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Abstract

The piezoelectric coefficients dij, dielectric constant Kσ
ij, dielectric loss, creep and

hysteresis were measured for 41◦ X-cut lithium niobate (LiNbO3), single crystal lead

magnesium niobate-lead titanate (PMN-PT) and ceramic lead zirconium titanate

(PZT-5A) transducers. The measurements were made between room temperature and

78 mK. The magnitude and temperature dependence of the three materials’ properties

can be understood in terms of intrinsic and extrinsic mechanisms in single crystals

and ceramics. Several new features were observed, including a direct connection

between creep and hysteresis, a unique region of negative creep in PMN-PT, and a

surprisingly strong low-temperature dependence of d15 for PMN-PT and PZT, that

extends well below 1 K. The strong low-temperature dependence of d15 PMN-PT

and PZT suggests that there must be a wide range of small energy scales involved in

domain wall motion. The hysteresis and creep in PMN-PT extend to temperatures

below 10 K, which is consistent with weakly pinned domain walls. The dielectric

loss does not show unusual behavior in the negative creep region of the temperature

range, suggesting that the negative creep mechanism does not affect the behavior. In

PZT, the hysteresis disappears below 30 K, as expected if its domain walls are pinned

by grain boundaries. The implication for selecting the best material for positioning

actuators that need large displacement involve d15. At cryogenic temperatures, one

can use a LiNbO3 transducer/stack to achieve this. All three materials would be

effective cryogenic ultrasonics sensors, but it would be challenging to use any of

them as voltage sensors at frequencies below 1 kHz, since high input impedance

would be needed. Given its nearly constant sensitivity for g15 and dielectric constant,

LiNbO3 is probably the best sensor choice for precise measurements that cover a wide

temperature range.
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Chapter 1

Introduction

A piezoelectric is a material that produces an electric charge on its surface propor-

tional to the applied mechanical force or generates a displacement when a voltage is

applied across it. These two properties are known as the direct and converse (indi-

rect) piezoelectric effects [1, 2, 3]. The direct effect is the principle used in pressure,

force, acceleration and vibration sensors [1] and the converse piezoelectric effect is

the basis for displacement actuators, surface acoustic waves (SAW), ultrasonic wave

sensors [1]. For example, piezo-generators transform mechanical energy into electri-

cal energy (direct piezoelectric effect), and piezo-motors change electrical energy into

mechanical energy (converse piezoelectric effect) [4]. The same transducer may be

used to perform both jobs by using the direct or converse piezoelectric operations.

Piezoelectric materials have been widely used as transducers, actuators, and sen-

sors in various fields, for example, aerospace systems (vibration cancellation and

optical positioning) [5, 6], industrial process control (high displacement actuators)

[7, 8, 9] and biomedical (ultrasonic transducers) [10]. Single crystal lithium niobate

(LiNbO3) and lead magnesium niobate-lead titanate (PMN-PT), and polycrystalline

ceramic lead zirconate titanate (PZT) are the most widely used materials. One needs

to be aware of the temperature dependence of the piezoelectric materials in some ap-

plications. For example, in our lab PZT transducers were used to measure the elastic

and plastic properties of solid helium [11, 12] at temperatures as low as 15 mK.

Although most applications are at room temperature, scanning tunneling micro-

scopes (STM) are often designed to operate below 4 K, and require high sensitivity or

large displacements for precise micro-positioning [13, 14, 15]. This means that large

piezoelectric coefficients dij are needed, but the piezoelectric coefficients of most ma-

terials decrease significantly at cryogenic temperatures. The piezoelectric coefficients

of the most commonly used material, PZT, decrease nearly linearly with tempera-

ture and the longitudinal and extensional coefficients d33 and d31 are about 5 times
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smaller at 4 K than at room temperature [3, 15, 16, 17]. However, little is known

about the shear coefficient d15 at cryogenic temperatures. The piezoelectric coeffi-

cients of LiNbO3 single crystals are much less temperature dependent but their room

temperature coefficient d15 is about 7 times smaller than for PZT [18, 19, 20]. Newer

materials like single crystal PMN-PT have exceptionally large piezoelectric coeffi-

cients at room temperature, but limited information is available about their behavior

below 75 K [14, 21, 22]. The limited information on these materials often leads people

to assume that piezoelectric properties do not change below 4 K.

In micro-positioning applications like scanning tunneling microscopy (STM) [15]

and atomic force microscopy (AFM) [23], time-dependent processes (creep and hys-

teresis) limit their performance when large voltages are applied. Single crystal PMN-

PT and ceramics PZT have significant creep and hysteresis [24, 25, 26], which limits

their accuracy in such applications. LiNbO3, which requires high voltages to generate

large displacements [27] has much less creep or hysteresis, which may make them a

better choice. Although creep and hysteresis are limiting features in many piezoelec-

tric applications, the few studies of their temperature dependent properties have been

limited to longitudinal transducers where the polarization is parallel to the applied

electric field. For shear transducers where the polarization is perpendicular to the

applied electric field, almost nothing is known, despite their potential for applications.

The temperature dependence of dielectric properties is also important for many

electronics applications. The dielectric coefficients of the three piezoelectric materials

decrease with temperature [18, 28, 29] but there is little information available at

cryogenic temperatures, particularly for shear polarizations.

Although some of the piezoelectric and dielectric properties of single crystal LiNbO3,

PMN-PT, and polycrystalline ceramic PZT have been investigated as function of

temperature, there are two unexplored practical questions that are addressed in this

thesis.

i). How do the piezoelectric coefficients, particularly of shear transducers, behave

at low temperature?

ii). How do the creep and hysteresis depend on temperature?

We measured these low-temperature properties using a direct capacitive displace-

ment detection technique, with high sensitivity by using a high-resolution capacitance

bridge. We used this technique because it allows us to directly measure creep and

hysteresis, which is not possible with the resonance method. There are very few

previous studies using this technique, although in 1986, Yorke et al. [15] measured

longitudinal piezoelectric coefficients d33 for PZT ceramics from room temperature

down to 2 K using this method. In our research, we have studied shear and longitudi-
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nal transducers of the three materials, including a stack of three LiNbO3 transducers

we assembled, and measured the temperature dependence of both piezoelectric and

dielectric coefficients. We have also investigated the creep and hysteresis of shear

transducers as functions of temperature and voltage.

The temperature dependence of the piezoelectric and dielectric properties of these

materials arises from a combination of intrinsic and extrinsic contributions. The

intrinsic contribution comes directly from the single-domain properties of the crystal,

for example thermal expansion, while the extrinsic properties are the result of domain

wall motion, interactions between grains or phase boundaries, and thermally induced

defect motion [29, 30, 31, 32]. It is expected that the extrinsic properties may be

frozen out at low temperatures since they are activated thermally.

LiNbO3 is a single crystal with single domain. It has a very high Curie temper-

ature, TC = 1210 ◦C, and relatively small piezoelectric coefficients dij, which are

intrinsic. PMN-PT is also a single crystal but with multi-domains. It has a low Curie

temperature TC = 130 ◦C and the piezoelectric coefficients are mostly extrinsic. PZT

is a ceramic with multi-grains and each grain contains multi-domains. The Curie tem-

perature is higher than PMN-PT, TC = 350 ◦C. Its room temperature piezoelectric

coefficients are mostly extrinsic. The much larger room temperature coefficients of

both PZT-5A ceramics and PMN-PT single crystals are achieved by using materials

with compositions close to a transition between tetragonal and rhombohedral struc-

tures. Their piezoelectric behavior is affected by the temperature dependence of this

phase boundary and by extrinsic effects associated with grain boundaries and domain

walls.

We can summarize the main results of our measurements on the different materials.

LiNbO3 has small dij at room temperature, with weak temperature dependence and

no measurable creep or hysteresis at any temperature. PMN-PT has very large dij at

room temperature, with a plateau between 80 and 240 K where dij is still large but

nearly independent of temperature. The creep and hysteresis are large and become

negative between 150 K and 300 K, but disappear at the lowest temperature. PZT-

5A has intermediate dij at room temperature which decrease roughly linearly with

temperature. The creep and hysteresis increase monotonically with temperature. At

the lowest temperatures, none of the materials show creep or hysteresis and their dij

are of similar magnitudes.

This thesis is organized as follows. Chapter 2 contains the theoretical and experi-

mental background to the work. Chapter 3 describes the experimental apparatus and

techniques for all the measurements. Chapter 4 presents measurements and analysis

of the temperature dependence of piezoelectric and dielectric coefficients of the three
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materials. The creep and hysteresis results and analysis of their temperature and

voltage dependences are presented in Chapter 5. The essential findings of the three

piezoelectric materials are summarised in Chapter 6.
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Chapter 2

Background

Piezoelectric materials are widely used often over an extensive range of temperature.

This Chapter reviews piezoelectric and dielectric properties of crystals, including the

commonly used materials LiNbO3, PMN-PT and PZT-5A.

2.1 Tensor definition of stress and strain

2.1.1 Stress

Figure 2.1: Normal and shear components of stress on a cubic element (Figure
reproduced from Ney, 1985) [33].
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The average force per unit area, exerted on a body when it is compressed or

sheared, is called stress. To understand the effects of forces to a body, we need to

understand the stress at a point. Let us consider the components of the stress tensor

σij (Nm−2) acting on a cubic volume element as shown in Figure 2.1. If i is the

direction in which the stress acts and j is the direction perpendicular to the face on

which the stress acts in Figure 2.1, we can distinguish two types of stress. These are

In static equilibrium, the net force on the cube is zero; otherwise, it would move

(i) Normal: σij when i = j
(ii) Shear: σij when i 6= j .

Figure 2.2: The forces on the faces parallel to the x1 axis (Figure reproduced from
Ney, 1985) [33].

(linear acceleration) or it would rotate. Stresses on opposite faces of the cube are

opposite and equal which means only three faces of the cube are sufficient to explain

stresses. However, a 3x3 array can describe the stress at a point as the stress tensorσ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 .
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To simplify, we can consider both rotational and linear acceleration. Let consider the

total moments around the x-axis which must be zero. Figure 2.2 shows only relevant

stresses. Hence,

σ32 = σ23.

In general, σij = σji for all i, j, so σij is a symmetric second rank tensor and there

are only 6 independent elements σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 .
2.1.2 Strain

The strain is defined as the relative change in the dimensions of a body that has

undergone deformation. For simplicity, consider an extensible thin wire. From Figure

2.3, the strain in OP in one dimension is

e =
O′P ′ − OP

OP
=
u

x
.

More particularly, the strain at origin is defined as

e = lim
x→0

(
u

x
) =

du

dx
.

In three dimensions,

u1 = e11x1 + e12x2 + e13x3

u2 = e21x1 + e22x2 + e23x3

u3 = e31x1 + e32x2 + e33x3

In general, ui = eijxj, where eij is the strain, a second rank tensor. For small

deformation ∂u, the tensile strains along the axes x1, x2, x3 are

e11 =
∂u1

∂x1

, e22 =
∂u2

∂x2

, e33 =
∂u3

∂x3

.

To explain the other strain components, let us consider a deformation in the x1x2

plane of a rectangular block, as shown in Figure 2.4 with e12 6= 0; e21 6= 0. It is clear

that

e12 ≈
∂u1

∂x2

≈ (angle); e21 ≈
∂u2

∂x1

≈ (angle).
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Figure 2.3: (a) Before stretching and (b) after stretching of a thin wire [34].

Figure 2.4: (a) Pure shear, (b) pure rotation and (c) simple shear in the x1x2 plane
of a rectangular block [34].
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Three possible combinations of e12 and e21 are very useful. These are:

1) e12 = e21 is ”pure shear” ( Figure 2.4(a) ),

2) e12 = −e21 is ”pure rotation” ( Figure 2.4(b) ),

3) e12 6= 0 and e21 = 0 is ”simple shear” ( Figure 2.4(c) ).

It is clear that e12 and e21 describe both shear and rotation. Therefore, we can

write any second rank tensor as the sum of a symmetric and an anti-symmetric tensor.

eij = εij + $ij

where εij =
1

2
(eij+eji) = εji is a symmetric tensor and $ij =

1

2
(eij−eji) = −$ji

is an anti-symmetric tensor. Now the symmetric strain tensor is εij.

2.2 Tensor definitions of the dielectric, piezoelec-

tric and elastic coefficients

2.2.1 Dielectric coefficients

When an electric field Ei (Vm−1) (Ei is a component of the vector electric field) is

applied to a dielectric material, a polarization Pi (Cm−2) is induced in the material,

which can be written [33]

Pi = ε0χijEj (i, j = 1, 2, 3) (2.1)

where the summation with respect to two letter suffix can be understood by Einstein

summation convention and the dielectric susceptibility of the material χij (Fm−1)

is second rank tensor. The total induced surface charge density, Di (Cm−2)can be

written as

Di = ε0Ei + Pi (2.2)

where ε0 = 8.854× 10−12 (Fm−1). Finally, we can write

Di = ε0Ei + ε0χijEj = ε0(δij + χij)Ej = εijEj (2.3)

where εij is the permittivity tensor and δij is Kronecker’s symbol (δij = 1 for i = j

and δij = 0 for i 6= j). The tensor dielectric constant is related to the permittivity

tensor which is [33]

Kij =
εij
ε0

. (2.4)
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2.2.2 Piezoelectric coefficients

When an external stress deforms or mechanically strains a piezoelectric crystal, it

exhibits electric polarization which is known as the direct piezoelectric effect, and

can be written as

Pi = dijkσjk (2.5)

where the piezoelectric coefficients dijk (CN−1) are a third rank tensor. In the con-

verse piezoelectric effect, when an external electric field is applied to a crystal, it

generates a strain which can be written as

εjk = dijkEi. (2.6)

The units of the converse piezoelectric coefficients (dijk) are mV −1 (equivalent to

CN−1) and dijk is also a third rank tensor with 27 components. Since σjk and εjk

are symmetric tensors with respect to their indices, the piezoelectric coefficient tensor

should also be symmetric in those indices

dijk = dikj. (2.7)

This reduces the number of independent components of dijk to 18 [33]. Depending on

the symmetry of the material, the 18 independent components of dijk can be reduced

further, as we discuss later.

Three types of piezoelectric coefficients are particularly relevant in applications.

These are longitudinal (compression or expansion), transverse and shear coefficients.

The coefficient measured along the direction of the applied field is known as the lon-

gitudinal coefficient, and that measured perpendicular to the direction of the applied

field is known as the transverse coefficient. The rest of the coefficients are called shear

coefficients.

2.2.3 Elastic stiffness and compliance:

By definition, the stress and strain are symmetric second-rank tensors, which means

that σij = σji and εij = εji. In accordance with Hooke’s law for an anisotropic

medium, we can write the general relation between stress σij and strain εij as

σij = cijklεkl (2.8)

and

εij = sijklσkl (2.9)
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where the elastic stiffness cijkl (Nm−2) and compliance sijkl (m2N−1) are forth rank

tensors. The number of components of both cijkl and sijkl is 81. Since both stress

and strain are symmetric, however, one can easily show that

cijkl = cjikl = cijlk = cjilk (2.10)

and

sijkl = sjikl = sijlk = sjilk. (2.11)

Therefore, the number of independent components of both cijkl and sijkl tensors

is reduced to 36. By using thermodynamics [33, 35], it can also be proved that

cijkl (cijkl = cklij) and sijkl (sijkl = sklij) are symmetric tensors with respect to double

indices. Hence, the number of components is then further reduced from 36 to 21.

2.2.4 Matrix notation:

We can simplify the writing of 3rd and 4th rank coefficients in tensor form by using

the matrix or abbreviated notation form. The tensor notation is related to the matrix

notation using the correspondence [35]

Tensor notation 11 22 33 23, 32 31, 13 12, 21
Matrix notation 1 2 3 4 5 6

where 11, 22 and 33 are the normal components and 23 or 32, 13 or 31 and 12 or 21

represents the shear components of stress and strain tensors. The piezoelectric and

elastic coefficients can be written in matrix notation as

Pi = dimσm (2.12)

εm = dimEi (2.13)

σm = cmnεn (2.14)

εm = smnσn (2.15)

where i = 1, 2, 3 and m ,n = 1, 2, ...6. Figure 2.5 shows the direction of the notation

i, m, and n in terms of 1, 2, ...,6 along the axes X, Y, and Z. The most commonly

used three piezoelectric coefficients can be described in terms of the displacements

induced by a given applied voltage in the axes X, Y, and Z which are:

d33.V = induced displacement in direction 3 due to the voltage (V) applied in

direction 3.

d31.V = induced displacement in direction 1 due to the voltage (V) applied in

direction 3.

d15.V = induced shear displacement in direction 2 due to the voltage (V) applied in

direction 1.
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Figure 2.5: Polarization direction with the forces affecting a piezoelectric element
[36, 37].

2.2.5 Crystal symmetry and crystal systems

There are three important crystal symmetry operations: rotation, reflection and in-

version, which result in crystals with 32 possible combinations of symmetry elements.

These 32 combinations are known as point groups or crystal classes. These 32 crystal

classes can be divided into seven crystal systems. These are

(i) Triclinic
(ii) Monoclinic
(iii) Orthorhombic
(iv) Tetragonal
(v) Cubic
(vi) Trigonal
(vii) Hexagonal.

12



2.2.6 The effects of crystal symmetry on piezoelectric mate-
rials

Depending on the crystal symmetry, the independent piezoelectric (18) and elastic

(21) coefficients are reduced further in the 32 crystal point groups. According to Neu-

mann’s principle [33, 35], elastic compliance and stiffness exist in all 32 crystal point

groups, but piezoelectric coefficients are non-zero only in certain crystal symmetries.

The piezoelectric coefficients are zero in all centrosymmetric classes and in class 432

(international class symbol) [33]. Piezoelectric effects are found only if the crystal

belongs to one of the 20 noncentrosymmetric classes [33].

2.2.7 Transformation of vectors and tensors

A tensor of first rank is known as a vector. A vector with respect to two sets of

coordinate axes, Oxi and Ox′i can be written :

xi = aji x
′
j for axes Oxi

x′i = aij xj for axes Ox′i

where aji and aij are transformation matrices which are described in next section.

From the tensor definition, we get

pi = Tij qj (2.16)

where Tij is a second rank tensor representing a physical property (e.g. the dielectric

constant). Now we want to see how this will vary with the co-ordinate reference frame

used. Suppose we write

p′i = aik pk, (2.17)

pk = Tkl ql (2.18)

and

ql = ajl q
′
j. (2.19)

If we combine these three equations, we get

p′i = aik pk = aik Tkl ql = aik Tkl ajl q
′
j (2.20)

or

p′i = T ′ij q
′
j. (2.21)

Finally, we can write the tensor in the new set of axes as

T ′ij = aik ajl Tkl. (2.22)
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2.2.8 Transformation for rotation

A counter-clockwise rotation about the x3-axis of a coordinate system by an angle θ

gives the following transformation from the original coordinate position

x′1 = x1 cos θ + x2 sin θ, (2.23)

x′2 = x2 cos θ − x1 sin θ (2.24)

and

x′3 = x3. (2.25)

In matrix notation, equation (2.23) to (2.25) can be written asx′1x′2
x′3

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x1

x2

x3

 (2.26)

and the rotation matrix about x3 is

a(x3) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (2.27)

Similarly, the rotation matrix about x1 is

a(x1) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (2.28)

and the rotation matrix about x2 is

a(x2) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 . (2.29)

2.2.9 Transformation of third-rank tensors

A third rank tensor with respect to two sets of coordinate axes, oxi and ox′i, as shown

in Figure 2.6 can be written as

Pi = dijkσjk (2.30)

or

P = dσ (2.31)

and

P ′l = d′lmnσ
′
mn (2.32)
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Figure 2.6: Transformation of two sets of coordinate axes, Oxi and Ox′i where i =
1, 2, 3.

or

P ′l = d′lmnσ
′
mn. (2.33)

Since σ is a symmetric second-rank tensor, the transformations follow as [38]

P ′ = aP, σ′ = ασ and σ = α−1σ′. (2.34)

Hence, from equation (2.30), (2.31) and (2.32), we can write

P ′ = aP = adσ = adα−1σ′ = d′σ′. (2.35)

The transformation of third rank tensor can be written as

d′ = adα−1 (2.36)

where a, is the transformation matrix, which can be found by direct inspection or

from rotation matrices, and its components are known as direction cosines, α−1, is

the inverse of the quadratic transformation matrix α, and d, is the piezoelectric coef-

ficient matrix. The general forms of the three matrices are [33, 38]
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a =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

α =


a2

11 a2
12 a2

13 2a12a13 2a13a11 2a11a12

a2
21 a2

22 a2
23 2a22a23 2a23a21 2a21a22

a2
31 a2

32 a2
33 2a32a33 2a33a31 2a31a32

a21a31 a22a32 a23a33 a22a33 + a23a32 a22a33 + a23a32 a22a33 + a23a32

a31a11 a32a12 a33a13 a12a33 + a13a32 a13a31 + a11a33 a11a32 + a12a31

a11a21 a12a22 a13a23 a12a23 + a13a22 a13a21 + a11a23 a11a22 + a12a21


and

d =

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

 .

In tensor subscript notation, the piezoelectric coefficients with respect to two sets of

coordinates can be written as

d′ijk = ailajmakndlmn. (2.37)

We can use the direct inspection method to calculate the effect of crystal symmetry

on the components of tensor properties, except for the trigonal and hexagonal crystal

systems. For example, the center-of-symmetry operation (inversion) corresponds to

x′1 → −x1, x′2 → −x2, x′3 → −x3 or 1′ → −1, 2′ → −2, 3′ → −3 .

By direct inspection, we can write the matrices corresponding to an inversion opera-

tion as,

a =

−1 0 0
0 −1 0
0 0 −1


and

α−1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Therefore,
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d′ =

−1 0 0
0 −1 0
0 0 −1

 d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


=

−d11 −d12 −d13 −d14 −d15 −d16

−d21 −d22 −d23 −d24 −d25 −d26

−d31 −d32 −d33 −d34 −d35 −d36

 .

If inversion is a symmetry operation of a crystal, all the piezoelectric coefficients

must be the same before and after the operation, i.e., d′ijk = dijk. Comparing the

components before and after the inversion operation, we see that dijk = −dijk = 0

which means all the piezoelectric moduli are zero for all 11 centro-symmetrical crystal

groups.

Let consider another example such as the symmetry operation on point groups of

cubic crystals (23). By direct inspection, we can write for 2-fold rotation about the

x3-axis, x′1 → −x1, x′2 → −x2, x′3 → x3, and after that 3-fold rotation along

[111] direction, x′1 → −x2, x′2 → −x3, x′3 → x1. Finally, the transformation

matrices are

a =

0 −1 0
0 0 −1
1 0 0


and

α−1 =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 −1 0 0
0 0 0 0 −1 0

 .

Therefore,

d′ =

0 −1 0
0 0 −1
1 0 0

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36




0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 −1 0 0
0 0 0 0 −1 0


=

−d22 −d23 −d21 d25 d26 −d24

−d32 −d33 −d31 d35 d36 −d34

d12 d13 d11 −d15 −d16 d14

 .

Since these are symmetry operations of a cubic crystal, d′ijk = dijk. If we compare

the components before and after the cubic symmetry operations, we find
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d12 = − d23, d23 = − d31 and d31 = d12

so

d12 = − d23 = d31 = 0

and similarly,

d13 = − d21 = d32 = 0,

d11 = − d22 = − d33 = 0,

d16 = − d24 = − d35 = 0,

d15 = d26 = − d34 = 0,

and

d14 = d25 = d36 6= 0.

Therefore, the piezoelectric coefficients for the cubic crystal point group (23) have

the form 0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d14

 .

On the other hand, for the trigonal and hexagonal crystal systems, the direct inspec-

tion method is not applicable. To calculate the non-zero piezoelectric coefficients of

trigonal and hexagonal crystal systems, we need to use the rotational matrix about

the x3-axis, which is

a(x3) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

If we consider a 6-fold rotation axis parallel to x3 for the hexagonal system, the

transformation matrices are [38]

a =

 1
2

√
3

2
0

−
√

3
2

1
2

0
0 0 1


and

α−1 =



1
4

3
4

0 0 0 −
√

3
2

3
4

1
4

0 0 0
√

3
2

0 0 1 0 0 0

0 0 0 1
2

√
3

2
0

0 0 0 −
√

3
2

1
2

0√
3

4
−
√

3
4

0 0 0 1
4


.
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Therefore,

d′ =

 1
2

√
3

2
0

−
√

3
2

1
2

0
0 0 1

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36




1
4

3
4

0 0 0 −
√

3
2

3
4

1
4

0 0 0
√

3
2

0 0 1 0 0 0

0 0 0 1
2

√
3

2
0

0 0 0 −
√

3
2

1
2

0√
3

4
−
√

3
4

0 0 0 1
4


.

To simplify the calculation, we can impose a 2-fold rotation about the x3-axis upon

the hexagonal crystal. Some of the piezoelectric moduli will be eliminated by this

operation [38]. Hence,

d′ =

−1 0 0
0 −1 0
0 0 1

 d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1


or,

d′ =

 0 0 0 d14 d15 0
0 0 0 d24 d25 0
d31 d32 d33 0 0 d36

 .

Now if we apply a 6-fold symmetry operation to this hexagonal crystal, we can easily

calculate the non-vanishing moduli. Therefore

d′ =

−1
2
−
√

3
2

0√
3

2
−1

2
0

0 0 1

 0 0 0 d14 d15 0
0 0 0 d24 d25 0
d31 d32 d33 0 0 d36




1
4

3
4

0 0 0 −
√

3
2

3
4

1
4

0 0 0
√

3
2

0 0 1 0 0 0

0 0 0 −1
2
−
√

3
2

0

0 0 0
√

3
2
−1

2
0√

3
4
−
√

3
4

0 0 0 1
4


which gives us 8 equations. These are

d14 = 1
4
d14 +

√
3

4
d24 −

√
3

4
d15 + 3

4
d25,

d15 =
√

3
4
d14 + 3

4
d24 + 1

4
d15 +

√
3

4
d25,

d24 = −
√

3
4
d14 +

√
3

4
d24 −

√
3

4
d15 + 3

4
d25,

d25 = 1
4
d14 + 1

4
d24 + 3

4
d15 −

√
3

4
d25,

d31 = 1
4
d31 + 3

4
d32 +

√
3

4
d36,

d32 = 3
4
d31 + 1

4
d32 −

√
3

4
d36,

d33 = d33,

and

d36 = −
√

3
2
d31 +

√
3

2
d32 + 1

4
d36.
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After solving these 8 equations, we find that the non-vanishing piezoelectric moduli

for hexagonal class 6 crystal are

=

 0 0 0 d14 d15 0
0 0 0 d15 −d14 0
d31 d31 d33 0 0 0

 .

2.3 Ferroelectric domains and poling of ferroelec-

tric single crystals and ceramics

When a ferroelectric material is cooled through a phase transition from para-electric

to ferroelectric, its crystal structure changes [39, 40, 41, 42] and the temperature at

the phase transition is called Curie temperature (TC). During the transformation,

the crystal structure is distorted which produces an electric dipole moment (the spon-

taneous polarization). The ferroelectric materials of the most practical interest are

perovskite-type crystal structures with a general formula ABO3. The most widely

used are grown from a solid solution of lead titanate, PbTiO3.

To discuss ferroelectric domains, consider a perovskite crystal PbTiO3. It trans-

forms from a paraelectric cubic to a ferroelectric tetragonal phase at a Curie temper-

ature 490 ◦C. At the transition O and Ti/Zr ions move along the c-axis relative to

the large Pb ions, as shown in Figure 2.7. The movement of the ions along the c-axis

produces a permanent electric dipole moment which leads to a net polarization at the

crystal. A small area of the crystal with uniformly oriented dipole moments is referred

to as a ferroelectric domain, and the thin layer which separates two domains is called

a domain wall. Domain walls that separate anti-parallel ferroelectric domains are

known as 180◦ domain walls and the walls between mutually perpendicular domains

are known as non-180◦ domain walls [43]. Figure 2.8 schematically illustrates both

180◦ domain walls and non-180◦ domain walls. In ceramics, the material consists of

small crystallites (grains) with different orientations. These are separated by grain

boundaries and may contain several ferroelectric domains.

The spontaneous polarization (dipole moments) may be randomly oriented through-

out a ferroelectric single crystal or inside grains in ferroelectric ceramics, with no net

polarization of the material. To align these, a large DC electric field is applied to the

material slightly below its Curie temperature (TC) [36]. The direction of the applied

DC electric field determines the direction of the polarization. This process known as

poling the material.

Consider a ferroelectric single crystal consisting of a random orientation of do-

mains with no net polarization of the crystal, as shown in Figure 2.9(a). When the
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Figure 2.7: Crystal structure of a perovskite piezoelectric (a) cubic lattice with no
dipole above the Curie temperature and (b) tetragonal (orthorhombic) lattice with
dipole moment below the Curie temperature [36].

material is exposed to the poling field, some domains get bigger due to the motion of

domain walls, as shown in Figure 2.9(b). As a result, a net polarization is produced

in the single crystal, in the direction of the poling field. Sometimes, for example in

lithium niobate, a single domain or monodomain can be produced by poling a single

crystal.

In a ferroelectric ceramic, randomly oriented domains inside the grains can make

the net polarization zero as shown in Figure 2.10(a). If the piezoelectric ceramic is

exposed to a large poling field, the dipole moments will align in the direction nearest

to the poling field. It is impossible to have perfectly aligned dipole moments along the

poling field due to the random orientation of grains. However, a reasonable degree

of alignment can be achieved since each grain can have several allowed directions.

Because of the domain alignment, the material also elongates in the same direction
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Figure 2.8: (a) a 180◦ domain wall separating anti-parallel ferroelectric domains, and
(b) a non-180◦ domain wall separating mutually perpendicular domains [43, 44].

Figure 2.9: (a) Unpoled and (b) poled single crystal (Figure reproduced from Bukhari
M.Sc. thesis, 2014) [45].
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Figure 2.10: A typical hysteresis loop (or switchery) in a ferroelectric ceramic and
corresponding domain reversal (Figure reproduced from Jin et al.) [46]. Switching
during poling shows the (a) non-polarized state, b) under an applied electric field, c)
a polarized state.

as shown in Figure 2.10(b). When the poling field is removed, the spontaneous

polarization does not entirely return to its original position, and the crystal remains

partially polarized as shown in Figure 2.10(c). The partial polarization is called a

remnant polarization. Due to such poling, the material has become permanently

piezoelectric. When the poled material is then subjected to a DC electric field in the

poling direction, the material elongates further in the direction of the field [36, 47].

2.4 Piezoelectric and dielectric properties of single

crystal LiNbO3, PMN-PT and ceramic PZT

These three piezoelectric materials are widely investigated because of their large piezo-

electric and dielectric properties. We discuss these three materials’ temperature de-

pendence, composition, crystal structure, and symmetry which are responsible for

their larger piezoelectric and dielectric properties.

2.4.1 Single crystal LiNbO3

Lithium niobate (LiNbO3) crystals are not naturally occurring. In 1949, Matthias

and Remeika synthesized single crystals of LiNbO3 for the first time and discovered
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their ferroelectric properties [48]. After that, several papers were published about

the properties and structure of the material. This single crystal belongs to a trigonal

crystal system where it can have either a rhombohedral or hexagonal unit cell [20].

It has been widely used in various devices because of its piezoelectric, pyroelectric,

electro-optic, photo-elastic and dielectric properties [18, 19, 20, 49]. It is also used in

surface acoustic wave (SAW) devices for its low acoustic losses [27]. The Curie tem-

perature of LiNbO3 is 1210 ◦C . Above the Curie temperature, it has a para-electric

phase. In the para-electric phase, the Li atoms, which are c/4 away from Nb atoms,

stay in an oxygen layer and the Nb atoms lie in the center between nearest oxygen

layers. This orientation produces no net polarization [50]. Below the Curie temper-

ature, it forms planar sheets of oxygen atoms in a ferroelectric distorted hexagonal

closed packed configuration, where the elastic forces of the crystal shift the lithium

and niobium ions into new position which induces spontaneous polarization [20]. Both

the paraelectric and ferroelectric crystal structures of LiNbO3 are shown in Figure

2.11.

Figure 2.11: Positions of the lithium atoms (Li) and the niobium atoms (Nb) with
respect to the oxygen (O) octahedra in the paraelectric (left) and ferroelectric (right)
phase of lithium niobate single crystal (Figure reproduced from Weis et al., 1985)
[20, 50].

The ferroelectric phase of the crystal has three-fold rotation symmetry about its

c axis and three mirror symmetry planes which are 60◦ apart. The LiNbO3 crystal is

classified as a member of point group 3m with those two crystal symmetry operations
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Figure 2.12: Schematic phase diagram of the Li2ONb2O5 pseudobinary system (Fig-
ure reproduced from Volk et al., 2008) [51].

[52]. Figure 2.12 shows the phase diagram of the Li2ONb2O5 pseudobinary system.

LiNbO3 is one of the important compounds of this system. LiNbO3 crystals are

grown near the stoichiometric and congruent composition to get a larger piezoelectric

effect. The line between the paraelectric and ferroelectric phases in Figure 2.12 is the

Curie temperature (Tc) line. It is clear that Tc is strongly composition dependent.

Since LiNbO3 crystals are point group 3m classes, the non-vanishing piezoelectric and

dielectric coefficients [18] have the following form 0 0 0 0 d15 −2d22

−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0


and K11 0 0

0 K11 0
0 0 K33

 .

So the piezoelectric and dielectric properties of LiNbO3 crystal can be described by

four independent piezoelectric coefficients d15, d22, d31, d33 and two independent

dielectric coefficients K11, K33, respectively.
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Figure 2.13: (a) X-cut and Y-cut, (b) 41◦ X-cut and (c) 36◦ Y-cut of LiNbO3 single
crystal [1, 27].

Depending on which piezoelectric coefficients need to be measured, LiNbO3 crys-

tals are commonly cut in a number of useful ways perpendicular to the X, Y, and

Z axes. Shear cuts such as 41◦ X-cut, 163◦ rotated Y-cut and longitudinal cuts like

Z-cut and 36◦ Y-cut (quasi longitudinal) are very popular. X-cut and Y-cut orienta-

tions of LiNbO3 single crystals are shown in Figure 2.13(a) and a 41◦ X-cut is shown

in Figure 2.13(b). The 41◦ X-cut has pure shear modes because it is perpendicular

to the X-axis. In our lab, we used 41◦ X-cut and 36◦ Y-cut LiNbO3 transducers to

measure the shear and longitudinal piezoelectric and dielectric coefficients.
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2.4.2 Single crystal PMN-PT

During the last couple of decades, relaxor ferroelectric materials have been widely

investigated, with an extensive and increasing range of applications. Conventional

piezoelectric crystals have either tetragonal or rhombohedral symmetry and a dipole

moment below the Curie temperature (TC) that produces piezoelectric properties.

Above the Curie temperature, piezoelectric properties sharply disappear because the

crystal has a simple cubic symmetry with no dipole moment. In relaxor materials, the

phase transition from para-electric to ferroelectric phase does not occur at a specific

temperature, but the change occurs over a temperature range known as the Curie

range.

Lead magnesium niobate-lead titanate (PMN-PT) is one of the best known relaxor

ferroelectric crystals. Its chemical composition is (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3.

It can be grown either as a single crystal or as a polycrystalline ceramic from a

solid solution of relaxor ferroelectric PMN and a normal ferroelectric PT. Techno-

logically, single crystals are more important because of their larger electromechanical

coupling coefficients, piezoelectric coefficients and dielectric constants, with low di-

electric losses, compared to those of polycrystalline ceramics. This crystal (PMN-PT)

has complex phase boundaries in the region (0.3 < x < 0.35) at room temperature, re-

ferred to as the morphotropic phase boundary (MPB). Crystals are usually grown near

the MPB because larger piezoelectric and dielectric properties are observed in this

region. In 2003, Guo et al. grew PMN-PT single crystals using a modified Bridgeman

technique and introduced a modified MPB as shown in Figure 2.14 [53]. They mainly

determined that the MPB boundary region (0.3 < x < 0.35) involves two-phase

boundaries between rhombohedral - monoclinic (orthorhombic O1) and monoclinic -

tetragonal (orthorhombic O2), where abnormal dielectric and piezoelectric properties

are observed. Their proposed MPB is widely accepted in the community.

Above TC PMN-PT crystals have a para-electric phase with a cubic m3m sym-

metry for all compositions [53, 54, 55, 56] so far studied. Below TC , their structure

depends on the composition x. The MPB of PMN-PT is between x=0.33 to x= 0.35

and separates rhombohedral 3m symmetry below x≤.33 and tetragonal 4mm symme-

try above ≥0.35. Within the MPB, PMN-PT has a monoclinic m symmetry, and an

orthorhombic mm2 symmetry is observed on both side of the MPB.

Piezoelectric properties of this material also depend on the poling direction. Pol-

ing along < 001 > directions in PMN-PT creates a symmetrical multi-domain con-

figuration with macroscopic tetragonal symmetry (4mm) and only three independent

piezoelectric coefficients, d15 = d24, d31 = d32, and d33 [57]. Poling along < 111 >
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Figure 2.14: The accepted phase diagram of PMN-PT crystals as proposed by Guo
et al. [53]. C, T, R, O, and M refer to cubic, tetragonal, rhombohedral, orthorhombic
and monoclinic phase regions, respectively.

PMN-PT creates a single domain rhombohedral (3m) symmetry with four indepen-

dent piezoelectric coefficients, d15 = d14, d16 =
d21

2
= −d22

2
, d31 = d32 and d33 [57].

Poling along < 011 > of PMN-PT creates a symmetrical multi-domain configuration

with macroscopic orthorhombic symmetry (mm2). These crystals have five indepen-

dent piezoelectric coefficients, d15, d24, d31, d32, and d33 [57]. The PMN-PT crystal

has a lower Curie temperature ((130-170) ◦C) than LiNbO3 (1210 ◦C) and PZT (350
◦C) crystals, which limits its applications at higher temperatures.

2.4.3 Polycrystalline PZT ceramics

PZT (PbZrxTi1−xO3) ceramics were first discovered in the 1950s and they are now

the most used piezoelectric materials. PZT is grown from a solid solution of lead zir-

conate (PbZrO3) and lead titanate (PbTiO3). It has a perovskite (ABO3) crystalline

structure, where Pb atoms fill the A-sites at the corners of the unit cell, and O2 atoms

are at the face centers. Ti or Zr atoms are positioned at the center of the unit cell to
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Figure 2.15: (a) Phase diagram of PZT and (b) the piezoelectric coefficients, dij, as
a function of composition [58].
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fill B-sites where they are octahedrally coordinated. The Curie temperature (TC) of

the material is 350◦C. Above TC , it shows a para-electric simple cubic (m3m) sym-

metry with no dipole moment. Below TC , it has a ferroelectric tetragonal (4mm) or

rhombohedral (3m) crystal structure. Pure PT (PbTiO3) is tetragonal ferroelectric

(4mm) and pure PZ (PbZrO3) is antiferroelectric orthorhombic at room tempera-

ture. The boundary between the ferroelectric tetragonal (4mm) and rhombohedral

(3m) phases is called the morphotropic phase boundary (MPB). Figure 2.15 shows

the MPB of PZT. PZT is mainly grown near the MPB because larger piezoelectric

and dielectric properties are achieved in these region [58].

The 32 point groups that are described in section 3, do not apply to polycrystalline

ceramics such as PZT, which consist of randomly oriented of grains in all directions.

They can be described by a symmetry axis of infinite order (∞) [59]. A symmetry

axis of infinite order means that its physical properties are unchanged when the

material is rotated by any angle around such an axis. Before poling, PZT ceramics

have spherical symmetry (∞∞m) [43], with randomly oriented grains are separated

by grain boundaries. Individual grains have spontaneously polarized domain, but

produce no net polarization of the ceramic until it is poled by an external electric

field. After poling, it has a cylindrical symmetry (∞m) [43]. The non-zero matrix

elements of the dielectric, piezoelectric, and elastic compliance coefficients of poled

PZT ceramics are the same as for crystals that belong to point group 6mm. Hence,

the symmetry of the poled PZT ceramics can be described by three piezoelectric

coefficients d33, d31 and d15 [59] which are described in section 2.2.4.

2.5 Review of the temperature dependence of piezo-

electric and dielectric properties

LiNbO3 transducers have been used at cryogenic temperatures [60] but there do not

appear to be published measurements of d15 or d33 below room temperature. The

piezoelectric coefficients of LiNbO3 single crystals are weakly temperature dependent.

The shear coefficient d15 drops by about 5% between 200 ◦C and 20 ◦C. Figure 2.16

shows the temperature dependence of the piezoelectric shear coefficient d15 [1, 61]

between 20 ◦C and 200 ◦C.

Figure 2.17 shows the temperature dependence of the shear and longitudinal di-

electric constants [18] for LiNbO3 in a temperature range from 20 ◦C to 200 ◦C. They

decrease gradually with temperature and the maximum value drops by about 5% over

the whole temperature.

Thin single crystals of LiNbO3 can tolerate high voltages and generate large dis-
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Figure 2.16: Weak temperature dependence of the piezoelectric coefficient d15 for
LiNbO3 (Figure reproduced from G. Gautschi et al., 2002) [1, 61].

placements. Figure 2.18 shows the displacement for applied voltages up to 700 V

applied to a stack of 36◦ Y-cut LiNbO3 transducer [27]. Over this voltage range,

there was no measurable hysteresis.
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Figure 2.17: Temperature dependence of the dielectric constant for LiNbO3 single
crystal (Figure reproduced from Yamada et al., 1967) [18].

Figure 2.18: Large piezoelectric displacements for a stack of 36◦ Y-cut LiNbO3 single
crystals for applied voltage between -700 V and + 700 V (Figure reproduced from
Kawamata et al., 2007) [27].
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Single crystal PMN-PT has exceptionally large piezoelectric coefficients at room

temperature but limited information is available about its behaviour below 75 K,

and none at all for the shear coefficients d15 below 75 K [14, 21]. Its piezoelectric

coefficients have three temperature dependence regions between room temperature

and 5 K [14, 21]. In 2012, Martin et al. reported d33 is strongly temperature dependent

below 100 ◦C and above 250 ◦C, but it is weakly temperature dependent in a plateau

region between 100 ◦C and 250 ◦C, as shown in Figure 2.19. In 2011, Wang et al.

observed similar temperature behavior of the shear d15 and transverse d31 piezoelectric

coefficients between room temperature and 77 K as shown in Figures 2.20 and 2.21

[14] with a plateau that is even less temperature dependent.

Figure 2.19: Three temperature dependence regions of d33 for PMN-28PT (Figure
reproduced from Martin et al., 2012) [21].
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Figure 2.20: Temperature dependence of the shear piezoelectric constant d15 (black
dots) and the shear voltage constant g15 (white dots) for a PMN-PT single crystal
(Figure reproduced from Wang et al., 2011) [14].

Figure 2.21: Temperature dependence of the transverse piezoelectric constant d31 for
a PMN-PT single crystal (Figure reproduced from Wang et al., 2011) [14].
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The dielectric constant of this material has a temperature dependence much like

that of piezoelectric coefficients. Wang et al. measured the temperature dependence

of the dielectric constant and loss tangent for PMN-PT single crystal as shown in

Figure 2.22 [14].

Figure 2.22: The variation of temperature dependence of the dielectric constant
(white dots) and loss tangent (black dots) for a PMN-PT single crystal (Figure re-
produced from Wang et al., 2011) [14].

The piezoelectric coefficients of the most commonly used material, PZT, change

roughly linearly with temperature [17]. Its room temperature piezoelectric coefficients

d33 and d31 become about 5 times smaller at 4 K [15, 17] but little is known about the

shear coefficient d15 at cryogenic temperatures. Figure 2.23 shows the temperature

dependence of the piezoelectric coefficients dij for PZT-5H ceramics at temperatures

between -150 ◦C and 100 ◦C [62].

The dielectric coefficients of this material are also roughly linearly temperature

dependent below room temperature. Zhang et al. measured the temperature depen-

dence of the dielectric constant for both PZT 52/48 and PZT-500, as shown in Figure

2.24 from 15 to 300 K [29].
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Figure 2.23: Temperature dependence of piezoelectric coefficients for PZT-5H (Figure
reproduced from Wang et al., 1998) [62].

Figure 2.24: The temperature dependence of the dielectric constant for PZT-500 (•)
and PZT-52/48 (◦) at 1 kHz (Figure reproduced from Zhang et al., 1998) [29].
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2.6 Non-linearity, hysteresis and creep properties

of piezoelectric materials

2.6.1 Non-linearity

A displacement-voltage curve may show linearity (displacement proportional to ap-

plied voltage) and non-linearity, as illustrated in Figure 2.25. Linear piezoelectric be-

havior is usually observed at small voltages and temperatures but most piezoelectrics

are non-linear at large voltages. For many practical applications of piezoelectric ma-

terials, large displacements are needed, which requires large voltages.

Figure 2.25: Displacement vs. applied voltage, showing the non-linearity.

2.6.2 Hysteresis

To discuss hysteresis and loss, let us consider a schematic piezoelectric displacement

(x) vs. voltage (V ) curve, as shown in Figure 2.26. If the displacement traces an

open path during voltage cycling, it is called hysteresis. It can also be described as a

dissipation, loss tangent or loss conductance, which occurs when there is a phase lag

between the applied voltage and the displacement. In a single crystal, the geometry

and dynamics of changes in the domain configuration produce hysteresis between the

induced polarization and electric field [63]. The behavior of ceramics is even more
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complicated because of the crystallite structure. In ceramics, the hysteresis loop

depends on both structure and composition [63].

The piezoelectric losses occur in both dielectric (polarization-electric field hys-

teresis) and piezoelectric (displacement-voltage hysteresis) behavior. Domain-wall

motion, lattice distortion, micro-structural evolution and internal friction (molecular

friction) all play a role in these losses [64, 65, 66]. Piezoelectric loss can be calcu-

lated from the area or width of the hysteresis. Molecular friction is important in the

low electric-field losses [67] in PZT materials while the higher electric-field losses are

primarily due to increased motion of non-180◦ domain wall [64].

Figure 2.26: Displacement (x) vs. voltage (V) hysteresis loop.

2.6.3 Creep

When a constant voltage is applied to a piezoelectric material its piezoelectric dis-

placement changes immediately (y0), followed by a much slower time-dependent dis-

placement. The slow displacement may reduce domain wall mobility through the

gradual build-up of hindering domain structures [63]. This time-dependent property

is known as relaxation aftereffect or creep. Figure 2.27 illustrates the initial piezo-

electric displacement followed by creep. The creep rate usually follows a logarithmic
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relation a log10(
t

t0
) [25, 68, 69]. The choice of t0 is a bit arbitrary because

lim
t→0

log10(t) = −∞,

making creep hard to separate from the immediate jump y0. Such a total piezoelectric

displacement can be written as

∆x = y0 + a log10(
t

t0
) (2.38)

where the parameters y0 and a may be temperature and voltage dependent and t is

the time.

Figure 2.27: Displacement vs. time showing piezoelectric jump and creep.

If we assume that creep is directly proportional to the applied voltage change ∆V ,

then the creep displacement can be written as

∆x1 = c∆V log10(
t

t0
). (2.39)

where the parameter c may be temperature dependent. By comparing equation 2.38

and 2.39, one can write c = a/∆V . If we assume the creep displacements due to

successive voltage changes are independent of each other, they can be added to get

the total creep displacement for the successive voltage changes. This creep produces

hysteresis in displacement vs. voltage curves.
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2.7 Depolarization of piezoelectric crystals

Piezoelectric materials may be depolarized by exceeding their electrical, mechanical,

or thermal limitations. Their piezoelectric properties can be destroyed or diminished

by depolarization. A strong electric field of opposite polarity or perpendicular to

the polarization can depolarize piezoelectric materials. The depolarization depends

on several factors such as the temperature, the exposure time and the field strength

[36]. Electrical fields of 150 V/mm for PMN-PT, (200-500) V/mm for PZT and (1-5)

kV/mm for LiNbO3 may depolarize these materials. An AC current will also have

a depolarization effect since the polarity during half of the cycle is opposite to the

polarization field. Large mechanical stresses may also destroy the orientation of the

dipoles. The degree of depolarization depends on the manufacturing process and

material composition. Materials are also depolarized when heated above the Curie

temperature. The maximum operating temperature of materials should not exceed

about half of the Curie temperature [36], roughly 210 ◦C for PZT, 80 ◦C for PMN-PT

and 600 ◦C for LiNbO3 crystals.

2.8 Multilayer piezoelectric stack actuators

A single thick transducer needs high voltages to produce the large electric fields for

large displacements but application of large voltages may depolarize the transducer.

Although the applied fields have to be kept below depolarization fields, the voltages

involved are still quite large for single thick transducers. A multilayer piezoelectric

stack can overcome this problem. It is made from several thin transducers where

adjacent transducers, have opposite polarizations, with thin metallic electrodes sepa-

rating them. When a voltage is applied to the stack, the same voltage will be applied

to each transducer. The displacements of the individual transducers will add up,

creating large displacements with comparatively low operating voltages. Since the

stack is made from thin transducers, the lower applied voltages produce large electric

fields in each transducer.

Consider a stack which contains a number n of thin transducers. If the individual

displacement of each transducer is δl, the total displacement (∆L) of the stack can

be written as

∆L = n× δl (2.40)

where δl = d15V for a shear transducer. For a longitudinal transducer, the thickness

change δt = d33V and for a transverse transducer δl = d31
l

t
V . Figures 2.28, 2.29
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and 2.30 show shear, longitudinal and transverse stacks. In our lab, we made a

shear stack of 3 single 41◦ X-cut LiNbO3 transducers and obtained the expected

shear displacements, as discussed in Chapter 4. Kawamata et al. [27] developed a

longitudinal stack actuator of 36◦ Y-cut LiNbO3 transducers (shown in Figure 2.31)

and achieved (760 ± 380) nm displacements with an applied voltage of ±1 kV. It

would require impracticably large voltages to generate such large displacements with

a single thick transducer. They suggested that their stack could be used in AFM and

STM applications because of its large piezoelectric displacement compared to a single

transducer [27].

Figure 2.28: Shear stack actuators with shear displacement, ∆Lshear, [69].
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Figure 2.29: Longitudinal stack actuators with longitudinal displacement, ∆Llong,
[69].

Figure 2.30: Transverse stack actuators with transverse displacement, ∆Ltrans, [69].

Figure 2.31: Longitudinal stack actuator using 36◦ Y-cut LiNbO3 single crystals
(Figure reproduced from Kawamata et al., 2007) [27].
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2.9 Dielectric properties

The dielectric coefficient of piezoelectric materials can change with temperature, fre-

quency, chemical composition, pressure and molecular structure of the materials. A

dielectric is a material that can store electrical energy when an external voltage is

applied. For example, if a DC voltage is applied across a parallel plate capacitor, it

can store more charge with a dielectric material rather than a vacuum between the

plates, as shown in Figure 2.32. With vacuum between the plates, a voltage across

the plates will produce a electric displacement (D) which can be written as

D = ε0E. (2.41)

Neglecting the edge effect from the fringing fields outside of the area between the

plates, the capacitance is

C0 =
Q0

V
=
ε0EA

Et
=
ε0A

t
(2.42)

where Q0 = ε0EA is the stored charge , V = Et is the applied voltage , A is the area

of the plates, t is the separation between the plates and ε0 = 8.85× 10−12 (Fm−1) is

the permittivity of free space. If the space between the plates is filled with a dielectric

Figure 2.32: A DC voltage applied to a piezoelectric transducer [70].

material, it produces an additional charge density, P , from the polarization of charges

within the material. The total electric displacement, D, can be written as

D = ε0E + P = Kε0E. (2.43)
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The capacitance then can be written as

C =
Q

V
=
Kε0EA

Et
=
Kε0A

t
= KC0 (2.44)

where K is the relative permittivity (or dielectric constant).

Figure 2.33: (a) AC voltage applied to a piezoelectric transducer and (b) correspond-
ing parallel equivalent circuit of capacitor for the transducer [70].

For an AC sinusoidal voltage across the capacitor shown in Figure 2.33, the current

(i) can be divided into a charging current (ic) and a loss current (il). Those currents

are related to the capacitance, C, and loss conductance, G, (or loss tangent). If the

capacitor filled by a lossy dielectric material then the relative permittivity K∗ is a

complex number which can be written as [70]

K∗ =
ε

ε0

= ε∗r = ε′r − jε′′r (2.45)

where j2 = −1. From equation 2.44, the capacitance can be written as

C∗ =
K∗.ε0A

t
=
ε0ε
∗
rA

t
(2.46)

and the impedance of the circuit is

Z =
1

jωC∗
(2.47)

where ω (= 2πf) is the angular frequency of the AC sinusoidal voltage. The admit-

tance of the circuit is

Y =
1

Z
= jωC∗ =

jωε0εrA

t
=
jωε0(ε′r − jε′′r)A

t
(2.48)
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or,

Y = jωC +G (2.49)

where C =
ε0ε
′
rA

t
and G =

ωε0ε
′′
rA

t
. The circuit current can be written as

i = Y V = (jωC +G)V (2.50)

or,

i = ic + il. (2.51)

If the material is lossy, there must be a component of current in phase with

voltage [63]. Figure 2.34 shows the parallel equivalent circuit with the phase of

the charging current and loss current with respect to the applied voltage in a lossy

dielectric material (θ is the phase angle and δ is the loss angle). The loss tangent or

dissipation can be written as a ratio of the loss conductance, G, and the magnitude

of the capacitive susceptance, B,

tan δ =
G

B
=

G

ωC
=
ε′′r
ε′r

(2.52)

where B = ωC.

Figure 2.34: (a) Parallel equivalent circuit of capacitor and (b) Phase diagram be-
tween charging current and applied voltage of the parallel equivalent circuit [70].

The average input power delivered to the circuit is

1

2
Y V 2 =

jωCV 2

2
+
GV 2

2
(2.53)

where the first term represents the storage energy and the second term represent loss

energy. The average power dissipated in a lossy capacitor is

UT =
GV 2

2
=

1

2

ωε0ε
′′
rA

t
V 2 =

1

2
ωCV 2 tan δ. (2.54)
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The hysteresis loss in terms of the area enclosed within the P-E loop [71] can be

written as

U =

∫ t2

t1

PdE (2.55)

where P ∗ = ε0ε
∗
rE
∗. The average P-E hysteresis loss can be obtained from

UH =
1

T

∫ T

0

PdE (2.56)

where T =
2π

ω
. If we consider a polarization, P , with a phase lag from the applied

electric field, E, we can obtain the average hysteresis loss

UH =
1

2
ωCV 2 tan δ (2.57)

which is identical with equation 2.54.

46



2.10 Different types of dielectric constants

The relative dielectric constant K is the ratio of capacitance C of a transducer filled

with a dielectric material and C0 of the same transducer’s top and bottom plates

separated by a vacuum. The two independent dielectric constants for these crystals

are Kσ
11 = Kσ

22 and Kσ
33 or Kε

11 = Kε
22 and Kε

33. The superscript σ or ε means that the

dielectric constants are measured under constant stress or strain. The subscript 11

means that the dielectric displacement is perpendicular to the polarization direction

i.e. the applied electric field and the dielectric displacement in direction 1 and 33

indicates the dielectric displacement is parallel to the direction of polarization i.e.

the applied electric field and the dielectric displacement in direction 3 [36, 69].

Figure 2.35: Transducer to measure dielectric constant (a) K11 and (b) K33, under
constant stress or strain.
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Chapter 3

Experiment

This Chapter is divided into two sections: experimental apparatus and experimen-

tal techniques. The relevant information on all instruments, cryogenic and vacuum

techniques, thermometry and temperature control and capacitance measurements is

provided in the experimental apparatus section. The drawings of the cell, procedures

for data acquisition and analysis, and procedures to measure the temperature and

voltage dependence properties of piezoelectric coefficients, dielectric constants and

losses, hysteresis and creep are discussed in experimental techniques section.

3.1 Experimental Apparatus

3.1.1 Dilution Refrigerators

We used an SHE mini dilution refrigerator and a 1 K cryostat to perform all these

experiments. The SHE mini dilution refrigerator was used to measure piezoelectric

coefficients such as d15 and d33, creep and hysteresis properties of the samples. The 1

K cryostat was used to measure dielectric coefficients, loss tangent and polarization

of the samples.

The lowest temperature stage of the SHE mini dilution refrigerator is called the

mixing chamber, where the experimental cell, built with oxygen-free copper (OFHC),

was mounted. A 4He pot which provides the 1 K stage, needed to be refilled once

a day from the helium bath. Figure 3.1 shows the schematic of a 3He-4He dilution

refrigerator with its main components and the flow diagram for its liquid mixture.

Six (6) stainless steel coaxial cables were installed to replace the old two stainless

steel coaxial cables in order to perform these experiments. This new system gave us

the ability to measure two samples in every cool down. All the coaxial cables from

room temperature to the experimental cell were thermally anchored to the 4 K, 1 K

and mixing chamber stages. The lowest temperature achieved with the fridge was
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Figure 3.1: The main components and flow diagram of a 3He-4He dilution refrigerator
(Figure reproduced from Pobell, 1992) [72].

about 75 mK, higher than the limit of 40 mK quoted by the manufacturer indicating

that heat leaks due to radiation, coaxial cables, thermometers and heater leads were

about 5 µW.

The measurements were done in two steps. In the first step, a copper strip ther-

mally connected the 4 K flange to the mixing chamber, to make measurements from

room temperature down to 4 K. In this way we were able to control the temperature

very precisely, with only a few mK fluctuation. In the second step, we removed the

copper strip and ran the dilution fridge. We used vibration reducers to minimise the

vibration from the 3He mechanical pump and the 1 K pot pump. In this way, we

measured data from 10 K to 78 mK. We mounted two thermometers and a 200 Ω
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heater on the cell to measure and control the cell temperature precisely.

The lowest temperature stage in the 1 K cryostat was a 4He pot where the ex-

perimental cell, built from brass, was mounted along with a 200 Ω heater, a carbon

glass and a platinum thermometer. The lowest temperature achieved with the 1 K

cryostat was 1.3 K. In this cryostat we measured the capacitance and dielectric loss

conductance of transducers during temperature cycling between room temperature

and 1.3 K, using an AH 2550A 1 kHz ultra-precision capacitance bridge. The dielec-

tric constant was then calculated from the capacitance data.

3.1.2 Gas Handling System and Leak Testing

The gas handling system (GHS) was built to provide vacuum for the fridge, the desired

pressures for storage tanks and fill lines, and to admit the clean gas to the dilution

fridge in a controlled way. Figure 3.2 shows the schematic of the GHS. We modified an

Figure 3.2: Schematic of our gas handling system to operate a 3He-4He dilution
refrigerator.

existing system by installing an adjustable safety valve across V3 to protect against

explosion of the important parts of the system. The basic operation is described

below.
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An important part of the GHS is a liquid nitrogen (LN2) cold trap. It is filled with

molecular sieve (Union Carbide: Type 13X) which cleans the mixture of 3He -4He

circulating through it by removing condensible gases at liquid nitrogen temperature

before they reach the coldest parts of the fridge and plug its capillaries. The system

is equipped with several room temperature pressure gauges, a 3He-4He mixture tank

and a hermetically 3He sealed pump.

A turbopump (Agilent Technologies with V 81-AG rack controller, backed by a DS-

102 Agilent roughing pump) was used to pump out the fridge, LN2 trap and vacuum

can and a mechanical pump was used to pump on the 4He pot. Once everything

was evacuated, an ASM-110 Alcatel leak detector was used for leak testing at room

temperature, liquid nitrogen temperature, and liquid helium temperature. If no leak

was observed at those temperatures, we filled and ran the fridge to achieve the lowest

temperature.

3.1.3 Thermometry and Temperature Control

In order to perform dielectric and piezoelectric measurements over the entire tem-

perature range, we used five thermometers to control temperature. Between 12 and

300 K we used calibrated platinum thermometers (Lake Shore Cryotronics [73] model

P1935). Carbon glass thermometers (Lake Shore Cryotronics [73] model CGR-1-2000

and model-CGR-1-1500) were used down to 1.5 K and a calibrated ruthenium ox-

ide thermometer (Lake Shore Cryotronics [73] model RX-102A-CD) was used at the

lowest temperatures. All thermometers were calibrated and allowed temperatures to

be controlled accurately. There were no problems encountered in making thermal

contact with the thermometers.

All thermometers were mounted inside round copper blocks which were then

screwed to the fridge or cell or 1K pot. Thermal contact was made with Apiezon

grease and by varnishing the electrical leads to copper posts screwed into the mount-

ing blocks. All the heater and thermometer leads were thermally anchored to the 1K

pot and mixing chamber to minimize the heat load on the fridge.

We used one 200 Ω and one 151.2 Ω heater on the mixing chamber, one 200 Ω

heater on the cell and one 132 Ω heater on the still to make sure that if one was dam-

aged we could still continue our experiments. We used a ruthenium oxide thermometer

for our low-temperature measurements below 4 K because it had an estimated ac-

curacy of ±1 mK below 0.5 K and ±2 mK above 0.5 K. All the thermometers were

used in a four wire configuration and the heaters in a two wire configuration. Figure

3.3 shows examples of thermometers and heaters. Neocera temperature controllers
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Figure 3.3: Sample of the 4-wires thermometer and a 2-wires configured heater
(Figure reproduced from Bukhari M.Sc. thesis, 2014) [45].

LTC-11 and LTC-21 used to control the thermometers and heaters. The control

temperature was usually very stable with only a few mK fluctuations.

3.1.4 Capacitance Measurements

All displacements were measured capacitively, using polished copper blocks of cm

size. The AH2500A 1 kHz capacitance bridge [74] provides excellent accuracy and

resolution for the precise measurement of capacitance and loss. It uses a three ter-

minal measurement technique. In ordinary two terminal capacitor measurement, the

stray capacitances between the HIGH (H) and LOW (L) terminals, due to surround-

ing objects such as the capacitor case and ground are impossible to avoid. Figure 3.4

illustrates the regular two terminal capacitor measurement with a total stray capaci-

tance Cs. In a three terminal capacitor measurement, the third terminal works as a

shield to eliminate effects of the surrounding stray capacitance, as shown in Figure

3.5.

The capacitance bridge can also reduce the random noise in a single measurement

by internally averaging the noise over a time period. The averaging time for each single

measurement was 4 seconds in our experiments. The maximum excitation voltage of

the bridge, used in all our measurements, is 15 VAC for capacitance measurement

ranges (-11 to + 110 pF and loss ranges 0.8 to + 8 nS). Our capacitance values

were within this range (3.5 pF for PZT/PMN-PT and 3.3 pF for LiNbO3/stack of

LiNbO3). The resolution of the bridge for a single measurement with these settings

was
δC

C
≈ 4.1 × 10−7. Figure 3.6 shows a typical series of single capacitance
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Figure 3.4: Regular two-terminal capacitor (Cm) measurement with stray capacitance
(Cs) between the leads.

Figure 3.5: The shielded standard three terminal capacitor arrangement used by the
AH2500A capacitance bridge.
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LiNbO3 at 30K
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Figure 3.6: Typical series of individual capacitance measurements over time, illus-
trating the noise for our capacitance measurements at 30 K.

measurements at 30 K with no voltage applied to the LiNbO3 transducer, where

noise
δC

C
= 3.0 × 10−7. This noise corresponds to a displacement δl equal to 0.09

nm for a typical parallel plate spacing l = 0.3 mm (0.06 nm for l = 0.2 mm).

3.2 Experimental Techniques

3.2.1 Experimental design and analysis of capacitance mea-
surements to measure shear piezoelectric displacement

In order to measure the shear piezoelectric coefficient d15 from room temperature

down to 78 mK, we used a capacitive displacement detection technique. We machined

a large (14×14 ×16 mm3) and a small (10×10 × 8 mm3) block and polished their

faces with 20, 12, 9, 5, 3 and 1-micron polishing sheets. The copper blocks and the

L shaped copper base (20 mm surface width) were cleaned ultrasonically, followed by

washing with methanol. The small polished block was then permanently attached to

the base, and the large polished block was attached to one of the brass electrodes

using epoxy (Hysol TRA-BOND 2151(3g), BIPAX) for electrical insulation. The

device was mounted on the mixing chamber of a dilution refrigerator. Stainless steel

coaxial cables connected a capacitance bridge to the fixed copper block and to the

block clamped on top of the transducer, to measure the capacitance between the

blocks. An AH2550A [74] 1 kHz ultra-precision digital capacitance bridge was used
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to measure the capacitance between the blocks. In this technique, we used a magnetic

clamp instead of soldering a wire to the transducer. The magnetic clamp helped to

ensure the transducer’s temperature was the same as the mixing chamber temperature

and allowed us to reuse the transducer in other experiments.

Figure 3.7: Schematic diagram of the capacitive displacement technique used to
measure d15, creep and hysteresis properties of shear piezoelectric transducers.

Figure 3.7 shows a schematic of the cell used to measure d15, creep and hysteresis

properties. The piezoelectric shear transducer was magnetically clamped between one

of the blocks and the base of the cell. A voltage change (∆V ) applied across the shear

transducer using two thin brass electrodes produced a transverse displacement ∆x =

d15∆V . This then produced a capacitance change ∆C proportional to the change in

spacing ∆L = ∆x between the two blocks. The gap spacing L (typically about 300

µm) is related to the initial capacitance

C0 =
ε0A

L
(3.1)

where A is the area of the gap where the blocks overlap. The change in capacitance

when a DC voltage change (∆V ) is applied

∆C = ε0A(
1

L
− 1

L+ ∆L
) (3.2)
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or

∆C =
ε0A

L
.(

∆L

(L+ ∆L
) = C0.(

∆L

(L+ ∆L
). (3.3)

For small changes in the block separation (∆L � L), equation 3.3 can be rewritten

as

∆C ' C0.(
∆L

L
) (3.4)

or
∆C

C0

' ∆L

L
. (3.5)

Equation 3.5 can be written substituting ∆L = d15∆V

∆C

C0

' ∆L

L
' d15∆V

L
. (3.6)

The shear piezoelectric coefficient is then

d15 =
Aε0

C2
0

∆C

∆V
. (3.7)

Equation 3.7 is developed for the case of an ideal capacitor. In practice, there are

two extra capacitances added to the ideal gap capacitance. One of them is the edge

effect and the other is stray capacitance.

Figure 3.8: Parallel block capacitor with its electric fields. The right figure shows
the strong electric fields (black arrows) inside the gap, and comparatively weak stray
fields (green lines) surrounding the blocks. The small black circle blows up the fringe
fields (red line) at the edges of the gap in the left figure.
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An electric field is produced inside the gap of parallel blocks when a voltage

difference is applied to them. Not only does this electric field exist directly between

the blocks but it also extends outside, at the edges of the blocks. This is called the

edge effect, and the fields at the edges are known as fringing fields. Stray capacitance

occurs due to the stray electric fields surrounding the blocks and their leads and

surfaces when a voltage applied to the parallel blocks. The surrounding electric fields

depend on the geometry of the blocks and leads and the capacitance due to those

fields is called the stray capacitance. We can assume that the stray capacitance is

approximately constant for small changes in the separation of the parallel blocks since

the length scale for stray capacitance (l ≈ 24 mm) is much larger than the gap length

L ≈ 0.3 mm. Figure 3.8 illustrates the three types of electric field for our parallel

blocks capacitor. The straight black arrows indicate the strong uniform electric field

inside the gap and curved red arrows indicate the weak fringe fields at the edges of the

gap. Together these two electric fields are responsible for the total gap capacitance

(Cg), which is proportional to the effective area Ag(eff) of the gap. The effective

gap area Ag(eff) is slightly different from the geometric area Am. The green arrows

represent the comparatively weak fields surrounding the blocks that are responsible

for the stray capacitance (Cs). The relationship among the measured capacitance

(Cm), gap capacitance (Cg), and stray capacitance (Cs) can be written as

Cm = Cg + Cs =
ε0Ag(eff)

L
+ Cs (3.8)

where the gap capacitance is Cg =
ε0Ag(eff)

L
, Ag(eff) is the effective area of the parallel

blocks, and L is the separation between the blocks. This is a general straight line

equation, Y = mX + c between the capacitance Cm and the inverse separation
1

L
.

The slope, m = ε0Ag(eff) is a constant and the intercept on the Y-axis is the stray

capacitance c = Cs. Therefore, the intercept of Cm vs L−1 plot will give the desired

stray capacitance and the effective gap area Ag(eff) can be calculated from the slope

of the plot.

To find the stray capacitance for our parallel blocks, the capacitance was measured

with different separations (L) between the blocks. A series of 0.15 mm thick glass

slides were used to set L, as shown in Figure 3.9 (a). For example, one slide was used

between blocks for the first measurement, two slides for the second measurement and

so on. To align the blocks parallel, we placed the glass slides between the blocks and

pressed them tightly. The capacitance was measured with the glass slides in the gap

and then they were pulled out gently to measure the capacitance without the glass

slides. We repeated this process 2 or 3 times to make sure the capacitance values
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LiNbO3 at 293 K
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Figure 3.9: Stray capacitance calculation for the LiNbO3 device at room temperature.
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Figure 3.10: Stray capacitance calculation for the PZT-5A device at room tempera-
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they were reproducible.

If the blocks are tilted slightly then the capacitance will be

Cm =
ε0Ag(eff)

L
(1− θw

2L
) + Cs, (3.9)

where θ is the small tilt angle and w is the gap width at the narrowest point. Equation

3.9 is not a straight line equation.

We used two devices, one for the LiNbO3/stack and another for the PMN-PT/PZT-

5A transducers. Figures 3.9 (a) and 3.10 (a) show the capacitance measurements (Cm)

with respect to separation (L) for both devices. Figures 3.9 (b) and 3.10 (b) show the

same capacitance measurements (Cm) plotted with respect to the inverse separation

(L−1). Both devices give reasonably straight lines when plotted against L−1, indicat-

ing that the blocks are approximately parallel and that the assumption of constant

Cs is justified. In Figure 3.10 (b), the red dots show the effect expected for
1

4

◦
small

tilt angle, which clearly deviates from the measured straight line. The stray capac-

itance, Cs, determined from the intercepts, is 0.42 pF for the LiNbO3/stack device

and 0.50 pF for the PZT/PMN-PT device. The effective area of the parallel blocks is

calculated from the slope ε0Ag(eff) giving 0.98× 10−4 m2 (measured geometric area,

Am = 1.03 × 10−4 m2) for the LiNbO3/stack device and 1.01 × 10−4 m2 (measured

area, Am = 1.03× 10−4 m2) for the PZT-5A/PMN-PT device. The stray capacitance

is then subtracted from all measured capacitance values in order to correct the d15

data. The thermal length contraction of the copper block
∆l

l293

at 4 K is 0.3% [75]

which contract the area of the block capacitor about 0.6% which slightly affects the

value of d15 or d33.

3.2.2 Longitudinal d33 measurements and effects of magnetic
clamping

When a voltage change (∆V ) is applied along the polarization of an unconstrained

longitudinal transducer, it produces both parallel (∆t) expansion or contraction along

the polarization direction and transverse (∆l), contraction or expansion perpendicular

to the applied voltage displacements, as shown in Figure 3.11, where ∆t = d33∆V ,
∆l
l

= d31
∆V
t

and t and l are the thickness and length changes of the transducer,

respectively. In order to find the longitudinal piezoelectric coefficients d33, we used

the same capacitive displacement detection technique with a longitudinal transducer,

as shown in Figure 3.12. The mathematical formalism for the longitudinal coefficient
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Figure 3.11: (a) Shear mode and (b) longitudinal and transverse modes of the trans-
ducers with respect to applied voltage and the polarization direction.

Figure 3.12: Schematic diagram of the capacitive displacement technique used to
measure d33 of longitudinal piezoelectric transducers.
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d33 is given below. For the longitudinal coefficient,

d33 =
∆t

∆V
(3.10)

where the longitudinal displacement ∆t = ∆L is the change in spacing between the

two blocks. For ∆L� L, equation 3.5 can be written as

∆C

C0

' ∆L

L
' d33∆V

L
(3.11)

or,

d33 =
Aε0

C2
0

∆C

∆V
(3.12)

where L and A have the same meaning as in equation 3.7.

Equation 3.12 is derived for an unconstrained transducer. A limitation of the d33

measurement comes from the friction in the transverse direction due to the clamping.

In d15 measurements, friction does not affect the shear displacement since there is no

accompanying transverse motion. On the other hand, when a voltage is applied across

a longitudinal transducer, both parallel (d33) and transverse (d31) displacements occur

at same time and they are coupled. The transverse displacement may be limited by

friction due to clamping, which will reduce the parallel displacement.

The electrical, elastic, thermal and piezoelectric properties of a crystal are ex-

pressed in matrix notation as follows [33]

εm = sE,Tmn σn + dTimEi + αEm∆T (3.13)

Di = dTimσm + εσTij Ej + pσi ∆T (3.14)

i, j = 1, 2, 3 and m , n = 1, 2, ...,6

where ε, σ, E, T and ∆T are the strain, stress , electric field, temperature and

change in temperature while s, d, α, ε and p are the elastic compliance (m2N−1),

piezoelectric constant, the coefficients of thermal expansion, dielectric constant and

coefficients of pyroelectric effect, respectively. Figure 2.5 shows the direction of the

notation i, j, m, and n in terms of 1, 2, ...,6 along the axes X, Y, and Z.

Ignoring the effects of temperature, equations 3.13 and 3.14 can be reduced to

εm = sEmnσn + dimEi (3.15)

Di = dimσm + εσijEj. (3.16)
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The matrix form of equation 3.15 and 3.16 is [76](
ε
D

)
=

(
sE dt

d εσ

)(
σ
E

)
(3.17)

where superscripts σ and E stand for the respective constants evaluated at constant

stress and at constant electric field, respectively, and the superscript t denotes the

transpose. Equations 3.15 and 3.16 are known as piezoelectric constitutive equations.

Equation 3.17 can be expanded as [76]

ε1
ε2
ε3
ε4
ε5
ε6
D1

D2

D3


=



sE11 sE12 sE13 0 0 0 0 0 d31

sE12 sE11 sE13 0 0 0 0 0 d31

sE13 sE13 sE33 0 0 0 0 0 d33

0 0 0 sE55 0 0 0 d15 0
0 0 0 0 sE55 0 d15 0 0
0 0 0 0 0 sE66 0 0 0
0 0 0 0 d15 0 εσ11 0 0
0 0 0 d15 0 0 0 εσ11 0
d31 d31 d33 0 0 0 0 0 εσ33





σ1

σ2

σ3

σ4

σ5

σ6

E1

E2

E3


. (3.18)

So

ε1 = sE11σ1 + sE12σ2 + sE13σ3 + d31E3 (3.19)

ε3 = sE13σ1 + sE13σ2 + sE33σ3 + d33E3. (3.20)

Consider the case where the transducer is constrained so it can not move in the

parallel direction to the applied electric field, i.e ε3 = 0,

sE13σ1 + sE13σ2 + sE33σ3 + d33E3 = 0. (3.21)

Assuming there is no applied stress in the X and Y axes, i.e. σ1 = σ2 = 0, only the

blocking force acts along the Z direction. The blocking force is the maximum force

produced by the transducer. This force is obtained when the displacement of the

transducer is entirely blocked. We can then write

sE33σ3 + d33E3 = 0. (3.22)

With E3 = E =
V

t
the longitudinal stress is

σ3 = −d33E3

sE33

= −d33V

tsE33

(3.23)

where V is the applied voltage and t is the thickness of the transducer. The blocking

force along the parallel direction, Fbz , is

Fbz = lw × σ3 = −d33V lw

sE33t
(3.24)
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where l and w are the length and width of the piezoelectric transducer. Similarly,

from equation 3.19, the blocking force along the transverse direction, Fbx , can be

calculated as

Fbx = −d31V w

sE11

. (3.25)

The piezoelectric and elastic coefficients [1] required to calculate the above forces

(equations 3.24 and 3.25) for a PZT-5A transducer are listed below

d33 = 374× 10−12 m/V

d31 = −171× 10−12 m/V

sE11 = 16.4× 10−12 m2/N

sE12 = −5.74× 10−12 m2/N

sE13 = −7.22× 10−12 m2/N

sE33 = 18.8× 10−12 m2/N.

Since length l = 12.76 × 10−3 m, width w = 9.56 × 10−3 m and thickness of the

transducer t = 1.77× 10−3 m and the applied voltage is 40 V, the forces are

Fbz = −d33V lw

sE33t
= 54.8 N (3.26)

and

Fbx = −d31V w

sE11

= 4.2 N. (3.27)

For comparison, the force of gravity on the transducer from the weight of the block

with magnet is Fg = 0.2 N, which is negligible, and the clamping force between the

two magnets, Fm, was measured for our experimental set up at room temperature,

giving roughly

Fm ∼= 3 N. (3.28)

This magnetic force along the parallel direction (Fm ∼= 3 N � Fbz = 54.8 N) is only

5% of the blocking force and does not directly have a large effect on the displacement

in the longitudinal direction. However, the transverse frictional force, Ff , between

the transducers gold coated surface and the brass electrode may be important. This

is

Ff = µkFm ≈ 3 N (3.29)

assuming the coefficient of sliding friction between gold and brass is roughly 1. Since

the frictional force is comparable to the transverse blocking force, it may partially con-

strain the transverse motion of the transducer and, for example, cause the transducer

to stick and slip when large voltages are applied.
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We measured (after the stray capacitance correction) d33 = 307 × 10−12 m/V

for PZT-5A at room temperature, which is 18% smaller than the manufacturer’s

quoted value (d33 = 374 × 10−12 m/V) . We also measured d33 = 1700 × 10−12 m/V

for PMN-PT at room temperature which is very close to the manufacturer’s quoted

value (d33 = 1600× 10−12 m/V).

To estimate the effect of frictional clamping, consider the case of zero applied

stress along the Z axes (i.e. σ3 = 0). Equations 3.19 and 3.20 are reduced to

ε1 = (sE11 + sE12)σ1 + d31E3 (3.30)

ε3 = 2sE13σ1 + d33E3. (3.31)

Assuming the transducer is perfectly clamped to base of the cell, preventing lateral

movement, i.e. ε1 = 0, equation 3.30 can be written as

σ1

E3

= − d31

(sE11 + sE12)
. (3.32)

Substituting equation 3.32 in equation 3.31, we can write

ε3
E3

= d33 − 2d31
sE13

(sE11 + sE12)
. (3.33)

In the inverse piezoelectric effect, a voltage (V ) applied across a piezoelectric produces

a thickness displacement (∆t) which is related to an effective d33 as

d33(eff) =
∆t

V
. (3.34)

The ratio of the change in thickness ∆t and the voltage (V ) is equal to as the ratio

of the strain and electric fields. So the effective d33(eff) can be written as

d33(eff) =
∆t

V
=

ε3
E3

= d33 − 2d31
sE13

(sE11 + sE12)
(3.35)

where d33 and d31 are the unconstrained piezoelectric coefficients. Torah et al. [37]

theoretically developed equation 3.35 to calculate an effective d33 for the inverse

piezoelectric effect in a clamped transducer. After substituting the values for PZT-

5A, the effective d33(eff) for a perfectly clamped longitudinal transducer is 142×10−12

m/V. This is a 62% reduction from the bulk d33 of the material. Ahmed et al. [77]

experimentally found that the clamping effect reduced the bulk d33 for a thin film

of PZT by 50% close to the theoretical calculation 62%. The difference may reflect

differences between the piezoelectric coefficients in bulk and thin film PZT.
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3.2.3 Procedure to measure piezoelectric coefficients, hys-
teresis and creep

A Keithley 2400-Source Meter was used to apply a DC voltage to the transducer’s

electrodes. Coaxial cables connected an AH capacitance bridge to a fixed copper block

and to a block clamped on top of the shear or longitudinal transducer, as shown in

Figures 3.7 or 3.12 . A displacement of the transducer changes the gap between the

two blocks and their capacitance. A Neocera LTC-21 temperature controller was used

to control the temperature. A LabVIEW program was written to measure and save

the data.

In order to measure all those properties, we controlled the temperature at each

point for several hours, until the temperature fluctuation was within a few mK. We set

the capacitance average time exponent (averexp) of the capacitance bridge to a value

of 9. At this setting, the bridge takes multiple internal readings for 4 seconds and

averages them to reduce the random noise before displaying the value. We recorded

the capacitance, temperature and applied voltage as functions of time.

In order to find d15 or d33, the capacitance between the blocks was measured while

applying a ± 20 V DC square wave with a period of 160 seconds to the electrodes

of the transducer. Before changing the polarity of the voltage, four data points were

measured with a time interval of 20 seconds between data points. Figure 3.13(a)

shows the typical capacitance changes (blue line with data points) when the DC

square wave (red line) was applied across a LiNbO3 shear transducer at 6 K. To find

the piezoelectric coefficients, we plotted capacitance with respect to applied voltage

as shown in Figure 3.13(b). The best fit line provides the average capacitance (C =

3.2403 pF) and the change in capacitance ∆C (about 23 ppm) corresponding to the 40

V change in voltage. The value d15 = 4.97×10−11 m/V was calculated by substituting

those values into equation 3.7. For these measurements, the gap separation between

the blocks was L = 0.3 mm at room temperature.

LiNbO3 has the smallest values of dij for the materials studied. At low temperature

d15 = 6.59×10−11 m/V (stray capacitance corrected value) which gives a displacement

∆L = 2.6 nm when the ± 20 V voltage is applied. This can be compared to the

noise in capacitance in Figure 3.6. The expected noise level is
δC

4C
=

δl

4L
=

0.09 nm

2.6 nm
= 3% for a single capacitance measurement. We averaged 24 readings for positive

voltage and 24 readings for negative voltage at each point to reduce the noise which

is 0.7% at 30 K for LiNbO3.

After measuring d15, the hysteresis was measured by changing the applied voltage

in fixed steps over a range of ± 50 V for PMN-PT and ±150 V for LiNbO3 and PZT-
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Figure 3.13: (a) Capacitance vs. time graph for a LiNbO3 single crystal at 6 K under
an applied voltage ± 20 V. (b) best fit line is to find the average capacitance and
change in capacitance with respect to applied voltage.
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PMN-PT at 70K
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Figure 3.14: Histeresis in a PMN-PT crystal at 70 K during cycling of the applied
voltage from -50 to +50 V.
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ducer.
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5A. Figure 3.14 shows a complete hysteresis loop for PMN-PT at 70 K. The voltage

step used was 25 V and each point represents a single capacitance measurements over

10 seconds. The loop began at V = -50 V, increased the voltage to +50 V, then

returned to the starting point at -50 V.

In order to measure the creep properties, the capacitance was measured every 8

seconds following a voltage change. The capacitance was first measured for a few

hours with no applied voltage, then the voltage was changed from 0 to +50 V (for

PMN-PT), or from 0 to +150 V (for LiNbO3 or PZT-5A). The capacitance was

measured for a few hours then the voltage was changed from from +50 V to -50 V

for (PMN-PT) or +150 to 0 V for (LiNbO3 or PZT-5A) and the capacitance was

measured at this voltage for another few hours. Figure 3.15 shows typical creep data

for a PMN-PT crystal at 70 K.

3.2.4 Piezoelectric Polarization Measurements

Polarization hysteresis loops (referred to a P-E loops) were measured for PMN-PT

and PZT-5A transducers from room temperature down to 77 K. Figure 3.16 shows

the experimental set-up for a P-E loop measurement, using a function generator, a

high voltage transformer (output 13.8 ×input), a Tektronix TDS 2014B oscilloscope

and a Sawyer-Tower (ST) circuit. Measurements were made using the 1 K fridge and

a brass cell to hold the transducer. The cell was mounted with two thermometers and

a 200 Ω heater on the 1 K pot of the fridge. Two brass electrodes were attached to

a brass block and a brass base, using electrically insulating epoxy. The piezoelectric

transducer was magnetically clamped between the block and the base. The electrodes

were connected to the ST circuit by the wires to include the sample capacitance, CS.

The ST circuit consists of two resistors in series R1 (10 MΩ) and R2 (100 kΩ), and

two capacitors in series, the sample (CS) and a standard reference capacitor (Cref = 1

µF). The resistors work as a resistive divider to a scale down the voltage across the

resistor R2 by a factor of 100 and, since Cref (1 µF) is much larger than CS, the voltage

drop (Vref ) across Cref is much smaller than that (VS) across CS. The voltage (Vref )

drop across Cref , which is proportional to the polarization of the sample, is applied to

the vertical axis of the oscilloscope and the voltage drop across R2, VR2, is applied to

the horizontal axis of the oscilloscope to measure the electric field across the sample.

The mathematical analysis of the ST circuit measurements is as follows. The

capacitors CS and Cref are in series so the charge QS (= VSCS) is equal to the charge
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Figure 3.16: The polarization hysteresis loop measurement.

Qref (= VrefCref ). The polarization of the sample is

P =
QS

A
=
Qref

A
=
VrefCref

A
(3.36)

where Cref = 1 µF and A is the electrode area of our transducer. Or, P ∝ Vref since
Cref

A
is constant. Since CS � Cref , we know that VS � Vref , so VS ∼= Vin, where Vin

is the input voltage of the circuit. If t is the thickness of the sample, then the electric

field across the sample is

ES =
VS
t
∼=
Vin
t
. (3.37)

The resistive divider of the circuit gives

Vin = (
R1 +R2

R2

)VR2 (3.38)

where VR2 is the voltage drop across R2, so the electric field across the sample can be

written as

ES = (
R1 +R2

R2

)
VR2

t
= (

10MΩ + 100kΩ

100kΩ
)
VR2

t
∼=

100× VR2

t
. (3.39)

The measurements of VR2 and Vref were saved for sine waves of different frequencies.

The polarization (P ) and electric field (ES) of the hysteresis loop were then calculated

using the known values of Cref , A, t, R1 and R2.
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3.2.5 Experimental design and procedure to measure dielec-
tric constant, K

In order to directly measure the dielectric constant and loss conductance, G, with high

resolution and accuracy, the AH capacitance bridge was connected across the trans-

ducer with the same arrangement used to measure the P-E loops. The temperature

dependent capacitance and loss conductance were measured at 1 kHz. The bridge

automatically changed the applied voltage from a maximum of 15 VAC, depending

on the capacitance of the transducer. The dielectric constant is

Figure 3.17: Schematic diagram for dielectric measurements.

K =
C

C0

(3.40)

where C0 is the capacitance that would be measured if there was a vacuum between

the top and bottom surfaces of the transducer

C0 =
ε0A

t
. (3.41)

where A is the area of the top or bottom surfaces and t is the thickness of the

transducer. The loss of the capacitor was measured as a conductance. The loss
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tangent or dissipation factor can be obtained from equation 2.52

tan δ =
G

ωC
. (3.42)

The total charge (Q) on the transducer is

Q = CV (3.43)

where C is the measured capacitance and V is the applied voltage across the trans-

ducer. The real part of the polarization of the transducer is simply

P =
Q

A
. (3.44)

The total hysteresis loss of the P-E loop to the transducer is (recalling equation 2.57)

UT =
1

2
ωCV 2 tan δ. (3.45)

The polarization hysteresis loops were measured using larger voltage and the Sawyer-

Tower-Circuit [78]. The edges effect and stray capacitance did not significantly affect

the P-E loop hysteresis or dielectric measurements because of the large dielectric

constants of the piezoelectric materials. The room temperature dielectric constants

Kσ
ij for the piezoelectric materials studied in this thesis are Kσ

11 = 2550 (shear PMN-

PT), Kσ
33 = 5418 (longitudinal PMN-PT), Kσ

11 = 1590 (shear PZT-5A), Kσ
33 = 1570

(longitudinal PZT-5A), Kσ
11= 88 (shear LiNbO3).
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Chapter 4

Temperature Dependence of
Piezoelectric and Dielectric
Properties

4.1 Introduction

In this chapter, experimental measurements of the temperature dependence of piezo-

electric and dielectric properties are presented. The fundamental piezoelectric prop-

erties of both shear and longitudinal single crystals of LiNbO3 and PMN-PT, and

ceramics of PZT-5A are investigated and analyzed as functions of temperature. The

important experimental results are summarized this introductory section.

The experimental techniques and procedures were described in section 3.2. The

piezoelectric properties of LiNbO3 transducers and a stack are presented first, followed

by those of PMN-PT and PZT-5A transducers. We chose LiNbO3 to begin because

it is single crystal with single domain. Its piezoelectric properties are simple and are

mostly the results of intrinsic contributions with little temperature dependence. We

measured the temperature dependence of the shear piezoelectric coefficient, d15, and

the dielectric constants, Kσ
11 for shear LiNbO3 transducers. The room temperature

d15 values decreased by about 7% at the lowest temperatures. If the longitudinal

piezoelectric coefficient d33, which is smaller than d15 at room temperature [19, 49],

has a similar temperature dependence, then the changes in d33 will be comparable

to the resolution of our capacitance measurements. Therefore, we did not measure

the temperature dependence of d33 for a LiNbO3 crystal. Next we present results for

PMN-PT. Although PMN-PT is a single crystal, it is also a relaxor ferroelectric ma-

terial. It has much larger dij which reflect both intrinsic and extrinsic contributions.

Finally, we show results for PZT ceramics which are the most widely used piezoelec-

tric materials. PZT’s coefficients are smaller than those of PMN-PT. In PZT, one of
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the major extrinsic contributions is the result of domain wall motion. There are two

groups of domain walls, 180◦ walls and non-180◦ walls. Only the non-180◦ walls are

ferro-elastic. The non ferro-elastic 180◦ wall motion contributes only to the dielectric

property; the non-180◦ wall motion affects both dielectric and piezoelectric properties

[29].

The motivation behind our measurements was to find suitable materials for use

in cryogenic applications. The experimental results are presented in the following

sequence. The shear piezoelectric coefficients (d15) are presented in section 4.2. The

longitudinal piezoelectric coefficients (d33) are discussed in section 4.3. The dielectric

constants Kσ
ij and loss conductance G are shown in section 4.4. The voltage constants

(gij) are presented in section 4.5. All the properties are summarized in section 4.6.

4.2 The shear piezoelectric coefficient (d15)

4.2.1 LiNbO3 single crystal

A square thin plate (10 × 10 × 0.26 mm3) of 41◦ X-cut (pure shear) LiNbO3 with

chrome/gold electrodes was purchased from Boston Piezo Optics, Inc. [79] to inves-

tigate the shear piezoelectric coefficient d15. Figure 4.1 shows the temperature de-

pendence of the experimentally measured (uncorrected) shear piezoelectric coefficient

for a LiNbO3 transducer, calculated from the raw data. The error bars correspond

to the noise in capacitance measurements as described in section 3.2.3. To find the

actual value, the measured data was corrected by subtracting the stray capacitance

from the measured capacitance, as described in section 3.2.1. The corrected d15 is

almost 1/3 higher than that of uncorrected value because d15 is inversely proportional

to square of the capacitance. Figure 4.2 shows both the measured (black dots) and

corrected data (blue dots) as functions of temperature. At room temperature, our

corrected d15 is 69.4×10−12(m/V) which is close to other published data. At room

temperature, Smith et al. [19] and Warner et al. [49] measured the coefficient as

69.2×10−12(C/N) and 68×10−12(C/N), respectively. Yamada et al. [18] reported co-

efficient of 74×10−12(C/N) for this material at 20 ◦C. We believe the values differ

because of the different measurement techniques used, such as the resonant method.

Our room temperature value decreases roughly linearly with temperature down to

100 K, where it is 5% smaller than at room temperature. Below 100 K, it is almost

independent of temperature within the resolution of the measurements, so we did not

extend the measurements below liquid helium temperature (4 K).

We also constructed a stack of 3 single 41◦ X-cut LiNbO3 shear transducers, using
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Figure 4.1: Temperature dependence of the measured (uncorrected for stray capaci-
tance) shear piezoelectric coefficient d15 of a LiNbO3 transducer.
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Figure 4.2: Temperature dependence of the measured uncorrected (black dots) and
corrected (blue dots) shear piezoelectric coefficient d15 of a LiNbO3 transducer.
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silver epoxy to make the electric contact between transducers. Figure 4.3 shows the

corrected d15 results for the single LiNbO3 transducer (blue dots) and for the stack

(open blue circles). The room temperature displacement per volt of the stack is

212.9×10−12m/V, which drops by only about 7% at 50 K (198.2×10−12m/V). Below

50 K, it is nearly constant. The coefficients d15 of the single transducer and the

stack are almost the same below LN2 temperature and differ by about 2% at higher

temperatures.
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Single LiNbO
3

Stack of 3 LiNbO3

Figure 4.3: Temperature dependence of corrected d15 of a single LiNbO3 transducer
(blue dots) and a stack of three transducers (open blue dots).

4.2.2 PMN-PT single crystal

A square plate (10× 10× 1 mm3) of a single crystal shear PMN-PT transducer from

TRS Ceramics, Inc. [80] was used to investigate the temperature dependence of the

shear piezoelectric coefficient d15. The crystal orientation, poling direction, and plate

dimensions are given in Figure 4.4.

The temperature dependence of both the measured uncorrected (dark red dots)

and corrected (red dots) piezoelectric coefficient d15, is shown in Figure 4.5. The

uncertainties corresponding to the resolution of our capacitance bridge are smaller

than the symbol sizes. The manufacturer’s quoted d15 is (2000− 4000)× 10−12 m/V

at room temperature. Both the measured uncorrected and the corrected room tem-

perature d15 values are within this range. At room temperature, our corrected d15 has

76



Figure 4.4: The shear PMN-PT single crystal with Cr/Au electrodes from TRS
Ceramics, Inc. [80].

a value of 3200× 10−12 m/V, and decreases with temperature, but is nearly constant

(independent of temperature) between 210 and 80 K, a temperature region known

as the plateau. However, below 80 K, d15 drops rapidly, from the plateau value of

2400 ×10−12 m/V to 315.8 ×10−12 m/V at 150 mK, a factor of 8. Wang et al. [14]

observed a similar plateau between 225 and 78 K, but their measurements did not

extend to lower temperatures. Their values of d15 are some what larger than that we

measured in our transducer. This may be because of different chemical compositions

and their use of a different technique, the resonant method.

Figure 4.6 shows our corrected data below 10 K for two separate runs. These

two sets of data are slightly different. The two sets of data were taken 2 to 3 days

apart. After taking the open red circles data down to 2 K, we warmed the fridge up

to 77 K, pumped out contamination that had plugged the fridge, then cooled down

the fridge back down to 150 mK and measured the solid red dot data. It is clear that

d15 continues to decrease almost linearly to the lowest temperature 150 mK. This

suggests that thermally activated effects such as domain wall motions are not frozen

out completely at the lowest temperature.
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Figure 4.5: Temperature dependence of the measured uncorrected (dark red dots)
and corrected (red dots) piezoelectric strain coefficient, d15, for a PMN-PT single
crystal.
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Figure 4.6: Temperature dependence of the corrected piezoelectric strain coefficient,
d15, below 10 K for a PMN-PT single crystal.

78



4.2.3 PZT-5A ceramic

A rectangular plate (12.77× 9.58× 1.78 mm3) of a ceramic shear PZT-5A transducer

from Boston Piezo Optics, Inc. [81] was used to investigate the temperature depen-

dence of the shear piezoelectric coefficient d15. The temperature dependence for both

the measured uncorrected (dark green dots and open circles) and corrected (green

dots and open circles) piezoelectric coefficient, d15 is shown in Figure 4.7. The two

sets of data were measured for two different transducers in separate runs a year apart.

In the first run, d15 was measured in the temperature range from 6 to 310 K (dark

green dots) and in the second run, it was measured from 78 mK to room temperature

(dark green open circles). Although both transducers were from the same company

their room temperature d15 varies by 16%.
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Figure 4.7: The uncorrected (dark green dots and open circles) and corrected (green
dots and open circles) piezoelectric strain coefficient d15 of a PZT-5A ceramic.

The coefficient d15 decreases roughly linearly over the entire temperature range.

For the second run, the corrected d15 decreases from 591×10−12 m/V at room temper-

ature (close to the value quoted by the manufacturer: 585×10−12 m/V) to 156×10−12

m/V at 78 mK, a 75% decrease. Figure 4.8 shows the corrected data from 78 mK to

10 K. The coefficient has a nearly linear temperature dependence in this temperature

range.
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Figure 4.8: Temperature dependence of the piezoelectric coefficient d15 of a PZT-5A
ceramic below 10 K.

4.3 The longitudinal piezoelectric coefficient (d33)

4.3.1 PMN-PT single crystal

A square thin plate (10 × 10× 0.140 mm3) of a single crystal longitudinal PMN-PT

transducer from APC International, Ltd.[82] was used to investigate the tempera-

ture dependence of the longitudinal piezoelectric coefficient, d33. The temperature

dependence of d33 is shown in Figure 4.9. The value of d33 decreases from a value of

1700× 10−12 m/V at room temperature (manufacturer’s quoted value is 1600× 10−12

m/V) to 96.7× 10−12 m/V at 50 K, a factor of 15. However, we were unable to mea-

sure d33 below 50 K because we did not see displacement change due to a square wave

applied voltage. The displacement change appeared again when the temperature was

back at 50 K. The actual reason we do not know honestly,but we are not confident

in the data below 100 K.

4.3.2 PZT-5A ceramic

A square plate (12.7×12.7×0.70 mm3) of a ceramic longitudinal PZT-5A transducer

from Boston Piezo Optics, Inc.[81] was used to investigate the temperature depen-

dence of the longitudinal piezoelectric coefficient d33. The temperature dependence
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Figure 4.9: Temperature dependence of the corrected longitudinal coefficient d33 for
a PMN-PT single crystal.

of d33 from 2 to 310 K is shown in Figure 4.11. It decreases roughly linearly down

to 30 K, then appears to rise below 30 K. We started these measurements from 2

K and, when we were measuring the capacitance at 20 K, an experimental problem

caused the applied voltage to suddenly increase from 20 V to 238 V. We then stopped

the measurement and checked all the connections but could not find anything wrong.

When we then restarted the measurements, d33 decreased down to 30 K then began

to increase up to room temperature. The magnetic clamping we used might have af-

fected the measurements, as described in section 3.2.2. We saw this behavior in both

PZT-5A and PMN-PT measurements below 50 K, and therefore do not trust our d33

values below 50 K. We remeasured the data below 50 K and saw similar changes

although their magnitudes were different.

The room temperature value of d33 is 307 × 10−12 m/V, which is 18% smaller

than the manufacturer’s quoted value for PZT-5A (374 × 10−12 m/V). The room

temperature value of d33 drops by a factor of 5 by 30 K (66 × 10−12 m/V).
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Figure 4.10: Temperature dependence of the longitudinal piezoelectric coefficient d33

of a PZT-5A ceramic.

PZT-5A

Temperature (K)
0 10 20 30 40 50

d
33

 (
m

/V
)

6.5x10-11

7.0x10-11

7.5x10-11

8.0x10-11

8.5x10-11

9.0x10-11

T = (2 - 50) K

Figure 4.11: Temperature dependence of d33 below 50 K.
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4.4 The dielectric constant and loss conductance

4.4.1 LiNbO3 single crystal

The shear 41◦ X-cut (pure shear) LiNbO3 transducer described in section 4.2.1 was

used for this study. Figure 4.12 shows the temperature dependence of its dielectric

constant at constant stress (Kσ
11), and loss conductance G, during cooling (black data)

and warming (blue data). The entire set of cooling data was taken during 2-3 hours

and the warming data was taken over 10 days. The cooling and warming rates did

not affect the dielectric constant but the loss conductance is slightly different during

cooling and warming. The maximum dielectric constant is 90 at 345 K and decreases

down to 100 K, where it has a value of 82.8. It decreases slowly from 100 K (Kσ
11 =

82.8) to 50 K (Kσ
11 = 82.2) and below 50 K it is essentially constant. Over the entire

temperature range it drops by about 9%, similar to the decrease for d15. The room

temperature dielectric constant for this material (88) is close to the value reported

by Warner et al. [49] (85.2) and by Yamada et al. [18] (84.6).

The loss conductance is small and decreases gradually from the highest temper-

ature down to 200 K and is essentially constant at lower temperatures. Data was

taken above room temperature, in order to look for a relaxation peak, which may be

around 360 K.
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Figure 4.12: Temperature dependence of the dielectric constant and loss conductance
for shear LiNbO3.
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4.4.2 PMN-PT single crystal

The PMN-PT shear transducer used for this study is described in section 4.2.2. Fig-

ure 4.13 shows the temperature dependence of its dielectric constant, Kσ
11, and loss

conductance, G, in the temperature range from 1.58 to 293 K. The cooling rate or

warming rate did not affect either the dielectric constant or the loss conductance. At

room temperature Kσ
11 is 2550 and it decreases with decreasing temperature, follow-

ing a trend much like that of d15 described in section 4.2.2, although the plateau is

not as clear as that for d15. The dielectric constant drops by a factor of 10, to 254, at

the lowest temperature 1.4 K. The loss conductance increases with temperature and

shows a large relaxation peak around 75 K, with maximum value of 249 nS.
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Figure 4.13: Temperature dependence of the dielectric constant and loss conductance
at 1 kHz for a shear PMN-PT single crystal.

Two longitudinal PMN-PT transducers were also studied. One (10 × 10 × 0.140

mm3) was from APC International, Ltd. [82] and the other one (10× 10× 0.30 mm3)

was from TRS Ceramics, Inc. [80]. Figures 4.14 and 4.15 show the temperature

dependence of their dielectric constants and loss conductance. The cooling rate or

warming rate did not affect Kσ
33 but had a small effect on the loss conductance. The

room temperature dielectric constants are 5400 for the transducer from TRS Ceram-

ics Inc. and 4460 for the transducer from APC international Ltd. At our lowest

temperature of 1.4 K, they have similar values of 401 and 360, respectively. The dif-
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Figure 4.14: Temperature dependence of the dielectric constant and loss conductance
at 1 kHz for a longitudinal PMN-PT single crystal from APC international, Ltd. [81].
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Figure 4.15: Temperature dependence of the dielectric constant and loss conductance
at 1 kHz for a longitudinal PMN-PT single crystal from TRS ceramics, Inc. [80].
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ference probably reflects their manufacturer’s different compositions and processing.

The dielectric constants and losses have temperature dependences similar to those

of the shear transducer described in the previous section, although the longitudinal

values are larger.

4.4.3 PZT-5A ceramics

Two PZT-5A transducers were used for this study, a shear rectangular (12.77×9.58×
1.78 mm3) transducer and a longitudinal (circular disc with a diameter 10.12 mm and

thickness 0.42 mm) transducer from Boston Piezo Optics, Inc. [81]. Figures 4.16 and

4.17 show the temperature dependence of the dielectric constant and loss conductance

for the shear and longitudinal transducers, respectively. The cooling and warming

rates had a small effect on both properties above 90 K for the longitudinal transducer.

The dielectric constant for both transducers decreases nearly linearly over the whole

temperature range. Both transducers have two relaxation peaks over this temperature

range.
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Figure 4.16: Temperature dependence of the dielectric constant and loss conductance
for a shear PZT-5A crystal at 1 kHz, from room temperature to 1.4 K.
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Figure 4.17: Temperature dependence of the dielectric constant and loss conductance
for a longitudinal PZT-5A crystal at 1 kHz, from room temperature to 1.4 K.

4.5 The voltage constants g15 and g33

When a mechanical stress is applied to a piezoelectric transducer, it produces an

electric field, which generates a voltage across the transducer. The corresponding

piezoelectric voltage constant is

gij =
dij
ε0Kij

. (4.1)

The voltage constant is useful in evaluating the suitability of a material for sensing

applications [36] in which the output voltage is recorded.

4.5.1 LiNbO3 single crystal

The shear voltage constant g15 of a material is calculated from shear piezoelectric

coefficient d15, and the dielectric constant, Kσ
11. This is shown for LiNbO3 in Figure

4.18, using the d15 data of Figure 4.1 and the Kσ
11 data of Figure 4.12. At room tem-

perature, Warner et al. [49] calculated a shear voltage constant of 9.1×10−2(mV/N),

exactly the same as our value of 9.1 × 10−2(mV/N).
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Figure 4.18: Temperature dependence of the shear piezoelectric voltage coefficient
g15 of a LiNbO3 transducer.

4.5.2 PMN-PT single crystal

Figures 4.5, 4.9, 4.13 and 4.15 show the temperature dependence of the shear and

longitudinal piezoelectric and dielectric coefficients for PMN-PT single crystal. Figure

4.19 shows the corresponding voltage constants g15 and g33 for PMN-PT crystals. The

shear voltage constant g15 increases from 1.5 K to 60 K and above 60 K it decreases

slowly, while g33 increases between 50 and 310 K. The largest values of g15 are at

temperatures of 50 to 70 K, which implies that PMN-PT may be suitable for sensing

applications in this temperature range. At room temperature, our measured shear

and longitudinal piezoelectric voltage constants g15 and g33 are 14.1×10−2 (mV/N)

and 2.9×10−2(mV/N), respectively.

4.5.3 PZT-5A ceramic

Figure 4.7, 4.11, 4.16 and 4.17 show the temperature dependence of the shear and

longitudinal piezoelectric and dielectric coefficients of PZT-5A ceramics. Figure 4.20

shows the corresponding temperature dependence of the voltage constants g15 and

g33, which vary slightly with temperature. At room temperature, the manufacturer’s

quoted values of g15 and g33 are 3.82×10−2 mV/N and 2.48×10−2 mV/N, consistent

with our values of 4.2× 10−2 mV/N and 2.5× 10−2 mV/N, respectively.
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Figure 4.19: Temperature dependence of the piezoelectric voltage constants g15 and
g33 of PMN-PT transducers.
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4.6 Discussion

For positioning applications, the displacement range is determined by the actuator’s

displacement per volt (
∆x

∆V
) and by the maximum voltage (Vmax) that can be applied

without depoling or damaging the actuator. For a single shear transducer,
∆x

∆V
=

d15, and for the stack of three transducers
∆x

∆V
= 3d15. Materials like PMN-PT

and PZT are widely used because of their large piezoelectric coefficients, but these

reflect extrinsic mechanics that freeze out at low temperatures, greatly reducing the

displacement range. The piezoelectric coefficients of LiNbO3 are much smaller, but

are intrinsic and decrease only slightly at low temperatures.
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Figure 4.21: Comparison of shear piezoelectric displacement per volt for different
transducers, on logarithmic scales.

Figure 4.21 compares the shear displacement per volt for PMN-PT, PZT-5A and

LiNbO3 transducers and a stack of three LiNbO3 transducers. The data extend over

a wide temperature range, from 78 mK to 310 K, and so are plotted on logarithmic

temperature and displacement scales. Figure 4.22 shows the same comparison on

linear scales. At room temperature, the displacement/volt of the shear transducers

varies by a factor of 46, from 69.4 × 10−12 m/V for LiNbO3 to 3200 × 10−12 m/V

for PMN-PT. At the lowest temperatures, it varies by less than a factor of 5, from
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65.9×10−12 m/V for LiNbO3 to 315.8×10−12 m/V for PMN-PT. These figures clearly

show that although LiNbO3 has the smallest value at all temperatures, the differences

at low temperature are small. The stack of three LiNbO3 transducers actually has a

larger displacement than a PZT-5A transducer below 20 K.
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Figure 4.22: Comparison of shear piezoelectric displacement per volt for different
transducers, on linear scales.

Lithium niobate (LiNbO3) has a very high ferroelectric Curie temperature (1210
◦C) and its relatively small piezoelectric coefficients (dij) and weak temperature de-

pendence reflect the intrinsic behavior of single domain crystals [22]. The small

changes in the coefficient d15 above 100 K may result from thermal expansion of the

crystal.

In case of the other single crystals, PMN-PT, the low Curie temperature and

extrinsic effects due to ferroelectric domain walls result in a strong temperature de-

pendence. As shown in Figure 4.6, this dependence extends to temperatures as low as

150 mK. This means that extrinsic piezoelectric effects do not freeze out completely,

even at 150 mK, and suggests that there must be mobile defects with a very wide

range of characteristic energies. PZT-5A shows similar behavior at low temperatures

(e.g. Figure 4.8) which may reflect similar extrinsic piezoelectric mechanisms.

The temperature dependence of d15 below 4 K has implications for precise shear

stress measurements in cryogenic experiments. For example, shear modulus mea-
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surements in helium crystals between 20 mK and 2 K [11, 12] assumed that d15 of

PZT-5A was constant, but the data in Figure 4.8 shows that it decreases by about 5%

in this temperature range. In LiNbO3, on the other hand, d15 is essentially constant

below 10 K, making it potentially a better choice for precision applications at low

temperatures.

When choosing a piezoelectric actuator, its displacement per volt is an important

parameter but, if large displacements are needed, the maximum voltage that can be

applied, Vmax, is also important. This maximum voltage is chosen to avoid depolar-

ization or other damage to the transducer. At room temperature, the manufacturers

of the shear transducers studied in these experiments on LiNbO3 gives a maximum

voltage (electric field) of 250 V (1000 V/mm) for LiNbO3. However, researchers have

applied much higher fields (up to 20,000 V/mm) to LiNbO3 without damage. For

PZT-5A, the manufacturer gives maximum voltages (fields) of 400 V (250 V/mm).

For PMN-PT the maximum values are 150 V (150 V/mm).

At cryogenic temperatures, domain walls and other defects that affect piezoelec-

tric properties are much less mobile. This means that, in some materials, higher

fields can be applied without depolarizing the transducer. However, on one occasion

applying 150 V to PMN-PT damaged it, so we limited the voltage to lower values in

all subsequent measurements.

We can estimate the maximum shear displacement of each transducer at cryo-

genic temperatures by assuming Vmax = 500 V (LiNbO3), 300 V (PZT) and 150 V

(PMN-PT). For single transducers, this gives maximum displacements at the lowest

temperatures of 33 nm (LiNbO3), 47 nm (PZT-5A) and 47 nm (PMN-PT). It is clear

that there is very little difference between the maximum displacements that can be

achieved with the three materials at low temperature.

For larger shear displacements, individual transducers can be combined to make

an actuator stack. The stack of three LiNbO3 transducers described in section 4.2.1

would have a maximum displacement (at 500 V) of 99 nm, more than twice that of the

PZT-5A and PMN-PT transducers. Of course these materials can also be stacked to

generate large displacement, but the lengths of such actuator stacks are significantly

larger because of the greater thickness (1 mm or thicker) needed to pole PZT-5A and

PMN-PT shear transducers. Lithium niobate shear transducers as thin as 0.1 mm

are available, allowing compact stacks with large displacements to be constructed.

Most positioning applications involve longitudinal, not shear actuators, and the

temperature dependences of the longitudinal piezoelectric coefficient d33 of PMN-

PT and PZT-5A transducers are compared in Figures 4.23 and 4.24. Their room

temperature coefficients differ by almost a factor of 5, but at 50 K they are almost
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the same.
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Figure 4.23: Comparison of the longitudinal piezoelectric coefficient d33 of PMN-PT
and PZT-5A transducers on logarithmic scales.

For sensor applications in which the output signal is a voltage, the sensitivity of the

sensor is determined by the piezoelectric voltage coefficients gij = (
mV

N
). Because

both the piezoelectric coefficients, dij, and the dielectric coefficients, Kij, decrease

with temperature, gij, which is proportional to the ratio
dij
Kij

, has much weaker tem-

perature dependence than dij, as shown in Figures 4.18 to 4.20. Figures 4.25 and 4.26

compare the values of the shear coefficients g15 and the longitudinal coefficients g33

for the different materials. PZT-5A has the lowest g15 value and PMN-PT has the

highest g15 value at all temperatures. For both LiNbO3 and PZT-5A, g15 is almost

independent of temperature but for PMN-PT it has a maximum value around 60

K. The longitudinal voltage constant g33 is comparable for PMN-PT and PZT-5A,

although the data at low temperature may not be reliable because of friction caused

by the clamping magnets.

Figure 4.25 suggests that PMN-PT is the best choice (has the largest sensitivity)

for shear cryogenic sensors, although LiNbO3 may be preferred if a constant sensitivity

is needed. The relative sensitivities of the three materials are roughly the same at the

highest and lowest temperatures. For longitudinal sensors, PMN-PT and PZT-5A

have comparable sensitivities.
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Figure 4.24: Comparison of the longitudinal piezoelectric coefficient d33 of PMN-PT
and PZT-5A transducers on linear scales.
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Figure 4.26: Comparison of temperature dependence of longitudinal piezoelectric
voltage coefficient g33 of PMN-PT and PZT-5A transducers.

However, g15 and g33 give the transducer’s sensitivity only if the device used to

record the voltage output is ideal, i.e. has infinite input impedance R. For real devices,

the input impedance is finite. For example, R = 1 MΩ for typical oscilloscopes and R

= 50 Ω for radio frequency (RF) amplifiers used in ultrasonics. This finite impedance

drains charge from the piezoelectric sensor, reducing its output voltages for long times

or low frequencies. Since the transducer is basically a capacitor with C =
ε0KA

t
, the

relevant time constant is that for an R-C circuit, τ = RC, with a corresponding

characteristic frequency ωc =
1

RC
. For measurements at frequencies well above ωc,

the full voltage generated by the transducer is measured. A frequencies well below

ωc, the measured voltage is reduced by a factor of
ω

ωc
= ωτ . Since τ is proportional to

C, i.e. proportional to Kij of the transducer, the crossover frequency ωc will increase

at low temperatures where Kij is smaller, reducing the useful frequency range for

piezoelectric voltage sensors.

For example, for the PMN-PT transducer at room temperature, C = 2.2 nF so

the crossover frequency with an input impedance of 1 MΩ is fc =
ωc
2π

= 72 Hz. For

example, an oscilloscope could be used to measure the output with full sensitivity

for frequencies above 100 Hz. If a 50 Ω input amplifier was used, then fc = 1.4
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MHz, and the measured output would be reduced below about 2 MHz, (by a factor of

more than 10,000 at 100 Hz). At the lowest temperatures, the PMN-PT transducer’s

capacitance is a factor of 10 smaller, so the corresponding frequencies ωc are 10 times

larger, limiting its use at low frequencies.

The corresponding frequencies for PZT transducers are similar, but for LiNbO3

they are higher, reflecting lithium niobate’s smaller dielectric constant. This can

be partially compensated by using thinner transducers to increase their capacitance,

something not practical for PMN-PT and PZT shear transducers. For the 41◦ X-cut

(pure shear) LiNbO3 transducer with thickness 0.26 mm, its capacitance is 0.29 nF,

decreasing slightly to 0.27 nF at low temperature. The corresponding frequencies at

room temperature are fc = 549 Hz for R = 1 MΩ and 11 MHz for R = 50 Ω. These

change only slightly at low temperatures, to 589 Hz and 11.8 MHz, respectively.

In choosing appropriate piezoelectric sensors, it is important to consider their

dielectric constants (capacitances), the input impedance of the measurement circuit,

and the frequency of the signal being measured. All three materials would be effective

cryogenic ultrasonics sensors (and both PZT and LiNbO3 have been used at low

temperatures), but it would be challenging to use any of them at frequencies below 1

kHz, since a very high input impedance would be needed. Given its nearly constant

sensitivity g15 and dielectric constant, LiNbO3 is probably the best sensor choice for

precise measurements that cover a wide temperature range.

For low frequency sensor applications, using current pre-amplifiers rather than

voltage pre-amplifiers avoids such frequency issues. However, the relevant sensitivity

parameter to select a suitable transducer is then the coefficient dij, not gij.
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The room temperature and their lowest temperature values of the shear and lon-

gitudinal piezoelectric coefficients and voltage constants of the three materials are

presented in Table 4.1.

Table 4.1: Experimental values of the shear and longitudinal piezoelectric coefficients
and voltage constants of the three materials at room temperature and at their lowest
temperatures

Property (unit)
Corrected value Corrected value

at room temperature at lowest temperature
Single LiNbO3 transducer

d15 (×10−12 m/V) 69.4 65.9 (6 K)
g15 (×10−3 mV/N) 89.0 90.5 (6 K)

Stack of three LiNbO3 transducers
3× d15 (×10−12 m/V) 212.9 197.4 (4 K)

PMN-PT transducer
d15 (×10−12 m/V) 3200 315.8 (150 mK)
d33 (×10−12 m/V) 1700 96.7 (50 K)
g15 (×10−3 mV/N) 141.4 148.1 (1.5 K)
g33 (×10−3 mV/N) 29.4 9.5 (50 K)

PZT-5A transducer
d15 (×10−12 m/V) 591.2 155.8 (78 mK)
d33 (×10−12 m/V) 307 76 (2 K)
g15 (×10−3 mV/N) 42.2 49.4 (1.5 K)
g33 (×10−3 mV/N) 25.2 22.4 (2 K).
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The dielectric properties of the three materials have their origins in the same

electric dipoles and domains that determine the piezoelectric properties. The close

relationship between them is illustrated by the voltage coefficients, gij, described

above. Figures 4.27 to 4.30 compare the temperature dependence of the dielectric

constant, Kσ
11, and corresponding loss tangent, tan δ, of the three materials. Figure

4.27 shows the dielectric constant and loss tangent for the three shear transducers.

The corresponding log-log plots are shown in Figure 4.28. PMN-PT has the highest

dielectric constant above 40 K. Below 40 K, PZT-5A has a higher value but both are

strongly temperature dependent. Lithium niobate has a much smaller, but nearly

temperature independent dielectric constant.

The main feature in the loss tangent of PMN-PT is a very large loss peak around

70 K. PZT-5A appears to have two smaller loss peaks around 120 K and 270 K. Below

10 K the loss in each material approaches a small constant value, but the loss remains

finite at the lowest temperatures.
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Figure 4.27: Comparison of the temperature dependence of the dielectric constant
and loss tangent for shear LiNbO3, PMN-PT and PZT-5A crystals on linear scales.
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Figures 4.29 and 4.30 show the dielectric constant (Kσ
33) and loss tangent, tan δ,

for PMN-PT and PZT-5A longitudinal transducers on linear and log scales. PMN-

PT has the highest dielectric constant and loss tangent at all temperatures. The

dielectric constants decrease with temperature for both transducers, by a factor of

14 for PMN-PT and 5 for PZT-5A at the lowest temperature. In this temperature

range, PMN-PT has a single large loss peak at 90 K, and PZT-5A appears to have

two smaller peaks around 120 K and 240 K. The dielectric properties of the shear

and longitudinal transducers are quite similar, for both PMN-PT and PZT-5A.
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Figure 4.29: Comparison of the temperature dependence of the dielectric constant
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Figure 4.30: Comparison of the temperature dependence of the dielectric constant
and loss tangent for longitudinal PMN-PT and PZT-5A crystals on logarithmic scales.

103



The largest values of the dielectric constants occur at the highest temperatures,

and the smallest values are at the lowest temperatures. These are summarized in

table 4.2.

Table 4.2: Experimental values of the dielectric constant of the three materials at
room temperature and at their lowest temperatures

Property
value value

at room temperature at lowest temperature
Single LiNbO3 transducer

Kσ
11 88 82.2 (1.4 K)

PMN-PT transducer
Kσ

11 2550 254 (1.56 K)
Kσ

33 (TRS) 5418 401 (1.4 K)
Kσ

33 (APC) 4460 360 (1.56 K)
PZT-5A transducer

Kσ
11 1590 369 (1.54 K)

Kσ
33 1570 338 (1.3 K).
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Chapter 5

Hysteresis and Creep Properties of
Piezoelectric Materials

5.1 Introduction

The displacement of an ideal piezoelectric actuator is linear in the applied voltage,

reproducible when the voltage is cycled, and does not change with time if the voltage is

held constant. Real piezoelectric actuators have non-linear responses, show hysteresis

when the voltage is reversed or cycled, and exhibit time dependent creep after voltage

changes. These phenomena reflect changes in polarization and motion of domain

boundaries, so are expected, for example, to be smaller in an intrinsic, single domain

crystal like LiNbO3. Defect motion freezes out at low temperatures, so hysteresis and

creep may be much smaller in cryogenic applications.

Hysteresis and creep are particularly important in applications where precise and

reproducible positioning is needed. In some applications, e.g. mirror positioning,

creep effects can be compensated for using a feedback loop to adjust the applied

voltages, but this requires an additional sensor with high resolution. In applications

like scanning probe microscopy, this is not possible and images are blurred or distorted

[23, 25].

This chapter presents results on the influence of temperature and voltage on the

hysteresis and creep properties of piezoelectric shear LiNbO3 and PMN-PT single

crystals, and PZT-5A ceramics. The goal of these measurements was to characterize

piezoelectric materials for cryogenic positioning applications.

The LiNbO3 single crystal is discussed first because it shows no hysteresis or creep

behavior. The displacement vs. voltage response is linear between -150 V and + 150

V at all temperatures. Next, the other single crystal material, PMN-PT, is described.

It has strongly voltage and time-dependent properties from 5 to 310 K. Finally, results
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are presented for the PZT-5A ceramic. Voltage and time-dependent behavior is also

observed for this material from 35 to 310 K. The hysteresis behavior is described

for all the materials before presenting creep results. Hysteresis and creep are closely

related. As we show in this chapter, creep is the source of the hysteresis in PMN-PT

and can be regarded as the more fundamental property.

Polarization reversal or switching (domain switching) can be induced by an electric

field or a mechanical load and produce ferroelectric hysteresis [43]. When an electric or

mechanical load is applied, ferroelectrics can change from one spontaneously polarized

state to another [83]. This phenomenon is known as domain switching. A hysteresis

loop is produced when domain-wall motion, which is crucial for polarization reversal

or switching [46], is not reversible. Note that these mechanisms are usually discussed

for longitudinal piezoelectric materials, where the applied voltages are parallel or

anti-parallel to the polarization. All the measurements in this chapter involve shear

piezoelectric materials, where applied voltages are perpendicular to the polarization

and their effects on domain wall motion are less obvious.

The hysteresis loops are often assumed to be symmetric, which means the positive

and negative coercive fields (EC) and remanent polarizations (Pr) are equal. Real

ferroelectric hysteresis loops may not be symmetric and can be affected by many

factors, such as the thickness of the samples, material composition, thermal treatment,

mechanical stresses, preparation and measurement conditions [43, 46].

The change in the displacement over time, following an initial piezoelectric dis-

placement when the drive voltage is applied is called creep. The displacement typically

changes logarithmically over time [25, 84]. The same material properties, domain re-

versal or switching [85], are responsible for both the hysteresis and the creep behavior

[69]. Experimental results are presented in the following sequence. The hysteresis and

creep behavior of LiNbO3 and PMN-PT single crystals are presented in section 5.2

and 5.3, respectively, followed by results for the ceramic PZT-5A in section 5.4.

5.2 LiNbO3 single crystal

The 41◦ X-cut (pure shear) LiNbO3 transducer described in section 4.2.1 was used

for this study.

5.2.1 Hysteresis measurements

We have investigated the voltage dependence of the piezoelectric displacement be-

tween 10 K and room temperature, to look for hysteresis in lithium niobate. Figure
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5.1 shows a hysteresis measurement at 10 K. The displacement at each voltage is

the same when the applied voltage is increased and when it is later decreased. The

black circular dots show the displacement as the applied voltage increases from -150

V to +150 V; the red circular dots show the displacement when the applied voltage

decreases from +150 V back to -150 V. The black and red arrows show the respective

directions.
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Figure 5.1: Displacement vs. applied voltage for the LiNbO3 single crystal at 10 K.
The left axis is displacement, with the corresponding measured capacitance on the
right axis.

Figures 5.1 to 5.5 show the displacements with respect to applied voltage (V)

for temperatures between 10 K and room temperature. The linear displacement and

non-hysteretic response were observed at all temperatures. At higher temperatures,

the displacement-voltage loop was measured using 5 V steps in the applied voltage

(Figures 5.3 to 5.5). The total measurement time for a loop was 20 minutes and 20

seconds. Since there was no measurable hysteresis, and to save measurement time at

lower temperatures, the loop times were reduced to 4 minutes 20 seconds by using 25

V steps (Figure 5.1) and to 2 minutes 20 seconds using 50 V steps (Figure 5.2). In

each case, the displacement was linear and non-hysteretic. If there was thermal drift,

then the displacement-voltage loops would not close, but there was no sign of such

drift in these for measurements. The noise in the higher temperature displacement-
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Figure 5.2: Displacement vs. applied voltage for the LiNbO3 single crystal at 70 K.
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Figure 5.3: Displacement vs. applied voltage for the LiNbO3 single crystal at 150 K.
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Figure 5.4: Displacement vs. applied voltage for the LiNbO3 single crystal at 200 K.
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Figure 5.5: Displacement vs. applied voltage for the LiNbO3 single crystal at 295 K.
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voltage loops was due to the temperature control limitations. It did not appear at

lower temperatures where the temperature control was better.

5.2.2 Creep measurements

In order to study the time-dependent behavior of the material, we also measured the

displacement over time, following a change in the applied voltage from 0 to 150 V.

Figures 5.6 to 5.8 show the displacements with respect to time from 10 to 150 K. At

all temperatures the piezoelectric displacement was constant over the time when the

applied voltage was held at 150 V. This means that there is no measurable creep in

this material. The constant piezoelectric displacements in Figures 5.6 indicate there

was negligible drift at 10 K. Small negative and positive thermal drift can be seen at

70 and 150 K (Figures 5.7 and 5.8) but these were not significant over 20 minutes, so

the hysteresis data was not affected by thermal drift for this material.
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Figure 5.6: Displacement vs. time for a constant applied voltage of 150 V at 10 K.
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Figure 5.7: Displacement vs. time for a constant applied voltage of 150 V at 70 K.
A small negative thermal drift is visible.
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Figure 5.8: Displacement vs. time for a constant applied voltage of 150 V at 150 K.
A small positive thermal drift is visible.
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5.3 PMN-PT single crystal

The shear PMN-PT single crystal transducer described in section 4.2.2 was used for

this study. The sequence of the creep, d15 and hysteresis measurements, and the

timing of the voltage applied across the PMN-PT transducer at each temperature,

are shown in Figure 5.9. After changing to each new temperature, the displacement

was measured at 0 V for a few hours, until it was constant or showed a small, steady

drift. A constant capacitance meant the transducer was in thermal equilibrium. The

required wait time was a few hours but was shorter at lower temperatures, where

drift and creep effects were smaller. The applied voltage was then changed from 0

to +50 V and the corresponding displacement was measured for several hours. The

voltage was then changed from +50 to -50 V and the displacement was measured for

another few hours. The green line in Figure 5.9 illustrates the applied voltages for

creep measurements.

Figure 5.9: The applied voltage sequence for creep, d15 and hysteresis measurements
on a shear PMN-PT single crystal.

After the creep measurements at this temperatures were completed, the applied

voltage was set to 0 V and another program was used to apply the ±20 V square

wave used to measure d15, a process that took 40 to 60 minutes (as described in

section 3.2.3). The blue line in Figure 5.9 schematically shows the ±20 V square

wave used for d15 measurements. When the d15 measurements were completed, the

applied voltage was set to 0 V again.

Finally, the capacitance-voltage displacement hysteresis loop was measured be-

tween -50 to +50 V at each temperature. We limited the maximum applied voltage
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to ±50 V because one of our transducers was depolarised when 150 V was applied at

room temperature. To study the hysteresis, the displacement was measured at five

voltages. Starting at 0 V, a voltage of -50 V was applied and measurements began.

The applied voltage was changed from -50 V to a maximum positive voltage of +50

V in 25 V steps. After each change of voltage, a capacitance measurement began

immediately, which involved measuring for 4 seconds and took a total of 10 seconds

to complete. Once the data points were measured from -50 V to +50 V, the process

was reversed to complete the hysteresis loop. The entire capacitance - voltage loop

took 100 seconds. The black and red lines in Figure 5.9 show the applied voltage for

capacitance-voltage hysteresis loop measurements (black for increasing voltage and

red for decreasing voltage).

5.3.1 Hysteresis measurements

Figure 5.10 shows a hysteresis loop at 70 K. The hysteresis loop is traversed in the

counter-clockwise (CCW) direction. This is the normal hysteresis direction or sign,

which we define as positive hysteresis. Similarly, hysteresis in the clockwise (CW)
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Figure 5.10: Hysteresis between displacement/capacitance and applied voltage for a
PMN-PT single crystal at 70 K. Black points correspond to increasing voltages; red
points to subsequent decreasing voltages.

direction is referred to as negative hysteresis. The hysteresis width is defined as the
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difference between the up and down displacement curves at 0 V. It is positive for

CCW loops and negative for CW loops. The loop closes at the beginning and end

points (-50 V) which confirms that the thermal drift was not significant for the short

period (100 s) needed to complete the measurement. Drift may still affect creep data,

which acquired over a much longer time period, as described in the next section.
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Figure 5.11: Hysteresis at 5 K (a) and 30 K (b).
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Figure 5.12: Hysteresis at 60 K (a) and 90 K (b).

In order to determine the temperature dependence of the hysteresis, loops were

measured from 150 mK to 310 K. Figures 5.11 to 5.14 show hysteresis loops from 5

to 310 K. There was no hysteresis below 5 K, within the noise. The hysteresis below

150 K is CCW and its width increases with increasing temperature from 5 to 60 K.

Above 60 K, the hysteresis decreases, with no measurable hysteresis at 150 K. Above
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Figure 5.13: Hysteresis at 150 K (a) and 210 K (b).
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Figure 5.14: Hysteresis at 240 K (a) and 310 K (b).

150 K, the hysteresis loop becomes CW and its width increases. Above 240 K, the

hysteresis width decreases, disappears around 290 K, then changes direction again

(to CCW) and increases up to 310 K. The up (black) and down (red) arrows indicate

the CW (negative) and CCW (positive) hysteresis directions.

Even when there is no hysteresis (e.g. at 150 K, Figure 5.13a), the displacement

vs. voltage curves are not always completely linear.

Figure 5.15 shows the temperature dependence of the hysteresis widths measured

in a range from 5 to 310 K. Loops were measured 3 or 4 times at each temperature

and the data show scatter of about 0.5-2.0 nm, essentially the noise in the capacitance

measurements. Figure 5.16 shows the average hysteresis width at each temperature.

The error bars are the standard deviations corresponding to all data measured at each
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Figure 5.15: Temperature dependence of the hysteresis width determined from hys-
teresis loops like these in Figure 5.11 to 5.14.
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Figure 5.16: Temperature dependence of the average hysteresis width. Error bars
are standard deviations of all measured data at each point.
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temperature. At the lowest temperature, there is almost no hysteresis. The hysteresis

width increases up to 60 K, then decreases, with a maximum negative value at 240

K. Above 240 K, it increases and becomes positive at the highest temperature (310

K).

We have also calculated the relative hysteresis width (i.e., the width normalized

by the magnitude of the piezoelectric response, d15) at each temperature. Figure

5.17 shows the relative hysteresis width in a temperature range from 5 to 310 K. This

normalization primarily affects the shape of the curve in regions where d15 is changing

rapidly, i.e., below 70 K and above 250 K.
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Figure 5.17: Temperature dependence of the hysteresis width normalized by d15.

Hysteresis loops were also measured with maximum voltages of ±50, ±75, ±100

and ±150 V at 20 K. For the ±50 and ±75 V loops, the voltage was changed in 25

V steps. Figure 5.18 shows these loops. The ±100 and ±150 V loops were measured

using 50 V steps, and are shown in Figure 5.19. Each data point took 10 seconds

in all cases. The hysteresis loops depend on the maximum voltage, as well as on

temperature. Although the slope for the minimum voltage ±50 V is slightly larger

than others, the slopes agree within 0.02 nm/V in all cases. Creep and hysteresis are

most significant at the higher voltages, which is why a maximum ±20 V square wave

was used for all d15 measurements, to avoid creep and hysteresis effects.
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Figure 5.18: Hysteresis loops at 20 K, for ±50 and ±75 V maximum applied voltages.
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Figure 5.19: Hysteresis loops at 20 K, for ±50 and ±75 V maximum applied voltages.
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The corresponding voltage dependence of these hysteresis widths is shown in Fig-

ure 5.20. The hysteresis width appears to vary linearly with the maximum applied

voltage up to ±150 V.
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Figure 5.20: The voltage dependence of the hysteresis width for a PMN-PT single
crystal at 20 K.

5.3.2 P-E hysteresis loop

Figure 5.21 shows a polarization - electric field hysteresis loop (P-E hysteresis loop)

measured at 1 kHz and 295 K using a Sayer-Tower circuit [78]. The temperature

dependence of the P-E hysteresis width (of the remnant polarization Pr) is shown

in Figure 5.22. It has a roughly constant value between 50 and 90 K and no mea-

surable hysteresis between 120 and 210 K. Between 210 K and room temperature, it

increases rapidly. The corresponding loops for temperatures between 295 K and 53

K are shown in Figure 5.23

119



Shear PMN-PT at 1kHz 

Applied Field (V/mm)
-150 -100 -50 0 50 100 150

P
 (
C

/c
m

2 )

-0.4

-0.2

0.0

0.2

0.4

Pr-

Pr+

Ec+

Ec-

T=295 K

Figure 5.21: P-E hysteresis loop for a PMN-PT single crystal at 295 K.
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Figure 5.22: Temperature dependence of the P-E hysteresis width for a PMN-PT
single crystal.
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Figure 5.23: Temperature dependence of the P-E hysteresis loops for a PMN-PT
single crystal measured at 1 kHz.

5.3.3 Creep measurements

Creep is an essential property of piezoelectric materials and is responsible for hys-

teresis. Creep displacements in piezoelectric materials usually change logarithmically

over time [25], i.e. without a characteristic time constant, which means that creep

and hysteresis can affect measurements over a wide range of times and frequencies.

Figure 5.24 shows the change in shear displacement (nm) with time, following

changes in applied voltage (V) for a PMN-PT single crystal at 70 K. This time-

dependent data shows both creep and thermal drift. The creep displacement was

extracted by correcting for the thermal drift. To do this, we first linearly extrapolated

the last 2000 seconds of data before a voltage was applied (the red line in Figure

5.25). We then subtracted this fit from the data after applying +50 V. Similarly, we

extrapolated the last 3000 seconds of the data at +50 V (the blue line in Figure 5.25)

and subtracted it from the displacements after the applied voltage was changed from

+50 to -50 V. The linear fits used to correct for drift extended over 2000 or 3000

seconds, but the data actually used to analyze creep covered a smaller range, 1000

seconds, over which the creep rate was assumed to be constant. Before applying +50

V, the drift rate was
dx

dt
= 5×10−4 nm/s and before the voltage was changed to -50
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Figure 5.24: Shear displacement vs. time following changes to the applied voltage
for a PMN-PT single crystal at 70 K.
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V, it was
dx

dt
= −7× 10−5 nm/s. During the 1000 seconds that we will analyze the

creep data, the thermal drift is less than 5 × 10−1 nm, roughly the noise level in the

data of Figure 5.24. Although the drift rate was not constant over for the full time

of the measurement, the linear fits are sufficient to correct the creep data for shorter

times. Circles in Figure 5.25 show the regions of data used to analyze the creep.

Figure 5.26 shows the creep data (after drift corrections) corresponding to a ap-

plied voltage change 4V = +50 V (0 V → +50 V), at temperatures from 10 to 310

K. For this increase in voltage, positive creep is observed from 10 to 120 K and at 310

K, but the creep is negative between 180 and 270 K. There is no measurable creep

at 150 K and 290 K. The negative creep region corresponds to the plateau of the

d15 curve described in section 4.2.2. To show the positive and negative creep more

clearly, we have plotted them in separate windows in Figure 5.27. The maximum

positive creep occurs at 50 K and the maximum negative creep at 240 K.
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Figure 5.26: Temperature dependence of the creep following a voltage change 4V
= +50 V (0 V → +50 V).
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Figure 5.27: (a) Positive and (b) Negative creep following a voltage change 4V =
+50 V (0 V → +50 V).

Similarly, Figure 5.28 shows the positive and negative creep following a negative

applied voltage change 4V = -100 V (+50 → -50 V). The direction of the creep

is opposite to that for a positive applied voltage change 4V = +50 V. Figure 5.29

compares the creep for the voltage changes 4V = +50 and -100 V at selected tem-

peratures.
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Figure 5.28: Temperature dependence of the creep following a negative voltage change
4V = -100 V (+50 → -50 V).
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Figure 5.29: Temperature dependence of the creep for positive and negative voltage
changes 4V = +50 V and 4V = -100 V.
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In order to find the relationship between the creep and the applied voltage change,

Figure 5.30 shows the positive and negative creep at 70 K, divided by the applied

voltage changes. The black data are the creep for ∆V = +50 V, divided by 50. The

red data are the creep for ∆V = -100 V divided by -100. They have almost same

values, i.e. the negative creep for ∆V = -100 V is twice as large as the the positive

creep for ∆V = +50 V. This proportionality between the voltage change and the creep

displacement holds for temperatures below 70 K or greater than 270 K. Between 70

K and 270 K, however, this does not appear to hold, as shown in Figure 5.31 for 270

K.
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Figure 5.30: Positive (black dots) and negative (red dots) creep at 70 K, divided by
the applied voltage change.
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Figure 5.31: Positive (black dots) and negative (red dots) creep at 270 K, divided
by the applied voltage change.

To find the time dependence of the creep, we tried to fit it to several functional

forms. We first show fits to an exponential of the form

f(t) = y0 + a(1− e−bt) (5.1)

where the relaxation time constant is τ = 1/b and the parameters y0 and a may

depend on the applied voltage and temperature. Figures 5.32 and 5.33 show the

exponential fit analysis at 70 K, for positive and negative creep, respectively. This

equation fits the data over limited time ranges, but not over the full time range. The

insert is a blow-up of the data for the first 300 seconds. The figure shows the fits for

both long time (black line) and the first 300 seconds (blue line). The time constants

for the fits are τ = 1900 seconds (long times, black lines) and τ = 64 seconds (short

times, blue lines) for the positive creep, and τ = 3200 seconds and τ = 60 seconds,

respectively for the negative creep data. The different time constants mean the long

time and short time data are not consistent with a single exponential.
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Figure 5.32: Exponential fits of the creep data after applying a voltage change 4V
= +50 V. Insert shows fits of the data for the first 300 seconds.
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Figure 5.33: Exponential fits of the creep data after applying a negative voltage
change 4V = -100 V. Insert shows fits of the data for the first 300 seconds.
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Next, we fit the creep to power laws of the form

f(t) = y0 + atn, (5.2)

where the parameters y0, a and n may depend on voltage and temperature. Figure

5.34 shows the power law fits for n = 0.01, 0.1, 0.2 and 0.5, for an applied voltage

change 4V = +50 V at 70 K. The creep is well described by a power law with a

small exponent, but is not sensitive to the exact value of n, which suggests that the

time dependence may be logarithmic (a logarithmic function approaches a power law

tn for n � 1).
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from 0.01 to 0.5.
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We therefore tried a logarithmic fit of the form

f(t) = y0 + alog10(t). (5.3)

Figures 5.35 to 5.38 show logarithmic plots and fits of both positive and negative

creep data for PMN-PT at 70 K. A logarithmic function fits the data well over two

decades in time, from t = 10 seconds to 1000 seconds. This is similar to the creep

behavior studied previously [25, 68, 69].

Figures 5.35 and 5.37 show the positive and negative creep data for the first 1000

seconds after the applied voltage was changed. Figures 5.36 and 5.38 show the same

data over longer times, up to 10,000 and 19,000 seconds, respectively. The data

appear to deviate from logarithmic behavior in Figure 5.38, but the drift correction

made before plotting the creep data is not reliable at long times. The data for the

first 1000 seconds (Figures 5.35 and 5.37) is more reliable and is used in the rest of

the analysis in this Chapter. For example, the parameter a that characterizes the

magnitude of the first 1000 seconds of creep at 70 K is about half as large for the

+ 50 V voltage change as for the -100 V voltage change (3.63 vs -7.01), as expected

if the creep is proportional to ∆V . The values of a from fitting the long time data

(Figures 5.36 and 5.38) are 3.96 and 5.95 and so are not consistent with this expected

proportionality.

The first few data points (for t . 10 s) in each plot deviate from the straight fit

line. However, the measurement time for each data point was 8 seconds, including 4

seconds of averaging by the capacitance bridge. This means the data points are not

instantaneous but rather are averages over the previous 4 to 8 seconds. The horizontal

red lines extending from the first few data points indicate this measurement range

and explain much of the deviations.
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Figure 5.35: Logarithmic fit of the positive creep for 1000 seconds following an
applied voltage change 4V = +50 V.
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Figure 5.36: Logarithmic fit of the positive creep for 10000 seconds following an
applied voltage change 4V = +50 V.
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Figure 5.37: Logarithmic fit of the negative creep for 1000 seconds following an
applied voltage change 4V = -100 V.
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Figure 5.38: Logarithmic fit of the negative creep for 19000 seconds following an
applied voltage change 4V = -100 V.
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Figure 5.39 shows the positive and negative creep and their logarithmic fits at 70

K. It is known that such creep produces hysteresis in piezoelectric materials. The

width of a hysteresis curve at 0 V should be comparable to the creep during the time

over which the curve is measured. For example, the expected hysteresis width can

be estimated from the creep during the time between the two measurements at 0 V.

The inset in Figure 5.39 shows the difference in creep for ∆V = +50 V and ∆V =

-100 V, after 20 seconds. The value, 9.1 nm, gives a rough estimate of the expected

hysteresis.
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Figure 5.39: Positive and negative creep at 70 K for the shear PMN-PT single crystal.
The insert shows the data for the first 50 seconds.

Another way to characterize the magnitude of the creep that is responsible for

hysteresis is through the parameter c in equation 2.39, which depends on temperature

but not on the voltage change (assuming the creep is proportional to ∆V ).

Figure 5.40 shows the temperature dependence of the measured differences in

creep (green dots, left axis) and of the creep coefficient c (dark red dots, right axis).

They have similar temperature dependences, confirming that either can be used to

characterize the creep. Note that the magnitude of the coefficient c is some what
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dots, right axis) for the shear PMN-PT single crystal.

arbitrary since the logarithmic function in equation 5.3 should really be written as

f(t) = y0 + alog10(
t

t0
). (5.4)

and the time t0 is arbitrary.

5.4 Polycrystalline PZT-5A

The shear PZT-5A ceramic transducer from Boston Piezo Optics, Inc. [81] described

in section (4.2.3) was used to investigate the hysteresis and creep properties.

5.4.1 Hysteresis measurements

The voltage dependence of the piezoelectric ceramic’s displacement was investigated

from 0 to 310 K using the same procedure as for LiNbO3. Voltage steps of either 25 V

or 50 V were used. Figures 5.41 to 5.45 show hysteresis loops over a voltage range of

±150 V. There was no measurable hysteresis at the lowest temperatures. Hysteresis

136



first appears around 35 K. The hysteresis loops were always positive (CCW) and the

hysteresis width increased with increasing temperature.
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Figure 5.41: Relationship between displacement and applied voltage at 10 K for PZT-
5A ceramic. Left axis is displacement with the corresponding measured capacitance
on the right axis.

Figure 5.46 shows the hysteresis width in a temperature range from 0 to 310 K. It

varies non-linearly with temperature for different voltage ranges. Figure 5.47 shows

the dependence of the hysteresis width on the maximum applied voltage at 77 K,

which is non-linear, in contrast to the linear behavior in PMN-PT shown in Figure

5.20.
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Figure 5.42: Hysteresis between displacement and applied voltage at 35 K.
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Figure 5.43: Hysteresis between displacement and applied voltage at 100 K.
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Figure 5.44: Hysteresis between displacement and applied voltage at 200 K.
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Figure 5.45: Hysteresis between displacement and applied voltage at 295 K.
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Figure 5.46: Temperature and voltage dependence of the hysteresis width of a PZT-
5A ceramic.
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Figure 5.47: Voltage dependence hysteresis width of a PZT-5A ceramic at 77 K.
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5.4.2 Creep measurements

The creep properties of PZT-5A were investigated from 10 K to 295 K. Figures 5.48

and 5.49 show the time-dependent piezoelectric displacement (nm) and applied volt-

age (V) at 10 and 35 K. In the 10 K data the noise level varied, but this did not reflect

any changes in measurement settings. There was almost no creep at 10 K, which is

consistent with the lack of hysteresis at this temperature. At 35 K, a little creep was

observed, again consistent with the hysteresis data in the previous section. The creep

(after subtracting any drift) is shown in Figure 5.50 for temperatures between 10 K

and 295 K. It increases with temperature up to 225 K, but above 225 K the creep

curves are almost the same. Figure 5.51 shows a logarithmic fit of the creep data at

77 K. Figure 5.52 shows the coefficient c that is calculated from the logarithmic fits

at each temperature.
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Figure 5.48: Displacement vs. time for a constant applied voltage 150 V at 10 K.
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Figure 5.49: Creep of the PZT-5A ceramic at 77 K, for changes in applied voltage
of 150 V.

PZT-5A

Time (s)
0 200 400 600 800 1000

D
is

p
la

ce
m

en
t 

(n
m

)

0

5

10

15

20

10 K
35 K 
77 K
100 K
150 K
200 K
225 K
250 K 
275 K
295 K

Change in applied voltage from 0 to (+) 150 V

Figure 5.50: Temperature dependence of creep for the shear PZT-5A ceramic follow-
ing a voltage change 4V = 150 V (0 → +150 V).

142



Shear PZT-5A
f = y0+alog10(t)

log10(t)
0.5 1.0 1.5 2.0 2.5 3.0

D
is

p
la

ce
m

en
t 

(n
m

)

0.0

0.5

1.0

1.5

2.0

2.5

Experimental Data
Linear fit line

Time (s)
0 200 400 600 800 1000

D
is

p
la

ce
m

en
t 

(n
m

)

0.0

0.5

1.0

1.5

2.0

2.5

Experimental data
log10 (t) fit line

Where y0 = -0.25 and a = 0.84

T = 77 K

(a)

(b)

Figure 5.51: Logarithmic fit of creep data for the PZT-5A ceramic following an
applied voltage change 4V = 150 V.
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5.5 Discussion

The 41◦ X-cut (pure shear) LiNbO3 single crystal had no hysteresis or creep in the

temperature range between 10 K and room temperature. The piezoelectric displace-

ment increased linearly with the applied voltage. This is consistent with the behavior

of a 36◦ Y-cut LiNbO3 stack reported by Kawamata et al. [27]. The thickness (0.26

mm) of our 41◦ X-cut LiNbO3 was four times thinner than the PMN-PT transducer

(1 mm) and seven times thinner than the PZT-5A transducer (1.78 mm). Applying

a 150 V to the LiNbO3 transducer corresponds to a much higher electric field (E)

than was used for the PMN-PT or PZT-5A transducers. The linearity and lack of

hysteresis and creep at high fields at all temperature make it a very good candidate

for positioning applications like STM, AFM, particularly at cryogenic temperatures.

For the shear PMN-PT crystal, the hysteresis width is comparable to the creep

coefficient c in Figure 5.53. The red circular dots with error bar depict the directly

measured hysteresis widths and the dark red circular dots show the creep coefficients c,

respectively. Both curves show similar behavior, confirming that creep is responsible

for the hysteresis. The creep and hysteresis in PMN-PT has an unusual temperature

dependence. The negative creep and hysteresis seen between 150 K and 270 K appears
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to be unique and has never been reported in any piezoelectric material.
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Figure 5.53: Temperature dependence of the hysteresis width (red dots) and the
creep coefficients c (dark red dots) for a shear PMN-PT single crystal.

Figure 5.54 compares the piezoelectric and dielectric behavior of the shear PMN-

PT transducer. The piezoelectric coefficient d15 and hysteresis, and the dielectric

constant Kσ
11 and loss conductance G, are strongly temperature dependent but show

common features.

Both d15 and Kσ
11 are smallest at low temperature and increase rapidly up to

about 70 K. They are much less temperature dependent between 100 K and 200 K,

the plateau region. Above 200 K, they increase more rapidly. These similarities

reflect the common origin of piezoelectric and dielectric properties in crystal dipoles

and ferroelectric domains.

Dielectric loss is associated with hysteresis in P-E (polarization-electric field) cy-

cles, so can be compared to displacement hysteresis in piezoelectrics. The main

features of the hysteresis width and the dielectric loss in Figure 5.54 are large peaks

around 70 K. Such peaks are often associated with a temperature dependent re-

laxation process, for example the motion of domains walls depend on the measure-

ment frequency. Note that the effective frequency for the hysteresis measurements (

f ≈ 0.01 Hz) is much lower than 1000 Hz used by capacitance bridge for the dielec-
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tric measurements. This would shift a thermal relaxation peak to lower temperature

for the low frequency hysteresis measurements, as observed. The hysteresis peak is in

the region where d15 is changing most rapidly, as expected for a relaxation process.

However, the region of negative hysteresis between 150 K and 270 K does not have

a counter part in dielectric loss data. This suggests that it does not have the same

origin as the positive hysteresis peak at low temperature. It is possible that different

types of domain walls are involved in the hysteresis, some of which do not contribute

to the dielectric loss.
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tric constant and dielectric loss for the shear PMN-PT single crystal.
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Figure 5.55 shows the hysteresis width and the creep coefficients c for the PZT-5A

ceramic transducer. The creep and hysteresis are positive (CCW) at all temperatures.

The hysteresis width varies monotonically with temperature but the coefficient c

increases up to 250 K, then appears to decrease. It is possible that the creep data at

the highest temperatures are affected by thermal drift and temperature control, but

some of the hysteresis width data at same lower voltages (Figure 5.46) also show a

decrease above 270 K.

Figure 5.56 compares the piezoelectric and dielectric behavior of the ceramic shear

PZT-5A transducer. The piezoelectric coefficient d15 and hysteresis, and the dielectric

constant Kσ
11 and loss conductance G, all increase monotonically with temperature.

The behavior of PZT-5A however, is different from that shown in Figure 5.54

for the relaxor ferroelectric PMN-PT. The piezoelectric d15 and hysteresis width in

PZT-5A have similar temperature dependences, with neither a plateau region nor a

hysteresis peak. The dielectric constant Kσ
11 has a temperature dependence to similar

d15. The ratios of room temperature and low temperature values are even similar:

4.5 for d15 and 4.0 for Kσ
11. The dielectric loss G for PZT-5A has a similar overall

temperature dependence, although there appear to be small loss peaks around 120 K

and 270 K.
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Figure 5.55: Comparison of the temperature dependence of the hysteresis width and
the creep coefficient c for the PZT-5A ceramic for applied voltages between -150 and
+150 V.
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and (b) dielectric constant and dielectric loss for the shear PZT-5A ceramic.
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Figure 5.57 compares the temperature dependence of the hysteresis width for all

three materials, for the same applied voltage range -50 V and +50 V. The LiNbO3

single crystal (blue dots) has no measurable hysteresis at any temperature. The

PMN-PT single crystal (red dots) has a large and strongly temperature dependence

hysteresis, including a region of negative hysteresis. The PZT-5A ceramic (green dots)

has a very small hysteresis below 35 K which increases monotonically at higher tem-

perature. Below 5 K, the response of all three materials is linear and non-hysteretic

for applied voltages between -150 and +150 V.
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Figure 5.57: Comparison of the temperature dependence of the hysteresis width of
the three materials for applied voltages between - 50 and + 50 V.
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Chapter 6

Conclusion

This conclusion chapter summarizes the main results from the thesis. We have made

a broad study of the piezoelectric and dielectric properties of three widely used ma-

terials, at temperatures as low as 78 mK. The materials included LiNbO3 (a single

domain, single crystal with a high Curie temperature), PMN-PT (a single crystal

relaxor ferroelectric) and PZT-5A (a ceramic). Most of the measurements were done

on shear polarized transducers, although longitudinal PMN-PT and PZT-5A trans-

ducers were also studied. The piezoelectric measurements included shear and lon-

gitudinal piezoelectric coefficients (d15 and d33), displacement hysteresis and creep.

The dielectric constants Kσ
11, Kσ

33 and loss conductance G were measured, allowing

the piezoelectric voltage coefficients (g15 and g33) to be determined.

Shear transducers are used in ultrasonics, and in some sensors, but are not as

widely used as longitudinal transducers in positioning applications. However, shear

transducers have some advantages. The shear coefficient d15 is typically larger than

the longitudinal coefficient d33 (by a factor of 2 more for the materials in this thesis),

allowing larger displacements for the same applied voltage. Shear transducers also do

not suffer from the clamping effects that can reduce d33, since there are no transverse

displacements associated with shear deformations.

Despite these advantages, there are few reported measurements of shear piezo-

electric properties at cryogenic temperatures. Before the work reported in this thesis,

there were no measurements for LiNbO3 below room temperature, no shear measure-

ments on PMN-PT below the plateau region that extends to 75 K, and no measure-

ments on any of the materials in the very low temperature region below 4 K.

This thesis focusses primarily on the properties of shear piezoelectric transduc-

ers. It includes measurements of their piezoelectric coefficient d15, which is important

for displacement actuators, and the dielectric constant Kσ
11, which allows the volt-

age coefficient g15 to be determined for sensor applications. It also includes direct
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measurements of the hysteresis and creep that limit stability and reproducibility in

precise positioning applications.

The results in Chapter 4 show that LiNbO3 has the lowest d15 values at all tem-

peratures and that d15 is weakly temperature dependent, dropping by only about 5%

at the lowest temperature. PMN-PT has the largest d15 at room temperature, but

this advantage largely disappears at the lowest temperature where d15 is reduced by a

factor of 10. The coefficient d15 of the PZT-5A ceramic is 5 times smaller than that of

PMN-PT at room temperature and drops by a factor of 5 at the lowest temperature.

Although the room temperature values of d15 for the three materials vary by a factor

of 46 (from 69.4 × 10−12 m/V for LiNbO3 to 3200 × 10−12 m/V for PMN-PT) they

vary by less than a factor of 5 at the lowest temperatures (from 65.9× 10−12 m/V for

LiNbO3 to 315.8× 10−12 m/V for PMN-PT). Although LiNbO3 has the smallest d15

value, the differences at low temperature are small and below 20 K a stack of three

LiNbO3 transducers produces a larger displacement than a PZT-5A transducer.

The dielectric constants Kσ
11 of the three materials have temperature dependences

similar to d15. In LiNbO3, the room temperature value drops by about 7% at the

lowest temperature, and the loss conductance is small. PMN-PT has the largest

room temperature Kσ
11, which drops by a factor of 10 at the lowest temperature, and

its loss conductance shows a large relaxation peak around 75 K. In PZT-5A, Kσ
11 is

smaller than that of PMN-PT at the room temperature and decreases by a factor

of 5 at the lowest temperature. PZT’s loss conductance decreases nearly linearly

with temperature, with two small loss peaks around 120 K and 240 K. At room

temperature, the materials’ dielectric constants Kσ
11 vary by a factor of 29 (from 88

for LiNbO3 to 2550 for PMN-PT) but vary by less than a factor of 5 at the lowest

temperature (from 82.2 for LiNbO3 to 369 for PZT-5A).

The PMN-PT single crystal has the largest voltage coefficient g15 value and PZT-

5A ceramic has the lowest g15 value at all temperatures. For LiNbO3 and PZT-5A,

g15 is almost independent of temperature but for PMN-PT it has a maximum value

around 60 K. This suggests that PMN-PT is the best choice for shear cryogenic

sensors (it has the largest sensitivity), although LiNbO3 may be preferred if a constant

sensitivity is needed.

However, in choosing appropriate piezoelectric sensors, it is important to consider

their dielectric constants (capacitances), the input impedance of the measurements

circuit, and the frequency of the signal being measured. All three materials would be

effective cryogenic ultrasonics sensors (and both PZT and LiNbO3 have been used at

low temperatures), but it would be challenging to use any of them as voltage sensors

at frequencies below 1 kHz, since high input impedance would be needed. Given its
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nearly constant sensitivity g15 and dielectric constant LiNbO3 is probably the best

sensor choice for precise measurements that cover a wide temperature range. For low

frequency sensor applications, using current pre-amplifiers, rather than voltage pre-

amplifiers, avoids such frequency issues. However, the relevant sensitivity parameter

to select a suitable transducer is then the coefficient dij, not gij.

The implication for selecting the best material for positioning actuators that need

large displacement involve d15. At cryogenic temperatures, one can use a LiNbO3

transducer/stack to achieve this. Note that LiNbO3 transducers have been used to

study solidification and superfluidity of 4He below 1 K [60].

The origins of the temperature dependence of the piezoelectric and dielectric prop-

erties of these three materials can be summarized in terms of intrinsic and extrin-

sic contributions. LiNbO3 is a single crystal with single ferroelectric domain and a

very high Curie temperature. Its piezoelectric and dielectric properties have a weak

temperature dependence which primarily comes from intrinsic behavior like thermal

expansion of the crystal.

PMN-PT is a relaxor piezoelectric material. Like LiNbO3, it is a single crystal,

but has a multi-domain structure and a very low Curie temperature. Its large dij

at room temperature and in the plateau above 100 K is due to extrinsic mechanism

like domain wall motion, which freeze out at temperatures, producing the rapid drop

of d15 below 75 K. Surprisingly the dij of PMN-PT at the lowest temperatures vary

nearly linearly down to at least 0.2 K, far below the relaxation peak at 70 K. There

must be a wide range of small energy scales involved in domain wall motion. One

has to be aware of this temperature dependence if PMN-PT transducers are used in

precise measurements below 4 K.

PZT-5A is a ceramic, with small crystallities and domains. Its dij, gij and Kσ
ij, are

intermediate between LiNbO3 and PMN-PT and dij is also temperature dependent

below 4 K. However, there is no large relaxation peak and no plateau region for dij

and Kσ
ij, which may be because the motion of domain walls and defects is limited by

grain boundaries.

Precise positioning actuators require reproducible and time-independent displace-

ments, so hysteresis and creep limit their performance. Intrinsic effects (LiNbO3) are

not expected to produce hysteresis or creep. Extrinsic effects (PMN-PT and PZT)

do produce hysteresis and creep but these are expected to freeze out, so hysteresis

and creep may be much smaller at low temperatures.

The results in Chapter 5 showed that LiNbO3 has no measurable creep or hys-

teresis in the entire temperature range, for any voltage. PMN-PT has the largest

hysteresis and creep. Displacement vs. voltage measurements showed both posi-
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tive (CCW) and negative (CW) hysteresis at temperatures between 5 K and 310 K.

Hysteresis and creep are strongly temperature dependent, with the highest positive

values around 60 K and the largest negative values at 240 K. Even below 20 K, creep

is still significant. The hysteresis width and creep coefficient show similar behavior,

confirming that creep is the source of the hysteresis.

PZT-5A has intermediate hysteresis and creep, which are always positive (CCW)

and increase monotonically with temperature from 35 K to 310 K. Hysteresis and

creep are too small to measure below 30 K.

LiNbO3 transducers can be cut very thin and can tolerate very high voltages with-

out depolarizing, compared to the other two. Considering their linear displacements

and complete absence of creep or hysteresis, this makes then an almost ideal choice

for cryogenic applications where PMN-PT and PZT no longer have the advantage of

much larger values of d15.

We can also relate the creep and hysteresis of these three materials to their struc-

ture. LiNbO3 is a single crystal and a single domain, with only intrinsic behavior. As

expected it shows no hysteresis or creep. PMN-PT is also a single crystal, but has

multiple domains and its properties are dominated by extrinsic effects like domain

wall motion, which produce large hysteresis and creep. The plateaus in d15 and Kσ
11

are correlated with the hysteresis, creep and dielectric loss. The region of negative

creep between 150 K and 270 K is unexpected and unique to PMN-PT. The dielectric

loss G does not show a corresponding feature in this temperature range, suggesting

that the negative creep mechanism does not affect the dielectric behavior. PZT’s be-

havior is also dominated by extrinsic effects, but its creep and hysteresis are smaller

than those of PMN-PT, which suggests that domain walls are less mobile, perhaps

because of pinning by grain boundaries.

The hysteresis and creep in PMN-PT extend to temperatures below 10 K, which

is consistent with weakly pinned domain walls. In PZT, the hysteresis disappears

below 30 K, as expected if its domain walls are pinned by grain boundaries.

The results presented in this thesis provide a practical guide for selecting piezo-

electric materials for cryogenic actuators and sensors. The magnitude and tempera-

ture dependence of the three materials piezoelectric properties can be understood in

terms of intrinsic and extrinsic mechanisms in single crystals and ceramics. Several

new features were observed, including a direct connection between creep and hys-

teresis, a unique region of negative creep in PMN-PT, and a surprisingly strong low

temperature dependence of d15 for PMN-PT and PZT-5A that extends well below 1

K.
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Kristallen. Springer Verlag, 1969.

[62] D. Wang, Y. Fotinich and G. P. Carman. Influence of temperature on the elec-

tromechanical and fatigue behavior of piezoelectric ceramics. Journal of Applied

Physics, 83(10):5342–5350, 1998.

[63] A. J. Moulson and J. M. Herbert. Electroceramics: materials, properties, appli-

cations. John Wiley & Sons, 2003.

[64] M. S. Senousy R. K. N. D. Rajapakse, D. Mumford and M. S. Gadala. Self-heat

generation in piezoelectric stack actuators used in fuel injectors. Smart Materials

and Structures, 18(4):045008, 2009.

[65] K. Uchino and S. Hirose. Loss mechanisms in piezoelectrics: how to measure

different losses separately. IEEE Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control, 48(1):307–321, 2001.

[66] A. Ochi, S. Takahashi and S. Tagami. Temperature characteristics for multilayer

piezoelectric ceramic actuator. Japanese Journal of Applied Physics, 24(S3):209,

1985.

[67] X. Lu and S. V. Hanagud. Extended irreversible thermodynamics modeling

for self-heating and dissipation in piezoelectric ceramics. IEEE Transactions on

Ultrasonics, Ferroelectrics, and Frequency Control, 51(12):1582–1592, 2004.

159



[68] S. Vieira. The behavior and calibration of some piezoelectric ceramics used in

the STM. IBM Journal of Research and Development, 30(5):553–556, 1986.

[69] PI Ceramic. Product information catalogue, Lindenstrabe, Germany, 2018,

https://www.piceramic.com/en/piezo-technology/fundamentals/.

[70] Agilent Technologies Inc. Agilent basics of measuring the dielectric properties of

materials. Application Note, 2005,

academy.cba.mit.edu/classes/inputdevices/meas.pdf.

[71] M. G. Stewart, M. G. C. M. Cain and D. A. Hall. Ferroelectric hysteresis mea-

surement and analysis. National Physical Laboratory Teddington, 1999.

[72] F. Pobell. Matter and methods at low temperatures. Springer Science & Business

Media, 2007.

[73] Lake Shore Cryotronics. Inc., 575 McCorkle Blvd. Westerville, OH, 43082,

https://lakeshore.com/.

[74] AH2500 Instruction Manual Andeen-Hagerling. 1 kHz automatic capacitance

bridge. http://www.andeen-hagerling.com/.

[75] G. K. White and P. J. Meeson. Experimental techniques in low-temperature

physics. 2002.

[76] A. Erturk and D. J. Inman. Piezoelectric energy harvesting. John Wiley & Sons,

2011.

[77] M. Al Ahmad, F. Coccetti and R. Plana. The effect of substrate clamping on

piezoelectric thin-film parameters. In Microwave Conference, 2007. APMC 2007.

Asia-Pacific, pages 1–4. IEEE, 2007.

[78] C. B. Sawyer and C. H. Tower. Rochelle salt as a dielectric. Physical Review,

35(3):269, 1930.

[79] Boston Piezo-Optics, Inc. Lithium niobate single crystal plates with chrome/gold

electrodes, http://www.bostonpiezooptics.com/.

[80] TRS Ceramics, Inc. TRS X2A single crystal lead magnesium

niobate-lead titanate (PMN-PT) plates with chrome/gold electrodes,

http://www.trstechnologies.com/.

160



[81] Boston Piezo-Optics, Inc. PZT-5A ceramic plates with chrome/gold electrodes,

http://www.bostonpiezooptics.com/.

[82] APC International Ltd. Physical and piezoelectric properties of APC materials,

2013.
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