Errors
0.01 0.522 " 0.167 0.8 x 10>
0.10 0.536 0.172 0.8 x 10°°
- 1.00 0.638 0.206 1.2 x 1073
3.00 0.760 0.249 1.8 x 107> o
5.00 0.830 0.275 2.2 x 1073
10. 00 0.929 0.297 0.5 x 1072

In order to make comparisons between e€quation (4.6),

obtained from prewvious s tudy,

pPresent investigation,

the latter to yield

’

Here, Fé is the slope of the least-
the NB/Ral/“versus Y plot, And Fi is nothing but the

predicted value of Nf/Ra!/* for Y=0;

fin problem [35].

Calculated values of F' and F!
‘Tablg (4.4) together with their comparative quantities F

énd F2 of previous work [27,28]).

.

\)

o

and equation (4.8) of the

Pr=0.72 can be substituted into

N = ra'/*Fr - F3Y)

1

1 2

.

(4.9)

Squares fitted line of

in fact, the static

are tabulated in

1

Apparently, there are

some discrepanciesvbetween slopes Fz and F) of the least-

squares fitted lines.

However, both Fi

2
of the present

75
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) )
study l‘?l of the previous work p:,'fét almost the same

value of N8/Ra'’/* for the static fin problem.

¢

Table 4.4 Comparison of Least-Squares Fits

3
Parameter Previous Work * Present Study
.C Fl Fz Fi Fi
0.01 . 0.389 0.116 0.390 0.125
,9,10 0.401 Py 0.126 0.401 0.129
1.00 " 0.484 0.178 0.478 0.154
3.00 0.573 0.205" 0.573 0.186
. 5.00 0.623 0.214 0.621 0.206

10.00 0.696 0.228 0.695 'l.nz

4.1.3-3 Fin Effectjveness € o ¥ *

Lock and Gunn [35] have defined fin effectiveness

for a variable heat transfer coefficient h along the fin

surface to be

f@(x)eo.(x)dx
LYo (D)L

€ = -B—z—y-e—-(—')—_ (‘.10)
. fo) .

Since the numerator represents the total heat transfer

rate across the'thermal boundary layer at one side of the

fin, it must be equal to one half of the total heat transfer

-y
rate acréss the fin base, that is
dae O(L)

L _ L ]
J’oh(x)eo (X)dX = -WK —3— - (4.11)

A

where W is' the half-width of the fin base. Moreover, the

denominator in equation (4.10) represents the local

76
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L}
convective heat transfer rate at the fin root multiplied
by the fin length; hence
h(L)8y (L)L = -LK,6, (L,0) (4.12) *

By combining equations (4.10)-(4.12) and also by
using normalized variables (2.23) and transformations (3.5),

the fin effectiveness becomes

1/+d0% (%)
e-g[—‘%g!—’] —&—/ % (v,0) " (4.10a)

In order to compare this with the fin ettoctivrness
obtained in "the previous ctudy (27,28), Pr=0. si is again Cx
used in above equation. Pbr the sake of clearness, only
data for y=0.1, 0.3 and 0.5 are compared in tzgure (4.10).
The present data, represented by discrete points, are
in excellent agreement with the curves of previous

resultg;

4.2 PERTURBATION APPROXIMATION <

‘When ﬁio Froude number is not extremely large, the
governing equations (3.17)-(3.19) and boundary cond;t,ons
£ (3.20)-(3.21) indicate%that solutions of this periodic -
problem may be affected by parameters Fr, Ky» Kz, C, and
Y. By means 6f the series expansion (3.22), Fr is removed
from all the perturbation equations ‘and the1 boundary N
conditions. Nevertheless, numerlcal work in |solving . ‘1’ a":*

equations (3.23)-(3. 28) for the remaining four parameters

at various levels is still expensive; only sdlected
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unsuccessful due to the divergence of the solutions. An’

alternative\attempt using~xl-50 led to thé\qgnyerqedApold-

1
and resetting ¢=0.01, reduced the required number of itera-

tions;after 20 iterative loops. A fufthe; try using X.=50 J

tions 69 5. Th}s éb;ervetion again emphasized thé anti-

cipated , fact th;t the stronger the coupling of condﬁction

and free convection problems, the more difficult the

conveggence of their solutions. .
The effect of parameter Kz dg,;;e solution matching

at the interface was also studied, When C=1.0 and K =1.0,-’

1
solutions converged within 7 iterations for all four para-

meter levels of Kz (0.1, 1.0, 10 and 100). 1In fact, a

. v /
further attempt for xleooo also produced converged result

within 1l iterative loops. It‘was therefore concluded that -
when C=1.0 and lel.o, the convergent.rate of the pertur-
bation solutions was rather insensitjve td the parameter K, .
4.2.1 SOLUTIQHg/;; BOUNDARY LAYER PROBLEM

Prior to investigating velocity and temperat&re
profiles of Fhe recombined (i.e. perturbed) result;, ifJ.“
is logical to explore some characteristics of the pertur-
bation solutions.

The amplitudes of the first-order perturbation solu-

tions: fn’ %, En’ and 3, for a typical example of y=0.1,
¢

C=0.01, Kl=l.0 and K,=100 are presented in figure (4.11)

.

»
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Even Part of the Perturbation Solutions
for the Boundary Layer Problem



~and {(4.19). ‘The odd.parts of thc*pcrtuthtion f.o\ the steady

\

, . .o

N

. - 4‘ [ \
solutions are approximately ten times smaller than the even

' parts. Examination of aXl the cuhs unde_'r"this -Wshou

that this Obsgrvaﬁiop ;s~§enpraliy true except in.the cases

of K,>0[1], where both odd and even purts af thq’pbrturbaéion'

. solutioﬁt»are of the same order of ‘magnitude. In ipite of

these .relative maantudes, it is more important to determine

-

whether they can lntroduce significant perlodxc effects
with a reasonable degree of accuracy.

In,general, thé truncation error of "a firét—order
perturbation series expansion can be estimated by the .
magnitude of the second-order terms. Accordingly the .
accuracy of the present r;sults relies on the product of
Fr-z,and the second-order perturbation soiutiohs. Oon
aécount ofkthe fact that both steady and periodic parts
of the solutions have been properly normalized in
Appendix B (durlng the derivation of governing equations),
the magnltude of the second-order perturbatxon results is
of order opne and the accuracy of, this first-order pertur- '
bation app;oximation is therefore in the order of Fro2.
I1f a truncation error of 0[10-21 is the acceptable 1limit,

ten is then the smallest Fr value to be used in studying

these perturbation solutions.
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. riquru (4.*13) (4. %l) show. s&o ozwlu Mpictinq

the pcriodic tnturu af beundary hy.r -olutionl to: .

~ ,d'ittorbnt parmur valuo.. None of thell lhm a noticeablo )

N pcriodicity & the flui.d tmcnturc vhcn rr is oqual. ‘to or

: qrcator than m, on the other hmd, v.locity proﬂ.\lol for

*

Pr=10 an ro\nal somne poriodlc feature in m v&dhity

4

their m nun‘Valuos. Figure (4.18) shows . that th}l *
pbriodicit disapqears in both tcmperqturo and volocity
profiles when Fr=100; it would appear that the problem has
reached its quasi-steady_stete when Fr‘approachee this ‘

. S

order of magnitude

'4 '2.1-1 EFFECT OF PA!AMETBR

-

» Boundary layer solutions at the roots of two -

.dxfferent fins (Y-O 1 and 0.5) are compared in figure

(4.13) for C=0. 01 Klsl .0, Kzal 0, and Fr-lo. Both thermal
and momen tum boundary,layers are seen to increase thexr .
thicknesses with éarameter y; but as far as the normalized
quantitfeé are of concern, thég-greater the parameter y the
smaller the-magnitudé\ot the maximun Velocity.‘ Although
the non-perlodxc temperature across boundery layer for
y=0.5 is g nerally. hlgher than that ;Qr-yao.l the steeper
temperature . radient for the latter indzcates a higher
locel heat tr sfex rate at the f1n root when the parameter
y‘iénsmaller ' .

Plgure (4 13) "also shows that solutions vary with

e
the £in pos;tlon "The 1nc11nat10n of the rotating fin is

“r érqgﬁed by tﬂe angle starting from 0° when the fin ‘s

) S A

v A a

§ W T o
AT
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pot;zuug downward and rotating uo*;“-c'hq;ﬂn . P‘oa the

. £in 48 -‘lu a 0%-angle vith the vertiocal dine, m\b\wyancy

effects of gravity and centrifugal -foros oencur) the resultant
velockty ¥, Lo hened giester than thet For she 1607 posttion, :
in which these two 'dx'twtnj foroes oppose each other and their
total buoyancy effect decreases accordingly. No difference

in the velocity profiles for the fin at th..tﬁo horizontal
positions has Qnon noticed.

4.2.1-2 EFFECT OF PARAMETER C

Figure (4.14) discloses the effect of parameter C
on the thermal and the momentum boundary layers. The
thicknesses of these boundary layers are insensitive to
parametsr C, although bogh the temperature and the volocityh
are greater when C is smaller. Morsover, the temperature
gradients at the solid-fluid interface (n=0) juggest a
higher heat transfer rate from solid to fluid at the fin
t when the parameter C increases. This is logical
because the ﬁore conductive the fluid (i.e. the greater C)
the higher the heat transfer rate. Again, fluid vélocit§
for the fin 0° is greater than that at 180°, and no
deviation is noticeable between the velocity profiles for
the fin at 90° and 270° positions.

4.2.1-3 EFFECT OF PARAMETER xl'

By using the same parameters C, Kz, and Pr, the

velocity and temperature profiles of the fluid at x=1.0

12}
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for X,*1.0 end 50.0 .!;:nw 1 gigures (4.13) and
(§:16) respactively. For R =1Q, no diffgrence 1s mh‘
ia Whe velodity pubfile when She fis is at two horflomwt
pasietany fesrrespondiag to 90° et §30° ia the drasing.
This agresmsns 4ia velocity profile is’mainly due to thd
extremsly small value of .’n in 'ﬁ..p.nuﬂuuon solutions
when K,=1.0.. Kowever when xi—so. figure (4.16) IM{’U'MP.
the velocity £ for the fin at 90° deviates appreciably in
its peak value from that at 270°. On the other hand, this
v,locity profile hardly varies as the fin rptates from 0°
to 90° or tro-. 180° to 210‘. his to.!o;.ry steadiness in
tluia §¢loc1ty is because the 04d part iﬁ of the perturbation

solutions has the same order of magnitude as tho'ovon part

fn,

‘the patpaeter K increases.

and generates noticaable otf.ct on the solution fn when

The rate of solution convergence can be affected by
paramster K,. Mathematically, this K, value represents the
intensity of coupling between the poriurbed boundary layer
oquationi.whilo physically it indicates ths significance
~of transient effects on the boundary layer solutions. As
n?ﬁtioncd before, the difficulty in achieving the inter-
facial con;ergcnc. of the porturboa solutions increases
with parameter K,, but decreases more rapidly with parameter
C. In other words, the parameter C plays a much more
important role than‘klﬂin the convergence of interfacial

solutions; however, a large Kl—valuc does aggravate the

il



convergence problem when the parameter C {s not much smalier

than uni ty . e

k]

4.2'.1-4 EFFECT -OF PNRAHETER K2

I3

7 Like figure (4.15) for K,=1, figure (4.17) depicts

the perturbed boundary layet solutions for K -100 while the

2
other parameﬁers remain unchanged. Almost xdentzcal
solutions from the above two figures reveal that this

- parameter Kz has no influence at ‘all on the perturbed

boundary layer solutions.

4.2.1-5 ' EFFECT OF FROUDE NUMBER (Fr)

The larger the Froude number the smaller it§ effect -
on the solutions. Figufe (4.18) gives the boundarf layer
: soluﬁions at X=l.0'f0t Fr=100. Comparison of these solutions
with those presented in figure (4.15) discloses that the
periodic feature vanishes, as expected, when the Froude
number becomes very large. In fact it is reasonable to
.predict that the solution in figure (4.18) is very close
to the quasi-steady results for extremely large Froude
number. This prediction is proved to be corfect as
soLgtionsfin'figure (4.18) match coﬁpletely with the
quasi-steady solutions for y=0.1 presenﬁed in figure (4.2).

" 4.2.2 SOLUTIONS OF CONDUCTION PROBLEM

Parameter C has a significant effect on the conver-
¢ .
gence of the perqPrbation temperatures along solid‘fln.
The magnitudes of all the perturbation temperatures @o and

’
35 obtained in this stahy are so small that after being
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d&vided by the minimal Froude number of 10, none of them
can give rise to any, noficeable change, in th; quasi-steady
solution 00 along the fin. Therefore, none of these
parameters noticeably affect the solution 06 in the conduc-
tive fin problem. Nevertheless, éxperience shows that it
is more difficult to satisfy the convergent criterion of
10-5 for these perturbationngmperatures So and 30 when
vthe parameter C becomesvlafge;.‘,This implies that at

least one of the above perturbation temperature either
increases its magnitude or change profile with C.

) Convergent rate of the perturbatioﬂ\temperature
along the fin decreases inversely with magnitude. Figure

~ ~ ‘s
(4.19) depicts solutions .o and Oo for y=0.1, K,=1.0 at

1

three levels of parameter C: 0.01, 1.0, and 10. When C=0.01,
both 50 and $o a£e°very small and their magnitudes decrease
monotonically from fin tip (x=0) to fin root (x=1); theée
two favourable features contribute to the rapid convergence
of the solutions at the solid-fluid interface. As the
parameter C changes from 0.0l to 1.0, the magnitudes of 50
anq.s inérease approximately fifty times without losing
thé afo;esaid monotonically decreasing feature;:this
'iqgreasé in magnitude results in the requirement of more
iterations for the interfacial convergence.

Shapes of the perturbation temperatures °o and @O

"significantly affect the rate of solution convergence.
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Figure 4.19 First-Order Perturbation Temperatures
Along Solid Fin
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an ous change in the profilés:of these pérturbation
temperatures appears when C=10. 1In spitc of keeping';he-
same order of magnitude as when C-l both 0 and O
ihcrease with distance x from the fin tip to their naximal
magnltudes at certain (but different) x-values, and then
decrease inversely with x to zero at the fin root.

Thi; loss of monbtonically varying characteristic in the
magnitudes of 50 ang 30 is possibly.the major hindrance
to the rapid convergence of these perturbation solutions

< [ RN

at the solldG‘uq interface when the parameter C is much
‘ ™
greater than unity.

4.2.3 SOLUTIONS OF OVERALL PROBLEM

"It has been found that when the Proude number is
not less than ten, the temperature of neither fluid nof
solid fin experiences any noticeable disturbance from the
perturbation solutions. An.alternative investigation may
be undertaken on the possible disturbance in temperature
gradient and heat flux which, as‘demonstrated in section
4.13, are closely related to the total heat transfer rate,

the Nusselt number, and the fin effectiveness,

4.2.3-1 TOTAL HEAT TRANSFER RATE

By referring to equation (4.3), the heat transfer

rate per unit base area of the fin is

K o _ 3¢ (y,1)
_ Ss’r (o)
q = R, 5E (4.13)

96
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-That is, the total he'L tranator rate across the din Lase

b,

at )T 7: p;opo‘ ional- to the t-nperatnre gradient
13 s Which ca

be further approxinatod by the' pcttur-

¥

bation result:

8
30°(Y.r) - doo(v) L L
k148 .14 Fr

- ) ) ‘ .

dbo(Y) a®_(y)

o—

. (4.14)
Figure (4 . 20) demonstrates the periodic variation

of t?e‘rodk heat transfer rate as the fin changes its . \~'

‘posiéion angle o while rotating (the fin is projecﬁing
do;nward when 1=0 or 1). It is cieag that if Fr increases
to 100, the total heaé transfer rate approaches that of
the quasi-steady solution. When Fr decreases to 10, the
fluctuating amplitude of this total heat transfer rate
increases to approximately 2% of the quasi-steady solution.
A dashed line for Fr=2 is also presented in figure (4.ZQ)>
though the accuracy of this first-order perturbatien
approximaéiOn is considered to be extremely questiPnable.
when this Fr value is less than 10. The plot, however,
still indicates that a fluctuation in the ordér of 10%
is plausible for Fr=2.

All the curves in figure (4.20) have some common
features which may be used to determine the proper initial
time level for the direct integration approach. First,

every curve is fairly linear when 1 varies from 1/8 to 3/8

__az_—-coa(ZWT) + ——3:——-31n(2y151 L

97.
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an&.trom 5/8 to 7/8.

‘valley point otlavory‘cutvc are \al

~

(- .
and 3/4.. Af1 this suggests .that either t=l/4 or 3/4 nay
¢ -

be chiosen as the injti,) time level for the airect

From equation (4.7), the Nusselt number at the root
of a rotating fin for this periodic heat q‘hnsfer Problem

can'be deduced: that isg

3RaPr 71/ |
Nu = -[Z—('l%p-r{r] On(y,o,‘t)‘ ; (4.15)

where ¢n can be approximated by

@n(Y,O,r) = ¢3(Y,0) +?%F[$n(y’0)°°s(2"T) + 3n(y,0)sin(2nr)]

(and Positiop angle qa) for several ma;nitudes of Froude
number 1§’;::j;nt?d in figure (4.21). By comparison with
figurei4.20), this plot reveals that the Nussel£ numﬁer
at the fin root has a lower bPercentage fluctuation than
the total heat transfer rate in the Present case. Also,
,all the pPoints of interest, i.e, thé Peak points, the

valley Points, ang the pointg where curves intersect the

S s,
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- a
of this, the nearly linear feature of a \rves when
the rotating fin changes its position from ™=1/4 to t=3/8
and from t=3/4 to t=7/8, again suggests'that’goth ™=1/4
and 1=3/4 may be the propér init;;l time levels fo? the
direct ihteé;ation approach. -

In fact, even if this pldt of O (y, 0 T) versus T
ao (v, 1)
does not support that of —_F——___ versus T in determining\\

the initial time .level, the recommendation from the latter
3¢ (v, 1)
should be the proper one because —r—F{——— represents a

physical measure of the overall problem while on(y,o) only
pProvides a local indication.

4.2.3-3 FIN EFFECTIVENESS

A significant amount of phase-shift appears in

figure (4.22) where the fin effectiveness ¢, defined by

o Y [aa+pn)]/v2% (v, D) |
€= % [, 3Pr 3T (¢ (v, 0, 1) : (4.17)

is plotted versus time Tt and position angle o of the

rotating fin. Apparently, all the points of intereSt\§how
the same excursion to the left of the graph. For example,
the fin effectiveness predicted by this perturbation
sold®ion reaches its maximum value approximately 30° before

the fin rotates to its vertically downward position (t=0

or 1) where the maximum total heat transfer rate takes place.

ad oY, T)
Unlike ___Fz___ and ¢ (Y,O‘Y), which are real

entities directly involved with the integration of the ;

governing equations, fin effectiveness defined by equation

-
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(4.17) is merely an intuitive apptailgl of the problem;
neither physitally nor mathematically can it" affect the
direct integfation to any extent. For this reason, use af
figure (4.22) is not recommended in the determination of
initial time level for the difoct integration apprbach ‘
though both t=1/4 and t=3/4 are still indicated Sy this
plot to be two time levels of ;atisfactorily small curvature.
Again, the fin efféctiveness for Fr=100 fluctuates
almost imperceptibly aboﬁt the quaﬁi-steady result in
figure (4.22)l This fluctuation increases to about 1% and
3.5% as the Fr value decreases tq 10 and 2, respectively.

4.3 "EXACT" SOLUTIONS

An‘"exact" sQlution in this study refers té the
numerical solution obtained from the direct integration
of equations (3.17)-(3.19). General guidelines for this
direct integration have been described in section 3.2.2
througﬁ some examples depicted by figures (3.1)-(3.6).

The suggested Jse of first-order pertu;batidn to
approximate the exact solutions at a.proper initial time
level in this work postulates that the variation'of
Froude number would not cause significant phase-shift in
the solutions; that is, cases similar to either figure (3.1)

L
4r (3.3) are assumed. This assumption is later verified

<

-

a posteriori.
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Bocauu of the cxpuutve nmrical work expected
in this approach of direct intoqrneton, the study centred
on the eftocr of Froude number, the mOsSt important para«
meter of this‘ periodis problem. ziact selutlou vere \
obtained.atwrour levels of Froude number @, 10, 100 and
10 ) for a representative set of pavameters- y-o.l, Pr=0.72,
C=0.01, K,=l.0, an? K2-100. e ’

In order to reduce the computing time, integrations
were, carried out by using the srep sizes of An=0.1, Agxo 01,
and At=1/8. By virtue of the first two step sizes, quasi-
steady and perturbation solutions could be secured within
Seven and three mlnutes of computation on an IBM 360/67
machine.

In the diréct*integratlon of the governing equatlons
(3.17)~(3.19) for a large Froude number, the pro;er initial
time level was determined from the perturbation result.

In this study, the predominance of the even part of the
perturbation solutions over the odd part hinted at the
possible resemblance between the exact solutlons and a

cosine curve. Moreover, the assumptlon of no sxgnlflcant 4
phase—shlft among solutions for different Froude numbers
suggested approximately linear solutions Wlth respect to

time in the vicinity of T=1/4, which was therefore chosen

as tho initial tinte level for large Froude numbers.
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\ .
Yor comparison, quasi-steaddy and perturbation results

vere soparatoly'u-od as the 1n1*tz: solution at t=1/4. DBy
t,

means Of the quasi-steady resul
| ]

imewise convergence was
achievéd for Fr=10" after 135 minutes of computation, but
failed completely for Pr=100. When QM .ntf.utbnuou .
approximation was used, however, solutions in both cases
(Pr=100 and 105) were obtained wi}h 25 ninuton‘of computing
time. Therefore, a search for the perturbation result

prior to the exact lolufion‘is béth necessary and economical
even if the Fr vald§ is not small.

The initial time level for all the small Froude
numbsr cases (Fr=2 and 10)~¢ag also set at t=1/2. 1In the
present study, the exact soluRions for large Froude numbers
all deviated from their perturbation approximations in the
manner\demonstratea by figure (3.1); namely, no appreciable
phase difference was revealed. It was assumdd that same
phas; behaviors held between the exact and peréurbcd
solutions for a small”Froude number.

Numerical experimen were conducted to choose a
‘proper initial solutions,fo:xthe small Froude number.

Wiﬁh the exact solutions for Frtloo as the initial solutions,
;he periodic solutions were matched to better than the third
decimal place w}thin 40 minutes of timﬁwise iteration. The

overall computing time for a small Froude number was in

the order of 75 minutes. Both quasi-steady and perturbation



results were alnﬁ used separately as the tyial tpit.tul
edlutions in this direct integzration approsch for sasdl
Froude numbers. The former often led to solution diver-
gence or nuuricaliovornbw vhuo}eho latter produced

106

o;:nvu"nc. after 200 mninutes of extremely leng éu}nuuoa.. :

Undoubtedly, direct integration of the governing equations
for a large Froude number before solving the case for '
small Froude nd;ber. would shorten a étcdiqiou- amount of
computing time.

) “The denmons trated approach for the direct integra-
tion of equations (3.17)-(3.19) assures fast timewise
convergence of the periodic solutions. Noewithst;ndinq
all endeavors and sngeuoos in saving computing time, the
. minimum requirement of 75 minutes for solving a small
Froude number case may still make the whole scheme seem
economigally unattractive. Closer examination reveals
that this long computation solely reflects the couplcxity‘
of the coupled heat transfer model at each time step.

In fact, periodicity of the solutions can be obtained

after three timewise iterations.

4.3.1 SOLUTIONS OF BOUNDARY LAYER PROBLEM

To compare the exact solutions of the bdundary
layer ‘problem with their perturbation approximations, two
sample solutions for Fr=10 are presented in figure (4.23)

and (4.24). Apparently, there is very little difference
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Figure 4.23 Periodic Boundary Layer Solutions Obtained
from Perturbation Approximation for Fr=10
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Figure 4.24 Periodic Boundary Layer Solutions Obtained
by the Direct Integration Method for Fr=10
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in the temperature profiles ¢ between these two graphs.

In contrast to this, the velocity approximated by the
perturbation results in figure (4.23) is generally hiéher
than its exact value in figure (4.24) despite the fact

that they both fluctuate in nearly the same magnitude.

and reveal the same boundary layer thickness. As far as

the acdur;cy of the perturbation approximation is concerned,
however, the greatest velocity difference of three per cent
between these two sample solutions is still within the

2

truncation error, 0[10" ], of the perturbation results.

Figufe (4.24) depicts physically sound velocity
profiles. As the fin is projecting downward, i.e. Oo,
concurrence of the gravitational and the centrifugal forces
ipduces a fluid velocity higher than that of 1800, where
opposition of forces reduces the net buoyancy effect on
the fluid. No appreciable difference exists between
the velocity solutions at the two horizontal positions

° and 270%).

(90
The fluctuation in fluid temperature profile is

very small. For this reason, only the limiting temperatufe

profiles at two vertical fin positions of 0° and 180° are

plotted in figure (4.24); temperature profiles at other

fin positions are virtually enclosed by these two limits.

The boundary layer solutions obtained by the direct

integration method for Fr=2 is shown in figure (4.25).

(-3

109



1.6 pam

00

Pr=0.72
" y=0.1

K,=1.0
K,=100
C=0.01

180°,270°

0.2 0.1
0.0 0.0

Figure 4.25 Periodic Boundary Layer Solutions Obtained
by the Direct Integration Method for Fr=2

110

x=1.0 =o.6



\ i ~. ' _ S . ' ' 111,

The temperature profiles vary slightly with the position
, of the rotating fin but the velScity profi}g@rfgggsuaee '
80 intensively that they even predent noéiceable differences
at the two horizontal fin positions. 1In particular, the

momentum boundary layer at the position angle of 2?O° is

thicker than that of 90°.\yTho solutions also indicate

, ;
that although the maximum velocity varies significantly
when the fin rotates. from 0° to 90° (or from 180° to 2700).

the thickness of this momentum boundar% layer stays nearly

. unchanged.
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4.3.2 SOLUTIONS OF CONGUCTION PROBLEM ~

.Figure (4.26) sh&wl the periodic fluctuation in the

' ‘?olid fin temperature obtained by direct integration of

equations (3.17)-(3.19) for Fr=2. When the heated rotating
fin is projectinq‘dauﬁward (0°), concurrence of ccntrifugal
and gravitational forces enhances the cooling effect of the
ambient fluid and, as shown, results in a lower fin-tempera-
ture profile. On the other hand when the rotating fin is 
projecting upward (180°%), oppos%’ion of thé two body forces
reduces the cooling effect and accordingly leads to a higher
fin temperature disﬁribution. Siﬁilar‘graphs have been
constructed for other Fr values and, as expected, the
difference between these temperatures at two vertical fin
positions varies inversely with Fr and eQentually disappears
when Fr is greater than 100. It is also shown in figure
(4.26) that when the fih~ijrin.the two horizontal positiong
(90° and 270°),'the difference in the corresponding fin
temperature is negligibly small.

4.3.3 SOLUTIONS OF OVERALL PROBLEM

Periodic variations in the total heat transfer
rate, the Nusselt number, and the fin effectiveness for

exact solutions are presented in figure (4.27), (4.28),

and (4.29) at four levels of the Froude number (2, 10, ign‘/“

and 10°) when C=0.01, y=0.1, Pr=0.72, K,=1.0, and K,=100.

1
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Figure 4.26 Periodic Fin Temperature Obtained by the
] Direct Integration Method for Fr=2
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For comparison, the perturbation results are also plotted

-

as dashed lines for both Fr=2 and 10.

4.3.3-1 TOTAL HEAT.TRANSFER. RATE
2

From equations (4.2) and (4. 3), the total heat
transfer rate Q for this periodic problem can be derived -

.as 30 (v, 1)

L
Q(t) = [2wn 3 _—T_ (4.18)

As all the bracketed quantities in the,, above equation are

set constant for a given problem, this total heat transfer
aoo(y,r)

13

rate can be expressed by the temperature gradient

at the root of the solid fin,.

Several characteristics of the total heat transfer
rate for a sample problem are dlsclosed in figure (4.27)
where the temperature gradient is plotted ,against time Tt
and position angle a of the rotating fin. 1In agreement with
the perturbation approximations, maximum heat transfer rates
(peak points) of exact solutions for Fr=100, 10 and 2 all
" occur at a=0° (1=0 or l) while their minimum heat transfer
rates always take place at a=180° (t=1/2). Moreover, all
the curves intersect the quasi-steady result in the ;iéinity
of a=90° (t=1/4) and a=270° (t=3/4). The nearly linear
sections between 1=1/4 and 3/8 of all the curves shown in
figure (4.27) verify that the use of T=1/4 as an initial
time level in obtaiﬁing exact solutions for these cases is

perfectly acceptable.
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It is also worth nqtinq that ma;nitudo of the
rroude'numbef can affect the total mean heat transfer rate
of the problem. When the Pfoudo'number:is mhgh greater \
than one, the tdt;l heat trlnlfcr rates indicated by the
exact solutions in figure (4.27) fluctuate ;lnost symme-
tri;ally about the quasi-steady res;lt; namely, their total
mean heat transfef rate equals the duasi~steady solution

to a close degree. However when the Froude number is of

~
N

order one, this mean value becomes significantly less than’

the quasi~steady result. N
Discripancy in the total heat transfer rate between

the exact and the perturbed soluEions increases inversely
with the Froude number. In general, a decrease of the
Froude number undulates both the perturbation result and the
exact solution, but to a greater extent in the latter case.
Figure (4.27) reveals that the maximum discrepancies between
the exact solutions and their first-order perturbation
approxlmatlons are respectivély 0.5% and 7% for Fr=10 and 2.
In comparison with the estimated corresponding truncation
error, i.e. O[Fr~ 2], of this first-order perturbation series
expansion, these low discrepancies suggest that the total
magnitude of all the high-order perturbation terms is rela-
tively small in this study and the use of the first-order
perturbation approximation alone is acceptably accurate in

most cases provided the Froude numiser is not too small. .
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4.3.3-2 NUSSELT NUMBER

Equation (4.15) indicates that for a given problem,
the Rayleigh number (Ra) and the Prandtl number (Pr) ;ro
fixed and the Nusselt number at the root\ot a rotating fin
can be expressed Sy the temperature qtadionL 5n(v.0,r) of
tho‘fluid at the solid-fluid fntortnco. This temperature
gradient is plotted again@t time t and position angle a
_iﬁ\figure (4.28).

Several characteristics of the time-dependent
Nusselt number are observed. In comparison with figure
(4.27), all %he curves in figure (4.28) take an excursion ¢
to the right. Nevertheless, linearity still appears between
t™=1/4 and 3/8 for every curve; this trend again substantiates
the wisdom of choosing t=1/4 as the initial time level in
the direct integration approach. Siﬁilar to the total heat
transfer rate, the Nusselt number undulates its fluctuation
but decreases in its mean value as the Froude number becomes
smaller.

It is found that the perturbation approximation is
less reliable when Fr=0[l). As far as the magnitude of
fluctuation is concerned, the perturbation results of both
figure (4.27) and (4.28) estimate a lower percentage change
in the Nusselt number than in the total heatAtransfer rate
for Fr=2; exact solutions, however, manifest an equal

percentage variation in both entities and hence disprove the



observation deduced from perturbation results. In figure

(Q.Zl). the perturbation results for Fr=10 and 2 can deviate

‘ufhp to 1.5V and 11\ respectively from their approximated

N

exact solutions. These deviations still concur with the
estimated truncation error, otrr'zl. of the perturbation
approximation. Apparéntly, the use of the first-order
perturbation series expansion to -pproxinaéi the exact
solutions at the chosen initial time level 1-1/4 in this
itudy is sound if the Froude number is much greater than one.
4.3.3-3 FIN EFPECTIVENESS “

Equation (4.17) of section 4.3.2-3 is used in
determining the fin effectiveness ¢ of every directly
integrated exact solution. The calculated results and their

approximated values for both Fr=2 and 10 are plotted versus

120

dimensionless time t and fin position angle o in figure (4,29).

Several distinct features are present in figure (4.29).

First, none of the periodic fin ePfectivenesses resembles a
cosine curve; all the peak and valley points deviate from 0
(t=0 and 1) and 180° (t=1/2) to an pppreciable degree. For
Fr=10, the exact solutifn indicates a fin effectiveness
fluctuating about the {basi-steady result (Frslo-s) similar 4
to a negative sine curv?,’i:e. witﬁ the valley at 90° and
peak at 270°. In‘othé; words, the phase angles between a peak
and a following valley, or vice versa, is always half a period

(180°); this also holds for the perturbation results for both
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Fr=2 and 10. The exact solutions for Fr=2, however, presen£
completely differen£ feature; for fin effectiveness, which
takes about one third of a period to rise from its wvalley
to its peak but needs the/temaining two thirds éf the period
to subside to the valley point of the next cycle. In addition,
thié fin effectiveness of the exact solutions for Fr=2 reveals
a mean value highér than the quasilsteady result although’ its
~ perturbation approximation predicts a lower mean value than
the latter. |

| Despite all the differences in phase angle, ;hape,
fluctuating magnitude, aslwell as 'in the mean value, maxi-
mum -descrepancies in fin effectiveness between perturbation
result and their corresponding exact solution are 0.8% for
Fr=10 and 6% for Fr=2.

4.4 LIMITS OF APPLICABILITY

Applicability of the present result is subject to
some ﬁésic constraints of this problem. Assumptions utilized
in appendices A and B to derive the laminar boundary layer
equations (B.34)-(B.37) impose the following limits on the
soluﬁions: ¢
(1) Lim;t for laminar free cﬁnvection phenomena.
In order to avoid the development of turbulent flow in
conventional free convection proble@s, i.e. gravity is the
only body 'force for the entire system, the Rayleigh number

should be less than 10°®. By assuming that this limit on

the Rayleigh number also holds for a laminar free convection



(2)

(3)

(4)
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N
problem in a centrifugal force field, the Rayleigh number
defined by BRw?0_L?

Ra = e 3 , o
f
should satisfy the following:
. Ra < 10°* . * (4.19)

Limit for boundary layer flow.

A boundary layer flow will take place when
Ra > 10* (4.20)

Limit for insignificant Coriolis force. ‘
T —

The Coriolis force effect lI'L the momentum equation
/

(B.11) can be ignored if

where the Ekman number is defined as
3

v
Ek oTT
For convenience, the above condition is replaced by

Ek 'Ra™?/* < 9.1 . ®4.21)
Limit for negligible viscous dissipation.

All the viscous dissipation effects, represented
by the last three terms on the right-hand-side of the
energy equation (B.13), become vanishingly sm;ll if the
ostrach number defined by
BRo L

°p

Os =

is much less than one, j.e.

Os < 0.1 (4.22)
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(5) Limit for no reversal flow.
When the centrifugal acceleration at the fin root is
greater than the gravitational acceleration, i.e.
(R-L)w® > g , (4.23)
the fluid in the boundary layer will always flows
radially inward; no reversal flow will take place.
(6) Limit for Oberbeck-Boussinesq approximation.
Applicability of the Oberbeck-Boussinesq approximatioﬁ:
o = po(1-88) , (A.5)

relies on the assumption

J

80 74 1, (A.6)
or more specifié;lly, o

Ber < 0.1 (4.24)

Actual constraints on the applicab;lity of the
éolutions given here can be clearly illustrated by delineating
these limits on a properly chosen coordinate system. If
air at a temperature of 68°F is the ambient fluid of a
6-inch rotating £in,and Gr=lO°F, the estimated value of

BO _ c qeileg = 0.01¥F
automatically satisfies the inequality (4.24). Furthermore,
substitution of the physicai'suantities [48] of air:

Kg = 236 X 107°% ft?/sec , .

v 160 x 10 ® ft?/sec ,

and cp = 6000 ft?/sec?-°R
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into the remainingyinequalities (4.19)-(4.23) yields the

following more rigorous constraints:

>

Re? < 1595 (4.19a)
\ Rw? > 0.16 , " (4.20a)
Ro2/Y > 6,232 | (4.21a)
Rw? < 633600 (4.22a)

and .
(R-0.5)w? > 32.2 : (4.23a)

These inequali tly constraints are shown in figure (4.30)
TR

where 1nR is plotted versus 1lne. The shaded 51de of each
constraint contour 1nd1cates the reglon where the solutlons‘
illustrated can not be applied. \Applicability of these
solutions is limjited to the dotted regi ﬂn figure (4.30).
The actual constraints are, therefore, rmined by limits
(1), (3) and (5), i.e. 1neqﬁq&fﬁies (4.19), (4.21) an® (4.23).

In figure (4.30), differenf portions of the dotted
region corresponds to different possible applications of the
presented results. Solutions for the upper portion of the
dotted region can be used in @ Te-entry environment because
of large radius R ang low angular velocity w. On the other
hand, solutions for the lower portion, which is characterized
by small radius andg medium angular velocity, may only be

applied to a centrifugal machine rotating at relativeiy low

rpm. It is shown in figure (4.30) that the highest angular
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Figure 4.30 Limits of Solution Applicability: an illustration



velocity for the dotted region should be less than thc'gpgulir
velocity associated with the intersection of litqits (1) and
(5). By solving the simul\taneoq; equations:

2 . ®
+ Ru® 91595 -

and (R-0.5)w? = 32.2 ,

which are deduced from these two limits, the angular velocity

for the intersection is found to l;e ‘ T
. ~' @ =56 rad/sec = »535 rpm;

suﬁ a ]tow limit on the angular velocity indicates that

solutions illustrated have no application to high speed

turbines. 1In addition, based on the inequality (4.19a),

the solutions can not be applied to a rotat-;ing sys tem

with the centrifugal acceleration greater than 50g.
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CHAPTER V

>
CONCLUSIONSnAND RECOMMENDATIONS

5.1 CONCLUSIONS

The two Chlef bbjectives of thls wdrk have been
successfully achievgd. First, a perlodic heat transfer
problem of coupled conduction and free convection for a
heated triangular fin rotating together with surrounding
air has.been thoroughly studied. Second, by using this -
periodic heat transfer problem as a vehicle, a rational
approach has been developed fbf solving this type of
periodic problems characterized by finite fluctuating
amplitudes in the solutions.

As a result of rotation, three body forces are
involved in thls Periodic heat transfer problem The
centrifugql force provides a persistent drive to the fluigd
flow while Zhe gravxtatlon;& force brings the per10d1c1ty
into ‘the problem. The Coriolis force does not have any
'significant effect on either the temperature or velocity
solutions; it can however contribute to the pressure gra-
dient in the lateral direction of the boundary layer. The
ratio of the centrifugal force to the gravitational force
is the Froude(gumber (Fr) for this rotating system.

This Froude number was found to be the most important

parameter in the present study. Formulation of this periodic
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heat transfer problem revealed an unsteady-state, two-

dimensional, mathematic model of six control parameters:

-

Y, C, Kl, Kz, Fr, and Pr. By means of a Lefgvre-type

transformation, the effeqt of Pr on the solutions was

virtually eliminated. -Among the remaining five parameters,

the Froude number (Fr) would determine the fluctuating

amplitude of the periodic solutions; the larger the Froude

number the smaller the fluctuation. For an extremely large

Froude number, a quasi—steady-state system containing only

parameters Y and C was obtained.

The quasi—steady-state solutions of the simplified

time-independent equations (3.7), (3.8), and (3.13) were

studied for different values of parameéers yand C. The

results agreed well t;ith those of previous work [27, 281].

in general, the parameter C had a significant effect on all

che solutions while the parameter Y could hardly influence

\the temperature field.

Two empirical equations in the forms of

r B

.and

w = (Fi© - ré(cn]na‘/“

were obtained for the total heat transfer
Nusselt.%umber (N%) at the fin root under
L ¢ .

state condition. values of the ‘functions

(4.5)

(4.9)

rate (Q°) and the
this quasi-steady-
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Fi(c) were tabulated for various levels of parameter C. A
least-squares fit of Q® in a simpler form of

Q® = a'(C)Y-l
was also conducted and the function a'(C) was approximated
by a fourth-order polynomial of the parameter C; the maximum
percentage error of 10% due to this ‘curve fit was considered
acceptable from a practical engineer's viewpoint. The
tabulated values of Fi were also of practical use to a design
‘engineer in estimating the periodic heat transfer rate from
a heated rotating fin system (appendix E).
\ Perturbation solutions were used to study the periodic
proSlém for small fluctuations,and the investigation was con-
ductéd for differént values of parémeters Yy, C, Kl' K2' and
Fr. The parameter C had a significant effect on both the ¢
velocity and the temperature solutioﬁs; whereas, the parameter

>

Y presented a dgreater effec$ on the velocity than on the
temperature. The perturbation results also revealed that in
general, the periodic heat transfer’problem of a rotating fin
was nearly Symmetric about the two vertical fin solutions
(stfaight down and straight up). Namely, solutions at the

two horizontal fin positions were normally identical. Onlyf
when K1>>10 and C>>J,- did these twq solutions have appreciable
difference in their velocity profiles. The fourth parameter

KZ’ however, had no bearing whatsoever on the boundary layer

solutions of all the cases studied in this work. As far as
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the periodic phenomena were céncerned, periddicity appeared
clearly in\the velocity solutions when Fr-io and became
vanishingly small when.Fr-lOO;'no significant fluctuatiop
was ever present in the temperature solutiéns.

The perturbation results for a representative
situation of C=0.01, y=0.1, Klsl.o, and xz-loo; were compared
Qith the quasi4st%adyéstate sol;tions for the same values
of.Y and C. The total heat transfér rate of the perturbation
solutions for Fr=10s matchedlclosely with both the gquasi-
steady-state result and the mean value of the periodic totql

‘heat transfer rate corresponding to a smaller Froude number.
The per'turbation solutioné also showed that Fhe fluctuating
amplitude of the total heat transfer rate stayed small when
Fr=100 and increased to approximately one per cent of the
quasi-steady—staté gesult when Fr=10. Inspection of both the
Nusselt number and the fin effectiveness revealed that their
fluctuations weie smaller than that of the total heat
transfer rate. The average Nusselt number for any Fr value
coincided with the quasi-steady-state result, but the average
fin effectiveness seemed to decrease with Fr.

[ 4

A far more prominent difference between the periodic
. :
total heat transfer rate, the Nusselt number, and the fin
effectiveness was in the phase angle. For the aforementioned

sample problem, the maximum and the minimum total heat transfer

rates occured at the 0° and 180° position angles of the



o

rotating fin respectively; whereas, the maximum and the
minimum Nusselt numbers at the fin root appeared to have a
time lag equivalent to 10° angle behind these two extreme
total heat transfer rates. On the other hand, the maximum
and the minimum fin effectivcnesses tQok place approximately
30° before the rotating fin reached these two vertical posi-
tions (i.e. 0° and 180° respectlvely). ‘

The numerical solutions acquirld from the direct
integration of the time—dependent governing, equations
(3.17)-(3.19) were used to study the periodic heat trans fer
problem for a small Froude number. Oylng to the long and
expensive numerlcal calculation of the\coupled conduction-
convection heat transfer problem at eaéh time lgvel, the
study was mostly centred on the correlatlon between the Froude

number and the periodicity. For the representative example

of C=0.01, v=0.1, Kl=l.0, and K2=100, it was found that

althoggh the decrease in this most significant parameter

(Fr) did introduce some degree of periodic fluctuation to the
temperature solutions, the oscillation was in general small.
In contrast to thi;, the variation of the Froude number
appeared to have much influenge on both the velocity profile
and the heat transfer rate. When Fr=10, the directly inte-
grated veloci;x~solutions osgillated with respect to time

(or position angle of the fin) in the Same manner as the

perturbation result eéxcept that the latter indicated a 3%
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higher maximum velocity. asically,Nthis periodic variation
in volocify préfile remai‘Cd symnmetrical about the two
vertical position angles (0° and 180°) of the fin until the
Froude number decreased to order of one; in that case, the
whole velocity field not oély fluctuated more intenpiéely
but also becqge unsymmetrical about the two vertiéﬁl fin
positions. Pbr example( the velocity profile for.90° was .
different fro& that for 270°.

The total heat‘éransfer rate, the Nusselt number,
and the fin effectiveness of this periodic heat transfer
problem for a small Froude number were also studied. As
predicted by the perturbation result, the n!{mum and the
minimum total heat transfer rates obtained fgom the direct
integration of the governing equations did occur at the 0°
and yao° position angles respectively, whiie the corresponding
extreme values of Nusselt number at the fin root showed a
certain delay in occurrence. In both solutions, there was
a lqoo phase angle beﬁween two consecutive extreme values.
Mofebver, both the total heat transfer rate and the Nusselt
number increased their fluétuating amplitudes but reduced
their mean values when the Froude numbe; decreased. The fin
effectiveness calculated from thé directly integrated solu-
tion, however, revealed a periodic phenomenon with entirely

different phase shifts. As the Froude number was reduced to

order of one, the occurrence of the minimum fin effectiveness
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was delayed but that of the maximum value was,advanco
i.e.'a shorter build-up and‘: longer fall-off times in each
‘periodic cycle. Notﬁithltanding\all gholo periodic features,
nonch?f the ‘#in effectiveness, total heat transfer rate, and
Qussolg nunbcr ever yioldod @ mean value deviating by more
than 3% from the quasi-steady-state solutions.
Applicability of the above solutions is basically
limited by the necessary condition imposed on the Rayleigh

number for a stable laminar free convection flow. If the P

limit of Ra<10®

for the laminar free convection flow in a
constant body force field is also used for this periodic |
heat transfér problem and air is assumed to be the fluid,
the obtained solutions can only be ?pplied to the rotating
sys tem wher%;centrxfugal acceleration is not greater than
509, such as in a re-entry environment or a ‘low speed centri-
fugal machine. These results may be applicable tdo a high
speed turbine if the actual upper limit on the Rayleigh
number for -a stable laminar free convection flow in the
periodically modulated body force field is greater than 108.
This critical Rayleigh number can be determined by the sta-
bility study, for which the results obgglned in this study
provide the basic solutions.

Based on the assumption of Ra<108, a rotating fin

Presents better cooling effect than a stationary fin does.

According to equation (E.10), the mean heat transfer rate
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for l‘rotltinq fin is nghe: tﬂdn that of the stationary

fin 5y a factor of Frl/‘, or'(nuz/g)l/‘. This means that

in practical application, the cooling effect of a thermal

fin can be improved to appro % ately 2.66 times that of a
conventional v-uuon.u-y‘ fin jiit. is economically and
tochnicaily allowed to rotate the entire system to an ®

(A

v .

acceleration of S0g.
| Evidence has verified the reliability of the

techniques and numerica

The close lql’omenf b

solutions and the res

rograms utilized in this work.

the present quasi-steady-state
previous work (27, 28} indicates‘
that both the Blasius-H | type transformation and, the R :
'num.iic!glprogram developed for this quasi-steady-state

problem pre'reliable. Further agreoment‘between the quasi-
sSteady-state solutions and the results obtained by dirqcély
integrating.thé time-dependent equations (3.17)—(3:19)'£0r
Fr-los, confirms that the simplification of these time-
dependent, periodic equations into the quasi-steidy—state
equations (3.7F, (3.8) and (3.13) for an extrem&ly large

Froude number is proper. That is, the normalization procedure
adopted during the derivation of the governing equatiops is °
sound; in fact, that all the calculated functions and thbir-
derivatives are of order one is another evidence of the pro-

priety of this normalizatioh procedure. The agreement bex. ”

tween the quasi-steady-staﬁe solutions and the time-dependeng_

e
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results for an extremely large Froude number also assufesv
the dependability of the numerical scheme in solving the
berzedic preﬂlem. This assurance is furthermore substan-
(tiateh by the fact that these directly iﬁtegrated solutions
matcﬁ closely with their corresponding perturbation approxi -
‘ mations when the Froude number is much greater than one.

Two iterative processes were used in.the{numerical
scheme of this %tﬁdy. All the quasi-steady-state solutions,
the perturgation results, and the time-dependent solutions
at each time step were obtaineg in a similar manpei by -
alternatively solving the conduction -and free convection
problems. This iterative p¥ocess converged when the tem-
perature solutionsg of the conduction and free convection
problems m;tched at the solid-fluid interface. On the
other hand,'the periodic solutions were sought through the
timewise iterations, which continued until all the velocity,
temperature, and their derivatives at each point throughout
the two-dimensional (X-Y) domain converged.

The parameter C had a significant effeect on the
solution convergence rate of the iterative process between
the conduction and-free convection problems. The smaller
the parameter C the faster the convergence. -

The solution convergence rate of the timewise &tera-

tive process depended strongly on the judicious selection

.
of initial conditions and time level. The periodic solutions

v

L
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fqr a problem under very small fluctuation was expected t©
differ only slightly from the quasi-steady-state solutions;
however, when these quasi-steady-state solutions were used
as the starting solutions at t=1/4 for Fr=100 and ghe
periodic equations (3.%7)—(3.195 were integrafed directly,
solution divergence was found after numerous timewise
iterations. In fact, neither could the rapid convergence

be produced by using the perturbation results as the starting

solutions for the periodic problem under moderate fluctuation.

It was then imperative to develop a method of assuring accu-

rate approximations to the missing initial conditions at a
proper time level.

A rational approach, developed in the present study
to produce rapid timewise convergence by providing good
starting solutions at the proper initial timé level of the
period, 1is described below:

S;eg,(l) The quasi-steady-state ejuations (3.7), (3.8) and

(3.13) are solved.

Step (2) The obtained gquasi-steady-state solutions are used

e

as tné zeroth-order perturbation approximations;
the perturbation results Pl and P2, say, for the
smallgand moderate fluctuations are gener ated
successively.

Step (3) Based on the perturbation result Pl, a proper initial

time level is selected; the direct integraiton of the

136
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time-dependent equations (3.17)-(3.19) is then ini-
tiated after all the time-derivatives have been
approximated by ?l.

Step (4) Integrations injthe succeedingktime levels can be
carried out accordingly by replacing the time-
derivatives in the aéuations with finite-difference
approximatioﬁs; the periodic solutions S1 for this
small fluctuation problem are obtained through
timewise iteratioms. |

Step (5) Once the solutions Pl,’P2, and S1 are obtained, the
pProper initial time level and the associated initial
conditions for the moderate fluctuation problem of
interest can be determined by the rules given in
section 3.2.2 through the illustration of some
typical examples. Experience has shown that if the
initial conditions and time level are selected in
this manner, convergence of_the so%#tions is
Jgenerally achieved within three timqvise iterations.

The above approach was proved effective and reliable
in handling this diffusian-type, periodic pkoblgms under
L4

moderate fluctuations. The total computing time required by

‘using this approach to solveﬁﬁhe periodic heat transfer
[ PARE

pProblem ;oaﬂﬁ?‘? wa!'approximately 75 minutes on an IBM 360/67
) v, ’ i
%pmputer.*'ﬂsr comparison, a numerical experiment was con-

ductedey approximating the initial conditions with either



the gquasi-steady-state Qolﬁtions of Step (1) or the pertur-
bation result of Step (2), apd integrating the time-dependent
equations (3.17)-(3.19) for Fr=2. The former approximation
led to solution divergence while the latter gkoducéd time-
wise solution convergence after 208 minutes of calculation.

#It was obvious that the approach developed in this study

could save a great,qg- ,-q computing time. \

I£ should ‘fhff “21;;-at the long computation of 75
minutes by using the dévéloéed‘approach is mainly due to the
complexity of.the coupled conduction and free coﬁvectgpn
heat transfer model at each time step; the solution conver-
gence rate of three timewise iterations is in fact very fast.

As far as the Application is concerned, this approach,‘

]

can provide a‘general guideline for solving other periodic

problems which occur in the physicai world but remain analy-
. tically untouched because of their complgx nonlinear pheno-
mena aggravated by the finite fluctuation in the solutions.

A typical example is the huff-and-puff steam flood process
widely used by oil industry to recover very viscoyg oil from
an underground oil reservoir. A certain amount of steam is
injected into the reservoir to dincrease the formation tem-
perature near the wellbore and lower the oil viscosity; the
well is then shut in for a critical period of time to let £he
reservoir fluid flow into the wellbore; steam injection is

re-started after this reservoir fluid has been produced from
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Ehe same we}l. The efficiency 5f this technique is very
sensitive to the amount of'steam injected and the critical
shut-in time. The physical models dQVeloped in the labora¥ T
tory have limited application value because of the radxcal
changes in reservoir characterlstlcs from well to well; the o \
ndmerical models can easily accomnodato any reservoir des- -’
cription but suffer a major setback due to the great diffi-

culty in sqlving the diffusion-type,~nonlinear, periodic

equations for this intermittent Steam injection and oil

production scheme. One major oil company has spent multh

million dollars on conducting_an 80-well pilor project in
the Cold Lake area to determine the optimum steam injection
rate and the critical we;! shut-in time. Apparently, a
great amount of money qﬁ human efforts will be saved if
the periodic solutions?%or this huff-and-puff process can

be obtained by using fhe approach dev?i?ped in this study.

LY
5.2 RECOMMENDATIONS FOR FUTURE WORK . 1& .

The stability study of this periodic heat transfer
problem is recommended. As shown in section 4.4; the
applicability of the obtained solutions depends mainly on
the critical Rayleigh numer for having a stable laminar
free convection flow. If the critical Rayleigh numbey 8eter-
mined by the stability stugy of this periodic heat transfer
problem is in the order of 109, the obtained solutions may

be applicable to the high speed turbines. In recent years,



Russian scientists have carried out extensive stability
studies [16-24] on periodic free convection problems in a
closed space. The periodicity enters the problems of their
studies either by assuming a periodic temperature solutions
or by vibrating the entire system in a gravitational foerce
field. 1In most studies, high frequencf modulation has been
found to have a stabilizing ef}éEt'on the solutions. Should
the same conclusion.be deduced fromwthe stabi}ity study of
the present periodic heat transfer problem, the applicability
of the sélétions presented in this work would be extended

-

due to a gfeater critical Rayleigh number.

, Experimentai work to'verify the theoretical result
of this study is also recommend;d. The convection heat
transfer phenomenon may be observed by means of a Mach Zehnder
interferometer, and the temperature of the solid fin can be
measured by thermocouples. 1In order to obtain representable
interferograms, the relative distance and alignment between
the fin and the optical plates of the interferometer must-be
exact to within 0.001 inch. Therefore in designing the rota-
ting system, the possible mechanical vibration should be
taken into account. Moreover, the FM transmitter can be
usad to %fansmit the electrical signals between the rotating
system and the stationary instruments in the laboratory.

It is alsp worthwhile to examine the possibility of

the flow reversal when l—y<§% . Boundary layer equation (3.3)

140



141

\

indicates that if the coefficient (l-Yx)+%? cos (27t) of

the buoyancy force term is positive all the time or, more
i hd ’ :

specifically, if l-Y>%;

flows in the radial inward direction froﬁ the tip to the

at the fin root, the fluié)always

root of the heated rotating fin. for l-Y<%;,'the flow is
'étill in the radiallinward-direétion when the rotating fin
is projecting-vertidally downward (t=0 and cos (2mt)=1).
However, the situation may change when the fin rotqfes to
the vertical upward position (t=1/2 and cos (2nt)=-1) ; the
buoyancy force tends to drive the fluid in the radial out-

. ” * "
ward direction wherever l-Yx<l— . Due to the inertia of

Fr
the fluid, the flow may not rtverse itself when l-Yx is
slightly less than %; . On the other hand if the reversal

of the flow does take place, it would most likely start from
the fin root because of the minimum value of 1l-yx (i.é. 1-v);
that is, a new leading edge of a boundary layer, where the‘
.fluid flows radially outward, may form at the fin root
whenever the rotating fin approaches the vértical upward
position. For a given geometric ratio vy, there will be a
critical value of Fr for the excitatioh of this reverse~-flow
phenomenon. This critical Froude number is certainly worth
exploring.

A further investigation is to determine whether the
reverse flow can really develop‘that the flow will oscil-

late along the fin with each revoltion, or to the contrary,
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‘the reversal of the flow will immediatély break away the
boundary layer.

. In closing, it is strongly recomﬁended to apply the
developed approachxgo other beriodic problems having non-

synchronous solutions\of finite fluctuating amplitudes.

\
The immediate, feasible applications aré to solve those
periodic problems presented in references [1-9] for moderate

and large fluctuations.
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E ™

s
oy,
h,

7<%, tiations with respect to these variables, and A==1 or +1°

g
APPRNDIX A

DERIVATYON OF EEATIWS

Under the assumptions given in:section 2.1, the

qovorninq-c&uation- of this rotating fin problem are:

Pe * Up, + pr +‘p(Ux+VY) -0, (A.1)
p(Ut +Uu + YUY) = -l"--& u(U + UY'Y)
(A.2)
- p[‘R-X)w + 20V + qcos(wt)l.
. .\ ’
o p(vt+nvx+W)--PY+u(v + Voy) ‘0. 3)
+ plYn? + 22U - XQsin(wt)l,
[ ]
a ’- ]  §
pc ‘ﬂ'r + U'r + VTY) Kf ('1‘xx + TYY) + 2u(ux + vx)
. (A4
+ U(Ut *{ x 1"

_ where subscripts t, X, and ¥ denote the partial differen-

for the trailing and leading sides of the fxn, rospectively.
In laminar-free-convection problems of incompressible
flow, the temperature difference is usually regarded as the l
only ngnlflcant cause of the variation in density and, also,
this variation is assumed to be(-cmall. In other words, if

8 is the coefficient of volume expansion and subscript "™

indicates a convenient steady state of reference, the density

{ | 148



of the fluid at temperature T is taken as o

p = p Il - B(T-T,)] . (a.5)
where ’ .

B(T-T,) << 1 Co (A.6)

v

is the\necessa;y condition.

when the problem is steady, a conventional assumption

N
is often applied; namely, - the density p is regarded as a

constant in all terms of the govefninq equations except

' those terms assocxated with body forces. This is because

»

the body forces usually have larqer magnitudes-éhan the
others (such as inertia ‘?rce) in free-convectign problems,
the product of the small density change and these body
force terms .can not, then, be ignored in spite of the
condition (A. 6) In fact, thxs product is the primary
factor dr1v1ng the free-convectxon phenomena. However,
the feasibility\of applying this Oberbeck -Boussinesqg appro-
xlmatlon to an unsteady free-convedtlon problem needs some
further consxderatxon

" When the uneteadihess is due to the loss of
equilibrium from a steady state such as in transient
preblems, the tianiient terms in the governing equations
can be small in ctharison with the body force terms.
The application of the Oberbeck-Boussinesq approximation ~

is then essentially the same as in the steady problems.

In the present study, the uns teadiness is caused by the
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\
.pe&iodicaliy varying éffect\oﬁ the gravitational force.

If the rotating speed of the system is relatively high

but not high en;ugh to abate the gr tional force °
effect, the transient terms may n ‘gmall and, on the
contrary, may even be of. the same‘order of magnitude as
body force terms. Hence, it is ébslible.qhat chahgo; in
fluid density can ﬁroduce a significant effect in

periodic convec;ion problems through not only the body
force but the transient terms. Therefore, substitution

of approximation (A.5) into equations (A.l)-(A.4) gives,

respectively:
Ug + Vg = (T, + UTy + VT.)/[1 - g(T-T )] _(5.7)
(1 - g(r-T)fu, + Uy, +vu )= -2 + g, + U,
w’ At X Y P, X VIUxx YY
= [1 -B(T-T ) I[(R-X)@w? + 2)aV + gcos (wt) 1, (A.8)
. --l '
(1 - g(t-Tn)J(vt + UV, + va)-—p: Py + v(Vyy + Vyy)
+ [1 - g(T-T )][Yw? + 2 U - Agsin(wt)], (A.9)
9y - -}
(1 - B(T-Tm')](rt + UT, + VTY)z KeTyy + Tyy)
2V ~, 2 2 AV} 2
+ = (Uy + vy) + c_b (Uy + V). (A.10)

* e

For convenience, the temperature of the fluid
"infinitely" far from the fin can be chosen to be the
reference temperature of the system; in addition, it is

also desirable to.set

-

P =P +f'g (a.11)



L ] .
where P is the pressure departure from the reference

ol

pressure distribution P, shtisfying: <’

-

3P, ‘ ¥
e = “Pol (REX)G + gcos(wt)] - (A.12)
and 3P, .
N pn[YwK - Agsinfwt)]. (Av13)
. : ‘ .

In otheriiprQs, P_ is the prespure distribution when the
whole systen is at a uniform temperature T, (i.e. neither
heating nor cooling at the root of the fin) and ii'.otating

at a constant angular velocity w about a fixed horizontal

——

axis.

With the help of equations (A.11)-(A.13) and the
condition (A.6), the governing'equations (A.7)-(A.10) are

simplified to be

Ux + vY = i{%('rt + UTX + VTY), (A.14)
. ‘e - _ l
Ut + UUx + VUY = -3: gx + v(Uxx + UYY) - 2A0V

+ B( (R—X;kz + gcos(wt)] (T=T_), (A.15)

v, o+ UV HTVWy = -0— By Y Vg * Vyy) * 2AaU
- BlYw? - Agsin(wt) 1 (T-T,), (A.16)
d -
an 2v

2 2
'rt + U'rx + V'rY zf('rxx + TYY) + E; (Ux + vY)

2
) c Y + VX‘) . (A.17)
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These are the boundary layerx equations used in the present
study. It is worth mentioniné that owing to éondition
(A.6), the buoyancy effect of th® Coriolis force is

suppressed in the eguations of-motion by‘comparing it

)

to the Coriolis force itself. .

i
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O APPENDIX B \/ '
- C \
\ NORMALIZATION
1 The method for separation qf equations, .described

{ .in section 2.4, can be used to split the governing equations

" (AL14)=(A.17) into a steady state set:

; YA
s s 8.8 BBy
.‘Ux +Vy = BUS, +V 6), (B.1)
8.8 s,s _ =1 s 8 s s 2 ey o8
U Uy + VU, oo ?x + v(Ugy + Upy) = 2AV™ + Bw®(RX)6E7,
. (B.2)
[1"‘2
3
'S su,$’_ =1 s s . s s _ 2y S
Usv}s + VoYY 5= Py + VVyy *+ Vi) + 20l Bwlye®,
[ (B.3)
s .8 §,8 _ s s 2v 8, 2 S, 2
U By + Viey = xelQpy + 6yy) +'cp L)+ (V) 7]
P X WS vy’ (B.4)
c Y X *
p .
and_a periodic set: &
i <
p P . s s P,S PpS P P )
uf + vE = grel + u%el + vieb + uPef + v oy + uPe} + vPefl,
o ' o (B.5).
P 8.,p 5,P P Py S Py P Py P
t+UUx+VUY+UU;+VUY+UUx+VUY
- =1_p p Py _ P 2 (pox ) oP
o Py +~v(Uxx + UYY) 20aV® + Buw*(R-X)0
‘. s’ P
s + Bgcos(wt)O "+ Bgcos(wt)e™, £B.6)

153



'

P 8.,P 8,,.pP Py, 8 Py, S P PyP
v+ uSVE 4 ViV 4 URVy 4 vPvy + upvx + VPvY

- pl Pp + v(vp + vp ) + 2 wuP - Bw2yeP

+ ABgsin (wt)0® + ABgsin (wt)6P, (B.7)

P . uSeP + vSoP + uPeS + VPO + P PP |
of + USef + v b + uPe)y + vPey + U 0£.+ vPel

N

- P P 2V (,y8yP P2 s,P Py?
Kf(exx + e ) + cp [zuxux + (Ux) + ZVYVY + (VY) ]

> Py2 P2 s.,P s.p s p
[(UY) + (vx) + 2 (U Uy + UyVg + VyeUy

S

PyP 4 ySyP .
+ UGy + VeVl \ (B.8)

Splitting the boundary conditions iﬁ the same
manner, one can first analyze the steady problem separately;
and then, based on the steady results, study®the pefiodic"
part of the problem.

B.1 STEADY EQUATIONS

Since the problem approaches quasi-steady state

when the rotating speed of the system becomes very high, it is

reasonable to expect that the steady solutions are those
of ;eferences (27,28). Accordingly, the same normallzatlon
procedure can be applied to the present problem.

Upon using the fo\;owing normalized variables [27]

*'x = X/L Yy = YRa‘/“/L

S = USL/QRa‘/z vo = vsL/KfRa‘/"‘  “§3)
S

p- = Ps/pKwRa’/“

¢ = e/er = (?-?w)/(Tr-Tm),
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equations (B.1l)-(B.4) can be normalized: ™
s Vs - 8.8 8 8 ) .
u + vy | Per(u ex + v ey) * (B.10)
' s B8 8 8 s . ]
é;'(u u, v\uy) = Uyy T (1-vx) ¢
' (B.11)
--(Ek"aa"/“l(p; + 2av%) +’{aa"/’]u;x ,
(ek™'Ra7}/2) (55 - 20u®) = (Ra™*/*1v8 l
3 : (B.12)
-1/ s -1/ s s s 8 .
+ [Ra ](vyy r y$) - [Ra ] (u Ve *V vy),
and ’ .
S,8 S,8 _ 48 _ pa-1/2748 8,2
u ¢x + v ¢y ¢yy (Ra ]¢xx + [Os](uy)
(B.13)
-1/2 s s s S s_S -1 S, 2 '
+ 2[OsRa ](uxux + uyvx + vyvy) + [OsRa ](vx) .

when air is the fluid, Prandtl number is of order
one and the conditions that Ra-‘/“, Bo_, and Os are all
much less than unity, all the right hand sides of equations

(B.10)-(B.13) are negligible. The following boundary layer

A ) |
equations are, therefore, derived: o
) ui + v; =0, | T (B.14)

1 S s . S s s

T3 {u u, + v uy) uyy + (l-vyx) ¢, (B.15)
s 5 s . L

p., =*2\u . (B.16)
Y o .

and ‘iﬁp .
. .
-] S | s». :
u ¢

~ S - Y . -'
- ' . . ‘ D
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t)
As an .example, for a. 6-inch aluminum £in, 12 inches

from the center of rotatjon, rotating synchronously with

its ambient air 300 rpm if © -T -T, is 10°F, one will have

80_=0.019, 0s=2.2x107", Ra ‘/'so 011, and Ek~'Ra'/*20.06.

ﬂ Equations (B. 14)-(B.17) imply that in the boundary

layers- n N

..

(1) the viscous force ahd the buoyancy f?rce due to the
centrlfugal acceleration are of the same order of
magnitude; |

(2) the inertia force has a comparable magnitude to the
above two forces if Prandtl number is of order one;

(3) the inertia force is negligible if Prandtl nﬁmber is
much greater than one;

(4) 4he Coriolis force induces the lateral pressure variation;

(5) conduction and ;dvection are equally important; and

(6) disregarding the pressure distribution, the problem is
symmetric about the X-axis.

In & word, the nature of this quasi-steady problem is

governed by the simultanéous equations (B.14), (B.15), and

(B.17), and the pressure distribution can be calculated

separately, if desired, after the velocity and temperature

.distributions have been obtained.

The normalized, boundary conditions associated with

>
equations (B.14), (B.15) and (B.17) are

\



x = 0 u’ = 0,
y = 0(12x20): u® = o0,
y = %; u® = 0,

(B.18)

where ¢;(x) is the steady temperature distribution along

the fin surface.

.

A
B.2 PERIODIC EQUATIONS .

In addition to the Bormalized variables (B.9) for

steady solutions, the following variables can be ihtroduced

into the unsteady equations (B.5)-(B.8) of this periodic

problem:

p _ uP p_ VP
u=6—-l Vg","l
(o (o]

P

TuE— pps.P—.

t !’ P_ '/

(o] c

values of the corresponding variables.

equations, then, become

¥ B

c].p d| @
[x ]“x [t I 7

Cs - C

VC p
* [Y:]Vz l

+
2
l—<_.J
[}
<o
+
K.

\

e _
where subscript ¢ indicates the undetermined charagteristic

Y

Y =5
C

oP=
C

The normal

1/2

[BechRa ]us¢p

R2 17 %
ou BO V Ra'l

wees + [

p

o g
=

(B.19)

ed
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1/ 2 1/ .
. R
P, [UchRa ]u P . [chf a ]vsup
T LXC X LYC Y
U _x.Ra'/ % x_Ra'/"® u?
cf l p, .8 p,, 8 cl..p,,P
+ I Lz uux +\[v 2 ]v uy+[x-c-]u u)i
vV U ’
c C P, P
+ u
L ?c] vy
Pc p \)Uc P va P P
’[owxc]pi * [x’ ]‘“’2‘. * [y* ]“xx - (el
(o (o
21 .P _ 2 p s
+ [BO_Rw®] ¢ [eecxcm Ix¢" + [80_gl¢ cos (uty
+ (o gl¢Pcoslut 1), (B.21) -

PC D vvc p vvc
- | _c —S1/P AP
[pwy pY. ¥ [xz ]vx._-x * [Yz ] YY * [ch]2 ue
c

c ——
- [B@cchz]¥.¢p + [Berg]ld’SSin(wtcT) &

+ (80, g1A¢Fsin (0t 1), (B.22)
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and
) 0 x Ra'/z K Ral/"
1P £ P c f P c r| . Pys
[)ee + CfTwren » [+ [0
e l/~
+ [\_,_9__1‘;:____ JPod 4 [Uc c]up¢p . [Vc c]va
I S

1/12
Kfec P Kfec p vaKfRa s p
o= =19 + | ——=|¢ + 4u_u
XX vy J X c_L¥Xx XX
c p c

vu? VW K Ral/z v
c P, 2 c £ s . p c P2
+[————-2]2 (ux) + [ c:I‘Tc ]AVYVX- + —-——-2]2(v¥.)

c X

U Vv : W _K_Ra
» e C P..P c £ s . _
-0»[\‘5———---x YJquVZ‘. + [ ]2vxv§£ (B..23)

In order to simplify these unsteady equations
through normalization, one has to find the characteristic
values of the periodic variables (B.19). The fin length
is a convenient choice for X,. Thus

Xc = L (B.24)

implies that

X =X

159
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\

When the angular velocity o is decreasing from its
very large value for the quasi-steady case, the periodic
‘phenoménon gradually develops in the system. It is quite
clear that this periodic character comes from the buoyancy
force effect when gravity 1ntroduéd§ its poriodiq inflaence,
gcos(wt 1) in the X-directional oquXtion of motion, into
"the quasi-steady temperaturc‘figld'¢'. In other words,.
this periodic driving force, Bg"eon(wtcr), is large in
the vicinity of the solid fin because of higher temperature
¢°, decreases gradually across the thermal boundary layer,
and eventually dies out with ¢° éutside this steady thermal
layer. Hence the Y-directional characteris@ic length of

the steady problem can be chosen as Yc, i.e.

Y_ = L/Ra'/* (B. 25)

and thus
L =Y -
Bl
- b A consequent question of interest is how the periodic

buoyancy force, ¢’cos(wtct), gives rise to the velocity

4;/\Jfluctuations._ Equation (B.21) shows that the fluctuation

in uP may be induced through inertia, viscous, or even

transient terms. ConSider the solid-fluid interface where
the no-slip condition eliminates not only the transient

and inertia temms but also the viscous term uix of equation
4
(B.21). One can presume that the drivxné buoyance ¢scos(wtc1)

~

-
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is balanced by the viscous force u{x in the vicinity of

the 1nterfacT and ‘set L]
: \ = 2 ‘ <
BO.9| = VU N

which yields - xfla‘/’\ " :
Ue = —T¥Fr ‘ ‘ (B, 26)

\

There are two possible ways the periodic velocity
uP can introduce the fluctuation into the temperature field;
one through the continuity equation (B.20) and the other
through the energy‘équgtion (B.22). In the continuity
equation, if the ug term is the main "source” of the
fluctuation and, h;hco, possesses tﬁe.highest order of
magnitude, it must be Malanced by the ¢, u®eP, or v'0§_
terms. The fact that the last two terms are ;f the same
magnitude ieads to the necessary comparison of the
magnitudes of the first two terms. To find their ratio,
L’/t K Ra‘/’, one should first determine the characteristic
time, t_., of this problem.

It is \evident that the poriod ot the gravitational
d.‘gect, gcol(mt), which generates the whole periodic

a, is a reasonalbe time scale, t .. Therefore,

t. =5 . 1 (B.27)

indicates that the aforementioned ratio becomes
wL?

1 v, 1/2
;—-.-——1—7;’2;(%51) .

ﬂKfRa r
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i . . ! . [
L ] . .
y <

. ‘ : ' 'o
‘I1f the ambient fluid is air at room temperature and

D ise 1o°r the o’rdcr o! this ratio approaches O Y‘/’ <O[1J o
\

Hence in egeation (B.20), bogh u‘ and u o"-houm have . the

same order of uqnxcudo if the temperature fl ign vas
pfoduced through this equation. Dy setting O S
A o b
8 1/ b ’ -]

u, _ 88 NeRe | J

X X ’, -

c c ‘

one can define

o = 1 .

’ ‘:u:?c BFr * N

13

aabstitut'ion of this 9 value into the tranupnt

tem Gp im the ehergy equation 18.23) yiolds

[Y . ) PR Gc
.v —— - -
! t. IWBFr

[

'Obxp.ouqu, this should novot be greater than the order of

x‘

-agni';ude«‘qf u’o‘ which iﬂjh. "source” of the fluctuation
in t’h.fs' emqy .qpatton However, the ratio of the magnitude

v

'of uﬁo to ‘p reveal.\l contradiction:

t

S (R ‘ 8at\L/2
W U o ¢t g°0
. : “erc o _
- —re————c‘ 21!(,—5»':Y ) < 0f1)

£

wl:efa air is“ the f]:uid .at room temperature.
This conflict indicates that the temperature fluc-

tuati’on does not come directly from the continuity equation.

Nevgrtheless, one does find that the transient term -QI: i

not as significant as ui»in the equation of continuity.

-

(@
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)
It :|.s then reasonalbe by equating u and vp to get
‘ \

xf'Ral/.. : h

Vc - ¥ (B.28)

L SN

) o %
With the aid.of characteristic values (B.24)-(B.28),

the energy equation‘ (B. 23) can be rewrittcn as

. 1
[ -t e -
+ [Fr'] (upog + VP¢$) : t
( 1N ) 0. .
- 1 P s s, P s,P Py |
[;7-]0 + o‘;y + [ ] [ ](Auxu + 4vyvy + 2\.\y % +2vxuy)
P 2 Y 1l P, 2
Frna [Z(u )+ 2(vp) + 2u x] + [ff]'(“y) N
p P Pl
. + [?raa (v ) o+ 2uyuy\+ [ ]2v fx , (B.23a)

where parameter D is the dmensxon,less period for th® fluid
flow, and J.s equal to 2'm<£/ar!2.z As mentioned before, if
the temperature at the root of the fin is lo‘l-‘ higher than

that of its ambient air, i)eL er-10°r, then

a7t " T,

o mo(yt/? ’ o -
. y'"°] \,_)/ ‘

" Since thé parameter Y is always lenff,thuz unity, it is apparent
that if A=DRa’! /2 ‘ ' |

1/2

' Y

1_ 1
x miO[l]
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‘ . s‘ » .
No dbntrad!cﬁfop t‘e& place by choosﬁxg the definition

‘\ ‘“T-:.\«\, . !
/ . .

‘-
./ In’'general, if Ra /2404 Os are much less than order

one, all the viscous dissipation tem in energy equation

. become negligible Iin' comparison with the driving terms,

u?g.; + vp¢; . of the t.n'perature filuctuation. As a matter

of fact, the whole energy equation may be normalized by

getting
e, .
Fro - L
©C
N ‘ P ’sA v
therefore the characteristic value of 9(: is ;ﬁpund_»' e -
. , “*Q ; . &
e) o * b
= L
,ec = Fr ° | . (B.29)

Substituﬁing characteristic values (B.24)-(B.29)

into the continuity qquation (B.20), one obtains -

62 [6 ]¢p+ [Bel(u ¢p+v09+up¢ +vp¢ )
[6 (uPeP + ‘,,b¢p ~ e (B.20a)
‘

(B.29) for e .
_ .
In order to determine Por one again introduces the

obtained character‘istic values into, and then normalizes,

/the ¥Y-directional equation of“motion. Equation (B.22) becomes

5 ]
1 P 2 . s _p - p.s P8
[2" T .]V‘t-"' [P_._\._17.~_](u x+v y+3,1v‘x‘-0‘vvy)

rRa

L e [ [

S
+ [s,]1200P -L‘ ]y‘p + 18, 12 % l:l.n(21r1') +L_276AQP‘1 \})
gt {2 e iy

A s (l.22a}’
P ’ . . '
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Comparison of the magnitudes of parameters

o ) K
v/ -

S) ® — WP Fr
1l n c r

“and

o, © PafO 9L
* Sy = TN
. , PcRa

R -
-

‘will indicate whether the Coriolis or the gravitational ;

* force causes the pressure fluctuation. The ratio of

S, to S, is defined by

A N P VL
5, ¥ PrB0_ ’
e
If s>0(1l], setting P
.~ ‘/ N ‘
P, = PuKguRa “/21Fr (B.30)
into equation (B.22a) gives . Y-
_pi; = 2auP + [élk¢ssin(2ﬂ1) N (B.22b)
#..a if s<o[l], setting o s
P = p_86 gL/Ra‘/* . (B.30a)
c L <
, ,
into equation (B.22a) gives .
p§ = r¢%sin(2wT) + (s12xuP ;’ (B.22c) \

L)

for S=0[1]. Both definitions (3.36) and (B.30a) are proper.
-

fact, no matter which definition of Pc‘is chosém,

_ the X-directional momentum equation (B.2l) can be normalized

Mg
N ""

v
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into e

] _ ‘ . 3%¢;' ‘ .
%,—‘,-E%‘:]uﬁ -0».\1sv.\px + upu: + v'us +vpu~; + [éof]'('\fug jl- vpui;l'

= “sy + ¢% cos (271) + (l-yx)¢p + [%34¢ch’(2ﬁrl

+ o(ra'/*,EX” 1na /0y | (Bf2la)
Wlth the help of the example illustrated in section
B.1, it is easy to show that the velocity and temperatur?

fluctuations. are governed by
A

uf +_v§ = 0, (B.20b)

s P p.S , 1 P, P PP
__V.“y*v‘iy"' [ﬁ,-](uux-tvuy)]

= usy + ¢s:os(21rt) +// l-yx)¢p + [,%—;Mpcos (2mt), (B.‘21b)'
and ‘s//
1.4P 4 45 SoP 4+ o PoS s . (11 (uPeP + vPpP
(107 + 079 +v¢y+u¢x+vp¢y+[Fr](u¢x+V¢y)“
é ‘ . o '
= ¢P . : ‘

(B.23b)
subject to the boundary conditions

x = 0: P = 0, 6P = 0

g =0 xw: uP=o0, vP=o0, ¢F =00t
y = ®: P = 0, P = 0 (B.31)
The pressure fluctuation pp can be obtained separately from

either equation (B.22b) or (B.22c) depend:mg on the magm.tude

~ of parameter S. \

[
: u
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: \ " From this no'miization:"_equatior{ (2.8) can be

re-written-as:

u}(x,.y,T') = us(x'Y) + [%‘f]up',(xl.yi.'tl)l ;

vix, v, 1) = VB lx,y) + lFRA VP YT, (8. 32)
and s . l p . . N
o(x,y,1) = 2 (x,y) + (FFle" (x,¥,7),
where ' / ) N
.u = UL/KfRQI N .
v ,-‘VL/KfRa‘/“ [ 3

i ! ’ LY . .

“*‘ o= e/e'\= (T-T_,)/ (T -T,) |
are the normahzeé ‘1ptions of the complete problem.

Accordingly, the nom;hed forms of equatlons (A. 14) &.}7)
w < '

are u +v, =0, ' B ‘3 (B.34)
x Y b ‘ 3 -, .
Lfidiu, + .uu + vu_ | = + (.1-,‘1'::')0' ‘+ ’[l-l ¢co‘h-21rr)
Pr|'R' "t x Y Yyy Fr ‘o -
L e (B. 35)
Py * 2)u, - v (B.36)
m S

l;;M + ud, +v0

It should be pointe: O\N: that An the above equations,
u, and ¢ are not nomalized quantities if the magnitude of

1/Fr is not of order one since from the equalities (B.32)

l . ~ /‘"‘~.4
- P P T
Ur = Fr Y1 and \ ®s ,r £




\.. . ' . ' . v 8
. ¢ - .
. . 3 '
e . )
- .
.
.

<

where quantities uf ‘and .P instead of&i and ¢ are

T !
actually normalized. ﬂsil fact wo&ld not be revealed if ’
equations (B.34)-(B.37) were obtained from\¥he direct
nomalizati%n of equations (1\ 14)-(A. 17) - In other words,
when the Froude number fr in. equation (B.35) decreases .

with the angular velocfty o of the. sys‘tem from very high.

magnitude, this equation (B. 35) can not pr vide sufficient

information about the po1nt where the
' starts introd‘cinq a comparatively sig

the. prob‘l:m grom equatwn B. 21b), .1

_Qfluld is of order one, the magnitude
A

l | ‘/-2 - O[Yl/z]

r(g-e—' ‘ (B.38)

\ rd
indicates that the transient e‘ff'e!‘! is negligible when the
geometric ratio Yy apprbaches'the‘ limiting case of y=0

&
{27,35]. In general, 0<y<l implies

Om. S . F<O[1], o

: ;_ hence it is proper to keep the transient terms in equations
(B.35) and (B.37), provided that the Froude number is not
much grgater than m\-ity. |

v’ » - . : ’
v a a ‘ :
,,. -, ~
. o . : . - :

+

s .
i"’.
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x» (’ .
L8cAL sxuxnanxry TRANSFORMATION '

[}

In order to solve three simultaneous boundary layer

[}

. . 4 ) o
. equations (B.34), (B.35) and‘(B.??),‘g stream function 1~ﬂ
) | \ : LY T
\ ¥ (x,y) defind by . -
¥- . * ’ :J
. ‘[ ’ - a‘p T a‘JJ e

u = 5;- . and Vo e
-

is intreduced. Since the continuity equation (B. 34) is

satisfied completely, this boundangiiayer'broblem_is then
. Q.

governed by only two‘slmultaneous &Yuations:
o
wayyy + wayy - ¢y¢x + Pr El Yx) f [ék]cos(2ﬂt] ¢
| - tgivy. « .y
- A -
, 4 1 - . ‘ :
¢yy'+ wx¢y - “'y¢x - (X”r 0 (C.2)

.
h 3

&
The associated coundary conditions are:

x=0; Wyio, _ '¢f0 ”
y =002x20); v=0, ¥, =0 ¢=0%,
Y
y = v, =0, . ¢ =0.
y

The follow-up effort is in finding a suitable trans-
formatiaon to:
(1) lessen the dependence of the solutions in ;he%streamwise
| direction adﬂ thus decrease the efror introduced by any

| e \5' finite difference formula on approxlmatln? streamwise

derivatives of the governing equations;
v Vo

N lee L
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s .

(2) alleviate thovpooaible singularity proﬁlcm at the

leading edge; that is, ., '
1imé_(x) # 1ime(0,y) = 0 & "% F
‘x+p © ,+-y-—o R YA
(3 reduceztbe impbrtance of the Prandtl numbder in the ~

T

resulting prdhibm aﬁa t¥u: remove _§i ’nood to determ;noiw

iibnceparite solutions ’Lr a large number . of Pr.f. | ®

A £tanlto:y§£ion &',asluped to take the :ollowing form:
LR M, n=PENX)IY), -
@ 3 A

RE,M) = blx,y), and  £(E,1) = $(x,y) /GAPOIM (x)

.,
¢ >

(C.3)

. . . u‘ .. S v: o~y
wvhere ¢(§,n) and £(§,n) are two dependent variaFles in"¢Ne °

»

new coorxdinate system; an1.porrespond to Original temperature

function ¢(x,y) and stream funéfion w({,y) respectively.
Six unknowa functions, L(x), M(x), I(y), F(Pr) and G(Pr),
are disclosed after the substitution of this transformation
into equations (C.1l) and (C.2). That is,

3 I 2
[(PrF ij Iy)fnnn + 3\(PrF “‘Iylyy)fnn + ‘(Prrmm”y)'f]

\
’ 2~2 2 2 2, 2,2 2.2 2 2 A
L [(F G'MN'M 1) €€+ (F'G'™M'NN II FIGMN?M, 1]

- pzcznlnuxl;)f:] + EP:)(I - Y + %;cos(Zﬂrﬂ ﬂ

-»

‘ 220202 2 2,2
-S[(F G°M°N Lny) (fnan - f‘nnfﬁ) - (FG'M NLnyy)fnfe]

L oo : ‘ \
+ [X(mey)fnt:] . . {C.49
and . E )
2272 . J i
[(r N Iy)‘c'n,m + (FNIyy)ér].f [(?Gm‘ry)fgn]

= [(r~c::4ux.x1¥)'(f"oE ‘A’n‘b;)] + l} ,of] (C.5)
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with the purpose constructing a basis for "local
similarity®, terms containing only the n-deriva#tives are
". kept on the left-hand-sidles of the equations. In addition,
te:"ul' for the same ph§sica1 effect are squafe-brackotod
into \orie graup. For instance; the first three ;roups on

the left-“-‘-sﬂde b! equation (C.4) are, in a 'equential

i

order, rel Qo viapous, inertia and buoyancy forces

while. the f ‘ Ada the s;cond square-bracketed groups
ufﬁ\:’he flqht,-liand-“de correspond to the variation of the
inertia for 1on9 E-direction and the transient effect.
Similarly, : irst and the second groups on the left~
hnad-side of ‘&uation (C.5) represent advection and

'conduot;ion heat transfer while the first and the second .
.r»igl}t-hand-side groups indicate. the variatioﬂ‘ of conductioni
in th‘o E-directic, and the transient é&ffect, respectively.

. It is assumed at this stage and is later substan-
tiated by tho.:nomql%zje‘d.‘ eguations that the higheso’order
derivative tefm- in éach oqu;re—bracketed group should never
be"s'ﬁppres;ed by other terms in the same group. Hence,
only the coefficient of higheat ordor term in a group is

- employed below to determine the aforesald six unknown
functions whenevo; the group is considered to be physically
sign'ifica‘nt '

Since advection and conduction are equally important

in the thoml boundary layer, it is reasonable to equate

\ \
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. e
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their parenthesized coefficients in equation (C.5). That

18 FINI, = FGNM,I

or by ré@rr,nQClQQ;q‘ ‘

* - nfs)' R e (Rx) | c \
x X y x 1 .

Y

where Cl is an undofined conc;ant Because the left-hand-

b 4

-y

side of thc;gpove equality is a function of x and y while
the right-hdhd-sidé is a function of Pr only. Similarly,
N (x) | ' A

ﬁ—xm = ClIy(Y) = sz

that is, the functiom I(y) takes ‘he form
C ' -

2 .
I(y) 'qy+c3o)

For convenience and without loss of generality, one can

define Claczsl and C3=0 and obtain \‘
F(RPr) = G(Pr) | (C.6)
I(y) =y . \ (C.7)
N(x) = M, (x) (C.8)

In order to find F(Pr) or G(Pr), consideration

should be given to the momentum equation (C.4) where the

' .
buoyancy force #term, ¢, is always dominant. However, the

’

1ne}11a force term, ffnn' and the viscous force temm, fnrm

vary inv&rsely in significance as\the Prandtl number

)

changes. When Pr is of order one, both inertia and viscous

forces play Ihfortént roles in balancing the buoyancy force.

1
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Therefore from equation (q.‘) and equalities (C-59'(C-§$v

&5
(s 'preoqy =01 €
yiolds . '
and o
[F‘G’MN’MXI;;‘ ‘
— = 0of1]
Pr Jer=o(1) . .
yields . -
'ﬂu’[ ] ' = @1]. (C.10)
1rwaou] ,

When Pr‘approaches infinity, the inertia force is negligibly

; : \ ‘
small But thq viscous effect remains signific

o I mi\at is,
Mﬂ’llm [F*] = 0[11 ' R )

(C.11)
r -+ . ,*
and ‘ e
MM?lim- EL = o (C.12)
X 3L oo Pr . . . :

On the other hand, the viscous force can be dominated by

the inertia force at very small Pr, Thus,

MM? lim (F*] =0 : (C.13)
Pr+0
and
M2 Lim [F-] - o[1]. (C. 14)
Pr*O

Apparently, functio- F(Pr) and M(x) must be defined

in such a manner that the above six oonditions (C.9)~(C.14)
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are completely satisfied. This can be fulfilled by setting ‘:

m! o= 1, and r'+k-\1. X
Hence, '

M(x)-(i-xtc‘)‘/' : | .
and

pr

F(Pr) = (m) {C.15)

also from (C.8)
‘ . -1/5 .
N(x) = M (x) = (g x +C,) 3
Since in trmsfomtxon (c. 3),\ )
v ‘o
l/p -1/~ - o

n = F(Pr)N(x)I(y) = W] 3- x + C ) Yr ' ‘\
the possible singularity at th-’lendinq edqe of the fin, '
i.e.  lim ¢_(x) >0 ' : |

x_m . ) L3
and 1im $(0,y) = 0,

y+o \
can be removed by setting 64-0 to get ®

v \__' / - / ~ ) N

n= 1?‘5?} (3‘ ") ¥ | [
In other words, the siﬂéul&; point (0,0) in the x-y plane -

is\‘stretched' into a line in the new {-n plane so that

the discontinuity of temperature at this singular point

v

is smoothed out along the liRe.

. S ' ‘ j
In order to define a proper function for L(x), one d?

can substl\mte the following functiom: T . . )

,~ . . “ ‘ N .
I(y) = vy, M(x) - (3- x) . N(x) = (3- x)
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i

) R - 1

and b ' x | /s . .
rn = o) = (@) '

. into oquationl (c 4) und (C.8) to m

> 2 o2
TR TR ¥ L aerrr(1 oos (2vT)/75) .

- dixp (g 2 - £ g+ (731 (14r) @ \

/
+ %(% 1*?:)“ al l/l]f

and ‘ s : .
. - 1/4 1+Px /3 1/
. .“n + fQﬁ ?[xLx] (fn‘g - .nfz). + x(g- —F') [ * ;7) .

) ‘ * d
To sonpleto tho ttamtomtion from t‘e xX=y dodain

into the §-7 domain, all the square-br:ckoted terms in the -
abovérgwo equatiuu should be oithor a tur\ction of £ or
vz .o, -t ‘ .
constant. ‘Assuming | . ; -0 ]
. \ e ..
L, (x') =Y
yields . : ' . . ) v \

q
£ = L(x) = vx

where the arbitrary constant of integration is ict\to be*
zero for the sake of convenienm. To ch up, the g\ov'erning

* . eqnations (c.1) and (C.2) are ttansfoqod into x_

\

o L ' - 2 M ) . | .

- o v:tm £ - % : + (1+Pt.)‘(\1 + cos (2n7) /Fx) ¢ © o

.t . | ':: _‘“ ~ 5 - H “/“- .
- n fg))+ (1+Pr)o) + (x /zﬂ)z‘/‘t (C.18)




' , -o.‘ v \\\‘ ' L
| . L Je
- 1',?;""‘.
and : | o ’
RFIAEE I 0,!3) v ingametee,

'by t.ho Aocal ouihttty euni!otutiom @

v § (x-k)"'(ﬂ "

S e = ey,

amd -1/ ;/
‘x) Hx.y)

I(E n) = (m)
The associated boundaty cond:ltionl
are - . , .

n=0;
new; £ =0, ¢=0.

tox the abovo oq‘auonl

£e0, £90, (€)= 00

. ' . ‘7.
. . -~
, L 2
v |
(c.19)
&
"(€.20) .
(c.21)
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APPENDIX D

PERTURBATION EXPANSION

. ~ The purpose‘of adopting this technique in:the\\\
present study is not onlytto expand the solutions f(C,hgf)
and ¢ (¢,n,t) of equ§£16n3.£3.15)-(3%19) in a perturbation
series of 1/Fr, but,also;td remove ﬁhe timp function from
the perturbed equations sovthat less computation time is

required to solve’the remaining two-dimensional problem. -

To accomplish this, one seeks solutions in the {35;:
£(6,n,7) = £5(6,m)+ 3=(EEM) cos(2rt) + E(E,n) sin(2n7)]

+ L (Fe,n) + E(E,n) cos(4nT)
Fr2 .

+ £(£,n) sin(4n1)] + O[——] (D.1)
: Fr?
and -

O(E,n, 1) = ¢5(g,n) + E-[#(E,n) cos(2m1) + 3(g,n) sing2nn)]

+ —l?[g(ﬁ,n) +¢(E,n) cos(dnT)
Fr

+ 3(e,n) sin(dr)] + o1 (D.2)
Fr

where f° and ¢s, the quasi-steady solutions when Fr==,

satisfy the zeroth order equations:

s S¢S _ 2,5, s
Pr fnrm + f fnn 7(fn) + (1+Pr)o
4 _.s_s s ‘._.s 3
= - £ .
E[T(fnfns fnn E) + (1+Pr)¢~), (D. 3)

f
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' y - .

— ' '. - ) .

s S, _ 4 S48 _ &3¢S S
®an * :';f T (£0% . onfig’ )
a%e® s ¢S . .

- o =1/ 4,8 -
; dg’ + —az—'+ K3€ ‘ on(E'O) 0,

and the boundary conditions:

ﬁ :;0: éé a‘02$$); . fs = f

BN - . S . &S ﬂ‘
| n = «; fn- 0_ = Q _

ass ) ¢

£E = 0: \.Eazg = 0

' Z oo s _
tf;> £E = v: °o = 1.

’

{D.4)

(D.5)

6))

The first order perturbation solutions f(£,n),

%(E,n), 5(E,n); and 3(S,n) etc., can be obtained from the

following simultaneou§ equations:
-~ \ ~ s 45-.. s -~
o+ - + +
Pr fnnn + | (1+Pr) (&+0¢7) jfnfn fnnf

+ fsE

= 1/28), 4,65 § _ sz ¢S Iy ~
= K& £+ JE(E] £ - £3E SEne = fanf ) + (14PH)EQ

n&

3

P S sz 1/23 o 4, aSE sz
L = + £ + f -
o  + f + 0%F = K £V %0 + 3E(0 " o

) a2¢ ae

) ) -1/ 43 =
K2§° + £ ac? +\d£ + K3E QH(E'O) 0

’

> ~ 4 SA s ~ SA

P + +P - xf"f + £7 f + £°F
r £ (1 r)¢ j nn nn nn
S ~ * sA

£ -f
né'n, & nn n né

- 1/ 22 4 Sg
= xlg fn + jg(f

+ (1+Pr)ed

£ + £7°f - £

)

nn

g

)

- f
i}

.

(D.7)
S~

&
(D). 8)

(D.9)

(D.10)

¢ )
n

~
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. . .
2 83 sy _ 1/1*' 4 s2 83 _ #82 _
®an * O f + £ by = £ % + e E 4 E0 - o5, fE n)
' . P * . e ' (D ll) ?
) « ’ . : [
i{ ate d¢°' o1 /ua S o
~KLd + £ dEz HE— + K3E Qn(E,O) =0 *  (D.12)
'. ”~ ‘ . ° ' -
_.and the asgociated boundary conéitions: .
n=20:- f=+¢= fn = fn = 0, ® = QO(E), = QO(E)
n = e fn~= ﬁ," fAO =0 =0
dd d@o ' * (D.13) ¢

~

Similarly, once the ze;oth/);d the first order
perturbation solutions are obtained, the second order
) ' 2 .
f\Forrectlons can be found from the (é?) -order equations.

First, the integration of equations:

- Y sT s T 4 _s
Pr zﬁnn + (1+Pr) (¢ + %0) + f fnn + fnnf - §fnfn

1l == fe 1.2 .2 1.2 .2
PP, B - ED - 3

nn nn
e T, 8,8 = . SEF - §SF  _ 5 T
= §[(1+Pr) % + j(fngfn + fnfns fEfnn fnnfE)
2 ~ o~ A A -~ ~ A jad
+ x(f nfne * fnfn€ - fnnfE fnn E)] (D.14)

n E n E Hn‘ E)l . (D.ls)
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LI B
‘ L}
. and ‘ | .
ae . - . N | v.ooon
D + K V3, 6,00 = 0, o (b.16)
with the ‘corresponding boundary conditions 'S
n=0: zr £,=0, ¢= :°:m . ~
n o= fﬂ-g ¢ =0 ‘
' - * 4(D017)
doo . o .
E = (: Eaz— = Q
- ry . ' g
13 =v: ®o =0 j
yieig§_sélutions f and 9, etc.
; ' - R
~“The second order perturbation solutions £, ¢, £,
al - ' ' .
and ¢ (etc. should satisfy the following simultaneous
equations: s
- 4 _s*% sz s = 1,22 ) 1,2 a "
- + £~ £ + - + -
Pr fnnn §fnfn vt fnn nn F(fn ‘ fn) (L= ££4p)

+ (1+Pr)(%5\+ ?)

_ 1/ 2% 4, 8 _ 8 _  F s _ .8 Z
= 2K ETTE 4 SR g - Enpfe * fnfhg - Endfy

-
-

1, =~ -~ PN A A A . ' ~

< s: s: 1.~ AA -
bon * £+ 4L+ (£, - £8)
1/22 . 4,,..8% z s z s s ’
2k1£ b + §£[fn¢E Onfg + fnog 0nf6
1.~ 5 -~ =~ e A : s \\\' ’
e (g e -6 f + BE - £ 8, , (P19
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. . ‘ S
¢ J ‘Ql ; 1 ‘.’ . . .
. v 2 ..“‘»‘ . P
. = ! ‘ -' -.?.,' - LY » e .
2K 60 + 3 (ea-g—d%)‘ s RE™ Ve (€.0) = Q- D~ pl20)
‘and RN f . , '
48 .88 .8 .o

ri. l'tnf\'u*'ffrm""f T‘nn"’ nn"",“nn/

+ (1+Pr) (50 + 0) y : IR - . )
= 1/25% 1' ) 2;‘§,df’/: 8 [
) ZKE f*‘f'(nni nnE nﬁﬂafnnfe o ),.

l /\ -.A -~ A~ \- .
7 ‘. fnn£€ + fnfnﬁ, nn E)] + (1+Pr)€0 }D.Zl)
. «

2 g2 1.~4s

an‘+f°n+°f+f(£°n+”) .

1 ,- n_§ g ng €
l ~ A _ A~ A~ _ ~ A . o ) . - e d'-.
+ I(fnoE Onfg + fn?i ang}], - (D.22)
s ‘ \\ U ) \
Cd S \

oK F3 d o l/b -

21(25@0 + aE(EaE—) + K3E ¢$(£,0) 0, . (D.23)
The associated boundary condltlbné of €he above equatlons
are S A& A

n=20: f fn £=f =0, &=0, 8-@0,
) - PO -~ A N -
) = s £ = - = 3 = ) 4
n : fn fn $ ¢ ( 0,

. dgé 'd’;fo __— _ &
g = 0: Ea-g— EH'E— =0, ' U .

. R
E=: 6, = o \= 0.

It is clear that the time variable has been removed
. from the problem. -As a result, difficulty in predicting

accurate initial cdndit;oné (at every single point on the



»E-n ;u tece) to assure fast’ converqence of the periodic
Aeolutione is avoided and exceesive computation ceused
by timerwise iteration is Cftectively eliminated In
spite of the’ fect ‘that thi?'epproximetion tqchnique Will
:inovitebly become tedious and Yess relieble when much
higher-order perturbation solutioq‘ are required (for
the small. Froude number cases) its lower-order solutions
alone atill provide some extremely valueble 1nformetion

" and hints in solvxng ‘the problem for small Froude number

(section 3 2.2) . .

A
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A"§IMP Ly TIME DEPH{DENT SOLUTION
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»

‘ - . ol | s | o .
behavior of solutions i€ neglect. TREBSIt number (Nu)
for 1aminar free convection around th'ﬂreated rotating fin,
depicted in flgure (2 l), can be estlmdted by a simple o
N
engxneerlng approach At first, the- folldwing ;elatlon
is assumed: T ”, ‘
\
- ' g : )
1/ s ’ ‘ ‘
Nu « Ra eff o o (5.1) .
- '.‘ i ‘
where the effective Rayleigh number, Raeff' is defined by
~ . b}
Bg_ .06 L? .
eff r
Raeff = VKe . ‘ (E.2)

»

.

If .the streamwise acceeleration at a point on the fin surface
L/n feet (n2l) from the Ffin tip equals the effective

acceleration Jarf for the entire fin, then

9ogg = (R-L/n)w? + gcos(wt);F> . : (E. 3) ' o

By using y=L/R and FraRg’, equation (E.3) becomes
.

(1-y/n)Ra? + gcos (wt) (E.@)

Jeff

or geff.= Ul-y/n)Fr + cos(wt)]q. (E.s)

-

- . // .
1;—’\ v :
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'Furthermofa, combination of equatibns (E.2) and (=.5) yiélds

'y . Bﬁlef/n)Ft + cés(mtﬂ gerﬁ‘
. j ‘ , ¢ | ,
' 62 .\,, xL . ’ | . v . [Y
Ra ee * [(1-y/n)FR + Sog(gtilﬁa&, © . ,(2.7)
‘ e " Yy
where BgOrL’ " 3
] Ra_ =
s VK g .

R

- -\ .
From eguation (E.7), relation (E.1) can be rewritten as
Nu « [(l-y/n)Fr + cos(wt)]l/'Ra;/“ (E.9)

or more specifically,

Nu = m [(1-y/n)Fr + cos (wt)] '/ *Ral/* (E.10)

where m is an empirical constant.
The value of m can be estimated by considering the
~Nusselt n&mber at the fin root for the quasi-steady case
of the br?blem. When the ef%ective accelgration Jeff in
) equation (E.2) is replaced.by.the.étreamwise‘acceleration
at the fin root (n=1), equation (E.2) éan be used to
calculate ﬁhe.aSSOCiated local Rayleigh number; that is,

B [(R—L)m2 + gcqs(mt)]OrL3

Rar(t) = T ) (E.11)

Conseqguently, the local Nusselt number at the fin root can !
1 A
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be efb;esse by substituting n=1 into‘+equatiom (E.10); namely

Nu(¥) = m [(1-y)Fr + co.(mt)]f/'aa;/',., T (E.12)

* When the problem is in the quagi-steady state, the Froude
[ J . -

s’

number (Fr) in equation (E.l2) is so large that the cos (wt)

term can be'neglected.( ?Herefore, equaticn (E.12) becomes

NG = m[(l-y)Fr]‘/"Ra;/~~ = m(l-y)‘/f(FrRas)l/'
o o
°r n§ =/m(1-Y)‘/“Ra*/“ , | (E.13)
where ) BR&}O;L’ .

Ra = —— - ,
f - -

By .using the series expang#ion:

Yoy /e _ .1, _3 2 LAE
L A AR ) 2/ \

N - Loed o 72,
= 4Y(1+‘8Ym-‘Y.+‘...) .

, ¥
equation (E.1l3) is rewritten as

NG = m(1—§~naa’/“ ) (E.14)

where constant b is used to account for the errar of
R L s 1 ’

ol

approximation.
Vi .
It is wofth pointing out that equation (E.14) is

in the identical form as the empirical:equagion (4.9):

© NR (F!

;- Féy)Ral/“, ' (4.9)

.

185



/ // ‘ “ . ‘ 1"

) o \

which has obtained‘in‘-?ondently in section 4 1.3-2 by
applying a least-squares curve fitting tcchniquo to the
quasi-steady-state solutions.' Comparison between equations’

(4.9) ‘and (Z.14) suggests thas N
<4 . .
Values of fi are tabulated in Table (4. 4) for

~Vat10us levels of parameter c which represents the degree ~
Y}

of coupling between the conduction and convection heat
trans fer problems -
Once the value of m is known, the time‘dependent

Nusselt number for the rotatlng fin problem can be determlned
by equatlon (E.10) provided that the thermal inertia effect
on the totalwheat transfer rate is negligibly small For a
- sample problem of C=q. 01, 'y=0".1, and Fr=2, Table (4.4) and
equation (E.15) yield

| ‘m = 0.39 ,

and equation (E.10) becomes

Nu = 0.39[2(1-0.1/n) + cos(mt)]}/“na;/“ (E.16)

LY

If the streamwise acceleration at the middle point (n-2)

of the gin surface is chosen as the effective acceleration
geff for the entire fin, the time dependent Nusselt number
is then expressed as ’

4

Nu = ¢.39[1.9 + costmt)]‘/“na;/“ X (E.17)
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The reliabiltty of the above approach can be chcck
&) follow. The maximum and minimum values of the Musselt

number, corrnponding to t=0 and t-r/n xumunly A .

equation (E.17), are

,

- 1/
Nu!‘x 0.5089 Ra.
and . . ¢

: ‘ 1/
Nu in ™ 0.3799 Ra. }
‘ .

the ratio between these two extreme values ig

Numax

Fo—— = 1.340 " . (E.18)
umin

The dimensionless éotal heat transfer rate based oﬁ the
theoretical solutions- for the same example is shown in

and Kk

figure (4, 27), where the additional parameters Kl 2

t

.regulatinq the the{mal inertia effect are set to 1 and 100

respeetively. . The‘fact that the meximum and minimum values
in figurez(4.27) also appear at t=0(a=0°) anda t-t/m(c-lsoo),
indicates a neglﬁ#iﬁle thermal inertia eﬁ‘ect on the Sotal

heat transfer rate; that is, solutions are in phase with .

the periodic acceleration qcos(wt) for thxs sample problem

Despite the thermal 1nert1a effect, the ratio of the maximum
to the minimum total heat transfer rates presented in figure
(4.27) is

s - 1312 | . (£.19) -



¥ow, because the totalyheat transfer rau is ‘Gruml

-

to the Nusselt number, the ratio cbtdmd in (B.19) on the
basis of lh. lhotottcal selutions ean be w ﬁm""
ratio ueimatod id (2.18) by using this practical approach:
a difference of 2V is found betwesn these two ratios.

This observation suggests that equation (E.10) and Table
(4.4) can be .uscd. as thg practical means to estimate ti\t

total heat transfer rate for a heated rotating fin problem.
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