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ABSTRACT 

We develop a formula for the radius of the largest fc-dimensional ball that can be 

contained inside an n-dimensional box, where k = 1 , . . . , n, and develop an algorithm 

to give the equations for every fc-dimensional flat that contains one of these balls of 

maximal radius. 
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Chapter 1 

Introduction 

This thesis will deal with the problem of finding the radius and the location of the 

largest A;-dimensional euclidian ball in an n-dimensional box where 1 < k < n. A 

precise formula for the radius of such a ball was first found in [2] by Hazel Everett 

(Universite du Quebec a Montreal, Departemente d'Informatique), Ivan Stojmen-

ovic (University of Ottawa, Department of Computer Science), Pavel Valtr (Charles 

University, Department of Applied Mathematics), and Sue Whitesides (McGill Uni­

versity, School of Computer Science). After showing that there exists a ball of 

maximal radius with its center at the origin, they approached the problem by calcu­

lating the distance from the origin to the intersection of an arbitrary A:-dimensional 

linear subspace with each of the hyperplanes containing the faces of the box. This 

was done in terms of k vectors v i , . . . , Vfc which formed an orthonormal basis for 

the A;-dimensional linear subspace. They then gave conditions on these distances 

which determined if a fc-dimensional linear subspace contained a /c-dimensional ball 

of maximal radius in the box. However, the locations of these fc-dimensional balls 

of maximal radius (or equivalently, the fc-dimensional linear subspaces containing 

them) were not found, but were rather left as an unsolved problem. To date, no 

such solution appears in the literature. Here, we will again calculate the radius 

of the largest fc-dimensional ball in an n-dimensional box, but we will use n — k 

orthonormal vectors m i , . . . , m„_fc which form an orthonormal basis of the n — k-

dimensional subspace orthogonal to the fe-dimensional subspaces mentioned above. 

We will obtain the results of [2], but in a far more geometrical way, and we will also 

derive the locations of the fc-dimensional subspaces where these A;-dimensional balls 
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of maximal radius lie. 

Since distance will play an important role in this thesis, we devote all of chapter 

2 to this topic. Section 2.1 will define the Gram, determinant, and list some of its 

properties. The section following this will show how to employ the Gram determi­

nant to find the distance between affine subspaces of any dimension and show the 

equivalence of this method with one that was previously known (see [3], [1] and [4]). 

In chapter 3, we address the problem of finding the largest A;-dimensional ball 

in an n-dimensional box. Section 3.1 will introduce some terminology, as well as 

state a couple of useful facts. In section 3.2, we will find the radius and locations 

of the largest n — 1 dimensional balls in an n-dimensional box, as well as stating 

the points where these balls of maximal radius contact the faces of the box. We 

generalize these results in section 3.3, where we find the radius and locations of the 

largest /c-dimensional balls in an n-dimensional box for any k — l , . . . , n — 1. 

Since calculating specific solutions by hand will become increasingly unrealistic 

as n — k becomes large, we include an algorithm in the Appendix that will quickly 

do the calculations. 
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Chapter 2 

Gram Determinants and the 

Distance Between Flats 

2.1 The Gram Determinant: Definition and Properties 

We will begin with a brief study of the Gram determinant and its properties, which 

will be useful in the next chapter. We start with a couple of useful theorems from 

linear algebra which can be found in [5]. 

Theorem 2.1 (GRAM-SCHMIDT PROCESS). Given a linearly independant set 

{ « i , . . . Uk} C Rn, define 

vx = « i , 

<«2,«l) 
«2 = «2 - 7 rVi, 

V3 = M3 - -r rVi - r-V2, 
(«l,«l) {V2,V2) 

(uk,vi) {uk,v2) (uk,vk-i) 
Vk = uk - -, rvi - r-u2 - . . . - j 1 rVk-i-

TTien {t>i,..., vk} is an orthogonal set and span{«i, . . . , vp} = span{wi,. . . , Up} for 

l<p<k. 

Remark 2.1. We can reformulate Theorem 2.1 by saying that vi = ui and for every 

A; = 2 , . . . , n, vfc = Ufe - projyfc_1 ufe where Vk-i = span{vi , . . . , v f c_i}. 
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Theorem 2.2 (QR FACTORIZATION). If A is anm x n matrix with linearly inde­

pendent columns « i , . . . , v^, then A can be uniquely factored as A = QR, where Q 

is an m x n matrix whose columns, « i , . . . , vn, form an orthonormal basis for the 

column space of A, and R is an n x n upper triangular matrix with r n = \\v\\\, 
rjj = II vj - ProJyj-!^!! f°r 3 = 2, . . . , n , and ry = («*,«,-) fori < j , where 

Vj-i = span{wi,... , Vj-i). 

Remark 2.2. Setting m = n in theorem 2.2 and keeping in mind that Q is an 

orthogonal matrix and R is an upper triangular matrix with positive entries on its 

main diagonal, we can write the absolute value of the determinant of A as: 

| det(A)| = | det(QB)| - | det(Q)|| det(fl)| = | ± 1|| det(i?)| = det(fl) 

|vi|| | |v2 - p r o j V l v2 | l l V n - p r o j ^ ^ V n l 

Definition 2.1 (GRAM MATRIX, GRAM DETERMINANT). Let vi,...,Vfc € M.n 

be the columns of an n x A; matrix A. The matrix ATA is known as the Gram 

matrix of the vectors v i , . . . , Vfc and is denoted by G ( v i , . . . , v*.). The determinant 

of ATA is called the Gram determinant of the vectors v i , . . . , V& and is denoted by 

Gram(vi , . . . , v^). Thus, 

( v i , v i ) (vi,vfc) 

Gram(vi , . . . , vk) = det(AT A) = 

(Vfc,Vl) . . . (Vfc,Vfc) 

Remark 2.3. If A is an n x k matrix with linearly independant columns, then we 

can apply the QR factorization: 

ATA = (QR)TQR 

=RTQTQR 

= RTIR 

= R xt, 
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so that 

det(ATA) = det(RTR) 

= det(RT)det(R) 

= (det(i?))2 

= ||vij|2||v2 - pro j^ v2 | |2 .. - ||vfe - projv-fe_1 

Theorem 2.3 (PROPERTIES OF THE GRAM DETERMINANT). Let vi,...,Vk be 

vectors in W1. We have the following: 

1. G r a m ( w a ( i ) , . . . ,vCT(fc)) = Gram(«i, ...,«&) where a is any permutation of 

{1, . . . ,* ;} . 

2. Gram(«i , . . . , av{,...,%) = a2 Gram(«i, ...,Vi,...,Vk) for every Q G I and 

for every i = 1 , . . . , k. 

3. Gram(i>i,..., %) = 0 if and only if {vi,..., Vk} is a linearly dependant set. 

4- 0 < Gram(vi , . . . , «&) < nj=i \\vi\\2 for a linearly independant set {i>i,..., Vk}. 

Proof. 

1. It will suffice to show 

Gram(vi , . . . , v ; , . . . , v,- , . . . , vfc) = Gram(vi , . . . , v^ , . . . , v ; , . . . , vfc). 

By interchanging ith and jth vectors, we interchange the ith and jth rows and 

the ith and jth columns of the Gram matrix. Thus, the Gram determinant 

changes by a factor of (—l)2. 

2. Multiplying the ith vector by a results in multiplying the ith row and the ith 

column of the Gram matrix by a. Thus, the Gram determinant changes by a 

factor of a2. 

3. Let A be an n x k matrix with v x , . . . , v^ as it columns. If G r a m ( v i , . . . , v^) = 

0 then det(ATA) = 0. Then there must be one column of ATA, say the ith 
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column, which is a linear combination of the other columns: 

(2.1) 

(vi,Vi) 

<Vfc,Vi) 

<vi.vi> 

(vfc,Vj) 

Therefore, for Z = 1 , . . . , A;, (v/, v» - ^ - ^ Vj) = 0 so that v* _L (v» - ^ y » VjJ. 

Setting v = Vj — £,•-« CjVj, We have v € span{vi , . . . , Vfc}. But since vj J_ v 

for I — 1 , . . . , k, v = 0 and v« = ^ i ^ i CjVj and hence { v i , . . . , Vfc} is linearly a 

dependant set. On the other hand, if the set { v i , . . . , Vfc} is linearly dependant, 

then there is at least one vector, say Vj such that Vj = Yl&i vj • ^ * n e n follows 

from (2.1) that the ith column of A1A is a Unear combination of the other 

columns so that det(AT A) = Gram(vi , . . . , Vfc) = 0. 

4. Gram(vi , . . . , vfc) = ||vi||2 | |v2 - projy i v 2 | | 2 . . . ||vfc - p r o j y ^ vfc||
2 > 0 since 

{ v i , . . . , Vfc} is linearly independant. We will show that for every x e l " and 

for every subspace L of W1 we have ||x—proj^ x||2 < ||x||2. Since Rn = LQL1, 

we have that x can be uniquely written as x = projj, x + proj^x x. Since 

Iprojjrxll^ + llprojixxll L _!_ L-1-, Pythagoras' theorem yields ||x||2 

projL± x = x - projL x gives ||x||2 = 

| | x - p r o j L x | | 2 < ||x||2. Thus, Gram(vi, . . . ,v f c) < f l t i IK 

But 

proj^xH2 + ||x — proJ£,x||2 so that 

Remark 2.4. Note that ||VJ—projy41 Vj||2 = | |VJ||2 if and only if pro j y ^ Vj = Oif and 

only if Vj _L Vi-\. Thus, Gram(vi , . . . , vk) = [ ]* = 1 ||v;||2 if and only if { v i , . . . , vfe} 

is an orthogonal set. 

Remark 2.5. Remark 2.3 states that for a linearly independent set { v i , . . . , Vfc}, we 

have that 

(2.2) Gram(vi, . . . ,v f c) |vi| |2 | |v2 — projVl V2II2 • ||Vfc-projvfclVfc| 

However, if { v i , . . . , Vfc} is a linearly dependant set, then there is an i such that 

Vj E V%-\. It follows that ||v; — projy._1 v»|| = 0 which of course implies ||vi||2||v2 — 

pro j^ V2II2 . . . IJ vj;. — projy Vfc ||2 — 0. Combining this with part 3 of theorem 2.3 
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verifies (2.2) for any set { v i , . . . , v^}. 

2.2 Distance Formulae 

In this section, we will be concerned with finding the distance between two flats, 

given that we know a basis for both of their underlying vector spaces as well as one 

point lying in each flat. 

Theorem 2.4 (DISTANCE FROM A POINT TO A FLAT). Let C = p + L be a k-

dimensional flat in Mn, and let x £ W1. Then the distance from x to L is given 

by 

G r a m ( a ; - p , « ! , . . . , t?fc) 
Gram(«i,. . . ,« f c) 

where {« i , . . . , vk} is a basis for L. 

Proof. 

dist(x, C) = dist(x, p + L) = dist(x — p, L) 

= | | ( x - p ) - p r o j L ( x - p ) | | 

/Gram(vi , . . . , vfc)||(x - p) - projL(x - p)|]2 

y Gram(vi, . . . ,v f c) 

= / G r a m ( v 1 , . . . , v f c , x - p ) 
Y Gram(vi , . . . ,vA ) 

_ / G r a m ( x - p , v i , . . . , v f c ) 
Y Gram(vi,...,Vfc) 

D 

Theorem 2.5 (DISTANCE BETWEEN ARBITRARY FLATS). Let d = px+Lx,£2 = 

p2 + L2 be any two flats in Rn. Then the distance from C\ to £2 is given by 

Gram(p1 - p2 , vi,..., vk) 
Gram(«i, ...,vk) 

where {vi,..., vk} is a basis for L\ + L2. 

(2.3) dist(a;, C) 

(2.4) dist(£i ,£2) = 
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Proof. 

dist(£i, £2) = dist(p1 + Li, p 2 + L2) 

= inf dist(p! + x, p 2 + y) 

= inf d i s t ( p 1 - p 2 ) y - x ) 
xeLi,yeL2 

= inf d i s t ( p 1 - p 2 , x + y) 
xgLi ,yei2 

= inf d i s t ( p 1 - p 2 , t ) 
tei/i+X/2 

= dist(p! - P 2 , i i + L 2 ) . 

But from the proof of theorem 2.4, we have 
,. , , „ r , T N /Gram(p 1 -p 2 , v i , . . . ,Vfc ) 
d l s t ( P l - P 2 , L l + L2) = ^ G r a m ( v i > _ > V i f c ) 

where { v i , . . . , v^} is a basis for L\ + L2. D 

The following alternate distance formula can be found in [3], [1] and [4]. Let A 

be an mi x n matrix and B be an m2 x n matrix, both with orthonormal rows. Set 

A = { x e Rn\Ax = a}, and C2 = {x € Mn |Bx = b}. 

Theorem 2.6. Letp±,p2 be arbitrary elements of the two flats L\ and £2 respectively 

and let C be any matrix with orthonormal rows such that Row(C) = Row(>l) n 

Row(B). Then, 

(2.5) dist(A,C2) = \\C(ATa-BTb)\\ = \\C(Pl - p2)\\. 

D 

We wish to show that (2.4) and (2.5) are equivalent. We have already seen that 

dist(£i ,£2) = dist(pi - p2 , Lx + L2). 
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It now follows that 

dist(£i, £2) = ||(Pi - p2) - projL l + L 2(Pi - p2) | | 

= II (Pi - P2) - PrOJNull(yl)+Null(B)(Pl ~ P2)ll 

= II PrOJRow(A)nRow(S)(Pl - P2)ll 

= l|P rOJRow(C)(Pl-P2)ll 

= | | C T C ( P l - p 2 ) | | 

= ||C(Pl -p2)H 

since C T has orthonormal columns. We find then that (2.4) and (2.5) are essentially 

equivalent, however, (2.4) does not require us to find an orthonormal basis. 
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Chapter 3 

The Largest Ball in a Box 

Problem 

We will now address the problem of finding the radius of the largest ^-dimensional 

ball that can be contained in an n-dimensional box. Note that in this chapter, we 

will simply say n-box and fc-ball, and drop the word dimensional. 

3.1 Notation and Basic Ideas 

We will begin with some notation that will be used throughout this chapter. First, 

let 23 = {x € M.n\ — a,j < xi < a,j,j = 1 . . .n} be the box under consideration. 

We have from the definition that © is a convex and symmetric box of dimensions 

2a\ x 2«2 x . . . x 2on. There will be no loss of generality if we assume 

(3.1) 0 < a\ < a2 < • • • < an. 

The In faces of 23 lie in hyperplanes which we will denote by Hf = {x € Rn |x J = 

±a j} . By the symmetry of 23, we only need to consider Hj, which we will simply 

denote as Hj. We will refer to the face of 23 lying in Hj as the jth face of 05. B 

will denote any euclidian A;-ball contained in 23, and by .M, we mean the A;-flat on 

which B lies. We define A4j = M, n 7ij to be the intersection of the fc-flat with the 

hyperplane containing the ^'th face of 23. Finally, by r(k,n) we mean the largest 

possible radius B can have. So our goal then is to find equations for r(k,n) and 
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M in terms of 0 1 , . . . , an. To simplify notation we set 5j — Ja\ + . . . + aj, with 

1 < 3' < n, and do = 0. We include here a couple of lemmas. 

Lemma 3 .1 . If 5 C 23 and /ias radius r, then there is a ball also having radius r 

with its center at the origin. 

Proof. Let B(b,r) C 23 be any ball with radius r centered at 6. By the sym­

metry of 23, the ball B(—b,r) is included in 23. Prom the convexity of 05,5 = 

(hs{b,r) + ^B(-b,r)) C 53. We will show B = B(0,r). Let z £ B. Then there 

exists an x\ E 5(6, r), and an xi € B(—b, r) such that ||xi — b| | < r, ||x2 + b| | < r, 

with z = 2 * ^ . Then, 

I N I H I I ^ ^ I I - Q l l l x i - b + x ^ b H ^ ^ d l x i - b l l + l ^ + b l D ^ r 

and z e B(0, r) . On the other hand, suppose z e 5(0,r) Set xi = z + b E 5(6,r) , 

z 2 = 2 _ b G 5 ( - 6 , r ) . Then, 2 i ± ^ = *+*>+*-*> = z a n d we have that z G 5 . • 

By lemma 3.1, we may assume that M. is a linear subspace, which simplifies our 

work. In what follows, we will find the distance from the origin to Mj which will be 

denoted by dj. This will be achieved by first finding d'-, the distance from the origin 

to p + Mj- where p is any point in Mj. We can then find dj using Pythagoras' 

theorem. We will show that the ball 5 of maximal radius r(k, n) does not lie in a 

/c-flat parallel to any of the faces of 33, ensuring that Mj is non-empty for every 

j = 1 . . . ,n. The maximal radius, r(k,n), that any fc-ball can have on the given 

/c-flat M will then be given by the minimum of the resulting d / s . Finally, e i , . . . , e n 

is the standard basis of W1; the j th entry of e, is 1, while all other entries are 0. 

We state here some inequalities involving the o^'s. 

Lemma 3.2. Let k < n — 1 and j < n. Then 

(3.2) a,j < dj for j = 1 , . . . , n and Mj ^ 0. 

(3.3) aj < IT if and only if aj < -—= for k > 2 and j > 2. 

(3.4) / / aj < - , J'~1 then aj-X < j~2 for k > 3 and j > 3. 
V A; — 1 v A; — 2 

Proof. (3.2) follows from the fact that Mj C Hj and that the distance from the 

origin to Hj is clearly aj. For (3.3), with k, j > 2 we have 
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which is equivalent to 

or more simply 

J k k k 

(k - l)a) ^ 5]_, 
k ~ k 

a ? < ^ J - jfe-l 

For (3.4), with k, j > 3 we have using (3.1) 

2 s n2 s 3 at i < at < 3-1 

It follows that 

so that 

from which it follows 

'3-1 -"3- jfe _ I" 

a ^ ~ k-l + k-l 

{k-2)aj_1 6]_2 

Jfe - 1 ~ k - 1 

«L, < &L 
**-1-k-2' 

a 

Before we begin our discussion on the largest (n—l)-ball in an n-box, we mention 

the trivial case of finding the radius of the largest n-ball in an n-box. In order for 

such a ball to be contained in a box of the same dimension, the diameter of the 

ball cannot exceed the smallest measurement of the box. In terms of the above 

definitions, we find that the diameter cannot exceed 2ai, or that the radius cannot 

exceed oi. Thus, r(n, n) = a± for every n. Having dealt with this case, we now add 

the restriction that n > 2 and 1 < A; < n — 1. 
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3.2 The (n-l,n) Problem 

Here, we will find the radius of the largest (n — l)-ball contained in an n-box, as 

well as the equations of the planes containing a ball of such radius. We consider an 

{n - l)-flat M = {x € IRn : (m,x) = 0} where m = (m 1 , . . . ,mn) e Kn and m ^ 0. 

Without loss of generality, we can assume m is a unit vector. The simplest planes 

to consider are where m = e,-, j = 1 , . . . ,n. Here, M is parallel to Hj and the 

maximal radius a ball can have in this case is min{oi , . . . , Oj-i, Oj+i, . . . , an}. This 

minimum is a^ if j = 1, and is a\ otherwise. We now only consider (n — l)-flats M. 

where m ^ e^, j = 1 , . . . , n, or equivalently, any (n — l)-flat M. such that for every 

j = l,...,n, Mj^$. 

3.2.1 A Formula for dj 

In this section, we will state a formula for dj, j = 1 , . . . , n when k = n — 1. We will 

also give an equation that will prove useful when deciding if a given (n — l)-flat M. 

contains a ball of maximal radius in 55. 

Lemma 3.3. The distance, dj, j = 1, . . .n, from the origin to the (n — 2)-flat M.j 

is given by 

Proof. Let p £ Mj. Then p € M from which it follows that (p, m) = 0, and p € Hj 

which gives us (p, e^) = a,j. Furthermore, p can be written as a,j\ for some suitable 
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v. We then have the distance, d'-, from the origin to p 4- Mf as 

(4) 
„ 2 _ Gram(p,m,ej) 

Gram(m, e_y) 

aj||vf 0 
0 1 

aj m? 

aj 

m3 

1 

1 w? 

m? 1 

o^l|vl|2(l-M2)-aj 
1 - (mi)2 

Then, 

d] = IIPlI2 - ( < ) 2 

3II„„2 a j l | v | | 2 ( l - (^ ) a ) -a j 
Oj-HV 

1 - (mJ)2 

aj||v||2(l - K ) 2 ) - a?||v||2(l - K ) 2 ) + a: 

1 - {mi)2 

l - ( m J ) 2 ' 

D 

Lemma 3.4. For any (n — l)-flat M not parallel to Hj, for j = 1 , . . . , n, we have 

the following equality: 

(3.6) 
n a2-

3=1 3 

n 2 n n 
p™}- E i = E(:L-(™j)2) = n-£(™J')2 = n - l -

3=1 3 j=l j=l 
• 

3.2.2 Finding r(n — l,n) and M 

Theorem 3.1. Let <B' = {x € Rn'\ - aj < xj < aitj = 1 . . . n'} witt 0 < oi < . . . < 

ani be a box of dimensions 2a± x . . . x 2an>. The following statements are equivalent: 
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1. The (n' — I)-ball of maximal radius is tangent to all faces of 2J', 

2. cw < - ^ = * = . 

Proof. (1) =^ (2): Suppose there is an (n1 — l)-ball of maximal radius tangent to 

all the faces of <B'. Then di = . . . = dn> = t, and (3.6) gives t = - ^ = - (3.2) now 

ensures us that an> < , "' , , and (3.3) shows an> < f~\. 
— V " —1 — vi —2 

(2) =>- (1): Assume that an ' < f~\. Then (3.3) gives an> < > ?' . , or equivalently, 

(n' - l)c£, < (5^. Let M be the (n; - l)-flat such that 

(3.7) w? 
On 

Defining the m J 's in this fashion, (3.5) gives 

, 2 

J5% - {n' - l)oJ 
~ ? , j = l , . . . , n \ 

dj = 
a3 

* 1 - {mi)2 

e-(n'-i)«n_1 

' ( n ' - l ) a? 

e = a? 

n ' - l 

for every j = 1 , . . . ,n' . The maximahty follows from (3.6): If we want to increase 

the radius, we need to increase all the <i/'s. But an increase in one, say djx, requires 

a decrease in another, say dj2, where j \ ^ J2, which would only result in a ball of 

strictly smaller radius. It now remains only to show that the point of Mj closest 

to the origin lay in the j th face of 95'. We will argue by contradiction. Suppose for 

some j = 1 , . . . , n', the closest point of Mj to the origin, say pj, is not contained in 

53'. Construct a line I from the origin to pj. Since 0 6 55', and I G M, there exists an 

i = 1 , . . . , n', i ^ j , such that I Pi Mi = {pi}- It follows that di < | |pj|| < [jpj-|| = dj. 

Thus, we have that di ^ dj, clearly contradicting their equality. Thus we have that 

the (n' — l)-flat M given by the equation 

m V + . . . + mn'xn' = 0 

where the m J 's are denned as in (3.7), contains an (n' — l)-ball of maximal radius 
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that is tangent to all faces of 55'. • 
Theorem 3.2. Let s be the smallest integer satisfying 

(3.8) an-s < Sn-s-l 

\Jn — s — 2 

Then the maximal radius o / S c S occurs when d\ = . . . = dn-s = t with the radius 

being their common value. That is, 

(3.9) r(n-l,n)=t= 5n~s 

y/n — s — 1 

Furthermore, mn~s+l = ... = mn = 0. 

Proof. If 5 = 0 is the smallest integer satisfying (3.8) then an < ?~^2 and from 

theorem 3.1 (with n' = n) we have 

di = . . . = dn = t = , 
yn — 1 

which gives us (3.9). 

Now suppose s = 1 is the smallest integer satisfying (3.8). Then on > ,n~J and 

On-i < Jnlz' I n t e r s e c t m g ® with the hyperplane a;n = 0 yields an (n — l)-box 

of dimensions 2a% x . . . x 2an-i. Intersecting any (n — l)-ball contained in ?B (not 

parallel to any face of 05) with the same hyperplane gives an (n — 2) ball of the same 

radius contained in the (n — l)-box. This implies that r{n — 2, n — 1) > r(n — 1, n). 

We want to show that r(n - 2,n — 1) = r ( n — l ,n) . Applying theorem 3.1 with 

n' = n — 1 we find di = ... = dn-\ = t where t = -7=5 = r ( n — 2,n — 1) with the 

(n — 2)-ball being tangent to all faces of the (n — l)-box. Using the m J ' s from (3.7), 

and setting mn = 0, we can extend the (n — 2)-flat containing the (n — 2)-ball to an 

(n — l)-flat M containing an (n — l)-ball of radius J^2 • The ball lies in 53 since 

an > f~\• It is majdmal in 55 because r(n — l ,n) cannot exceed r(n — 2,n — 1). 

This (n — l)-flat M is unique (up to the symmetry of 25) as guaranteed by (3.6). 

Now suppose s = 2 is the smallest integer satisfying (3.8). Then an_i > -f= n-Z 

and On-2 < -7=j • Intersecting 05 with the hyperplanes xn = 0 and x11"1 = 0 gives 

us an (n — 2)-box of dimensions 2a\ x ... x 2an-2- Intersecting any (n — l)-ball 

contained in 55 (again, not parallel to any face of 55) with the same hyperplanes 

yields an (n —3)-ball of equal radius which is contained in the (n —2)-box. It follows 
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that r(n — 3, n — 2) > r{n — l ,n) . Applying theorem 3.1 with n' — n — 2 we see 

d± = ... = dn-2 = t with t = -TM? = r(n — 3, n — 2) with the (n — 3)-ball tangent to 

0, n - l m" all faces of the (n — 2)-box. Using the m^'s from (3.7), and setting rri 

we extend the (n — 3)-flat containing the (n — 3)-ball to an (n— l)-flat M. containing 

an (n — l)-ball of radius ,n~\. This ball lies in 55 since an > an-\ > J1'2 and it is 

maximal as r(n — 1, n) cannot be greater than r(n — 3, n — 2). (3.6) again guarantees 

that this (n — l)-flat M is unique up to the symmetries of 53. 

We continue in this fashion until an s is found so that (3.8) is satisfied, which 

must happen since it is clearly true for s = n — 2. 

We mentioned at the beginning of this section that if M. was parallel to Hj for 

j = 1 , . . . , n, that the largest radius any ball B lying on M could have was a^. We 

now need to show that (3.9) is always strictly greater than a.2-

[ r ( n - l , n ) ] 2 = 
<52 

un—s 

n—s 2 

> 

n — s — 1 n — s — 1 
a\ + {n — s — l ) a | 

n — s 1 n 
+ o| 

>Oa 

so that r(n — 1, n) > 02- Thus (3.9) is that largest possible radius any (n — l)-ball 

B can have in 93. • 

Corollary 3 .1 . The (n — l)-flat M containing the largest (n — l)-ball in 03 has as 

its normal vector 

(3.10) m = 

\l^l-s ~{n-s- l)o? 

On—s 

^ n - s - (n - s - l)a2
n_s 

Vn—s 

0 

0 

where s is as in theorem 3.2 

Proof. Prom theorem 3.2, mn~s+1,..., mn = 0. From theorem 3.1, with n' = n — s, 
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we have for j — 1 , . . . , n — s 

Jtl-s -{n-8 - l)aj 

3.2.3 Contact Points 

In this section, we assume that B is an (n — l)-ball of maximal radius in the n-

box 23 with radius r(n — l.ri) = , "~* , where s is as in theorem 3.2. Let M. be 

the (n — l)-flat that contains B with normal vector m as defined in corollary 3.1. 

Theorem 3.2 gives dn-s+i = On-s+i and &n-s+i > , n"s = r(n — l ,n) so that 

<B n Aln-s+i = 0- Also, since dj = â  for i = n — s + 2 , . . . , n, and since the aj's form 

an increasing sequence, we have that B f) Mi = 0 for i = n — s + 2 , . . . , n. Theorem 

3.1 guarantees that B is tangent to the first n — s faces of 55 so that B n .Mi = {ci\ 

for i = 1 , . . . , n — s. We will write these Q'S as (cf,..., c"). We have immediately 

that ||CJ|| = r(n — 1, n). 

Theorem 3.3. For i — 1 , . . . , n — s and j = 1 , . . . , n, 

(3.H) 4 = 

n~s ifj = l,...,n-sandj^i> 
(n — s — l)a,i 

a>i ifj = i, 

0 if j = n — s + 1,. . . , n . 

Proof. We will examine Cn-S, the contact point B makes with the (n — s) face of 03. 

Since Mn-s = M.C\ Hn-si Any point x £ M.n-s must satisfy 

n—s 

(3.12) J ^ a > W = 0, 

(3.13) xn~s = an-s. 

It follows then that c"lf = a-n-s and that the points pi = (pj, . . . , p" ) for Z = 
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1 , . . . ,n — 1 given by 

Pi 
? — 

mJ Xj = l, 

an-s if 3 = n - s, 

0 otherwise 

when I = l,...,n — s — 1 and by 

p> 

On-*™* 
m1 

an—s 

1 

0 

if J - 1, 

if j = n - s, 

if j = 1 + 1, 

otherwise 

when / = n — s,..., n — 1 all belong to M.n-s since they satisfy conditions (3.12) 

and (3.13). We can then construct n — 2 vectors v; = \*iPi where I = 2 , . . . , n — 1. 

In terms of coordinates, we have 

( an-sm
n s 

m1 

an-sm
r' 

m 

ifj = l, 

otherwise 

when I = 2,...,n — s — 1 and by 

vl = < 
1 if j = 1 + 1, 

0 otherwise 

when I = n — s,...,n — 1. The (n — 2) v^'s form a linearly independent set and thus 

a basis for A4n-S since 

dim(Mn-s) = dim(.M) + dim(Hn-s) - dim(M + Hn-s) 

= (n - 1) + (n - 1) - n 

= 7 1 - 2 . 

Now, since c„_5 is the point of tangency of B with Mn-s, we must have that 
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(vj, cn_s) = 0 for I = 2 , . . . , n — 1. First, for I = n — s,..., n — 1, 

(v z , c n _ s )=c^ . 1
s = 0 

so that c™I*+1 = . . . = c%_s - 0. Then, for I = 2 , . . . ,n - s - 1, 

/ v Cn_s(Xn—sTTl Cn_s<Xn—sTH 
\yh cn-s) = i 5 = U 

or equivalently 

(3.14) m1 = 21= 
• > - * • 

(3.12) can then be used to obtain 

c n - s 

n—s—l 

Y^ mlcln-s = -an-srrf 
1=1 

which, using (3.14) becomes 

l n—s—l 

-an-sm
n-s = ^— ]T (Cn-J2 

m 1 / <5£_s 2 

4_ s V n-s-l 
m l ( m n - s ) 2 ( 5 2 

Thus, 

(n-s- l)cl
n. 

1 m 1 m n - 5 ^ _ s 
'-'n—s (n-s- l)an-
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Now we can use (3.14) to find the c„_ s , . . . , c"_^ . For I = 2 , . . . , n — s — 1, 

m1 

_ mlm1mn s6%_ 
m1^ — s — l)an 

_ m!mn~s5%_s 

(n- s- l)an-s 

A similar development follows for c i , . . . , Cn-s-i- U 

3.2.4 T h e (2,3) Prob lem 

In this short section, we state the results of the previous section for the case k = 2 

and n = 3. The contact points listed below are correct for the planes listed just 

before them. If one of the other planes are used, the contact points should be 

adjusted appropriately. We have that 

r(2,3) = 
° 1 + a

2
2 + a 3 i f a 3 < v ^ T ^ , 

V a l + a2 if a3 > y/a{ + a\ 

and M — {x e R3 |{m,x) = 0} where 

m = 

-a\ + a\ + a | 
a\ + a\ + a\ 

la\ - a\ + o§ 

af + a | + a | 

'af + a^ — a | 
0,1+02 + a | 
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if a$ < yjd\ + d\- If however, 03 > ^Jd\ + aî , then we find 

m = 

«2 

V O l + o f 

ax 

J d{ + o| 

The contact points are given as follows: 

c i = 0 1 , • 
\/—o'f + a | + ag-^/af - a\ + a | \/—of + 03 + d\yjd{ + a\ — 03 

2ai 2oi 

/ ^/af - a\ + a ^ - a ^ + a | + a\ yjd{ — a\ + a§ \ / a i + a l — a i 
I 2a2 ' ' 2a2 

( ^ 0 ^ + a^ — d\ yj—d{ + d^ + d\ ^/d( + a | — a ^ a ^ — a | + a | 
2a3 ' 2a3 ' 

for 03 < -y/a^ + al, and they are given as 

ex = (ai,-O2,0) 

C2 = ( -a i , a 2 , 0 ) 

when 03 > A/af~+~af. Figure 3.1 will help to illustrate the (2,3) case. 

3.3 The (k,n) Problem 

In this section, we will generalize the results of section 3.2 to find the radius of the 

largest &-ball contained in an n-box. Let Al be a A;-flat which contains a £-ball 

B C 5$. Let m i , . . . , *!!„_£ be the n — k normal vectors to M. which satisfy 

(3.15) ( m i , n i j ) 
1, if t = i, 

0, lii^j. 

We first consider the case of when a fc-flat M. (and thus the £-ball B) is parallel 

to some of the Wj's. If M. is parallel to Tij for some j = 1 , . . . , n, then M. C Hj, 
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(1) (2) (3) 

Figure 3.1: 
The largest 2-ball in a 3-box for 
(1) : a3 < x/of+af) (2) : a3 = y/df + d%, (3) : a3 > y/df + a% 
with cross sections in the xy-plane. 

or equivalently, Hf C A-l-1. Since 7ij- = spanje,}, it follows that e,- e At"1, and 

since dim(A/t-L) = n — k, we have that A4 can be parallel to at most n — k of the 

Hj's. For a given / — 1 , . . . , n — fc, there are H) distinct A;-flats A4 that are lying 

parallel to exactly / of the Hj's. We can view any /c-ball B lying on such a A;-flat 

M as being contained in an (n — /)-box of dimensions 2&i x . . . x 2an_/ where 

0 < ai < . . . < an_/ are the a / s associated with 25 such that M. is not parallel 

to Hj. Thus, we have (^) such boxes to consider. Our work is reduced when we 

realize that we only have to consider the largest of these (n — /)-boxes, since if any 

A;-ball of radius r is contained in one of the smaller (n — /)-boxes, then a A;-ball 

of the same radius can also be contained in the largest (n — /)-box since each of 

its measurements is no smaller then the corresponding measurements of the smaller 

(n ~ /)-boxes. Since the a / s are increasing, we only need to consider the fe-ball B 

lying on the k-A&t M. that is parallel to the first / of the H^s. We can view this 
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ball as being contained in an (n — /)-box of dimensions 2a/+i x . . . x 2an. The 

important thing here to note is that M. is not parallel to any of the faces of the 

(n — /)-box. Since we have not developed a formula for the maximal radius of a 

/u-ball in an (n — /)-box yet, we will simply denote it as f(k,n — / ) . We will say 

more about this at the end of this section, but for now we will assume that M. is 

not parallel to Hj for j = 1 , . . . , n, or equivalently, that none of the Mj's are empty. 

3.3.1 A Formula for cL 

We will now develop a formula for dj, j = 1 , . . . , n. Since M is not parallel to any 

Hj, it follows that e,- 0 span{mi , . . . , mn_fe}. Let p G M.j. Then p G M. so that 

(p, nij) = 0 for % = 1 , . . . , n - k, and p e H^ so (p,ej) = a^. Again, we can write p 

as OjV for a suitable v. The distance, <£•, from the origin to the the (n — k + l)-flat 

p + M.j- is given by 

(3.16) 
, 2 = Gram(p, m i , . . . , mn_fc, ej) 
0 Gram(mi , . . . , mn_fc, eA 

The following two lemmas give formulas for evaluating (3.16), the first deals with 

the denominator, the second with the numerator. 

L e m m a 3.5. Gram(mi , . . . , m„, ej) — 1 — / J ( w | ) 2 . 
i-\ 

Proof. We will use induction on n. For n — 1, 

Gram(mi,ej) — 
m 

- 1 - (m{) j \ 2 

Now, assume Gram(rai , . . . , m n , ej) = 1 — Yj(m^)2 . 

Gram(mi , . . . , m n + i , ej) 

1 0 

0 1 

0 0 

rrii raJ2 

0 

0 

m; n+l 

mi 

m . 

m; n+l 
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1 . . . 0 

0 . . . 1 

m\ ... m£+1 

n + l 

i - E(W')2+(-
j = 2 

n+l 

i - EK)2-

m{ 

™?n+i 

1 

+ {-l)n+1m{ 

-l)n+1(-l)n(m{)2 

0 . 

1 . 

0 . 

. 0 m{ 

. 0 m{ 

• 1 ™n+l 

*=1 

Lemma 3.6. Gram(p, mi,..., rrin, ej) = a2||u||2 1 — E ( m i ) 2 I — ° 2 , 

Proof. 

»=i 

Gram(p,m ] L , . . . ,m n , e j ) = 

aj||v||* 
0 

0 

0 

1 

0 

0 

0 

1 

0 0 0 

a,] m\ m\ 

0 Qj 

0 m{ 
0 m^ 

1 mli 

ml, 1 

n 

a 2 | | v | | 2 Gram(mi , . . . ,m n , e j ) + (—1) n + l . 

0 

1 

0 

0 

0 . 

0 . 

1 . 

0 . 

. 0 

. 0 

. 0 

. 1 

aj 

m{ 

mi 

mi 

°jiMia ( i - E K ) 2 j+(-i)n+i(-i)n«: 

«2Hv||2fl-E(ml)2)-a2. 
j = i 

a 
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We can now use the results of the previous two lemmas and (3.16) to find a 

formula for dj. 

Lemma 3.7. For j = 1 , . . . , n, 

(3.17) & = --ai-

Proof. 

i - E £ r K ) s 

d) = IIPII2 - (4)2 

= a2||vi|2 _ Gram(p, m i , . . . , mw_fc, GJ) 
j Gram(m 1 , . . . ,m n _ f e , e ? ) 

g?l|y||2 (i - E£f(™fl2) - «2IMIa (i - E£iW) a ) + g? 
i - E£ iW) a 

_ 
n-k(™3\2' i-E£ifo') 

Lemma 3.8. For any A:-/i!ai .A4 noi parallel to H3- for j = 1 , . . . , n, toe /mwe 

n a2 

(3.18) E ^ = fc-
j = l 3 

Proof. 

« „2 « a2 C1 - F?~.AW)2>) « 

j = l J j=l 3 j=l j=l i=l 

n n—k 
2 

n—k n n—k 

D 

D 
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3.3.2 Choosing an Orthonormal Basis 

Let 1 < k' < n'. In the next section, we will be interested in finding a set of n' — k' 

orthonormal vectors m i , . . . , mn'-fc' £ Mn such that for each j = 1 , . . . , n', we have 

n'-k 

(3.19) 
x2 _ Un2 

where 0 < a± < a,2 < • •. < an> and ani < Sn'-l . In this section, we find such a 

set of n' — k' vectors. We will first consider an n' x (n' — 1) matrix with orthonormal 

columns that will be useful in defining r r i i , . . . , vani_y. In what follows, Cj denotes 

cos(#j) and Si denotes sin(^), for i — 1 , . . . , n! — 1 and for each i, 0 < 9% < 2ir. 

Lemma 3.9. The n' x (n' — 1) matrix 

(3.20) 

d 0 

—SlS2 C2 

S1C2S3 S2S3 

-S1C2C3S4 -•S2C3S4 

-S1C2 • • • Cn'-ZSn>-2 S2C3 • • • <V-3«n ' -2 

-S1C2 • • • C n ' _ 2 S n ' - l S2C3 • • • C n / _ 2 5 n ' - l 

-SlC2 • • • <V_ 2 C n ' _ i — S2C3 • • • <V_2Cn /_.! 

has orthonormal columns. 

Proof. Let r̂  denote the ith column of 72.. We will first show that the i-j's have unit 

length. Of course, this is clear for rn /_i , so we assume 1 < i < n' — 2. 

0 

0 

0 

0 

Cn'-2 

. . . -Sn'-2Sn' 

• • • Sn'-2Cn' 

- 1 

- 1 

0 

0 

0 

0 

0 

C n ' - l 

— • S n ' - l 

I ll2 2 

kill =Ci 

n ' - l ( P -1 \ n ' - l 

+s" E n ^ K + ^ n ^ 
p=i+l \l=i+l / l=i+l 
( n ' - l / p - 1 \ n ' - l 

vp=i+l l=i+l l=i+l 
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Pulling the last term out of the sum and the second product, we have 

( n ' - 2 / p - l \ n ' - 2 n ' - 2 

E (4 n% )+&-i n^+^-x n^i ' 
p=i+l \ Z=i+1 / l=i+l l=i+l 

and since cf + sf = 1 for i = 1 , . . . , n' — 1, 

( n ' - 2 / p - l \ n ' - 2 E un^+n*? 
p=i+l V l=i+l ) l=i+l 

We continue in this fashion until we get 

i+2 / p - l \ i+2 

Ni2=cf+Sf( E ^ n cn + I N 
kp=i+l V Z=»+l / Z=*+l 

,2 

Now we use the convention that for any function / and any integers i, m with m <i, 

the empty product YYJLi /GO — 1- With this in mind, we have 

n n2 _ 2 , 2 / 2 I 2 2 I 2 2 N 
| | r i | | — c i -r s i Vsi+1 ~r s *+2 c i+ l "•" c i + l c i + 2 j 

2 , 2 / 2 , 2 \ 
— c i "+" si \si+l "+" c i + l J 

= c? + a? 

= 1, 

and so each column of 1Z has unit length. For orthogonality, we first assume 1 < 

i\ <%2 <n' — 2. We have 

( »2-l n ' - l / p - l p - l \ 

-cia n cZ + E j SP n c'i n °^)+ 
Z=*l+1 p=«2 + l \ h=» l+ l Z2=*2+l / 

n ' - l n ' - l + n 1̂ n c^ 
Zl=il + 1 22=»2 + l 
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By pulling out the last term of the sum and each of the last two products, we get 

( i 2 - l n ' - 2 / p - 1 p - 1 \ 

-^ n °i+ Yi [SP n c'i n °h\ + 
l—il + l p=J2+l \ Ii=»i + 1 Z2=*2+l / 

n ' - 2 n ' - 2 n ' - 2 n ' - 2 

+a«'_i n QI n Q2+°n'-1 n Q* n ^ 
Jl=*l + 1 /2=«2+l h=*l + l Z2=»2 + l 

Again, since cf + sf = 1 for i = 1 , . . . , n' — 1, 

( *2-l n ' - 2 / P-1 P -1 \ 

-cj2 n ci + x] (si n Qi n ^ i + 

i=h+i p=j2+i \ h=h+i z2=*2+i / 
n ' - 2 n ' - 2 \ 

+ n °h n ^ 
h=* l+ l l2=*2 + l / 

We continue to pull the last term out of the sum and each of the last two products, 

until we arrive at 

C *2 —1 »2+2 / P -1 P - 1 

-a2 YI °i + 2 14 n QI n Q2 i + 
Z=ii+1 p=«2+l \ h=ii+l h=i2+l 

i2+2 i2+2 
+ n °h n 2̂ 

il=*l + l Z2=»2 + l 
Now, (recalling empty products are defined to be 1), 

h+2 / p - 1 p - 1 \ h ( *a+l 

E «! n q' n °h = *̂ +i n Q+4+21 n ^ 1 °^+u 

P=«2+l V h=h+l h=n+l J l=h+l \l=h+l 

and 

J2+2 i2+2 / »2+l 

n °h n c'2=c?2+2i n ^i^+i. 
Zi=ii+1 /2=«2+l W=ii4-1 
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so that 

<ri1 ,r i 2)=Si1a i 2 [-Cia H Q + 4 + 1 I J c ' + 4 + 2 I I I CI ) Cia+l+ 
J=*i+1 J=n+1 \ J = i i + l 

( 12 + 1 \ 

n °i c^+i 
i=n+i / 

»2 —1 J2 » 2 + l 

= ^1^2 ( -Ci2 I I Q + 4+1 I I Q + ^2+1 I I C* 
l=il+l Z=ii+1 J=U+1 

J2 — 1 *2 *2 =«<!«« [ -c*a n °i+4+1 n c '+4+i n c ' 
I=*i+1 I=ii+1 I=*i+1 

»2—1 *2 

l=h+l i=*i+l 

12 — 1 »2 — 1 

— Si-t S l l°«2 -cj2 H ci + a2 Y[ °i 
l=i\+\ J=»i+1 

= 0. 

Finally, for 1 < i < n' — 2 we have (using empty products as necessary) 

( n'-2 \ / n ' - l \ 

H Cl J Sn'_iCn/_i +Si I H Q J Cn/_iSn/_i 
I=i+1 / \Z=»+1 / 

= 0, 
and the n' — 1 columns of 72. form an orthonormal set. • 

Our goal now is to decide which of the n' — k' columns of 71 to use as the m^'s, 

and which values of ci, s i . . . , <v_i, sn>-i will satisfy (3.19) for j = 1 , . . . , n'. The 

next three lemmas will be useful in deciding which columns of 71 to use. They will 

be followed by a theorem that will give values for ci, s i , . . . , <v_i, sn '_i . First, for 

i = 1 , . . . , n' — k' + 1, consider the following n' — k' + 1 sequences: 

(3.21) {(j-i + ^ - k ' ^ - 1 . 

L e m m a 3.10. For every i = 1 , . . . , n' — k' + 1, there is a j = i,..., k' + i — 1 such 

30 



that (j — i + 1)8% — k'S'j > 0. Let U be the smallest such j for each i. Then the 

sequence {U}?J[ + is strictly increasing. 

Proof. To show the existence of such a j for each i = 1 , . . . , n' — k! + 1, set j = 

k' + i — 1. We have that the k' + i — 1 term of each sequence is k'8% — k'82,+i_1 

which is nonnegative since i < n' — k' + 1 implies k' + i — 1 < n'. Now, for 

% = 1 , . . . , n' — k\ let U be the smallest j such that (j — i + 1)8% — k'82 > 0. 

Then, for j = i,...,ti~ 1, (j - % + 1)8% - k'82 < 0. Prom this, it follows that 

(j - i)8% - k'8? < 0 for j = i + 1 , . . . , £;. Thus, the j = U + 1 term of the i + 1 

sequence {{j - i)8% — k'82}k^+1 is the first term that can be non-negative so that 

ti+i > ti. This shows that {ti}"_^fc + 1 is a strictly increasing sequence. • 

L e m m a 3.11. Let k' > 2 and i = 1 , . . . ,n ' - k' + 1. If (j - i + 1 ) $ - k'8] > 

(j - i)8% - k'8]_x for j>i + l, then (j - i)8% - k'8]^ > (j - i - l)82
n, - k'8]_2. 

Proof. For i = 1 , . . . , n' — k' + 1 and j > i + 1. We have 

(j - i + l)82
n, - k'8] > (j - i)8% - k'82^ 

{j-i + l-{j-i))8l>k'{8]-82_1) 

5%, > k'a2. 

But since aj > ctj-i, 

8% > k'a)_x 

U - i - ( j - i - 1))8% > k'(8]^ -<5?_2) 

(j - i)8n> - k'8]^ >(j-i- 1)6% - k'8]_2. 

D 

Lemma 3.12. For i — 1 , . . . , n' - k' + 1, the sequence {(j - i + 1)8% — k'82}^ is 

strictly increasing and only the j — U term is nonnegative. 

Proof. Let i = 1 , . . . , n' — k' + 1. If U = i, the result is trivial as the ith sequence 

contains only one term, which is nonnegative. If U > i then U is the smallest value of 

j such that (j—1+1)8%—k'82 > 0. Settings = *»—1, we then have {j—i)8%—k'82_i < 
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0 and so (j - i + 1)8^, - k'8? > (J - i)5% — k'8^_x. Repeated applications of lemma 

3.11 show for j — i+1,... ,ti, (j — i-\-l)8n'—k'Sj> (j — i)Sn'—k'5'j_1 as required. • 

Remark 3.1. For fe/ = l , . . . , n ' - l w e have that t\ = 1 since for i — 1, the sequence 

{j<5 ,̂ — fc'J? } j = 1 has as its first term 8\, — k'8\ = 8^, — k'a{ which is clearly positive. 

Setting i = n' — ft'+l, we find the resulting sequence {(J — n'+k')5^, — k'8j}^S^_kl+l 

has as its last term k'S^, — k'S^r — 0. So £n'-fe'+i 5: "'• Thus, the first n' — k! Ws 

each correspond to a unique column of the matrix 71. 

We can now use the ij's and the matrix 71 to decide which vectors to use for the 

rrij's. 

Theorem 3.4. Let irii be the Uth column of 71 for i = l,...,n' — k'. Let 

{ ( ,•-» + 1)61 ~ k'S] 

(3.22) 

(j-i + l^-k'S]^ 

/x2 

(3.23) «?=< 

(j - t)ff, - k'S* 

(j-i- 1)61 ~ ^ - i 

k'a) 

(j-i + l)82
n, - k'8]_, 

k'a]-81 
(j-i-l^-k'S* 

ifU <j <U+i, 

iftn'-k'+i <3 <n', 

ifj = ti, 

ifU <j <ti+i, 

iftn'-k'+i <3 <n', 

where i = 1 , . . . , n' — k! + 1 and j = 1 , . . . , n' — 1. Then the m, 's are an orthonormal 

set and for j = 1, , n', 

(3.24) 

Proof. First, we will show that our definitions for c] and s] make sense. First, for 

j = U where i = 1 , . . . , n' — k' + 1 we have 
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2 _ (3-i + 1 ) ^ - k'6] + k'a2 _(j-i + l)82
n, - k'82_x 1 

• + S — 2 „ — 2 7.;r2 ~ ^ 

and for j ^ ti where i = 1 , . . . , nf — k' we have 

2 (j - i ) f l - k'5] + fraj - e _ (J - < - l ) f l - frff-i _ 

Of course, c2 + s2 = 1 for j > tn'-k'+i- Now, for j = ti with i = 1 , . . . , n' — k' + 1, 

(jf — i + l)<j£, — k'S2 > 0 since it is the first non-negative term of the ith sequence 

{(j - i + 1)51 ~ k'5]}^-1. Now (j-i + 1)5%, - k>5] <(j-i + 1)51 ~ ^ J - i , 

so that 0 < Cj < 1 and so 0 < s | < 1. For U < j < U+i with i = 1 , . . . , n' — k', 

(j - 1)8%, - k'8? < 0 as it is the j t h term of the sequence {(j - i)8%, - fc'dj}^^ 

and since lemma 3.12 guarantees (j — i — 1)5%, — k'5^_x < (j — i)8%, — k'8? we find 

0 < (% < 1 and thus 0 < s2- < 1. So our definitions of c2 and s2 are well defined. The 

fact that the raj's form an orthonormal set follows from the result that the columns 

of 72. form an orthonormal set. 

To prove (3.24), we will use induction on j . For j = 1, we have that i = 1 and 

U = 1 so that 

n'~k' fi - k'n2 

E K1)2 =c? = T ^ 1 -

Our inductive step actually consists of six cases, which must be proved individually. 

For the first four cases, we assume 1 < j < n' — 2. 

Case I: j — ti and U < j + 1 < ti+\ for some i = 1 , . . . , n' — k'. 

If we assume that (3.24) is satisfied for j = ti for some i = 1 , . . . , n' — k\ then we 

have that 

n'-k' U-l 
,2 

i=l 1=1 

-k e - k'a] 
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Then, 

i=l 1=1 
/*«-! \ r2„2 

_ I V"^ ( 2 2 2 2\ l j j+1 , 2 2 
_ 2 - / lS*iC*i+l ' ' ' C3-lSj) 12 •" 5JSJ'+1' 

\I=1 / J 

or more simply, 

„' i.' -fc' "51-k'a? „\c? 
(3.25) J ; ( ^ + 1 ) 2 = *?+i ( I ! ^ Z ^ - <$ ) 5 + s) 

*=i \ \ "«' / s i 

Using (3.22) and (3.23), we find 

2 _ ( j - z + l ) e - f c ^ 
C^ (j - i + 1)61 ~ ^U' 

2 k'a2i 

si = l ' V-i + 1)5*,-^' 

Sj+1 -
^ + i - e 

We then find 

e - **] 2 _ e - va? a - i+i)e - #*? 
CA — e ' e u-i+iK-k'su 

h'a] (j-j + i ^ - f c ^ k'a) 
~ L e ( j _ t + 1))52 ; _ fc/(52_i + 0- _ i + i )52# _ fc,(52_i 

A;'a2 fc'a2 

(j-i + 1 ) ^ - A;'*2 <52, ' 
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and 

_(j-i + l)62
n, - k'S] 

k'a) 

k'dj 

so that 

(%-**} 2\ <% 1
 fe/«2 a - * + w -fe/^ 

Adding s^ yields 

/e-^qj A*2
 ?2 ( j - * + !)<%-fc'<5f 
j 

e 
and we find, after multiplying by s |+ 1 , that (3.25) becomes 

i = l 

ft - k'a]+1 
52, 

n' 

Thus (3.24) hold for j = U and t» < j + 1 < U+i for some i = 1 , . . . , n' - k'. 

Case II: £j < j and jf + 1 < t i+ i for some i = 1 , . . . , n' — A;'. 

Suppose (3.24) holds for such a value of j . That is, 

n'-k' ti 

E M 2 = £ 4 4 + 1 - " ^ 

35 



Then 

and thus 

/ *' \ C2S2 

= ( z2 (stick+i""' cj-isj) I ,2 

n'-fc' / *2 _ fr/„2\ „2„2 
X—«. , 0-1-1, O / °n' KU4 \ ^ibi4 (3.26) J2 K + 1 ) 2 = ' ' ^ ^ e s 

2 

Using equations (3.22) and (3.23) we find 

(i - 0& - k'S] 
J U-i-iK-vq-i fcs2-e 

s; (,,-<-i)e-*,^-i' 
2 _ ^ j + l ~ 8n' 

Sj+1 (j-iK-k'6r 

Then we see 

»?+i (i - 0% - frff ^aj+i - %r {j-i-l)Sl-k>8U 
s* (j - i - l ) e - k'6]_x ' (j - i)5l - k'd2 ' k'a) - 62

n, 
k'a2

+1~62, 
k>a2-62, ' 

and so (3.26) becomes 

n '_ f e ' ( & -k'n2\ h'n2 -b2 

" e • 
And thus (3.24) hold for all j such that £j < j and j + 1 < £»+i for some i = 

l,...,n' -k'. 
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Case III: U < j < U+i and j + 1 = U+i for some i = 1 , . . . , n' — k' — 1. 

If we assume (3.24) holds for such a value of j , then we have 

EK)2=E(«+i-« 
i=l 1=1 

Then, 

i=l 1=1 

J = I / si 

So for j + 1 = U+i we have 

n'-k' / r 2 _ JU/„2 \ „2„2 

(3.27) £ ««)* _ PV^M a*i + ̂ +1. 
i=l \ °n' J Sj 

Using (3.22) and (3.23), we find 

(j - 1)51 ~ k'S] 
C> (j-i-l)6l-k'6]^ 

k'a2-52 

so that 

r 2 2 

s2 

2 _ n, u,j- u n , 

"J ( i - < - 1 ) ^ - ^ - 1 ' 

2 (j-i + 1)51 - *^+i 
Cj+1 ~ (j-i + IK - k'52 ' 

2 fe ai+i 

" ^ (j-i + i)%,-k>q> 

(j - i)62
n, - k'52 k'a2

j+1 (j -

(j-i- l)52
n, - k>5]_x (j - i + l)52

nl ~
 k's] 

(U-iK~k'5])(k'a2
j+1) 

-i-l^-k'Sl, 
k'a] - 51 

{{j-i + l¥l-k'52){k'a2
j-5l)' 
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and (3.27) becomes 

n'-k' 
W - k'a2j+1 ( ( i ~ ̂  " k'5*) • ( j " * + 1)<?"' " fc/^+1 y - fmi+i)2 = ^ vw ' n JJ , 

^ , ((j _ i + l)<52, _ k,S2^ + (j - i + 1)51, - k'6] 

k'a2
j+1 | A/aj+i^ | (i ~ * + 1 ) ^ ~ k'S]+1 

%' %> ((i - i + Wl ~ k'S]) U~i + 1 ) # - * ^ 

e (i-z+i)e-^2 

= — — + i 

ft - k'a2
j+1 

" e " 
Thus, (3.24) is satisfied when U < j < t»+i and j + 1 = tj+i for some z 

l , . . . , n ' - A / - l . 

Case IV: j = £; and j + 1 = ij+i for some i = 1,. . . , n' — k' — 1. 

In this case, we assume that 

n'-k' U-i 

E K) 2 = E (44+i • • • 4-i4)+c: 
*=i J=I 

Then, 

ft ~ fc'4 

n'-k' U-i 

E (™*+1)2 = E (4,4+1 • • • 44+i)+44+i+4+1 
t=i 1=1 

= ( E (44+i • • • cl_i^)j -^±1+syj+1+<?j+1, 
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so for j = ti, j + 1 = ti+i we have 

n'-k' 

(3.28) E K+1) 
i=l 

s.2 _yn2 \ r2 „2 
<V K a j „ 2 \ CJSJ+1 , „2„2 , . 2 

£2y
 C j I s 2 + S j S J + l + C J ' + 1 -

Using (3.22) and (3.23) we get 

2^ (j-i + pft-ygj 
C> (j-i + l^-k'S2* 

'„2 

*? = 
k'a 

(j-i + l ^ - k ' S 2 ^ 

2 _ (j - i+i)e - fc'^+i 

& j + i 

k'n2 
K aj+l 

{j-i+i)82
n,-k'5y 

We then find 

c ^ + 1 _ (j-i + l)5l,-k>6] k'n2 

K aj+l 
s2 (j-i + i^-k'd]^ (j-i + l)62

n,-k'82 

{j-i+ 1)51-k'5* 
k'a2 

Also, 

e - f e ^ I 2 _ k'a] (j-i + l)62
n,-k'6] 

_fc/a2 _ (j - j + l)ff, _ fc/^2_i 0- _ j + ^ 2 , _ k,62 

{j-i + 1)52, - A^* (j-i + 1)6*, - A / ^ 

k'a2 

+ 

+ 

n' 

JfaJ 
%> (J-i + lK-k'S2^ 

Since 

0 _ (i - * + i ) # ~ k'sm _ 1 
k'n2 

K aj+l 
y r f ' a - i + i ) ^ / - ^ 
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we can write s2s2
+1 + cj+1 as 

K (XA rC flL-_i_i nJ (Iji-^ 

U-i + ^K-k'5]^ (j - i + 1)$ + 1 - k'S] U-i + ^K-k'S] 

(k')2a)a2
+l - k'a}+l ((j - i + 1)% - k'6].,) 

(u - i+i)e - k'6]_x) [u - i+i)e - k's]) 
fc'Q2-(j-*+i)e+fc/tf-i 

= 1 + fc a,j+1-
 J 
((j - i + 1)61 ~ ̂ ?-i) (0" " i + l ) e - ^ ) 

_ 1 + , V fc^-Q'-i + Dfl 

(a -»+1)5% - k's^) (a - i+i)5i - k's]) 
k'n2 

= 1
 K aj+l 

Substituting into (3.28) and simplifying yields 

n'~k' I -k'n2 k'n2 \ n2 k'n2 

"k a j + i , ^ a j + i .. k aj+i 

k'al 
= i J+1 

e 
A; ' J:2 _ u 2 

Thus, for j = ti and j + 1 = ti+i for some i = 1,. . . , n' — k' — 1, we have that (3.24) 

holds. 

So far, we have shown that (3.24) holds for all j = 1,. . . , tni-k'+i — 1- We wish 

to show it holds for j = £n'_fc'+i,... ,n' as well, so we must consider an additional 

two cases. 

Case V: in'_fc' < n' — 1. 

Since tn '-fc' < n ' — 1, it follows that £n'-fc' + 1 < tn>-k>+i < n!• If tn>-k'+i = n', then 
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setting j = n' — 1, we have by assumption 

n'-k' 

E W" 
i = l 

- 1 ) 2 

*n'-fc' 

= E (44-
Z=l 

e - ̂ . 
f i 

- i 

2 2 \ 
tj+1 ' ' ' c n ' - 2 V - l J 

Then, 

5?, 

n'-fc' *n'-fc' 

E«' ) 2 = E(44+i---4-2^-i) 
* = 1 Z = l 

or more simply, 

n'-k' 

(3.29) E «')' 
<5n, - A; 'an ,_1 \ c n , _ 1 

& s; 2 
n ' - l 

Prom (3.22) and (3.23) we have 

(k' - 1)51 ~ * ^ - i 
GB'"1 (A/-2)e-*/e-2' 

2 _ k'an'-l ~ Sn' 
n'-l (k> - 2)51 ~ tf^'-a 

Then we find 

e_! _ w - i)e - A/e-! 
V - l k'an'-l ~ $n' 

fe'(e-e-i)-e 
y«2 * X - ' l " % 

^ - e 
^/„2 _ r f ' i./rt2 _ r f 

r2 

cn'-l ~ E ( S * j C * l + l ' " C n ' - 2 V - l ) I c2 ' 
J=l / * « ' - ! 

41 



(3.29) then becomes 

n'-k' 

and we see tha t (3.24) is satisfied for j = n' when tn'-k' < tn'-k'+i — 1 and 
£n'—fc'+l — 

n ' . If however, £n'_fc'+i < n ' , sett ing j — 1 — <«'—fc'+i — 1 > w e n a v e that (3.24) 

is satisfied for j = tni-k'+i by Case III. Now, for i = n' — k' + 1, the sequence 

{ 0 — n' + k')8^ — k'8]}"=t ,_ , i s increasing since 

( ( j - n ' + fc')<5n' - # $ ) + 8n> - k'a)+1 = (j + 1 - ri + k')8n> - k'8]+1 

and 8nt - k'a]+l > 0. But since the first t e rm of {(j - n' + k')6% - fc'fl?}"!^,^, 

is not negative, and the last t e rm is 0 by remark 3.1, it follows t h a t 

{{j - „'+k')si, - k's]}^_kl+1={o}?:v_fc,+1, 

from which we find tha t 5n> — k'Oj = 0 for j = tn>-k'+i + 1,- • • ,n'. Thus , 

n'-k' 

E K) = ° 

for j = tn>-k'+i + l , . . . , n ' . Since cf ,_ = 0, we have tha t ml = 0 for ev­

ery % = l , . . . , n ' — &', where j = tn '-fc'+i + l , . . . , n ' , so (3.24) is satisfied for 

j = V- fc '+ i , • • •, n ' when tn/_fc/ < n ' - 1 

C a s e V I : tn'_fe' = n' — 1. 

T h a t in '-fc' = n ' — 1 implies t n ' _ # + i = n ' . Thus, £„'_&' = *„/_*./+! — 1. Setting 

j — n' — 1, we have by assumption 

n'-k' 

E «'-1)2 

'<52, fc'a*,. 

e 
ft 

k'al 
81 

k'al ft 
*<&-! ft 

tn'-k'-1 

= E (44+1 • • • 4'-2*n'-l) + cn'-l 
1=1 

x2 _ y 2 
_ °n' K a n ' - l 

S2, 
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from which it follows that 

n'-k' *n' -k' - i 

E « ' ) 2 = E (44+i••-4-24-1) + 4- i 
i = l Z = l 

tn'-k'-l 2 

7 , ( 5 t ( C t j + l ' " c n ' - 2 V - l ) ~2 • " V - U 
/=1 *n ' - l 

giving us 

(3.30) E « ' ) 2 - "' ,2 ^ - 4 - 1 % ^ + 4 - 1 -
ti V 4 y 4-i 

We again use (3.22) and (3.23) to find 

k% ~ k'5yt 
Cn'~x k'5l-k'5l' - V - 2 

2 _ & V - l 

"-1 A/e-^e n ' - 2 

Now, we calculate 

Cn'-1 _ fc V ~ fe (5n,_ t 

* n ' - l ^ " n ' - l 
„2 

V - l 

and 

~n' 

2 = 1 k'an'-l k'al> 

4 k'dl-k'61^ 
4 - *:'4-i „2 _i fc'4-i ^'4' 

oil 

whence 

/ 4 - ^ 4 - i 9 \ 4- i _ 4 &,4' 4 fc'4 
c2 ° n ' - l I o n2 x2 n2 L./X2 _ wx2 ' 
°n' I Sn'-1 an'-l °n' an'-l K °n> K V-2 
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and adding s^l,_1 we see (3.30) becomes 

H'~k' . n2 h'n2 n2 h'n2 h'n2 

V^ (mn\2 = n' - n' - n' n' -4- n - 1 

U <>~1 ft <&-l ' k'€' - *'ft-2 *'ft ~ *'ft-2 
_ k'<> , <& L k'al \ | k'o?nl_x 

ft <>-l V k'5n' ~ k'Sn'-2j * 'ft ~ * 'ft-2 
k'<> , <' ( k % - k % - 2 - k > < > ) , k'<'-l 

ft <'-l \ *'ft ~ *'ft-2 J *'ft ~ *'ft 
kK' . <L_ (k'€>-l-k'%-2\ , k'<>-l 

n'-2 

ft «n'_i v *'ft - k%-2) MI - k'5i_2 

ft «n'-i vfc'ft - ^ ' - a / fe/ft - ^ e _ 2 

'ft *'ft-*'ft-2 

" "ft 
ft ~ *<& 

< S 2 , 
n' 

and (3.24) is satisfied for j = n' and £„'_&' = n' — 1. Finally, we have that (3.24) is 

satisfied for all j = 1, , n' and the theorem is proven. • 

3.3.3 Finding r(k, n) and M 

Theorem 3.5. Let 25' be a box of dimensions 2a\ x . . . x 2ani where 0 < oi < . . . < 

a'n. The following statements are equivalent: 

1. There is a k'-ball of maximal radius tangent to all faces of *8', 

2. ani < . 

Proof. (1) =$• (2) : Suppose there is an fc'-ball of maximal radius tangent to all the 

faces of 23'. Then d\,..., dni = t, and (3.18) gives t — -%=. (3.2) now ensures us 

that ani < -9=, and (3.3) shows an> < Hp^y-

(2) =$• (1) : Assume an> < jlT\ • Then (3.3) gives an> < -vj-, or equivalently, 

k'a^/ < ft. Let mi , • • •, nin>_fc' be as in theorem 3.4 and let At be a A/-flat such 
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that M i . rrij for i = 1 , . . . , n' — k!. Then, 

n'-k' A2 _ u'n2 

(3.31) E(^)a = ̂ A ' = 1.•••'»'• 

Therefore, (3.17) gives 

£ = ? L -3 i-E"K)2 

for every j = 1 , . . . , n'. The maximality follows from (3.18): If we want to increase 

the radius, we need to increase all the dj's. But an increase in one, say d^, requires 

a decrease in another, say dj2, where ji =£ J2 which would only result in a ball of 

strictly smaller radius. It now remains only to show that the point of Mj closest 

to the origin lay in the j th face of 53'. We will argue by contradiction. Suppose for 

some j = 1 , . . . , n', the closest point of M.j to the origin, say Pj, is not contained in 

05'. Construct a line / from the origin to pj. Since 0 G 05', and I C M., there exists an 

j = l , . . . , n ' , i ^ j , such that / n M.% — {pi}- It follows that di < | |pj|| < | |pj | | = dj. 

Thus, we have that di ^ dj, clearly contradicting their equality. Thus we have that 

the ft'-flat M. given by the equations 

(rrij, x) = 0 for i — 1 , . . . , n' — k' 

with the mi's defined as in (3.31), contains an A'-ball of maximal radius that is 

tangent to all faces of 23'. • 

Theorem 3.6. Let s be the smallest integer satisfying 

(3.32) an-s < .f""*-1 1 • 
V« — s — 1 

Then the maximal radius ofBc?B occurs when d\ = ... = dn-s = t with the radius 
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being their common value. That is, 

(3.33) r(k,n)-t- 6n~s . 

Furthermore, m"~ s + 1 = ... — mf — 0 for i = l,...n--k. 

Proof. If s = 0 is the smallest integer satisfying (3.32) then an < - T T T and we have 
/fc-T 

(from theorem 3.5 with n' = n, k' = k) 

d\ = . . . = dn = t = —= 

which gives us (3.33). 

Now suppose s = 1 is the smallest integer satisfying (3.32). Then an > JT\ 

and an_i < Vr* . Intersecting 23 with the hyperplane xn = 0 yields an (n — l)-box 

of dimensions 2a± x . . . x 2an_i. Intersecting any A;-ball contained in 05 that doesn't 

lie parallel to any face of 05 with the same hyperplane gives a (k — 1) ball of the same 

radius that is contained in the (n—l)-box. Prom this, we have r(k—1, n—1) > r(Ar, n). 

Applying theorem 3.5 with n! = n — 1 and k' = A; - 1, we find di = . . . = dn_i = t 

where t — JT\ = r(k — 1, n — 1) where the (k — l)-ball is tangent to all faces of the 

<*n-2 

(n — l)-box. Using the m| 's from (3.31), and setting m" = 0 for i = 1 , . . . , n — k, we 

extend the (k — l)-flat containing the (k — l)-ball to a A;-flat M containing a fc-ball 

of radius JT\ • The ball lies in 05 since an > ?~ * . It is maximal in 03 because 

r(A;, n) cannot exceed r(/c — l ,n — 1). The fc-flat TM is unique (up to the symmetry 

of 05) as guaranteed by (3.6). 

Now suppose s = 2 is the smallest integer satisfying (3.32). Then an-i > 

and an_2 < -7]r%- Intersecting 05 with the two hyperplanes xn — 0 and a;n_1 = 0 

gives us an (n — 2)-box of dimensions 2a\ x . . . x 2an_2- Intersecting any fc-ball 

contained in 05 (again, not parallel to any face of 03) with the same two hyperplanes 

yields a (k — 2)-ball of equal radius which is contained in the (n — 2)-box. It follows 

that r(k — 2, n — 2) > r(k, n). Applying theorem 3.5 with n' = n — 2 and k' = k — 2, 

we have d\ = ... = dn-2 = t with t - 4 = = r(k-2, n-2) and that the (/c-2)-ball 

is tangent to all faces of the (n — 2)-box. Using the m^'s from (3.31), and setting 

m " _ 1 = m" = 0 for i = 1 , . . . ,n — k, we extend the (k — 2)-flat containing the 

(k — 2)-ball to a &-flat M containing a A;-ball of radius J^K- This ball lies in 05 

since an > an_i > -70% and it is maximal as r(k,n) is bounded from above by 
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r(k — 2,n — 2). M is unique up to the symmetries of 53 by (3.6). 

We continue in this fashion until an s is found so that (3.32) is satisfied, which 

must happen since it is clearly true for s = k — 1. 

It has been our assumption in this proof that the fc-flat M was not parallel to 

Hj for j = 1 , . . . , n. At the beginning of this section, we commented that M. could 

actually be parallel to at most n — k faces of 05. We said we could view the /c-ball 

lying on such a A;-flat M as a A;-ball in the (n — /)-box of dimensions 2 a / + i , . . . , 2an, 

and that the maximal radius such a A;-ball could have in this case was f(k, n — f) 

where / = 1 , . . . , n — k was the number of faces of B that the A;-flat .M is parallel to. 

We also remarked that any A>ball lying on M. was not parallel to any of the faces of 

the (n — /)-box. We will now show that r(k, n — f)< r(k, n) where r(k, n) is defined 

by (3.33) and sis defined by (3.32). If / = n—k, thenr(k,n—f) = r(k,k) = an_£+ i . 

But, since s < k, 

$l-s > ff-fe + (fc ~ sK-k+i 
k — s ~ k — s 

- A . _ s + « n - f c + l 

> an-k+l 

and so the fc-ball cannot be maximal in this case. If / = 1 , . . . , n — A; — 1, then in 

light of (3.33), we have that 

/•sr^n—s ~2 

„2 A p n - s - 1 a2 /y>n—« — l ffl2 

where s is the smallest integer satisfying an_s < ^-s-i % • Since Vfc-^i ^ 

/l~s~\ i w e have an-g < Jl~S~\ from which we can conclude that s < s. For 
y ^ r i - s + j - l ffl2 

j = 1 , . . . , s - s, we have an_s+j > l^!^_x
 i, and thus 

(A; — s + i - l)(k-s + j) k-s + j (k — s + j — l)(fc - s + j) 
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Then, 

S^n-s+j-l 9 sr^n-s+j-1 o n2 sr^n-s+j-1 2 

A; — s + j — 1 "A; — s + j — 1 A; — 5 + i (A; — s + j — 1) (A; — s + j ) 
Y ^ n - l + j - l 2 2 

A; — s + j A; — s + j 

A; - s + j 

It then follows that 

v ^ n - s „2 v p n - s + 1 9 v ^ n - s 2 r2 
K^,n-/)]2 = ±f^ < ̂ i - ^ i < . . . < ^ r / + 1 - < |=i . = [r(A;,n)]2. 

A; — s A; — s + 1 A; — s k — s 

and so the Avball cannot be maximal if / = 1 , . . . , n — A; — 1, or in other words, if 

any A;-ball B lies in a A;-nat M that is parallel to any of the Tij's then B cannot be 

of maximal radius in 23. • 

Corollary 3.2. The n — k normal vectors to M. satisfy the following conditions: 

(3.34) {mi,mj) = { * ift=3' 
0 ifi^j, 

n—k 

(3.35) £(mf )2 = , 
i = l 

%-s ~(k- s)aj . 
— - ifj = l,...,n-s, 

Jn—s 61 
0 ifj = n-s + l,...,n, 

for i = 1 , . . . , n — A; where s is as in theorem 3.6. 

Proof. (3.34) is just (3.15). Prom theorem 3.6, m" '~ s + 1 , . . . , m? = 0 for i = 1 , . . . , n-

k. From theorem 3.5, with n' — n — s, k' = k — s, we have 

i = l 

a 

3.3.4 T h e (fc,4) Problem 

Finally, we state all results for (A;, 4) problem. As mentioned in the introduction, 

writing out explicit solutions becomes difficult when n — k becomes large. Because of 
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this, the need for a computer algorithm arises, and the reader will find one supplied 

in the Appendix. We will examine three cases, one each for k — 1, A; = 2, and k = 3. 

In each case, we state first all possible forms of the radius r(k,4), followed by the 

resulting 4 — k equations for the location of these balls. 

Case I: A; = 1 

This is the simplest case, as we do not need to check any conditions on the ay's or 

the dj's. For any box 58, we have 

r(l,4)=(&4, 

and 

m i = 

Vs'i - <*•. 
8A 

a\ai 

Sty/Si ~ 

0 1 0 3 

8W% ~ 

0,10,4 

I 

7* 

• % 

<W<5| -a\ 

,m 2 = 

Sl-a\ 

aiaz 

y/(6l-ai)(5i-5i) 

,n»3 = a-4 

" 3 

Case II: k = 2 

This would seem like the most complicated case, since s can be either 0 or 1, and we 

can pick either the first and second or the first and third columns of H. depending on 

whether 5% > 2<5| or <5̂  < 2S\ respectively. However, it is not possible for 5% < 26%, 

so we only need to consider using the first and second columns of 72. to locate the 

ball of maximal radius. We have the radius as 

. —= if 04 < <53, 
r(2,4) = <J V2 

63 if «4 > <%, 
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and our normal vectors are given by 

mi = 

V%-2aj 

2aict2 

0 l \{5l-25l){5l-2al) 
6284 5\-2a\ 

01 (5l-26i)(5l-2al) 
6264 5\-2a\ 

, m 2 

, / 

V 
a2 

h 

tt2 

61-
51-

Isl 
V*i 

1% 

251 
2a\ 

-2a§ 
-2a? 

-2a\ 

62 V ft 2af J 

when 04 < 5$, and they are given by 

m i 

V ^ 
63 

a±a2 

hVM 

01 a3 

5z^/c^Tal 

,ra2 = 

151 - 5\ 
5\ — a 

0.2 

^ ai + ^i 

when 04 > 5s. 

Case I I I : k = 3 

In this last case, we have to consider the cases when s = 0,1, or 2. We find that the 

radius is 

r(3,4) —~ if a 4 > ^ | , and 03 < 62, 

k <52 if 0 3 > <52, 
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and mi is one of 

<54 

-M1 34 
54 

^i - 3a2
z 

6i 

V% - 3a2
4 

V*i-' 2a( 
h 

Vsi- 24 
63 

v%-
Ss 

24 

82 

\/̂ 2 ~ 4 
s2 

when 04 < •%, 04 > •% and 0,3 < 62, or 03 > 82 respectively. This concludes all 

possible cases of the (A;, 4) problem. 
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Appendix A 

A n Algor i thm to Find 

m i , . . . ,mn_ f c 

The following Maple code calculates the n — k normal vectors to the A;-flat M. which 

contains a fc-ball of maximal radius r(k, n) in a box 53 of dimensions 2a\ x . . . x 2an 

with 0 < a\ < ... < an. Simply adjust the values of k and n with k < n at 

the beginning of the program, as well as the values for a i , . . . , a n . The vector 

t = (t1,..., f 1 - 1 ) is such that tf = 1 if the jth column of 72. is used, and P = 0 if 

it is not, and the jth entries of cosvector and sinvector give the value of cos2(0j) 

and sin2(fy) respectively for j — 1 , . . . , n — s — 1. The italicized text before each 

block of code are just comments, and do not need to be copied into a maple file. 

restaxt : 

Input k and n values here 

k:=7: 

n : -8 : 

Create an array called avector for the measurements of the box in each dimension, 
then input a value for each of the measurements a\,..., an in ascending order and 
find the resulting value for sval, which is just the value of s in chapter 3. 

avector:=array(l. .n): 
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for countl from 1 to n do 

avector[countl]:-i: 

od: 

sval:=0: 

conditioncheck:=-1: 

for counter from 0 to k-2 while conditioncheck<=0 do 

conditioncheck:»sum(avector[c]"2,c=l..n-sval-1)/(k-sval-1)-avector[n-sval]~2: 

if(conditioncheck<=0) then sval:=sval+l: 

fi: 

od: 

Create arrays containing: 
1) tvector - an array which records the values of the U 's 
(For example, t = [1,0,0,1,1] implies h = 1, t<z = A, t$ = 5) 

<52 -a2 

2) solvector - jth entry contains n~£val—•*-
n—sval 

3) cosvector - contains the values of c i , . . . , Cns-i 
4) sinvector - contains the values of s\,..., sn_s_i 
5) mmatrix - matrix whose columns are the n — k normal vectors to the k fiat 
containing the k-ball of maximal radius in the n-box with dimensions given in avector 

tvector:=array(l..n-sval): 

solvector:=array(l..n-sval): 

cosvector:=array(l..n-sval-1) : 

sinvector:=array(l..n-sval-1): 

mmatrix:=array(l..n-k): 

Initializations: 
1) tvector[1] set to 1 since t\ = 1, all else set to 0 
2) solvector 
3) cosvectorflj set to solvectorflj, all else unassigned 
4) sinvectorflj set to l-cosvector[l], all else unassigned 
5) mmatrix set to zero matrix 
6) tcounter set to 1, to keep track of how many of the U 's have been assigned. 

tvector[1]:=1: 

for count2 from 2 to n-sval-1 do 

tvector[count2] :=0 

od: 

for count3 from 1 to n-sval do 

solvector[count3]:=l-((k-sval)*avector[covmt3]"2)/sum(avector[b]"2,b=l..n-sval): 

od: 

cosvector [1] : =solvector [1] : 

sinvector[l] :=l-cosvector[l] : 

for count4 from 1 to n-k do 

mmatrix[count4]:=array(l..n): 

for count5 from 1 to n do 
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mmatrix[count4][count5]:=0: 

od: 

od: 

tcounter:=i: 

Searches for t% 's to use, stops when tcounter = n — k and assigns values to cosvector 
and sinvector along the way. Breakpoint used to record where the last t% was found 

breakpoint:-!: 

for count6 from 2 to n-sval-1 while tcounter<n-k do 

check:=sum(tvector [j]*sinvector[j]*product(cosvector[h] ,h=j+l. .count6-l), j=l. .count6-l) : 

if (check<solvector[count6]) 

then 

cosvector[count6]:=(solvector[count6]-check)/(1-check): 

sinvector[count6]:=l-cosvector[count6]: 

tcounter:=tcounter+l: 

tvector[count6]:=1: 

else 

sinvector[count6]:=solvector[count6]/check: 

cosvector[count6]:=l-sinvector[count6]: 

f i : 

breakpoint:=count6: 

od: 

Computes any remaining entries in cosvector and sinvector from breakpoint onwards 

for i from breakpoint+1 to n-sval-1 do 

sinval:»sum(tvector[j]*sinvector[j]*product(cosvector[h],h-j+l..i-1),j"l. . i-1): 

sinvector [i] :=solvector [ i ] /s inval: 

cosvector [i] :=l-sinvector[i] : 

od: 

Assigns entries to mmatrix 

position:-!.: 

for count7 from 1 to n-sval-1 do 

if (tvector[count7]=l) 

then 

mmatrix[position][count7]:=sqrt(cosvector[count7]): 

for count8 from count7+l to n-sval-1 do 

mmatrix[position][count8]:= 

-sqrt(sinvector[count7]*product(cosvector[h],h=count7+l..count8-l) 

•sinvector[count8]): 

od: 

mmatrix [position] [n-sval] :» 

-sqrt(sinvector[count7]*product(cosvector[h],h=count7+l..n-sval-1)): 
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position:«position+l: 

f i : 

od: 

Outputs the n — k normal vectors 

p r i n t ("THE", n-k ."NORMAL VECTORS"); 

for count9 from 1 t o n-k do 

p r i n t (count9,nimatrix[count9]); 

od; 
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