#### University of Alberta

# The Impact of Low Dissolved Oxygen and Recovery Patterns of Benthos in Northern Rivers

by

Kasper Rychywolski

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of

> Master of Science in Environmental Science

Department of Civil and Environmental Engineering

©Kasper Rychywolski Fall 2012 Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.

#### ABSTRACT

An ecological risk assessment for the Athabasca River was done. We did a review of literature pertaining to ecological risk assessment in the Athabasca River. The focus of the risk assessment was on the ecological impact of low dissolved oxygen (DO), because mainly ice-cover and pulp mill effluent discharges on the Athabasca River may potentially cause a low DO event. The ecological impact of low DO was assessed for the benthic invertebrate community, specifically the Orders Ephemeroptera, Plecoptera and Trichoptera (EPT), which are sensitive to low DO, and the Order Diptera. Based on the literature review, an ecological risk assessment involved: 1) using electroshocking to simulate low DO in the Athabasca River and determining recovery of benthic invertebrates following electroshocking and ice-out; 2) using a laboratory flume to determine the relationship between DO level and benthic invertebrate drift rate.

#### ACKNOWLEDGEMENTS

I would like to thank P McEachern and M Spafford for help with the experimental procedure and field sampling for Chapter 2, and P McEachern and T Yu for providing research papers, figures and presentations and helping with the revision of this manuscript. I would like to acknowledge D Zhu for the use of the hydraulics laboratory, P Fedun for setting up the flume and technical assistance in the hydraulics laboratory, and N Gutierrez for help with the experimental procedure for Chapter 3. I would like to thank N Serediak and B Saunders for sorting and identifying the benthic invertebrate samples. I would like to thank Natural Sciences and Engineering Research Council of Canada (NSERC), Alberta Environment, Alberta Pacific Forest Industries Inc. (ALPAC), Alberta Newsprint Co., Hinton Pulp, Millar Western Forest Products Ltd. and Slave Lake Pulp for funding the research.

## TABLE OF CONTENTS

| CHAPTER 1                                        | 1   |
|--------------------------------------------------|-----|
| INTRODUCTION                                     | 2   |
| LITERATURE REVIEW                                | 5   |
| ASSESSMENT OF METHODS OF SIMULATING LOW DISSOLVE | D   |
| OXYGEN CONDITIONS                                | 17  |
| a. Electroshocking                               | 17  |
| b. Stream Microcosm                              | 19  |
| CONCLUSIONS                                      |     |
| FIGURES                                          |     |
| CHAPTER 2                                        | 26  |
| INTRODUCTION                                     | 27  |
| METHODS                                          | 30  |
| RESULTS                                          |     |
| DISCUSSION                                       | 35  |
| CONCLUSIONS                                      |     |
| FIGURES                                          |     |
|                                                  |     |
| CHAPTER 3                                        | 59  |
| INTRODUCTION                                     | 60  |
| METHODS                                          |     |
| RESULTS                                          | 69  |
| DISCUSSION                                       | 72  |
| CONCLUSIONS                                      | 77  |
| TABLES                                           |     |
| FIGURES                                          | 80  |
| LITERATURE CITED                                 |     |
| APPENDIX A                                       | 100 |
| APPENDIX B                                       | 195 |
| APPENDIX C                                       | 208 |
|                                                  |     |

## LIST OF TABLES

| TABLE 3-1 | 78 |
|-----------|----|
| TABLE 3-2 | 79 |

## LIST OF FIGURES

| FIGURE 1-1  | 24 |
|-------------|----|
| FIGURE 1-2  | 25 |
| FIGURE 2-1  | 40 |
| FIGURE 2-2  | 41 |
| FIGURE 2-3  | 42 |
| FIGURE 2-4  | 43 |
| FIGURE 2-5  | 44 |
| FIGURE 2-6  | 45 |
| FIGURE 2-7  | 46 |
| FIGURE 2-8  | 47 |
| FIGURE 2-9  | 48 |
| FIGURE 2-10 | 49 |
| FIGURE 2-11 | 50 |
| FIGURE 2-12 | 51 |
| FIGURE 2-13 | 52 |
| FIGURE 2-14 | 53 |
| FIGURE 2-15 | 54 |
| FIGURE 2-16 | 55 |
| FIGURE 2-17 | 56 |
| FIGURE 2-18 | 57 |
| FIGURE 2-19 | 58 |
| FIGURE 3-1  | 80 |
| FIGURE 3-2  | 81 |
| FIGURE 3-3  | 82 |
| FIGURE 3-4  | 83 |
| FIGURE 3-5  | 84 |
| FIGURE 3-6  | 85 |
| FIGURE 3-7  | 86 |
| FIGURE 3-8  | 87 |
| FIGURE 3-9  | 88 |
| FIGURE 3-10 | 89 |
| FIGURE 3-11 | 90 |
| FIGURE 3-12 | 91 |
|             |    |

| FIGURE 3-13 | . 92 |
|-------------|------|
| FIGURE 3-14 | . 93 |

### CHAPTER 1

## THE IMPACT OF LOW DISSOLVED OXYGEN AND RECOVERY PATTERNS OF BENTHOS IN NORTHERN RIVERS: PROJECT BACKGROUND AND LITERATURE REVIEW

#### INTRODUCTION

The major sources of dissolved oxygen (DO) in the Athabasca River are reaeration from the atmosphere and photosynthetic activity of plants; the major sinks are the biological oxidation of organic material and chemical oxidation of reduced metals and ammonium. Ice-cover prevents re-aeration and limits light penetration of the Athabasca River (Chambers et al. 2000b), and dissolved oxygen concentrations subsequently decline through the winter period. The current Alberta water quality guideline requires the maintenance of 6.5 mg/L DO or greater (chronic) in order to protect sensitive aquatic biota (Lowell and Culp 1999). The guideline was established based on mesocosm studies showing impacts to Baetis species and to mountain whitefish eggs at a concentration of 5 mg/L (Chambers et al. 2006). The guideline was derived from this, combined with a likely differential of approximately 1 mg/L between the water column and the sediments where impacts would occur. The guideline ensures a very low risk of impact, however the Athabasca River has seen conditions where DO concentrations remained below the chronic guideline. DO concentrations for the period of 1989-2003 showed a decline along the Athabasca River and a decline upstream of Grand Rapids throughout the winter period (Alberta Environment 2004). Minimum DO values (~8 mg/L) were reached at Grand Rapids in mid to late February during 1989-2003. The lowest DO levels in 1989-2003 occurred in February and March of 2003 when DO concentrations fell below the 6.5 mg/L guideline (~5.8 mg/L) for over a month (Alberta Environment 2004). DO

concentration fell below the 6.5 mg/L guideline only twice for the period of 1989-2003. In 2002 DO fell below the chronic guideline for three consecutive days and in 2003 DO fell below the chronic guideline for 42 consecutive days (Alberta Environment 2004). This led to concern about the ecological impact of a low DO event in late winter, addressed in this study. As low dissolved oxygen concentrations occur infrequently and for short periods, there is a need for further research on the ecological impacts of low DO, the resilience of benthic invertebrate communities to these events and the rate of recovery likely to occur following return to concentrations above the guideline. The impact on the benthic invertebrate community below the guideline and over the entire DO scale will be determined, to have a better understanding of the mechanism of the impact of a low DO event on the benthic invertebrate community.

This study will utilize electroshocking to simulate low DO conditions to determine the effect of low DO on benthic invertebrate abundance and percent reference (abundance at the electroshocking site / abundance at the reference site X 100 %). The recovery time and pattern of benthic invertebrates following a low DO event will also be determined.

Ice-cover usually develops on the Athabasca River in November. The icecover is open for sections downstream of pulp mill and sewage discharges and at the water rapids at Grand Rapids (Fig. 1-1). The open rapids at Grand Rapids are a natural reaeration zone. Average ice-cover is 1 m thick in January with up to 1 m of snow on top (Chambers et al. 2000b). Ice-out of the Athabasca River occurs in late March. During ice-out, river discharge increases from an average about

130 m<sup>3</sup>/s to as much as 4000 m<sup>3</sup>/s (Ft. McMurray gauge). Ice breakup is exceedingly dynamic with large ice sheets and pans scouring the banks and bed of the river. Ice-out likely has a large ecological impact on the benthic invertebrate community with increased mortality and drift rate, and changes to total abundance and number of taxa similar to the impacts of anthropogenic activities. There is limited research on the effect of ice-out on the benthic invertebrate communities, and this will be addressed in this study.

The operating hypothesis examined in this research follows from the established pattern that benthic community indicators (mortality, total abundance, EPT abundance, total number of taxa, or number of EPT taxa) decline in response to stressors be they chemical (pollution, low DO) or physical (high flow, ice scour). I further hypothesize that recovery from a late winter low DO event may occur prior to ice-out and therefore have no lasting impact or the low DO and iceout events may overlap and have an additive impact. If additive, this could have lasting ecological significance in the system through summer months. Figure 1-2 is a pictorial representation of the hypothetical trajectory for benthic invertebrate response following low DO and ice-out. It shows that if there is adequate DO in the late winter months (>6.5 mg/L), the only effect on the benthic parameter is the ice-out period. Figure 1-2 also shows potentially what could happen if a low DO event occurred before ice-out. If there is low DO during the late winter months, the recovery pattern following the low DO event may be a fast recovery that does not combine with ice-out, or a slow recovery that combines with the ice-out period to cause cumulative stress on the benthic invertebrate community.

Addressing this question determines the urgency and extent of management response to a low DO event.

The following is a review of the literature pertaining to ecological risk assessment in ice-covered rivers, specifically the Athabasca River. This review of the literature will develop an understanding of ecological impacts of low DO and pulp mill effluents, parameters of measurement for ecological risk assessment and use of different bioindicators for ecological risk assessment. Also there is an assessment of different methods of inducing low DO conditions. Reviewing these issues will allow the development of specific problems that require further study in the ecological risk assessment of the Athabasca River.

#### LITERATURE REVIEW

Nutrient loading increases primary production and the resulting increase in plant growth accentuates diel swings in DO (increased daytime oxygen production from photosynthesis and night-time oxygen consumption from respiration). However, primary production mainly increases sediment oxygen demand (SOD) due to bacterial decomposition of dead plant material. Algal and plant biomass effect DO levels in a river, but the environmental stress caused by nutrient loading and increased primary production occurs further up the aquatic food web. The increased primary production causes increased food availability for secondary producers but lower DO levels that cause stress for primary and secondary

consumers (Chambers et al. 1997). It is better to measure environmental stress on primary and secondary consumers to manage ecological risk in the Athabasca River for this study.

DO in ice-covered rivers decreases along the length of the Athabasca River and throughout the winter months, due to lack of re-aeration from ice-cover and increased SOD from pulp mill and sewage effluent. Low DO levels (<6.5 mg/L) cause stress for higher trophic levels of the aquatic food web, specifically for different fish species. Many studies have been done in the Athabasca River and other rivers in northern Alberta to show the effects of low DO on different fish species. Barton and Taylor (1996) grouped fish species in northern Alberta rivers into four categories based on their acute tolerance to DO (the minimum DO concentration causing mortality): 1) sensitive (acute limit >2 mg/L DO; includes all salmonids, longnose sucker (*Catostomus catostomus*) and burbot (*Lota lota*)); 2) intermediate (acute limit 1-2 mg/L DO; includes walleye (Stizostedion vitreum), white sucker (Catostomus commersoni), brook stickleback, goldeye (*Hiodon alosoides*) and cyprinids except fathead minnow (*Platygobio gracilis*)); (3) tolerant (acute limit <1 mg/L DO; includes fathead minnow, northern pike (Esox lucius) and yellow perch); and (4) unknown (insufficient information available; includes largescale sucker, ninespine stickleback, all sculpins, troutperch). Chambers et al. (2000b) did a study to test the previous DO guideline of 5 mg/L on larval development of fall (mountain whitefish, Prosopium williamsoni, and bull trout, Salvelinus confluentus) and winter (burbot, Lota lota) spawning fish species common in Northern Alberta rivers. Mountain whitefish eggs

incubated at 6.5 mg/L DO, took much longer to hatch than eggs incubated at higher DO concentrations. Bull trout alevins hatched at 5.0 mg/L DO were smaller and less likely to survive. Burbot at 6.0 mg/L DO experienced extended spawning up to five weeks. These results led the government of Alberta to adopt a DO guideline of 6.5 mg/L to protect adult fishes, and a DO guideline of 9.5 mg/L during spring weeks to protect early life stages (fish eggs and alevins) (Alberta Environment 1999).

The nutrient-enhanced food supply from nutrient loading has a positive effect on piscivores fish. Spoonhead sculpin (*Cottus ricei*) downstream of the Hinton pulp mill and longnose sucker (*Catastomus catastomus*) downstream of the Wapiti River pulp mill responded to the nutrient-enhanced food supply with increased energy storage measured as elevated condition factors, increased liver size and fat storage (Swanson et al. 1994; Gibbons et al. 1998).

Low DO negatively affects several parameters, but nutrient loading positively affects some parameters for benthic invertebrates. Lowell and Culp (1999) exposed mayflies (*Baetis tricaudatus* Dodds) to one of two DO levels (5 mg/L or 11 mg/L), in the presence and absence of mixed effluent (pulp mill and sewage). In the presence of low DO, grazing (for food) intensity was reduced by 80 % and after two weeks of exposure survival was reduced by 60-90 %. The low DO treatment changed the positioning of mayflies in the stream with a 250-350 % greater proportion of mayflies moving into regions of higher current velocity. The negative effect of low DO is countered by the positive effect of nutrient enrichment from pulp mill effluent on invertebrate grazing and survival. The 1 % effluent treatment slightly stimulated grazing intensity. The effluent may have increased feeding rate, increased the nutritive value of the periphyton, and/or stimulated growth hormones via compounds in the pulp mill effluent (Lowell and Culp 1999). But this effect was non-significant and did not compensate for the large decrease in grazing intensity due to the low DO treatment (Lowell and Culp 1999), therefore there is an overall negative effect on benthic invertebrate grazing and survival due to low DO. The low DO causes chronic stress on oxygen delivery to the gills and reduced food intake by benthic invertebrates. These factors lead to increased mortality of benthic invertebrates (Lowell and Culp 1999). Mortality gradually and continuously increased in the low DO treatment indicating a chronic response. The previous Alberta guideline for the protection of aquatic life in northern rivers was 5 mg/L. The study by Lowell and Culp (1999) and several others that were part of the Northern Rivers Basin Study recommended modifying the DO guideline for the protection of aquatic coldwater species to 6.5 mg/L. Although the 5 mg/L DO guideline is sufficient to prevent acute mortality, chronic stress is caused at 6.5 mg/L DO. Due to these studies the government of Alberta in 1997 adopted the Canadian Council of Resource and Environment Ministers DO chronic guideline of a 7-d mean of 6.5 mg/L for the protection of aquatic life in northern rivers (Lowell and Culp 1999).

Alberta Environment (2004) sampled benthic invertebrates upstream and downstream of Grand Rapids, to determine the effects of low DO on benthic invertebrate communities. These samples were taken in the winters of 1998 (mean upstream DO = 9.6 mg/L), 1999 (mean upstream DO = 7.6 mg/L), 2002 (mean

upstream DO = 6.5 mg/L) and 2003 (mean upstream DO = 5.8 mg/L). This study tested the 6.5 mg/L DO chronic guideline, because the DO concentrations at the upstream site were below 6.5 mg/L for three consecutive days in 2002 and 42 consecutive days in 2003 (Alberta Environment 2004). Total counts, community composition, number of benthic invertebrate taxa (number of EPT taxa), and density of EPT invertebrates were compared between upstream and downstream sites for each year (Chambers et al. 2006). EPT are taxa of the Orders Ephemeroptera, Plecoptera and Trichoptera, which are more sensitive to low DO (Alberta Environment 2004). EPT act as a specific bioindicator, and the ecological impact on the EPT can be compared to the impact on unsensitive species of the Order Diptera and all of the species of benthic invertebrates. This is an advantage of using benthic invertebrates as bioindicators (Munro and Taccogna 1994).

Alberta Environment (2004) identified fifty benthic invertebrate taxa in the Grand Rapids area of the Athabasca River. The total number of invertebrates ranged from 1673 animals/m<sup>2</sup> upstream of Grand Rapids in 2002 to 3871 animals/m<sup>2</sup> downstream of Grand Rapids in 2003 (Alberta Environment 2004). In three of the four study years mean total number of invertebrates and mean total number of taxa was greater at the downstream site. In 1999 mean total number of invertebrates was greater at the upstream site than the downstream site. Also in 1998 mean total number of taxa was greater at the upstream site than the downstream site. The community composition changed from the upstream to the downstream site, with a large increase in the proportion of EPT Orders. The mean

number of EPT taxa was greater at the downstream site than the upstream site in 1999, 2002 and 2003. Abundance of EPT invertebrates was significantly higher downstream of Grand Rapids for all four years (Alberta Environment 2004). Generally, for all four study years (at both upstream and downstream sites) the lower the DO, the lower the total number of taxa, the total number of invertebrates, the number of EPT taxa, and the abundance of EPT invertebrates. This effect was the strongest for EPT abundance and the proportional contribution of EPT taxa. For example, EPT was 21.6 % of total number of invertebrates in the upstream site in the study year with the highest DO concentration (1999), and was 4.6 % in the study year with the lowest DO concentration (2003) (Alberta Environment 2004). The differences between the upstream and the downstream site were most pronounced in 2003 when DO averaged 5.8 mg/L for a 42 day low period. In 2003 all benthic invertebrate parameters, except for total abundance, were significantly lower upstream of Grand Rapids compared to the downstream site. In 2003 mean EPT abundance remained within an expected unimpacted range downstream compared to the upstream site, where the mean EPT abundance was one-eighth the downstream site. Mainly EPT taxa were stressed at a DO level of 5.8 mg/L, compared to other taxa. For example, chironimids and midges were not affected because they can adjust to DO levels as low as 2.0 mg/L (Alberta Environment 2004). This is consistent with the results of Lowell and Culp (1999) that found that mayflies (Ephemeroptera) are stressed at 5.0 mg/L DO.

The main advantages of using benthic invertebrates over fish as bioindicators are practical. The effects of low DO on fish are measured in terms

of physiological and life cycle parameters. The effects of low DO on benthic invertebrates can be measured in terms of physiological and life cycle parameters, but also parameters that can be quickly and easily measured such as abundance, number of taxa and drift rates (Culp et al. 2000b). Also sampling benthic invertebrates provides larger samples for more accurate results.

Drift is the flow of invertebrates in a river, and drift rate is the amount of invertebrate individuals that flow passed a particular point or area over time. Many studies have shown there is a correlation between low DO and increased drift in benthic invertebrates. Low DO can cause benthic invertebrates to not be able to respire. This can induce benthic invertebrates to change position and/or modify physiological regulation. If changing position and physiological regulation do not fulfill the respiratory needs of benthic invertebrates, they will actively drift (Brittain and Eikeland 1988). Light has also been shown to effect benthic invertebrate drift rate in a diel pattern. Benthic invertebrate drift is increased during the night and decreased during the day (Graesser and Lake 1984; Rader and Ward 1990; Allan et al. 1986).

Addition of pulp and paper mill wastewater to aquatic ecosystems can cause changes in numerical abundance, biomass, and diversity of benthic invertebrate communities. Also it can cause changes in biomass and diversity of benthic algal communities and physiological and reproductive parameters of wild fish (Chambers et al. 2000a). Historically there was only primary treatment of pulp mill wastewater. Ecological effects were determined by measuring the reduction of photosynthesis of primary producers caused by effluent colour and

abundance of organisms at higher trophic levels. Also acute toxicity caused by chlorinated organic compounds, and fatty acids in fish species were measured. Culp et al. (1992) speculated that diel fluctuations in DO concentration due to macrophyte photosynthesis and respiration along with high ammonia concentration led to fish kills prior to the advent of secondary treatment. However, with the advent of secondary treatment, environmental problems from organochlorines and colour have largely been eliminated (Chambers et al. 2000a). Therefore measuring acute toxicity and reduction of primary producers is not vital for ecological risk management for pulp mill effluents in the Athabasca River. The main effect of pulp mill wastewater (secondary treatment) is nutrient loading causing eutrophication. The typical pulp mill on the Athabasca River releases 50000 to 150000 m<sup>3</sup> of effluent containing high concentrations of nitrogen and phosphorous. The growth of algae and aquatic plants can increase BOD in the water column and biological and chemical oxidation of the organic component of bottom sediment of the river and oxygen diffusion into the bottom sediment (sediment oxygen demand). Coupled with ice-cover in winter that prevents reaeration, this can significantly decrease DO levels (Chambers et al. 2000a). Therefore parameters that determine the effects of nutrient loading and low DO on bioindicators should be measured for ecological risk management.

There are multiple sewage treatment plants and pulp mills for 800 km of the Athabasca River. The municipalities of Jasper, Edson, Whitecourt, Barrhead, Slave Lake, Athabasca, Lac La Biche, Fort McMurray and Fort Chipewyan discharge sewage effluent continuously to the Athabasca River or its tributaries. The town of Hinton discharges its sewage effluent with the Hinton pulp mill (Fig. 1-1) (Chambers et al. 2006). There is a pulp mill at Hinton, two chemithermomechanical mills at Whitecourt, one chemi-thermomechanical mill at Slave Lake, and one bleached kraft pulp mill at the town of Athabasca (Fig. 1-1). The first bleached kraft pulp mill began operation in 1957 at Hinton. This first pulp mill originally only used primary treatment. The combined effluent was treated in a facultative settling pond and had a  $BOD_5$  that averaged approximately 24000 kg/d. Secondary treatment (primary clarifier and aerated lagoons) was introduced at Hinton in 1967, and aerated lagoons were expanded in 1975. Oxygen delignification and chlorine dioxide substitution were introduced and aerated lagoons and the effluent clarifier were upgraded in 1990 at Hinton. Between August 1988 and late 1990 the three chemi-thermomechanical mills began operation. The bleached kraft pulp mill at Athabasca became operational in September 1993. BOD<sub>5</sub> load from all pulp mills averaged 3727 kg/d in 1989-1995 (Chambers et al. 2000b). Effluents from pulp mills and municipal sewage treatment plants are major point sources of toxicants and nutrient loading therefore there is extensive environmental monitoring. There is a 16-fold increase of algal biomass downstream of Jasper sewage effluent and a 4-fold increase downstream of the Hinton pulp mill. There is a large increase of algal biomass downstream of the two pulp mills and sewage at Whitecourt, and very small increases after 20 km downstream of Whitecourt, at the town of Athabasca (Chambers et al. 2000a). Twelve studies in the United States measured periphyton production downstream of pulp mill effluents and two reported enhanced growth,

six observed no effects and four reported a decrease in production (NCASI 1989). Algal biomass distribution due to nutrient loading also follows a weak pattern along the Athabasca River. This may be due to different light penetration at different sites (Chambers et al. 2000a). Also high flows during the summer remove any effects of point-source nutrient loading due to dilution (Chambers et al. 2000a). Generally a river benthic chla concentration of >10  $\mu$ gcm<sup>-2</sup> is considered excessive, but the Athabasca River is significantly lower. This is not an appropriate guideline because it is too high, and currently no benthic chla guideline exists for the Athabasca River (Chambers et al. 2006). Overall there is no simple pattern for the effect of nutrient loading on benthic algal biomass, and benthic chla levels are not an ecological risk in the Athabasca River. Also the literature shows that nutrient loading from sewage and pulp mill effluent has no effect or negative effects on algal species composition or species abundance (Welch 1992; Culp et al. 1996; Livingston 2007). Algal biomass, species composition and species abundance are not suitable parameters for determining the effect of nutrient loading for ecological risk management. Nutrient loading by itself does not strongly impact primary production indicators in a consistent way.

Downstream of the pulp mill discharge at Grande Prairie on the Wapiti River (Fig. 1-1), nitrogen (N) and phosphorous (P) concentrations are increased in benthic algal species. Also the abundance of benthic algae is increased. Upstream of the pulp mill discharge at Grande Prairie on the Wapiti River (Fig. 1-1), the benthic algal growth is N and P limited (Chambers et al. 2006). Therefore there is a simple relationship at the pulp mill discharge at Grande Prairie to the Wapiti

River. However, in the Athabasca River annual concentrations of P (measured as TP and TDP) and N (measured as TN and TIN) increase along the length of the river. Data from 1993, 1994, and 1998-2000 showed benthic algae was P-limited upstream of Jasper and Hinton (Fig. 1-1). However, along the lower reach of the Athabasca River, P concentrations are increased in benthic algal species and growth is N-limited (Chambers et al. 2006). Sewage has high N concentration and pulp mill effluent has high P concentration.

Rivers that receive effluents with very high concentrations of N and P nutrients may show a decrease in biodiversity of benthic invertebrates in the vicinity of the effluent streams (Minshall and Andrews 1973; Lang 2000). There may be a decline in sensitive species and an increase in pollution tolerant taxa such as midges and oligochaetes (Minshall and Andrews 1973; Anger 1977; Lang 2000). However, Culp et al. (2000a) found pulp mill effluent nutrients have no effect on benthic invertebrate diversity in the Athabasca River. Using a streamside microcosm, samples of benthic invertebrate communities were tested in a river water control, a 1 % bleached kraft mill effluent (BKME) (directly taken from the Hinton pulp mill effluent), and a 1 % N + 1 % P solution. Total insect abundance increased in the 1 % BKME and 1 % N + 1 % P solutions. Family richness was statistically the same between all three samples. Field measurements for insect abundance and family richness were also done upstream and downstream of the Hinton pulp mill effluent. The abundance of benthic invertebrates was increased downstream of the Hinton pulp mill effluent. There was no statistical difference in family richness between the upstream and

downstream sites (Culp et al. 2000a). Within certain boundaries, these results show the stimulatory effect of nutrient loading on growth and abundance of benthic invertebrates.

A 1 % sewage effluent and 1 % sewage + 3 % pulp mill effluent had more than twice the chla content compared to a 3 % pulp mill effluent (Chambers et al. 2006). This showed that algal biomass (expressed as chla content) in the Athabasca River is more strongly related to sewage effluent than to pulp mill effluent. Sewage effluent has high N concentration and low P concentration. Therefore algal biomass in the Athabasca River is more strongly related to N concentration than to P concentration. Algal biomass is more likely higher downstream of sewage discharge compared to pulp mill discharge. Therefore low DO events are highly uncommon downstream of pulp mill discharges in the Athabasca River in the winter. Where the algal biomass food source increases, the benthic invertebrate abundance also increases. A 1 % sewage effluent, a 3 % pulp mill effluent, and a 1 % sewage + 3 % pulp mill effluent all had significantly higher production of insects than a reference treatment. The 1 % sewage + 3 % pulp mill effluent had three times higher insect emergence than the reference treatment. This indicates that sewage effluent and pulp mill effluent synergistically increase insect emergence within certain conditions (Chambers et al. 2006).

## ASSESSMENT OF METHODS OF SIMULATING LOW DISSOLVED OXYGEN CONDITIONS

#### a. Electroshocking

Electric current (applied via an electroshocker) is extensively used to stun and capture freshwater fish. Electroshocking is also known to stun benthic invertebrate species and increase drifting. Elliot and Bagenal (1972) found that electroshocking increased drift in Plecoptera, Ephemeroptera, and *Gammarus pulex*. Bisson (1976) found that electroshocking elevated drift rates by tenfold for nearly all benthic invertebrate taxa.

Kruzic et al. (2005) found that electroshocking significantly increases drift of benthic invertebrates compared to walking on substrate. The electroshocking elevated drift rates by approximately four-fold when the drift distance was between 2.5 and 5 m. But when the drift distances were between 10 and 30 m there was no significant difference between the electroshocking treatment and the control. Also large taxa such as Pteronarcyidae (Plecoptera) only drifted short distances compared to smaller taxa (Kruzic et al. 2005). Therefore to observe the effect of electroshocking on benthic invertebrates the drift nets need to be set up within 5 m of the treatment. Also Ephemeroptera, Plecoptera and Trichoptera were the only taxa affected by electroshocking, similarly to the effect of low DO on benthic invertebrates. Some taxa such as Heptageniidae and Ephemerellidae (Ephemeroptera), and Nemouridae (Plecoptera) had very high drift rates over short drift distances. While other taxa such as Chironomidae (Diptera), mites

(Acaria) and psephenids (Coleoptera) had similar drift rates regardless of treatment or drift distance (Kruzic et al. 2005).

Taylor et al. (2001) used electroshocking as a sampling method, and found it to be a more efficient sampling method than standard Hess and surber sampling. Electroshocking over a specific area  $(8 \text{ m}^2)$  provided approximately a twofold increase in an estimate of invertebrate density compared to surber sampling. There was an approximate twofold increase in an estimate of Ephemeroptera invertebrate density for electroshocking compared to surber sampling, an approximate threefold increase in an estimate of Plecoptera density for electroshocking compared to surber sampling, and a twofold increase in an estimate of invertebrate density for all other taxa for electroshocking compared to surber sampling. There was an approximate threefold increase in an estimate of Plecoptera density for electroshocking compared to Hess sampling. The electroshocking increased drift rates for nearly all taxa, but increased drift rates for sensitive Ephemeroptera, Plecoptera, and Trichoptera by the largest margin (Taylor et al. 2001). Taylor et al. (2001) measured the effect of electroshocking on survival, growth and development of a particular species, Baetis bicaudatus, in a circular flow-through tank. There was no effect on survival, growth rate and development. Therefore electroshocking is effective in stimulating drift in benthic invertebrates, but does not affect other parameters.

The effect of electroshocking on benthic invertebrate drift is similar to the effect of low DO on benthic invertebrate drift. Both cause an increase in drift rates of nearly all taxa and a large impact on drift rates of EPT taxa. The EPT taxa

are very sensitive to electroshocking and low DO and are the main taxa that have highly elevated drift rates. The magnitude of impact of electroshocking depends on the time and voltage of the electroshocking. The magnitude of impact of electroshocking compared to low DO on invertebrate drift rates is not clear. In general, electroshocking seems to display a larger magnitude of impact on benthic invertebrate drift rates than a low DO event in the range of 5.0-6.5 mg/L. The exact DO range that electroshocking (of varying time and voltage) simulates is not known, but can be predicted to simulate DO in a range close to 0 mg/L. Therefore using electroshocking in a river is a simple and effective method of simulating a crude low DO event in a DO range close to 0 mg/L. Electroshocking is used to simulate a low DO event during winter in this environmental risk assessment for the Athabasca River.

#### **b. Stream Microcosm**

A microcosm can be used to study the effects of anthropogenic toxicants on different bioindicators. Microcosms of different sizes can be implemented depending on the bioindicator being studied and the parameters being measured. A larger microcosm would be required for an individual fish species study compared to an individual benthic invertebrate species study. Microcosm studies can operate on different time scales. For example, the timeline for a study testing the effect of a toxicant on the life cycle stages of a species would depend on the standard life cycle length of the species. In a microcosm study large amounts of replicates are possible. Also all relevant variables can be controlled in a microcosm to discern a cause-and-effect relationship of a specific pollutant on a specific parameter (Culp et al. 2000b).

There are different types of microcosms that can be used in a bioindicator study. A non-circulating stream-side microcosm can be set up beside a river to utilize the natural river water flow rate (Taylor et al. 2001). An artificial stream can also be set up in a laboratory. The artificial stream can be a re-circulating or non-circulating system. A laboratory flume can be used to measure the specific effects of the physical parameters of the flowing water on the bioindicators in the artificial stream. Environmental realism must be applied when designing the microcosm study in a laboratory flume. The physicochemical conditions must be set to near-ambient levels and a natural food source must be present for the specific bioindicator (Culp et al. 2000b). An artificial ice-cover is not possible in a laboratory flume, but temperature can be set as in an ice-covered river.

A microcosm study can be conducted using only one specific fish or benthic invertebrate species. The single-species microcosm study has increased accuracy due to strong control over extrinsic variables and is used for measuring population parameters such as mortality, growth, physiological responses, development, fecundity, behaviour, population production and bioconcentration (Culp et al. 2000b). A microcosm study can also be conducted using a community of benthic invertebrate species (Culp et al. 2000b). The multi-species microcosm study has reduced accuracy, but it allows for the measurement of communitylevel interactions and has greater environmental realism (simulates food web dynamics). The multi-species microcosm study can be used for measuring

individual population parameters and comparing between species. In Chapter 3, the effect of low DO on benthic invertebrate drift rates is measured in a laboratory microcosm and compared between species, specifically comparing EPT species to the other species. Also the multi-species microcosm study can be used for measuring community structure parameters such as abundance, species composition, and species diversity (Culp et al. 2000b).

Culp et al. (2000b) recommends that microcosm studies be integrated with field experimental and monitoring data. The microcosm study can provide realistic response patterns to isolated environmental stressors. This is not possible in a field experiment where extrinsic variables cannot be controlled to observe a cause-and-effect relationship. But the microcosm is a simulation that attempts to mimic the conditions of the field site, and cannot fully supplement field experimental and monitoring data. It is recommended that the same ecological parameters be measured in microcosm and field studies for concordance of results. The concordance of results between microcosm and field studies can provide weight-of-evidence that can influence management action and the setting of guidelines by environmental authorities (Culp et al. 2000b).

#### CONCLUSIONS

The major impact of secondary treated pulp mill discharges in the Athabasca River is eutrophication, which lowers DO. The ice on the Athabasca River in the winter months further contributes to low DO by preventing re-aeration. Low DO causes stress in secondary consumers such as benthic invertebrate and fish species (Chambers et al. 2006). Benthic invertebrates are used as bioindicators to assess the ecological impact of low DO in this study. The effects of low DO on benthic invertebrates can be measured by physiological and life cycle parameters, but also parameters that can be conveniently measured such as abundance, number of taxa and drift rates. Sampling benthic invertebrates provides larger sample sizes for more accurate results compared to sampling fish. The benthic invertebrate EPT taxa are very sensitive to moderately low DO (<6.5 mg/L), and should be measured separately (Alberta Environment 2004). Therefore the effects of low DO on benthic invertebrates are assessed using parameters such as abundance, taxa drift rates, EPT abundance, and EPT drift rates.

An electroshocker can be used to simulate a low DO event in a river by stimulating drift. Therefore an electroshocker was used in the Athabasca River in this study to simulate a low DO event. Benthic invertebrate samples can be taken over time following the low DO simulation to determine the recovery time and pattern of the benthic invertebrate community. Other impacts such as ice-out produce similar results through increased river discharge and large ice sheets and pans scouring the banks and bed of the river. Recovery from these natural events can be compared to those from a low DO event. This comparison puts the impacts of a low DO event in context with other natural disturbances and allows decision makers latitude in determining if and how DO remediation is necessary.

A laboratory microcosm can be used to discern a cause-and-effect relationship of a specific pollutant on a specific population or community structure parameter (Culp et al. 2000b). A microcosm attempts to mimic the conditions of the field site, and cannot fully supplement field experimental and monitoring data. Microcosms of different sizes and types, and different time scales can be implemented. A microcosm study can be conducted using only one specific fish or benthic invertebrate species, or using a community of benthic invertebrate species (Culp et al. 2000b).

In conclusion, the problems that require further research are: 1) simulating low DO in the Athabasca River and determining recovery times and patterns of the benthic invertebrate community following low DO events and ice-out; 2) using a laboratory microcosm to determine the effect of low DO on benthic invertebrate drift rate and to determine the DO range that electroshocking simulates. The first problem is addressed in Chapter 2 and the second problem is addressed in Chapter 3.



FIGURE 1-1 Overview map of the Athabasca River highlighting the locations of pulp mills, sewage treatment plants, the Grand Rapids reaeration zone and areas with large oilsands development



FIGURE 1-2 Theoretical impact and recovery pattern of a benthic parameter in a year with adequate oxygen (top) compared to a year with the added impact of a low DO event (bottom). There are several potential trajectories for recovery from the low DO event. There could be a fast recovery (approximately 1 week) or a slow recovery that has an additive effect on the benthic parameter to the effect from ice-out

### CHAPTER 2

## PATTERNS IN BENTHIC INVERTEBRATE RECOVERY FOLLOWING LOW DISSOLVED OXYGEN AND ICE-OUT EVENTS IN A NORTHERN RIVER

#### INTRODUCTION

The Athabasca River, like other northern rivers in Canada, experiences ice-cover for four to six months, restricting reaeration and causing declines in dissolved oxygen (DO) concentration. Late-winter DO in the Athabasca River generally remains above the chronic effects guideline of 6.5 mg/L, however, occasional severe winters have resulted in areas of the river with DO below guidelines.

Nutrient loading along the Athabasca River from pulp mill and sewage effluent enhances biological and chemical oxidation exacerbating the frequency and duration of reduced dissolved oxygen concentrations during late winter (Noton and Allan 1994). Labile carbon is rapidly oxidized such that noticeable reductions in DO concentration occur downstream of each effluent plume in the Athabasca River (Chambers et al. 2000). As virtually no reaeration occurs the effect of these nutrient loads is cumulative along the length of the Athabasca River. Dissolved oxygen declines from a winter average of 11-12 mg/L at Hinton to a low of 6.5-10 mg/L above Grand Rapids some 800 km downstream (Noton and Allan 1994).

Previous studies have tested the effect of low DO on benthic invertebrate communities in a laboratory setting and in the Athabasca River. Lowell and Culp (1999) exposed mayflies (*Baetis tricaudatus*) to one of two DO levels (5 mg/L and 11 mg/L). The low DO treatment changed the mayfly distribution, decreased mayfly grazing intensity, and reduced mayfly survival by 60-90 %. Combined with other evidence, Alberta subsequently adopted a chronic (7-d mean) DO

guideline of 6.5 mg/L for the protection of aquatic life (Lowell and Culp 1999). Following a particularly severe winter and for 3 subsequent years, Alberta Environment sampled benthic invertebrates upstream and downstream of Grand Rapids to determine the effects of low DO on benthic invertebrates. In three of the four study years mean total number of invertebrates and mean total number of taxa were greater at the downstream site where DO was 3-5 mg/L higher on average. The mean number of EPT taxa (taxa of the Orders Ephemeroptera, Plecoptera and Trichoptera) was greater at the downstream site three of the four study years. The proportion of EPT species and abundance of EPT invertebrates were greater at the downstream site in all four study years (Alberta Environment 2004). The lower the DO was in the upstream site, the lower was the number of taxa, the total number of invertebrates, the number of EPT taxa and the abundance of EPT invertebrates. The impact of low DO was the strongest on EPT abundance and the proportional contribution of EPT taxa. Also the impact of low DO was the strongest in 2003 where DO fell below the 6.5 mg/L chronic guideline for 42 days (Alberta Environment 2004). The study accounted for habitat and other factors, while the differences were for the most part not significant, they did confirm the link between low DO and reduced benthic invertebrate community metrics.

There are several ways to simulate the benthic invertebrate community response to a low DO event. These traditionally have included physical removal in situ, chemically induced methods and installation of artificial substrates (Culp et al. 2000). Physical removal is time consuming and can alter the habitat (e.g. epiphytes) invalidating comparisons to reference conditions. Chemical methods

are difficult to control and require regulatory approval, which can be difficult in Canada. Electroshocking has been proposed as a simple method for removal but has not been widely tested. Kruzic et al. (2005) showed that electroshocking in a Northern river stunned benthic invertebrates causing an increase in drift rates of all benthic invertebrate taxa, and a larger impact on drift rates of EPT taxa by two to three-fold (Taylor et al. 2001). In this work, we tested the effect of electroshocking on benthic invertebrate abundance and confirm its utility to mimic the effects of low DO, which similarly causes enhanced drift of EPT taxa and reduced site abundance.

The objective of this study was to determine the recovery of benthic invertebrate abundance in the Athabasca River following a simulated low DO event prior to ice-out and following ice-out itself. Ice-out is the break up of large ice sheets and pans that scour the banks and bed of the river causing increased benthic invertebrate drift and decreased abundance. Of paramount importance to management was to test the hypotheses that low DO and ice-out were synergistic resulting in a combined impact on benthic invertebrates more severe than in a year where ice-out was the only impact. The possibility for cumulative impact is important because, depending on the relative severity of the two events or their combination, the only management response currently available is to shut down effluent discharges. An associated project is examining other alternatives such as oxygen injection in effluent streams where again necessity is informed by the results of the work presented here.
### **METHODS**

The Athabasca River originates in the Rocky Mountains in west-central Alberta. It flows northeast 1400 km across boreal foothills and mixed-wood forests of Alberta and has a drainage area of 155000 km<sup>2</sup>. The study sites (N 54°56'93.9"/W 112°57'93"), located near the town of Athabasca and the last pulp mill on the river (Fig. 2-1), have mean daily discharges of 407 m<sup>3</sup>/s with typical ice-out discharges averaging 500 m<sup>3</sup>/s. The lowest discharges, when dissolved oxygen concentrations can be compromised, occur in February (62 m<sup>3</sup>/s). There are multiple treated sewage discharges and 5 pulp mills within the first 800 km of the Athabasca River. The experimental sites were chosen for small and medium substrate in a low to medium-energy erosional zone.

Sampling occurred over 3 years, 2007-2009. In 2007 the focus was on the period before ice-out to understand the recovery from simulated low DO. In 2008 sampling focused on ice-out only to extend the results observed in 2007 and in 2009, sampling again focused on the experimental simulation of low DO to confirm 2007 results. In all years, ice between 0.3 and 0.7 m thick was removed from approximately 12 m<sup>2</sup> areas to expose test sites using a chainsaw equipped with a 4' bar with no chain oil (AENV winter sampling standard operating procedure) (Fig. 2-7). In 2007 and 2009, benthic invertebrates were cleared from shallow (< 0.5 m water) and deep (1.5 m water) sites by applying a strong electrical current (Smith Root Electrofisher Backpack Model LR-24) using a 50 second pulse at 350 volts and 4 amps for 5 minutes (Fig. 2-2). References sites (1 m x 2 m) were located on similar substrate 9 m upstream of treatment sites (Figs.

2-5 and 2-6). Three reference and treatment samples were collected from each of shallow and deep sites resulting in 12 samples per day. Samples were collected at time zero, every seven days for 4 weeks, every 14 days until ice-out and again every 14 days after ice-out, once ice was sufficiently cleared to allow safe access to the sites. A Neill cylinder ( $0.1 \text{ m}^2$  sampling area, 212 µm mesh size) fitted with a skirt was used for sample collection (Figs. 2-3 and 2-4). The daily discharge during the electroshocking recovery that occurred February and March was at a steady minimum (Fig. 2-9). Drift nets ( $0.14 \text{ m}^2$  average mouth area, 363 µm mesh size) were installed under ice at the upstream, outer edges of the ice-free sections such that they captured drift passing the edges of the reference site area but did not interfere with the reference sites themselves (Fig. 2-8). Drift nets were initially set for 18-24 hours.

In 2008 samples were reduced to 3 shallow and 3 deep per day and collected at time zero, every seven days for 3 weeks, every 14 days until ice-out and again after ice out, once flows allowed safe access to the sites. The samples were divided into 3 shallow site samples and 3 deep site samples. In summer, Neill cylinder sampling was repeated. Surber net sampling was done for 40 minutes, and drift net sampling was done for 45 minutes. The net sampling times were very short due to the high flow of the Athabasca River.

In 2009, samples were collected at time zero, every seven days for 3 weeks, every 14 days until ice-out and again twice after ice out.

Invertebrates were removed from organic and inorganic material. Then they were passed through a 1 mm and 200  $\mu$ m sieve to separate the samples into

coarse and fine size fractions. All of the fractions were examined portion-byportion on a gridded petri dish under a dissecting microscope. Fine size fractions of large samples were sub-sampled according to the methods of Wrona et al. (1982). Benthic invertebrates were identified to the lowest practical taxonomic level, typically genus for most invertebrates within the Class Insecta, with the exception of the Chironomidae (Diptera). Chironomids were identified to subfamily or tribe. Small, early instar animals were identified to the lowest level possible, generally to family (Alberta Environment 1990). The benthic invertebrate identification was done using the recognized taxonomic keys, Clifford (1991) and Merritt, Cummins and Berg (2008) by a certified lab and a single technician (Streamline Environmental).

For every year, the data from Neill cylinder sampling were separated into five categories based on benthic invertebrate Order (Diptera, Ephemeroptera, Plecoptera, Trichoptera and a fifth category for all species). For each category the reference samples, shallow site treatment samples and deep site treatment samples were totalled. 2007 and 2009 data were divided by the reference totals to give normalized response at each sample event. For analysis of recovery following experimental removal, 2007 and 2009 data were combined. The drift and surber net data were converted into individuals m<sup>-2</sup> day<sup>-1</sup> and totaled for five categories based on benthic invertebrate Order. The drift rates were calculated as the number of individual benthic invertebrates that passed the square metre rim of the drift or surber net over a period of one day. Site abundance numbers were compared to the drift rates for each Order by correlation (Pearson- r).

### RESULTS

Electroshocking was more effective at shallow sites compared to deep sites with reduced benthic invertebrates abundances of 12-36 % at shallow sites when compared to reference sites depending on the Order. For example, for Diptera, removal was moderate at 64 % removed (abundance 36 % of reference) at the shallow site and 24 % (abundance 76 % of reference) for the deep site (Fig. 2-10). Ephemeroptera and Plecoptera displayed greatest sensitivity to the electrical treatment with abundance of 15 % and 12 % of reference, respectively, for the shallow site and 47 % and 30 %, respectively, for the deep site (Fig. 2-11 and 2-12). Similar to the known response of EPT taxa to low DO, EPT taxa also appeared to be the most sensitive to the electrical treatment. All non-EPT taxa had an average abundance of 37 % for the shallow site and 75 % for the deep site (Fig. 2-14). Diptera began to recover quickly with abundance of 157 % by the first week (Fig. 2-10). However, fluctuations lead us to conclude recovery extended out to week 4 (Fig. 2-10). Benthic invertebrates of the Orders Ephemeroptera, Plecoptera, Trichoptera and all species show full recovery in the shallow site in week 4 (Figs. 2-11, 2-12, 2-13, and 2-14). The Order Ephemeroptera also recovered by week 4 in the shallow site and the deep site (Fig. 2-11). Benthic invertebrates of the Order Plecoptera in the deep site show no full combined recovery following electroshocking, although 88 % reference is reached at week 4 (Fig. 2-12). Benthic invertebrates of all species in the deep site show full combined recovery after 4 weeks following electroshocking (Fig. 2-14).

The reference and the drift rate showed a sporadic pattern throughout the six recovery weeks for the four Orders and all of the species of benthic invertebrates. There was a weak but significant negative correlation between the drift rate and reference site abundance (r = -0.46; P < 0.05) throughout the six recovery weeks in 2007 for the four Orders. There was a weak but significant negative correlation between the drift rate and the shallow site treatment total (r = -0.46; P < 0.05), and between the drift rate and the deep site treatment total (r = -0.46; P < 0.05). There was a stronger correlation between daily drift rates and deep site totals (r = -0.59; P < 0.05) than between daily drift rates and shallow site totals (r = -0.46; P < 0.05). Therefore, the deep site percent references were more affected by daily drift rates than the shallow site percent references.

For all four Orders the average number of invertebrates following an electroshocking event and ice-out was higher than the number following just ice-out in the month of May. For the Order Diptera, the May average number of invertebrates following electroshocking and ice-out was 13, and following just ice-out was 4.2. For the Order Ephemeroptera, the May average number of invertebrates following electroshocking and ice-out was 10, and following just ice-out was 6.2. For the Order Plecoptera, the May average number of invertebrates following electroshocking and ice-out was 13, and following just ice-out was 2.2. For the Order Plecoptera, the May average number of invertebrates following electroshocking and ice-out was 13, and following just ice-out was 2.2. For the Order Trichoptera, the May average number of invertebrates following electroshocking and ice-out was 4.7, and following just ice-out was 0.17. For all species, the May average number of invertebrates following electroshocking and ice-out was 91, and following just ice-out was 78.

There was no difference in the impact, as a loss of invertebrates per Neill cylinder unit, between the electroshocking/ice-out event and just the ice-out event. For presentation in patterns of response through late Winter to Fall, all data were combined (Figs. 2-15 - 2-19). For the Orders Diptera and Trichoptera, the drastic drop in abundance from electroshocking, was followed by a partial recovery before the ice-out of the Athabasca River. This recovery was followed by a further drop due to ice-out (Figs. 2-15 and 2-18). For the Orders Ephemeroptera and Plecoptera, the drop in abundance was sustained throughout ice-out (Figs. 2-16 and 2-17). All other species of benthic invertebrates followed a pattern similar to Diptera (Fig. 2-19). Minimum abundance for all Orders (except for Plecoptera) occurred on May 8 corresponding to an increase in river discharge (Fig. 2-9).

Recovery in abundance following ice-out was protracted for all Orders. For Plecoptera, abundance did not recover to pre ice-out numbers by 161 days (Fig. 2-17). Ephemeroptera abundance recovered after 107 days (Fig. 2-16). Diptera, Trichoptera and other Order abundances recovered after 161 days (Fig. 2-15, 2-18, 2-19). The general rise in abundance through the summer to Fall maxima corresponds to decreasing hydraulic energy and increased epiphytic biomass thus representing presumably more favorable habitat conditions.

### DISCUSSION

Electroshocking caused immediate reductions in EPT abundance similar to and more extensive than what has been observed due to low dissolved oxygen concentrations (Alberta Environment 2004). Electroshocking appeared to be more effective in shallow sites compared to deep sites, which is consistent with the dynamics of an electrical field created by a standard backpack unit. Recovery in abundance was surprisingly rapid. Diptera immediately recolonized the experimental sites (Fig. 2-10) while more generically all EPT recovery occurred over 4 weeks (Figs. 2-11 – 2-13). The reasons for rapid recovery are likely due to the high drift rates and therefore ability to recolonize available sites once favorable conditions occur. The magnitude of drift affects the recovery of any area of impact, therefore a 25 m<sup>2</sup> test section can be extrapolated to the area of a DO sag zone in the Athabasca River. Given the magnitude of drift, a DO sag zone would recover in 4 weeks.

Recovery at deep sites appeared to be slower than at shallow sites. This may be due to the generally poorer quality substrate in the deep site. Therefore, fewer invertebrates were likely to settle on the river substrate in the deep site than the shallow site over time (Wantzen 2006). The recovery in the deep site for the Order Plecoptera (Fig. 2-12) and the Order Trichoptera (Fig. 2-13) was erratic compared to the shallow site. Neill cylinder sampling was more consistent in the shallow site than in the deep site, because it was easier to lock the Neill cylinder in the sediment in the shallow site due to a lower river discharge, and it was easier to consistently shovel the sediment within the Neill cylinder in the shallow site.

When the discharge decreases in early July less invertebrates settle on the sediment, but proportionally less are lost so recruitment begins to occur. Ice-out of the Athabasca River appeared to impact the benthic invertebrate community

more, in terms of recovery time, than the electroshocking experiment designed to mimic a low DO event. This may be because the electroshocking lasted 5 minutes while ice-out lasts 15-20 days resulting in a longer recovery, and the ice-out is followed by a period of high flow till September, which causes slower recolonization.

Ice-out caused a drop in the number of benthic invertebrates in April and May due to a high daily discharge rate (Fig. 2-9), which decreased the number of benthic invertebrates in the sediment. Full recovery appears to occur within 4 weeks following a low DO event. There is a relatively fast recovery following a low DO event (4 weeks), but there may not be full recovery before the impact of ice-out (Figs. 2-15 – 2-19). If the low DO event occurs within 4 weeks of the ice-out of the Athabasca River there is a combined impact on the benthic invertebrates per Neill cylinder unit, was the same across years regardless if there was a simulated low DO event (2009) or not (2008). There is no additive effect of the low DO event on the impact of ice-out hence the combination of the data from 2008 and 2009 (Figs. 2-15 – 2-19).

This research suggests the relative ecological impact, in terms of recovery time, of a low DO event is small compared to the annual impacts of ice-out in the Athabasca River. Further, electroshock removal, similar to a low DO event, prior to ice-out had no affect on the impact of ice-out, as a loss of invertebrates per Neill cylinder unit, or on the recovery trajectory of benthic invertebrates following ice-out, either because there had been full recovery prior to ice-out, or

because ice-out was so intrusive the prior loss was insignificant. We conclude from this work that the ecological risks associated with a low DO event prior to ice-out are low and fully recoverable. We further recommend that a risk management approach be developed for future low DO events in the Athabasca River that includes DO monitoring for <7 km, which is the average Athabasca River DO sag zone length (Chambers et al. 2000b), following pulp mill effluent discharges and decreased pulp mill effluent discharges in February and March on the Athabasca River, or more effective management alternatives should be developed than simply turning off discharges should a low DO event occur. However, it is recommended that remediation of low DO, such as oxygen injection in effluent streams by the Alberta pulp mill industry, should not be done because the cost is too high for eliminating the small ecological impact of a low DO event.

### CONCLUSIONS

Using electroshocking to simulate a low DO event, the recovery time of the benthic invertebrate community was 4 weeks. It was determined the Order Diptera, the Order Trichoptera and all of the species of benthic invertebrates require up to 161 days to recover following the ice-out period of the Athabasca River. The Order Ephemeroptera requires 107 days to recover following ice-out, and the Order Plecoptera requires over 161 days to recover following ice-out. Recovery from ice-out occurs in September due to a decreasing daily discharge rate. The benthic invertebrate community takes longer to recover from naturally occuring ice-out every year than from a low DO event. The relative ecological impact of a low DO event from pulp mill effluent discharge is small with immediate recovery compared to ice-out of the Athabasca River. However, if a low DO event occurs within 4 weeks of the ice-out of the Athabasca River there is a combined impact on the benthic invertebrate community. The combined impact is more common because low DO events occur in February and March. But the combined ecological impact of low DO and ice-out of the Athabasca River is not stronger than the ecological impact of ice-out on the benthic invertebrate community. To prevent low DO events and consequent combined impact there should be DO monitoring for <7 km following pulp mill effluent discharges and decreased pulp mill effluent discharges in February and March on the Athabasca River. However, it is recommended that remediation of low DO by the Alberta pulp mill industry should not be done.



FIGURE 2-1 Overview map of the Athabasca River highlighting the location of the C-bridge experimental site where this experiment was conducted and samples were collected



FIGURE 2-2 Photo of how to properly handle an electroshocker and with all the most important parts of the electroshocker highlighted (anode, on switch, control panel, battery, and cathode)



FIGURE 2-3 a) Front view of a Neill cylinder showing the grate, foot bars on the bottom of the sides and handlebars on the sides; b) Top view of a Neill cylinder showing the top opening with an attached covering, handlebars, and the drift net wrapped around into the top from the back with a clamp at the end for attaching a 1L nalgene bottle



FIGURE 2-4 a) Proper technique for using the Neill cylinder: The Neill cylinder is firmly locked in the sediment with the grate fully engulfed and facing the river current and the drift net and nalgene bottle submerged in the back. The sediment is stirred with a shovel put in the top opening for two minutes; b) Following sampling in the river the Neill cylinder is taken to the riverbank and placed on its side with the drift net and 1L nalgene bottle still in the river. The drift net is washed with river water so that the remaining debris goes into the nalgene bottle



FIGURE 2-5 a) Drilled holes in the ice in the Athabasca River at the corners of a  $1m \times 2m$  section; b) A chainsaw is used to cut open the ice along the perimeter of the  $1m \times 2m$  section; c) The  $1m \times 2m$  section is sawed into ice blocks using a chainsaw



FIGURE 2-6 a) The ice blocks are loosened using an ice pick; b) The ice blocks are removed using ice tongs; c) The 1m X 2m section is free of ice once all the ice blocks are removed



FIGURE 2-7 a) and b) Two photos of a 3m X 4m section free of ice in the Athabasca River following sawing the section into ice blocks using a chainsaw and removing the ice blocks using ice tongs and placing them around the section



FIGURE 2-8 a) Photo of a drift net (lower) and a surber net (higher) in the Athabasca River attached to rebar drilled into the sediment and to ropes that are tied to ice blocks on the surface; b) Close-up photo of the drift net in the opening in the ice in the Athabasca River; c) Close-up photo of the surber net in the opening in the ice in the Athabasca River;



FIGURE 2-9 Daily discharge rates (m<sup>3</sup>/s) at the Athabasca River at Athabasca over a full year. There are three different-coloured lines for three years, 2007, 2008 and 2009. Fattened portions of the lines represent the study period for 2007, 2008 and 2009. Low DO simulation via electroshocking is pointed out for 2007 and 2009. The ice-out period of the Athabasca River is the area between the black lines



FIGURE 2-10 Recovery of benthic invertebrates of the Order Diptera following a low DO event simulated via electroshocking treatment, measured as the total number of invertebrates in the shallow treatment site (TS) and the deep treatment site (TD) per total number in the reference site (%reference). The recovery spans 6 weeks compiled from February to March 2007 and March 2009 at the Athabasca River C-bridge experimental site. 100% reference (full recovery) is marked as a black line. Also shown is the drift rate (measured as individuals m<sup>-2</sup> day<sup>-1</sup>) and reference (measured as individuals m<sup>-2</sup>) for every measurement week



FIGURE 2-11 Recovery of benthic invertebrates of the Order Ephemeroptera following a low DO event simulated via electroshocking treatment, measured as the total number of invertebrates in the shallow treatment site (TS) and the deep treatment site (TD) per total number in the reference site (%reference). The recovery spans 6 weeks compiled from February to March 2007 and March 2009 at the Athabasca River C-bridge experimental site. 100% reference (full recovery) is marked as a black line. Also shown is the drift rate (measured as individuals m<sup>-2</sup> day<sup>-1</sup>) and reference (measured as individuals m<sup>-2</sup>) for every measurement week



FIGURE 2-12 Recovery of benthic invertebrates of the Order Plecoptera following a low DO event simulated via electroshocking treatment, measured as the total number of invertebrates in the shallow treatment site (TS) and the deep treatment site (TD) per total number in the reference site (%reference). The recovery spans 6 weeks compiled from February to March 2007 and March 2009 at the Athabasca River C-bridge experimental site. 100% reference (full recovery) is marked as a black line. Also shown is the drift rate (measured as individuals m<sup>-2</sup> day<sup>-1</sup>) and reference (measured as individuals m<sup>-2</sup>) for every measurement week



FIGURE 2-13 Recovery of benthic invertebrates of the Order Trichoptera following a low DO event simulated via electroshocking treatment, measured as the total number of invertebrates in the shallow treatment site (TS) and the deep treatment site (TD) per total number in the reference site (%reference). The recovery spans 6 weeks compiled from February to March 2007 and March 2009 at the Athabasca River C-bridge experimental site. 100% reference (full recovery) is marked as a black line. Also shown is the drift rate (measured as individuals m<sup>-2</sup> day<sup>-1</sup>) and reference (measured as individuals m<sup>-2</sup>) for every measurement week



FIGURE 2-14 Recovery of all species of benthic invertebrates following a low DO event simulated via electroshocking treatment, measured as the total number of invertebrates in the shallow treatment site (TS) and the deep treatment site (TD) per total number in the reference site (%reference). The recovery spans 6 weeks compiled from February to March 2007 and March 2009 at the Athabasca River C-bridge experimental site. 100% reference (full recovery) is marked as a black line. Also shown is the drift rate (measured as individuals m<sup>-2</sup> day<sup>-1</sup>) and reference (measured as individuals m<sup>-2</sup>) for every measurement week



FIGURE 2-15 The effect of a low DO event simulated via electroshocking (red line) and the ice-out period of the Athabasca River (the area between the black lines) on the number of benthic invertebrates of the Order Diptera at the C-bridge experimental shallow site in 2008 and 2009 combined



FIGURE 2-16 The effect of a low DO event simulated via electroshocking (red line) and the ice-out period of the Athabasca River (the area between the black lines) on the number of benthic invertebrates of the Order Ephemeroptera at the C-bridge experimental shallow site in 2008 and 2009 combined



FIGURE 2-17 The effect of a low DO event simulated via electroshocking (red line) and the ice-out period of the Athabasca River (the area between the black lines) on the number of benthic invertebrates of the Order Plecoptera at the C-bridge experimental shallow site in 2008 and 2009 combined



FIGURE 2-18 The effect of a low DO event simulated via electroshocking (red line) and the ice-out period of the Athabasca River (the area between the black lines) on the number of benthic invertebrates of the Order Trichoptera at the C-bridge experimental shallow site in 2008 and 2009 combined



FIGURE 2-19 The effect of a low DO event simulated via electroshocking (red line) and the ice-out period of the Athabasca River (the area between the black lines) on the number of benthic invertebrates of all species at the C-bridge experimental shallow site in 2008 and 2009 combined

# CHAPTER 3

# DEVELOPMENT OF THE RELATIONSHIP BETWEEN DISSOLVED

# OXYGEN AND BENTHIC INVERTEBRATE DRIFT RATE

## INTRODUCTION

The main impact of pulp mill and sewage effluent discharges in the Athabasca River is nutrient loading. Nutrient loading from pulp mill effluent causes eutrophication. This causes an increase in biological and chemical oxidation of organic matter, which decreases oxygen. Noticeable declines in dissolved oxygen (DO) concentration occur downstream of each effluent plume on the Athabasca River. Also DO decreases along the length of the Athabasca River (Chambers et al. 2000). Ice-cover restricts reaeration in the Athabasca River for four to six months, causing declines in DO concentration over time in winter. The combination of ice-cover and nutrient loading may potentially lower the DO level in the Athabasca River to guideline levels in the late winter months (February and March). This was observed in February of 2003 when the DO level in the Athabasca River fell below the chronic guideline (6.5 mg/L) for over a month (Chambers et al. 2006). Low DO can potentially cause an ecological impact on the benthic invertebrate community in an ice-covered river.

Mayflies (*Baetis tricaudatus*) exposed to low DO (5 mg/L) experienced modified distribution, decreased grazing intensity, and reduced survival (Lowell and Culp 1999). The Alberta Surface water quality chronic (7-d mean) DO guideline is 6.5 mg/L for the protection of aquatic life (Lowell and Culp 1999). Alberta Environment (2004) reported a decrease in benthic invertebrate abundance and diversity when the Athabasca River experienced low DO (5.8 mg/L).

A correlation between low DO and increased drift in benthic invertebrates has been shown (Brittain and Eikeland 1988). In this chapter I tested benthic invertebrate response to experimental manipulations of DO, turbulence, shear/velocity, water depth, flow rate and temperature. A laboratory microcosm was set up as an artificial stream in a re-circulating system that simulates abiotic parameters that influence benthic invertebrate drift rate. Light was not measured as a factor that affected benthic invertebrate drift rate because benthic invertebrate drift rate is only affected by light in a diel pattern (Graesser and Lake 1984; Rader and Ward 1990; Allan et al. 1986). Salinity was also not measured as a factor that affected benthic invertebrate drift rate, because salinity does not affect benthic invertebrate drift rate below approximately 1500 mg/L (Goetsch and Palmer 1997).

Benthic invertebrates of the EPT Orders (Orders Ephemeroptera, Plecoptera and Trichoptera) are more sensitive to low DO than benthic invertebrates of the Order Diptera and other benthic invertebrates. Alberta Environment (2004) showed that EPT abundance and diversity was more adversely affected by low DO in the Athabasca River, compared to other benthic invertebrate Orders. The effect of DO on the drift of EPT Orders was developed in this study, and compared to the Order Diptera and all of the species of benthic invertebrates.

Kruzic et al. (2005) showed that electroshocking induces benthic invertebrate drift similar to a low DO event. In this study I compared the impacts of electroshocking (50 second pulse, 350 volts and 4 amps for 5 minutes) and low

DO on the benthic invertebrate drift rate, to determine the DO range simulated by electroshocking.

The ecological impact over the entire DO scale, and the mechanism of the ecological impact of a low DO event in an ice-covered river were determined in this study. The Athabasca River has experienced DO levels between the chronic (6.5 mg/L) and acute (5.0 mg/L) guidelines (Chambers et al. 2006). The relationship between the DO level and the benthic invertebrate drift rate was developed for the sensitive range of 5.0-6.5 mg/L DO, to determine the ecological impact in this important DO range and assess its consequences.

## METHODS

A flume was run without a benthic invertebrate sample using regular tap water. The flume was non-sloped, approximately 6 m in length and 1 m in height with clear plastic siding, and it was elevated off the ground by approximately one metre (Fig. 3-1). The flume was set up in a re-circulating system where 500 L of regular tap water were placed in a 1 m<sup>3</sup> water holding reservoir (Fig. 3-2), and pumped into a tube connected to the far end of the flume. The re-circulating system of the flume was attached to a flow meter (Figs. 3-1, 3-2 and 3-4) that measured the flow rate of the system. The flow rate and the depth of the water inside the flume were altered using the flume wier adjustment wheel at the top of the flume (Fig. 3-1). A Nitex seine net (500  $\mu$ m mesh size) was cut to a size of approximately 0.5 m X 0.5 m and placed inside the flume at the end of the section

of gravel (Fig. 3-2). A Nitex drift net (363 µm mesh size) was modified at its end by cutting open a slit to fit over the cap of a 1 L nalgene bottle. The cap was modified by cutting a large hole in it to allow benthic invertebrates to enter the 1 L nalgene bottle. This drift net was placed inside the flume a couple centimetres downstream of the seine net (Figs. 3-3b and 3-5). A Field Case Hach HQ 40D DO probe was placed in the section of gravel for measuring the DO level (Figs. 3-4 and 3-5). Ice blocks were put in the water holding reservoir and in the section of gravel, to lower the temperature to within a range of 0 °C to 5 °C. A thermometer was placed in the section of gravel. 750 mg/L of sodium sulphite was added to decrease DO from approximately 10 to 0 mg/L.

Benthic invertebrates and substrate were collected from the North Saskatchewan River. A 0.5 m X 0.455 m section of the river was sampled. Large stones were carefully removed and placed in an experimental tray. This was to ensure the associated periphyton and benthic invertebrates remained with the stones. Then the substratum beneath the stones was disturbed by kicking it into a bottom kick net (Nitex model, 40 inch handle, 500  $\mu$ m mesh size) to collect any benthic invertebrates in the substrate. The sample was placed in an 8 L container that was well-aerated by mixing and transported to the laboratory.

Because the benthic invertebrate drift rate would be at a maximum at a DO level of zero, 750 g of sodium sulphite were added to the water holding reservoir and mixed using a shovel (Fig. 3-3a). The seine net was initially removed and the drift net was submerged along with an attached nalgene bottle. The substrate sample was placed on the gravel (0.5 m X 0.455 m X 0.08 m space)

in the flume to create an artificial substrate (Figs. 3-3b, 3-4a and 3-5). After adding the sample the timer was immediately started. Every thirty seconds the nalgene bottle on the drift net was replaced for 600 seconds total. The seine net was placed back in front of the drift net. The replicates were individually analyzed under a dissecting microscope. For the 30-second replicates, only total benthic invertebrate counts were done (Fig. 3-6). This exact same procedure was repeated, except replicates were taken every 40 seconds. Total benthic invertebrate counts corresponded to drift rates. Both of the experimental runs showed that an appropriate acclimation period was 80 seconds when the drift rate decreased exponentially. Also both of the experimental runs showed 280 seconds to be the maximum allowable length of an experimental run, where the drift rate was constant, before the drift rate began to follow a quadratic decay.

Ice was put into the flume and water holding reservoir and the substrate sample was placed on the gravel in the flume to create an artificial substrate (Figs. 3-3b, 3-4a and 3-5). The timer was allowed to run 80 seconds (acclimation period), at which point the seine net was removed, rotated 180°, and attached to the flume walls at the other end of the artificial substrate. The flume wier adjustment wheel (Fig. 3-1) was randomly turned in either direction, either partially or fully, to randomly modify the water depth and flow rate. During the 80-second replicate, the DO level (mg/L) was measured using the DO probe (Figs. 3-1, 3-4 and 3-5), the temperature (°C) was measured using the thermometer (Figs. 3-4a and 3-5), the water depth (cm) was measured using a metre stick, and the flow rate (L/s) was measured using the flow meter (Fig. 3-4).

After 80 seconds the nalgene bottle attached to the drift net was removed and replaced by another nalgene bottle and two more replicates were performed. After the third replicate, the seine net was removed and placed back in front of the drift net. The three replicates were analyzed using a dissecting microscope. Two examples of increments of a replicate in a gridded petri dish are shown in Figure 3-7. The benthic invertebrates were identified to the level of Order for Ephemeroptera, Plecoptera, Trichoptera, and Diptera, and identified as "Other" for all other benthic invertebrates, using the recognized taxonomic keys, Clifford (1991) and Merritt, Cummins and Berg (2008). Then the replicates were placed back in the artificial substrate and approximately 90 g of sodium sulphite were added to the water holding reservoir (Fig. 3-3a). Another experimental run was performed at the corresponding DO level. This procedure was repeated for continuously larger doses of sodium sulphite, until DO was lowered to approximately zero. For some of the experimental runs only two replicates were taken. Finally the artificial substrate was shovelled into an 8 L container. This exact same procedure was repeated three times for a total of 20 experimental runs and 42 replicates. The sodium sulphite dosage wasn't always in multiples of 90 g for each experimental run, but varied in an attempt to have a wide variety of experimental runs with different DO levels between zero and ambient DO. A larger amount of experimental runs were done in the DO range of 5.0-6.5 mg/L (7 experimental runs).

Electroshocking was done on the North Saskatchewan River using a Smith Root Electrofisher Backpack (Model LR-24). Electroshocking was done with a 50
second pulse for 5 minutes at 350 volts and 4 amps. Three Neill cylinder samples were taken in the electroshocked section. Upstream of the section that was electroshocked, three more Neill cylinder samples were taken as reference samples.

For the samples in 8 L containers rocks were separated and discarded from the debris and benthic invertebrates. Invertebrates were removed from organic and inorganic material. Then they were passed through 2 mm, 1 mm, 500 µm and 180 µm sieves to separate the samples into coarse (2 mm and 1 mm sieves) and fine size fractions (500 µm and 180 µm sieves). All of the fractions were examined portion-by-portion on a gridded petri dish under a dissecting microscope. Fine size fractions of large samples were sub-sampled according to the methods of Wrona et al. (1982). Benthic invertebrates were identified to the lowest practical taxonomic level, typically genus for most invertebrates within the Class Insecta, with the exception of the Chironomidae (Diptera). Chironomids were identified to subfamily or tribe. Small, early instar animals were identified to the lowest level possible, generally to family (Alberta Environment 1990). The benthic invertebrate identification was done using the recognized taxonomic keys, Clifford (1991) and Merritt, Cummins and Berg (2008) by a hired independent benthic invertebrate taxonomist.

For the electroshocking and reference samples, percent drift per minute was calculated for Ephemeroptera, Plecoptera, Trichoptera, Diptera, other benthic invertebrate species, and all benthic invertebrate species. For each flume sample the totals for Ephemeroptera, Plecoptera, Trichoptera, Diptera, other benthic

invertebrates, and all benthic invertebrates were determined. For each replicate for the flume samples, velocity (m/s) was determined using the following formula:

$$V = \frac{F/(d * 0.455m)}{1000}$$

V = velocity (m/s)

F =flow rate (L/s)

d = water depth (m)

For each replicate the shear velocity (m/s) was estimated as one-tenth of the velocity. Also for each replicate the turbulence (Re) was determined using the following formula:

$$Re = \frac{VRh}{v}$$

V = velocity (m/s)

 $Rh = \frac{Area}{Perimeter} = \frac{d*0.455m}{2d+0.91}$ d = water depth (m)

$$v = \frac{\mu}{\rho}$$

 $\mu = \text{viscosity of water } (\text{kg}/(\text{m} * \text{s})) = e^{-1.94 - 4.80 \left(\frac{T_0}{T}\right) + 6.74 \left(\frac{T_0}{T}\right)^{2}} \mu_0$  $\mu_0 = 0.001792 \text{ kg}/(\text{m} * \text{s})$ T = temperature (K)

 $T_0 = 273.16 \text{ K}$ 

 $\rho$  = density of water (kg/m<sup>3</sup>) = 1000 kg/m<sup>3</sup> at T = 0-10 °C

For each replicate the counts for Ephemeroptera, Plectoptera, Trichoptera, Diptera, other benthic invertebrate species and total benthic invertebrate species were converted to percent drift per minute. Percent drift per minute was used because percent drift accounted for differences between sample totals, and the percent drift was per minute because minute was the closest single unit to an 80second replicate. Regressions for the variables DO, temperature, shear velocity, water depth, flow rate and turbulence versus percent drift per minute were done for each of the Orders, other benthic invertebrate species and all benthic invertebrate species. The variables, the squares of the variables (to account for the quadratic regressions), and variable interaction effects were put in a GLS (generalized least squares) linear regression with each of the Orders, other benthic invertebrate species and all benthic invertebrate species using the program IBM SPSS Statistics 19. The non-significant variables were removed, and the linear regressions (WLS (weighted least squares) for no correlating variables and GLS for correlating variables) were re-run in SPSS to determine the strongest linear regression for each Order, other benthic invertebrate species and all benthic invertebrate species. Also some of the linear regressions were improved by running them at DO<5 mg/L.

### RESULTS

Table 3-1 gives descriptive parameters for the electroshocking and reference samples for the Orders Ephemeroptera, Plecoptera, Trichoptera, Diptera, other benthic invertebrate species and all benthic invertebrate species. The drift rates for these Orders, other benthic invertebrate species and all benthic invertebrate species are highlighted in Table 3-1. These drift rates can be compared to calculated drift rates at low DO from the regression equations.

The Plecoptera totals for the flume samples were between 1 and 3, which didn't allow for a large range of drift rates that could be developed into a significant pattern with the independent variables. Therefore regression equations between the independent variables and the benthic invertebrate drift rate were not developed for the Order Plecoptera.

The baseline drift rate at ambient DO, similar to expectations in a river, for the Order Ephemeroptera was 1.7 %drift/min, for the Order Trichoptera was 4.2 %drift/min, for the Order Diptera was 0.035 %drift/min, and for all benthic invertebrate species was 0.68 %drift/min.

For the individual regressions between Ephemeroptera drift rate and the independent variables DO level, temperature, turbulence, water depth, flow rate and shear, the only significant linear regression was with turbulence (P<0.01). Figure 3-9 shows this significant linear regression ( $R^2 = 0.21$ ) with the regression equation, drift rate = 0.016(turbulence) – 28. The linear regression for Ephemeroptera drift rate versus DO level was non-significant (Fig. 3-8). For the

individual regressions between Trichoptera drift rate and the independent variables, the only significant linear regression was with the DO level ( $R^2 = 0.27$ ; P<0.01) (Fig. 3-11). For the individual regressions between Diptera drift rate and the independent variables, the only significant linear regression was with the DO level ( $R^2 = 0.24$ ; P<0.01). The regression equation was drift rate = -0.047(DO) + 0.53 (Fig. 3-12). There was no significant regression between drift rate of the other benthic invertebrate species and the independent variables. But the strongest regression between the drift rate for the other benthic invertebrate species and an independent variable was a quadratic regression between drift rate and temperature ( $R^2 = 0.19$ ). For the individual regressions between the drift rate for all benthic invertebrate species and the independent variables, there was a non-significant linear regression with the DO level ( $R^2 = 0.17$ ; P>0.01) (Fig. 3-13).

For the WLS linear regression between Ephemeroptera drift rate and DO level and turbulence, the adjusted  $R^2$  was improved without being significantly different from the  $R^2$  ( $R^2 = 0.25$ ). Therefore a better regression model for Ephemeroptera drift rate is drift rate = 0.018(turbulence) – 0.27(DO) – 31. For the WLS linear regression between Trichoptera drift rate and DO level and shear, the adjusted  $R^2$  was improved without being significantly different from the  $R^2$  ( $R^2 = 0.37$ ). The formula is drift rate = -0.52(DO) + 1452 (shear) – 2.2. For the WLS linear regression between Diptera drift rate and DO level and temperature (quadratic), the adjusted  $R^2$  was improved without being significantly different from the  $R^2$  ( $R^2 = 0.39$ ). Therefore an alternate regression model for Diptera is drift rate = -0.057(DO) + 0.082(temperature)^2 – 1.1(temperature) + 4.0. The GLS

linear regression between the other invertebrate species drift rate with the independent variables DO level, temperature, turbulence, water depth and shear (including squares and interaction effects) was non-significant. For the WLS linear regression for the drift rate for all species versus DO level (linear) and temperature (quadratic), the improved formula is 0.13(temperature)<sup>2</sup> – 1.6(temperature) – 1.0(DO) + 6.2. The regression had the highest possible adjusted R<sup>2</sup> without being significantly different from the R<sup>2</sup> (R<sup>2</sup> = 0.33).

The linear regressions for Ephemeroptera and all species were improved when using a portion of the data. These linear regressions were appropriate for Ephemeroptera and all species because they were based on the hypothesis that the regression equation has a slope that changes from zero to a positive number at a particular DO point as the DO level decreases. The linear regression equation for the Ephemeroptera drift rate and the DO level at DO<5 mg/L is drift rate = -1.6(DO) + 9.1 (R<sup>2</sup> = 0.35) (Fig. 3-10). The linear regression equation for the Ephemeroptera drift rate and the DO level and turbulence for DO<5 mg/L is drift rate = 0.010(turbulence) - 1.5(DO) - 12 (R<sup>2</sup> = 0.39). There is no pattern for the Ephemeroptera drift rate between 5 mg/L DO and ambient DO, and at ambient DO the baseline drift rate is 1.7 % drift/min. The linear regression equation for the drift rate for all species and the DO level at DO < 5 mg/L is drift rate = -0.19(DO)+ 1.4 ( $R^2 = 0.23$ ) (Fig. 3-14). The regression equation for the drift rate for all species and the DO level and temperature for DO<5 mg/L is drift rate = - $0.28(DO) + 0.23(temperature)^2 - 3.0(temperature) + 11 (R^2 = 0.37)$ . There is no pattern for the drift rate for all species between 5 mg/L DO and ambient DO, and

at ambient DO the baseline drift rate is 0.68 % drift/min. Table 3-2 is a summary of all of the regression equations' coefficients, constants and  $R^2$  values.

# DISCUSSION

The only significant independent variable that affected the drift rate of benthic invertebrates of the Order Ephemeroptera was the turbulence in a linear regression. But there was a significant regression equation for the Order Ephemeroptera drift rate and the DO level with DO<5 mg/L ( $R^2 = 0.34$ ) (Fig. 3-10), matching the hypothesis that the drift rate becomes sloped at a particular DO level (DO = 5 mg/L). The optimal regression for the drift rate of the Order Ephemeroptera included both the independent variables turbulence and the DO level with DO<5 mg/L ( $R^2 = 0.39$ ). The only significant independent variable that affected the drift rate for benthic invertebrates of the Orders Trichoptera and Diptera was the DO level. The DO level causes a particular drift rate above the ambient DO drift rate (4.2 % drift/min for the Order Trichoptera and 0.035 % drift/min for the Order Diptera), and lower DO levels cause higher drift in a linear pattern. Low DO induces benthic invertebrates to change position. If changing position and physiological regulation do not fulfill the respiratory needs of benthic invertebrates, they will actively start drifting. The Trichoptera drift rate had a strong linear regression with DO level ( $R^2 = 0.27$ ), and was improved with the addition of a linear shear term ( $R^2 = 0.37$ ). The Diptera drift rate had a weak linear regression with DO level ( $R^2 = 0.24$ ), and was significantly improved

with the addition of quadratic temperature terms ( $R^2 = 0.39$ ). The drift rate for the other benthic invertebrates could not significantly be explained by any of the independent variables, but the strongest independent variable that affected the drift rate was temperature in a quadratic relationship ( $R^2 = 0.19$ ). The optimal regression for the drift rate of all of the species of benthic invertebrates included the independent variables DO level and temperature ( $R^2 = 0.33$ ). The drift rate for all species had a linear regression with DO level at DO<5 mg/L ( $R^2 = 0.23$ ), and was significantly improved with the addition of quadratic temperature terms ( $R^2 = 0.37$ ). For the Order Ephemeroptera and all species of benthic invertebrates DO causes a particular drift rate below 5 mg/L DO, and lower DO levels cause higher drift in a linear pattern. There is no pattern between 5 mg/L DO and the ambient DO, and at ambient DO the baseline drift rate is 1.7 %drift/min for the Order Ephemeroptera and 0.68 %drift/min for all of the species.

When the electroshocking-induced Trichoptera drift rate of 7.5 %drift/min (Table 3-1) is put into the Trichoptera regression equation, the DO is 0.90 mg/L. When the electroshocking-induced drift rates for Ephemeroptera (11 %drift/min), Diptera (5.2 %drift/min) and all species (6.5 %drift/min) (Table 3-1) are put into their respective regression equations, the DO values are all negative. Therefore the electroshocking simulated a DO close to zero for Ephemeroptera, Diptera and all species. The electroshocking-induced drift rates for Ephemeroptera, Diptera and all species are higher than the drift rates caused by minimum DO in the regression equations. This shows that the ecological impact of electroshocking on

Ephemeroptera, Diptera and all species is stronger than the impact of a low DO event.

The linear regression equation for all species is improved when DO is less than 5 mg/L. This is exemplified by both the Ephemeroptera dataset (Fig. 3-10) and more generally by the dataset as a whole (Fig. 3-14). This shows that benthic invertebrate species are significantly affected by low DO at approximately the acute guideline (5 mg/L). This verifies the government of Alberta acute DO guideline (5 mg/L) for the protection of aquatic life in northern rivers.

The Diptera regression that used DO level as the independent variable was weak ( $R^2 = 0.24$ ) and was significantly improved ( $R^2 = 0.39$ ) with the addition of quadratic terms for temperature. The regression equations with two independent variables for Diptera and all species include quadratic temperature terms. Also the strongest independent variable that affected the drift rate for the other benthic invertebrate species was temperature in a quadratic relationship ( $R^2 = 0.19$ ). Therefore temperature affects non-EPT benthic invertebrates in a quadratic relationship. There is an optimal temperature, and if the temperature is increased or decreased from the optimal temperature the drift rate exponentially increases. This optimal temperature for the Order Diptera was approximately 6.6 °C, and for all of the benthic invertebrate species was approximately 6.3 °C. Increasing temperature has been shown to exponentially increase benthic invertebrate drift rate (Pearson and Franklin 1968; Brittain and Eikeland 1988). However, most of the studies that showed this were done in rivers with water temperatures above the optimal temperature, so the decrease in drift rate from increasing temperatures

below the optimal temperature was not observed. Also all studies were done in rivers, where the correlation between temperature and DO could not be removed like was done in this study. Therefore, when the temperatures decreased (below the optimal temperature), the DO increased and the high DO was a stronger influence than the low temperature in overall decreasing the drift rate. Therefore the drift rate increased as temperature increased over the entire temperature range, even below the optimal temperature.

The effect of lowering DO on the drift rate of benthic invertebrates of the Order Ephemeroptera follows no pattern for the entire DO scale (non-significant regression) (Fig. 3-8). There is a maximum ecological impact of 1.6 % drift/min over the entire DO range for the Order Ephemeroptera. For DO<5 mg/L (significant regression) there is a maximum ecological impact of 8.1 % drift/min. The ecological impact of lowering DO for the Order Diptera is an insignificant linear increase in Diptera drift rate to a maximum impact of approximately 0.47 % drift/min at 0 mg/L DO. A maximum ecological impact of 0.47 % drift/min for the entire DO scale is very weak. For the Order Trichoptera, the ecological impact on the drift rate linearly increases to a maximum impact of 5.2 % drift/min at 0 mg/L DO. For all species of benthic invertebrates, the ecological impact on the drift rate linearly increases from 5 mg/L to 0 mg/L to a maximum impact of 0.96% drift/min at 0 mg/L DO. The ecological impact of lowering DO is the most significant for Ephemeroptera and Trichoptera, the EPT Orders. The Orders Ephemeroptera (8.1 % drift/min increase) and Trichoptera (5.2 % drift/min increase) experience the strongest ecological impact for the entire DO scale. This

shows that the EPT taxa are more adversely affected by low DO compared to the Order Diptera and all benthic invertebrate species, as was shown by Munro and Taccogna (1994).

The ecological impacts predicted from the regression equations can be cautiously applied to the Athabasca River. However, the use of the regression equations as a benthic invertebrate drift model would have to be done with caution based on the  $R^2$  values of the regression equations. Although the regression equations give insight into the effect of DO and the other independent variables on benthic invertebrate drift rate, they require further development. The regression model for the effect of DO on the drift rate of the Order Plecoptera would need to be developed, possibly using a laboratory culture of benthic invertebrates of the Order Plecoptera. The  $R^2$  values of the regression equations could be improved in several ways. The regression models could be further improved by controlling for size of the benthic invertebrates. The length of the benthic invertebrates could be measured, or laboratory cultures of a particular benthic invertebrate size range could be used. The regression models could be further improved by measuring the impact of a larger temperature scale (>10  $^{\circ}$ C). Also the regression models could be further improved by measuring the impact of a larger velocity and turbulence scale. The experiment was run for a minimum Athabasca River winter velocity and turbulence range (Beak 1995). The effect of the entire Athabasca River velocity and turbulence range on the benthic invertebrate drift rate could be determined. The model would need to be verified using a second data set from a different site. All of these improvements would be

necessary before the regression equations could be used for a benthic invertebrate drift rate model.

# CONCLUSIONS

The drift rates of the Orders Diptera and Trichoptera are significantly affected by DO level. The drift rates of the Order Ephemeroptera and all species of benthic invertebrates are significantly affected by DO level for DO<5 mg/L. This verifies the government of Alberta acute DO guideline (5 mg/L) for the protection of aquatic life in northern rivers. The Orders Ephemeroptera and Trichoptera experienced the strongest ecological impact for the entire DO scale, showing that EPT Orders are more sensitive to low DO.

The regression equations in this study can be cautiously applied to the Athabasca River to determine ecological impacts of low DO. But the regression equations require improvement for the development of a benthic invertebrate drift rate model. A regression equation needs to be developed for the Order Plecoptera, and  $R^2$  values could be improved by controlling for the size of benthic invertebrates. The effect of larger temperature, velocity and turbulence ranges on benthic invertebrate drift rates needs to be measured. Also the model would need to be verified using a second data set from a different site.

| samples from the North Saskatene wan Niver. |             |             |             |              |  |  |  |
|---------------------------------------------|-------------|-------------|-------------|--------------|--|--|--|
| Order                                       | Reference   | Treatment   | Total Drift | Drift Rate   |  |  |  |
|                                             | Total Count | Total Count |             | (%drift/min) |  |  |  |
| Ephemeroptera                               | 692         | 305         | 387         | 11           |  |  |  |
| Plecoptera                                  | 6           | 4.7         | 1.3         | 4.4          |  |  |  |
| Trichoptera                                 | 276.5       | 173         | 103.5       | 7.5          |  |  |  |
| Diptera                                     | 4757        | 3517        | 1240        | 5.2          |  |  |  |
| Other Species                               | 985         | 563         | 422         | 8.6          |  |  |  |
| Total Species                               | 3282        | 2215        | 1067        | 6.5          |  |  |  |

 TABLE 3-1 Descriptive parameters for the electroshocking and reference samples from the North Saskatchewan River.

| Order                                         | DO<br>coeffic | Tempera                    | Temper          | Turbule         | Shear | Consta<br>nt | $\mathbf{R}^2$ |  |
|-----------------------------------------------|---------------|----------------------------|-----------------|-----------------|-------|--------------|----------------|--|
|                                               | ient          | squared<br>coefficie<br>nt | coeffici<br>ent | coeffici<br>ent | ent   | iit          |                |  |
| Ephemeropte<br>ra (turb)                      | N/A           | N/A                        | N/A             | 0.016           | N/A   | 28           | 0.21           |  |
| Ephemeropte<br>ra (turb, DO)                  | 0.27          | N/A                        | N/A             | 0.018           | N/A   | 31           | 0.25           |  |
| Ephemeropte<br>ra<br>(DO)(DO<5<br>mg/L)       | -1.6          | N/A                        | N/A             | N/A             | N/A   | 9.1          | 0.34           |  |
| Ephemeropte<br>ra (turb,<br>DO)(DO<5<br>mg/L) | -1.5          | N/A                        | N/A             | 0.010           | N/A   | -12          | 0.39           |  |
| Trichoptera<br>(DO)                           | -0.52         | N/A                        | N/A             | N/A             | N/A   | 6.6          | 0.27           |  |
| Trichoptera<br>(DO, shear)                    | -0.52         | N/A                        | N/A             | N/A             | 1452  | -2.2         | 0.37           |  |
| Diptera (DO)                                  | -0.047        | N/A                        | N/A             | N/A             | N/A   | 0.53         | 0.24           |  |
| Diptera (DO,<br>temp)                         | -0.057        | 0.082                      | -1.1            | N/A             | N/A   | 4.0          | 0.39           |  |
| Total (DO,<br>temp)                           | -1.0          | 0.13                       | -1.6            | N/A             | N/A   | 6.2          | 0.33           |  |
| Total (DO)<br>(DO<5<br>mg/L)                  | -0.19         | N/A                        | N/A             | N/A             | N/A   | 1.4          | 0.23           |  |
| Total (DO,<br>temp) (DO<5<br>mg/L)            | -0.28         | 0.23                       | -3.0            | N/A             | N/A   | 11           | 0.37           |  |

TABLE 3-2 Summary of coefficients and R<sup>2</sup> values for the significant regression equations for the Orders Ephemeroptera, Trichoptera, Diptera, and total species.



FIGURE 3-1 Photo of the flume re-circulating system with the key components highlighted (flume wier adjustment, wier, water holding reservoir, flume pump and flow meter), and some accessories to the experiment also highlighted (drift net, shovel, sampling bottles, and DO probe)



FIGURE 3-2 Schematic diagram of the flume re-circulating system with the key components highlighted (water holding reservoir, flume pump and flow meter), and some accessories to the experiment also highlighted (drift net, seine net, thermometer, artificial substrate, nalgene bottle and DO probe)



FIGURE 3-3 a) Close-up of the water holding reservoir, showing water entering from the flume and being pumped out by the flume pump. During the experiment sodium sulphite was added to the water holding reservoir and the water holding reservoir was mixed with a shovel; b) Close-up of the configuration of the seine net and drift net downstream of the artificial substrate, where the seine net blocks the entrance of the drift net when the experimental run is not occurring



FIGURE 3-4 a) The middle of the flume with the artificial substrate with the seine and drift net downstream and the thermometer and DO probe upstream. Below the flume runs the flume pump connected to a metal pipe that runs through the flow meter that is connected to a tube; b) Close-up of the flume pump connected to a metal pipe that runs through the flow meter



FIGURE 3-5 a) Side view of the section of artificial substrate in the middle of the flume with the thermometer and DO probe upstream and the seine and drift net downstream; b) Top view of the section of artificial substrate in the middle of the flume with the thermometer and DO probe upstream and the seine and drift net downstream. The drift net end with a nalgene bottle cap secured with duct tape is visible here



FIGURE 3-6 Photo of the dissecting microscope where replicates are analyzed. Replicates are incrementally placed in a gridded petri dish and analyzed under the dissecting microscope using a dissecting needle, and then incrementally placed in another 1L nalgene bottle after being analyzed. The Ephemeroptera, Plecoptera, Trichoptera, Diptera, other benthic invertebrate species and total benthic invertebrate species are identified using benthic invertebrate taxonomic keys and tallied in a notepad



FIGURE 3-7 a) Close-up of a typical increment of a replicate in the gridded petri dish. The gridded petri dish is placed under the dissecting microscope and each square of the grid is observed for benthic invertebrates, using the dissecting needle to move debris and benthic invertebrates if necessary b) Close-up of an increment with a large amount of debris and a large benthic invertebrate visible to the naked eye (*Pteronarcys* sp. of the Order Plecoptera)



FIGURE 3-8 The relationship between the independent variable DO (mg/L) and the dependent variable, drift rate (% drift/min) for the Order Ephemeroptera. Both the linear regression ( $R^2 = 0.012$ ) and the quadratic regression ( $R^2 = 0.071$ ) are insignificant



FIGURE 3-9 The relationship between the independent variable turbulence (Re) and the dependent variable, drift rate (% drift/min) for the Order Ephemeroptera. The linear regression ( $R^2 = 0.21$ ) is significant and the regression equation is shown



FIGURE 3-10 The relationship between the independent variable DO (mg/L) and the dependent variable, drift rate (% drift/min) for the Order Ephemeroptera. The linear regression is for DO<5 mg/L, because the DO sharply increases at DO=5 mg/L. The linear regression is significant ( $R^2 = 0.34$ ) and the regression equation is shown



FIGURE 3-11 The relationship between the independent variable DO (mg/L) and the dependent variable, drift rate (% drift/min) for the Order Trichoptera. The linear regression ( $R^2 = 0.27$ ) is significant



FIGURE 3-12 The relationship between the independent variable DO (mg/L) and the dependent variable, drift rate (% drift/min) for the Order Diptera. The linear regression ( $R^2 = 0.24$ ) is significant and the regression equation is shown



FIGURE 3-13 The relationship between the independent variable DO (mg/L) and the dependent variable, drift rate (% drift/min) for all of the benthic invertebrate species. The linear regression ( $R^2 = 0.17$ ) is not significant



FIGURE 3-14 The relationship between the independent variable DO (mg/L) and the dependent variable, drift rate (% drift/min) for all of the benthic invertebrate species. The linear regression is for DO<5 mg/L, because the DO sharply increases at DO=5 mg/L. The linear regression is significant ( $R^2 = 0.23$ ) and the regression equation is shown

#### LITERATURE CITED

- Alberta Environment (1990). Selected Methods for the Monitoring of Benthic Invertebrates in Alberta Rivers. Available from the website, http://environment.alberta.ca.
- Alberta Environment (1999). Surface Water Quality Guidelines for use in
  Alberta. Environmental Service, Environmental Sciences Division.
  Edmonton, AB. Available from the website, http://environment.alberta.ca.
- Alberta Environment (2004). Winter Zoobenthic Surveys at Grand Rapids, Athabasca River: Assessment of the Effects of ambient dissolved oxygen conditions. *Alberta Environment*, 03-1370-006.
- Allan J.D., A.S. Flecker, & M.L. McClintock. (1986). Diel epibenthic activity of mayfly nymphs, and its nonconcordance with behavioral drift. *Limnol. Oceanogr.*, 31: 1057-1065.
- Anger, K. (1977). Benthic invertebrates as indicators of organic pollution in the Western Baltic Sea. *Hydrobiologia*, 62: 245-254.
- Barton, B.A. & B.R. Taylor. (1996). Oxygen requirements of fishes in northern Alberta rivers with a general review of the adverse effects of low dissolved oxygen. *Water Qual. Res. J. Can.*, 31: 361–409.
- Beak Consultants Ltd. (1995). Effluent plume delineation study for Alberta Pacific Forest Industries Inc. *BEAK Reference*, 7.10610.1.
- Bisson, P.A. (1976). Increased invertebrate drift in an experimental stream caused by electrofishing. *J. Res. B. Can.*, 33: 1806–1808.

Brittain, J.E., T.J. Eikeland. (1988). Invertebrate drift - A review. *Hydrobiologia*,166: 77-93.

- Casey R.J. (1987). Diel periodicity in density of Ephemeroptera nymphs on stream substrata and the relationship with drift and selected abiotic factors.
   *Can. J. Zool.*, 65: 2945-2952.
- Chambers, P.A., A.R. Dale, G.J. Scrimgeour, & M.L. Bothwell. (2000). Nutrient enrichment of northern rivers in response to pulp mill and municipal discharges. J. Aqua. Eco. Stress Rec., 8: 53–66.
- Chambers, P.A., S. Brown, J.M Culp, R.B Lowell, & A. Pietroniro. (2000).
  Dissolved oxygen decline in ice-covered rivers of northern Alberta and its effects on aquatic biota. J. Aqua. Eco. Stress Rec., 8: 27–38.
- Chambers, P.A., J.M. Culp, N.E. Glozier, K.J. Cash, F.J. Wrona, & L. Noton.
  (2006). Northern Rivers Ecosystem Initiative: Nutrients and Dissolved
  Oxygen Issues and Impacts. *Env. Mon. Ass.*, 113: 117-141.
- Clifford H.F. (1991). *Aquatic Invertebrates of Alberta*. University of Alberta Press, Edmonton, Alberta.
- Culp, J.M., H.R. Hamilton, A.J. Sosiak & R.W. Davies. (1992). Longitudinal zonation of the biota and water quality of the Bow River system in Alberta, Canada. *In* C.D. Becker and D.A. Neitzel (eds), *Water Quality in North American River Systems*. Battelle Press, Columbus, Ohio.
- Culp, J.M., C.L. Podemski, K.J. Cash, & R.B. Lowell. (1996). Utility of fieldbased artificial streams for assessing effluent effects on riverine ecosystems. J. Aqua. Eco. Health, 5:117-124.

- Culp, J.M., C.L. Podemski, & K.J. Cash. (2000). Interactive effects of nutrients and contaminants from pulp mill effluents on riverine benthos. J. Aqua. Eco. Stress Rec., 8: 67–75.
- Culp, J.M., C.L. Podemski, K.J. Cash, & R.B. Lowell. (2000). A research strategy for using stream microcosms in ecotoxicology: integrating experiments at different levels of biological organization with field data. J. Aqua. Eco. Stress Rec., 7: 167–176.
- Elliot, J.M. & T.B. Bagenal. (1972). The effects of electrofishing on the invertebrates of a Lake District stream. *Oecologia*, 9: 1–11.
- Gibbons, W.N., K.R. Munkittrick, & W.D. Taylor. (1998). Monitoring aquatic environments receiving industrial effluents using small fish species 1: response of spoonhead sculpin (*Cottus ricei*) downstream of a bleached-kraft pulp mill. *Environ. Toxicol. Chem*, 17: 2227–2237.
- Goetsch P.A., & C.G. Palmer (1997). Salinity Tolerances of Selected
   Macroinvertebrates of the Sabie River, Kruger National Park, South
   Africa. Arch. Environ. Contam. Toxicol., 32: 32–41.
- Graesser A., & P.S. Lake. (1984). Diel changes in the benthos of stones and of drift in a southern Australian upland stream. *Hydrobiologia*, 111: 153-160.
- Kruzic, L.M., D.L. Scarnecchia, & B.B. Roper. (2005). Effects of electroshocking on macroinvertebrate drift in three cold water streams. *Hydrobiologia*, 539: 57–67.
- Lang, C. (2000). Zoobenthic diversity in two rivers of western Switzerland: the 1990-2000 trend. *Bull. Soc. Vaud. Sci. Nat.*, 87:1-14.

- Livingston, R.J. (2007). Phytoplankton bloom effects on a gulf estuary: water quality changes and biological response. *Eco. App.*, 17:S110-S128.
- Lowell, R.B., & J.M. Culp. (1999). Cumulative effects of multiple effluent and low dissolved oxygen stressors on mayflies at cold temperatures. *Can. J. Fish. Aquat. Sci*, 56: 1624–1630.
- Malard F., D. Galassi, M. Lafont, S. Doledec, & J.V. Ward. (2003). Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river. *Fresh. Biol.*, 48: 1709-1725.
- McMaster, M.E., M.S. Evans, M. Alaee, D.C.G. Muir, & L.M. Hewitt. (2006).
  Northern Rivers Ecosystem Initiative: Distribution and Effects of
  Contaminants. *Env. Mon. Ass.*, 113: 143-165.
- Merritt R.W., K.W. Cummins, & M.B. Berg. (2008). An Introduction to the Aquatic Insects of North America, 4<sup>th</sup> ed. Kendall/Hunt Publishing Co., Dubuque, Iowa.
- Minshall, G.W., & D.A. Andrews. (1972). An ecological investigation of the Portneuf River, Idaho: a semiarid-land stream subjected to pollution. *Fresh. Biol.*, 3:1-30.
- Munro, K., & G. Taccogna. (1994). The streamkeepers' handbook: a practical guide to stream care. Canada Department of Fisheries and Oceans, Vancouver, British Columbia.

NCASI (National Council of the Paper Industry for Air and Stream

Improvement). (1989). Pulping effluents in the aquatic environment – Part II: a review of unpublished studies of in-stream aquatic biota in the vicinity of pulp mills. *NCASI Technical Bulletin*, No. 573.

- Noton, L.R., & D. Allan. (1994). Oxygen conditions in the Athabasca River system, with emphasis on winters 1990-93. Technical Services and Monitoring Division Alberta Environmental Protection. Available from the website, http://environment.alberta.ca.
- Pearson, W.D., & D.R. Franklin. (1968). Some Factors Affecting Drift Rates of Baetis and Simuliidae in a Large River. *Ecology*, 49:75-81.
- Rader R.B., & J.V. Ward. (1990). Diel migration and microhabitat distribution of a benthic stream assemblage. *Can. J. Fish. Aquat. Sci.*, 47: 711-718.
- Swanson, S.M., R. Schryer, R. Shelast, P. Kloepper-Sams, & J.W. Owens. (1994). Exposure of fish to biologically treated bleached kraft mill effluent. 3. Fish habitat and population assessment. *Environ. Toxicol. Chem*, 13: 1497–1507.
- Taylor, B.W., A.R. McIntosh, & B.L. Peckarsky. (2001). Sampling stream invertebrates using electroshocking techniques: implications for basic and applied research. *Can. J. Fish. Aquat. Sci.*, 58: 437–445.
- Wantzen, K.M. (2006). Physical pollution: effects of gully erosion on benthic invertebrates in a tropical clear-water stream. *Aquat. Con.: Mar. Fresh. Eco.*, 16: 733-749.
- Welch, E. B. (1992). Ecological Effects of Wastewater: Applied Limnology and Pollutant Effects. Chapman & Hall, London, UK.

Wrona, F.J., J.M. Culp, & R.W. Davies. (1982). Macroinvertebrate subsampling: a simplified apparatus and approach. *Can. J. Fish. Aquat. Sci.*, 39: 1051-1054.

# APPENDIX A

# BENTHIC INVERTEBRATE TALLIES AND DESCRIPTIVE STATISTICS FOR SAMPLES FROM THE C-BRIDGE EXPERIMENTAL SITE TAKEN OCTOBER 30, 2006 TO MAY 8, 2009

|                   |                         |                              |          |          |          |            |            |            | Mean | Mean  | Max |
|-------------------|-------------------------|------------------------------|----------|----------|----------|------------|------------|------------|------|-------|-----|
| Order             | Family                  | Genera (unless<br>noted)     | Ref<br>1 | Ref<br>2 | Ref<br>3 | Treat<br>1 | Treat<br>2 | Treat<br>3 | Ref  | Treat | Ref |
| Diptera           | Chironomidae            | SF Tanypondinae              | 27       | 13       | 23       | 5          | 10         |            | 21   | 8     | 27  |
|                   |                         | other<br>chironomids         | 31       | 89       | 69       | 22         | 13         | 7          | 63   | 14    | 89  |
|                   |                         | pupae                        | 1        | 1        |          |            |            |            |      |       |     |
|                   | Simuliidae              |                              | 1        |          |          |            |            |            |      |       |     |
|                   | Ceratopogonidae         |                              | 2        | 2        | 13       | 2          | 2          | 1          | 6    | 2     | 13  |
|                   | Empididae               |                              | 23       | 19       | 3        | 1          |            |            | 15   | 1     | 23  |
|                   | Tipulidae               |                              |          |          | 1        |            |            |            |      |       |     |
|                   | Dolichopodidae<br>(?)   |                              | 1        |          |          |            |            |            |      |       |     |
| Ephemeropter<br>a | imm.<br>Ephemeropterans |                              |          | 1        | 1        |            |            |            |      |       |     |
|                   | Heptageniidae           | imm. or dam.<br>Heptageniids | 13       | 18       | 21       | 14         | 9          | 4          | 17   | 9     | 21  |
|                   |                         | Stenonema                    | 6        | 6        | 16       | 3          | 3          | 2          | 9    | 3     | 16  |
|                   |                         | Heptagenia                   | 6        | 8        | 8        | 3          | 3          | 1          | 7    | 2     | 8   |
|                   |                         | Cinygma                      | 12       | 23       | 22       | 10         | 7          | 4          | 19   | 7     | 23  |
|                   |                         | Rithrogena                   |          |          | 21       | 4          | 4          |            | 21   | 4     | 21  |
|                   | Metretopodidae          | Siphloplecton                |          | 3        |          | 2          | 10         | 1          | 3    | 4     | 3   |
|                   | Leptophlebiidae         | Paraleptophlebia             |          | 1        |          | 6          |            |            | 1    | 6     | 1   |
|                   | Ephermerellidae         | imm.                         | 5        | 3        |          |            | 1          |            | 4    | 1     | 5   |
|                   | Siphloneuridae          | Parameletus                  |          |          | 5        | 2          | 1          | 2          | 5    | 2     | 5   |
|                   | Baetidae                | imm. or dam.<br>Baetids      | 7        | 5        | 10       | 3          | 2          |            | 7    | 3     | 10  |
|                   |                         | Centroptilum                 | 1        | 1        |          |            | 3          |            | 1    | 3     | 1   |
| Plecoptera        | imm.<br>Plecopterans    |                              | 14       | 5        | 3        | 3          | 7          | 3          | 7    | 4     | 14  |
|                   | Chloroperlidae          |                              | 4        |          | 7        | 1          |            |            | 6    | 1     | 7   |
|                   | Perlodidae              |                              | 7        | 3        | 2        | 1          | 1          |            | 4    | 1     | 7   |
| Trichoptera       | Hydrophychidae          | imm.<br>Hydropsychid         |          | 1        |          |            |            |            | 1    | 0     | 1   |
|                   |                         | Hydropsyche                  | 6        |          |          |            | 1          |            | 6    | 1     | 6   |
|                   | Lepidostomatida<br>e    | Lepidostoma                  |          |          |          | 1          |            |            | 0    | 1     | 0   |
|                   | Brachycentridae         | imm.                         | 1        |          |          |            |            |            | 1    | 0     | 1   |

 TABLE A1 Raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken October 30 to November 1, 2006, and descriptive statistics
| Hemiptera    | Corixidae  | dam. Corixid      |     | 3  |     |    |    |   | 3  | 0  | 3  |
|--------------|------------|-------------------|-----|----|-----|----|----|---|----|----|----|
|              |            | Callicorixa       | 116 | 53 | 74  | 34 | 59 | 7 | 81 | 33 | 49 |
|              |            | females           |     |    |     |    |    |   |    |    |    |
|              |            | Callicorixa males | 13  | 43 | 53  | 34 | 34 | 9 | 36 | 26 | 26 |
|              |            | Sigara females    |     |    |     | 2  |    |   | 0  | 2  | 0  |
|              |            | Sigara males      |     |    |     | 2  |    |   | 0  | 2  | 0  |
|              |            | Palmacorixa (?)   | 1   | 1  |     |    |    |   | 1  | 0  | 1  |
| Coleoptera   | Dytiscidae | Liodessus         |     |    |     |    | 1  |   | 0  | 1  | 1  |
| Odonata      | Gomphidae  | Ophiogomphus      | 1   | 1  | 1   |    | 1  |   | 1  | 1  | 1  |
| Amphipoda    |            | Hyalella azteca   | 1   |    |     |    |    |   | 1  | 0  | 1  |
| Oligochaeta  |            | Lumbriculidae     | 18  | 39 | 114 | 35 | 21 | 9 | 57 | 22 | 29 |
| Bivalvia     |            | Sphaeridae        | 3   | 6  | 2   |    |    |   | 4  | 0  | 4  |
| Ostracoda    |            |                   | 2   |    |     | 3  | 1  | 1 | 2  | 2  | 1  |
| Copepoda     |            |                   |     |    |     |    | 1  |   | 0  | 1  | 1  |
| Cladocera    |            | Daphnia           |     | 1  |     | 8  | 3  |   | 1  | 6  | 2  |
| Nematoda     |            |                   |     | 1  |     |    |    |   | 1  | 0  | 1  |
| Terrestrials |            |                   | 1   |    |     |    |    |   | 1  | 0  | 1  |

|              |                 |                          | Max   | Min | Min   | Mean     | Max      | Min      | Total | Total | Total     |
|--------------|-----------------|--------------------------|-------|-----|-------|----------|----------|----------|-------|-------|-----------|
| Order        | Family          | Genera (unless<br>noted) | Treat | Ref | Treat | trea/ref | trea/ref | trea/ref | ref   | treat | trea/ref% |
| Diptera      | Chironomidae    | SF Tanypondinae          | 10    | 13  | 5     | 36%      | 37%      | 38%      | 319   | 63    | 20        |
| <b>^</b>     |                 | other                    | 22    | 31  | 7     | 22%      | 25%      | 23%      |       |       |           |
|              |                 | chironomids              |       |     |       |          |          |          |       |       |           |
|              |                 | pupae                    |       |     |       |          |          |          |       |       |           |
|              | Simuliidae      |                          |       |     |       |          |          |          |       |       |           |
|              | Ceratopogonidae |                          | 2     | 2   | 1     | 29%      | 15%      | 50%      |       |       |           |
|              | Empididae       |                          | 1     | 3   | 1     | 7%       | 4%       | 33%      |       |       |           |
|              | Tipulidae       |                          |       |     |       |          |          |          |       |       |           |
|              | Dolichopodidae  |                          |       |     |       |          |          |          |       |       |           |
|              | (?)             |                          |       |     |       |          |          |          |       |       |           |
| Ephemeropter | imm.            |                          |       |     |       |          |          |          | 223   | 104   | 47        |
| а            | Ephemeropterans |                          |       |     |       |          |          |          |       |       |           |
|              | Heptageniidae   | imm. or dam.             | 14    | 13  | 4     | 52%      | 67%      | 31%      |       |       |           |
|              |                 | Heptageniids             |       |     |       |          |          |          |       |       |           |
|              |                 | Stenonema                | 3     | 6   | 2     | 29%      | 19%      | 33%      |       |       |           |
|              |                 | Heptagenia               | 3     | 6   | 1     | 32%      | 38%      | 17%      |       |       |           |
|              |                 | Cinygma                  | 10    | 12  | 4     | 37%      | 43%      | 33%      |       |       |           |
|              |                 | Rithrogena               | 4     | 21  | 4     | 19%      | 19%      | 19%      |       |       |           |
|              | Metretopodidae  | Siphloplecton            | 10    | 3   | 1     | 144%     | 333%     | 33%      |       |       |           |
|              | Leptophlebiidae | Paraleptophlebia         | 6     | 1   | 6     | 600%     | 600%     | 600%     |       |       |           |
|              | Ephermerellidae | imm.                     | 1     | 3   | 1     | 25%      | 20%      | 33%      |       |       |           |
|              | Siphloneuridae  | Parameletus              | 2     | 5   | 1     | 33%      | 40%      | 20%      |       |       |           |
|              | Baetidae        | imm. or dam.             | 3     | 5   | 2     | 34%      | 30%      | 40%      |       |       |           |
|              |                 | Baetids                  |       |     |       |          |          |          |       |       |           |
|              |                 | Centroptilum             | 3     | 1   | 3     | 300%     | 300%     | 300%     |       |       |           |
| Plecoptera   | imm.            |                          | 7     | 3   | 3     | 59%      | 50%      | 100%     | 45    | 16    | 36        |
|              | Plecopterans    |                          |       |     |       |          |          |          |       |       |           |
|              | Chloroperlidae  |                          | 1     | 4   | 1     | 18%      | 14%      | 25%      |       |       |           |
|              | Perlodidae      |                          | 1     | 2   | 1     | 25%      | 14%      | 50%      |       |       |           |
| Trichoptera  | Hydrophychidae  | imm.                     | 0     | 1   | 0     | 0%       | 0%       | 0%       | 8     | 2     | 25        |
|              |                 | Hydropsychid             |       |     |       |          |          |          |       |       |           |
|              |                 | Hydropsyche              | 1     | 6   | 1     | 17%      | 17%      | 17%      |       |       |           |
|              | Lepidostomatida | Lepidostoma              | 1     | 0   | 1     | 0%       | 0%       | 0%       |       |       |           |
|              | e               |                          |       |     |       |          |          |          |       |       |           |
|              | Brachycentridae | imm.                     | 0     | 1   | 0     | 0%       | 0%       | 0%       |       |       |           |

 TABLE A2 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken October 30 to November 1, 2006 (continued)

| Hemiptera    | Corixidae  | dam. Corixid      | 2  | 2  | 2  | 2  | 2          | 2  | 548  | 265 | 48 |
|--------------|------------|-------------------|----|----|----|----|------------|----|------|-----|----|
| _            |            | Callicorixa       | 40 | 54 | 41 | 48 | 45         | 48 |      |     |    |
|              |            | females           |    |    |    |    |            |    |      |     |    |
|              |            | Callicorixa males | 24 | 29 | 25 | 27 | 26         | 27 |      |     |    |
|              |            | Sigara females    | 1  | 1  | 1  | 1  | 1          | 1  |      |     |    |
|              |            | Sigara males      | 1  | 1  | 1  | 1  | 1          | 1  |      |     |    |
|              |            | Palmacorixa (?)   | 1  | 1  | 1  | 1  | 1          | 1  |      |     |    |
| Coleoptera   | Dytiscidae | Liodessus         | 1  | 1  | 1  | 1  | 1          | 1  |      |     |    |
| Odonata      | Gomphidae  | Ophiogomphus      | 1  | 1  | 1  | 1  | 1          | 1  |      |     |    |
| Amphipoda    |            | Hyalella azteca   | 1  | 1  | 1  | 1  | 1          | 1  |      |     |    |
| Oligochaeta  |            | Lumbriculidae     | 29 | 36 | 27 | 31 | 31         | 31 |      |     |    |
| Bivalvia     |            | Sphaeridae        | 2  | 2  | 2  | 3  | 2          | 2  |      |     |    |
| Ostracoda    |            |                   | 2  | 2  | 2  | 2  | 2          | 2  |      |     |    |
| Copepoda     |            |                   | 1  | 1  | 1  | 1  | 1          | 1  |      |     |    |
| Cladocera    |            | Daphnia           | 3  | 3  | 4  | 3  | 3          | 3  |      |     |    |
| Nematoda     |            |                   | 1  | 1  | 1  | 1  | 1          | 1  |      |     |    |
| Terrestrials |            |                   | 1  | 1  | 1  | 1  | 1          | 1  |      |     |    |
|              |            |                   |    |    |    |    | All Specie | s  | 1143 | 450 | 39 |
|              |            |                   |    |    |    |    |            |    |      |     |    |

|               |                  | Date         | Feb   | Feb   | Feb   | Feb   | Feb  | Feb  | Feb  | Feb  | Feb  | Feb  | Feb  | Feb  |
|---------------|------------------|--------------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|
|               |                  | collected:   | 2/07  | 2/07  | 2/07  | 2/07  | 2/07 | 2/07 | 3/07 | 3/07 | 3/07 | 3/07 | 3/07 | 3/07 |
| Order         | Family           | Genera       | AR    | AR    | AR    | AR    | AR   | AR   | AR   | AR   | AR   | AR   | AR   | AR   |
|               | -                | (unless      | Ref 1 | Ref 2 | Ref 3 | Ref 4 | DN   | DS   | TS 1 | TS2  | TS3  | TD1  | TD2  | TD3  |
|               |                  | noted)       |       |       |       |       |      |      |      |      |      |      |      |      |
| Diptera       | Chironomidae     | SF           | 50    | 31    | 37    | 33    | 2    | 1    | 25   | 26   | 21   | 22   | 36   | 19   |
|               |                  | Tanypondinae |       |       |       |       |      |      |      |      |      |      |      |      |
|               |                  | other        | 34    | 28    | 6     | 14    |      |      | 17   | 18   | 8    | 10   | 11   | 8    |
|               |                  | chironomids  |       |       |       |       |      |      |      |      |      |      |      |      |
|               | Simuliidae       |              | 2     |       | 1     | 3     | 15   | 8    |      |      | 2    |      |      |      |
|               | Empididae        |              | 16    | 16    | 13    | 14    |      |      | 3    | 4    | 8    | 14   | 18   | 9    |
|               | Dixidae          |              |       |       |       | 2     |      |      | 1    |      |      |      |      |      |
| Ephemeroptera |                  |              |       | 1     |       |       | 6    | 1    |      |      |      |      |      |      |
|               | Heptageniidae    |              | 4     | 1     | 3     | 1     | 8    | 3    |      | 1    | 1    | 2    | 6    | 1    |
|               |                  | Stenonema    | 3     |       |       |       | 1    |      |      |      |      |      | 2    |      |
|               |                  | Heptagenia   | 7     |       |       |       |      |      |      |      |      |      |      |      |
|               |                  | Rithrogena   | 6     |       | 3     | 2     | 1    | 1    |      | 1    |      |      | 1    |      |
|               | Leptophlebiidae  |              | 2     |       |       |       |      |      |      |      | 2    |      |      |      |
|               | Ephemerellidae   |              | 5     |       | 6     | 1     |      |      |      |      |      | 3    | 7    |      |
|               |                  | Ephemerella  |       |       |       |       |      |      |      |      |      | 3    | 2    |      |
|               | Baetidae         |              | 18    | 1     | 10    |       | 11   |      |      | 6    | 6    | 2    | 6    | 1    |
|               |                  | Baetis       | 3     | 2     |       | 2     | 8    | 10   |      |      |      |      |      |      |
| Plecoptera    |                  |              | 14    | 3     | 5     | 5     | 19   | 6    |      | 1    | 4    | 2    | 1    | 3    |
|               | Chloroperlidae   |              | 4     | 1     | 1     |       | 2    | 3    |      | 2    | 1    | 1    | 2    | 2    |
|               | Perlodidae       |              | 7     | 1     | 1     | 1     | 10   | 5    |      |      |      | 1    | 2    |      |
|               |                  | Isogenoides  |       |       | 1     |       |      | 1    |      |      |      |      |      |      |
|               |                  | Isoperla     |       |       |       |       |      |      |      |      |      |      |      |      |
|               | Taeniopterygidae |              |       |       | 6     | 1     | 14   | 8    |      | 1    |      |      | 1    |      |
|               |                  | Oemopteryx   | 2     |       |       |       | 2    | 4    |      |      |      |      |      |      |
|               | Nemouridae       |              | 5     |       |       |       |      |      |      |      |      |      |      |      |
| Trichoptera   |                  |              | 1     |       |       | 1     | 3    | 1    |      | 2    |      |      | 2    | 1    |
|               | Hydropsychidae   |              |       |       |       |       |      |      |      |      |      | 1    |      |      |
|               |                  | Hydropsyche  | 24    | 11    | 64    | 44    | 2    | 6    | 10   | 6    | 5    | 31   | 35   | 39   |
|               | Psychomyiidae    | Psychomyia   |       |       | 1     | 1     |      |      | 1    | 1    |      | 2    |      | 2    |
|               | Glossosomatidae  |              |       |       | 1     |       |      |      | 1    | 3    |      | 1    |      | 1    |
|               | Brachycentridae  |              |       |       |       |       |      |      | 1    |      |      | 1    |      |      |
|               | Rhyacophilidae   | Rhyacophila  | 1     |       |       |       |      |      | 1    |      |      | 1    |      |      |
| Oligochaeta   | Lumbriculidae    |              | 5     | 8     |       | 3     |      |      | 1    | 3    | 1    |      | 1    | 1    |

 TABLE A3 Raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken February 3, 2007

| Bivalvia     | Sphaeridae |           | 5 | 1 | 3 | 2 |   | 1 |   | 2 |   | 3 |
|--------------|------------|-----------|---|---|---|---|---|---|---|---|---|---|
| Gastropoda   |            |           |   |   |   |   |   | 1 | 2 |   |   |   |
|              | Ancyllidae | Ferrissia |   |   | 3 | 1 |   |   | 2 |   |   | 1 |
| Copepoda     |            |           |   |   |   |   | 1 |   |   |   |   |   |
| Nematoda     |            |           |   | 1 |   |   |   | 1 | 1 |   | 1 | 1 |
| Hydrachnidia |            |           |   |   |   | 2 |   |   |   |   |   |   |
| Hirundinea   |            |           |   |   |   |   |   |   |   |   |   | 1 |

|               |                  |                             | Mean | Mean | Mean | Max | Max | Max | Min | Min | Min | Mean   | Max    | Min    |
|---------------|------------------|-----------------------------|------|------|------|-----|-----|-----|-----|-----|-----|--------|--------|--------|
| Order         | Family           | Genera<br>(unless<br>noted) | ref  | TS   | TD   | ref | TS  | TD  | ref | TS  | TD  | TS/ref | TS/ref | TS/ref |
| Diptera       | Chironomidae     | SF<br>Tanypondinae          | 39   | 24   | 26   | 50  | 26  | 36  | 31  | 21  | 19  | 61%    | 52%    | 68%    |
|               |                  | other<br>chironomids        | 23   | 14   | 9.7  | 34  | 18  | 11  | 6   | 8   | 8   | 63%    | 53%    | 133%   |
|               | Simuliidae       |                             | 2    | 2    | 0    | 2   | 2   | 0   | 1   | 2   | 0   | 133%   | 100%   | 200%   |
|               | Empididae        |                             | 15   | 5    | 14   | 16  | 8   | 18  | 13  | 3   | 9   | 33%    | 50%    | 23%    |
|               | Dixidae          |                             | 0    | 1    | 0    | 0   | 1   | 0   | 0   | 1   | 0   | 0%     | 0%     | 0%     |
| Ephemeroptera |                  |                             | 1    | 0    | 0    | 1   | 0   | 0   | 1   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Heptageniidae    |                             | 3    | 1    | 3    | 4   | 1   | 6   | 1   | 1   | 1   | 38%    | 25%    | 100%   |
|               |                  | Stenonema                   | 3    | 0    | 2    | 3   | 0   | 2   | 3   | 0   | 2   | 0%     | 0%     | 0%     |
|               |                  | Heptagenia                  | 7    | 0    | 0    | 7   | 0   | 0   | 7   | 0   | 0   | 0%     | 0%     | 0%     |
|               |                  | Rithrogena                  | 5    | 1    | 1    | 6   | 1   | 1   | 3   | 1   | 1   | 22%    | 17%    | 33%    |
|               | Leptophlebiidae  |                             | 2    | 2    | 0    | 2   | 2   | 0   | 2   | 2   | 0   | 100%   | 100%   | 100%   |
|               | Ephemerellidae   |                             | 6    | 0    | 5    | 6   | 0   | 7   | 5   | 0   | 3   | 0%     | 0%     | 0%     |
|               |                  | Ephemerella                 | 0    | 0    | 2.5  | 0   | 0   | 3   | 0   | 0   | 2   | 0%     | 0%     | 0%     |
|               | Baetidae         |                             | 10   | 6    | 3    | 18  | 6   | 6   | 1   | 6   | 1   | 62%    | 33%    | 600%   |
|               |                  | Baetis                      | 3    | 0    | 0    | 3   | 0   | 0   | 2   | 0   | 0   | 0%     | 0%     | 0%     |
| Plecoptera    |                  |                             | 7    | 3    | 2    | 14  | 4   | 3   | 3   | 1   | 1   | 34%    | 29%    | 33%    |
|               | Chloroperlidae   |                             | 2    | 2    | 1.7  | 4   | 2   | 2   | 1   | 1   | 1   | 75%    | 50%    | 100%   |
|               | Perlodidae       |                             | 3    | 0    | 1.5  | 7   | 0   | 2   | 1   | 0   | 1   | 0%     | 0%     | 0%     |
|               |                  | Isogenoides                 | 1    | 0    | 0    | 1   | 0   | 0   | 1   | 0   | 0   | 0%     | 0%     | 0%     |
|               |                  | Isoperla                    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Taeniopterygidae |                             | 6    | 1    | 1    | 6   | 1   | 1   | 6   | 1   | 1   | 17%    | 17%    | 17%    |
|               |                  | Oemopteryx                  | 2    | 0    | 0    | 2   | 0   | 0   | 2   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Nemouridae       |                             | 5    | 0    | 0    | 5   | 0   | 0   | 5   | 0   | 0   | 0%     | 0%     | 0%     |
| Trichoptera   |                  |                             | 1    | 2    | 1.5  | 1   | 2   | 2   | 1   | 2   | 1   | 200%   | 200%   | 200%   |
|               | Hydropsychidae   |                             | 0    | 0    | 1    | 0   | 0   | 1   | 0   | 0   | 1   | 0%     | 0%     | 0%     |
|               |                  | Hydropsyche                 | 33   | 7    | 35   | 64  | 10  | 39  | 11  | 5   | 31  | 21%    | 16%    | 45%    |
|               | Psychomyiidae    | Psychomyia                  | 1    | 1    | 2    | 1   | 1   | 2   | 1   | 1   | 2   | 100%   | 100%   | 100%   |
|               | Glossosomatidae  |                             | 1    | 3    | 1    | 1   | 3   | 1   | 1   | 3   | 1   | 300%   | 300%   | 300%   |
|               | Brachycentridae  |                             | 0    | 0    | 1    | 0   | 0   | 1   | 0   | 0   | 1   | 0%     | 0%     | 0%     |
|               | Rhyacophilidae   | Rhyacophila                 | 1    | 0    | 0    | 1   | 0   | 0   | 1   | 0   | 0   | 0%     | 0%     | 0%     |
| Oligochaeta   | Lumbriculidae    |                             | 7    | 2    | 1    | 8   | 3   | 1   | 5   | 1   | 1   | 26%    | 38%    | 20%    |

TABLE A4 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken February 3, 2007 (continued)

| Bivalvia     | Sphaeridae |           | 3 | 2 | 3 | 5 | 2 | 3 | 1 | 1 | 3 | 50%  | 40%  | 100% |
|--------------|------------|-----------|---|---|---|---|---|---|---|---|---|------|------|------|
| Gastropoda   |            |           | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0%   | 0%   | 0%   |
|              | Ancyllidae | Ferrissia | 3 | 2 | 1 | 3 | 2 | 1 | 3 | 2 | 1 | 67%  | 67%  | 67%  |
| Copepoda     |            |           | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0%   | 0%   | 0%   |
| Nematoda     |            |           | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | 100% | 100% |
| Hydrachnidia |            |           | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0%   | 0%   | 0%   |
| Hirundinea   |            |           | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0%   | 0%   | 0%   |

|             |                  |                | <u> </u> | .,   | . (  | T ( 1 |       | TT (1 | D '6  | C 1    | TT (1 | TT ( 1 | T ( 1 | T ( 1   |
|-------------|------------------|----------------|----------|------|------|-------|-------|-------|-------|--------|-------|--------|-------|---------|
|             |                  |                | Mean     | Max  | Min  | Total | Total | Total | Drift | Surber | Total | Total  | Total | Total   |
| Order       | Family           | Genera         | TD/re    | TD/r | TD/r | Ref   | TS    | TD    | (ind/ | (ind/  | Drift | TS/ref | TD/re | Drift/r |
|             |                  | (unless noted) | f        | ef   | ef   |       |       | 1     | m2    | m2/    |       | %      | f%    | ef%     |
|             |                  |                |          |      |      |       |       |       | /day  | day)   |       |        |       |         |
|             |                  |                |          |      |      |       |       |       | )     |        |       |        |       |         |
| Diptera     | Chironomidae     | SF             | 65%      | 72%  | 61%  | 234   | 103   | 147   | 14    | 11     | 119   | 44     | 63    | 51      |
| _           |                  | Tanypondinae   |          |      |      |       |       |       |       |        |       |        |       |         |
|             |                  | other          | 43%      | 32%  | 133  |       |       |       | 0     | 0      |       |        |       |         |
|             |                  | chironomids    |          |      | %    |       |       |       |       |        |       |        |       |         |
|             | Simuliidae       |                | 0%       | 0%   | 0%   |       |       |       | 105   | 89     |       |        |       |         |
|             | Empididae        |                | 91%      | 113  | 69%  |       |       |       | 0     | 0      |       |        |       |         |
|             | Emplaidue        |                | 11/0     | %    | 0770 |       |       |       | Ŭ     | Ŭ      |       |        |       |         |
|             | Dividae          |                | 0%       | 0%   | 0%   |       |       |       | 0     | 0      |       |        |       |         |
| Enhamanan   | Dixidae          |                | 0%       | 070  | 070  | 75    | 17    | 26    | 42    | 11     | 245   | 22     | 10    | 207     |
| Ephemerop   |                  |                | 0%       | 0%   | 0%   | 15    | 17    | 50    | 42    | 11     | 243   | 25     | 48    | 527     |
| tera        | TT / ''1         |                | 1120/    | 150  | 100  |       | -     | -     | 50    | 22     |       |        |       |         |
|             | Heptageniidae    |                | 113%     | 150  | 100  |       |       |       | 56    | 33     |       |        |       |         |
|             |                  | <i>a</i> .     | 67.07    | %    | %    |       |       |       | -     | 0      |       | -      |       |         |
|             |                  | Stenonema      | 67%      | 67%  | 67%  |       |       |       | 7     | 0      |       |        |       |         |
|             |                  | Heptagenia     | 0%       | 0%   | 0%   |       |       |       | 0     | 0      |       |        |       |         |
|             |                  | Rithrogena     | 22%      | 17%  | 33%  |       |       |       | 7     | 11     |       |        |       |         |
|             | Leptophlebiidae  |                | 0%       | 0%   | 0%   |       |       |       | 0     | 0      |       |        |       |         |
|             | Ephemerellidae   |                | 91%      | 117  | 60%  |       |       |       | 0     | 0      |       |        |       |         |
|             | -                |                |          | %    |      |       |       |       |       |        |       |        |       |         |
|             |                  | Ephemerella    | 0%       | 0%   | 0%   |       |       |       | 0     | 0      |       |        |       |         |
|             | Baetidae         | 1              | 31%      | 33%  | 100  |       |       |       | 77    | 0      |       |        |       |         |
|             |                  |                |          |      | %    |       |       |       |       |        |       |        |       |         |
|             |                  | Baetis         | 0%       | 0%   | 0%   |       |       |       | 56    | 111    |       |        |       |         |
| Plecoptera  |                  |                | 2.7%     | 21%  | 33%  | 51    | 9     | 15    | 133   | 67     | 330   | 18     | 29    | 646     |
| Theopheria  | Chloroperlidae   |                | 83%      | 50%  | 100  | 01    | ĺ.    | 10    | 14    | 33     | 220   | 10     | _>    | 0.0     |
|             | Chioropernaue    |                | 0570     | 5070 | %    |       |       |       | 11    | 55     |       |        |       |         |
|             | Darladidaa       |                | 50%      | 2004 | 100  |       |       |       | 70    | 56     |       |        |       |         |
|             | Teriouldae       |                | 50%      | 2970 | 100  |       |       |       | 70    | 50     |       |        |       |         |
|             |                  | Isogonoidas    | 004      | 00/  | 70   |       |       |       | 0     | 11     |       |        |       |         |
|             |                  | Isogenoides    | 0%       | 0%   | 0%   |       |       |       | 0     | 11     |       |        |       |         |
|             | <b>—</b> • • • • | Isoperia       | 0%       | 0%   | 0%   |       |       |       | 0     | 0      |       |        |       |         |
|             | Taeniopterygidae |                | 17%      | 17%  | 17%  |       |       |       | 98    | 89     |       |        |       |         |
| -           |                  | Oemopteryx     | 0%       | 0%   | 0%   |       |       |       | 14    | 44     |       |        |       |         |
|             | Nemouridae       |                | 0%       | 0%   | 0%   |       |       |       | 0     | 0      |       |        |       |         |
| Trichoptera |                  |                | 150%     | 200  | 100  | 103   | 28    | 115   | 21    | 11     | 35    | 27     | 112   | 34      |

TABLE A5 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken February 3, 2007 (continued)

|             | 1               |             |      | -      |       |     |     |     |    |    |     |    |    |     |
|-------------|-----------------|-------------|------|--------|-------|-----|-----|-----|----|----|-----|----|----|-----|
|             |                 |             |      | %      | %     |     |     |     |    |    |     |    |    |     |
|             | Hydropsychidae  |             | 0%   | 0%     | 0%    |     |     |     | 0  | 0  |     |    |    |     |
|             |                 | Hydropsyche | 106% | 61%    | 282   |     |     |     | 14 | 67 |     |    |    |     |
|             |                 |             |      |        | %     |     |     |     |    |    |     |    |    |     |
|             | Psychomyiidae   | Psychomyia  | 200% | 200    | 200   |     |     |     | 0  | 0  |     |    |    |     |
|             |                 |             |      | %      | %     |     |     |     |    |    |     |    |    |     |
|             | Glossosomatidae |             | 100% | 100    | 100   |     |     |     | 0  | 0  |     |    |    |     |
|             |                 |             |      | %      | %     |     |     |     |    |    |     |    |    |     |
|             | Brachycentridae |             | 0%   | 0%     | 0%    |     |     |     | 0  | 0  |     |    |    |     |
|             | Rhyacophilidae  | Rhyacophila | 0%   | 0%     | 0%    |     |     |     | 0  | 0  |     |    |    |     |
| Oligochaeta | Lumbriculidae   |             | 15%  | 13%    | 20%   | 26  | 15  | 9   | 0  | 0  |     |    |    |     |
| Bivalvia    | Sphaeridae      |             | 100% | 60%    | 300   |     |     |     | 0  | 0  |     |    |    |     |
|             |                 |             |      |        | %     |     |     |     |    |    |     |    |    |     |
| Gastropoda  |                 |             | 0%   | 0%     | 0%    |     |     |     | 0  | 0  |     |    |    |     |
|             | Ancyllidae      | Ferrissia   | 33%  | 33%    | 33%   |     |     |     | 0  | 0  |     |    |    |     |
| Copepoda    |                 |             | 0%   | 0%     | 0%    |     |     |     | 7  | 0  |     |    |    |     |
| Nematoda    |                 |             | 100% | 100    | 100   |     |     |     | 0  | 0  |     |    |    |     |
|             |                 |             |      | %      | %     |     |     |     |    |    |     |    |    |     |
| Hydrachnid  |                 |             | 0%   | 0%     | 0%    |     |     |     | 0  | 0  |     |    |    |     |
| ia          |                 |             |      |        |       |     |     |     |    |    |     |    |    |     |
| Hirundinea  |                 |             | 0%   | 0%     | 0%    |     |     |     | 0  | 0  |     |    |    |     |
|             |                 |             |      | All Sp | ecies | 489 | 172 | 322 |    |    | 736 | 35 | 66 | 151 |
|             |                 |             |      | _      |       |     |     |     |    |    |     |    |    |     |
|             |                 |             |      |        |       |     |     |     |    |    |     |    |    |     |

|               |                  | Date collected: | Feb<br>9/07 |
|---------------|------------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Order         | Family           | Genera (unless  | AR          |
| Older         | 1 annry          | noted)          | Ref         | Ref         | Ref         | DN          | DS          | TS 1        | TS2         | TS3         | TD1         | TD2         | TD3         |
|               |                  |                 | 1           | 2           | 3           |             |             |             |             |             |             |             |             |
| Diptera       | Chironomidae     | SF              | 6           | 7           | 11          | 2           |             | 7           | 43          | 55          | 6           | 25          | 6           |
| 1             |                  | Tanypondinae    |             |             |             |             |             |             |             |             |             |             |             |
|               |                  | other           | 5           | 10          | 14          |             |             | 10          | 25          | 34          | 6           | 14          | 9           |
|               |                  | chironomids     |             |             |             |             |             |             |             |             |             |             |             |
|               | Simuliidae       |                 |             |             | 3           | 16          | 8           |             | 1           | 6           |             |             |             |
|               |                  | blackfly pupa   |             |             |             |             | 1           |             |             |             |             |             |             |
|               | Empididae        |                 | 6           | 3           | 6           |             |             | 2           | 8           | 13          | 5           | 13          | 1           |
|               | Dixidae          |                 |             |             |             |             |             |             |             | 1           |             |             |             |
|               | Ceratopogonidae  |                 |             |             |             |             |             |             | 1           |             |             |             |             |
| Ephemeroptera |                  |                 | 4           |             |             | 1           |             |             | 1           | 2           |             |             |             |
|               | Heptageniidae    |                 | 2           | 1           | 3           | 8           | 2           |             | 1           | 5           |             | 5           | 1           |
|               |                  | Stenonema       |             |             |             |             | 2           |             |             | 1           |             | 2           |             |
|               |                  | Rithrogena      | 1           | 2           | 2           | 3           | 2           |             |             | 3           |             | 1           |             |
|               |                  | Cinygma         |             |             | 1           |             |             |             |             | 1           |             | 4           |             |
|               | Leptophlebiidae  |                 |             |             |             |             | 1           |             |             |             |             |             |             |
|               | Ephemerellidae   |                 | 2           |             |             |             |             |             |             |             |             | 4           |             |
|               |                  | Ephemerella     |             |             | 2           |             |             |             | 4           |             |             |             |             |
|               | Baetidae         |                 | 3           | 3           | 8           | 17          | 14          | 1           | 9           | 5           | 1           | 1           |             |
|               |                  | Baetis          | 2           |             | 2           | 15          | 2           |             | 1           | 1           | 1           | 1           |             |
|               |                  | Centroptilum    |             |             | 1           | 1           |             |             |             |             |             |             |             |
|               | Metretopodidae   | Siphloplecton   |             |             |             | 2           |             |             |             |             |             |             |             |
|               | Oligoneuridae    | Isonychia       |             |             |             | 2           |             |             |             |             |             |             |             |
|               | Siphloneuridae   |                 |             |             |             |             |             | 1           |             |             |             |             |             |
|               |                  | Parameletus     |             |             |             |             |             |             |             | 2           |             |             |             |
| Plecoptera    |                  |                 | 8           | 1           | 1           | 32          | 26          | 1           | 1           | 7           |             | 1           |             |
|               | Chloroperlidae   |                 |             |             |             |             | 1           |             |             |             | 1           | 1           |             |
|               | Perlodidae       |                 | 1           | 1           |             | 7           | 9           | 2           |             | 1           |             |             |             |
|               |                  | Isogenoides     | 2           |             |             | 1           | 1           |             | 1           | 1           |             |             |             |
|               |                  | Isoperla        |             |             | 1           | 2           | 2           |             |             |             |             |             |             |
|               | Taeniopterygidae |                 |             | 1           |             | 1           | 3           |             | 1           | 1           |             |             |             |
|               |                  | Oemopteryx      |             |             | 1           | 9           | 4           |             | 1           |             |             |             |             |
|               |                  | Taenionema      |             |             |             | 9           | 1           |             |             |             |             |             |             |
|               | Nemouridae       |                 |             |             | 1           | 2           |             |             | 1           | 3           |             |             |             |

TABLE A6 Raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken February 9, 2007, and some descriptive statistics

|              | Capniidae       |               |    |   |    | 10 | 6 |   | 1  |    |   |    |   |
|--------------|-----------------|---------------|----|---|----|----|---|---|----|----|---|----|---|
|              | Leuctridae      |               |    |   |    | 1  |   |   |    |    |   |    |   |
| Trichoptera  |                 |               | 1  | 1 | 1  | 2  |   | 2 |    |    |   | 1  |   |
|              | Trichop pupa(e) |               |    |   |    |    |   |   |    |    |   |    | 1 |
|              | Hydropsychidae  |               |    |   | 1  |    |   |   | 10 | 1  |   |    | 2 |
|              |                 | Hydropsyche   | 21 | 9 | 35 | 6  | 3 | 8 | 30 | 35 | 5 | 52 | 9 |
|              | Psychomyiidae   | Psychomyia    | 1  |   | 1  | 1  |   |   | 1  | 1  |   |    |   |
|              | Glossosomatidae |               |    |   |    |    |   |   | 1  |    |   |    |   |
|              | Brachycentridae |               |    |   |    |    |   |   |    |    |   | 1  |   |
|              |                 | Brachycentrus |    |   | 1  |    |   |   | 1  | 1  |   | 2  |   |
| Odonata      | Gomphidae       | Ophiogomphus  |    |   |    |    |   |   |    | 2  |   |    |   |
| Hemiptera    | Corixidae       |               |    |   | 1  | 2  |   |   |    |    |   |    |   |
| Oligochaeta  | Lumbriculidae   |               | 2  | 1 | 2  | 2  |   | 1 | 4  | 5  |   | 2  | 3 |
| Bivalvia     | Sphaeridae      |               |    | 1 | 2  |    |   | 1 |    | 3  |   | 1  |   |
| Gastropoda   | Limnaidae       |               |    |   | 2  |    |   |   | 1  |    |   |    |   |
|              | Ancyllidae      | Ferrissia     |    | 1 |    |    |   |   | 2  |    |   |    |   |
| Hydrachnidia |                 |               |    |   |    |    |   |   |    |    | 1 |    |   |
| Nematoda     |                 |               |    | 1 | 1  |    |   | 1 |    | 1  | 1 | 1  |   |

|               |                  |                       | Mean | Mean | Mean | Max | Max | Max | Min | Min | Min | Mean   | Max    | Min    |
|---------------|------------------|-----------------------|------|------|------|-----|-----|-----|-----|-----|-----|--------|--------|--------|
| Order         | Family           | Genera (unless noted) | ref  | TS   | TD   | ref | TS  | TD  | ref | TS  | TD  | TS/ref | TS/ref | TS/ref |
| Diptera       | Chironomidae     | SF<br>Tanypondinae    | 8    | 35   | 12   | 11  | 55  | 25  | 6   | 7   | 6   | 438%   | 500%   | 117%   |
|               |                  | other<br>chironomids  | 10   | 23   | 9.7  | 14  | 34  | 14  | 5   | 10  | 6   | 238%   | 243%   | 200%   |
|               | Simuliidae       |                       | 3    | 4    | 0    | 3   | 6   | 0   | 3   | 1   | 0   | 117%   | 200%   | 33%    |
|               |                  | blackfly pupa         | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Empididae        |                       | 5    | 8    | 6.3  | 6   | 13  | 13  | 3   | 2   | 1   | 153%   | 217%   | 67%    |
|               | Dixidae          |                       | 0    | 1    | 0    | 0   | 1   | 0   | 0   | 1   | 0   | 0%     | 0%     | 0%     |
|               | Ceratopogonidae  |                       | 0    | 1    | 0    | 0   | 1   | 0   | 0   | 1   | 0   | 0%     | 0%     | 0%     |
| Ephemeroptera |                  |                       | 4    | 2    | 0    | 4   | 2   | 0   | 4   | 1   | 0   | 38%    | 50%    | 25%    |
|               | Heptageniidae    |                       | 2    | 3    | 3    | 3   | 5   | 5   | 1   | 1   | 1   | 150%   | 167%   | 100%   |
|               |                  | Stenonema             | 0    | 1    | 2    | 0   | 1   | 2   | 0   | 1   | 2   | 0%     | 0%     | 0%     |
|               |                  | Rithrogena            | 2    | 3    | 1    | 2   | 3   | 1   | 1   | 3   | 1   | 180%   | 150%   | 300%   |
|               |                  | Cinygma               | 1    | 1    | 4    | 1   | 1   | 4   | 1   | 1   | 4   | 100%   | 100%   | 100%   |
|               | Leptophlebiidae  |                       | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Ephemerellidae   |                       | 2    | 0    | 4    | 2   | 0   | 4   | 2   | 0   | 4   | 0%     | 0%     | 0%     |
|               |                  | Ephemerella           | 2    | 4    | 0    | 2   | 4   | 0   | 2   | 4   | 0   | 200%   | 200%   | 200%   |
|               | Baetidae         |                       | 5    | 5    | 1    | 8   | 9   | 1   | 3   | 1   | 1   | 107%   | 113%   | 33%    |
|               |                  | Baetis                | 2    | 1    | 1    | 2   | 1   | 1   | 2   | 1   | 1   | 50%    | 50%    | 50%    |
|               |                  | Centroptilum          | 1    | 0    | 0    | 1   | 0   | 0   | 1   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Metretopodidae   | Siphloplecton         | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Oligoneuridae    | Isonychia             | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Siphloneuridae   |                       | 0    | 1    | 0    | 0   | 1   | 0   | 0   | 1   | 0   | 0%     | 0%     | 0%     |
|               |                  | Parameletus           | 0    | 2    | 0    | 0   | 2   | 0   | 0   | 2   | 0   | 0%     | 0%     | 0%     |
| Plecoptera    |                  |                       | 3    | 3    | 1    | 8   | 7   | 1   | 1   | 1   | 1   | 90%    | 88%    | 100%   |
|               | Chloroperlidae   |                       | 0    | 0    | 1    | 0   | 0   | 1   | 0   | 0   | 1   | 0%     | 0%     | 0%     |
|               | Perlodidae       |                       | 1    | 2    | 0    | 1   | 2   | 0   | 1   | 1   | 0   | 150%   | 200%   | 100%   |
|               |                  | Isogenoides           | 2    | 1    | 0    | 2   | 1   | 0   | 2   | 1   | 0   | 50%    | 50%    | 50%    |
|               |                  | Isoperla              | 1    | 0    | 0    | 1   | 0   | 0   | 1   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Taeniopterygidae |                       | 1    | 1    | 0    | 1   | 1   | 0   | 1   | 1   | 0   | 100%   | 100%   | 100%   |
|               |                  | Oemopteryx            | 1    | 1    | 0    | 1   | 1   | 0   | 1   | 1   | 0   | 100%   | 100%   | 100%   |
|               |                  | Taenionema            | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Nemouridae       |                       | 1    | 2    | 0    | 1   | 3   | 0   | 1   | 1   | 0   | 200%   | 300%   | 100%   |
|               | Capniidae        |                       | 0    | 1    | 0    | 0   | 1   | 0   | 0   | 1   | 0   | 0%     | 0%     | 0%     |
|               | Leuctridae       |                       | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |

TABLE A7 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken February 9, 2007 (continued)

| Trichoptera  |                 |               | 1  | 2  | 1   | 1  | 2  | 1  | 1 | 2 | 1 | 200% | 200%  | 200% |
|--------------|-----------------|---------------|----|----|-----|----|----|----|---|---|---|------|-------|------|
| *            | Trichop pupa(e) |               | 0  | 0  | 1   | 0  | 0  | 1  | 0 | 0 | 1 | 0%   | 0%    | 0%   |
|              | Hydropsychidae  |               | 1  | 6  | 2   | 1  | 10 | 2  | 1 | 1 | 2 | 550% | 1000% | 100% |
|              |                 | Hydropsyche   | 22 | 24 | 22  | 35 | 35 | 52 | 9 | 8 | 5 | 112% | 100%  | 89%  |
|              | Psychomyiidae   | Psychomyia    | 1  | 1  | 0   | 1  | 1  | 0  | 1 | 1 | 0 | 100% | 100%  | 100% |
|              | Glossosomatidae |               | 0  | 1  | 0   | 0  | 1  | 0  | 0 | 1 | 0 | 0%   | 0%    | 0%   |
|              | Brachycentridae |               | 0  | 0  | 1   | 0  | 0  | 1  | 0 | 0 | 1 | 0%   | 0%    | 0%   |
|              |                 | Brachycentrus | 1  | 1  | 2   | 1  | 1  | 2  | 1 | 1 | 2 | 100% | 100%  | 100% |
| Odonata      | Gomphidae       | Ophiogomphus  | 0  | 2  | 0   | 0  | 2  | 0  | 0 | 2 | 0 | 0%   | 0%    | 0%   |
| Hemiptera    | Corixidae       |               | 1  | 0  | 0   | 1  | 0  | 0  | 1 | 0 | 0 | 0%   | 0%    | 0%   |
| Oligochaeta  | Lumbriculidae   |               | 2  | 3  | 2.5 | 2  | 5  | 3  | 1 | 1 | 2 | 200% | 250%  | 100% |
| Bivalvia     | Sphaeridae      |               | 2  | 2  | 1   | 2  | 3  | 1  | 1 | 1 | 1 | 133% | 150%  | 100% |
| Gastropoda   | Limnaidae       |               | 2  | 1  | 0   | 2  | 1  | 0  | 2 | 1 | 0 | 50%  | 50%   | 50%  |
|              | Ancyllidae      | Ferrissia     | 1  | 2  | 0   | 1  | 2  | 0  | 1 | 2 | 0 | 200% | 200%  | 200% |
| Hydrachnidia |                 |               | 0  | 0  | 1   | 0  | 0  | 1  | 0 | 0 | 1 | 0%   | 0%    | 0%   |
| Nematoda     |                 |               | 1  | 1  | 1   | 1  | 1  | 1  | 1 | 1 | 1 | 100% | 100%  | 100% |

|         | <b>^</b>         |                | Mean  | Max    | Min    | Total | Total | Total | Drift | Surber | Total | Total  | Total | Total     |
|---------|------------------|----------------|-------|--------|--------|-------|-------|-------|-------|--------|-------|--------|-------|-----------|
| Order   | Family           | Genera         | TD/re | TD/ref | TD/ref | Ref   | TS    | TD    | (ind/ | (ind/m | Drift | TS/ref | TD/re | Drift/ref |
|         |                  | (unless noted) | f     |        |        |       |       |       | m2/da | 2/day) |       | %      | f%    | %         |
|         |                  |                |       |        |        |       |       |       | y)    |        |       |        |       |           |
| Diptera | Chironomidae     | SF             | 154%  | 227%   | 100%   | 71    | 206   | 85    | 14    | 0      | 126   | 290    | 120   | 178       |
| -       |                  | Tanypondinae   |       |        |        |       |       |       |       |        |       |        |       |           |
|         |                  | other          | 100%  | 100%   | 120%   |       |       |       | 0     | 0      |       |        |       |           |
|         |                  | chironomids    |       |        |        |       |       |       |       |        |       |        |       |           |
|         | Simuliidae       |                | 0%    | 0%     | 0%     |       |       |       | 112   | 89     |       |        |       |           |
|         |                  | blackfly pupa  | 0%    | 0%     | 0%     |       |       |       | 0     | 11     |       |        |       |           |
|         | Empididae        |                | 127%  | 217%   | 33%    |       |       |       | 0     | 0      |       |        |       |           |
|         | Dixidae          |                | 0%    | 0%     | 0%     |       |       |       | 0     | 0      |       |        |       |           |
|         | Ceratopogonidae  |                | 0%    | 0%     | 0%     |       |       |       | 0     | 0      |       |        |       |           |
| Ephem   |                  |                | 0%    | 0%     | 0%     | 39    | 38    | 19    | 7     | 0      | 344   | 97     | 49    | 881       |
| eropter |                  |                |       |        |        |       |       |       |       |        |       |        |       |           |
| а       |                  |                |       |        |        |       |       |       |       |        |       |        |       |           |
|         | Heptageniidae    |                | 150%  | 167%   | 100%   |       |       |       | 56    | 22     |       |        |       |           |
|         |                  | Stenonema      | 0%    | 0%     | 0%     |       |       |       | 0     | 22     |       |        |       |           |
|         |                  | Rithrogena     | 60%   | 50%    | 100%   |       |       |       | 21    | 22     |       |        |       |           |
|         |                  | Cinygma        | 400%  | 400%   | 400%   |       |       |       | 0     | 0      |       |        |       |           |
|         | Leptophlebiidae  |                | 0%    | 0%     | 0%     |       |       |       | 0     | 11     |       |        |       |           |
|         | Ephemerellidae   |                | 200%  | 200%   | 200%   |       |       |       | 0     | 0      |       |        |       |           |
|         |                  | Ephemerella    | 0%    | 0%     | 0%     |       |       |       | 0     | 0      |       |        |       |           |
|         | Baetidae         |                | 21%   | 13%    | 33%    |       |       |       | 119   | 156    |       |        |       |           |
|         |                  | Baetis         | 50%   | 50%    | 50%    |       |       |       | 105   | 22     |       |        |       |           |
|         |                  | Centroptilum   | 0%    | 0%     | 0%     |       |       |       | 7     | 0      |       |        |       |           |
|         | Metretopodidae   | Siphloplecton  | 0%    | 0%     | 0%     |       |       |       | 14    | 0      |       |        |       |           |
|         | Oligoneuridae    | Isonychia      | 0%    | 0%     | 0%     |       |       |       | 14    | 0      |       |        |       |           |
|         | Siphloneuridae   |                | 0%    | 0%     | 0%     |       |       |       | 0     | 0      |       |        |       |           |
|         |                  | Parameletus    | 0%    | 0%     | 0%     |       |       |       | 0     | 0      |       |        |       |           |
| Plecopt |                  |                | 30%   | 13%    | 100%   | 18    | 20    | 2     | 224   | 289    | 519   | 111    | 11    | 2883      |
| era     |                  |                |       |        |        |       |       |       |       |        |       |        |       |           |
|         | Chloroperlidae   |                | 0%    | 0%     | 0%     |       |       |       | 0     | 11     |       |        |       |           |
|         | Perlodidae       |                | 0%    | 0%     | 0%     |       |       |       | 49    | 100    |       |        |       |           |
|         |                  | Isogenoides    | 0%    | 0%     | 0%     |       |       |       | 7     | 11     |       |        |       |           |
|         |                  | Isoperla       | 0%    | 0%     | 0%     |       |       |       | 14    | 22     |       |        |       |           |
|         | Taeniopterygidae |                | 0%    | 0%     | 0%     |       |       |       | 7     | 33     |       |        |       |           |
|         |                  | Oemopteryx     | 0%    | 0%     | 0%     |       |       |       | 63    | 44     |       |        |       |           |

TABLE A8 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken February 9, 2007 (continued)

|         |                 | Taenionema    | 0%    | 0%       | 0%    |     |     |     | 63 | 11 |      |     |    |     |
|---------|-----------------|---------------|-------|----------|-------|-----|-----|-----|----|----|------|-----|----|-----|
|         | Nemouridae      |               | 0%    | 0%       | 0%    |     |     |     | 14 | 0  |      |     |    |     |
|         | Capniidae       |               | 0%    | 0%       | 0%    |     |     |     | 70 | 67 |      |     |    |     |
|         | Leuctridae      |               | 0%    | 0%       | 0%    |     |     |     | 7  | 0  |      |     |    |     |
| Tricho  |                 |               | 100%  | 100%     | 100%  | 72  | 86  | 68  | 14 | 0  | 63   | 119 | 94 | 88  |
| ptera   |                 |               |       |          |       |     |     |     |    |    |      |     |    |     |
|         | Trichop pupa(e) |               | 0%    | 0%       | 0%    |     |     |     | 0  | 0  |      |     |    |     |
|         | Hydropsychidae  |               | 200%  | 200%     | 200%  |     |     |     | 0  | 0  |      |     |    |     |
|         |                 | Hydropsyche   | 102%  | 149%     | 56%   |     |     |     | 42 | 33 |      |     |    |     |
|         | Psychomyiidae   | Psychomyia    | 0%    | 0%       | 0%    |     |     |     | 7  | 0  |      |     |    |     |
|         | Glossosomatidae |               | 0%    | 0%       | 0%    |     |     |     | 0  | 0  |      |     |    |     |
|         | Brachycentridae |               | 0%    | 0%       | 0%    |     |     |     | 0  | 0  |      |     |    |     |
|         |                 | Brachycentrus | 200%  | 200%     | 200%  |     |     |     | 0  | 0  |      |     |    |     |
| Odonat  | Gomphidae       | Ophiogomphu   | 0%    | 0%       | 0%    | 14  | 21  | 9   | 0  | 0  |      |     |    |     |
| а       |                 | S             |       |          |       |     |     |     |    |    |      |     |    |     |
| Hemipt  | Corixidae       |               | 0%    | 0%       | 0%    |     |     |     | 14 | 0  |      |     |    |     |
| era     |                 |               |       |          |       |     |     |     |    |    |      |     |    |     |
| Oligoc  | Lumbriculidae   |               | 150%  | 150%     | 200%  |     |     |     | 14 | 0  |      |     |    |     |
| haeta   |                 |               |       |          |       |     |     |     |    |    |      |     |    |     |
| Bivalvi | Sphaeridae      |               | 67%   | 50%      | 100%  |     |     |     | 0  | 0  |      |     |    |     |
| а       |                 |               |       |          |       |     |     |     |    |    |      |     |    |     |
| Gastro  | Limnaidae       |               | 0%    | 0%       | 0%    |     |     |     | 0  | 0  |      |     |    |     |
| poda    |                 |               |       |          |       |     |     |     |    |    |      |     |    |     |
|         | Ancyllidae      | Ferrissia     | 0%    | 0%       | 0%    |     |     |     | 0  | 0  |      |     |    |     |
| Hydrac  |                 |               | 0%    | 0%       | 0%    |     |     |     | 0  | 0  |      |     |    |     |
| hnidia  |                 |               | 1000/ | 1000/    | 1000/ |     |     |     | 0  | 0  |      |     |    |     |
| Nemat   |                 |               | 100%  | 100%     | 100%  |     |     |     | 0  | 0  |      |     |    |     |
| oda     |                 |               |       | A 11 C   |       | 214 | 271 | 102 |    |    | 1000 | 172 | 06 | 505 |
|         |                 |               |       | All Spec | ies   | 214 | 5/1 | 185 |    |    | 1080 | 1/3 | 80 | 505 |
|         |                 |               |       |          |       |     |     |     |    |    |      |     |    |     |

|               |                  | Date collected: | Feb   |
|---------------|------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|               |                  |                 | 15/07 | 15/07 | 15/07 | 16/07 | 16/07 | 15/07 | 15/07 | 15/07 | 15/07 | 15/07 | 15/07 |
| Order         | Family           | Genera          | AR    |
|               |                  | (unless noted)  | Ref 1 | Ref 2 | Ref 3 | DN    | DS    | TS 1  | TS2   | TS3   | TD1   | TD2   | TD3   |
| Diptera       | Chironomidae     | SF              | 35    | 29    | 45    | 2     |       | 36    | 54    | 13    | 5     | 30    | 38    |
|               |                  | Tanypondinae    |       |       |       |       |       |       |       |       |       |       |       |
|               |                  | other           | 26    | 27    | 19    |       |       | 26    | 28    | 18    | 8     | 21    | 21    |
|               |                  | chironomids     |       |       |       |       |       |       |       |       |       |       |       |
|               | Simuliidae       |                 | 4     | 2     |       | 17    | 7     |       | 1     |       |       | 1     |       |
|               |                  | blackfly pupa   |       |       |       | 1     |       |       |       |       |       |       |       |
|               | Empididae        |                 | 10    | 11    | 10    |       |       | 12    | 13    | 8     | 1     | 6     | 7     |
|               | Dixidae          |                 | 1     |       |       |       |       | 1     |       |       |       |       |       |
|               | Ceratopogonidae  |                 |       |       |       |       |       |       |       |       |       | 1     |       |
| Ephemeroptera |                  |                 | 4     |       |       | 1     | 1     |       | 2     |       |       | 2     |       |
|               | Heptageniidae    |                 | 3     | 1     |       | 3     | 2     | 1     |       |       | 1     | 12    | 13    |
|               |                  | Stenonema       | 1     |       |       |       |       | 1     | 1     |       |       | 1     | 1     |
|               |                  | Rithrogena      | 6     |       |       | 2     | 4     | 4     | 2     | 3     |       | 3     |       |
|               |                  | Cinygma         |       |       |       |       |       |       |       |       |       |       | 2     |
|               |                  | Stenacron       |       |       |       |       |       | 4     |       |       |       |       |       |
|               | Leptophlebiidae  |                 |       |       |       |       |       |       |       |       |       |       |       |
|               | Ephemerellidae   |                 | 2     |       | 2     |       |       | 1     | 2     |       |       |       | 1     |
|               |                  | Ephemerella     | 5     |       | 1     |       |       | 2     | 5     |       | 1     | 1     | 8     |
|               | Baetidae         |                 | 13    | 6     | 3     | 27    | 18    | 8     | 10    | 1     |       | 9     | 3     |
|               |                  | Baetis          |       | 2     | 1     | 3     | 9     | 2     | 7     |       |       | 1     | 3     |
|               |                  | Centroptilum    |       |       |       |       |       |       |       |       |       |       |       |
|               | Metretopodidae   | Siphloplecton   |       |       |       | 3     |       |       |       |       |       |       |       |
|               | Oligoneuridae    | Isonychia       |       |       |       | 1     |       |       |       |       |       |       |       |
|               | Siphloneuridae   |                 |       |       |       |       |       |       |       |       |       |       |       |
|               |                  | Parameletus     |       |       |       |       |       | 2     | 2     |       |       |       |       |
|               |                  | Siphlonurus(?)  |       |       |       | 1     |       |       |       |       |       |       |       |
| Plecoptera    |                  |                 | 8     | 3     | 4     | 16    | 21    | 1     | 2     |       |       | 1     | 3     |
|               | Chloroperlidae   |                 | 1     |       |       | 1     | 1     |       | 2     | 1     |       | 2     |       |
|               | Perlodidae       |                 | 4     | 5     |       | 24    | 10    | 1     | 4     |       | 1     | 2     | 4     |
|               |                  | Isogenoides     |       | 1     |       | 4     |       | 1     |       |       |       |       | 2     |
|               |                  | Isoperla        |       |       |       | 1     |       |       |       |       |       |       |       |
|               | Taeniopterygidae |                 |       |       |       | 2     |       | 2     |       |       |       | 1     |       |
|               |                  | Oemopteryx      |       |       |       | 2     | 3     | 1     |       |       |       |       | 1     |

 TABLE A9 Raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken February 15, 2007

|              |                 | Taenionema    |    |    |    |    |   |    |    |    |    |    |    |
|--------------|-----------------|---------------|----|----|----|----|---|----|----|----|----|----|----|
|              |                 | Taeniopteryx  |    |    |    |    | 1 |    |    |    |    |    |    |
|              | Nemouridae      |               | 8  |    |    | 4  | 6 | 4  | 3  |    |    | 3  | 10 |
|              | Capniidae       |               |    |    |    | 12 | 6 |    |    |    |    |    | 1  |
|              | Leuctridae      |               |    |    |    | 4  | 4 | 2  |    |    |    |    | 1  |
| Trichoptera  |                 |               | 2  | 1  |    | 2  |   | 2  |    |    |    | 3  | 8  |
|              | Trichop pupa(e) |               | 1  |    |    |    |   |    |    | 2  |    |    |    |
|              | Hydropsychidae  |               | 1  | 2  |    |    |   | 2  | 5  | 1  | 1  | 2  | 1  |
|              |                 | Hydropsyche   | 46 | 19 | 47 | 3  |   | 22 | 28 | 23 | 10 | 42 | 66 |
|              | Psychomyiidae   |               |    |    |    |    |   |    |    |    |    |    | 1  |
|              |                 | Psychomyia    |    |    |    |    |   | 1  | 2  |    |    | 2  | 3  |
|              | Glossosomatidae |               | 2  |    |    |    | 2 | 1  | 1  | 1  |    |    |    |
|              |                 | Anagapetus    |    |    |    |    | 1 |    |    |    |    |    |    |
|              | Brachycentridae |               |    |    |    |    |   |    | 1  |    |    | 1  |    |
|              |                 | Brachycentrus | 2  | 1  | 1  |    |   |    |    |    |    |    |    |
|              | Hydroptilidae   |               |    |    |    |    |   |    |    |    |    |    |    |
|              |                 | Hydroptila    |    |    |    | 1  |   |    |    |    |    |    |    |
| Odonata      | Gomphidae       | Ophiogomphus  | 1  |    |    |    |   |    |    |    | 1  |    |    |
| Hemiptera    | Corixidae       |               |    |    |    | 7  |   |    |    |    |    |    |    |
| Coleoptera   | Elmidae         | larva         |    |    | 1  |    |   | 1  |    |    |    |    |    |
| Oligochaeta  | Lumbriculidae   |               | 5  | 2  | 3  |    |   | 2  | 6  | 3  |    | 5  | 2  |
| Bivalvia     | Sphaeridae      |               | 1  | 3  | 1  |    |   |    | 1  | 2  | 1  |    |    |
| Gastropoda   |                 |               |    | 3  |    |    |   |    |    |    |    |    |    |
|              | Limnaidae       |               |    | 1  |    |    |   |    |    | 2  |    |    |    |
|              | Ancyllidae      | Ferrissia     | 4  |    |    |    |   | 1  |    | 1  |    |    |    |
| Hydrachnidia |                 |               |    |    |    |    |   |    |    |    |    |    |    |
| Nematoda     |                 |               | 1  | 1  |    |    |   | 1  |    | 2  |    | 1  | 3  |

|               |                  |                          |      |      |      |     |     |     | Min | Min | Min | Mean   | Max    | Min    |
|---------------|------------------|--------------------------|------|------|------|-----|-----|-----|-----|-----|-----|--------|--------|--------|
|               |                  |                          | Mean | Mean | Mean | Max | Max | Max | ref | TS  | TD  | TS/ref | TS/ref | TS/ref |
| Order         | Family           | Genera<br>(unless noted) | ref  | TS   | TD   | ref | TS  | TD  | 29  | 13  | 5   | 94%    | 120%   | 45%    |
| Diptera       | Chironomidae     | SF                       | 36   | 34   | 24.3 | 45  | 54  | 38  | 19  | 18  | 8   | 100%   | 104%   | 95%    |
|               |                  | Tanypondinae             |      |      |      |     |     |     | -   |     |     |        |        |        |
|               |                  | other<br>chironomids     | 24   | 24   | 16.7 | 27  | 28  | 21  | 2   | 1   | 1   | 33%    | 25%    | 50%    |
|               | Simuliidae       |                          | 3    | 1    | 1    | 4   | 1   | 1   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               |                  | blackfly pupa            | 0    | 0    | 0    | 0   | 0   | 0   | 10  | 8   | 1   | 106%   | 118%   | 80%    |
|               | Empididae        |                          | 10   | 11   | 4.7  | 11  | 13  | 7   | 1   | 1   | 0   | 100%   | 100%   | 100%   |
|               | Dixidae          |                          | 1    | 1    | 0    | 1   | 1   | 0   | 0   | 0   | 1   | 0%     | 0%     | 0%     |
|               | Ceratopogonidae  |                          | 0    | 0    | 1    | 0   | 0   | 1   | 4   | 2   | 2   | 50%    | 50%    | 50%    |
| Ephemeroptera |                  |                          | 4    | 2    | 2    | 4   | 2   | 2   | 1   | 1   | 1   | 50%    | 33%    | 100%   |
|               | Heptageniidae    |                          | 2    | 1    | 87   | 3   | 1   | 13  | 1   | 1   | 1   | 100%   | 100%   | 100%   |
|               |                  | Stenonema                | 1    | 1    | 1    | 1   | 1   | 1   | 6   | 2   | 3   | 50%    | 67%    | 33%    |
|               |                  | Rithrogena               | 6    | 3    | 3    | 6   | 4   | 3   | 0   | 0   | 2   | 0%     | 0%     | 0%     |
|               |                  | Cinygma                  | 0    | 0    | 2    | 0   | 0   | 2   | 0   | 4   | 0   | 0%     | 0%     | 0%     |
|               |                  | Stenacron                | 0    | 4    | 0    | 0   | 4   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Leptophlebiidae  |                          | 0    | 0    | 0    | 0   | 0   | 0   | 2   | 1   | 1   | 75%    | 100%   | 50%    |
|               | Ephemerellidae   |                          | 2    | 2    | 1    | 2   | 2   | 1   | 1   | 2   | 1   | 117%   | 100%   | 200%   |
|               |                  | Ephemerella              | 3    | 4    | 3.3  | 5   | 5   | 8   | 3   | 1   | 3   | 86%    | 77%    | 33%    |
|               | Baetidae         |                          | 7    | 6    | 6    | 13  | 10  | 9   | 1   | 2   | 1   | 300%   | 350%   | 200%   |
|               |                  | Baetis                   | 2    | 5    | 2    | 2   | 7   | 3   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               |                  | Centroptilum             | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Metretopodidae   | Siphloplecton            | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Oligoneuridae    | Isonychia                | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Siphloneuridae   |                          | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 2   | 0   | 0%     | 0%     | 0%     |
|               |                  | Parameletus              | 0    | 2    | 0    | 0   | 2   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               |                  | Siphlonurus(?)           | 0    | 0    | 0    | 0   | 0   | 0   | 3   | 1   | 1   | 30%    | 25%    | 33%    |
| Plecoptera    |                  |                          | 5    | 2    | 2    | 8   | 2   | 3   | 1   | 1   | 2   | 150%   | 200%   | 100%   |
|               | Chloroperlidae   |                          | 1    | 2    | 2    | 1   | 2   | 2   | 4   | 1   | 1   | 56%    | 80%    | 25%    |
|               | Perlodidae       |                          | 5    | 3    | 2.3  | 5   | 4   | 4   | 0   | 1   | 2   | 0%     | 0%     | 0%     |
|               |                  | Isogenoides              | 0    | 1    | 2    | 0   | 1   | 2   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               |                  | Isoperla                 | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 2   | 1   | 0%     | 0%     | 0%     |
|               | Taeniopterygidae |                          | 0    | 2    | 1    | 0   | 2   | 1   | 0   | 1   | 1   | 0%     | 0%     | 0%     |
|               |                  | Oemopteryx               | 0    | 1    | 1    | 0   | 1   | 1   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               |                  | Taenionema               | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |

 TABLE A10 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken February 15, 2007 (continued)

|              |                 | Taeniopteryx  | 0  | 0  | 0    | 0  | 0  | 0  | 8   | 3   | 3   | 44%  | 50%  | 38%  |
|--------------|-----------------|---------------|----|----|------|----|----|----|-----|-----|-----|------|------|------|
|              | Nemouridae      |               | 8  | 4  | 6.5  | 8  | 4  | 10 | 0   | 0   | 1   | 0%   | 0%   | 0%   |
|              | Capniidae       |               | 0  | 0  | 1    | 0  | 0  | 1  | 0   | 2   | 1   | 0%   | 0%   | 0%   |
|              | Leuctridae      |               | 0  | 2  | 1    | 0  | 2  | 1  | 1   | 2   | 3   | 133% | 100% | 200% |
| Trichoptera  |                 |               | 2  | 2  | 5.5  | 2  | 2  | 8  | 1   | 2   | 0   | 200% | 200% | 200% |
|              | Trichop pupa(e) |               | 1  | 2  | 0    | 1  | 2  | 0  | 1   | 1   | 1   | 178% | 250% | 100% |
|              | Hydropsychidae  |               | 2  | 3  | 1.3  | 2  | 5  | 2  | 19  | 22  | 10  | 65%  | 60%  | 116% |
|              |                 | Hydropsyche   | 37 | 24 | 39.3 | 47 | 28 | 66 | 0   | 0   | 1   | 0%   | 0%   | 0%   |
|              | Psychomyiidae   |               | 0  | 0  | 1    | 0  | 0  | 1  | 0   | 1   | 2   | 0%   | 0%   | 0%   |
|              |                 | Psychomyia    | 0  | 2  | 2.5  | 0  | 2  | 3  | 2   | 1   | 0   | 50%  | 50%  | 50%  |
|              | Glossosomatidae |               | 2  | 1  | 0    | 2  | 1  | 0  | 0   | 0   | 0   | 0%   | 0%   | 0%   |
|              |                 | Anagapetus    | 0  | 0  | 0    | 0  | 0  | 0  | 0   | 1   | 1   | 0%   | 0%   | 0%   |
|              | Brachycentridae |               | 0  | 1  | 1    | 0  | 1  | 1  | 1   | 0   | 0   | 0%   | 0%   | 0%   |
|              |                 | Brachycentrus | 1  | 0  | 0    | 2  | 0  | 0  | 0   | 0   | 0   | 0%   | 0%   | 0%   |
|              | Hydroptilidae   |               | 0  | 0  | 0    | 0  | 0  | 0  | 0   | 0   | 0   | 0%   | 0%   | 0%   |
|              |                 | Hydroptila    | 0  | 0  | 0    | 0  | 0  | 0  | 1   | 0   | 1   | 0%   | 0%   | 0%   |
| Odonata      | Gomphidae       | Ophiogomphus  | 1  | 0  | 1    | 1  | 0  | 1  | 0   | 0   | 0   | 0%   | 0%   | 0%   |
| Hemiptera    | Corixidae       |               | 0  | 0  | 0    | 0  | 0  | 0  | 1   | 1   | 0   | 100% | 100% | 100% |
| Coleoptera   | Elmidae         | larva         | 1  | 1  | 0    | 1  | 1  | 0  | 2   | 2   | 2   | 110% | 120% | 100% |
| Oligochaeta  | Lumbriculidae   |               | 3  | 4  | 3.5  | 5  | 6  | 5  | 1   | 1   | 1   | 90%  | 67%  | 100% |
| Bivalvia     | Sphaeridae      |               | 2  | 2  | 1    | 3  | 2  | 1  | 3   | 0   | 0   | 0%   | 0%   | 0%   |
| Gastropoda   |                 |               | 3  | 0  | 0    | 3  | 0  | 0  | 1   | 2   | 0   | 200% | 200% | 200% |
|              | Limnaidae       |               | 1  | 2  | 0    | 1  | 2  | 0  | 4   | 1   | 0   | 25%  | 25%  | 25%  |
|              | Ancyllidae      | Ferrissia     | 4  | 1  | 0    | 4  | 1  | 0  | 0   | 0   | 0   | 0%   | 0%   | 0%   |
| Hydrachnidia |                 |               | 0  | 0  | 0    | 0  | 0  | 0  | 1   | 1   | 1   | 150% | 200% | 100% |
| Nematoda     |                 |               | 1  | 2  | 2    | 1  | 2  | 3  | Min | Min | Min | Mean | Max  | Min  |

| Ŭ                     |                 |                | Mean  | Max      | Min   | Total | Total | Total | Drift      | Surber     | Total | Total  | Total | Total    |
|-----------------------|-----------------|----------------|-------|----------|-------|-------|-------|-------|------------|------------|-------|--------|-------|----------|
| Order                 | Family          | Genera (unless | TD/re | TD/r     | TD/re | Ref   | TS    | TD    | (ind/m2/   | (ind/m2/   | Drift | TS/ref | TD/re | Drift/re |
| oruer                 | ranny           | noted)         | f     | ef       | f     | Rei   | 15    | 10    | (ind) in2/ | (ind) in2/ | Dim   | %      | f%    | f%       |
| Diptera               | Chironomidae    | SF             | 67%   | 84%      | 17%   | 219   | 210   | 139   | 14         | 0          | 140   | 96     | 64    | 64       |
| Diptera               | chinomonia      | Tanypondinae   | 0,70  | 0.70     | 1770  |       | 210   | 107   |            | 0          | 1.0   | 20     | 0.    | 0.       |
|                       |                 | other          | 69%   | 78%      | 42%   |       |       |       | 0          | 0          |       |        |       |          |
|                       |                 | chironomids    |       |          |       |       |       |       |            |            |       |        |       |          |
|                       | Simuliidae      |                | 33%   | 25%      | 50%   |       |       |       | 119        | 78         |       |        |       |          |
|                       |                 | blackfly pupa  | 0%    | 0%       | 0%    |       |       |       | 7          | 0          |       |        |       |          |
|                       | Empididae       | · · · ·        | 45%   | 64%      | 10%   |       |       |       | 0          | 0          |       |        |       |          |
|                       | Dixidae         |                | 0%    | 0%       | 0%    |       |       |       | 0          | 0          |       |        |       |          |
|                       | Ceratopogonidae |                | 0%    | 0%       | 0%    |       |       |       | 0          | 0          |       |        |       |          |
| Ephem<br>eropter<br>a |                 |                | 50%   | 50%      | 50%   | 50    | 37    | 60    | 7          | 11         | 288   | 74     | 120   | 575      |
|                       | Heptageniidae   |                | 433%  | 433<br>% | 100%  |       |       |       | 21         | 22         |       |        |       |          |
|                       |                 | Stenonema      | 100%  | 100<br>% | 100%  |       |       |       | 0          | 0          |       |        |       |          |
|                       |                 | Rithrogena     | 50%   | 50%      | 50%   |       |       |       | 14         | 44         |       |        |       |          |
|                       |                 | Cinygma        | 0%    | 0%       | 0%    |       |       |       | 0          | 0          |       |        |       |          |
|                       |                 | Stenacron      | 0%    | 0%       | 0%    |       |       |       | 0          | 0          |       |        |       |          |
|                       | Leptophlebiidae |                | 0%    | 0%       | 0%    |       |       |       | 0          | 0          |       |        |       |          |
|                       | Ephemerellidae  |                | 50%   | 50%      | 50%   |       |       |       | 0          | 0          |       |        |       |          |
|                       | •               | Ephemerella    | 111%  | 160<br>% | 100%  |       |       |       | 0          | 0          |       |        |       |          |
|                       | Baetidae        |                | 82%   | 69%      | 100%  |       |       |       | 189        | 200        |       |        |       |          |
|                       |                 | Baetis         | 133%  | 150<br>% | 100%  |       |       |       | 21         | 100        |       |        |       |          |
|                       |                 | Centroptilum   | 0%    | 0%       | 0%    |       |       |       | 0          | 0          |       |        |       |          |
|                       | Metretopodidae  | Siphloplecton  | 0%    | 0%       | 0%    |       |       |       | 21         | 0          |       |        |       |          |
|                       | Oligoneuridae   | Isonvchia      | 0%    | 0%       | 0%    |       |       |       | 7          | 0          |       |        |       |          |
|                       | Siphloneuridae  |                | 0%    | 0%       | 0%    |       |       |       | 0          | 0          |       |        |       |          |
|                       |                 | Parameletus    | 0%    | 0%       | 0%    |       |       |       | 0          | 0          |       |        |       |          |
|                       |                 | Siphlonurus(?) | 0%    | 0%       | 0%    |       |       |       | 7          | 0          |       |        |       |          |
| Plecopt<br>era        |                 |                | 40%   | 38%      | 33%   | 33    | 13    | 31    | 112        | 233        | 491   | 39     | 94    | 1488     |
|                       | Chloroperlidae  |                | 200%  | 200      | 200%  |       | 1     | 1     | 7          | 11         | 1     |        | 1     |          |

 TABLE A11 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken February 15, 2007 (continued)

|         |                  |               |      | %   |      |     |    |     |     |     |    |    |     |    |
|---------|------------------|---------------|------|-----|------|-----|----|-----|-----|-----|----|----|-----|----|
|         | Perlodidae       |               | 52%  | 80% | 25%  |     |    |     | 168 | 111 |    |    |     |    |
|         |                  | Isogenoides   | 0%   | 0%  | 0%   |     |    |     | 28  | 0   |    |    |     |    |
|         |                  | Isoperla      | 0%   | 0%  | 0%   |     |    |     | 7   | 0   |    |    |     |    |
|         | Taeniopterygidae |               | 0%   | 0%  | 0%   |     |    |     | 14  | 0   |    |    |     |    |
|         |                  | Oemopteryx    | 0%   | 0%  | 0%   |     |    |     | 14  | 33  |    |    |     |    |
|         |                  | Taenionema    | 0%   | 0%  | 0%   |     |    |     | 0   | 0   |    |    |     |    |
|         |                  | Taeniopteryx  | 0%   | 0%  | 0%   |     |    |     | 0   | 11  |    |    |     |    |
|         | Nemouridae       |               | 81%  | 125 | 38%  |     |    |     | 28  | 67  |    |    |     |    |
|         |                  |               |      | %   |      |     |    |     |     |     |    |    |     |    |
|         | Capniidae        |               | 0%   | 0%  | 0%   |     |    |     | 84  | 67  |    |    |     |    |
|         | Leuctridae       |               | 0%   | 0%  | 0%   |     |    |     | 28  | 44  |    |    |     |    |
| Tricho  |                  |               | 367% | 400 | 300% | 125 | 75 | 129 | 14  | 0   | 42 | 60 | 103 | 34 |
| ptera   |                  |               |      | %   |      |     |    |     |     |     |    |    |     |    |
|         | Trichop pupa(e)  |               | 0%   | 0%  | 0%   |     |    |     | 0   | 0   |    |    |     |    |
|         | Hydropsychidae   |               | 89%  | 100 | 100% |     |    |     | 0   | 0   |    |    |     |    |
|         |                  |               |      | %   |      |     |    |     |     |     |    |    |     |    |
|         |                  | Hydropsyche   | 105% | 140 | 53%  |     |    |     | 21  | 0   |    |    |     |    |
|         |                  |               |      | %   |      |     |    |     |     |     |    |    |     |    |
|         | Psychomyiidae    |               | 0%   | 0%  | 0%   |     |    |     | 0   | 0   |    |    |     |    |
|         |                  | Psychomyia    | 0%   | 0%  | 0%   |     |    |     | 0   | 0   |    |    |     |    |
|         | Glossosomatidae  |               | 0%   | 0%  | 0%   |     |    |     | 0   | 22  |    |    |     |    |
|         |                  | Anagapetus    | 0%   | 0%  | 0%   |     |    |     | 0   | 11  |    |    |     |    |
|         | Brachycentridae  |               | 0%   | 0%  | 0%   |     |    |     | 0   | 0   |    |    |     |    |
|         |                  | Brachycentrus | 0%   | 0%  | 0%   |     |    |     | 0   | 0   |    |    |     |    |
|         | Hydroptilidae    |               | 0%   | 0%  | 0%   |     |    |     | 0   | 0   |    |    |     |    |
|         |                  | Hydroptila    | 0%   | 0%  | 0%   |     |    |     | 7   | 0   |    |    |     |    |
| Odonat  | Gomphidae        | Ophiogomphus  | 100% | 100 | 100% | 27  | 22 | 13  | 0   | 0   |    |    |     |    |
| а       | *                |               |      | %   |      |     |    |     |     |     |    |    |     |    |
| Hemipt  | Corixidae        |               | 0%   | 0%  | 0%   |     |    |     | 49  | 0   |    |    |     |    |
| era     |                  |               |      |     |      |     |    |     |     |     |    |    |     |    |
| Coleop  | Elmidae          | larva         | 0%   | 0%  | 0%   |     |    |     | 0   | 0   |    |    |     |    |
| tera    |                  |               |      |     |      |     |    |     |     |     |    |    |     |    |
| Oligoc  | Lumbriculidae    |               | 105% | 100 | 100% |     |    |     | 0   | 0   |    |    |     |    |
| haeta   |                  |               |      | %   |      |     |    |     |     |     |    |    |     |    |
| Bivalvi | Sphaeridae       |               | 60%  | 33% | 100% |     |    |     | 0   | 0   |    |    |     |    |
| а       |                  |               |      |     |      |     |    |     |     |     |    |    |     |    |
| Gastro  |                  |               | 0%   | 0%  | 0%   |     |    |     | 0   | 0   |    |    |     |    |
| poda    |                  |               |      |     |      |     |    |     |     |     |    |    |     |    |
|         | Limnaidae        |               | 0%   | 0%  | 0%   |     |    |     | 0   | 0   |    |    |     |    |
|         | Ancyllidae       | Ferrissia     | 0%   | 0%  | 0%   |     |    |     | 0   | 0   |    |    |     |    |

| Hydrac<br>hnidia |  | 0%   | 0%       | 0%    |     |     |     | 0 | 0 |      |    |    |     |
|------------------|--|------|----------|-------|-----|-----|-----|---|---|------|----|----|-----|
| Nemat<br>oda     |  | 200% | 300<br>% | 100%  |     |     |     | 0 | 0 |      |    |    |     |
|                  |  |      | All Sp   | ecies | 454 | 357 | 372 |   |   | 1010 | 79 | 82 | 222 |

|               |                 | Date collected: | Mar       | Mar  | Mar  | Mar  | Mar  | Mar        | Mar       | Mar       | Mar       | Mar       | Mar       |
|---------------|-----------------|-----------------|-----------|------|------|------|------|------------|-----------|-----------|-----------|-----------|-----------|
| 0.1           | <b>F 9</b>      |                 | 2/07      | 2/07 | 2/07 | 2/07 | 2/07 | 2/07       | 2/07      | 2/07      | 2/07      | 2/07      | 2/07      |
| Order         | Family          | Genera          | AK<br>Pof | AR   | AR   | AR   | AR   | AR<br>TS 1 | AR<br>TS2 | AK<br>TS2 | AR<br>TD1 | AR<br>TD2 | AR<br>TD2 |
|               |                 | (unless noted)  | 1         | 2    | 3    | DIN  | 03   | 151        | 152       | 155       | IDI       | 102       | 105       |
| Diptera       | Chironomidae    | SF              | 23        | 16   | 36   |      |      | 47         | 20        | 63        | 55        | 53        | 34        |
| •             |                 | Tanypondinae    |           |      |      |      |      |            |           |           |           |           |           |
|               |                 | other           | 33        | 23   | 25   | 1    |      | 36         | 18        | 50        | 64        | 75        | 27        |
|               |                 | chironomids     |           |      |      |      |      |            |           |           |           |           |           |
|               | Simuliidae      |                 |           |      |      | 12   | 4    |            |           |           | 1         |           |           |
|               |                 | blackfly pupa   |           |      |      |      |      |            |           |           |           |           |           |
|               | Empididae       |                 | 10        | 4    | 7    |      |      | 12         | 5         | 19        | 23        | 20        | 23        |
|               | Dixidae         |                 |           |      |      |      |      |            |           | 1         |           |           | 1         |
|               | Ceratopogonidae |                 |           |      |      |      |      |            |           |           |           |           |           |
| Ephemeroptera |                 |                 | 1         | 1    |      |      |      | 2          | 1         | 1         | 7         |           |           |
|               | Heptageniidae   |                 |           |      | 3    | 7    | 2    | 3          | 15        | 6         | 26        | 18        | 7         |
|               |                 | Stenonema       |           |      |      |      |      | 5          | 3         | 7         | 6         | 4         | 2         |
|               |                 | Rithrogena      | 1         | 2    | 2    | 2    | 1    | 3          | 6         | 2         | 5         | 1         | 3         |
|               |                 | Cinygma         |           |      |      |      |      |            | 9         | 4         | 2         |           | 1         |
|               |                 | Heptagenia      |           |      |      |      |      |            |           |           |           |           |           |
|               |                 | Stenacron       |           |      |      |      |      |            |           |           |           |           |           |
|               | Leptophlebiidae |                 |           |      |      |      |      |            |           |           |           |           |           |
|               | Ephemerellidae  |                 | 1         |      | 1    | 2    |      |            | 2         | 1         | 3         |           |           |
|               |                 | Ephemerella     |           |      |      | 1    |      | 3          | 3         | 5         | 9         | 3         | 2         |
|               | Baetidae        |                 | 7         | 1    | 10   | 23   | 10   | 3          | 4         | 5         | 9         | 4         | 4         |
|               |                 | Baetis          | 1         | 1    | 1    | 3    | 5    |            | 1         | 3         | 4         |           | 1         |
|               |                 | Centroptilum    |           |      |      |      |      |            |           |           |           |           |           |
|               | Metretopodidae  | Siphloplecton   |           |      |      |      |      |            |           |           |           |           |           |
|               | Oligoneuridae   | Isonychia       |           |      |      |      |      |            |           |           |           |           |           |
|               | Siphloneuridae  |                 |           |      |      | 1    |      |            |           |           |           |           |           |
|               |                 | Parameletus     |           |      |      | 2    |      |            | 3         |           |           |           |           |
|               |                 | Siphlonurus(?)  |           |      |      |      |      |            |           |           |           |           |           |
| Plecoptera    |                 |                 |           |      |      | 6    | 5    |            | 3         | 2         | 2         | 4         | 2         |
|               | Chloroperlidae  |                 | 2         |      |      | 1    |      | 3          | 2         | 2         | 3         | 1         | 2         |
|               | Perlodidae      |                 | 2         | 1    | 5    | 15   | 12   | 2          | 5         | 2         | 3         |           | 1         |
|               |                 | Isogenoides     |           |      |      | 1    |      |            | 1         | 1         | 2         |           |           |
|               |                 | Isoperla        |           |      |      |      |      |            |           |           |           |           |           |

 TABLE A12 Raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken March 2, 2007

|              | Taeniopterygidae |               |    |    | 1  | 1  |   |    | 1  |    |    |     | [  |
|--------------|------------------|---------------|----|----|----|----|---|----|----|----|----|-----|----|
|              |                  | Oemopteryx    |    |    | 1  | 3  | 2 | 1  | 3  | 2  | 1  | 1   |    |
|              |                  | Taenionema    |    |    |    | 2  |   |    |    |    |    |     |    |
|              |                  | Taeniopteryx  |    |    |    |    |   |    |    |    |    |     |    |
|              | Nemouridae       |               | 3  |    | 10 | 2  | 5 | 9  | 12 | 9  | 11 | 2   | 10 |
|              | Capniidae        |               |    | 1  |    | 5  | 2 |    |    |    |    |     |    |
|              | Leuctridae       |               |    |    |    |    |   |    |    |    |    |     |    |
| Trichoptera  |                  |               |    |    |    |    |   | 2  |    | 1  | 7  | 5   |    |
|              | Trichop pupa(e)  |               |    |    |    |    |   |    |    |    |    | 1   |    |
|              | Hydropsychidae   |               |    |    |    | 10 | 4 |    |    | 1  | 1  | 2   | 3  |
|              |                  | Hydropsyche   | 10 | 14 | 11 |    |   | 20 | 12 | 52 | 40 | 101 | 46 |
|              | Psychomyiidae    |               |    |    |    |    |   |    |    |    |    |     |    |
|              |                  | Psychomyia    |    |    |    |    |   | 2  |    | 6  |    | 1   | 1  |
|              | Glossosomatidae  |               |    | 1  |    |    |   |    | 1  |    |    |     | 1  |
|              |                  | Anagapetus    |    |    |    |    |   |    |    |    |    |     |    |
|              | Brachycentridae  |               |    |    |    |    |   |    |    | 1  | 2  | 2   | 2  |
|              |                  | Brachycentrus |    |    |    |    |   |    |    | 1  | 1  | 1   | 2  |
|              | Hydroptilidae    |               |    |    |    |    |   | 1  |    |    |    |     |    |
|              |                  | Hydroptila    |    |    |    |    |   |    |    |    |    |     |    |
| Odonata      | Gomphidae        | Ophiogomphus  |    |    |    |    |   |    | 1  | 1  |    | 1   |    |
| Hemiptera    | Corixidae        |               |    |    |    |    | 1 |    |    |    | 2  |     | 1  |
| Coleoptera   | Elmidae          | larva         |    |    |    |    |   | 1  |    |    |    |     |    |
| Megaloptera  | Sialidae         | Sialis        |    |    |    |    |   |    |    | 1  |    |     |    |
| Oligochaeta  | Lumbriculidae    |               |    | 2  | 2  |    |   | 3  | 7  | 1  | 2  |     | 2  |
| Bivalvia     | Sphaeridae       |               | 3  | 3  |    |    |   | 1  | 1  | 1  | 2  | 4   | 4  |
| Gastropoda   |                  |               |    |    |    |    |   |    |    |    |    |     |    |
|              | Limnaidae        |               |    |    |    |    |   | 1  | 2  |    |    | 3   |    |
|              | Ancyllidae       | Ferrissia     | 2  | 1  | 1  |    |   |    |    |    |    |     | 1  |
| Hydrachnidia |                  |               |    |    |    |    |   |    | 1  |    |    |     |    |
| Nematoda     |                  |               |    |    |    |    |   |    | 2  | 8  | 1  |     | 1  |
| Copepoda     | Cyclopoid        |               | 1  |    |    |    |   |    |    |    |    |     |    |

|               |                  |                | Mean | Mean | Mean | Max | Max | Max | Min | Min | Min | Mean   | Max    | Min    |
|---------------|------------------|----------------|------|------|------|-----|-----|-----|-----|-----|-----|--------|--------|--------|
| Order         | Family           | Genera         | ref  | TS   | TD   | ref | TS  | TD  | ref | TS  | TD  | TS/ref | TS/ref | TS/ref |
|               |                  | (unless noted) |      |      |      |     |     |     |     |     |     |        |        |        |
| Diptera       | Chironomidae     | SF             | 25   | 43   | 47   | 36  | 63  | 55  | 16  | 20  | 34  | 173%   | 175%   | 125%   |
|               |                  | Tanypondinae   |      |      |      |     |     |     |     | 10  |     | 10004  | 1.5004 | -      |
|               |                  | other          | 27   | 35   | 55   | 33  | 50  | 75  | 23  | 18  | 27  | 128%   | 152%   | 78%    |
|               | C'               | chironomids    | 0    | 0    | 1    | 0   | 0   | 1   | 0   | 0   | 1   | 00/    | 00/    | 00/    |
|               | Simulidae        | 1-1            | 0    | 0    | 1    | 0   | 0   | 1   | 0   | 0   | 1   | 0%     | 0%     | 0%     |
|               | Enaldidae        | васкиу рира    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Distilat         |                | /    | 12   | 1    | 10  | 19  | 23  | 4   | 5   | 20  | 1/1%   | 190%   | 125%   |
|               | Dixidae          |                | 0    | 1    | 1    | 0   | 1   | 1   | 0   | 1   | 1   | 0%     | 0%     | 0%     |
| <b>F1</b> (   | Ceratopogonidae  |                | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
| Epnemeroptera | TT / "1          |                | 1    | 1    | /    | 1   | 2   | /   | 1   | 1   | /   | 133%   | 200%   | 100%   |
|               | Heptageniidae    | <u></u>        | 3    | 8    | 1/   | 3   | 15  | 26  | 3   | 3   | /   | 26/%   | 500%   | 100%   |
|               |                  | Dittana        | 0    | 5    | 4    | 0   | 1   | 0   | 0   | 3   |     | 0%     | 0%     | 0%     |
|               |                  | Rithrogena     | 2    | 4    | 3    | 2   | 0   | 5   | 1   | 2   | 1   | 220%   | 300%   | 200%   |
|               |                  | Cinygma        | 0    | /    | 2    | 0   | 9   | 2   | 0   | 4   | 1   | 0%     | 0%     | 0%     |
|               |                  | Heptagenia     | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | T . 11101        | Stenacron      | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Leptophlebiidae  |                | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Ephemerellidae   | F 1 11         | 1    | 2    | 3    | 1   | 2   | 3   | 1   | 1   | 3   | 150%   | 200%   | 100%   |
|               | D                | Ephemerella    | 0    | 4    | 5    | 0   | 5   | 9   | 0   | 3   | 2   | 0%     | 0%     | 0%     |
|               | Baetidae         | D. d           | 6    | 4    | 6    | 10  | 5   | 9   | 1   | 3   | 4   | 6/%    | 50%    | 300%   |
|               |                  | Baetis         | 1    | 2    | 3    | 1   | 3   | 4   | 1   | 1   | 1   | 200%   | 300%   | 100%   |
|               |                  | Centroptilum   | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Metretopodidae   | Siphloplecton  | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Oligoneuridae    | Isonychia      | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Siphloneuridae   |                | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               |                  | Parameletus    | 0    | 3    | 0    | 0   | 3   | 0   | 0   | 3   | 0   | 0%     | 0%     | 0%     |
|               |                  | Siphlonurus(?) | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
| Plecoptera    |                  |                | 0    | 3    | 3    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Chloroperlidae   |                | 2    | 2    | 2    | 0   | 3   | 4   | 0   | 2   | 2   | 117%   | 0%     | 0%     |
|               | Perlodidae       |                | 3    | 3    | 2    | 2   | 3   | 3   | 2   | 2   | 1   | 113%   | 150%   | 100%   |
|               |                  | Isogenoides    | 0    | 1    | 2    | 5   | 5   | 3   | 1   | 2   | 1   | 0%     | 100%   | 200%   |
|               |                  | Isoperla       | 0    | 0    | 0    | 0   | 1   | 2   | 0   | 1   | 2   | 0%     | 0%     | 0%     |
|               | Taeniopterygidae |                | 1    | 1    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 100%   | 0%     | 0%     |
|               |                  | Oemopteryx     | 1    | 2    | 1    | 1   | 1   | 0   | 1   | 1   | 0   | 200%   | 100%   | 100%   |
|               |                  | Taenionema     | 0    | 0    | 0    | 1   | 3   | 1   | 1   | 1   | 1   | 0%     | 300%   | 100%   |

TABLE A13 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken March 2, 2007 (continued)

|              |                 | Taeniopteryx  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0%   | 0%   | 0%   |
|--------------|-----------------|---------------|----|----|----|----|----|-----|----|----|----|------|------|------|
|              | Nemouridae      |               | 7  | 10 | 8  | 0  | 0  | 0   | 0  | 0  | 0  | 154% | 0%   | 0%   |
|              | Capniidae       |               | 1  | 0  | 0  | 10 | 12 | 11  | 3  | 9  | 2  | 0%   | 120% | 300% |
|              | Leuctridae      |               | 0  | 0  | 0  | 1  | 0  | 0   | 1  | 0  | 0  | 0%   | 0%   | 0%   |
| Trichoptera  |                 |               | 0  | 2  | 6  | 0  | 0  | 0   | 0  | 0  | 0  | 0%   | 0%   | 0%   |
|              | Trichop pupa(e) |               | 0  | 0  | 1  | 0  | 2  | 7   | 0  | 1  | 5  | 0%   | 0%   | 0%   |
|              | Hydropsychidae  |               | 0  | 1  | 2  | 0  | 0  | 1   | 0  | 0  | 1  | 0%   | 0%   | 0%   |
|              |                 | Hydropsyche   | 12 | 28 | 62 | 0  | 1  | 3   | 0  | 1  | 1  | 240% | 0%   | 0%   |
|              | Psychomyiidae   |               | 0  | 0  | 0  | 14 | 52 | 101 | 10 | 12 | 40 | 0%   | 371% | 120% |
|              |                 | Psychomyia    | 0  | 4  | 1  | 0  | 0  | 0   | 0  | 0  | 0  | 0%   | 0%   | 0%   |
|              | Glossosomatidae |               | 1  | 1  | 1  | 0  | 6  | 1   | 0  | 2  | 1  | 100% | 0%   | 0%   |
|              |                 | Anagapetus    | 0  | 0  | 0  | 1  | 1  | 1   | 1  | 1  | 1  | 0%   | 100% | 100% |
|              | Brachycentridae |               | 0  | 1  | 2  | 0  | 0  | 0   | 0  | 0  | 0  | 0%   | 0%   | 0%   |
|              |                 | Brachycentrus | 0  | 1  | 1  | 0  | 1  | 2   | 0  | 1  | 2  | 0%   | 0%   | 0%   |
|              | Hydroptilidae   |               | 0  | 1  | 0  | 0  | 1  | 2   | 0  | 1  | 1  | 0%   | 0%   | 0%   |
|              |                 | Hydroptila    | 0  | 0  | 0  | 0  | 1  | 0   | 0  | 1  | 0  | 0%   | 0%   | 0%   |
| Odonata      | Gomphidae       | Ophiogomphus  | 0  | 1  | 1  | 0  | 0  | 0   | 0  | 0  | 0  | 0%   | 0%   | 0%   |
| Hemiptera    | Corixidae       |               | 0  | 0  | 2  | 0  | 1  | 1   | 0  | 1  | 1  | 0%   | 0%   | 0%   |
| Coleoptera   | Elmidae         | larva         | 0  | 1  | 0  | 0  | 0  | 2   | 0  | 0  | 1  | 0%   | 0%   | 0%   |
| Megaloptera  | Sialidae        | Sialis        | 0  | 1  | 0  | 0  | 1  | 0   | 0  | 1  | 0  | 0%   | 0%   | 0%   |
| Oligochaeta  | Lumbriculidae   |               | 2  | 4  | 2  | 0  | 1  | 0   | 0  | 1  | 0  | 183% | 0%   | 0%   |
| Bivalvia     | Sphaeridae      |               | 3  | 1  | 3  | 2  | 7  | 2   | 2  | 1  | 2  | 33%  | 350% | 50%  |
| Gastropoda   |                 |               | 0  | 0  | 0  | 3  | 1  | 4   | 3  | 1  | 2  | 0%   | 33%  | 33%  |
|              | Limnaidae       |               | 0  | 2  | 3  | 0  | 0  | 0   | 0  | 0  | 0  | 0%   | 0%   | 0%   |
|              | Ancyllidae      | Ferrissia     | 1  | 0  | 1  | 0  | 2  | 3   | 0  | 1  | 3  | 0%   | 0%   | 0%   |
| Hydrachnidia |                 |               | 0  | 1  | 0  | 2  | 0  | 1   | 1  | 0  | 1  | 0%   | 0%   | 0%   |
| Nematoda     |                 |               | 0  | 5  | 1  | 0  | 1  | 0   | 0  | 1  | 0  | 0%   | 0%   | 0%   |
| Copepoda     | Cyclopoid       |               | 1  | 0  | 0  | 0  | 8  | 1   | 0  | 2  | 1  | 0%   | 0%   | 0%   |

|            |               |                 | Mean  | Max   | Min   | Total | Total | Total | Drift | Surber | Total | Total  | Total | Total    |
|------------|---------------|-----------------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|-------|----------|
| Order      | Family        | Genera (unless  | TD/re | TD/re | TD/re | Ref   | TS    | TD    | (ind/ | (ind/m | Drift | TS/ref | TD/re | Drift/re |
|            |               | noted)          | f     | f     | f     |       |       |       | m2/da | 2/day  |       | %      | f%    | f%       |
|            |               |                 |       |       |       |       |       |       | y)    |        |       |        |       |          |
| Diptera    | Chironomidae  | SF Tanypondinae | 189%  | 153%  | 213%  | 177   | 271   | 376   | 0     | 0      | 91    | 153    | 212   | 52       |
| <u> </u>   |               | other           | 205%  | 227%  | 117%  |       |       |       | 7     | 0      |       |        |       |          |
|            |               | chironomids     |       |       |       |       |       |       |       |        |       |        |       |          |
|            | Simuliidae    |                 | 0%    | 0%    | 0%    |       |       |       | 84    | 44     |       |        |       |          |
|            |               | blackfly pupa   | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |          |
|            | Empididae     |                 | 314%  | 230%  | 500%  |       |       |       | 0     | 0      |       |        |       |          |
|            | Dixidae       |                 | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |          |
|            | Ceratopogonid |                 | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |          |
|            | ae            |                 |       |       |       |       |       |       |       |        |       |        |       |          |
| Ephemerop  |               |                 | 700%  | 700%  | 700%  | 33    | 152   | 50    | 0     | 0      | 288   | 461    | 152   | 871      |
| tera       |               |                 |       |       |       |       |       |       |       |        |       |        |       |          |
|            | Heptageniidae |                 | 567%  | 867%  | 233%  |       |       |       | 49    | 22     |       |        |       |          |
|            |               | Stenonema       | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |          |
|            |               | Rithrogena      | 180%  | 250%  | 100%  |       |       |       | 14    | 11     |       |        |       |          |
|            |               | Cinygma         | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |          |
|            |               | Heptagenia      | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |          |
|            |               | Stenacron       | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |          |
|            | Leptophlebiid |                 | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |          |
|            | ae            |                 |       |       |       |       |       |       |       |        |       |        |       |          |
|            | Ephemerellida |                 | 300%  | 300%  | 300%  |       |       |       | 14    | 0      |       |        |       |          |
|            | e             |                 |       |       |       |       |       |       |       |        |       |        |       |          |
|            |               | Ephemerella     | 0%    | 0%    | 0%    |       |       |       | 7     | 0      |       |        |       |          |
|            | Baetidae      |                 | 94%   | 90%   | 400%  |       |       |       | 161   | 111    |       |        |       |          |
|            |               | Baetis          | 250%  | 400%  | 100%  |       |       |       | 21    | 56     |       |        |       |          |
|            |               | Centroptilum    | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |          |
|            | Metretopodida | Siphloplecton   | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |          |
|            | e             |                 |       |       |       |       |       |       |       |        |       |        |       |          |
|            | Oligoneuridae | Isonychia       | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |          |
|            | Siphloneurida |                 | 0%    | 0%    | 0%    |       |       |       | 7     | 0      |       |        |       |          |
|            | e             |                 |       |       |       |       |       |       |       |        |       |        |       |          |
|            |               | Parameletus     | 0%    | 0%    | 0%    |       |       |       | 14    | 0      |       |        |       |          |
| DI         | -             | Siphlonurus(?)  | 0%    | 0%    | 0%    | 26    |       | 00    | 0     | 0      | 252   | 250    | 00    | 071      |
| Plecoptera |               |                 | 0%    | 0%    | 0%    | 26    | 67    | 23    | 42    | 56     | 252   | 258    | 89    | 971      |
|            | Chloroperlida |                 | 100%  | 0%    | 0%    | 1     |       |       | 7     | 0      | 1     | 1      |       |          |

TABLE A14 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken March 2, 2007 (continued)

|              | e              |               |       |      |      |    |      |      |     |     |    |     |      |     |
|--------------|----------------|---------------|-------|------|------|----|------|------|-----|-----|----|-----|------|-----|
|              | Perlodidae     |               | 75%   | 150% | 50%  |    |      |      | 105 | 133 |    |     |      |     |
|              |                | Isogenoides   | 0%    | 60%  | 100% |    |      |      | 7   | 0   |    |     |      |     |
|              |                | Isoperla      | 0%    | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
|              | Taeniopterygi  |               | 0%    | 0%   | 0%   |    |      |      | 7   | 0   |    |     |      |     |
|              | dae            |               |       |      |      |    |      |      |     |     |    |     |      |     |
|              |                | Oemontervx    | 100%  | 0%   | 0%   |    |      |      | 21  | 22  |    |     |      |     |
|              |                | Taenionema    | 0%    | 100% | 100% |    |      |      | 14  | 0   |    |     |      |     |
|              |                | Taeniontervy  | 0%    | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
|              | Nemouridae     | Tuentopteryx  | 118%  | 0%   | 0%   |    |      |      | 14  | 56  |    |     |      |     |
|              | Campiidae      |               | 0%    | 110% | 67%  |    |      |      | 35  | 22  |    |     |      |     |
|              | Lavatridaa     |               | 0%    | 00/  | 0770 |    |      |      | 0   | 0   |    |     |      |     |
| <b>m</b> 1 1 | Leuctridae     |               | 0%    | 0%   | 0%   | 26 | 10.0 | 1.60 | 0   | 0   | 70 | 250 | 1.67 | 105 |
| Trichoptera  |                |               | 0%    | 0%   | 0%   | 36 | 126  | 168  | 0   | 0   | 70 | 350 | 467  | 195 |
|              | Trichop        |               | 0%    | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
|              | pupa(e)        |               |       |      |      |    |      |      |     |     |    |     |      |     |
|              | Hydropsychid   |               | 0%    | 0%   | 0%   |    |      |      | 70  | 44  |    |     |      |     |
|              | ae             |               |       |      |      |    |      |      |     |     |    |     |      |     |
|              |                | Hydropsyche   | 534%  | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
|              | Psychomyiida   |               | 0%    | 721% | 400% |    |      |      | 0   | 0   |    |     |      |     |
|              | e              |               |       |      |      |    |      |      |     |     |    |     |      |     |
|              |                | Psychomyia    | 0%    | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
|              | Glossosomatid  |               | 100%  | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
|              | ae             |               |       |      |      |    |      |      |     |     |    |     |      |     |
|              |                | Anagapetus    | 0%    | 100% | 100% |    |      | İ    | 0   | 0   |    |     |      |     |
|              | Brachycentrid  |               | 0%    | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
|              | ae             |               | 070   | 070  | 070  |    |      |      | Ű   | Ũ   |    |     |      |     |
|              |                | Brachycentrus | 0%    | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
|              | Hydrontilidae  | Brachycentras | 0%    | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
|              | Trydroptilldae | Hydroptila    | 0%    | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
| Odonata      | Comphidee      | Orbiogomphus  | 0%    | 0%   | 0%   | 15 | 22   | 24   | 0   | 0   |    |     |      |     |
| Uamintara    | Cominidae      | Opinogompnus  | 0%    | 0%   | 0%   | 15 | 32   | 24   | 0   | 11  |    |     |      |     |
| Heiniptera   |                | 1             | 0%    | 0%   | 0%   |    |      |      | 0   | 11  |    |     |      |     |
| Coleoptera   | Elmidae        | larva         | 0%    | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
|              |                |               |       |      |      |    |      |      |     |     |    |     |      |     |
| Magaloptar   | Sialidae       | Sialic        | 0%    | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
| wiegaloptei  | Statiuae       | Statis        | 070   | 0%   | 070  |    |      |      | 0   | 0   |    |     |      |     |
| a            |                |               |       |      |      |    |      |      |     |     |    |     |      |     |
| Oligochaeta  | Lumbriculidae  |               | 100%  | 0%   | 0%   |    |      |      | 0   | 0   |    |     |      |     |
| ongochaeta   | Lunioncundae   |               | 10070 | 070  | 070  |    |      |      |     | 0   |    |     |      |     |
|              |                |               |       |      |      |    |      |      |     |     |    |     |      |     |
|              |                |               |       |      |      |    |      |      |     |     |    |     |      |     |
|              |                |               |       |      |      | 1  |      |      |     |     | 1  |     |      |     |

| Bivalvia         | Sphaeridae |           | 111% | 100%    | 100% |     |     |     | 0 | 0 |     |     |     |     |
|------------------|------------|-----------|------|---------|------|-----|-----|-----|---|---|-----|-----|-----|-----|
| Gastropoda       |            |           | 0%   | 133%    | 67%  |     |     |     | 0 | 0 |     |     |     |     |
|                  | Limnaidae  |           | 0%   | 0%      | 0%   |     |     |     | 0 | 0 |     |     |     |     |
|                  | Ancyllidae | Ferrissia | 75%  | 0%      | 0%   |     |     |     | 0 | 0 |     |     |     |     |
| Hydrachnid<br>ia |            |           | 0%   | 50%     | 100% |     |     |     | 0 | 0 |     |     |     |     |
| Nematoda         |            |           | 0%   | 0%      | 0%   |     |     |     | 0 | 0 |     |     |     |     |
| Copepoda         | Cyclopoid  |           | 0%   | 0%      | 0%   |     |     |     | 0 | 0 |     |     |     |     |
|                  | 1          |           | 1    | All Spe | cies | 287 | 648 | 641 |   |   | 701 | 226 | 223 | 244 |

|               |                 | Date collected: | Mar   |
|---------------|-----------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|               |                 |                 | 16/07 | 16/07 | 16/07 | 16/07 | 16/07 | 16/07 | 16/07 | 16/07 | 16/07 | 16/07 | 16/07 |
| Order         | Family          | Genera          | AR    |
|               |                 | (unless noted)  | Ref 1 | Ref 2 | Ref 3 | DN    | DS    | TS 1  | TS2   | TS3   | TD1   | TD2   | TD3   |
| Diptera       | Chironomidae    | SF              | 11    | 12    | 19    | 2     | 1     | 5     | 5     | 30    | 31    | 24    | 18    |
|               |                 | Tanypondinae    |       |       |       |       |       |       |       |       |       |       |       |
|               |                 | other           | 29    | 28    | 14    | 2     |       | 27    | 19    | 43    | 35    | 30    | 31    |
|               |                 | chironomids     |       |       |       |       | _     |       |       |       |       |       |       |
|               | Simuliidae      |                 | 1     | 9     | 13    | 24    | 7     |       |       | 1     | 2     | 1     | 1     |
|               |                 | blackfly pupa   |       |       |       |       |       |       |       |       |       |       |       |
|               | Empididae       |                 | 5     | 14    | 9     |       |       | 4     | 1     | 7     | 10    | 14    | 11    |
|               | Dixidae         |                 |       | 1     |       |       |       |       |       |       | 1     | 5     |       |
|               | Ceratopogonidae |                 | 1     |       |       |       |       |       |       |       |       |       | 1     |
| Ephemeroptera |                 |                 |       | 9     | 2     |       | 1     |       |       | 1     | 1     | 1     |       |
|               | Heptageniidae   |                 | 1     | 3     | 1     | 4     | 2     |       | 1     | 6     | 11    | 3     |       |
|               |                 | Stenonema       | 1     | 1     |       | 1     |       |       |       | 3     | 1     | 1     |       |
|               |                 | Rithrogena      | 3     | 4     | 3     | 2     | 7     | 1     | 1     | 7     | 5     | 3     | 2     |
|               |                 | Cinygma         |       |       |       |       |       |       |       | 1     |       | 2     |       |
|               |                 | Heptagenia      |       |       |       |       |       |       | 1     |       |       |       |       |
|               |                 | Stenacron       |       |       |       |       |       |       |       |       |       |       |       |
|               | Leptophlebiidae |                 |       |       |       |       |       |       |       |       |       |       |       |
|               | Ephemerellidae  |                 |       | 1     | 1     |       |       | 2     |       | 3     | 1     | 1     |       |
|               |                 | Ephemerella     |       |       |       |       |       |       |       | 1     | 1     | 4     |       |
|               | Baetidae        |                 | 12    | 32    | 19    | 34    | 20    | 4     |       | 13    | 9     | 5     | 2     |
|               |                 | Baetis          | 4     | 1     | 5     | 17    | 15    | 3     |       |       | 4     | 1     | 1     |
|               |                 | Centroptilum    | -     |       | -     |       |       |       |       |       |       |       | -     |
|               | Metretopodidae  | Siphloplecton   |       |       |       |       | 1     |       |       |       |       |       |       |
|               | Oligoneuridae   | Isonychia       |       |       |       |       | -     |       |       |       |       |       |       |
|               | Siphloneuridae  |                 |       |       |       |       |       |       |       |       |       |       |       |
|               |                 | Parameletus     | 1     |       |       |       | 2     | 1     |       | 6     | 12    |       | 3     |
|               |                 | Siphlonurus(?)  | -     |       |       |       | -     |       |       | Ŭ     |       |       | 0     |
|               |                 | Ameletus        |       |       |       | 1     |       |       |       |       |       |       |       |
| Plecontera    | 1               | - incictus      | 1     | 7     | 1     | 5     | 3     |       | 1     | 1     | 1     | 2     |       |
| Theopteru     | Chloroperlidae  |                 | 1     | ,     |       | 2     | 5     |       |       | 3     | 2     | -     | 2     |
|               | Perlodidae      |                 | 5     | 4     | 6     | 29    | 14    | 1     |       | 3     | 4     | 4     | 1     |
|               | 1 chlouldae     | Isogenoides     | 5     | -     | 0     | 1     | 14    | 1     |       | 5     | 2     | 1     | 1     |
|               |                 | Isoperla        |       |       |       | 1     | 1     |       |       | 1     | -     | 1     | 1     |
|               |                 | isoperia        | 1     | 1     |       | 1     | 1     | 1     |       | 1     | 1     | 1     | 1     |

 TABLE A15 Raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken March 16, 2007

|              | Taeniopterygidae |               | 1  | 5  |    |   |   |   |   |   |    |    |    |
|--------------|------------------|---------------|----|----|----|---|---|---|---|---|----|----|----|
|              |                  | Oemopteryx    |    | 1  |    | 1 | 1 |   | 1 |   |    | 2  |    |
|              |                  | Taenionema    | 2  |    | 2  | 2 | 2 |   |   |   | 3  | 1  |    |
|              |                  | Taeniopteryx  |    |    |    |   |   |   |   |   |    |    |    |
|              | Nemouridae       |               | 4  | 2  | 9  | 8 | 2 | 5 | 1 | 8 | 6  | 8  | 1  |
|              | Capniidae        |               |    |    |    | 3 | 1 |   | 1 | 1 |    |    |    |
|              | Leuctridae       |               |    |    |    |   |   |   |   |   | 4  | 1  |    |
|              | Pteronarcydae    | Pteronarcys   |    |    |    |   |   |   |   |   | 1  |    |    |
| Trichoptera  |                  |               |    |    |    | 1 |   | 1 | 2 |   |    |    |    |
|              | Trichop pupa(e)  |               |    |    | 2  |   |   | 1 |   |   |    |    |    |
|              | Hydropsychidae   |               |    |    |    |   |   | 2 |   |   |    |    |    |
|              |                  | Hydropsyche   | 12 | 21 | 17 | 5 |   |   | 7 | 9 | 45 | 39 | 31 |
|              | Psychomyiidae    |               |    |    |    |   |   |   |   |   |    |    |    |
|              |                  | Psychomyia    |    |    |    |   |   | 1 |   | 1 |    |    |    |
|              | Glossosomatidae  |               | 1  |    | 1  |   |   |   |   |   | 2  | 1  |    |
|              |                  | Anagapetus    |    |    |    |   |   |   |   |   |    |    |    |
|              | Brachycentridae  |               |    | 1  |    |   |   |   | 2 |   |    |    |    |
|              |                  | Brachycentrus | 1  | 3  |    |   |   | 1 | 1 |   | 1  | 2  |    |
|              | Hydroptilidae    |               |    |    |    |   |   |   |   |   |    |    |    |
|              |                  | Hydroptila    |    |    |    |   |   |   |   |   |    |    |    |
| Odonata      | Gomphidae        |               |    |    |    |   |   |   |   | 1 | 1  |    |    |
|              |                  | Ophiogomphus  | 1  |    |    |   |   |   |   |   |    | 1  |    |
|              |                  | Gomphus       |    |    |    |   |   |   |   |   | 1  |    |    |
| Hemiptera    | Corixidae        |               |    |    |    |   |   |   |   |   |    |    |    |
| Coleoptera   | Elmidae          | larva         |    |    |    |   |   |   |   |   |    |    |    |
| Megaloptera  | Sialidae         | Sialis        |    |    |    |   |   |   |   |   |    | 1  |    |
| Oligochaeta  | Lumbriculidae    |               |    |    |    |   |   | 1 | 3 | 1 | 5  | 3  | 3  |
|              | Naididae         |               |    | 1  |    |   |   |   |   |   |    |    |    |
| Bivalvia     | Sphaeridae       |               | 5  | 1  |    |   |   | 2 |   | 3 | 4  | 3  |    |
| Gastropoda   |                  |               |    |    |    |   |   |   |   |   |    |    |    |
|              | Limnaidae        |               |    |    |    |   |   |   | 1 |   | 1  |    |    |
|              | Ancyllidae       | Ferrissia     | 2  | 3  |    |   |   | 1 |   |   | 1  |    |    |
| Hydrachnidia |                  |               |    |    |    |   |   | 1 |   |   |    |    |    |
| Nematoda     |                  |               |    |    | 2  |   |   | 1 | 1 | 1 |    | 1  | 1  |

|               |                  |                | Mean | Mean | Mean | Max | Max | Max | Min | Min | Min | Mean   | Max    | Min    |
|---------------|------------------|----------------|------|------|------|-----|-----|-----|-----|-----|-----|--------|--------|--------|
| Order         | Family           | Genera         | ref  | TS   | TD   | ref | TS  | TD  | ref | TS  | TD  | TS/ref | TS/ref | TS/ref |
|               |                  | (unless noted) |      |      |      |     |     |     |     |     |     |        |        |        |
| Diptera       | Chironomidae     | SF             | 14   | 13   | 24   | 19  | 30  | 31  | 11  | 5   | 18  | 95%    | 158%   | 45%    |
|               |                  | Tanypondinae   |      |      |      |     |     |     |     |     |     |        |        |        |
|               |                  | other          | 24   | 30   | 32   | 29  | 43  | 35  | 14  | 19  | 30  | 125%   | 148%   | 136%   |
|               |                  | chironomids    |      |      |      |     |     |     |     |     |     |        |        |        |
|               | Simuliidae       |                | 8    | 1    | 1    | 13  | 1   | 2   | 1   | 1   | 1   | 13%    | 8%     | 100%   |
|               |                  | blackfly pupa  | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Empididae        |                | 9    | 4    | 12   | 14  | 7   | 14  | 5   | 1   | 10  | 43%    | 50%    | 20%    |
|               | Dixidae          |                | 1    | 0    | 3    | 1   | 0   | 5   | 1   | 0   | 1   | 0%     | 0%     | 0%     |
|               | Ceratopogonidae  |                | 1    | 0    | 1    | 1   | 0   | 1   | 1   | 0   | 1   | 0%     | 0%     | 0%     |
| Ephemeroptera |                  |                | 6    | 1    | 1    | 9   | 1   | 1   | 2   | 1   | 1   | 18%    | 11%    | 50%    |
|               | Heptageniidae    |                | 2    | 4    | 7    | 3   | 6   | 11  | 1   | 1   | 3   | 210%   | 200%   | 100%   |
|               |                  | Stenonema      | 1    | 3    | 1    | 1   | 3   | 1   | 1   | 3   | 1   | 300%   | 300%   | 300%   |
|               |                  | Rithrogena     | 3    | 3    | 3    | 4   | 7   | 5   | 3   | 1   | 2   | 90%    | 175%   | 33%    |
|               |                  | Cinygma        | 0    | 1    | 2    | 0   | 1   | 2   | 0   | 1   | 2   | 0%     | 0%     | 0%     |
|               |                  | Heptagenia     | 0    | 1    | 0    | 0   | 1   | 0   | 0   | 1   | 0   | 0%     | 0%     | 0%     |
|               |                  | Stenacron      | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Leptophlebiidae  |                | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Ephemerellidae   |                | 1    | 3    | 1    | 1   | 3   | 1   | 1   | 2   | 1   | 250%   | 300%   | 200%   |
|               |                  | Ephemerella    | 0    | 1    | 3    | 0   | 1   | 4   | 0   | 1   | 1   | 0%     | 0%     | 0%     |
|               | Baetidae         |                | 21   | 9    | 5    | 32  | 13  | 9   | 12  | 4   | 2   | 40%    | 41%    | 33%    |
|               |                  | Baetis         | 3    | 3    | 2    | 5   | 3   | 4   | 1   | 3   | 1   | 90%    | 60%    | 300%   |
|               |                  | Centroptilum   | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Metretopodidae   | Siphloplecton  | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Oligoneuridae    | Isonychia      | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               | Siphloneuridae   |                | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               |                  | Parameletus    | 1    | 4    | 8    | 1   | 6   | 12  | 1   | 1   | 3   | 350%   | 600%   | 100%   |
|               |                  | Siphlonurus(?) | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
|               |                  | Ameletus       | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0%     | 0%     | 0%     |
| Plecoptera    |                  |                | 4    | 1    | 2    | 7   | 1   | 2   | 1   | 1   | 1   | 25%    | 14%    | 100%   |
| <u>^</u>      | Chloroperlidae   |                | 0    | 3    | 2    | 0   | 3   | 2   | 0   | 3   | 2   | 0%     | 0%     | 0%     |
|               | Perlodidae       |                | 5    | 2    | 3    | 6   | 3   | 4   | 4   | 1   | 1   | 40%    | 50%    | 25%    |
|               |                  | Isogenoides    | 0    | 0    | 2    | 0   | 0   | 2   | 0   | 0   | 1   | 0%     | 0%     | 0%     |
|               |                  | Isoperla       | 0    | 1    | 1    | 0   | 1   | 1   | 0   | 1   | 1   | 0%     | 0%     | 0%     |
|               | Taeniopterygidae | · ·            | 3    | 0    | 0    | 5   | 0   | 0   | 1   | 0   | 0   | 0%     | 0%     | 0%     |
|               |                  | Oemopteryx     | 1    | 1    | 2    | 1   | 1   | 2   | 1   | 1   | 2   | 100%   | 100%   | 100%   |

TABLE A16 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken March 16, 2007 (continued)

|              |                 | Taenionema    | 2  | 0 | 2  | 2  | 0 | 3  | 2  | 0 | 1  | 0%   | 0%   | 0%   |
|--------------|-----------------|---------------|----|---|----|----|---|----|----|---|----|------|------|------|
|              |                 | Taeniopteryx  | 0  | 0 | 0  | 0  | 0 | 0  | 0  | 0 | 0  | 0%   | 0%   | 0%   |
|              | Nemouridae      |               | 5  | 5 | 5  | 9  | 8 | 8  | 2  | 1 | 1  | 93%  | 89%  | 50%  |
|              | Capniidae       |               | 0  | 1 | 0  | 0  | 1 | 0  | 0  | 1 | 0  | 0%   | 0%   | 0%   |
|              | Leuctridae      |               | 0  | 0 | 3  | 0  | 0 | 4  | 0  | 0 | 1  | 0%   | 0%   | 0%   |
|              | Pteronarcydae   | Pteronarcys   | 0  | 0 | 1  | 0  | 0 | 1  | 0  | 0 | 1  | 0%   | 0%   | 0%   |
| Trichoptera  |                 |               | 0  | 2 | 0  | 0  | 2 | 0  | 0  | 1 | 0  | 0%   | 0%   | 0%   |
|              | Trichop pupa(e) |               | 2  | 1 | 0  | 2  | 1 | 0  | 2  | 1 | 0  | 50%  | 50%  | 50%  |
|              | Hydropsychidae  |               | 0  | 2 | 0  | 0  | 2 | 0  | 0  | 2 | 0  | 0%   | 0%   | 0%   |
|              |                 | Hydropsyche   | 17 | 8 | 38 | 21 | 9 | 45 | 12 | 7 | 31 | 48%  | 43%  | 58%  |
|              | Psychomyiidae   |               | 0  | 0 | 0  | 0  | 0 | 0  | 0  | 0 | 0  | 0%   | 0%   | 0%   |
|              |                 | Psychomyia    | 0  | 1 | 0  | 0  | 1 | 0  | 0  | 1 | 0  | 0%   | 0%   | 0%   |
|              | Glossosomatidae |               | 1  | 0 | 2  | 1  | 0 | 2  | 1  | 0 | 1  | 0%   | 0%   | 0%   |
|              |                 | Anagapetus    | 0  | 0 | 0  | 0  | 0 | 0  | 0  | 0 | 0  | 0%   | 0%   | 0%   |
|              | Brachycentridae |               | 1  | 2 | 0  | 1  | 2 | 0  | 1  | 2 | 0  | 200% | 200% | 200% |
|              |                 | Brachycentrus | 2  | 1 | 2  | 3  | 1 | 2  | 1  | 1 | 1  | 50%  | 33%  | 100% |
|              | Hydroptilidae   |               | 0  | 0 | 0  | 0  | 0 | 0  | 0  | 0 | 0  | 0%   | 0%   | 0%   |
|              |                 | Hydroptila    | 0  | 0 | 0  | 0  | 0 | 0  | 0  | 0 | 0  | 0%   | 0%   | 0%   |
| Odonata      | Gomphidae       |               | 0  | 1 | 1  | 0  | 1 | 1  | 0  | 1 | 1  | 0%   | 0%   | 0%   |
|              |                 | Ophiogomphus  | 1  | 0 | 1  | 1  | 0 | 1  | 1  | 0 | 1  | 0%   | 0%   | 0%   |
|              |                 | Gomphus       | 0  | 0 | 1  | 0  | 0 | 1  | 0  | 0 | 1  | 0%   | 0%   | 0%   |
| Hemiptera    | Corixidae       |               | 0  | 0 | 0  | 0  | 0 | 0  | 0  | 0 | 0  | 0%   | 0%   | 0%   |
| Coleoptera   | Elmidae         | larva         | 0  | 0 | 0  | 0  | 0 | 0  | 0  | 0 | 0  | 0%   | 0%   | 0%   |
| Megaloptera  | Sialidae        | Sialis        | 0  | 0 | 1  | 0  | 0 | 1  | 0  | 0 | 1  | 0%   | 0%   | 0%   |
| Oligochaeta  | Lumbriculidae   |               | 0  | 2 | 4  | 0  | 3 | 5  | 0  | 1 | 3  | 0%   | 0%   | 0%   |
|              | Naididae        |               | 1  | 0 | 0  | 1  | 0 | 0  | 1  | 0 | 0  | 0%   | 0%   | 0%   |
| Bivalvia     | Sphaeridae      |               | 3  | 3 | 4  | 5  | 3 | 4  | 1  | 2 | 3  | 83%  | 60%  | 200% |
| Gastropoda   |                 |               | 0  | 0 | 0  | 0  | 0 | 0  | 0  | 0 | 0  | 0%   | 0%   | 0%   |
|              | Limnaidae       |               | 0  | 1 | 1  | 0  | 1 | 1  | 0  | 1 | 1  | 0%   | 0%   | 0%   |
|              | Ancyllidae      | Ferrissia     | 3  | 1 | 1  | 3  | 1 | 1  | 2  | 1 | 1  | 40%  | 33%  | 50%  |
| Hydrachnidia |                 |               | 0  | 1 | 0  | 0  | 1 | 0  | 0  | 1 | 0  | 0%   | 0%   | 0%   |
| Nematoda     |                 |               | 2  | 1 | 1  | 2  | 1 | 1  | 2  | 1 | 1  | 50%  | 50%  | 50%  |

|                   |                 |                 | Mean  | Max   | Min   | Total | Total | Total | Drift | Surber | Total | Total  | Total | Total   |
|-------------------|-----------------|-----------------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|-------|---------|
| Order             | Family          | Genera (unless  | TD/re | TD/re | TD/re | Ref   | TS    | TD    | (ind/ | (ind/m | Drift | TS/ref | TD/re | Drift/r |
|                   | -               | noted)          | f     | f     | f     |       |       |       | m2/   | 2/day) |       | %      | f%    | ef%     |
|                   |                 |                 |       |       |       |       |       |       | day)  |        |       |        |       |         |
| Diptera           | Chironomidae    | SF Tanypondinae | 174%  | 163%  | 164%  | 166   | 142   | 215   | 14    | 11     | 196   | 86     | 130   | 118     |
|                   |                 | other           | 135%  | 121%  | 214%  |       |       |       | 14    | 0      |       |        |       |         |
|                   |                 | chironomids     |       |       |       |       |       |       |       |        |       |        |       |         |
|                   | Simuliidae      |                 | 17%   | 15%   | 100%  |       |       |       | 168   | 78     |       |        |       |         |
|                   |                 | blackfly pupa   | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |         |
|                   | Empididae       |                 | 125%  | 100%  | 200%  |       |       |       | 0     | 0      |       |        |       |         |
|                   | Dixidae         |                 | 300%  | 500%  | 100%  |       |       |       | 0     | 0      |       |        |       |         |
|                   | Ceratopogonidae |                 | 100%  | 100%  | 100%  |       |       |       | 0     | 0      |       |        |       |         |
| Ephemeropter<br>a |                 |                 | 18%   | 11%   | 50%   | 104   | 89    | 29    | 0     | 11     | 414   | 86     | 28    | 398     |
|                   | Heptageniidae   |                 | 420%  | 367%  | 300%  |       |       |       | 28    | 22     |       |        |       |         |
|                   |                 | Stenonema       | 100%  | 100%  | 100%  |       |       |       | 7     | 0      |       |        |       |         |
|                   |                 | Rithrogena      | 100%  | 125%  | 67%   |       |       |       | 14    | 78     |       |        |       |         |
|                   |                 | Cinygma         | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |         |
|                   |                 | Heptagenia      | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |         |
|                   |                 | Stenacron       | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |         |
|                   | Leptophlebiidae |                 | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |         |
|                   | Ephemerellidae  |                 | 100%  | 100%  | 100%  |       |       |       | 0     | 0      |       |        |       |         |
|                   |                 | Ephemerella     | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |         |
|                   | Baetidae        |                 | 25%   | 28%   | 17%   |       |       |       | 238   | 222    |       |        |       |         |
|                   |                 | Baetis          | 60%   | 80%   | 100%  |       |       |       | 119   | 167    |       |        |       |         |
|                   |                 | Centroptilum    | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |         |
|                   | Metretopodidae  | Siphloplecton   | 0%    | 0%    | 0%    |       |       |       | 0     | 11     |       |        |       |         |
|                   | Oligoneuridae   | Isonychia       | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |         |
|                   | Siphloneuridae  |                 | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |         |
|                   |                 | Parameletus     | 750%  | 1200  | 300%  |       |       |       | 0     | 22     |       |        |       |         |
|                   |                 |                 |       | %     |       |       |       |       |       |        |       |        |       |         |
|                   |                 | Siphlonurus(?)  | 0%    | 0%    | 0%    |       |       |       | 0     | 0      |       |        |       |         |
|                   |                 | Ameletus        | 0%    | 0%    | 0%    |       |       |       | 7     | 0      |       |        |       |         |
| Plecoptera        |                 |                 | 38%   | 29%   | 100%  | 49    | 43    | 24    | 35    | 33     | 365   | 88     | 49    | 744     |
|                   | Chloroperlidae  |                 | 0%    | 0%    | 0%    |       |       |       | 14    | 0      |       |        |       |         |
|                   | Perlodidae      |                 | 60%   | 67%   | 25%   |       |       |       | 203   | 156    |       |        |       |         |
|                   |                 | Isogenoides     | 0%    | 0%    | 0%    |       |       |       | 7     | 0      |       |        |       |         |
|                   |                 | Isoperla        | 0%    | 0%    | 0%    |       |       |       | 7     | 11     |       |        |       |         |

TABLE A17 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken March 16, 2007 (continued)

|              | Taeniopterygidae |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|--------------|------------------|---------------|------|----------|------|-----|-----|-----|----|----|------|-----|-----|-----|
|              |                  | Oemopteryx    | 200% | 200%     | 200% |     |     |     | 7  | 11 |      |     |     |     |
|              |                  | Taenionema    | 100% | 150%     | 50%  |     |     |     | 14 | 22 |      |     |     |     |
|              |                  | Taeniopteryx  | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              | Nemouridae       |               | 100% | 89%      | 50%  |     |     |     | 56 | 22 |      |     |     |     |
|              | Capniidae        |               | 0%   | 0%       | 0%   |     |     |     | 21 | 11 |      |     |     |     |
|              | Leuctridae       |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              | Pteronarcydae    | Pteronarcys   | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
| Trichoptera  |                  |               | 0%   | 0%       | 0%   | 59  | 70  | 73  | 7  | 0  | 42   | 119 | 124 | 71  |
|              | Trichop pupa(e)  |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              | Hydropsychidae   |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              |                  | Hydropsyche   | 230% | 214%     | 258% |     |     |     | 35 | 0  |      |     |     |     |
|              | Psychomyiidae    |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              |                  | Psychomyia    | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              | Glossosomatidae  |               | 150% | 200%     | 100% |     |     |     | 0  | 0  |      |     |     |     |
|              |                  | Anagapetus    | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              | Brachycentridae  |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              |                  | Brachycentrus | 75%  | 67%      | 100% |     |     |     | 0  | 0  |      |     |     |     |
|              | Hydroptilidae    |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              |                  | Hydroptila    | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
| Odonata      | Gomphidae        |               | 0%   | 0%       | 0%   | 15  | 17  | 26  | 0  | 0  |      |     |     |     |
|              |                  | Ophiogomphus  | 100% | 100%     | 100% |     |     |     | 0  | 0  |      |     |     |     |
|              |                  | Gomphus       | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
| Hemiptera    | Corixidae        |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
| Coleoptera   | Elmidae          | larva         | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
| Megaloptera  | Sialidae         | Sialis        | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
| Oligochaeta  | Lumbriculidae    |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              | Naididae         |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
| Bivalvia     | Sphaeridae       |               | 117% | 80%      | 300% |     |     |     | 0  | 0  |      |     |     |     |
| Gastropoda   |                  |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              | Limnaidae        |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
|              | Ancyllidae       | Ferrissia     | 40%  | 33%      | 50%  |     |     |     | 0  | 0  |      |     |     |     |
| Hydrachnidia |                  |               | 0%   | 0%       | 0%   |     |     |     | 0  | 0  |      |     |     |     |
| Nematoda     |                  |               | 50%  | 50%      | 50%  |     |     |     | 0  | 0  |      |     |     |     |
|              |                  |               |      | All Spec | cies | 393 | 361 | 367 |    |    | 1017 | 92  | 93  | 259 |
|              |                  |               |      |          |      |     |     |     |    |    |      |     |     |     |

|               |                 | Date collected:       | Mar 6 | Mar 7 | Mar 12 |
|---------------|-----------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|--------|
|               |                 |                       | 2008  | 2008  | 2008  | 2008  | 2008  | 2008  | 2008  | 2008   |
| Order         | Family          | Genera (unless noted) | AR    | AR    | AR    | AR    | AR    | AR    | DN1   | DN2    |
|               |                 |                       | SS1   | SS2   | SS3   | SS4   | SS5   | SS6   |       |        |
| Diptera       | Chironomidae    | SF Tanypondinae       | 33    | 37    | 26    | 36    | 29    | 56    | 1     |        |
|               |                 | other chironomids     | 61    | 56    | 77    | 53    | 40    | 96    |       | 1      |
|               | Simuliidae      |                       |       | 5     | 3     |       | 2     | 4     |       | 1      |
|               |                 | Ectemnia              | 1     | 1     |       | 1     |       |       | 39    | 4      |
|               | Empididae       |                       | 17    | 12    | 10    | 19    | 19    | 20    |       |        |
|               | Ceratopogonidae |                       | 1     | 1     |       | 1     |       |       |       |        |
|               | Dixidae         |                       | 2     |       |       |       |       |       |       |        |
|               | Sciomyzidae     |                       |       |       |       |       |       |       |       |        |
|               | Chaoboridae     | Chaoborus             |       |       |       |       |       |       |       |        |
| Ephemeroptera |                 |                       |       |       | 1     | 1     |       | 5     |       |        |
|               | Heptageniidae   |                       | 19    | 8     | 21    | 25    | 1     | 24    |       | 3      |
|               |                 | Stenonema             | 1     | 2     | 1     | 1     |       | 1     |       |        |
|               |                 | Rithrogena            | 10    | 4     | 2     | 5     |       | 7     | 2     |        |
|               |                 | Heptagenia            | 15    |       |       | 4     |       | 5     |       |        |
|               |                 | Stenacron             |       |       | 1     |       |       | 1     |       |        |
|               | Ephemerellidae  |                       | 6     | 10    | 4     | 5     | 4     | 10    |       |        |
|               | •               | Ephemerella           |       | 1     |       |       |       |       |       |        |
|               | Baetidae        | <b>.</b>              | 1     | 3     | 2     | 3     | 8     | 3     | 8     | 1      |
|               |                 | Baetis                |       |       |       |       |       |       | 1     |        |
|               |                 | Centroptilum          |       |       |       |       |       |       |       |        |
|               | Leptophlebiidae |                       |       |       |       |       |       |       |       |        |
|               |                 | Leptophlebia          |       |       |       |       |       |       |       |        |
|               | Siphloneuridae  |                       |       |       |       |       |       |       |       |        |
|               | <u></u>         | Analetris             |       |       |       |       |       | 1     |       |        |
|               | Metretopodidae  |                       |       |       |       |       |       |       |       |        |
|               | •               | Metretopus            |       |       |       |       |       |       | 1     |        |
|               |                 | Siphloplecton         |       |       |       |       |       |       |       |        |
| Plecoptera    |                 |                       | 1     |       | 4     |       |       | 7     |       | 6      |
|               | Chloroperlidae  |                       | 3     | 3     | 5     | 4     | 7     | 6     |       | 4      |
|               | Perlodidae      |                       | 8     | 6     | 8     | 2     | 4     | 28    | 18    | 7      |
|               |                 | Isogenoides           |       | 1     | 1     |       | 1     | 1     |       | 1      |
|               |                 | Isoperla              |       | 1     | 1     |       |       |       |       | 1      |
|               |                 | Shipsa                | 1     |       |       |       |       |       |       |        |

TABLE A18 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken March 6, 2008 and drift net samples taken March 7, and 12, 2008
|             | Taeniopterygidae  |                       | 1   |     | 1   |     | 1   | 2   |   |    |
|-------------|-------------------|-----------------------|-----|-----|-----|-----|-----|-----|---|----|
|             |                   | Taenia                |     |     |     |     |     |     |   | 1  |
|             |                   | Taenionema            |     | 1   |     |     |     |     |   |    |
|             |                   | Oemopteryx            |     |     |     |     |     |     | 1 |    |
|             | Nemouridae        |                       | 10  | 4   |     |     | 4   | 2   | 9 | 1  |
|             |                   | Podmosta              |     | 10  | 9   | 6   |     | 29  |   |    |
| Trichoptera |                   |                       | 1   | 4   | 2   | 2   |     | 1   |   |    |
| <u></u>     | Hydropsychidae    |                       | 1   | 1   |     | 2   |     | 2   |   |    |
|             |                   | Hydropsyche           | 105 | 157 | 147 | 229 | 229 | 278 | 2 | 12 |
|             | Glossosomatidae   |                       |     |     |     |     |     | 1   |   |    |
|             |                   | Glossosoma            |     |     |     |     |     |     |   | 1  |
|             | Brachycentridae   |                       | 1   | 1   | 5   |     | 1   | 1   |   |    |
|             |                   | Brachycentrus         |     |     |     | 1   | 2   |     |   |    |
|             | Polycentropodidae |                       | 1   |     |     |     | 1   |     |   |    |
|             |                   | Polycentropus         |     |     |     | 5   |     |     |   |    |
|             | Rhyachophyllidae  |                       |     |     | 2   |     |     |     |   |    |
| Hemiptera   |                   |                       |     |     |     |     |     |     |   |    |
|             | Corixidae         |                       | 1   | 2   | 1   | 4   |     |     |   |    |
|             |                   | Corisella             | 1   | 5   | 1   | 3   |     | 1   | 2 | 1  |
|             |                   | Sigara                |     |     |     |     |     | 2   |   |    |
|             |                   | Callicorixa           |     |     |     |     |     |     | 1 |    |
|             | Belostomatidae    |                       |     |     |     |     |     |     |   |    |
|             |                   | Lethocerus americanus |     |     |     |     |     |     |   |    |
| Odonata     |                   |                       |     |     |     |     |     |     |   |    |
|             | Gomphidae         |                       |     |     |     |     |     |     |   |    |
|             |                   | Ophiogomphus          | 1   |     | 3   |     | 1   | 1   |   |    |
|             |                   | Gomphus               |     | 1   | 1   | 1   |     | 1   |   |    |
| Coleoptera  |                   |                       |     |     |     |     |     |     |   |    |
|             | Dytiscidae        |                       |     |     |     |     |     |     |   |    |
|             |                   | Liodessus             |     |     |     | 1   |     | 1   |   |    |
|             | Elmidae           |                       |     |     |     |     |     |     |   |    |
|             |                   | Heterlimnius          |     |     |     |     |     |     |   |    |
|             | Hydrophilidae     |                       |     |     |     |     |     |     |   |    |
|             |                   | Helophorus            |     |     |     |     |     |     |   |    |
|             | Haliplidae        |                       |     |     |     |     |     |     |   |    |
|             |                   | Brychius              |     |     |     |     |     |     |   |    |
|             | Chrysomelidae     |                       |     |     |     |     |     |     |   |    |
|             | Curculionidae     |                       |     |     |     |     |     |     |   |    |
| Megaloptera |                   |                       |     |     |     |     |     |     |   |    |
|             | Sialidae          |                       |     |     |     |     |     |     |   |    |

|                   |               | Sialis |    |    |    |    |    |    |    |  |
|-------------------|---------------|--------|----|----|----|----|----|----|----|--|
| Oligochaeta       | Lumbriculidae |        | 14 | 21 | 15 | 35 | 18 | 21 |    |  |
| Bivalvia          | Sphaeridae    |        |    | 2  | 1  | 1  |    | 1  |    |  |
| Gastropoda        |               |        |    |    |    |    |    |    |    |  |
|                   | Ancyllidae    |        |    |    |    |    |    |    |    |  |
| Copepoda          |               |        |    |    |    |    |    |    | 2  |  |
| Nematoda          |               |        |    |    |    | 1  | 1  |    |    |  |
| Hydrachnidia      |               |        |    |    |    |    | 1  |    |    |  |
| Anostraca         |               |        |    |    |    |    |    |    | 11 |  |
| Arachnida         |               |        |    |    |    |    |    |    |    |  |
| terrestrial fly   |               |        |    |    |    |    |    |    |    |  |
| immature fish fry |               |        |    |    |    |    |    |    |    |  |

| Date collected: Mar Mar                                                                 |           |
|-----------------------------------------------------------------------------------------|-----------|
| 15 17                                                                                   |           |
| 2008 2008                                                                               |           |
| Mean Max Min Total Mean I                                                               | ift Total |
| OrderFamilyGenera (unless noted)DN3BFDTSTSTSDrift(                                      | ıd/ Drift |
| N r                                                                                     | 2/da      |
|                                                                                         |           |
| Diptera Chironomidae SF Tanypondinae 36 56 26 343 1 7                                   | ) 180     |
|                                                                                         | )         |
| Simuliidae 3.5 5 2 1 7                                                                  | )         |
| Ectemnia 25 1 1 1 23 1                                                                  | 9         |
| Empididae 16 20 10 0 0                                                                  |           |
| Ceratopogonidae 1 1 1 0 0                                                               |           |
| Dixidae 2 2 2 0 0                                                                       |           |
| Sciomyzidae 0 0 0 0 0 0                                                                 |           |
| Chaoboridae Chaoborus 0 0 0 0 0 0                                                       |           |
| Ephemeroptera         5         2.3         5         1         112         5         3 | 125       |
| Heptageniidae 2 2 16 25 1 2.3 1                                                         | ,         |
| Stenonema         1.2         2         1         0         0                           |           |
| Rithrogena         3         5.6         10         2         2.5         1             |           |
| Heptagenia 2 8 15 4 2 1                                                                 | ,         |
| Stenacron         1         1         0         0                                       |           |
| Ephemerellidae 6.5 10 4 0 0                                                             |           |
| Ephemerella 1 1 1 0 0                                                                   |           |
| Baetidae 2 1 3.3 8 1 3 2                                                                |           |
| Baetis 1 0 0 0 1 1 7                                                                    | )         |
| Centroptilum 0 0 0 0 0 0 0                                                              |           |
| Leptophlebiidae 0 0 0 0 0 0 0                                                           |           |
| Leptophlebia 0 0 0 0 0 0                                                                |           |
| Siphloneuridae 0 0 0 0 0 0 0                                                            |           |
| Analetris 1 1 1 0 0                                                                     |           |
| Metretopodidae 0 0 0 0 0 0 0                                                            |           |
| Metretopus 0 0 0 1 1                                                                    | )         |
| Siphloplecton 1 0 0 0 1                                                                 | )         |
| Plecoptera 1 1 4 7 1 76 2.7                                                             | 150       |
|                                                                                         | 139       |
|                                                                                         | 139       |

## TABLE A19 Raw data following benthic invertebrate identification for drift net samples from the C-Bridge experimental site taken March 15, and 17, 2008, and descriptive statistics (continued)

|             |                   | Isogenoides           |   |    | 1    | 1   | 1   |     | 0   | 0   |    |
|-------------|-------------------|-----------------------|---|----|------|-----|-----|-----|-----|-----|----|
|             |                   | Isoperla              |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             |                   | Shipsa                |   |    | 1    | 1   | 1   |     | 0   | 0   |    |
|             | Taeniopterygidae  |                       |   |    | 1.25 | 2   | 1   |     | 0   | 0   |    |
|             | 1 70              | Taenia                |   |    | 0    | 0   | 0   |     | 1   | 7.0 |    |
|             |                   | Taenionema            |   | 1  | 1    | 1   | 1   |     | 1   | 7.0 |    |
|             |                   | Oemopteryx            |   |    | 0    | 0   | 0   |     | 1   | 7.0 |    |
|             | Nemouridae        |                       | 1 | 10 | 5    | 10  | 2   |     | 5.3 | 37  |    |
|             |                   | Podmosta              |   |    | 14   | 29  | 6   |     | 0   | 0   |    |
| Trichoptera |                   |                       |   |    | 2    | 4   | 1   | 428 | 0   | 0   | 65 |
| <u>^</u>    | Hydropsychidae    |                       |   | 2  | 1.5  | 2   | 1   |     | 2   | 14  |    |
|             |                   | Hydropsyche           | 1 | 6  | 191  | 278 | 105 |     | 5.3 | 37  |    |
|             | Glossosomatidae   |                       |   |    | 1    | 1   | 1   |     | 0   | 0   |    |
|             |                   | Glossosoma            |   |    | 0    | 0   | 0   |     | 1   | 7.0 |    |
|             | Brachycentridae   |                       |   |    | 1.8  | 5   | 1   |     | 0   | 0   |    |
|             |                   | Brachycentrus         |   | 1  | 1.5  | 2   | 1   |     | 1   | 7.0 |    |
|             | Polycentropodidae |                       |   |    | 1    | 1   | 1   |     | 0   | 0   |    |
|             |                   | Polycentropus         |   |    | 5    | 5   | 5   |     | 0   | 0   |    |
|             | Rhyachophyllidae  |                       |   |    | 2    | 2   | 2   |     | 0   | 0   |    |
| Hemiptera   |                   |                       |   |    | 0    | 0   | 0   | 70  | 0   | 0   | 98 |
|             | Corixidae         |                       |   |    | 2    | 4   | 1   |     | 0   | 0   |    |
|             |                   | Corisella             |   | 36 | 2.2  | 5   | 1   |     | 13  | 91  |    |
|             |                   | Sigara                |   |    | 2    | 2   | 2   |     | 0   | 0   |    |
|             |                   | Callicorixa           |   |    | 0    | 0   | 0   |     | 1   | 7.0 |    |
|             | Belostomatidae    |                       |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             |                   | Lethocerus americanus |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
| Odonata     |                   |                       |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             | Gomphidae         |                       |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             |                   | Ophiogomphus          |   |    | 1.5  | 3   | 1   |     | 0   | 0   |    |
|             |                   | Gomphus               |   |    | 1    | 1   | 1   |     | 0   | 0   |    |
| Coleoptera  |                   |                       |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             | Dytiscidae        |                       |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             |                   | Liodessus             |   |    | 1    | 1   | 1   |     | 0   | 0   |    |
|             | Elmidae           |                       |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             |                   | Heterlimnius          |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             | Hydrophilidae     |                       |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             |                   | Helophorus            |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             | Haliplidae        |                       |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             |                   | Brychius              |   |    | 0    | 0   | 0   |     | 0   | 0   |    |
|             | Chrysomelidae     |                       |   |    | 0    | 0   | 0   |     | 0   | 0   |    |

|                   | Curculionidae |        |      | 0   | 0        | 0    |      | 0  | 0   |      |
|-------------------|---------------|--------|------|-----|----------|------|------|----|-----|------|
| Megaloptera       |               |        |      | 0   | 0        | 0    |      | 0  | 0   |      |
|                   | Sialidae      |        |      | 0   | 0        | 0    |      | 0  | 0   |      |
|                   |               | Sialis |      | 0   | 0        | 0    |      | 0  | 0   |      |
| Oligochaeta       | Lumbriculidae |        |      | 21  | 35       | 14   |      | 0  | 0   |      |
| Bivalvia          | Sphaeridae    |        |      | 1.3 | 2        | 1    |      | 0  | 0   |      |
| Gastropoda        |               |        |      | 0   | 0        | 0    |      | 0  | 0   |      |
|                   | Ancyllidae    |        |      | 0   | 0        | 0    |      | 0  | 0   |      |
| Copepoda          |               |        |      | 0   | 0        | 0    |      | 2  | 14  | 498  |
| Nematoda          |               |        |      | 1   | 1        | 1    |      | 0  | 0   |      |
| Hydrachnidia      |               |        |      | 1   | 1        | 1    |      | 0  | 0   |      |
| Anostraca         |               |        | 127  | 0   | 0        | 0    |      | 69 | 484 |      |
| Arachnida         |               |        |      | 0   | 0        | 0    |      | 0  | 0   |      |
| terrestrial fly   |               |        |      | 0   | 0        | 0    |      | 0  | 0   |      |
| immature fish fry |               |        |      | 0   | 0        | 0    |      | 0  | 0   |      |
|                   |               |        | <br> |     | All Spec | cies |      |    |     |      |
|                   |               |        |      |     |          |      | 1029 |    |     | 1125 |

|                   |                     | Date collecte               | Mar 14 2008 | Mar 14<br>2008 | Mar 14 2008 | Mar 14<br>2008 | Mar 14 2008 | Mar 14 2008 |      |     |     |       |       |                  |       |
|-------------------|---------------------|-----------------------------|-------------|----------------|-------------|----------------|-------------|-------------|------|-----|-----|-------|-------|------------------|-------|
|                   |                     | d:                          |             |                |             |                |             |             |      |     |     |       |       |                  |       |
|                   |                     |                             |             |                |             |                |             |             | Mean | Max | Min | Total | Mean  | Drift            | Total |
| Order             | Family              | Genera<br>(unless<br>noted) | AR<br>SS1   | AR<br>SS2      | AR<br>SS3   | AR<br>SS4      | AR<br>SS5   | AR<br>SS6   | TS   | TS  | TS  | TS    | Drift | (ind/m<br>2/day) | Drift |
| Diptera           | Chironom<br>idae    | SF<br>Tanypo<br>ndinae      | 36          | 46             | 28          | 5              | 26          | 17          | 26   | 46  | 5   | 239   | 1     | 7.0              | 180   |
|                   |                     | other<br>chirono<br>mids    | 20          | 24             | 42          | 16             | 29          | 20          | 25   | 42  | 16  |       | 1     | 7.0              |       |
|                   | Simuliida<br>e      |                             |             | 3              | 1           |                |             | 2           | 2    | 3   | 1   |       | 1     | 7.0              |       |
|                   |                     | Ectemn<br>ia                | 7           | 1              | 1           | 1              | 1           | 5           | 3.0  | 7   | 1   |       | 23    | 159              |       |
|                   | Empidida<br>e       |                             | 6           | 10             | 12          | 1              | 15          | 9           | 8.8  | 15  | 1   |       | 0     | 0                |       |
|                   | Ceratopog<br>onidae |                             |             | 1              |             | 1              |             |             | 1    | 1   | 1   |       | 0     | 0                |       |
|                   | Dixidae             |                             |             | 1              |             |                |             |             | 1    | 1   | 1   |       | 0     | 0                |       |
|                   | Sciomyzi<br>dae     |                             |             |                |             |                |             |             | 0    | 0   | 0   |       | 0     | 0                |       |
|                   | Chaoborid<br>ae     | Chaobo<br>rus               |             |                |             |                |             |             | 0    | 0   | 0   |       | 0     | 0                |       |
| Ephemer<br>optera |                     |                             | 3           | 1              | 1           |                |             | 1           | 1.5  | 3   | 1   | 71    | 5     | 35               | 125   |
|                   | Heptageni<br>idae   |                             |             | 7              | 8           | 12             | 1           | 7           | 7    | 12  | 1   |       | 2.3   | 16               |       |
|                   |                     | Stenon<br>ema               | 1           | 3              | 2           | 1              | 1           | 1           | 1.5  | 3   | 1   |       | 0     | 0                |       |
|                   |                     | Rithrog<br>ena              |             | 3              | 1           | 1              | 4           | 4           | 2.6  | 4   | 1   |       | 2.5   | 18               |       |
|                   |                     | Heptag<br>enia              | 1           |                | 1           | 3              |             | 1           | 1.5  | 3   | 1   |       | 2     | 14               |       |
|                   |                     | Stenacr<br>on               |             |                |             |                |             |             | 0    | 0   | 0   |       | 0     | 0                |       |

 TABLE A20 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken March 14, 2008, and descriptive statistics

|                | Ephemere<br>llidae   |                   | 2  | 9  | 12 | 2 | 8  | 6  | 6.5 | 12 | 2 |     | 0   | 0   |     |
|----------------|----------------------|-------------------|----|----|----|---|----|----|-----|----|---|-----|-----|-----|-----|
|                |                      | Ephem<br>erella   |    | 3  | 1  |   | 2  |    | 2   | 3  | 1 |     | 0   | 0   |     |
|                | Baetidae             |                   | 3  | 4  | 3  | 1 | 3  | 12 | 4.3 | 12 | 1 |     | 3   | 21  |     |
|                |                      | Baetis            | 1  |    |    |   |    |    | 1   | 1  | 1 |     | 1   | 7.0 |     |
|                |                      | Centro<br>ptilum  |    |    |    |   |    | 1  | 1   | 1  | 1 |     | 0   | 0   |     |
|                | Leptophle<br>biidae  |                   |    |    |    |   |    |    | 0   | 0  | 0 |     | 0   | 0   |     |
|                |                      | Leptop            |    |    |    |   |    |    | 0   | 0  | 0 |     | 0   | 0   |     |
|                | Siphloneu            | liteola           |    |    |    |   |    |    | 0   | 0  | 0 |     | 0   | 0   |     |
|                | Titute               | Analetr           | 1  |    |    |   |    | 4  | 2.5 | 4  | 1 |     | 0   | 0   |     |
|                | Metretopo<br>didae   | 10                |    |    |    |   |    |    | 0   | 0  | 0 |     | 0   | 0   |     |
|                |                      | Metreto<br>pus    |    |    |    |   |    |    | 0   | 0  | 0 |     | 1   | 7.0 |     |
|                |                      | Siphlop<br>lecton |    |    |    |   |    |    | 0   | 0  | 0 |     | 1   | 7.0 |     |
| Plecopter<br>a |                      |                   | 2  | 7  | 4  |   |    | 2  | 3.8 | 7  | 2 | 134 | 2.7 | 19  | 159 |
|                | Chloroper<br>lidae   |                   | 1  | 9  | 4  |   |    | 4  | 4.5 | 9  | 1 |     | 2.5 | 18  |     |
|                | Perlodida<br>e       |                   | 13 | 13 | 22 | 3 | 11 | 14 | 13  | 22 | 3 |     | 9.3 | 65  |     |
|                |                      | Isogeno<br>ides   | 2  |    |    |   |    |    | 2   | 2  | 2 |     | 0   | 0   |     |
|                |                      | Isoperl<br>a      |    | 1  |    |   |    | 1  | 1   | 1  | 1 |     | 0   | 0   |     |
|                |                      | Shipsa            |    |    |    |   |    |    | 0   | 0  | 0 |     | 0   | 0   |     |
|                | Taeniopte<br>rygidae |                   | 1  |    |    | 1 |    | 2  | 1.3 | 2  | 1 |     | 0   | 0   |     |
|                |                      | Taenia            |    |    |    |   |    |    | 0   | 0  | 0 |     | 1   | 7.0 |     |
|                |                      | Taenio<br>nema    |    |    |    |   |    |    | 0   | 0  | 0 |     | 1   | 7.0 |     |
|                |                      | Oemop<br>tervx    |    |    |    |   |    |    | 0   | 0  | 0 |     | 1   | 7.0 |     |
|                | Nemourid             |                   | 1  | 1  | 3  | 1 | 1  | 1  | 1.4 | 3  | 1 |     | 5.3 | 37  |     |

|               | 1                     | 1                                |    |     | 1   | 1  |     | 1  | 1   | 1   |    |     |     | 1   | т  |
|---------------|-----------------------|----------------------------------|----|-----|-----|----|-----|----|-----|-----|----|-----|-----|-----|----|
|               | ae                    |                                  |    |     |     |    |     |    |     |     |    |     |     |     |    |
|               |                       | Podmo<br>sta                     | 15 | 21  | 15  |    | 13  | 10 | 15  | 21  | 10 |     | 0   | 0   |    |
| Trichopt      |                       |                                  |    |     | 2   | 1  | 1   |    | 1.3 | 2   | 1  | 395 | 0   | 0   | 65 |
| era           |                       |                                  |    |     |     |    |     |    |     |     |    |     |     |     |    |
|               | Hydropsy<br>chidae    |                                  | 1  | 2   |     |    |     |    | 1.5 | 2   | 1  |     | 2   | 14  |    |
|               |                       | Hydrop<br>svche                  | 73 | 172 | 139 | 26 | 127 | 77 | 102 | 172 | 26 |     | 5.3 | 37  |    |
|               | Glossoso<br>matidae   |                                  |    | 1   | 1   |    |     |    | 1   | 1   | 1  |     | 0   | 0   |    |
|               |                       | Glossos                          |    | 1   |     |    |     |    | 1   | 1   | 1  |     | 1   | 7.0 |    |
|               | Brachyce<br>ntridae   |                                  | 2  |     |     | 1  | 1   |    | 1.3 | 2   | 1  |     | 0   | 0   |    |
|               |                       | Brachy                           |    | 1   |     |    |     | 1  | 1   | 1   | 1  |     | 1   | 7.0 |    |
|               | Polycentr<br>opodidae |                                  |    |     |     |    |     |    | 0   | 0   | 0  |     | 0   | 0   |    |
|               |                       | Polyce                           |    |     |     |    |     | 1  | 1   | 1   | 1  |     | 0   | 0   |    |
|               | Rhyachop<br>hyllidae  |                                  |    |     |     |    |     |    | 0   | 0   | 0  |     | 0   | 0   |    |
| Hemipter<br>a |                       |                                  |    |     |     |    |     |    | 0   | 0   | 0  | 42  | 0   | 0   | 98 |
|               | Corixidae             |                                  | 1  |     |     |    |     |    | 1   | 1   | 1  |     | 0   | 0   |    |
|               |                       | Corisell                         |    | 1   |     |    |     |    | 1   | 1   | 1  |     | 13  | 91  |    |
|               |                       | Sigara                           |    |     |     |    |     |    | 0   | 0   | 0  |     | 0   | 0   |    |
|               |                       | Callico                          |    |     |     |    |     |    | 0   | 0   | 0  |     | 1   | 7.0 |    |
|               | Belostom<br>atidae    | Ind                              |    |     |     |    |     |    | 0   | 0   | 0  |     | 0   | 0   |    |
|               |                       | Lethoc<br>erus<br>america<br>nus |    |     |     |    |     |    | 0   | 0   | 0  |     | 0   | 0   |    |
| Odonata       |                       |                                  | 1  |     |     |    |     | 1  | 0   | 0   | 0  |     | 0   | 0   |    |
|               | Gomphida<br>e         |                                  |    |     |     |    |     |    | 0   | 0   | 0  |     | 0   | 0   |    |
|               |                       | Ophiog                           | 1  |     | 2   | 1  |     |    | 1.3 | 2   | 1  |     | 0   | 0   |    |

|                  |                   | omphus           |   |   |    |   |   |   |     |    |   |   |    |     |
|------------------|-------------------|------------------|---|---|----|---|---|---|-----|----|---|---|----|-----|
|                  |                   | Gomph            |   | 1 |    |   |   |   | 1   | 1  | 1 | 0 | 0  |     |
|                  |                   | us               |   |   |    |   |   |   |     |    |   |   |    |     |
| Coleopte<br>ra   |                   |                  |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  | Dytiscida         |                  |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  | e                 | Lindaga          |   | - |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  |                   | us               |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  | Elmidae           |                  |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  |                   | Heterli<br>mnius |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  | Hydrophil<br>idae |                  |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  |                   | Heloph<br>orus   |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  | Haliplidae        |                  |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  |                   | Brychi           |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  | Chrysome<br>lidae |                  |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  | Curculion<br>idae |                  |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
| Megalop<br>tera  |                   |                  |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  | Sialidae          |                  |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  |                   | Sialis           |   |   | 1  |   | 1 |   | 1   | 1  | 1 | 0 | 0  |     |
| Oligocha         | Lumbricul<br>idae |                  | 6 | 5 | 12 | 4 | 3 | 9 | 6.5 | 12 | 3 | 0 | 0  |     |
| Bivalvia         | Sphaerida         |                  |   | 1 | 2  |   | 1 | 3 | 1.8 | 3  | 1 | 0 | 0  |     |
| Gastropo<br>da   |                   |                  |   |   |    |   |   |   | 0   | 0  | 0 | 0 | 0  |     |
|                  | Ancyllida<br>e    |                  |   |   | 1  |   |   |   | 1   | 1  | 1 | 0 | 0  |     |
| Copepod<br>a     |                   |                  |   |   |    |   |   |   | 0   | 0  | 0 | 2 | 14 | 498 |
| Nematod<br>a     |                   |                  | 3 | 2 | 2  |   |   |   | 2.3 | 3  | 2 | 0 | 0  |     |
| Hydrach<br>nidia |                   |                  |   |   | 1  |   |   |   | 1   | 1  | 1 | 0 | 0  |     |

| Anostrac   |  |  |  |  | 0 | 0        | 0    |     | 69 | 484 |      |
|------------|--|--|--|--|---|----------|------|-----|----|-----|------|
| а          |  |  |  |  |   |          |      |     |    |     |      |
| Arachnid   |  |  |  |  | 0 | 0        | 0    |     | 0  | 0   |      |
| а          |  |  |  |  |   |          |      |     |    |     |      |
| terrestria |  |  |  |  | 0 | 0        | 0    |     | 0  | 0   |      |
| l fly      |  |  |  |  |   |          |      |     |    |     |      |
| immatur    |  |  |  |  | 0 | 0        | 0    |     | 0  | 0   |      |
| e fish fry |  |  |  |  |   |          |      |     |    |     |      |
|            |  |  |  |  |   | All Spec | cies | 881 |    |     | 1125 |
|            |  |  |  |  |   | -        |      |     |    |     |      |

|               |                 | Date collected:          | May 8<br>2008 |      |      |
|---------------|-----------------|--------------------------|---------------|---------------|---------------|---------------|---------------|---------------|------|------|
|               |                 |                          |               |               |               |               |               |               | Mean | Mean |
| Order         | Family          | Genera (unless<br>noted) | AR DS1        | AR DS2        | AR DS3        | AR<br>SS1     | AR<br>SS2     | AR SS3        | TS   | TD   |
| Diptera       | Chironomidae    | SF Tanypondinae          |               | 1             | 1             |               | 1             | 1             | 1    | 1    |
|               |                 | other chironomids        |               | 4             | 1             | 4             | 3             | 2             | 3    | 2.5  |
|               | Simuliidae      |                          |               |               | 1             |               |               |               | 0    | 1    |
|               |                 | Ectemnia                 |               |               |               |               |               |               | 0    | 0    |
|               | Empididae       |                          | 2             |               |               | 1             |               |               | 1    | 2    |
|               | Ceratopogonidae |                          |               |               |               |               |               |               | 0    | 0    |
|               | Dixidae         |                          |               |               |               |               | 1             |               | 1    | 0    |
|               | Sciomyzidae     |                          |               |               |               |               |               | 1             | 1    | 0    |
|               | Chaoboridae     | Chaoborus                |               |               | 1             |               |               |               | 0    | 1    |
| Ephemeroptera |                 |                          |               |               |               |               | 2             |               | 2    | 0    |
|               | Heptageniidae   |                          |               |               |               |               |               |               | 0    | 0    |
|               |                 | Stenonema                |               |               |               |               |               |               | 0    | 0    |
|               |                 | Rithrogena               |               |               |               |               |               |               | 0    | 0    |
|               |                 | Heptagenia               | 2             |               |               |               |               |               | 0    | 2    |
|               |                 | Stenacron                |               |               |               |               |               |               | 0    | 0    |
|               | Ephemerellidae  |                          |               |               |               |               |               |               | 0    | 0    |
|               |                 | Ephemerella              |               |               |               |               |               |               | 0    | 0    |
|               | Baetidae        |                          |               | 3             | 2             | 1             |               |               | 1    | 2.5  |
|               |                 | Baetis                   |               |               |               |               |               |               | 0    | 0    |
|               |                 | Centroptilum             |               |               |               |               |               |               | 0    | 0    |
|               | Leptophlebiidae |                          |               | 1             |               |               |               |               | 0    | 1    |
|               |                 | Leptophlebia             | 2             | 2             | 6             | 7             | 5             | 4             | 5.3  | 3.3  |
|               | Siphloneuridae  |                          |               |               |               |               |               |               | 0    | 0    |
|               |                 | Analetris                |               |               |               |               |               |               | 0    | 0    |
|               | Metretopodidae  |                          |               |               |               |               |               |               | 0    | 0    |
|               |                 | Metretopus               |               |               |               |               |               |               | 0    | 0    |
|               |                 | Siphloplecton            |               |               |               |               |               |               | 0    | 0    |
| Plecoptera    |                 |                          | 3             | 1             |               | 2             | 1             | 1             | 1.3  | 2    |
|               | Chloroperlidae  |                          |               |               | 1             |               |               |               | 0    | 1    |
|               | Perlodidae      |                          | 7             | 6             | 6             | 4             | 2             | 3             | 3    | 6.3  |
|               |                 | Isogenoides              |               |               |               |               |               |               | 0    | 0    |
|               |                 | Isoperla                 | 10            | 7             | 6             |               | 1             | 1             | 1    | 7.7  |

 TABLE A21 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken May 8, 2008, and descriptive statistics

|             |                   | Shipsa        |    |    |    |    |    |    | 0   | 0   |
|-------------|-------------------|---------------|----|----|----|----|----|----|-----|-----|
|             | Taeniopterygidae  |               |    |    |    |    |    |    | 0   | 0   |
|             |                   | Taenia        |    |    |    |    |    |    | 0   | 0   |
|             |                   | Taenionema    |    |    |    |    |    |    | 0   | 0   |
|             |                   | Oemopteryx    |    |    |    |    |    |    | 0   | 0   |
|             | Nemouridae        |               | 7  | 2  | 2  | 1  |    | 3  | 2   | 3.7 |
|             |                   | Podmosta      | 46 | 51 | 34 | 36 | 43 | 23 | 34  | 44  |
| Trichoptera |                   |               |    |    |    |    |    |    | 0   | 0   |
| <b>^</b>    | Hydropsychidae    |               |    |    |    |    |    |    | 0   | 0   |
|             | 2 . 2             | Hydropsyche   |    | 1  |    |    |    |    | 0   | 1   |
|             | Glossosomatidae   |               |    |    |    |    |    |    | 0   | 0   |
|             |                   | Glossosoma    |    |    |    |    |    |    | 0   | 0   |
|             | Brachycentridae   |               |    |    |    |    |    |    | 0   | 0   |
|             |                   | Brachycentrus |    |    |    |    |    |    | 0   | 0   |
|             | Polycentropodidae |               |    |    |    |    |    |    | 0   | 0   |
|             |                   | Polycentropus |    |    |    |    |    |    | 0   | 0   |
|             | Rhyachophyllidae  |               |    |    |    |    |    |    | 0   | 0   |
| Hemiptera   |                   |               |    |    |    |    |    |    | 0   | 0   |
|             | Corixidae         |               |    |    |    |    | 1  | 2  | 1.5 | 0   |
|             |                   | Corisella     |    | 1  | 1  | 3  | 1  | 2  | 2   | 1   |
|             |                   | Sigara        |    |    |    | 2  |    |    | 2   | 0   |
|             |                   | Callicorixa   |    |    |    |    |    |    | 0   | 0   |
|             | Belostomatidae    |               |    |    |    |    |    |    | 0   | 0   |
|             |                   | Lethocerus    | 1  |    |    |    |    |    | 0   | 1   |
|             |                   | americanus    |    |    |    |    |    |    |     |     |
| Odonata     |                   |               |    |    |    |    |    |    | 0   | 0   |
|             | Gomphidae         |               |    |    |    |    |    |    | 0   | 0   |
|             |                   | Ophiogomphus  |    |    |    |    |    |    | 0   | 0   |
|             |                   | Gomphus       |    |    |    |    |    |    | 0   | 0   |
| Coleoptera  |                   |               |    |    |    |    |    |    | 0   | 0   |
|             | Dytiscidae        |               |    |    |    |    |    |    | 0   | 0   |
|             |                   | Liodessus     |    |    |    |    |    |    | 0   | 0   |
|             | Elmidae           |               |    |    |    |    |    |    | 0   | 0   |
|             |                   | Heterlimnius  | 2  | 2  |    |    |    | 1  | 1   | 2   |
|             | Hydrophilidae     |               |    |    |    |    |    |    | 0   | 0   |
|             |                   | Helophorus    |    | 1  |    |    |    |    | 0   | 1   |
|             | Haliplidae        |               |    |    |    |    |    |    | 0   | 0   |
|             |                   | Brychius      |    |    |    | 1  |    |    | 1   | 0   |
|             | Chrysomelidae     |               |    |    |    | 1  |    |    | 1   | 0   |
|             | Curculionidae     |               |    |    |    |    | 1  |    | 1   | 0   |

| Megaloptera       |               |        |   |    |   |   |   |   | 0   | 0   |
|-------------------|---------------|--------|---|----|---|---|---|---|-----|-----|
|                   | Sialidae      |        |   |    |   |   |   |   | 0   | 0   |
|                   |               | Sialis |   |    |   |   |   |   | 0   | 0   |
| Oligochaeta       | Lumbriculidae |        | 2 | 7  | 5 | 1 | 3 | 1 | 1.7 | 4.7 |
| Bivalvia          | Sphaeridae    |        |   |    |   |   |   |   | 0   | 0   |
| Gastropoda        |               |        |   | 10 | 4 | 3 | 3 | 2 | 2.7 | 7   |
|                   | Ancyllidae    |        |   |    |   |   |   |   | 0   | 0   |
| Copepoda          |               |        | 2 | 4  | 5 | 1 | 1 | 4 | 2   | 3.7 |
| Nematoda          |               |        |   |    |   |   |   |   | 0   | 0   |
| Hydrachnidia      |               |        |   |    |   |   |   |   | 0   | 0   |
| Anostraca         |               |        |   |    |   |   |   |   | 0   | 0   |
| Arachnida         |               |        |   | 1  |   |   |   |   | 0   | 1   |
| terrestrial fly   |               |        |   | 2  |   |   |   |   | 0   | 2   |
| immature fish fry |               |        |   | 1  | 3 | 2 | 1 | 3 | 2   | 2   |

|                   |                  |                       | Max | Max | Min | Min | Total | Total | Mean  | Drift            | Total |
|-------------------|------------------|-----------------------|-----|-----|-----|-----|-------|-------|-------|------------------|-------|
| Order             | Family           | Genera (unless noted) | TS  | TD  | TS  | TD  | TS    | TD    | Drift | (ind/m<br>2/day) | Drift |
| Diptera           | Chironomidae     | SF Tanypondinae       | 1   | 1   | 1   | 1   | 14    | 11    | 1     | 7.0              | 180   |
|                   |                  | other chironomids     | 4   | 4   | 2   | 1   |       |       | 1     | 7.0              |       |
|                   | Simuliidae       |                       | 0   | 1   | 0   | 1   |       |       | 1     | 7.0              |       |
|                   |                  | Ectemnia              | 0   | 0   | 0   | 0   |       |       | 23    | 159              |       |
|                   | Empididae        |                       | 1   | 2   | 1   | 2   |       |       | 0     | 0                |       |
|                   | Ceratopogonidae  |                       | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |
|                   | Dixidae          |                       | 1   | 0   | 1   | 0   |       |       | 0     | 0                |       |
|                   | Sciomyzidae      |                       | 1   | 0   | 1   | 0   |       |       | 0     | 0                |       |
|                   | Chaoboridae      | Chaoborus             | 0   | 1   | 0   | 1   |       |       | 0     | 0                |       |
| Ephemerop<br>tera |                  |                       | 2   | 0   | 2   | 0   | 19    | 18    | 5     | 35               | 125   |
|                   | Heptageniidae    |                       | 0   | 0   | 0   | 0   |       |       | 2.3   | 16               |       |
|                   |                  | Stenonema             | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |
|                   |                  | Rithrogena            | 0   | 0   | 0   | 0   |       |       | 2.5   | 18               |       |
|                   |                  | Heptagenia            | 0   | 2   | 0   | 2   |       |       | 2     | 14               |       |
|                   |                  | Stenacron             | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |
|                   | Ephemerellidae   |                       | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |
|                   |                  | Ephemerella           | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |
|                   | Baetidae         |                       | 1   | 3   | 1   | 2   |       |       | 3     | 21               |       |
|                   |                  | Baetis                | 0   | 0   | 0   | 0   |       |       | 1     | 7.0              |       |
|                   |                  | Centroptilum          | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |
|                   | Leptophlebiidae  |                       | 0   | 1   | 0   | 1   |       |       | 0     | 0                |       |
|                   |                  | Leptophlebia          | 7   | 6   | 4   | 2   |       |       | 0     | 0                |       |
|                   | Siphloneuridae   |                       | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |
|                   |                  | Analetris             | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |
|                   | Metretopodidae   |                       | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |
|                   |                  | Metretopus            | 0   | 0   | 0   | 0   |       |       | 1     | 7.0              |       |
|                   |                  | Siphloplecton         | 0   | 0   | 0   | 0   |       |       | 1     | 7.0              |       |
| Plecoptera        |                  |                       | 2   | 3   | 1   | 1   | 121   | 189   | 2.7   | 19               | 159   |
|                   | Chloroperlidae   |                       | 0   | 1   | 0   | 1   |       |       | 2.5   | 18               |       |
|                   | Perlodidae       |                       | 4   | 7   | 2   | 6   |       |       | 9.3   | 65               |       |
|                   |                  | Isogenoides           | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |
|                   |                  | Isoperla              | 1   | 10  | 1   | 6   |       |       | 0     | 0                |       |
|                   |                  | Shipsa                | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |
|                   | Taeniopterygidae |                       | 0   | 0   | 0   | 0   |       |       | 0     | 0                |       |

 TABLE A22 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken May 8, 2008 (continued)

|                 |                   | Taenia                | 0  | 0  | 0  | 0  |    |    | 1   | 7.0 |    |
|-----------------|-------------------|-----------------------|----|----|----|----|----|----|-----|-----|----|
|                 |                   | Taenionema            | 0  | 0  | 0  | 0  |    |    | 1   | 7.0 |    |
|                 |                   | Oemopteryx            | 0  | 0  | 0  | 0  |    |    | 1   | 7.0 |    |
|                 | Nemouridae        |                       | 3  | 7  | 1  | 2  |    |    | 5.3 | 37  |    |
|                 |                   | Podmosta              | 43 | 51 | 23 | 34 |    |    | 0   | 0   |    |
| Trichoptera     |                   |                       | 0  | 0  | 0  | 0  | 0  | 1  | 0   | 0   | 65 |
|                 | Hydropsychidae    |                       | 0  | 0  | 0  | 0  |    |    | 2   | 14  |    |
|                 |                   | Hydropsyche           | 0  | 1  | 0  | 1  |    |    | 5.3 | 37  |    |
|                 | Glossosomatidae   |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 |                   | Glossosoma            | 0  | 0  | 0  | 0  |    |    | 1   | 7.0 |    |
|                 | Brachycentridae   |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 |                   | Brachycentrus         | 0  | 0  | 0  | 0  |    |    | 1   | 7.0 |    |
|                 | Polycentropodidae |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 |                   | Polycentropus         | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 | Rhyachophyllidae  |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
| Hemiptera       |                   |                       | 0  | 0  | 0  | 0  | 40 | 54 | 0   | 0   | 98 |
|                 | Corixidae         |                       | 2  | 0  | 1  | 0  |    |    | 0   | 0   |    |
|                 |                   | Corisella             | 3  | 1  | 1  | 1  |    |    | 13  | 91  |    |
|                 |                   | Sigara                | 2  | 0  | 2  | 0  |    |    | 0   | 0   |    |
|                 |                   | Callicorixa           | 0  | 0  | 0  | 0  |    |    | 1   | 7.0 |    |
|                 | Belostomatidae    |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 |                   | Lethocerus americanus | 0  | 1  | 0  | 1  |    |    | 0   | 0   |    |
| Odonata         |                   |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 | Gomphidae         |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 |                   | Ophiogomphus          | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 |                   | Gomphus               | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
| Coleoptera      |                   |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 | Dytiscidae        |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 |                   | Liodessus             | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 | Elmidae           |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 |                   | Heterlimnius          | 1  | 2  | 1  | 2  |    |    | 0   | 0   |    |
|                 | Hydrophilidae     |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 |                   | Helophorus            | 0  | 1  | 0  | 1  |    |    | 0   | 0   |    |
|                 | Haliplidae        |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 |                   | Brychius              | 1  | 0  | 1  | 0  |    |    | 0   | 0   |    |
|                 | Chrysomelidae     |                       | 1  | 0  | 1  | 0  |    |    | 0   | 0   |    |
|                 | Curculionidae     |                       | 1  | 0  | 1  | 0  |    |    | 0   | 0   |    |
| Megalopter<br>a |                   |                       | 0  | 0  | 0  | 0  |    |    | 0   | 0   |    |
|                 | Sialidae          |                       | 0  | 0  | 0  | 0  | 1  |    | 0   | 0   |    |

|             |               | Cialia | 0 | 0  | 0         | 0  |     |     | 0  | 0   |      |
|-------------|---------------|--------|---|----|-----------|----|-----|-----|----|-----|------|
|             |               | Statis | 0 | 0  | 0         | 0  |     |     | 0  | 0   |      |
| Oligochaeta | Lumbriculidae |        | 3 | 7  | 1         | 2  |     |     | 0  | 0   |      |
| Bivalvia    | Sphaeridae    |        | 0 | 0  | 0         | 0  |     |     | 0  | 0   |      |
| Gastropoda  |               |        | 3 | 10 | 2         | 4  |     |     | 0  | 0   |      |
|             | Ancyllidae    |        | 0 | 0  | 0         | 0  |     |     | 0  | 0   |      |
| Copepoda    |               |        | 4 | 5  | 1         | 2  |     |     | 2  | 14  | 498  |
| Nematoda    |               |        | 0 | 0  | 0         | 0  |     |     | 0  | 0   |      |
| Hydrachnid  |               |        | 0 | 0  | 0         | 0  |     |     | 0  | 0   |      |
| ia          |               |        |   |    |           |    |     |     |    |     |      |
| Anostraca   |               |        | 0 | 0  | 0         | 0  |     |     | 69 | 484 |      |
| Arachnida   |               |        | 0 | 1  | 0         | 1  |     |     | 0  | 0   |      |
| terrestrial |               |        | 0 | 2  | 0         | 2  |     |     | 0  | 0   |      |
| fly         |               |        |   |    |           |    |     |     |    |     |      |
| immature    |               |        | 3 | 3  | 1         | 1  |     |     | 0  | 0   |      |
| fish fry    |               |        |   |    |           |    |     |     |    |     |      |
|             |               |        |   |    | All Speci | es | 194 | 273 |    |     | 1125 |
|             |               |        |   |    | _         |    |     |     |    |     |      |

|             |                 | Date collected:   | Jul 11 |        |         |
|-------------|-----------------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
|             |                 |                   | 2008   | 2008   | 2008   | 2008   | 2008   | 2008   | 2008   |        |         |
|             |                 |                   |        |        |        |        |        |        |        | Mean   | Mean    |
| Order       | Family          | Genera (unless    | AR-SS1 | AR-SS2 | AR-    | AR-    | AR-    | AR-    | SN     | Jul11T | Jul11TD |
|             |                 | noted)            |        |        | SS3    | DS1    | DS2    | DS3    |        | S      |         |
| Diptera     | Chironomidae    | SF Tanypondinae   | 2      | 4      | 2      | 10     | 6      | 8      |        | 2.7    | 8       |
|             |                 | other chironomids | 4      | 10     | 4      | 3      | 4      | 6      | 2      | 6      | 4.3     |
|             | Empididae       |                   |        |        |        |        |        |        |        | 0      | 0       |
|             | Ceratopogonidae |                   |        | 1      |        |        |        |        |        | 1      | 0       |
|             | Dixidae         |                   |        |        |        |        |        |        |        | 0      | 0       |
| Ephemeropt  |                 |                   | 4      | 6      | 5      | 1      | 2      | 9      |        | 5      | 4       |
| era         |                 |                   |        |        |        |        |        |        |        |        |         |
|             | Heptageniidae   |                   | 8      | 30     | 4      | 19     | 18     | 20     | 3      | 14     | 19      |
|             |                 | Stenonema         |        |        |        |        |        |        |        | 0      | 0       |
|             |                 | Rithrogena        | 1      |        | 5      |        | 2      |        |        | 3      | 2       |
|             |                 | Heptagenia        | 1      | 11     | 9      | 3      | 14     | 11     | 3      | 7      | 9.3     |
|             |                 | Stenacron         |        |        |        |        |        |        | 1      | 0      | 0       |
|             | Ephemerellidae  |                   | 2      |        |        | 1      |        | 1      |        | 2      | 1       |
|             |                 | Ephemerella       |        |        |        |        |        | 1      | 1      | 0      | 1       |
|             | Baetidae        |                   | 11     | 18     | 14     | 14     | 8      | 17     | 25     | 14     | 13      |
|             |                 | Baetis            |        |        | 3      | 6      | 6      | 14     |        | 3      | 8.7     |
|             |                 | Centroptilum      | 8      | 2      | 4      | 6      | 6      | 5      | 4      | 4.7    | 5.7     |
|             | Leptophlebiidae |                   |        |        |        |        |        |        |        | 0      | 0       |
|             |                 | Leptophlebia      |        |        |        |        |        |        |        | 0      | 0       |
|             | Siphloneuridae  |                   |        |        |        |        |        |        |        | 0      | 0       |
|             |                 | Analetris         |        |        |        |        |        |        | 1      | 0      | 0       |
|             | Metretopodidae  |                   |        |        |        |        |        |        |        | 0      | 0       |
|             | Tricorythidae   |                   |        |        |        |        |        |        |        | 0      | 0       |
|             |                 | Tricorythodes     |        |        |        |        |        |        |        | 0      | 0       |
| Plecoptera  |                 |                   | 5      | 1      |        |        | 1      |        |        | 3      | 1       |
|             | Chloroperlidae  |                   |        | 1      |        |        |        |        |        | 1      | 0       |
|             | Perlodidae      |                   | 2      | 2      | 2      | 2      | 2      | 3      |        | 2      | 2.3     |
|             |                 | Isogenoides       |        | 1      |        | 1      | 2      | 2      |        | 1      | 1.7     |
|             |                 | Isoperla          | 13     | 6      | 9      | 5      | 5      | 5      | 6      | 9.3    | 5       |
| Trichoptera |                 |                   | 19     | 44     | 28     | 34     | 45     | 37     |        | 30     | 39      |
| <u>^</u>    | pupa(e)         |                   |        |        | 1      | 1      | 1      |        |        | 1      | 1       |
|             | Hydropsychidae  |                   | 19     | 53     | 13     | 30     | 43     | 34     |        | 28     | 36      |

 TABLE A23 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken July 11, 2008, and descriptive statistics

|             |                     | Hydropsyche   | 22 | 14 | 5 | 54 | 49 | 48 | 13 | 14  | 50  |
|-------------|---------------------|---------------|----|----|---|----|----|----|----|-----|-----|
|             | Glossosomatidae     |               |    |    |   |    |    |    |    | 0   | 0   |
|             |                     | Glossosoma    |    |    |   |    |    |    |    | 0   | 0   |
|             | Brachycentridae     |               |    |    |   |    |    |    |    | 0   | 0   |
|             |                     | Brachycentrus |    |    |   | 3  | 21 |    |    | 0   | 12  |
|             | Rhyacophilidae      |               |    |    |   |    |    |    |    | 0   | 0   |
|             | Hydroptilidae       |               | 1  | 1  |   |    |    |    |    | 1   | 0   |
|             |                     | Mayatrichia   |    |    |   | 1  |    |    |    | 0   | 1   |
|             |                     | Neotrichia    |    |    |   |    |    |    |    | 0   | 0   |
| Hemiptera   |                     |               | 1  | 1  |   |    |    |    |    | 1   | 0   |
|             | Corixidae           |               |    |    |   | 1  |    |    | 3  | 0   | 1   |
|             |                     | Sigara        |    |    |   |    |    |    | 5  | 0   | 0   |
|             | Mesovelliidae (with |               |    |    |   |    |    |    |    | 0   | 0   |
|             | wings)              |               |    |    |   |    |    |    |    |     |     |
| Odonata     |                     |               |    |    |   | 2  | 1  | 1  |    | 0   | 1.3 |
|             | Gomphidae           |               |    |    |   |    |    |    |    | 0   | 0   |
|             |                     | Ophiogomphus  |    |    |   | 1  |    | 1  |    | 0   | 1   |
|             |                     | Gomphus       |    |    |   | 2  | 1  |    |    | 0   | 1.5 |
| Coleoptera  |                     |               |    |    |   |    |    |    | 1  | 0   | 0   |
|             | Chrysomelidae       |               |    |    |   |    |    |    |    | 0   | 0   |
| Oligochaeta | Lumbriculidae       |               | 5  | 3  | 4 | 20 | 13 | 11 |    | 4   | 15  |
| Bivalvia    | Sphaeridae          |               |    |    |   |    |    |    |    | 0   | 0   |
| Gastropoda  |                     |               |    |    | 4 |    |    |    |    | 4   | 0   |
|             | Limnaeidae          |               |    | 2  | 2 |    |    | 1  |    | 2   | 1   |
| Ostracoda   |                     |               |    |    |   | 1  |    | 1  |    | 0   | 1   |
| Nematoda    |                     |               | 9  |    | 1 |    | 4  | 4  |    | 5   | 4   |
| Hydrachnid  |                     |               |    |    |   |    |    |    |    | 0   | 0   |
| ia          |                     |               |    |    |   |    |    |    |    |     |     |
| Arachnida   |                     |               |    |    |   |    |    |    |    | 0   | 0   |
| Hymenopte   |                     |               |    |    |   |    |    |    |    | 0   | 0   |
| ra          |                     |               |    |    |   |    |    |    |    |     |     |
| terrestrial |                     |               | 2  | 4  | 4 |    | 1  | 5  | 33 | 3.3 | 3   |
| fly         |                     |               |    |    |   |    |    |    |    |     |     |
| fish fry    |                     |               |    | 2  |   | 1  | 1  |    | 18 | 2   | 1   |
| fertilized  |                     |               |    | 14 |   |    |    | 3  |    | 14  | 3   |
| fish eggs   |                     |               |    | ļ  |   |    |    |    |    |     |     |
| Hydra       |                     |               | 1  |    | 1 | 2  | 5  | 1  |    | 1   | 2.7 |

|               |                 |                       | Max     | Max    | Min    | Min    | Total  | Total   | Surber | Total  |
|---------------|-----------------|-----------------------|---------|--------|--------|--------|--------|---------|--------|--------|
| Order         | Family          | Genera (unless noted) | Jul11TS | Jul11T | Jul11T | Jul11T | Jul11T | Jul11TD | (ind/m | Surber |
|               |                 |                       |         | D      | S      | D      | S      |         | 2/day) |        |
| Diptera       | Chironomidae    | SF Tanypondinae       | 4       | 10     | 2      | 6      | 27     | 37      | 0      | 796    |
|               |                 | other chironomids     | 10      | 6      | 4      | 3      |        |         | 796    |        |
|               | Empididae       |                       | 0       | 0      | 0      | 0      |        |         | 0      |        |
|               | Ceratopogonidae |                       | 1       | 0      | 1      | 0      |        |         | 0      |        |
|               | Dixidae         |                       | 0       | 0      | 0      | 0      |        |         | 0      |        |
| Ephemeroptera |                 |                       | 6       | 9      | 4      | 1      | 146    | 184     | 0      | 15124  |
|               | Heptageniidae   |                       | 30      | 20     | 4      | 18     |        |         | 1194   |        |
|               |                 | Stenonema             | 0       | 0      | 0      | 0      |        |         | 0      |        |
|               |                 | Rithrogena            | 5       | 2      | 1      | 2      |        |         | 0      |        |
|               |                 | Heptagenia            | 11      | 14     | 1      | 3      |        |         | 1194   |        |
|               |                 | Stenacron             | 0       | 0      | 0      | 0      |        |         | 398    |        |
|               | Ephemerellidae  |                       | 2       | 1      | 2      | 1      |        |         | 0      |        |
|               |                 | Ephemerella           | 0       | 1      | 0      | 1      |        |         | 398    |        |
|               | Baetidae        |                       | 18      | 17     | 11     | 8      |        |         | 9950   |        |
|               |                 | Baetis                | 3       | 14     | 3      | 6      |        |         | 0      |        |
|               |                 | Centroptilum          | 8       | 6      | 2      | 5      |        |         | 1592   |        |
|               | Leptophlebiidae |                       | 0       | 0      | 0      | 0      |        |         | 0      |        |
|               |                 | Leptophlebia          | 0       | 0      | 0      | 0      |        |         | 0      |        |
|               | Siphloneuridae  |                       | 0       | 0      | 0      | 0      |        |         | 0      |        |
|               |                 | Analetris             | 0       | 0      | 0      | 0      |        |         | 398    |        |
|               | Metretopodidae  |                       | 0       | 0      | 0      | 0      |        |         | 0      |        |
|               | Tricorythidae   |                       | 0       | 0      | 0      | 0      |        |         | 0      |        |
|               |                 | Tricorythodes         | 0       | 0      | 0      | 0      |        |         | 0      |        |
| Plecoptera    |                 |                       | 5       | 1      | 1      | 1      | 42     | 28      | 0      | 2388   |
|               | Chloroperlidae  |                       | 1       | 0      | 1      | 0      |        |         | 0      |        |
|               | Perlodidae      |                       | 2       | 3      | 2      | 2      |        |         | 0      |        |
|               |                 | Isogenoides           | 1       | 2      | 1      | 1      |        |         | 0      |        |
|               |                 | Isoperla              | 13      | 5      | 6      | 5      |        |         | 2388   |        |
| Trichoptera   |                 |                       | 44      | 45     | 19     | 34     | 220    | 401     | 0      | 5174   |
|               | pupa(e)         |                       | 1       | 1      | 1      | 1      |        |         | 0      |        |
|               | Hydropsychidae  |                       | 53      | 43     | 13     | 30     |        |         | 0      |        |
|               |                 | Hydropsyche           | 22      | 54     | 5      | 48     |        |         | 5174   |        |
|               | Glossosomatidae |                       | 0       | 0      | 0      | 0      |        |         | 0      |        |
|               |                 | Glossosoma            | 0       | 0      | 0      | 0      |        |         | 0      |        |

TABLE A24 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken July 11, 2008 (continued)

|                      | Brachycentridae     |               | 0  | 0  | 0         | 0   |     |     | 0     |       |
|----------------------|---------------------|---------------|----|----|-----------|-----|-----|-----|-------|-------|
|                      |                     | Brachycentrus | 0  | 21 | 0         | 3   |     |     | 0     |       |
|                      | Rhyacophilidae      |               | 0  | 0  | 0         | 0   |     |     | 0     |       |
|                      | Hydroptilidae       |               | 1  | 0  | 1         | 0   |     |     | 0     |       |
|                      |                     | Mayatrichia   | 0  | 1  | 0         | 1   |     |     | 0     |       |
|                      |                     | Neotrichia    | 0  | 0  | 0         | 0   |     |     | 0     |       |
| Hemiptera            |                     |               | 1  | 0  | 1         | 0   | 60  | 84  | 0     | 23880 |
|                      | Corixidae           |               | 0  | 1  | 0         | 1   |     |     | 119   |       |
|                      |                     | Sigara        | 0  | 0  | 0         | 0   |     |     | 1990  |       |
|                      | Mesovelliidae (with |               | 0  | 0  | 0         | 0   |     |     | 0     |       |
|                      | wings)              |               |    |    |           |     |     |     |       |       |
| Odonata              |                     |               | 0  | 2  | 0         | 1   |     |     | 0     |       |
|                      | Gomphidae           |               | 0  | 0  | 0         | 0   |     |     | 0     |       |
|                      |                     | Ophiogomphus  | 0  | 1  | 0         | 1   |     |     | 0     |       |
|                      |                     | Gomphus       | 0  | 2  | 0         | 1   |     |     | 0     |       |
| Coleoptera           |                     |               | 0  | 0  | 0         | 0   |     |     | 398   |       |
|                      | Chrysomelidae       |               | 0  | 0  | 0         | 0   |     |     | 0     |       |
| Oligochaeta          | Lumbriculidae       |               | 5  | 20 | 3         | 11  |     |     | 0     |       |
| Bivalvia             | Sphaeridae          |               | 0  | 0  | 0         | 0   |     |     | 0     |       |
| Gastropoda           |                     |               | 4  | 0  | 4         | 0   |     |     | 0     |       |
|                      | Limnaeidae          |               | 2  | 1  | 2         | 1   |     |     | 0     |       |
| Ostracoda            |                     |               | 0  | 1  | 0         | 1   |     |     | 0     |       |
| Nematoda             |                     |               | 9  | 4  | 1         | 4   |     |     | 0     |       |
| Hydrachnidia         |                     |               | 0  | 0  | 0         | 0   |     |     | 0     |       |
| Arachnida            |                     |               | 0  | 0  | 0         | 0   |     |     | 0     |       |
| Hymenoptera          |                     |               | 0  | 0  | 0         | 0   |     |     | 0     |       |
| terrestrial fly      |                     |               | 4  | 5  | 2         | 1   |     |     | 13134 |       |
| fish fry             |                     |               | 2  | 1  | 2         | 1   |     |     | 7164  |       |
| fertilized fish eggs |                     |               | 14 | 3  | 14        | 3   |     |     | 0     |       |
| Hydra                |                     |               | 1  | 5  | 1         | 1   |     |     | 0     |       |
|                      |                     |               |    |    | All Speci | ies | 495 | 734 |       | 47363 |
|                      |                     |               |    |    |           |     |     |     |       |       |
|                      |                     |               |    |    |           |     |     |     |       |       |

|              |                 | Date collected:   | Sept 3 |        |         |
|--------------|-----------------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
|              |                 |                   | 2008   | 2008   | 2008   | 2008   | 2008   | 2008   | 2008   |        |         |
|              |                 |                   |        |        |        |        |        |        |        | Mean   | Mean    |
| Order        | Family          | Genera (unless    | AR-    | AR-SS2 | AR-    | AR-    | AR-    | AR-    | DN     | Sept3T | Sept3TD |
|              |                 | noted)            | SS1    |        | SS3    | DS1    | DS2    | DS3    |        | S      |         |
| Diptera      | Chironomidae    | SF Tanypondinae   | 49     | 44     | 52     | 57     | 60     | 55     |        | 48     | 57      |
|              |                 | other chironomids | 21     | 8      | 16     | 7      | 5      | 2      |        | 15     | 4.7     |
|              | Empididae       |                   | 6      | 5      | 16     | 13     | 14     | 12     |        | 9      | 13      |
|              | Ceratopogonidae |                   |        |        |        | 1      |        |        |        | 0      | 1       |
|              | Dixidae         |                   |        |        | 1      |        |        |        | 4      | 1      | 0       |
| Ephemeropter |                 |                   |        | 1      | 5      | 6      | 3      | 4      |        | 3      | 4.3     |
| а            |                 |                   |        |        |        |        |        |        |        |        |         |
|              | Heptageniidae   |                   | 57     | 20     | 59     | 59     | 59     | 46     | 25     | 45     | 55      |
|              |                 | Stenonema         | 8      | 2      | 1      | 2      | 4      | 4      | 1      | 3.7    | 3.3     |
|              |                 | Rithrogena        | 25     | 7      | 9      | 25     | 17     | 22     | 1      | 14     | 21      |
|              |                 | Heptagenia        | 10     | 13     | 12     | 13     | 7      | 7      | 11     | 12     | 9       |
|              |                 | Stenacron         | 2      |        |        |        |        |        |        | 2      | 0       |
|              | Ephemerellidae  |                   |        |        |        |        |        |        |        | 0      | 0       |
|              |                 | Ephemerella       |        |        |        |        |        |        |        | 0      | 0       |
|              | Baetidae        |                   |        | 2      | 1      | 3      | 6      | 2      | 4      | 1.5    | 3.7     |
|              |                 | Baetis            |        |        |        |        |        |        |        | 0      | 0       |
|              |                 | Centroptilum      |        |        |        |        |        |        |        | 0      | 0       |
|              | Leptophlebiidae |                   | 1      |        |        |        |        | 1      |        | 1      | 1       |
|              |                 | Leptophlebia      |        |        |        |        |        |        |        | 0      | 0       |
|              | Siphloneuridae  |                   |        |        |        |        |        |        |        | 0      | 0       |
|              |                 | Analetris         |        |        |        |        |        |        |        | 0      | 0       |
|              | Metretopodidae  |                   | 1      |        |        |        |        |        |        | 1      | 0       |
|              | Tricorythidae   |                   |        |        |        |        |        |        |        | 0      | 0       |
|              |                 | Tricorythodes     | 1      |        | 2      | 2      |        |        |        | 1.5    | 2       |
| Plecoptera   |                 |                   | 3      |        | 4      | 5      | 6      | 8      |        | 3.5    | 6.3     |
| -            | Chloroperlidae  |                   | 1      |        | 1      |        | 1      |        |        | 1      | 1       |
|              | Perlodidae      |                   | 11     | 2      | 2      | 1      | 4      | 5      | 1      | 5      | 3.3     |
|              |                 | Isogenoides       |        |        |        | 1      |        | 2      |        | 0      | 1.5     |
|              |                 | Isoperla          |        |        |        |        |        |        |        | 0      | 0       |
| Trichoptera  | 1               | 1                 |        |        |        | 6      | 1      | 3      | 1      | 0      | 3.3     |
| · ·          | pupa(e)         |                   |        |        |        |        |        |        |        | 0      | 0       |
|              | Hydropsychidae  |                   | 14     | 1      | 1      | 13     | 8      | 8      |        | 5.3    | 9.7     |

TABLE A25 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken September 3, 2008, and descriptive statistics

|              |                     | Hydropsyche   | 103 | 90 | 164 | 198 | 187 | 142 | 10 | 119 | 176 |
|--------------|---------------------|---------------|-----|----|-----|-----|-----|-----|----|-----|-----|
|              | Glossosomatidae     |               |     |    |     | 3   |     | 1   |    | 0   | 2   |
|              |                     | Glossosoma    |     |    |     |     |     |     |    | 0   | 0   |
|              | Brachycentridae     |               |     |    |     |     | 1   |     |    | 0   | 1   |
|              |                     | Brachycentrus | 2   | 1  |     |     |     |     | 1  | 1.5 | 0   |
|              | Rhyacophilidae      |               |     |    |     |     | 1   |     |    | 0   | 1   |
|              | Hydroptilidae       |               |     |    |     | 2   | 3   | 2   |    | 0   | 2.3 |
|              |                     | Mayatrichia   |     |    |     |     |     |     |    | 0   | 0   |
|              |                     | Neotrichia    |     |    |     |     |     |     | 1  | 0   | 0   |
| Hemiptera    |                     |               |     |    |     |     |     |     |    | 0   | 0   |
|              | Corixidae           |               |     |    |     |     |     |     | 2  | 0   | 0   |
|              |                     | Sigara        |     |    |     |     |     |     |    | 0   | 0   |
|              | Mesovelliidae (with |               |     |    |     |     |     |     | 1  | 0   | 0   |
|              | wings)              |               |     |    |     |     |     |     |    |     |     |
| Odonata      |                     |               |     |    |     |     |     |     |    | 0   | 0   |
|              | Gomphidae           |               |     |    |     |     |     |     | 1  | 0   | 0   |
|              |                     | Ophiogomphus  | 1   |    |     |     | 1   | 1   | 1  | 1   | 1   |
|              |                     | Gomphus       |     |    |     |     |     |     |    | 0   | 0   |
| Coleoptera   |                     |               |     |    |     |     |     |     |    | 0   | 0   |
|              | Chrysomelida        |               |     |    |     |     |     |     | 1  | 0   | 0   |
| Oligochaeta  | Lumbriculidae       |               | 14  | 11 | 4   | 4   | 11  | 8   |    | 9.7 | 7.7 |
| Bivalvia     | Sphaeridae          |               |     |    |     | 1   |     |     |    | 0   | 1   |
| Gastropoda   |                     |               |     |    |     | 1   |     |     |    | 0   | 1   |
|              | Limnaeidae          |               | 1   | 5  | 1   |     |     | 1   | 1  | 2.3 | 1   |
| Ostracoda    |                     |               | 1   | 1  |     |     |     |     |    | 1   | 0   |
| Nematoda     |                     |               | 7   | 1  | 6   | 8   | 8   | 7   |    | 4.7 | 7.7 |
| Hydrachnidia |                     |               |     |    | 1   |     |     |     |    | 1   | 0   |
| Arachnida    |                     |               |     |    |     | 1   |     |     |    | 0   | 1   |
| Hymenoptera  |                     |               |     |    |     |     |     |     | 1  | 0   | 0   |
| t fly        |                     |               |     |    | 3   | 3   | 2   |     | 22 | 3   | 2.5 |
| fish fry     |                     |               |     |    |     |     |     |     |    | 0   | 0   |
| ffeggs       |                     |               |     |    |     |     |     |     |    | 0   | 0   |
| Hydra        |                     |               |     |    |     |     |     |     |    | 0   | 0   |

|               |                 |                       | Max     | Max    | Min    | Min    | Total  | Total   | Drift  | Total |
|---------------|-----------------|-----------------------|---------|--------|--------|--------|--------|---------|--------|-------|
| Order         | Family          | Genera (unless noted) | Sept3TS | Sept3T | Sept3T | Sept3T | Sept3T | Sept3TD | (ind/m | Drift |
|               |                 |                       |         | D      | S      | D      | S      |         | 2/day) |       |
| Diptera       | Chironomidae    | SF Tanypondinae       | 52      | 60     | 44     | 55     | 218    | 226     | 0      | 898   |
|               |                 | other chironomids     | 21      | 7      | 8      | 2      |        |         | 0      |       |
|               | Empididae       |                       | 16      | 14     | 5      | 12     |        |         | 0      |       |
|               | Ceratopogonidae |                       | 0       | 1      | 0      | 1      |        |         | 0      |       |
|               | Dixidae         |                       | 1       | 0      | 1      | 0      |        |         | 898    |       |
| Ephemeroptera |                 |                       | 5       | 6      | 1      | 3      | 239    | 292     | 0      | 9425  |
|               | Heptageniidae   |                       | 59      | 59     | 20     | 46     |        |         | 5610   |       |
|               |                 | Stenonema             | 8       | 4      | 1      | 2      |        |         | 224    |       |
|               |                 | Rithrogena            | 25      | 25     | 7      | 17     |        |         | 224    |       |
|               |                 | Heptagenia            | 13      | 13     | 10     | 7      |        |         | 2468   |       |
|               |                 | Stenacron             | 2       | 0      | 2      | 0      |        |         | 0      |       |
|               | Ephemerellidae  |                       | 0       | 0      | 0      | 0      |        |         | 0      |       |
|               |                 | Ephemerella           | 0       | 0      | 0      | 0      |        |         | 0      |       |
|               | Baetidae        |                       | 2       | 6      | 1      | 2      |        |         | 898    |       |
|               |                 | Baetis                | 0       | 0      | 0      | 0      |        |         | 0      |       |
|               |                 | Centroptilum          | 0       | 0      | 0      | 0      |        |         | 0      |       |
|               | Leptophlebiidae |                       | 1       | 1      | 1      | 1      |        |         | 0      |       |
|               |                 | Leptophlebia          | 0       | 0      | 0      | 0      |        |         | 0      |       |
|               | Siphloneuridae  |                       | 0       | 0      | 0      | 0      |        |         | 0      |       |
|               |                 | Analetris             | 0       | 0      | 0      | 0      |        |         | 0      |       |
|               | Metretopodidae  |                       | 1       | 0      | 1      | 0      |        |         | 0      |       |
|               | Tricorythidae   |                       | 0       | 0      | 0      | 0      |        |         | 0      |       |
|               |                 | Tricorythodes         | 2       | 2      | 1      | 2      |        |         | 0      |       |
| Plecoptera    |                 |                       | 4       | 8      | 3      | 5      | 24     | 33      | 0      | 224   |
|               | Chloroperlidae  |                       | 1       | 1      | 1      | 1      |        |         | 0      |       |
|               | Perlodidae      |                       | 11      | 5      | 2      | 1      |        |         | 224    |       |
|               |                 | Isogenoides           | 0       | 2      | 0      | 1      |        |         | 0      |       |
|               |                 | Isoperla              | 0       | 0      | 0      | 0      |        |         | 0      |       |
| Trichoptera   |                 |                       | 0       | 6      | 0      | 1      | 376    | 579     | 224    | 2917  |
|               | pupa(e)         |                       | 0       | 0      | 0      | 0      |        |         | 0      |       |
|               | Hydropsychidae  |                       | 14      | 13     | 1      | 8      |        |         | 0      |       |
|               |                 | Hydropsyche           | 164     | 198    | 90     | 142    |        |         | 2244   |       |
|               | Glossosomatidae |                       | 0       | 3      | 0      | 1      |        |         | 0      |       |
|               |                 | Glossosoma            | 0       | 0      | 0      | 0      |        |         | 0      |       |

 TABLE A26 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken September 3, 2008 (continued)

|              | Brachycentridae     |               | 0  | 1  | 0        | 1   |     |      | 0    |       |
|--------------|---------------------|---------------|----|----|----------|-----|-----|------|------|-------|
|              |                     | Brachycentrus | 2  | 0  | 1        | 0   |     |      | 224  |       |
|              | Rhyacophilidae      |               | 0  | 1  | 0        | 1   |     |      | 0    |       |
|              | Hydroptilidae       |               | 0  | 3  | 0        | 2   |     |      | 0    |       |
|              |                     | Mayatrichia   | 0  | 0  | 0        | 0   |     |      | 0    |       |
|              |                     | Neotrichia    | 0  | 0  | 0        | 0   |     |      | 224  |       |
| Hemiptera    |                     |               | 0  | 0  | 0        | 0   | 57  | 57   | 0    | 6732  |
|              | Corixidae           |               | 0  | 0  | 0        | 0   |     |      | 449  |       |
|              |                     | Sigara        | 0  | 0  | 0        | 0   |     |      | 0    |       |
|              | Mesovelliidae (with |               | 0  | 0  | 0        | 0   |     |      | 224  |       |
|              | wings)              |               |    |    |          |     |     |      |      |       |
| Odonata      |                     |               | 0  | 0  | 0        | 0   |     |      | 0    |       |
|              | Gomphidae           |               | 0  | 0  | 0        | 0   |     |      | 224  |       |
|              |                     | Ophiogomphus  | 1  | 1  | 1        | 1   |     |      | 224  |       |
|              |                     | Gomphus       | 0  | 0  | 0        | 0   |     |      | 0    |       |
| Coleoptera   |                     |               | 0  | 0  | 0        | 0   |     |      | 0    |       |
|              | Chrysomelida        |               | 0  | 0  | 0        | 0   |     |      | 224  |       |
| Oligochaeta  | Lumbriculidae       |               | 14 | 11 | 4        | 4   |     |      | 0    |       |
| Bivalvia     | Sphaeridae          |               | 0  | 1  | 0        | 1   |     |      | 0    |       |
| Gastropoda   |                     |               | 0  | 1  | 0        | 1   |     |      | 0    |       |
|              | Limnaeidae          |               | 5  | 1  | 1        | 1   |     |      | 224  |       |
| Ostracoda    |                     |               | 1  | 0  | 1        | 0   |     |      | 0    |       |
| Nematoda     |                     |               | 7  | 8  | 1        | 7   |     |      | 0    |       |
| Hydrachnidia |                     |               | 1  | 0  | 1        | 0   |     |      | 0    |       |
| Arachnida    |                     |               | 0  | 1  | 0        | 1   |     |      | 0    |       |
| Hymenoptera  |                     |               | 0  | 0  | 0        | 0   |     |      | 224  |       |
| t fly        |                     |               | 3  | 3  | 3        | 2   |     |      | 4937 |       |
| fish fry     |                     |               | 0  | 0  | 0        | 0   |     |      | 0    |       |
| ffeggs       |                     |               | 0  | 0  | 0        | 0   |     |      | 0    |       |
| Hydra        |                     |               | 0  | 0  | 0        | 0   |     |      | 0    |       |
|              |                     |               |    |    | All Spec | ies | 914 | 1187 |      | 20196 |
|              |                     |               |    |    |          |     |     |      |      |       |

|               |                 | Date collected:          | Mar-  | Mar-14 | Mar-14 | Mar-14 | Mar-14 | Mar-14 |      |     |     |       |
|---------------|-----------------|--------------------------|-------|--------|--------|--------|--------|--------|------|-----|-----|-------|
|               |                 |                          | 14    |        |        |        |        |        |      |     | 2.6 |       |
|               |                 |                          |       |        |        |        |        |        | Mean | Max | Min | Total |
| Order         | Family          | Genera (unless<br>noted) | Ref 1 | Ref 2  | Ref 3  | Ref 4  | Ref 5  | Ref 6  | Ref  | Ref | Ref | Ref   |
| Diptera       | Chironomidae    | SF Tanypondinae          | 30    | 14     | 2      | 16     | 27     | 8      | 17   | 30  | 2   | 268   |
|               |                 | SF Chironominae          |       |        | 1      | 7      |        | 6      | 4.7  | 7   | 1   |       |
|               |                 | Diamesinae(?)            |       |        |        |        |        |        | 0    | 0   | 0   |       |
|               |                 | other chironomids        | 79    | 74     | 27     | 63     | 111    | 41     | 66   | 111 | 27  |       |
|               | Empididae       |                          | 19    | 15     | 3      | 20     | 32     | 6      | 16   | 32  | 3   |       |
|               | Simuliidae      |                          | 2     | 1      |        |        |        |        | 1.5  | 2   | 1   |       |
|               |                 | Ectemnia                 |       |        |        |        |        |        | 0    | 0   | 0   |       |
|               | Ceratopogonidae |                          |       |        | 1      | 1      |        | 1      | 1    | 1   | 1   |       |
|               | Dixidae         |                          |       |        |        | 4      |        |        | 4    | 4   | 4   |       |
| Ephemeroptera |                 |                          | 14    | 5      | 1      | 9      | 23     | 5      | 9.5  | 23  | 1   | 143   |
|               | Heptageniidae   |                          | 21    | 23     |        | 11     | 16     | 13     | 17   | 23  | 11  |       |
|               |                 | Stenonema                | 10    | 7      |        | 6      | 4      | 1      | 5.6  | 10  | 1   |       |
|               |                 | Rithrogena               | 4     | 1      |        |        |        | 1      | 2    | 4   | 1   |       |
|               |                 | Heptagenia               | 3     | 2      |        |        | 3      |        | 2.7  | 3   | 2   |       |
|               | Ephemerellidae  |                          | 9     | 10     | 1      | 5      | 11     | 3      | 6.5  | 11  | 1   |       |
|               | Baetidae        |                          | 16    | 10     |        | 1      | 15     | 2      | 8.8  | 16  | 1   |       |
|               |                 | Baetis                   | 3     |        |        |        |        |        | 3    | 3   | 3   |       |
|               | Leptophlebiidae |                          |       | 3      |        |        |        |        | 3    | 3   | 3   |       |
|               | Siphloneuridae  |                          |       |        |        |        |        |        | 0    | 0   | 0   |       |
|               |                 | Ameletus                 |       |        |        |        |        |        | 0    | 0   | 0   |       |
|               |                 | Parameletus              |       |        |        |        |        |        | 0    | 0   | 0   |       |
| Plecoptera    |                 |                          |       | 1      |        | 4      | 1      | 6      | 3    | 6   | 1   | 57    |
|               | Chloroperlidae  |                          | 4     | 2      | 1      | 2      |        |        | 2.3  | 4   | 1   |       |
|               | Perlodidae      |                          | 14    | 4      |        | 1      | 15     | 1      | 7    | 15  | 1   |       |
|               |                 | Isogenoides              | 2     |        |        |        | 1      |        | 1.5  | 2   | 1   |       |
|               |                 | Isoperla                 |       |        |        |        |        |        | 0    | 0   | 0   |       |
|               | Nemouridae      |                          | 17    | 6      | 1      |        | 6      | 4      | 6.8  | 17  | 1   |       |
|               | Taenipterygidae |                          | 3     |        |        | 5      | 2      | 2      | 3    | 5   | 2   |       |
|               | Perlidae        |                          |       | 1      |        |        |        |        | 1    | 1   | 1   |       |
|               | Pteronarcydae   | Pteronarcys              | 1     |        |        |        | 1      |        | 1    | 1   | 1   |       |
|               | Leuctridae(?)   |                          |       |        |        |        |        |        | 0    | 0   | 0   |       |
|               | Capniidae(?)    |                          |       |        |        |        |        |        | 0    | 0   | 0   |       |

 TABLE A27 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken March 14, 2009, and descriptive statistics

| Trichoptera  |                     |               | 2  | 3  | 1  | 2  | 4   |    | 2.4 | 4   | 1  | 251 |
|--------------|---------------------|---------------|----|----|----|----|-----|----|-----|-----|----|-----|
|              | pupa(e)             |               |    |    |    |    |     |    | 0   | 0   | 0  |     |
|              | Hydropsychidae      |               | 13 | 16 | 5  | 22 | 11  | 32 | 17  | 32  | 5  |     |
|              |                     | Hydropsyche   | 99 | 77 | 29 | 65 | 115 | 79 | 77  | 115 | 29 |     |
|              | Glossosomatidae     |               | 1  |    |    |    |     |    | 1   | 1   | 1  |     |
|              | Brachycentridae     |               |    |    |    |    |     |    | 0   | 0   | 0  |     |
|              |                     | Brachycentrus | 1  | 1  | 1  |    |     |    | 1   | 1   | 1  |     |
|              | Rhyacophilidae      |               | 1  | 1  |    |    | 1   |    | 1   | 1   | 1  |     |
|              | Hydroptilidae       |               |    |    |    |    |     | 1  | 1   | 1   | 1  |     |
|              | Polycentropodidae   |               |    |    |    |    |     |    | 0   | 0   | 0  |     |
|              | Lepidostomatidae(?) |               |    |    |    |    |     |    | 0   | 0   | 0  |     |
|              | Limnephilidae(?)    |               |    |    |    |    |     |    | 0   | 0   | 0  |     |
| Hemiptera    |                     |               |    |    |    |    |     |    | 0   | 0   | 0  | 7   |
|              | Corixidae           |               |    |    |    | 1  |     |    | 1   | 1   | 1  |     |
| Odonata      |                     |               |    |    |    |    |     |    | 0   | 0   | 0  |     |
|              | Gomphidae           |               | 1  |    |    |    |     |    | 1   | 1   | 1  |     |
|              |                     | Ophiogomphus  |    | 1  |    |    |     |    | 1   | 1   | 1  |     |
| Oligochaeta  | Lumbriculidae       |               |    |    | 2  |    |     |    | 2   | 2   | 2  |     |
| Bivalvia     | Sphaeridae          |               |    |    |    |    |     |    | 0   | 0   | 0  |     |
| Gastropoda   |                     |               |    |    |    |    |     |    | 0   | 0   | 0  |     |
|              | Limnaeidae          |               | 1  |    |    |    |     |    | 1   | 1   | 1  |     |
| Ostracoda    |                     |               |    |    |    |    |     |    | 0   | 0   | 0  |     |
| Megaloptera  |                     | Sialis        |    | 1  |    |    |     |    | 1   | 1   | 1  |     |
| Nematoda     |                     |               |    |    | 1  |    |     | 1  | 1   | 1   | 1  |     |
| Hydrachnidia |                     |               |    |    |    |    | 1   | 1  | 1   | 1   | 1  |     |
|              | Pionidae            |               |    |    |    |    |     |    | 0   | 0   | 0  |     |

 TABLE A28 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken March 17, 2009, and descriptive statistics

|                       |                     | Date                        | Mar-17     | Mar-17     | Mar-17     | Mar-17     | Mar-17 | Mar-17 |            |            |       |             |              |
|-----------------------|---------------------|-----------------------------|------------|------------|------------|------------|--------|--------|------------|------------|-------|-------------|--------------|
|                       |                     | collected:                  |            |            |            |            |        |        | м          | M          | м     | 14          | 16           |
| 0.1                   | T                   | G                           | AD         | AD         | AD         | A D        |        |        | Mean TCN 1 | Mean TDM 1 | Max 1 | Max         | Min<br>TOM 1 |
| Order                 | Family              | Genera<br>(unless<br>noted) | AR-<br>SS1 | AR-<br>SS2 | AR-<br>SS3 | AR-<br>DS1 | AR-DS2 | AR-DS3 | 7          | 7          | 7     | 1DMar<br>17 | 7            |
| Diptera               | Chironomid<br>ae    | SF<br>Tanypondin<br>ae      | 5          | 5          | 1          | 2          | 16     | 17     | 3.7        | 12         | 5     | 17          | 1            |
|                       |                     | SF<br>Chironomin<br>ae      |            | 2          |            |            |        | 11     | 2          | 11         | 2     | 11          | 2            |
|                       |                     | Diamesinae<br>(?)           |            |            |            |            |        | 32     | 0          | 32         | 0     | 32          | 0            |
|                       |                     | other<br>chironomid<br>s    | 10         | 34         | 8          | 31         | 94     |        | 17         | 63         | 34    | 94          | 8            |
|                       | Empididae           |                             | 5          | 4          | 1          | 2          | 24     | 7      | 3.3        | 11         | 5     | 24          | 1            |
|                       | Simuliidae          |                             |            |            |            |            |        |        | 0          | 0          | 0     | 0           | 0            |
|                       |                     | Ectemnia                    |            |            |            |            |        |        | 0          | 0          | 0     | 0           | 0            |
|                       | Ceratopogo<br>nidae |                             |            |            |            |            |        |        | 0          | 0          | 0     | 0           | 0            |
|                       | Dixidae             |                             |            |            |            |            | 1      |        | 0          | 1          | 0     | 1           | 0            |
| Ephem<br>eropter<br>a |                     |                             |            | 4          |            |            |        | 1      | 4          | 1          | 4     | 1           | 4            |
|                       | Heptagenii<br>dae   |                             | 1          | 4          |            |            | 14     | 11     | 2.5        | 13         | 4     | 14          | 1            |
|                       |                     | Stenonema                   |            |            |            | 3          | 5      | 5      | 0          | 4.3        | 0     | 5           | 0            |
|                       |                     | Rithrogena                  |            |            |            |            | 1      |        | 0          | 1          | 0     | 1           | 0            |
|                       |                     | Heptagenia                  |            | 2          |            |            | 1      | 2      | 2          | 1.5        | 2     | 2           | 2            |
|                       | Ephemerell<br>idae  |                             |            |            |            | 2          | 7      | 6      | 0          | 5          | 0     | 7           | 0            |
|                       | Baetidae            |                             |            |            |            | 2          | 2      | 4      | 0          | 2.7        | 0     | 4           | 0            |
|                       |                     | Baetis                      |            |            |            |            |        | 1      | 0          | 1          | 0     | 1           | 0            |
|                       | Leptophlebi<br>idae |                             |            |            |            |            |        |        | 0          | 0          | 0     | 0           | 0            |
|                       | Siphloneuri         |                             |            |            |            |            |        |        | 0          | 0          | 0     | 0           | 0            |

|         | daa         |             |    |    |   | 1  |          |    |     |     |    |     |   |
|---------|-------------|-------------|----|----|---|----|----------|----|-----|-----|----|-----|---|
|         | uae         | A 1.        |    |    |   |    |          |    | 0   | 0   | 0  | 0   | 0 |
|         |             | Ameletus    |    |    |   |    | -        |    | 0   | 0   | 0  | 0   | 0 |
|         |             | Parameletu  |    |    |   |    |          |    | 0   | 0   | 0  | 0   | 0 |
|         |             | 8           |    | -  |   |    |          |    |     | -   | -  | -   | - |
| Plecopt |             |             |    | 2  |   |    | 1        | 1  | 2   | 1   | 2  | 1   | 2 |
| era     |             |             |    |    |   |    |          |    |     |     |    |     |   |
|         | Chloroperli |             |    |    |   |    |          |    | 0   | 0   | 0  | 0   | 0 |
|         | dae         |             |    |    |   |    |          |    |     |     |    |     |   |
|         | Perlodidae  |             |    | 1  |   | 1  | 2        | 1  | 1   | 1.3 | 1  | 2   | 1 |
|         |             | Isogenoides |    |    |   | 3  |          | 1  | 0   | 2   | 0  | 3   | 0 |
|         |             | Isoperla    |    |    |   |    | 1        |    | 0   | 1   | 0  | 1   | 0 |
|         | Nemourida   | <b>^</b>    |    |    |   | 1  | 1        | 3  | 0   | 1.7 | 0  | 3   | 0 |
|         | e           |             |    |    |   |    |          |    |     |     |    |     |   |
|         | Taenintervg |             |    |    |   |    |          |    | 0   | 0   | 0  | 0   | 0 |
|         | idae        |             |    |    |   |    |          |    | 0   | Ũ   | Ũ  | Ũ   | Ũ |
|         | Perlidae    |             |    |    |   |    |          | 1  | 0   | 1   | 0  | 1   | 0 |
|         | Pteronarcyd | Pteronarcys |    |    |   |    |          | 1  | 0   | 0   | 0  | 0   | 0 |
|         | a cionarcyu | rteronarcys |    |    |   |    |          |    | 0   | 0   | 0  | 0   | 0 |
|         | Laustridas( |             |    | 1  |   |    | 1        |    | 1   | 0   | 1  | 0   | 1 |
|         |             |             |    | 1  |   |    |          |    | 1   | 0   | 1  | 0   | 1 |
|         | ·)          |             |    |    |   |    |          |    | 0   | 0   | 0  | 0   | 0 |
|         | Capniidae(? |             |    |    |   |    |          |    | 0   | 0   | 0  | 0   | 0 |
| TD 1 1  | )           |             |    |    | 1 |    | ~        |    |     | ~   | 1  | -   | 1 |
| Tricho  |             |             |    |    | 1 |    | 5        |    | 1   | 5   | 1  | 5   | 1 |
| ptera   |             |             |    |    |   |    |          |    | _   | -   | -  | -   | - |
|         | pupa(e)     |             |    |    |   |    |          |    | 0   | 0   | 0  | 0   | 0 |
|         | Hydropsyc   |             | 15 | 5  | 2 | 13 | 10       | 48 | 7.3 | 24  | 15 | 48  | 2 |
|         | hidae       |             |    |    |   |    |          |    |     |     |    |     |   |
|         |             | Hydropsyc   | 1  | 12 | 2 | 73 | 176      | 14 | 5   | 88  | 12 | 176 | 1 |
|         |             | he          |    |    |   |    |          |    |     |     |    |     |   |
|         | Glossosom   |             | 1  |    |   |    | 1        | 1  | 1   | 1   | 1  | 1   | 1 |
|         | atidae      |             |    |    |   |    |          |    |     |     |    |     |   |
|         | Brachycent  |             |    |    |   |    |          |    | 0   | 0   | 0  | 0   | 0 |
|         | ridae       |             |    |    |   |    |          |    |     | -   | -  | -   | - |
|         |             | Brachycent  |    |    |   |    |          |    | 0   | 0   | 0  | 0   | 0 |
|         |             | rus         |    |    |   |    |          |    | -   | -   | -  | -   | - |
|         | Rhyacophil  |             |    |    |   | 1  | 1        |    | 0   | 1   | 0  | 1   | 0 |
|         | idae        |             |    |    |   | 1  |          |    | Ĭ   | -   | Ŭ  | -   | Ŭ |
|         | Hydroptilid |             |    |    |   |    |          |    | 0   | 0   | 0  | 0   | 0 |
|         | ae          |             |    |    |   |    |          |    | 0   | v   | V  | 0   | 0 |
|         | Dolycontron |             |    |    |   |    | <u> </u> | 1  | 0   | 0   | 0  | 0   | 0 |
|         | Forycentrop |             |    |    |   |    |          |    | U   | U   | U  | 0   | 0 |
|         | odidae      |             | 1  | 1  | 1 | 1  |          | 1  | 1   | 1   | 1  | 1   | 1 |

|         | Lepidostom |           |   |   |   |   | 0 | 0 | 0 | 0 | 0 |
|---------|------------|-----------|---|---|---|---|---|---|---|---|---|
|         | atidae(?)  |           |   |   |   |   |   |   |   |   |   |
|         | Limnephili |           | 1 |   |   |   | 1 | 0 | 1 | 0 | 1 |
|         | dae(?)     |           |   |   |   |   |   |   |   |   |   |
| Hemipt  |            |           |   |   |   |   | 0 | 0 | 0 | 0 | 0 |
| era     |            |           |   |   |   |   |   | - | - | - | - |
| Ciu     | Corividae  |           | 1 |   |   |   | 1 | 0 | 1 | 0 | 1 |
| Olenat  | Considae   |           | 1 |   |   |   | 1 | 0 | 1 | 0 | 1 |
| Odonat  |            |           |   |   |   |   | 0 | 0 | 0 | 0 | 0 |
| а       |            |           |   |   |   |   |   |   |   |   |   |
|         | Gomphidae  |           |   |   |   | 1 | 0 | 1 | 0 | 1 | 0 |
|         |            | Ophiogomp |   |   | 2 |   | 0 | 2 | 0 | 2 | 0 |
|         |            | hus       |   |   |   |   |   |   |   |   |   |
| Oligoc  | Lumbriculi |           | 1 | 1 | 4 |   | 1 | 4 | 1 | 4 | 1 |
| haeta   | dae        |           |   |   |   |   |   |   |   |   |   |
| Biyalyi | Sphaeridae |           |   | 1 |   |   | 1 | 0 | 1 | 0 | 1 |
| Divalvi | Sphaendae  |           |   | 1 |   |   | 1 | 0 | 1 | 0 | 1 |
| a       |            |           |   |   |   |   |   | 0 | 2 | 0 |   |
| Gastro  |            |           |   | 2 |   |   | 2 | 0 | 2 | 0 | 2 |
| poda    |            |           |   |   |   |   |   |   |   |   |   |
|         | Limnaeidae |           |   |   |   |   | 0 | 0 | 0 | 0 | 0 |
| Ostraco |            |           |   |   |   |   | 0 | 0 | 0 | 0 | 0 |
| da      |            |           |   |   |   |   |   |   |   |   |   |
| Megalo  |            | Sialis    |   |   |   |   | 0 | 0 | 0 | 0 | 0 |
| ntera   |            | Diano     |   |   |   |   | Ŭ | 0 | 0 | 0 | 0 |
| Namat   |            |           |   |   |   |   | 0 | 0 | 0 | 0 | 0 |
| Nemat   |            |           |   |   |   |   | 0 | 0 | 0 | 0 | 0 |
| oda     |            |           |   |   |   |   |   | - | - | - | - |
| Hydrac  |            |           |   |   |   |   | 0 | 0 | 0 | 0 | 0 |
| hnidia  |            |           |   |   |   |   |   |   |   |   |   |
|         | Pionidae   |           |   |   |   | 1 | 0 | 1 | 0 | 1 | 0 |

|             |                 |                 | Min  | Mean   | Max    | Min    | Mean   | Max    | Min  | Total | Total | Total  | Total | Total   |
|-------------|-----------------|-----------------|------|--------|--------|--------|--------|--------|------|-------|-------|--------|-------|---------|
| Order       | Family          | Genera (unless  | TDM  | TSMa   | TSMa   | TSMa   | TDM    | TDM    | TD   | TSMa  | TDM   | TS/ref | TD/re | Drift/r |
|             |                 | noted)          | ar17 | r17/re | r17/re | r17/re | ar17/r | ar17/r | Mar  | r17   | ar17  | %      | f%    | ef%     |
|             |                 | ,               |      | f      | f      | f      | ef     | ef     | 17/r |       |       |        |       |         |
|             |                 |                 |      |        |        |        |        |        | ef   |       |       |        |       |         |
| Diptera     | Chironomidae    | SF Tanypondinae | 2    | 0.23   | 0.17   | 0.5    | 0.72   | 0.57   | 1    | 75    | 237   | 28     | 88    | 50%     |
|             |                 | SF Chironominae | 11   | 0.43   | 0.29   | 2      | 2.36   | 1.57   | 11   |       |       |        |       |         |
|             |                 | Diamesinae(?)   | 32   | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
|             |                 | other           | 31   | 0.26   | 0.31   | 0.30   | 0.95   | 0.85   | 1.2  |       |       |        |       |         |
|             |                 | chironomids     |      |        |        |        |        |        |      |       |       |        |       |         |
|             | Empididae       |                 | 2    | 0.21   | 0.16   | 0.3    | 0.69   | 0.75   | 0.7  |       |       |        |       |         |
|             | Simuliidae      |                 | 0    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
|             |                 | Ectemnia        | 0    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
|             | Ceratopogonidae |                 | 0    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
|             | Dixidae         |                 | 1    | 0      | 0      | 0      | 0.25   | 0.25   | 0.25 |       |       |        |       |         |
| Ephemeropte |                 |                 | 1    | 0.42   | 0.17   | 4      | 0.11   | 0.04   | 1    | 11    | 67    | 7.7    | 47    | 152%    |
| ra          |                 |                 |      |        |        |        |        |        |      |       |       |        |       |         |
|             | Heptageniidae   |                 | 11   | 0.15   | 0.17   | 0.09   | 0.74   | 0.61   | 1    |       |       |        |       |         |
|             |                 | Stenonema       | 3    | 0      | 0      | 0      | 0.77   | 0.5    | 3    |       |       |        |       |         |
|             |                 | Rithrogena      | 1    | 0      | 0      | 0      | 0.5    | 0.25   | 1    |       |       |        |       |         |
|             |                 | Heptagenia      | 1    | 0.75   | 0.67   | 1      | 0.56   | 0.67   | 0.5  |       |       |        |       |         |
|             | Ephemerellidae  |                 | 2    | 0      | 0      | 0      | 0.77   | 0.64   | 2    |       |       |        |       |         |
|             | Baetidae        |                 | 2    | 0      | 0      | 0      | 0.30   | 0.25   | 2    |       |       |        |       |         |
|             |                 | Baetis          | 1    | 0      | 0      | 0      | 0.33   | 0.33   | 0.33 |       |       |        |       |         |
|             | Leptophlebiidae |                 | 0    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
|             | Siphloneuridae  |                 | 0    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
|             |                 | Ameletus        | 0    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
|             |                 | Parameletus     | 0    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
| Plecoptera  |                 |                 | 1    | 0.67   | 0.33   | 2      | 0.33   | 0.17   | 1    | 4     | 17    | 7.0    | 30    | 42%     |
|             | Chloroperlidae  |                 | 0    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
|             | Perlodidae      |                 | 1    | 0.14   | 0.07   | 1      | 0.19   | 0.13   | 1    |       |       |        |       |         |
|             |                 | Isogenoides     | 1    | 0      | 0      | 0      | 1.33   | 1.5    | 1    |       |       |        |       |         |
|             |                 | Isoperla        | 1    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
|             | Nemouridae      |                 | 1    | 0      | 0      | 0      | 0.25   | 0.18   | 1    |       |       |        |       |         |
|             | Taenipterygidae |                 | 0    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
|             | Perlidae        |                 | 1    | 0      | 0      | 0      | 1      | 1      | 1    |       |       |        |       |         |
|             | Pteronarcydae   | Pteronarcys     | 0    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |
|             | Leuctridae(?)   |                 | 0    | 0      | 0      | 0      | 0      | 0      | 0    |       |       |        |       |         |

TABLE A29 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken March 17, 2009 (continued)

|              | Capniidae(?)     |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
|--------------|------------------|---------------|----|------|------|------|-----|---------|------|-----|-----|----|-----|----|
| Trichoptera  |                  |               | 5  | 0.42 | 0.25 | 1    | 2.1 | 1.3     | 5    | 40  | 342 | 16 | 136 | 1% |
|              | pupa(e)          |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
|              | Hydropsychidae   |               | 10 | 0.44 | 0.47 | 0.4  | 1.4 | 1.5     | 2    |     |     |    |     |    |
|              |                  | Hydropsyche   | 14 | 0.06 | 0.10 | 0.03 | 1.1 | 1.5     | 0.48 |     |     |    |     |    |
|              | Glossosomatidae  |               | 1  | 1    | 1    | 1    | 1   | 1       | 1    |     |     |    |     |    |
|              | Brachycentridae  |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
|              |                  | Brachycentrus | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
|              | Rhyacophilidae   |               | 1  | 0    | 0    | 0    | 1   | 1       | 1    |     |     |    |     |    |
|              | Hydroptilidae    |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
|              | Polycentropodida |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
|              | е                |               |    |      |      |      |     |         |      |     |     |    |     |    |
|              | Lepidostomatida  |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
|              | e(?)             |               |    |      |      |      |     |         |      |     |     |    |     |    |
|              | Limnephilidae(?) |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
| Hemiptera    |                  |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    | 6   | 8   |    |     |    |
|              | Corixidae        |               | 0  | 1    | 1    | 1    | 0   | 0       | 0    |     |     |    |     |    |
| Odonata      |                  |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
|              | Gomphidae        |               | 1  | 0    | 0    | 0    | 1   | 1       | 1    |     |     |    |     |    |
|              |                  | Ophiogomphus  | 2  | 0    | 0    | 0    | 2   | 2       | 2    |     |     |    |     |    |
| Oligochaeta  | Lumbriculidae    |               | 4  | 0.5  | 0.5  | 0.5  | 2   | 2       | 2    |     |     |    |     |    |
| Bivalvia     | Sphaeridae       |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
| Gastropoda   |                  |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
|              | Limnaeidae       |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
| Ostracoda    |                  |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
| Megaloptera  |                  | Sialis        | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
| Nematoda     |                  |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
| Hydrachnidia |                  |               | 0  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
|              | Pionidae         |               | 1  | 0    | 0    | 0    | 0   | 0       | 0    |     |     |    |     |    |
|              |                  |               |    |      |      |      |     | All Spe | cies | 136 | 671 | 19 | 92  | 55 |
|              |                  |               |    |      |      |      |     |         |      |     | 1   | 1  | 1   |    |

|               |                 | Date collected:       | Mar- | Mar- | Mar- | Mar- | Mar- | Mar- |      |      |     |      |      |
|---------------|-----------------|-----------------------|------|------|------|------|------|------|------|------|-----|------|------|
|               |                 |                       | 22   | 22   | 22   | 22   | 22   | 22   |      |      |     |      |      |
|               |                 |                       |      |      |      |      |      |      | Mean | Mean | Max | Max  | Min  |
| Order         | Family          | Genera (unless noted) | AR-  | AR-  | AR-  | AR-  | AR-  | AR-  | TSMa | TDM  | TS  | TDM  | TSMa |
|               |                 |                       | SS1  | SS2  | SS3  | DS1  | DS2  | DS3  | r22  | ar22 | Mar | ar22 | r22  |
|               |                 |                       |      |      |      |      |      |      |      |      | 22  |      |      |
| Diptera       | Chironomidae    | SF Tanypondinae       | 8    |      | 5    | 3    | 7    | 2    | 6.5  | 4    | 8   | 7    | 5    |
|               |                 | SF Chironominae       |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
|               |                 | Diamesinae(?)         |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
|               |                 | other chironomids     | 16   | 5    | 22   | 5    | 30   | 17   | 14   | 17   | 22  | 30   | 5    |
|               | Empididae       |                       | 3    | 1    | 2    |      | 5    | 4    | 2    | 4.5  | 3   | 5    | 1    |
|               | Simuliidae      |                       |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
|               |                 | Ectemnia              |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
|               | Ceratopogonidae |                       |      |      |      |      | 1    | 1    | 0    | 1    | 0   | 1    | 0    |
|               | Dixidae         |                       |      |      |      | 1    |      |      | 0    | 1    | 0   | 1    | 0    |
| Ephemeroptera |                 |                       |      |      | 1    |      |      |      | 1    | 0    | 1   | 0    | 1    |
|               | Heptageniidae   |                       | 2    | 1    | 6    |      | 1    | 3    | 3    | 2    | 6   | 3    | 1    |
|               |                 | Stenonema             |      |      | 3    |      | 1    |      | 3    | 1    | 3   | 1    | 3    |
|               |                 | Rithrogena            |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
|               |                 | Heptagenia            |      |      |      | 1    |      |      | 0    | 1    | 0   | 1    | 0    |
|               | Ephemerellidae  |                       |      |      | 2    |      |      |      | 2    | 0    | 2   | 0    | 2    |
|               | Baetidae        |                       |      | 1    | 4    |      | 2    |      | 2.5  | 2    | 4   | 2    | 1    |
|               |                 | Baetis                |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
|               | Leptophlebiidae |                       |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
|               | Siphloneuridae  |                       |      |      |      |      |      | 1    | 0    | 1    | 0   | 1    | 0    |
|               |                 | Ameletus              |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
|               |                 | Parameletus           |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
| Plecoptera    |                 |                       |      | 1    | 2    |      | 2    | 1    | 1.5  | 1.5  | 2   | 2    | 1    |
|               | Chloroperlidae  |                       |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
|               | Perlodidae      |                       |      | 2    |      |      | 1    |      | 2    | 1    | 2   | 1    | 2    |
|               |                 | Isogenoides           |      |      |      | 5    | 1    | 2    | 0    | 2.7  | 0   | 5    | 0    |
|               |                 | Isoperla              |      |      |      |      | 1    | 1    | 0    | 1    | 0   | 1    | 0    |
|               | Nemouridae      |                       |      |      |      |      |      | 2    | 0    | 2    | 0   | 2    | 0    |
|               | Taenipterygidae |                       |      |      | 1    |      | 1    |      | 1    | 1    | 1   | 1    | 1    |
|               | Perlidae        |                       |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
|               | Pteronarcydae   | Pteronarcys           |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |
|               | Leuctridae(?)   |                       |      |      |      |      |      |      | 0    | 0    | 0   | 0    | 0    |

 TABLE A30 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken March 22, 2009, and descriptive statistics

|              | Capniidae(?)        |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
|--------------|---------------------|---------------|----|---|----|----|----|----|-----|----|----|----|---|
| Trichoptera  |                     |               | 1  | 1 | 1  | 2  |    |    | 1   | 2  | 1  | 2  | 1 |
|              | pupa(e)             |               | 3  |   |    |    |    |    | 3   | 0  | 3  | 0  | 3 |
|              | Hydropsychidae      |               | 5  | 1 | 2  | 5  | 12 | 16 | 2.7 | 11 | 5  | 16 | 1 |
|              |                     | Hydropsyche   | 25 | 7 | 11 | 15 | 49 | 34 | 14  | 33 | 25 | 49 | 7 |
|              | Glossosomatidae     |               |    |   |    |    | 1  |    | 0   | 1  | 0  | 1  | 0 |
|              | Brachycentridae     |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
|              |                     | Brachycentrus |    |   |    |    | 1  |    | 0   | 1  | 0  | 1  | 0 |
|              | Rhyacophilidae      |               |    |   | 1  |    |    |    | 1   | 0  | 1  | 0  | 1 |
|              | Hydroptilidae       |               |    |   |    | 1  |    |    | 0   | 1  | 0  | 1  | 0 |
|              | Polycentropodidae   |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
|              | Lepidostomatidae(?) |               |    |   | 1  |    |    |    | 1   | 0  | 1  | 0  | 1 |
|              | Limnephilidae(?)    |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
| Hemiptera    |                     |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
|              | Corixidae           |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
| Odonata      |                     |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
|              | Gomphidae           |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
|              |                     | Ophiogomphus  |    |   | 1  |    |    |    | 1   | 0  | 1  | 0  | 1 |
| Oligochaeta  | Lumbriculidae       |               |    | 1 |    |    |    |    | 1   | 0  | 1  | 0  | 1 |
| Bivalvia     | Sphaeridae          |               | 1  |   |    |    |    |    | 1   | 0  | 1  | 0  | 1 |
| Gastropoda   |                     |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
|              | Limnaeidae          |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
| Ostracoda    |                     |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
| Megaloptera  |                     | Sialis        |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
| Nematoda     |                     |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
| Hydrachnidia |                     |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |
|              | Pionidae            |               |    |   |    |    |    |    | 0   | 0  | 0  | 0  | 0 |

|            |                  |                    | Min | Mean   | Max    | Min       | Mean   | Max  | Min    | Total    | Total    | Tota | Total    | Total   |
|------------|------------------|--------------------|-----|--------|--------|-----------|--------|------|--------|----------|----------|------|----------|---------|
|            |                  |                    |     |        |        |           |        |      |        |          |          | 1    |          |         |
| Order      | Family           | Genera (unless     | TD  | TSMa   | TSMa   | TS        | TDM    | TD   | TDM    | TSMa     | TDM      | TS/r | TD/re    | Drift/r |
|            |                  | noted)             | Mar | r22/re | r22/re | Mar       | ar22/r | Mar  | ar22/r | r22      | ar22     | ef%  | 1%       | ef%     |
|            |                  |                    | 22  | İ      | İ      | 22/r      | ef     | 22/r | ef     |          |          |      |          |         |
| Dintana    | Chinomomidaa     | SE Tonyn on din oo | 2   | 0.40   | 0.27   | er<br>2.5 | 0.25   | er   | 1      | 62       | 76       | 22   | 20       | 1100/   |
| Diptera    | Chirononnuae     | SF Tanyponulnae    | 2   | 0.40   | 0.27   | 2.3       | 0.23   | 0.25 | 1      | 02       | 70       | 23   | 28       | 118%    |
|            |                  | Diamaginga(2)      | 0   | 0      | 0      | 0         | 0      | 0    | 0      |          |          |      |          |         |
|            |                  | Diamesinae(?)      | 5   | 0 22   | 0 20   | 0 10      | 0.26   | 0 27 | 0 10   |          |          |      |          |         |
|            | E                | other chironomids  | 5   | 0.22   | 0.20   | 0.19      | 0.20   | 0.27 | 0.19   | 1        |          | -    | <br>     |         |
|            | Emplaidae        |                    | 4   | 0.15   | 0.09   | 0.33      | 0.28   | 0.10 | 1.33   |          |          |      |          |         |
|            | Simunidae        | Estampia           | 0   | 0      | 0      | 0         | 0      | 0    | 0      |          |          |      |          |         |
|            | Canatama gamidaa | Ectemina           | 1   | 0      | 0      | 0         | 0      | 1    | 1      |          |          |      |          |         |
|            | Divide           |                    | 1   | 0      | 0      | 0         | 1      | 1    | 1      |          |          |      |          |         |
| Ealterneed | Dixidae          |                    | 1   | 0      | 0 0.42 | 0         | 0.25   | 0.25 | 0.25   | 20       | 0        | 14   | 6.2      | 2550/   |
| Ephemeropt |                  |                    | 0   | 0.11   | 0.045  | 1         | 0      | 0    | 0      | 20       | 9        | 14   | 0.3      | 255%    |
| era        | Hantaganiidaa    |                    | 1   | 0.18   | 0.26   | 0.00      | 0.12   | 0.12 | 0.00   | -        | -        |      |          |         |
|            | neptagenndae     | Stanonama          | 1   | 0.18   | 0.20   | 0.09      | 0.12   | 0.15 | 0.09   |          |          |      |          |         |
|            |                  | Dithrogene         | 1   | 0.34   | 0.5    | 3         | 0.18   | 0.1  | 1      |          |          |      |          |         |
|            |                  | Hantagania         | 1   | 0      | 0      | 0         | 0.28   | 0 22 | 0      |          |          |      |          |         |
|            | Enhomonallidaa   | пертаденна         | 1   | 0.21   | 0 19   | 0         | 0.58   | 0.55 | 0.5    |          |          |      |          |         |
|            | Destides         |                    | 0   | 0.31   | 0.18   | 2         | 0.22   | 0 12 | 0      |          |          |      |          |         |
|            | Баенцае          |                    | 2   | 0.28   | 0.25   | 1         | 0.25   | 0.12 | 2      |          |          |      |          |         |
|            |                  | Baatic             | 0   | 0      | 0      | 0         | 0      | 0    | 0      |          |          |      |          | -       |
|            | Lantophlabiidaa  | Daeus              | 0   | 0      | 0      | 0         | 0      | 0    | 0      |          |          |      |          | -       |
|            | Siphloneuridae   |                    | 1   | 0      | 0      | 0         | 0      | 0    | 0      |          |          |      |          |         |
|            | Sipiliolicultuae | Ameletus           | 0   | 0      | 0      | 0         | 0      | 0    | 0      |          |          |      |          |         |
|            |                  | Parameletus        | 0   | 0      | 0      | 0         | 0      | 0    | 0      |          |          |      |          |         |
| Plecontera |                  | Tarametetus        | 1   | 0.5    | 0.33   | 1         | 0.5    | 0 33 | 1      | 6        | 17       | 11   | 30       | 554%    |
| Tiecopteru | Chloroperlidae   |                    | 0   | 0.5    | 0.55   | 0         | 0.5    | 0.55 | 0      |          | 17       |      | 50       | 55170   |
|            | Perlodidae       |                    | 1   | 0.29   | 0.13   | 2         | 0.14   | 0.07 | 1      |          |          |      |          |         |
|            | Terrourdae       | Isogenoides        | 1   | 0.27   | 0.15   | 0         | 1.78   | 2.5  | 1      |          |          |      |          |         |
|            |                  | Isoperla           | 1   | 0      | 0      | 0         | 0      | 0    | 0      | <u> </u> | <u> </u> |      | <u> </u> |         |
|            | Nemouridae       | 15000110           | 2   | 0      | 0      | 0         | 0.29   | 0.12 | 2      | <u> </u> | <u> </u> |      | <u> </u> |         |
|            | Taenintervoidae  |                    | 1   | 0.33   | 0.2    | 0.5       | 0.33   | 0.12 | 0.5    |          |          |      |          |         |
|            | Perlidae         |                    | 0   | 0.55   | 0.2    | 0.5       | 0.55   | 0.2  | 0.5    | <u> </u> | <u> </u> |      | <u> </u> |         |
|            | Pteronarcydae    | Pteronarcys        | 0   | 0      | 0      | 0         | 0      | 0    | 0      |          |          |      |          |         |
|            | i teronare yuae  | i teronare ys      | U   | 0      | 0      | U         | 0      | U    | 0      |          |          | 1    |          |         |

 TABLE A31 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken March 22, 2009 (continued)

|                  | Leuctridae(?)     |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
|------------------|-------------------|---------------|----|------|------|------|------|--------|-------|-----|-----|----|----|-----|
|                  | Capniidae(?)      |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
| Trichoptera      |                   |               | 2  | 0.42 | 0.25 | 1    | 0.83 | 0.5    | 2     | 59  | 136 | 24 | 54 | 28% |
|                  | pupa(e)           |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
|                  | Hydropsychidae    |               | 5  | 0.16 | 0.16 | 0.2  | 0.67 | 0.5    | 1     |     |     |    |    |     |
|                  |                   | Hydropsyche   | 15 | 0.19 | 0.22 | 0.24 | 0.42 | 0.43   | 0.52  |     |     |    |    |     |
|                  | Glossosomatidae   |               | 1  | 0    | 0    | 0    | 1    | 1      | 1     |     |     |    |    |     |
|                  | Brachycentridae   |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
|                  |                   | Brachycentrus | 1  | 0    | 0    | 0    | 1    | 1      | 1     |     |     |    |    |     |
|                  | Rhyacophilidae    |               | 0  | 1    | 1    | 1    | 0    | 0      | 0     |     |     |    |    |     |
|                  | Hydroptilidae     |               | 1  | 0    | 0    | 0    | 1    | 1      | 1     |     |     |    |    |     |
|                  | Polycentropodidae |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
|                  | Lepidostomatidae( |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
|                  | Limnephilidae(?)  |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
| Hemiptera        | F(.)              |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     | 3   | 0   |    |    |     |
|                  | Corixidae         |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     | -   |     |    |    |     |
| Odonata          |                   |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
|                  | Gomphidae         |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
|                  | · ·               | Ophiogomphus  | 0  | 1    | 1    | 1    | 0    | 0      | 0     |     |     |    |    |     |
| Oligochaeta      | Lumbriculidae     |               | 0  | 0.5  | 0.5  | 0.5  | 0    | 0      | 0     |     |     |    |    |     |
| Bivalvia         | Sphaeridae        |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
| Gastropoda       |                   |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
|                  | Limnaeidae        |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
| Ostracoda        |                   |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
| Megalopter       |                   | Sialis        | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
| а                |                   |               |    |      |      |      |      |        |       |     |     |    |    |     |
| Nematoda         |                   |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
| Hydrachnid<br>ia |                   |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
|                  | Pionidae          |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |    |    |     |
|                  |                   | 1             |    |      |      |      |      | All Sp | ecies | 150 | 238 | 21 | 33 | 163 |
|                  |                   |               |    |      |      |      |      | »P     |       |     |     |    |    |     |

|               |                 | Date collected:       | Mar-       | Mar-       | Mar-       | Mar-       | Mar-       | Mar-        |             |             |                 |             |             |
|---------------|-----------------|-----------------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-----------------|-------------|-------------|
|               |                 |                       | 21         | 21         | 21         | 21         | 21         | 21          | Mean        | Mean        | Max             | Max         | Min         |
| Order         | Family          | Genera (unless noted) | AR-<br>SS1 | AR-<br>SS2 | AR-<br>SS3 | AR-<br>DS1 | AR-<br>DS3 | AR-<br>DS3b | TSMa<br>r27 | TDM<br>ar27 | TS<br>Mar<br>27 | TDM<br>ar27 | TSMa<br>r27 |
| Diptera       | Chironomidae    | SF Tanypondinae       | 4          | 5          | 9          | 5          | 6          | 32          | 6           | 14          | 9               | 32          | 4           |
|               |                 | SF Chironominae       |            | 1          | 2          | 1          | 5          | 2           | 1.5         | 2.7         | 2               | 5           | 1           |
|               |                 | Diamesinae(?)         |            | 1          |            |            |            |             | 1           | 0           | 1               | 0           | 1           |
|               |                 | other chironomids     | 14         | 23         | 40         | 25         | 12         | 40          | 26          | 26          | 40              | 40          | 14          |
|               | Empididae       |                       | 4          | 12         | 8          | 5          | 4          | 18          | 8           | 9           | 12              | 18          | 4           |
|               | Simuliidae      |                       |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               |                 | Ectemnia              |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               | Ceratopogonidae |                       | 1          |            |            |            |            |             | 1           | 0           | 1               | 0           | 1           |
|               | Dixidae         |                       |            |            | 1          |            |            | 2           | 1           | 2           | 1               | 2           | 1           |
| Ephemeroptera |                 |                       |            | 1          | 1          | 2          | 2          |             | 1           | 2           | 1               | 2           | 1           |
|               | Heptageniidae   |                       | 1          |            | 2          | 4          | 4          | 8           | 1.5         | 5.3         | 2               | 8           | 1           |
|               |                 | Stenonema             | 1          |            |            |            |            |             | 1           | 0           | 1               | 0           | 1           |
|               |                 | Rithrogena            |            |            | 1          |            | 2          |             | 1           | 2           | 1               | 2           | 1           |
|               |                 | Heptagenia            |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               | Ephemerellidae  |                       |            |            | 1          | 1          | 1          | 1           | 1           | 1           | 1               | 1           | 1           |
|               | Baetidae        |                       | 2          | 1          |            | 3          | 1          | 1           | 1.5         | 1.7         | 2               | 3           | 1           |
|               |                 | Baetis                |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               | Leptophlebiidae |                       |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               | Siphloneuridae  |                       |            |            |            | 1          |            |             | 0           | 1           | 0               | 1           | 0           |
|               |                 | Ameletus              |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               |                 | Parameletus           |            |            | 1          |            |            |             | 1           | 0           | 1               | 0           | 1           |
| Plecoptera    |                 |                       |            | 1          | 1          |            |            | 3           | 1           | 3           | 1               | 3           | 1           |
|               | Chloroperlidae  |                       |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               | Perlodidae      |                       | 1          |            | 1          | 1          |            |             | 1           | 1           | 1               | 1           | 1           |
|               |                 | Isogenoides           |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               |                 | Isoperla              |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               | Nemouridae      |                       | 1          |            |            | 1          |            |             | 1           | 1           | 1               | 1           | 1           |
|               | Taenipterygidae |                       |            |            |            | 1          |            |             | 0           | 1           | 0               | 1           | 0           |
|               | Perlidae        |                       |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               | Pteronarcydae   | Pteronarcys           |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               | Leuctridae(?)   |                       |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |
|               | Capniidae(?)    |                       |            |            |            |            |            |             | 0           | 0           | 0               | 0           | 0           |

TABLE A32 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken March 27, 2009, and descriptive statistics
| Trichoptera  |                   |               |   |   | 1  |    | 3   |     | 1   | 3  | 1  | 3   | 1 |
|--------------|-------------------|---------------|---|---|----|----|-----|-----|-----|----|----|-----|---|
| · · ·        | pupa(e)           |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
|              | Hydropsychidae    |               | 1 | 9 | 15 | 60 | 30  | 37  | 8.3 | 42 | 15 | 60  | 1 |
|              |                   | Hydropsyche   | 6 | 6 | 34 | 42 | 129 | 104 | 15  | 92 | 34 | 129 | 6 |
|              | Glossosomatidae   |               |   |   | 1  |    |     |     | 1   | 0  | 1  | 0   | 1 |
|              | Brachycentridae   |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
|              |                   | Brachycentrus |   |   |    |    | 1   |     | 0   | 1  | 0  | 1   | 0 |
|              | Rhyacophilidae    |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
|              | Hydroptilidae     |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
|              | Polycentropodidae |               |   |   |    |    | 1   |     | 0   | 1  | 0  | 1   | 0 |
|              | Lepidostomatidae( |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
|              | ?)                |               |   |   |    |    |     |     |     |    |    |     |   |
|              | Limnephilidae(?)  |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
| Hemiptera    |                   |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
|              | Corixidae         |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
| Odonata      |                   |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
|              | Gomphidae         |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
|              |                   | Ophiogomphus  |   |   | 1  |    |     |     | 1   | 0  | 1  | 0   | 1 |
| Oligochaeta  | Lumbriculidae     |               | 3 | 2 | 2  |    |     | 2   | 2.3 | 2  | 3  | 2   | 2 |
| Bivalvia     | Sphaeridae        |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
| Gastropoda   |                   |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
|              | Limnaeidae        |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
| Ostracoda    |                   |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
| Megaloptera  |                   | Sialis        |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
| Nematoda     |                   |               |   |   |    |    |     | 1   | 0   | 1  | 0  | 1   | 0 |
| Hydrachnidia |                   |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |
|              | Pionidae          |               |   |   |    |    |     |     | 0   | 0  | 0  | 0   | 0 |

|            | 1               |                   | Min  | Mean   | Max    | Min  | Mean   | Max  | Min    | Total | Total | Total  | Total | Total   |
|------------|-----------------|-------------------|------|--------|--------|------|--------|------|--------|-------|-------|--------|-------|---------|
| Order      | Family          | Genera (unless    | TDM  | TSMa   | TSMa   | TS   | TDM    | TD   | TDM    | TSMa  | TDM   | TS/ref | TD/re | Drift/r |
|            |                 | noted)            | ar27 | r27/re | r27/re | Mar  | ar27/r | Mar  | ar27/r | r27   | ar27  | %      | f%    | ef%     |
|            |                 |                   |      | f      | f      | 27/r | ef     | 27/r | ef     |       |       |        |       |         |
|            |                 |                   |      |        |        | ef   |        | ef   |        |       |       |        |       |         |
| Diptera    | Chironomidae    | SF Tanypondinae   | 5    | 0.37   | 0.3    | 2    | 0.89   | 1.07 | 2.5    | 125   | 157   | 47     | 59    | 94%     |
|            |                 | SF Chironominae   | 1    | 0.32   | 0.29   | 1    | 0.57   | 0.71 | 1      |       |       |        |       |         |
|            |                 | Diamesinae(?)     | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            |                 | other chironomids | 12   | 0.39   | 0.36   | 0.52 | 0.39   | 0.36 | 0.44   |       |       |        |       |         |
|            | Empididae       |                   | 4    | 0.51   | 0.38   | 1.3  | 0.57   | 0.56 | 1.3    |       |       |        |       |         |
|            | Simuliidae      |                   | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            |                 | Ectemnia          | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            | Ceratopogonida  |                   | 0    | 1      | 1      | 1    | 0      | 0    | 0      |       |       |        |       |         |
|            | е               |                   |      |        |        |      |        |      |        |       |       |        |       |         |
|            | Dixidae         |                   | 2    | 0.25   | 0.25   | 0.25 | 0.5    | 0.5  | 0.5    |       |       |        |       |         |
| Ephemeropt |                 |                   | 2    | 0.11   | 0.04   | 1    | 0.21   | 0.09 | 2      | 12    | 31    | 8.4    | 22    | 147%    |
| era        |                 |                   |      |        |        |      |        |      |        |       |       |        |       |         |
|            | Heptageniidae   |                   | 4    | 0.09   | 0.09   | 0.09 | 0.32   | 0.35 | 0.36   |       |       |        |       |         |
|            |                 | Stenonema         | 0    | 0.18   | 0.1    | 1    | 0      | 0    | 0      |       |       |        |       |         |
|            |                 | Rithrogena        | 2    | 0.5    | 0.25   | 1    | 1      | 0.5  | 2      |       |       |        |       |         |
|            |                 | Heptagenia        | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            | Ephemerellidae  |                   | 1    | 0.15   | 0.09   | 1    | 0.15   | 0.09 | 1      |       |       |        |       |         |
|            | Baetidae        |                   | 1    | 0.17   | 0.13   | 1    | 0.19   | 0.19 | 1      |       |       |        |       |         |
|            |                 | Baetis            | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            | Leptophlebiidae |                   | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            | Siphloneuridae  |                   | 1    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            |                 | Ameletus          | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            |                 | Parameletus       | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
| Plecoptera |                 |                   | 3    | 0.33   | 0.17   | 1    | 1      | 0.5  | 3      | 5     | 6     | 8.8    | 11    | 123%    |
|            | Chloroperlidae  |                   | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            | Perlodidae      |                   | 1    | 0.14   | 0.07   | 1    | 0.14   | 0.07 | 1      |       |       |        |       |         |
|            |                 | Isogenoides       | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            |                 | Isoperla          | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            | Nemouridae      |                   | 1    | 0.15   | 0.06   | 1    | 0.15   | 0.06 | 1      |       |       |        |       |         |
|            | Taenipterygidae |                   | 1    | 0      | 0      | 0    | 0.33   | 0.2  | 0.5    |       |       |        |       |         |
|            | Perlidae        |                   | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            | Pteronarcydae   | Pteronarcys       | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |
|            | Leuctridae(?)   |                   | 0    | 0      | 0      | 0    | 0      | 0    | 0      |       |       |        |       |         |

TABLE A33 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken March 27, 2009 (continued)

|             | Capniidae(?)   |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|-------------|----------------|---------------|----|------|------|------|------|--------|-------|-----|-----|-----|----|------|
| Trichoptera |                |               | 3  | 0.42 | 0.25 | 1    | 1.3  | 0.75   | 3     | 73  | 407 | 47  | 59 | 94%  |
|             | pupa(e)        |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|             | Hydropsychida  |               | 30 | 0.51 | 0.47 | 0.2  | 2.57 | 1.9    | 6     |     |     |     |    |      |
|             | е              |               |    |      |      |      |      |        |       |     |     |     |    |      |
|             |                | Hydropsyche   | 42 | 0.20 | 0.30 | 0.21 | 1.2  | 1.1    | 1.5   |     |     |     |    |      |
|             | Glossosomatida |               | 0  | 1    | 1    | 1    | 0    | 0      | 0     |     |     |     |    |      |
|             | е              |               |    |      |      |      |      |        |       |     |     |     |    |      |
|             | Brachycentrida |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|             | e              | <b>D</b> 1    |    | 0    |      |      |      |        |       |     |     |     |    |      |
|             |                | Brachycentrus | 1  | 0    | 0    | 0    | 1    | 1      | 1     |     |     |     |    |      |
|             | Rhyacophilidae |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|             | Hydroptilidae  |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|             | Polycentropodi |               | 1  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|             | Lanidostomotid |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|             | Lepidostomatid |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    | l    |
|             | Limnenhilidae( |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|             | 2)             |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    | l    |
| Hemiptera   | •)             |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     | 8   | 3   | 8.4 | 22 | 147% |
| <b></b>     | Corixidae      |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
| Odonata     |                |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|             | Gomphidae      |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|             | 1              | Ophiogomphus  | 0  | 1    | 1    | 1    | 0    | 0      | 0     |     |     |     |    |      |
| Oligochaeta | Lumbriculidae  |               | 2  | 1.2  | 1.5  | 1    | 1    | 1      | 1     |     |     |     |    |      |
| Bivalvia    | Sphaeridae     |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
| Gastropoda  |                |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|             | Limnaeidae     |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
| Ostracoda   |                |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
| Megalopter  |                | Sialis        | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
| а           |                |               |    |      |      |      |      |        |       |     |     |     |    |      |
| Nematoda    |                |               | 1  | 0    | 0    | 0    | 1    | 1      | 1     |     |     | 8.8 | 11 | 123% |
| Hydrachnid  |                |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    | 1    |
| ia          |                |               |    |      |      |      |      |        |       |     |     |     |    |      |
|             | Pionidae       |               | 0  | 0    | 0    | 0    | 0    | 0      | 0     |     |     |     |    |      |
|             |                |               |    |      |      |      |      | All Sp | ecies | 223 | 604 | 31  | 83 | 91   |
|             |                |               |    |      |      |      |      |        |       |     |     |     |    |      |

|               |                 | Date collected:                         | Apri | April- | Apri | April- | April- | April- |      |      |
|---------------|-----------------|-----------------------------------------|------|--------|------|--------|--------|--------|------|------|
|               |                 |                                         | 1-11 | 11     | 1-11 | 11     | 11     | 11     |      |      |
|               |                 |                                         |      |        |      |        |        |        | Mean | Mean |
| Order         | Family          | Genera (unless noted)                   | AR-  | AR-    | AR-  | AR-    | AR-    | AR-    | ref  | TS   |
| 51            | <u></u>         | (T) (T) (T) (T) (T) (T) (T) (T) (T) (T) | SSI  | SS2    | SS3  | SS4    | \$\$5  | SS6    |      |      |
| Diptera       | Chironomidae    | SF Tanypondinae                         | 3    | 1      | 1    | 2      | 14     | 4      | 16   | 5.2  |
|               |                 | SF Chironominae                         |      | 1      | 4    |        |        | 1      | 4.7  | 2    |
|               |                 | other chironomids                       | 7    | 10     | 14   | 17     | 42     | 23     | 0    | 19   |
|               | Empididae       |                                         | 6    | 1      | 9    | 5      | 6      | 7      | 66   | 5.7  |
|               | Simuliidae      |                                         |      |        |      |        | 1      |        | 16   | 1    |
|               | Ceratopogonidae |                                         | 1    |        | 1    |        |        |        | 1.5  | 1    |
|               | Dixidae         |                                         |      | 1      |      |        |        |        | 0    | 1    |
| Ephemeroptera |                 |                                         |      |        |      |        | 4      | 1      | 1    | 2.5  |
|               | Heptageniidae   |                                         |      | 2      | 1    |        | 8      |        | 4    | 3.7  |
|               |                 | Stenonema                               | 2    |        | 1    |        | 1      |        | 9.5  | 1.3  |
|               |                 | Rithrogena                              | 2    |        | 2    | 1      | 2      |        | 17   | 1.8  |
|               |                 | Heptagenia                              | 1    |        |      |        | 1      |        | 5.6  | 1    |
|               | Ephemerellidae  |                                         |      |        |      | 1      | 1      | 3      | 2    | 1.7  |
|               |                 | Ephemerella                             |      |        |      |        | 1      |        | 2.7  | 1    |
|               | Baetidae        |                                         |      |        |      | 3      | 7      | 2      | 6.5  | 4    |
|               |                 | Baetis                                  |      | 1      |      |        | 1      |        | 8.8  | 1    |
| Plecoptera    |                 |                                         | 2    |        |      |        |        |        | 3    | 2    |
|               | Chloroperlidae  |                                         |      |        |      |        | 2      | 1      | 3    | 1.5  |
|               | Perlodidae      |                                         |      |        |      | 2      | 1      | 1      | 0    | 1.3  |
|               |                 | Isogenoides                             | 1    |        | 1    |        | 1      |        | 0    | 1    |
|               | Nemouridae      |                                         |      |        |      | 1      | 2      | 1      | 0    | 1.3  |
|               | Taenipterygidae |                                         | 1    |        |      |        |        |        | 3    | 1    |
|               | Capniidae       |                                         |      |        |      |        | 1      |        | 2.3  | 1    |
| Trichoptera   |                 |                                         |      |        |      |        |        |        | 7    | 0    |
|               | pupae           |                                         |      | 1      |      |        |        |        | 1.5  | 1    |
|               | Hydropsychidae  |                                         | 9    | 8      | 39   | 12     | 8      | 16     | 0    | 15   |
|               |                 | Hydropsyche                             |      | 1      | 3    | 3      | 9      | 15     | 6.8  | 6.2  |
|               | Brachycentridae |                                         |      |        |      |        |        | 1      | 3    | 1    |
|               |                 | Brachycentrus                           |      |        |      |        |        | 1      | 1    | 1    |
| Hemiptera     |                 |                                         |      |        |      |        |        |        | 1    | 0    |

 TABLE A34 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken April 11, 2009, and descriptive statistics

|             | Corixidae     |   |   | 1 |   |   | 1 | 0   | 1   |
|-------------|---------------|---|---|---|---|---|---|-----|-----|
| Odonata     |               |   |   |   |   |   |   | 0   | 0   |
|             | Gomphida      | 1 |   |   |   | 1 |   | 2.4 | 7   |
|             |               |   |   |   |   |   |   | 0   | 0   |
| Oligochaeta | Lumbriculidae |   | 2 |   | 1 |   | 2 | 1   | 1.7 |
| Gastropoda  |               |   |   |   |   | 1 |   | 77  | 1   |
| Nematoda    |               |   |   |   |   | 1 |   | 1   | 1   |

|               |                                       | <b>•</b> <i>′</i>                     | Max | Max | Min | Min | Mean   | Max    | Min    | Total |
|---------------|---------------------------------------|---------------------------------------|-----|-----|-----|-----|--------|--------|--------|-------|
| Order         | Family                                | Genera (unless noted)                 | ref | TS  | ref | TS  | TS/ref | TS/ref | TS/ref | TS    |
| Diptera       | Chironomidae                          | SF Tanypondinae                       | 30  | 14  | 2   | 1   | 0.32   | 0.47   | 0.5    | 188   |
|               |                                       | SF Chironominae                       | 7   | 4   | 1   | 1   | 0.43   | 0.57   | 1      |       |
|               |                                       | other chironomids                     | 0   | 42  | 0   | 7   | 0      | 0      | 0      |       |
|               | Empididae                             |                                       | 111 | 9   | 27  | 1   | 0.09   | 0.08   | 0.04   |       |
|               | Simuliidae                            |                                       | 32  | 1   | 3   | 1   | 0.06   | 0.03   | 0.33   |       |
|               | Ceratopogonidae                       |                                       | 2   | 1   | 1   | 1   | 0.67   | 0.5    | 1      |       |
|               | Dixidae                               |                                       | 0   | 1   | 0   | 1   | 0      | 0      | 0      |       |
| Ephemeroptera |                                       |                                       | 1   | 4   | 1   | 1   | 2.5    | 4      | 1      | 49    |
|               | Heptageniidae                         |                                       | 4   | 8   | 4   | 1   | 0.92   | 2      | 0.25   |       |
|               |                                       | Stenonema                             | 23  | 2   | 1   | 1   | 0.14   | 0.09   | 1      |       |
|               |                                       | Rithrogena                            | 23  | 2   | 11  | 1   | 0.10   | 0.09   | 0.09   |       |
|               |                                       | Heptagenia                            | 10  | 1   | 1   | 1   | 0.18   | 0.1    | 1      |       |
|               | Ephemerellidae                        |                                       | 4   | 3   | 1   | 1   | 0.83   | 0.75   | 1      |       |
|               |                                       | Ephemerella                           | 3   | 1   | 2   | 1   | 0.38   | 0.33   | 0.5    |       |
|               | Baetidae                              | <u> </u>                              | 11  | 7   | 1   | 2   | 0.62   | 0.64   | 2      |       |
|               |                                       | Baetis                                | 16  | 1   | 1   | 1   | 0.11   | 0.06   | 1      |       |
| Plecoptera    |                                       |                                       | 3   | 2   | 3   | 2   | 0.67   | 0.67   | 0.67   | 18    |
|               | Chloroperlidae                        |                                       | 3   | 2   | 3   | 1   | 0.5    | 0.67   | 0.33   |       |
|               | Perlodidae                            |                                       | 0   | 2   | 0   | 1   | 0      | 0      | 0      |       |
|               |                                       | Isogenoides                           | 0   | 1   | 0   | 1   | 0      | 0      | 0      |       |
|               | Nemouridae                            |                                       | 0   | 2   | 0   | 1   | 0      | 0      | 0      |       |
|               | Taenipterygidae                       |                                       | 6   | 1   | 1   | 1   | 0.33   | 0.17   | 1      |       |
|               | Capniidae                             |                                       | 4   | 1   | 1   | 1   | 0.44   | 0.25   | 1      |       |
| Trichoptera   |                                       |                                       | 15  | 0   | 1   | 0   | 0      | 0      | 0      | 126   |
|               | pupae                                 |                                       | 2   | 1   | 1   | 1   | 0.67   | 0.5    | 1      |       |
|               | Hydropsychidae                        |                                       | 0   | 39  | 0   | 8   | 0      | 0      | 0      |       |
|               |                                       | Hydropsyche                           | 17  | 15  | 1   | 1   | 0.91   | 0.88   | 1      | 1     |
|               | Brachycentridae                       |                                       | 5   | 1   | 2   | 1   | 0.33   | 0.2    | 0.5    |       |
|               | , , , , , , , , , , , , , , , , , , , | Brachycentrus                         | 1   | 1   | 1   | 1   | 1      | 1      | 1      |       |
| Hemiptera     |                                       | , , , , , , , , , , , , , , , , , , , | 1   | 0   | 1   | 0   | 0      | 0      | 0      | 11    |
|               | Corixidae                             |                                       | 0   | 1   | 0   | 1   | 0      | 0      | 0      |       |
| Odonata       |                                       |                                       | 0   | 0   | 0   | 0   | 0      | 0      | 0      |       |

TABLE A35 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken April 11, 2009 (continued)

|             | Gomphida      | 4   | 1 | 1  | 1 | 0.42 | 0.25     | 1    |     |
|-------------|---------------|-----|---|----|---|------|----------|------|-----|
|             |               | 0   | 0 | 0  | 0 | 0    | 0        | 0    |     |
| Oligochaeta | Lumbriculidae | 32  | 2 | 5  | 1 | 0.10 | 0.06     | 0.2  |     |
| Gastropoda  |               | 115 | 1 | 29 | 1 | 0.01 | 0.01     | 0.03 |     |
| Nematoda    |               | 1   | 1 | 1  | 1 | 1    | 1        | 1    |     |
|             |               |     |   |    |   |      | All Spec | cies | 392 |
|             |               |     |   |    |   |      | -        |      |     |

| -01         -01         -01         01         01         01         01         01           Order         Family         Genera (unless noted)         AR-<br>SS1         AR-<br>SS2         AR-<br>SS3         AR-<br>DS1         AR-<br>DS2         AR-<br>DS2         AR-<br>DS3         DS1         DS2         DS3         DS3         DS1         DS2         DS3         DS1         D1         D                                                                                                                                                                                                                                     | Aean<br>SMa<br>1<br>.7<br>.5<br>3<br>.5  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| OrderFamilyGenera (unless noted)AR<br>SS1AR-<br>SS2AR-<br>SS3AR-<br>DS1AR-<br>DS2AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3AR-<br>DS3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean<br>SMa<br>1<br>.7<br>.5<br>.5<br>.3 |
| Order         Family         Genera (unless noted)         AR-<br>SS1         AR-<br>SS2         AR-<br>SS3         AR-<br>DS1         AR-<br>DS2         AR-<br>DS2 | SMa<br>1<br>.7<br>.5<br>3                |
| Diptera         Chironomidae         SF Tanypondinae         2         1         2         3         1         14         1           Mathematical         SF Tanypondinae         2         1         2         3         1         14         1           Mathematical         SF Chironominae         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>.7<br>.5<br>3                       |
| Diptera         Chironomidae         SF Tanypondinae         2         1         2         3         1         14         1           SF Chironominae         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .7<br>.5<br>3                            |
| SF Chironominae         1         1         1         1         1           other chironomids         7         2         29         10         33         4           pupa(e)         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . <u>5</u><br>3                          |
| other chironomids         7         2         29         10         33         4           pupa(e)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td>.5<br/>3<br/></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .5<br>3<br>                              |
| pupa(e)         1         1         1           Empididae         14         11         14         10         17         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                        |
| Empididae $14$ 11 14 10 10 17 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                        |
| 14 11 14 19 10 1/ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
| Simuliidae 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |
| Ectemnia 1 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| Dixidae 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| Ephemeroptera 4 1 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |
| Heptageniidae 4 7 4 11 8 9 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |
| Stenonema 1 1 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
| Rithrogena         9         4         4         2         5         4         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .7                                       |
| Heptagenia 2 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .3                                       |
| Ephemerellidae 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| Baetidae 2 4 5 13 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .7                                       |
| Baetis 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |
| Siphloneuridae 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
| Parameletus 2 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                                       |
| Plecoptera 2 1 2 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5                                       |
| Chloroperlidae 2 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .5                                       |
| Perlodidae 1 5 10 3 5 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .3                                       |
| Isogenoides 6 1 3 1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .3                                       |
| Isoperla 15 24 5 6 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                        |
| Nemouridae 14 50 19 18 2 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                        |
| Taenipterygidae116341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |
| Taenionema 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |
| Trichoptera 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| pupa(e) 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| Hydropsychidae 1 1 1 2 7 12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| Hydropsyche 6 4 6 17 9 7 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .3                                       |
| Brachycentridae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| Brachycentrus 1 2 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .3                                       |
| Rhyacophilidae 2 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |

TABLE A36 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken May 1, 2009, and descriptive statistics

| Hemiptera    |               |               |   |    |     |    |   |    | 0   |
|--------------|---------------|---------------|---|----|-----|----|---|----|-----|
|              | Corixidae     |               | 1 | 39 | 110 | 81 |   | 11 | 50  |
| Odonata      |               |               |   |    |     |    |   |    | 0   |
|              | Gomphidae     |               |   |    |     |    |   |    | 0   |
|              |               | Ophiogomphus  |   |    |     |    |   |    | 0   |
| Coleoptera   |               |               |   |    |     |    |   |    | 0   |
|              | Elmidae       | Heterlimnius? | 1 |    |     |    |   |    | 1   |
| Lepidoptera  |               |               |   |    |     |    |   |    | 0   |
| Oligochaeta  | Lumbriculidae |               | 4 |    |     |    | 1 | 1  | 4   |
| Bivalvia     | Sphaeridae    |               |   |    |     |    |   |    | 0   |
| Gastropoda   |               |               |   |    |     | 1  |   |    | 0   |
|              | Limnaeidae    |               | 2 |    |     |    | 4 |    | 2   |
| Megaloptera  |               | Sialis        |   |    |     |    |   |    | 0   |
| Nematoda     |               |               | 1 |    |     | 4  |   | 2  | 1   |
| Terrestrials |               |               | 4 |    | 1   |    |   | 1  | 2.5 |
| fish fry     |               |               |   | 1  |     |    |   |    | 1   |

|               |                 | · · · · · · · · · · · · · · · · · · · | Mean | Max | Max | Min  | Min | Total | Total |
|---------------|-----------------|---------------------------------------|------|-----|-----|------|-----|-------|-------|
| Order         | Family          | Genera (unless noted)                 | TDM  | TS  | TD  | TSMa | TDM | TSMa  | TDM   |
|               | ·               | , , , , , , , , , , , , , , , , , , , | ay1  | May | May | y1   | ay1 | y1    | ay1   |
|               |                 |                                       |      | 1   | 1   | -    | •   | -     |       |
| Diptera       | Chironomidae    | SF Tanypondinae                       | 6    | 2   | 14  | 1    | 1   | 57    | 139   |
|               |                 | SF Chironominae                       | 1    | 1   | 1   | 1    | 1   |       |       |
|               |                 | other chironomids                     | 24   | 7   | 33  | 2    | 10  |       |       |
|               |                 | pupa(e)                               | 0    | 1   | 0   | 1    | 0   |       |       |
|               | Empididae       |                                       | 15   | 14  | 19  | 11   | 10  |       |       |
|               | Simuliidae      |                                       | 0    | 0   | 0   | 0    | 0   |       |       |
|               |                 | Ectemnia                              | 1    | 0   | 1   | 0    | 1   |       |       |
|               | Dixidae         |                                       | 1    | 1   | 1   | 1    | 1   |       |       |
| Ephemeroptera |                 |                                       | 1    | 4   | 1   | 4    | 1   | 56    | 59    |
|               | Heptageniidae   |                                       | 9.3  | 7   | 11  | 4    | 8   |       |       |
|               |                 | Stenonema                             | 1    | 0   | 1   | 0    | 1   |       |       |
|               |                 | Rithrogena                            | 3.7  | 9   | 5   | 4    | 2   |       |       |
|               |                 | Heptagenia                            | 0    | 2   | 0   | 1    | 0   |       |       |
|               | Ephemerellidae  |                                       | 1    | 1   | 1   | 1    | 1   |       |       |
|               | Baetidae        |                                       | 7    | 5   | 13  | 2    | 1   |       |       |
|               |                 | Baetis                                | 1    | 1   | 1   | 1    | 1   |       |       |
|               | Siphloneuridae  |                                       | 0    | 0   | 0   | 0    | 0   |       |       |
|               |                 | Parameletus                           | 0    | 2   | 0   | 1    | 0   |       |       |
| Plecoptera    |                 |                                       | 2    | 2   | 2   | 1    | 2   | 162   | 67    |
|               | Chloroperlidae  |                                       | 1    | 2   | 1   | 1    | 1   |       |       |
|               | Perlodidae      |                                       | 4.7  | 10  | 6   | 1    | 3   |       |       |
|               |                 | Isogenoides                           | 1.5  | 6   | 2   | 1    | 1   |       |       |
|               |                 | Isoperla                              | 2.7  | 24  | 6   | 5    | 1   |       |       |
|               | Nemouridae      |                                       | 8    | 50  | 18  | 14   | 2   |       |       |
|               | Taenipterygidae |                                       | 4.3  | 1   | 6   | 1    | 3   |       |       |
|               |                 | Taenionema                            | 0    | 1   | 0   | 1    | 0   |       |       |
| Trichoptera   |                 |                                       | 0    | 0   | 0   | 0    | 0   | 24    | 60    |
|               | pupa(e)         |                                       | 1    | 1   | 1   | 1    | 1   |       |       |
|               | Hydropsychidae  |                                       | 7    | 1   | 12  | 1    | 2   |       |       |
|               |                 | Hydropsyche                           | 11   | 6   | 17  | 4    | 7   |       |       |
|               | Brachycentridae |                                       | 0    | 0   | 0   | 0    | 0   |       |       |
|               |                 | Brachycentrus                         | 1    | 2   | 1   | 1    | 1   |       |       |
|               | Rhyacophilidae  |                                       | 2    | 0   | 2   | 0    | 2   |       | 1     |
| Hemiptera     |                 |                                       | 0    | 0   | 0   | 0    | 0   | 164   | 106   |

TABLE A37 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken May 1, 2009 (continued)

|              | Corixidae     |               | 46 | 110 | 81 | 1       | 11   |     |     |
|--------------|---------------|---------------|----|-----|----|---------|------|-----|-----|
| Odonata      |               |               | 0  | 0   | 0  | 0       | 0    |     |     |
|              | Gomphidae     |               | 0  | 0   | 0  | 0       | 0    |     |     |
|              |               | Ophiogomphus  | 0  | 0   | 0  | 0       | 0    |     |     |
| Coleoptera   |               |               | 0  | 0   | 0  | 0       | 0    |     |     |
|              | Elmidae       | Heterlimnius? | 0  | 1   | 0  | 1       | 0    |     |     |
| Lepidoptera  |               |               | 0  | 0   | 0  | 0       | 0    |     |     |
| Oligochaeta  | Lumbriculidae |               | 1  | 4   | 1  | 4       | 1    |     |     |
| Bivalvia     | Sphaeridae    |               | 0  | 0   | 0  | 0       | 0    |     |     |
| Gastropoda   |               |               | 1  | 0   | 1  | 0       | 1    |     |     |
|              | Limnaeidae    |               | 4  | 2   | 4  | 2       | 4    |     |     |
| Megaloptera  |               | Sialis        | 0  | 0   | 0  | 0       | 0    |     |     |
| Nematoda     |               |               | 3  | 1   | 4  | 1       | 2    |     |     |
| Terrestrials |               |               | 1  | 4   | 1  | 1       | 1    |     |     |
| fish fry     |               |               | 0  | 1   | 0  | 1       | 0    |     |     |
|              |               |               |    |     |    | All Spe | cies | 463 | 431 |

|               |                 | Date collected:       | May- | May- | May- | May- | May- | May- |      |
|---------------|-----------------|-----------------------|------|------|------|------|------|------|------|
|               |                 |                       | 08   | 08   | 08   | 08   | 08   | 08   |      |
|               |                 |                       |      |      |      |      |      |      | Mean |
| Order         | Family          | Genera (unless noted) | AR-  | AR-  | AR-  | AR-  | AR-  | AR-  | TSMa |
|               |                 |                       | SS1  | SS2  | SS3  | DS1  | DS2  | DS3  | y8   |
| Diptera       | Chironomidae    | SF Tanypondinae       |      |      |      | 2    |      |      | 0    |
|               |                 | SF Chironominae       | 10   |      |      | 2    |      |      | 10   |
|               |                 | other chironomids     |      | 1    | 4    | 3    | 5    | 5    | 2.5  |
|               |                 | pupa(e)               |      |      |      |      |      |      | 0    |
|               | Empididae       |                       |      | 3    | 2    | 10   | 3    | 1    | 2.5  |
|               | Simuliidae      |                       |      |      |      |      |      |      | 0    |
|               |                 | Ectemnia              |      |      |      |      |      |      | 0    |
|               | Dixidae         |                       |      |      |      |      |      |      | 0    |
| Ephemeroptera |                 |                       |      |      |      |      |      |      | 0    |
|               | Heptageniidae   |                       | 1    |      | 1    | 2    | 3    | 1    | 1    |
|               |                 | Stenonema             |      |      |      | 2    |      |      | 0    |
|               |                 | Rithrogena            |      | 1    | 2    | 2    | 1    | 2    | 1.5  |
|               |                 | Heptagenia            |      |      |      | 3    |      | 2    | 0    |
|               | Ephemerellidae  |                       |      |      |      | 2    |      |      | 0    |
|               | Baetidae        |                       |      |      |      | 1    | 1    |      | 0    |
|               |                 | Baetis                |      |      |      |      |      |      | 0    |
|               | Siphloneuridae  |                       |      |      |      |      |      |      | 0    |
|               |                 | Parameletus           |      |      |      |      |      |      | 0    |
| Plecoptera    |                 |                       | 1    |      |      |      |      |      | 1    |
|               | Chloroperlidae  |                       | 1    |      | 1    | 1    |      |      | 1    |
|               | Perlodidae      |                       |      | 1    | 5    | 4    |      | 3    | 3    |
|               |                 | Isogenoides           |      |      |      | 2    | 1    |      | 0    |
|               |                 | Isoperla              |      | 12   | 13   | 12   |      | 4    | 13   |
|               | Nemouridae      |                       | 3    | 1    | 2    |      |      | 4    | 2    |
|               | Taenipterygidae |                       |      |      |      |      |      | 1    | 0    |
|               |                 | Taenionema            |      |      |      |      |      |      | 0    |
| Trichoptera   |                 |                       |      |      |      |      | 1    |      | 0    |
|               | pupa(e)         |                       |      |      |      |      |      |      | 0    |
|               | Hydropsychidae  |                       | 1    |      |      |      | 3    |      | 1    |
|               |                 | Hydropsyche           | 3    |      |      | 5    | 10   | 3    | 3    |
|               | Brachycentridae |                       |      |      |      |      |      | 1    | 0    |
|               |                 | Brachycentrus         |      |      |      |      |      | 1    | 0    |
|               | Rhyacophilidae  |                       |      |      |      |      |      |      | 0    |

TABLE A38 Raw data following benthic invertebrate identification for Neill cylinder samples from the C-Bridge experimental site taken May 8, 2009, and descriptive statistics

| Hemiptera    |               |               |   |   |   |   |   | 0   |
|--------------|---------------|---------------|---|---|---|---|---|-----|
|              | Corixidae     |               |   |   | 1 | 6 |   | 1   |
| Odonata      |               |               |   |   |   |   |   | 0   |
|              | Gomphidae     |               |   |   |   |   |   | 0   |
|              |               | Ophiogomphus  |   |   | 1 |   |   | 1   |
| Coleoptera   |               |               |   |   |   |   |   | 0   |
|              | Elmidae       | Heterlimnius? |   |   |   | 2 |   | 0   |
| Lepidoptera  |               |               |   |   |   |   | 1 | 0   |
| Oligochaeta  | Lumbriculidae |               | 3 | 2 |   | 2 |   | 2.5 |
| Bivalvia     | Sphaeridae    |               |   |   |   |   |   | 0   |
| Gastropoda   |               |               | 1 |   |   | 1 | 1 | 1   |
|              | Limnaeidae    |               | 3 |   |   | 3 | 3 | 3   |
| Megaloptera  |               | Sialis        |   |   |   |   |   | 0   |
| Nematoda     |               |               |   |   |   |   |   | 0   |
| Terrestrials |               |               |   |   |   | 1 |   | 0   |
| fish fry     |               |               |   |   |   |   |   | 0   |

|               |                 |                       | Mean | Max  | Max | Min  | Min | Total | Total |
|---------------|-----------------|-----------------------|------|------|-----|------|-----|-------|-------|
| Order         | Family          | Genera (unless noted) | TDM  | TSMa | TDM | TSMa | TDM | TSMa  | TDM   |
|               |                 |                       | ay8  | y8   | ay8 | y8   | ay8 | y8    | ay8   |
| Diptera       | Chironomidae    | SF Tanypondinae       | 2    | 0    | 2   | 0    | 2   | 20    | 31    |
|               |                 | SF Chironominae       | 2    | 10   | 2   | 10   | 2   |       |       |
|               |                 | other chironomids     | 4.3  | 4    | 5   | 1    | 3   |       |       |
|               |                 | pupa(e)               | 0    | 0    | 0   | 0    | 0   |       |       |
|               | Empididae       |                       | 4.7  | 3    | 10  | 2    | 1   |       |       |
|               | Simuliidae      |                       | 0    | 0    | 0   | 0    | 0   |       |       |
|               |                 | Ectemnia              | 0    | 0    | 0   | 0    | 0   |       |       |
|               | Dixidae         |                       | 0    | 0    | 0   | 0    | 0   |       |       |
| Ephemeroptera |                 |                       | 0    | 0    | 0   | 0    | 0   | 5     | 22    |
|               | Heptageniidae   |                       | 2    | 1    | 3   | 1    | 1   |       |       |
|               |                 | Stenonema             | 2    | 0    | 2   | 0    | 2   |       |       |
|               |                 | Rithrogena            | 1.7  | 2    | 2   | 1    | 1   |       |       |
|               |                 | Heptagenia            | 2.5  | 0    | 3   | 0    | 2   |       |       |
|               | Ephemerellidae  |                       | 2    | 0    | 2   | 0    | 2   |       |       |
|               | Baetidae        |                       | 1    | 0    | 1   | 0    | 1   |       |       |
|               |                 | Baetis                | 0    | 0    | 0   | 0    | 0   |       |       |
|               | Siphloneuridae  |                       | 0    | 0    | 0   | 0    | 0   |       |       |
|               |                 | Parameletus           | 0    | 0    | 0   | 0    | 0   |       |       |
| Plecoptera    |                 |                       | 0    | 1    | 0   | 1    | 0   | 40    | 32    |
|               | Chloroperlidae  |                       | 1    | 1    | 1   | 1    | 1   |       |       |
|               | Perlodidae      |                       | 3.5  | 5    | 4   | 1    | 3   |       |       |
|               |                 | Isogenoides           | 1.5  | 0    | 2   | 0    | 1   |       |       |
|               |                 | Isoperla              | 8    | 13   | 12  | 12   | 4   |       |       |
|               | Nemouridae      |                       | 4    | 3    | 4   | 1    | 4   |       |       |
|               | Taenipterygidae |                       | 1    | 0    | 1   | 0    | 1   |       |       |
|               |                 | Taenionema            | 0    | 0    | 0   | 0    | 0   |       |       |
| Trichoptera   |                 |                       | 1    | 0    | 1   | 0    | 1   | 4     | 22    |
|               | pupa(e)         |                       | 0    | 0    | 0   | 0    | 0   |       |       |
|               | Hydropsychidae  |                       | 3    | 1    | 3   | 1    | 3   |       |       |
|               |                 | Hydropsyche           | 6    | 3    | 10  | 3    | 3   |       |       |
|               | Brachycentridae |                       | 0    | 0    | 0   | 0    | 0   |       |       |
|               |                 | Brachycentrus         | 0    | 0    | 0   | 0    | 0   |       |       |
|               | Rhyacophilidae  |                       | 0    | 0    | 0   | 0    | 0   |       |       |
| Hemiptera     |                 |                       | 0    | 0    | 0   | 0    | 0   | 11    | 20    |

TABLE A39 Descriptive statistics for raw data following benthic invertebrate identification for samples from the C-Bridge experimental site taken May 8, 2009 (continued)

|              | Corixidae     |               | 6 | 1 | 6 | 1      | 6     |    |     |
|--------------|---------------|---------------|---|---|---|--------|-------|----|-----|
| Odonata      |               |               | 0 | 0 | 0 | 0      | 0     |    |     |
|              | Gomphidae     |               | 0 | 0 | 0 | 0      | 0     |    |     |
|              |               | Ophiogomphus  | 0 | 1 | 0 | 1      | 0     |    |     |
| Coleoptera   |               |               | 0 | 0 | 0 | 0      | 0     |    |     |
|              | Elmidae       | Heterlimnius? | 2 | 0 | 2 | 0      | 2     |    |     |
| Lepidoptera  |               |               | 1 | 0 | 1 | 0      | 1     |    |     |
| Oligochaeta  | Lumbriculidae |               | 2 | 3 | 2 | 2      | 2     |    |     |
| Bivalvia     | Sphaeridae    |               | 0 | 0 | 0 | 0      | 0     |    |     |
| Gastropoda   |               |               | 1 | 1 | 1 | 1      | 1     |    |     |
|              | Limnaeidae    |               | 3 | 3 | 3 | 3      | 3     |    |     |
| Megaloptera  |               | Sialis        | 0 | 0 | 0 | 0      | 0     |    |     |
| Nematoda     |               |               | 0 | 0 | 0 | 0      | 0     |    |     |
| Terrestrials |               |               | 1 | 0 | 1 | 0      | 1     |    |     |
| fish fry     |               |               | 0 | 0 | 0 | 0      | 0     |    |     |
|              |               |               |   |   |   | All Sp | ecies | 80 | 127 |
|              |               |               |   |   |   | - I    |       |    |     |

|                   |                     | Date collected:          | Mar-10 | Mar-18 | Mar-23 | Mar-28 | Mar-10 | Mar-18 | Mar-23 | Mar-28 | April-12 | May- | May- |
|-------------------|---------------------|--------------------------|--------|--------|--------|--------|--------|--------|--------|--------|----------|------|------|
|                   |                     |                          |        |        |        |        |        |        |        |        |          | 01   | 08   |
| Order             | Family              | Genera (unless<br>noted) | SmN    | DN     | SN     | SN     | DN     | DN2    | DN     | DN     | DN2      | DN   | DN   |
| Diptera           | Chironomida         | SF Tanypondinae          |        | 1      |        |        | 1      |        | 2      |        |          |      |      |
| -                 | e                   |                          |        |        |        |        |        |        |        |        |          |      |      |
|                   |                     | SF Chironominae          | 1      |        |        |        | 1      |        | 1      |        |          |      |      |
|                   |                     | other                    |        |        |        | 2      |        |        | 1      | 3      | 1        |      |      |
|                   |                     | chironomids              |        |        |        |        |        |        |        |        |          |      |      |
|                   | Empididae           |                          |        |        |        |        | 1      |        | 2      |        |          |      |      |
|                   | Simuliidae          |                          | 2      | 8      | 5      | 2      | 5      | 49     | 22     | 14     | 1        |      |      |
|                   |                     | Ectemnia                 | 4      | 1      | 3      | 7      | 6      | 5      | 17     | 19     | 2        |      |      |
|                   |                     | pupa(e)                  |        |        |        |        |        | 1      |        |        |          |      |      |
| Ephemero<br>ptera |                     |                          |        |        |        | 2      |        | 2      |        |        | 1        |      |      |
|                   | Heptageniida<br>e   |                          | 6      | 3      | 1      | 1      | 1      |        | 7      | 1      | 1        |      |      |
|                   |                     | Stenonema                | 1      |        |        |        |        |        |        | 1      |          |      |      |
|                   |                     | Rithrogena               | 2      | 1      |        |        |        |        | 2      | 1      |          |      |      |
|                   |                     | Cinygmula                | 1      |        |        |        |        |        |        |        |          |      |      |
|                   | Ephemerellid<br>ae  |                          |        |        |        | 1      |        |        | 1      |        |          |      |      |
|                   | Baetidae            |                          | 16     | 5      | 3      | 1      | 12     | 82     | 41     | 26     | 12       |      |      |
|                   |                     | Baetis                   | 2      |        |        |        |        |        |        | 1      | 1        |      |      |
|                   |                     | Centroptilum             |        |        |        |        |        | 6      |        |        |          |      |      |
|                   |                     | Ameletus                 |        |        |        |        |        |        | 1      |        |          |      |      |
|                   | Metretopodi<br>dae  | Siphloplecton            | 2      |        |        |        |        |        |        |        |          |      |      |
| Plecoptera        |                     |                          | 5      |        | 2      | 1      |        | 2      | 6      |        | 1        | 3    | 48   |
|                   | Chloroperlid<br>ae  |                          | 1      |        |        |        |        |        | 1      | 1      | 1        |      |      |
|                   | Perlodidae          |                          | 7      | 8      |        | 2      |        | 2      | 12     | 4      |          |      |      |
|                   |                     | Isogenoides              |        |        |        |        |        |        |        | 1      |          |      |      |
|                   |                     | Isoperla                 | 1      | 1      |        |        |        |        | 3      |        |          |      |      |
|                   | Nemouridae          |                          | 7      |        | 1      |        | 3      | 5      | 12     | 3      | 2        | 34   | 544  |
|                   | Taenipterygi<br>dae |                          | 2      |        | 2      | 3      |        |        | 11     | 1      |          |      |      |
|                   | Canniidae(?)        | 1                        |        |        |        |        | 1      | 1      |        |        |          |      |      |

TABLE A40 Raw data following benthic invertebrate identification for surber and drift net samples from the C-Bridgeexperimental site taken March 10, 18, 23, 28, April 12, May 1 and 8, 2009

| Trichopter  |              |                 |   | 1 |   |   |   |    |   |   |     |      |
|-------------|--------------|-----------------|---|---|---|---|---|----|---|---|-----|------|
| а           |              |                 |   |   |   |   |   |    |   |   |     |      |
|             | Hydropsychi  |                 | 5 |   |   | 3 | 1 | 7  | 3 |   |     |      |
|             | dae          |                 |   |   |   |   |   |    |   |   |     |      |
|             |              | Hydropsyche     | 3 | 4 |   | 2 |   | 3  | 6 | 1 |     |      |
|             | Rhyacophilid |                 |   |   |   |   |   |    | 2 |   |     |      |
|             | ae           |                 |   |   |   |   |   |    |   |   |     |      |
| Hemiptera   |              |                 |   |   |   |   |   |    |   |   |     |      |
|             | Corixidae    |                 | 8 |   |   | 2 | 6 | 13 | 4 |   | 435 | 6960 |
| Anostraca   |              | Branchinecta(?) | 5 | 3 | 1 |   | 2 | 4  | 3 |   | 1   | 16   |
| Collembol   |              |                 |   |   |   |   |   |    |   | 3 |     |      |
| а           |              |                 |   |   |   |   |   |    |   |   |     |      |
| Terrestrial |              |                 |   |   |   |   |   |    |   | 4 | 2   | 32   |
| S           |              |                 |   |   |   |   |   |    |   |   |     |      |

|               |                 | Date collected:       | Mar-23 | Mar-23 | Mar-28 | Mar-28 | Mar-10 | Mar-10 | Mar-18 | Mar-18 |
|---------------|-----------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|
|               |                 |                       | Surber | Total  | Surber | Total  | Drift  | Total  | Drift  | Total  |
| Order         | Family          | Genera (unless noted) | (ind/m | Surber | (ind/m | Surber | (ind/m | Drift  | (ind/m | Drift  |
|               | -               |                       | 2/day) |        | 2/day) |        | 2/day) |        | 2/day) |        |
| Diptera       | Chironomidae    | SF Tanypondinae       | 0      | 89     | 0      | 133    | 2.3    | 33     | 0      | 133    |
|               |                 | SF Chironominae       | 0      |        | 0      |        | 2.3    |        | 0      |        |
|               |                 | other chironomids     | 0      |        | 24     |        | 0      |        | 0      |        |
|               | Empididae       |                       | 0      |        | 0      |        | 2.3    |        | 0      |        |
|               | Simuliidae      |                       | 56     |        | 24     |        | 12     |        | 119    |        |
|               |                 | Ectemnia              | 33     |        | 85     |        | 14     |        | 12     |        |
|               |                 | pupa(e)               | 0      |        | 0      |        | 0      |        | 2.4    |        |
| Ephemeroptera |                 |                       | 0      | 44     | 24     | 61     | 0      | 30     | 4.8    | 218    |
|               | Heptageniidae   |                       | 11     |        | 12     |        | 2.3    |        | 0      |        |
|               |                 | Stenonema             | 0      |        | 0      |        | 0      |        | 0      |        |
|               |                 | Rithrogena            | 0      |        | 0      |        | 0      |        | 0      |        |
|               |                 | Cinygmula             | 0      |        | 0      |        | 0      |        | 0      |        |
|               | Ephemerellidae  |                       | 0      |        | 12     |        | 0      |        | 0      |        |
|               | Baetidae        |                       | 33     |        | 12     |        | 28     |        | 199    |        |
|               |                 | Baetis                | 0      |        | 0      |        | 0      |        | 0      |        |
|               |                 | Centroptilum          | 0      |        | 0      |        | 0      |        | 14.5   |        |
|               |                 | Ameletus              | 0      |        | 0      |        | 0      |        | 0      |        |
|               | Metretopodidae  | Siphloplecton         | 0      |        | 0      |        | 0      |        | 0      |        |
| Plecoptera    |                 |                       | 22     | 56     | 12     | 73     | 0      | 9.4    | 4.8    | 24     |
|               | Chloroperlidae  |                       | 0      |        | 0      |        | 0      |        | 0      |        |
|               | Perlodidae      |                       | 0      |        | 24.2   |        | 0      |        | 4.84   |        |
|               |                 | Isogenoides           | 0      |        | 0      |        | 0      |        | 0      |        |
|               |                 | Isoperla              | 0      |        | 0      |        | 0      |        | 0      |        |
|               | Nemouridae      |                       | 11     |        | 0      |        | 7.0    |        | 12     |        |
|               | Taenipterygidae |                       | 22     |        | 36     |        | 0      |        | 0      |        |
|               | Capniidae(?)    |                       | 0      |        | 0      |        | 2.3    |        | 2.4    |        |
| Trichoptera   |                 |                       | 0      | 0      | 0      | 0      | 0      | 12     | 0      | 2.4    |
|               | Hydropsychidae  |                       | 0      |        | 0      |        | 7.0    |        | 2.4    |        |
|               |                 | Hydropsyche           | 0      |        | 0      |        | 4.7    |        | 0      |        |
|               | Rhyacophilidae  |                       | 0      |        | 0      |        | 0      |        | 0      |        |
| Hemiptera     |                 |                       | 0      |        | 0      |        | 0      | 4.7    | 0      | 19     |
|               | Corixidae       |                       | 0      |        | 0      |        | 4.7    |        | 15     |        |
| Anostraca     |                 | Branchinecta(?)       | 11     |        | 0      |        | 0      |        | 4.8    |        |

 TABLE A41 Descriptive statistics for raw data following benthic invertebrate identification for surber and drift net samples from the C-Bridge experimental site taken March 10, 18, 23 and 28, 2009

| Collembola   |  | 0 |     | 0 |     | 0 |    | 0 |     |
|--------------|--|---|-----|---|-----|---|----|---|-----|
| Terrestrials |  | 0 |     | 0 |     | 0 |    | 0 |     |
| All Species  |  |   | 189 |   | 267 |   | 89 |   | 397 |
|              |  |   |     |   |     |   |    |   |     |

|               |                 | Date collected:       | Mar-23 | Mar-23 | Mar-28   | Mar-28 | April-12 | April-12 | May-01   | May-08 |
|---------------|-----------------|-----------------------|--------|--------|----------|--------|----------|----------|----------|--------|
|               |                 |                       | Drift  | Total  | Drift    | Total  | Drift    | Total    | Drift    | Total  |
| Order         | Family          | Genera (unless noted) | (ind/m | Drift  | (ind/m2/ | Drift  | (ind/m2/ | Drift    | (ind/m2/ | Drift  |
|               |                 |                       | 2/day) |        | day)     |        | day)     |          | day)     |        |
| Diptera       | Chironomidae    | SF Tanypondinae       | 14     | 316    | 0        | 253    | 0        | 673      | 0        | 0      |
|               |                 | SF Chironominae       | 7.0    |        | 0        |        | 0        |          | 0        |        |
|               |                 | other chironomids     | 7.0    |        | 21       |        | 168      |          | 0        |        |
|               | Empididae       |                       | 14     |        | 0        |        | 0        |          | 0        |        |
|               | Simuliidae      |                       | 154    |        | 98       |        | 168      |          | 0        |        |
|               |                 | Ectemnia              | 119    |        | 133      |        | 337      |          | 0        |        |
|               |                 | pupa(e)               | 0      |        | 0        |        | 0        |          | 0        |        |
| Ephemeroptera |                 |                       | 0      | 365    | 0        | 210    | 168      | 2525     | 0        | 0      |
|               | Heptageniidae   |                       | 49     |        | 7.0      |        | 168      |          | 0        |        |
|               |                 | Stenonema             | 0      |        | 7.0      |        | 0        |          | 0        |        |
|               |                 | Rithrogena            | 14     |        | 7.0      |        | 0        |          | 0        |        |
|               |                 | Cinygmula             | 0      |        | 0        |        | 0        |          | 0        |        |
|               | Ephemerellidae  |                       | 7.0    |        | 0        |        | 0        |          | 0        |        |
|               | Baetidae        |                       | 288    |        | 182      |        | 2020     |          | 0        |        |
|               |                 | Baetis                | 0      |        | 7.0      |        | 168      |          | 0        |        |
|               |                 | Centroptilum          | 0      |        | 0        |        | 0        |          | 0        |        |
|               |                 | Ameletus              | 7.0    |        | 0        |        | 0        |          | 0        |        |
|               | Metretopodidae  | Siphloplecton         | 0      |        | 0        |        | 0        |          | 0        |        |
| Plecoptera    |                 |                       | 42     | 316    | 0        | 70     | 168      | 673      | 337      | 4152   |
|               | Chloroperlidae  |                       | 7.0    |        | 7.0      |        | 168      |          | 0        |        |
|               | Perlodidae      |                       | 84     |        | 28       |        | 0        |          | 0        |        |
|               |                 | Isogenoides           | 0      |        | 7.0      |        | 0        |          | 0        |        |
|               |                 | Isoperla              | 21     |        | 0        |        | 0        |          | 0        |        |
|               | Nemouridae      |                       | 84     |        | 21       |        | 337      |          | 3815     |        |
|               | Taenipterygidae |                       | 77     |        | 7.0      |        | 0        |          | 0        |        |
|               | Capniidae(?)    |                       | 0      |        | 0        |        | 0        |          | 0        |        |
| Trichoptera   |                 |                       | 0      | 70     | 0        | 77     | 0        | 168      | 0        | 0      |
|               | Hydropsychidae  |                       | 49     |        | 21       |        | 0        |          | 0        |        |
|               |                 | Hydropsyche           | 21     |        | 42       |        | 168      |          | 0        |        |
|               | Rhyacophilidae  |                       | 0      |        | 14       |        | 0        |          | 0        |        |
| Hemiptera     |                 |                       | 0      | 119    | 0        | 49     | 0        | 1178     | 0        | 49144  |
|               | Corixidae       |                       | 91     |        | 28       |        | 0        |          | 48808    |        |
| Anostraca     |                 | Branchinecta(?)       | 28     |        | 21       |        | 0        |          | 112      |        |

 TABLE A42 Descriptive statistics for raw data following benthic invertebrate identification for surber and drift net samples from the C-Bridge experimental site taken March 23, 28, April 12, May 1 and 8, 2009

| Collembola   | 0 |     | 0 |     | 505 |      | 0   |       |
|--------------|---|-----|---|-----|-----|------|-----|-------|
| Terrestrials | 0 |     | 0 |     | 673 |      | 224 |       |
| All Species  |   | 118 |   | 659 |     | 5217 |     | 53296 |

## APPENDIX B

\_

## BENTHIC INVERTEBRATE TALLIES FOR REFERENCE AND ELECTROSHOCKING SAMPLES FROM THE NORTH SASKATCHEWAN RIVER TAKEN SEPTEMPER 1, 2009

195

| Таха           |     | Samp | ole 1 |     |      | Samp | ole 2 | ,   | Mean  |
|----------------|-----|------|-------|-----|------|------|-------|-----|-------|
|                | Coa | Fine | Fine  | Tot | Coar | Fine | Fine  | Tot | Total |
|                | rse |      | X20   | al  | se   |      | X20   | al  |       |
| EPHEMERO       |     |      |       |     |      |      |       |     |       |
| PTERA          |     |      |       |     |      |      |       |     |       |
| Acentrella sp. |     |      | 0     | 0   |      |      | 0     | 0   | 0.0   |
| Acerpenna      | 1   | 4    | 80    | 81  | 5    | 4    | 80    | 85  | 83    |
| sp.            |     |      |       |     |      |      |       |     |       |
| Baetis sp.     | 1   | 1    | 20    | 21  | 3    |      | 0     | 3   | 12    |
| Fallceonsp.    | 2   |      | 0     | 2   | 6    | 1    | 20    | 26  | 14    |
| Plauditus sp.  | 1   |      | 0     | 1   | 6    | 2    | 40    | 46  | 24    |
| Baetisca sp.   |     |      | 0     | 0   |      |      | 0     | 0   | 0.0   |
| Ephemerella    |     |      | 0     | 0   | 1    | 1    | 20    | 21  | 11    |
| sp.            |     |      |       |     |      |      |       |     |       |
| Ephemera       |     |      | 0     | 0   |      |      | 0     | 0   | 0.0   |
| sp.            |     |      |       |     |      |      |       |     |       |
| Heptagenia     | 1   |      | 0     | 1   | 12   | 3    | 60    | 72  | 37    |
| sp.            |     |      |       |     |      |      |       |     |       |
| Maccaffertiu   | 9   |      | 0     | 9   | 10   | 1    | 20    | 30  | 20    |
| m sp.          | -   |      | -     | -   | _    |      | _     |     | _     |
| Rhithrogena    |     |      | 0     | 0   |      |      | 0     | 0   | 0.0   |
| SD.            |     |      | •     | -   |      |      | -     | •   |       |
| Tricorvthodes  | 7   | 5    | 100   | 107 | 12   | 8    | 160   | 172 | 140   |
| SD.            | -   | Ũ    |       |     |      | Ũ    |       |     |       |
| PLECOPTER      |     |      |       |     |      |      |       |     |       |
| A              |     |      |       |     |      |      |       |     |       |
| Acroneuria     |     |      | 0     | 0   |      |      | 0     | 0   | 0.0   |
| SD.            |     |      | •     | -   |      |      | -     | •   |       |
| Isoaenoides    | 3   |      | 0     | 3   | 3    |      | 0     | 3   | 3.0   |
| SD.            | -   |      | •     | -   | ÷.   |      | -     | •   |       |
| Isoperla sp.   |     |      | 0     | 0   |      |      | 0     | 0   | 0.0   |
| Pteronarcvs    |     |      | 0     | 0   |      |      | 0     | 0   | 0.0   |
| dorsata        |     |      | Ŭ     | Ũ   |      |      | Ũ     | Ŭ   | ••••  |
| TRICHOPTE      |     |      |       |     |      |      |       |     |       |
| RA             |     |      |       |     |      |      |       |     |       |
| Brachycentru   |     |      | 0     | 0   | 2    |      | 0     | 2   | 1.0   |
| S SD.          |     |      | Ŭ     | Ũ   | _    |      | Ũ     | _   |       |
| Glossosoma     |     |      | 0     | 0   |      |      | 0     | 0   | 0.0   |
| SD.            |     |      | Ũ     | Ũ   |      |      | Ũ     | Ũ   | 0.0   |
| Cheumatopsy    | 3   |      | 0     | 3   | 1    |      | 0     | 1   | 2.0   |
| che sp.        | Ũ   |      | , C   | Ũ   |      |      | Ũ     | •   |       |
| Hvdropsvche    | 30  | 1    | 20    | 50  | 74   | 4    | 80    | 154 | 102   |
| SD.            |     | -    |       |     |      | -    |       |     |       |
| Hvdroptila sp. |     |      | 0     | 0   |      |      | 0     | 0   | 0.0   |
| Lepidostoma    |     |      | 0     | 0   |      |      | 0     | 0   | 0.0   |
| SD.            |     |      |       | Ĵ   |      |      | Ĵ     |     |       |
| Oecetis sp.    | 10  |      | 0     | 10  | 12   | 2    | 40    | 52  | 31    |
| Neureclinsis   |     |      | 0     | 0   | 1    |      | 0     | 1   | 0.5   |
| SD.            |     |      |       | Ŭ   |      |      | Ŭ     |     |       |
| Psychomia      |     |      | 0     | 0   |      |      | 0     | 0   | 0.0   |
| sp             |     |      |       | J   |      |      | J     |     | 0.0   |
|                |     |      |       |     |      |      |       |     |       |
|                |     |      | 1     |     | 1    |      |       | 1   |       |

 TABLE B1 Raw data following benthic invertebrate identification for reference samples from the North Saskatchewan River taken September 1, 2009

| Ophiogomph                  | 1  |    | 0   | 1   |    |    | 0   | 0      | 0.5 |
|-----------------------------|----|----|-----|-----|----|----|-----|--------|-----|
| us sp.                      |    |    |     |     |    |    |     |        |     |
| HEMIPTERA                   |    |    |     |     |    |    |     |        |     |
| Callicorixa                 |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| audeni                      |    |    |     |     |    |    |     |        |     |
| Sigara sp.                  |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| COLEOPTE                    |    |    |     |     |    |    |     |        |     |
| RA                          |    |    |     |     |    |    |     |        |     |
| Liodessus sp.               |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| Dubiraphia                  |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| SD.                         |    |    | Ũ   | Ū   |    |    | · · | Ũ      |     |
| DIPTERA                     |    |    |     |     |    |    |     |        |     |
| Bezzia/Palpo                |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| <i>mvia</i> gp.             |    |    | Ũ   | Ū   |    |    | · · | Ũ      |     |
| Chelifera sp                |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| Hemerodromi                 | 39 | 5  | 100 | 139 | 67 | 4  | 80  | 147    | 143 |
| asp                         | 00 | Ũ  | 100 | 100 | 01 | •  | 00  |        | 140 |
| Psychodidae                 |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| Hexatoma sp                 |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| Chironomida                 |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
|                             |    |    |     |     |    |    |     |        |     |
| Chironomus                  |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| sn                          |    |    | 0   | 0   |    |    | 0   | U      | 0.0 |
| Sp.<br>Cryptochiron         |    |    | 0   | 0   |    | 1  | 20  | 20     | 10  |
| omus sp                     |    |    | 0   | 0   |    | 1  | 20  | 20     | 10  |
| Domicryptoch                |    |    | 0   | 0   |    | 1  | 20  | 20     | 10  |
| ironomus sp                 |    |    | 0   | 0   |    | 1  | 20  | 20     | 10  |
| Microtendine                | 11 | 6  | 120 | 131 | 17 | 8  | 160 | 177    | 154 |
| ssn                         | 11 | 0  | 120 | 131 | 17 | 0  | 100 | 177    | 134 |
| Nilothauma                  |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| sp                          |    |    | 0   | 0   |    |    | 0   | U      | 0.0 |
| Sp.<br>Paralauterhor        |    | -  | 0   | 0   |    |    | 0   | 0      | 0.0 |
| r araiauterbor<br>niella sp |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| Polypodilym                 | 2  | 11 | 220 | 222 | 1  | 15 | 300 | 301    | 262 |
| son                         | 2  |    | 220 |     |    | 15 | 500 | 501    | 202 |
| Cladotanytars               |    | 1  | 20  | 20  |    | 5  | 100 | 100    | 60  |
|                             |    |    | 20  | 20  |    | 5  | 100 | 100    | 00  |
| Micronsectra                |    |    | 0   | 0   |    | 1  | 20  | 20     | 10  |
| sn                          |    |    | U   | U   |    |    | 20  | 20     | 10  |
| Paratanytars                |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| US SD                       |    |    | Ũ   | Ŭ   |    |    | 0   | Ŭ      | 0.0 |
| Rheotanytars                |    |    | 0   | 0   |    | 2  | 40  | 40     | 20  |
|                             |    |    | Ũ   | Ŭ   |    | -  | 10  | 10     | 20  |
| Stempellinell               |    |    | 0   | 0   |    | 1  | 20  | 20     | 10  |
| asp                         |    |    | Ũ   | Ŭ   |    |    | 20  | 20     | 10  |
| Sublettea sp                |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| Tanytarsus                  |    |    | 0   | 0   |    |    | 0   | 0<br>0 | 0.0 |
| SD                          |    |    | J   | J J |    |    | 0   | , v    | 0.0 |
| Potthastia                  |    |    | 0   | 0   | 3  | 1  | 20  | 23     | 12  |
| longimana                   |    |    | J   | J J | 0  |    | 20  | 20     |     |
| ap.                         |    |    |     |     |    |    |     |        |     |
| Orthocladiina               |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| e                           |    |    | Ŭ   | v   |    |    | Ŭ   | Ŭ      | 0.0 |
| Corvnoneura                 |    |    | 0   | 0   |    |    | 0   | 0      | 0.0 |
| Soryhonouru                 |    |    | 5   | 5   |    |    | 5   | 5      | 0.0 |

| sp.                 |    |    |     |     |    |    |      |     |      |
|---------------------|----|----|-----|-----|----|----|------|-----|------|
| Cricotopus/Or       |    | 64 | 128 | 128 | 1  | 66 | 1320 | 132 | 1301 |
| thocladius          |    |    | 0   | 0   |    |    |      | 1   |      |
| spp.                |    |    |     |     |    |    |      |     |      |
| Epoicocladius       |    |    | 0   | 0   |    |    | 0    | 0   | 0.0  |
| sp.                 |    |    |     |     |    |    |      |     |      |
| Eukiefferiella      |    |    | 0   | 0   |    |    | 0    | 0   | 0.0  |
| sp.                 |    |    | 0   | 0   | 0  | 0  | 40   | 40  | 04   |
| Lopesciadius        |    |    | 0   | 0   | 2  | 2  | 40   | 42  | 21   |
| sp.<br>Nanocladius  |    | 1  | 20  | 20  |    | 2  | 40   | 40  | 30   |
| sn                  |    | I  | 20  | 20  |    | 2  | 40   | 40  | 30   |
| Parakiefferiell     |    | 1  | 20  | 20  | 1  | 6  | 120  | 121 | 71   |
| a sp.               |    |    | 20  | 20  |    | Ũ  | 120  | 121 | ••   |
| Svnorthocladi       | 1  |    | 0   | 1   |    | 2  | 40   | 40  | 21   |
| us sp.              |    |    | -   |     |    |    | _    | _   |      |
| <i>Tvetenia</i> sp. |    |    | 0   | 0   |    | 1  | 20   | 20  | 10   |
| Telopelopia         |    |    | 0   | 0   |    |    | 0    | 0   | 0.0  |
| sp.                 |    |    |     |     |    |    |      |     |      |
| Thienemanni         | 6  | 5  | 100 | 106 | 14 | 12 | 240  | 254 | 180  |
| <i>myia</i> gp.     |    |    |     |     |    |    |      |     |      |
| COLLEMBO            |    |    | 0   | 0   |    |    | 0    | 0   | 0.0  |
| LA                  |    |    |     |     |    |    |      |     |      |
| ARACHNIDA           | 0  |    | 000 | 000 |    | 40 | 000  | 004 | 00.4 |
| Hydracarina         | 3  | 14 | 280 | 283 | 4  | 19 | 380  | 384 | 334  |
| A                   |    |    |     |     |    |    |      |     |      |
| A<br>Conenoda       |    |    |     |     |    |    |      |     |      |
| Cyclopoida          |    |    | 0   | 0   |    |    | 0    | 0   | 0.0  |
| Ostracoda           |    |    | 0   | 0   |    |    | 0    | 0   | 0.0  |
| Candona sp          |    |    | 0   | 0   |    |    | 0    | 0   | 0.0  |
| llvocvpris sp.      |    | 1  | 20  | 20  |    | 1  | 20   | 20  | 20   |
| Limnocvthere        |    | -  | 0   | 0   |    | -  | 0    | 0   | 0.0  |
| sp.                 |    |    | -   | -   |    |    | -    | -   |      |
| Amphipoda           |    |    |     |     |    |    |      |     |      |
| Gammarus            | 1  |    | 0   | 1   |    |    | 0    | 0   | 0.5  |
| lacustris           |    |    |     |     |    |    |      |     |      |
| Hyalella            |    |    | 0   | 0   | 1  |    | 0    | 1   | 0.5  |
| azteca              |    |    |     |     |    |    |      |     |      |
| Decapoda            |    |    |     |     |    |    |      |     |      |
| Orconectes          | 1  |    | 0   | 1   |    |    | 0    | 0   | 0.5  |
| VIIIIS              |    |    |     |     |    |    |      |     |      |
|                     |    |    |     |     |    |    |      |     |      |
| TA<br>Enchytraaida  |    |    | 0   | 0   |    | 1  | 20   | 20  | 10   |
|                     |    |    | 0   | 0   |    | 1  | 20   | 20  | 10   |
| Naididae            |    |    | 0   | 0   |    |    | 0    | 0   | 0.0  |
| Tubificidae         |    |    | 0   | 0   |    |    | 0    | 0   | 0.0  |
| GASTROPO            |    | L  |     |     |    | L  |      |     | 0.0  |
| DA                  |    |    |     |     |    |    |      |     |      |
| Ferrissia sp.       | 10 | 1  | 20  | 30  | 18 |    | 0    | 18  | 24   |
| PELECYPOD           |    |    |     |     |    |    |      |     |      |
| Α                   |    |    |     |     |    |    |      |     |      |
| Pisidium sp.        | 2  |    | 0   | 2   |    |    | 0    | 0   | 1.0  |

| NEMATODA   |     | 5   | 100 | 100 | 1   | 4   | 80   | 81  | 91   |
|------------|-----|-----|-----|-----|-----|-----|------|-----|------|
| Total Taxa | 22  | 16  | 16  | 28  | 26  | 30  | 30   | 37  | 33   |
| Total      | 145 | 126 | 252 | 266 | 278 | 181 | 3620 | 389 | 3282 |
| Numbers    |     |     | 0   | 5   |     |     |      | 8   |      |
|            |     |     |     |     |     |     |      |     |      |
|            |     |     |     |     |     |     |      |     |      |

| Таха                   |        |      | Sample 1 |       | Samp   | e 2  |
|------------------------|--------|------|----------|-------|--------|------|
|                        | Coarse | Fine | FineX20  | Total | Coarse | Fine |
| EPHEMEROPTERA          |        |      |          |       |        |      |
| Acentrella sp.         |        |      | 0        | 0     |        |      |
| Acerpenna sp.          | 1      | 4    | 80       | 81    |        | 2    |
| <i>Baetis</i> sp.      | 1      |      | 0        | 1     |        | 1    |
| Fallceonsp.            |        |      | 0        | 0     | 1      |      |
| Plauditus sp.          | 1      | 1    | 20       | 21    |        |      |
| Baetisca sp.           |        |      | 0        | 0     |        |      |
| Ephemerella sp.        |        |      | 0        | 0     |        |      |
| <i>Ephemera</i> sp.    | 1      |      | 0        | 1     |        |      |
| Heptagenia sp.         | 1      | 3    | 60       | 61    | 1      |      |
| Maccaffertium sp.      | 5      | 3    | 60       | 65    | 2      |      |
| Rhithrogena sp.        |        |      | 0        | 0     |        |      |
| Tricorythodes sp.      | 13     | 1    | 20       | 33    | 7      | 3    |
| PLECOPTERA             |        |      |          |       |        |      |
| Acroneuria sp.         |        |      | 0        | 0     |        |      |
| <i>Isogenoides</i> sp. | 3      |      | 0        | 3     |        |      |
| <i>Isoperla</i> sp.    | 2      |      | 0        | 2     | 1      |      |
| Pteronarcys dorsata    |        |      | 0        | 0     |        |      |
| TRICHOPTERA            |        |      |          |       |        |      |
| Brachycentrus sp.      | 2      |      | 0        | 2     |        |      |
| Glossosoma sp.         |        |      | 0        | 0     |        |      |
| Cheumatopsyche sp.     | 2      |      | 0        | 2     |        |      |
| Hydropsyche sp.        | 19     | 1    | 20       | 39    | 15     | 5    |
| <i>Hydroptila</i> sp.  |        |      | 0        | 0     |        |      |
| Lepidostoma sp.        |        |      | 0        | 0     |        |      |
| Oecetis sp.            | 7      | 1    | 20       | 27    | 3      | 1    |
| Neureclipsis sp.       |        |      | 0        | 0     |        |      |
| Psychomia sp.          |        |      | 0        | 0     | 1      |      |

 TABLE B2 Raw data following benthic invertebrate identification for electroshocking samples from the North

 Saskatchewan River taken Septmember 1, 2009

| ODONATA              |    |    |     |     |    |    |
|----------------------|----|----|-----|-----|----|----|
| Ophiogomphus sp.     |    |    | 0   | 0   |    |    |
| HEMIPTERA            |    |    |     |     |    |    |
| Callicorixa audeni   |    |    | 0   | 0   |    |    |
| Sigara sp.           |    |    | 0   | 0   |    |    |
| COLEOPTERA           |    |    |     |     |    |    |
| <i>Liodessus</i> sp. |    |    | 0   | 0   |    |    |
| Dubiraphia sp.       |    |    | 0   | 0   |    |    |
| DIPTERA              |    |    |     |     |    |    |
| Bezzia/Palpomyia gp. | 1  |    | 0   | 1   |    |    |
| Chelifera sp.        |    |    | 0   | 0   |    |    |
| Hemerodromia sp.     | 38 | 5  | 100 | 138 | 30 | 4  |
| Psychodidae          |    |    | 0   | 0   |    |    |
| Hexatoma sp.         |    |    | 0   | 0   |    |    |
| Chironomidae         |    |    |     |     |    |    |
| Chironomus sp.       |    |    | 0   | 0   |    | 1  |
| Cryptochironomus sp. | 1  |    | 0   | 1   |    | 1  |
| Demicryptochironomu  |    |    | 0   | 0   |    |    |
| s sp.                |    |    |     |     |    |    |
| Microtendipes sp.    | 8  | 2  | 40  | 48  | 6  | 7  |
| Nilothauma sp.       |    |    | 0   | 0   |    |    |
| Paralauterborniella  |    |    | 0   | 0   |    |    |
| sp.                  |    |    |     |     |    |    |
| Polypedilum spp.     | 3  | 10 | 200 | 203 | 1  | 18 |
| Cladotanytarsus sp.  |    |    | 0   | 0   |    | 7  |
| Micropsectra sp.     |    |    | 0   | 0   |    |    |
| Paratanytarsus sp.   |    |    | 0   | 0   |    |    |
| Rheotanytarsus sp.   |    |    | 0   | 0   |    |    |
| Stempellinella sp.   |    |    | 0   | 0   |    |    |
| Sublettea sp.        |    | 1  | 20  | 20  |    |    |
| Tanytarsus sp.       |    | 2  | 40  | 40  |    | 2  |
| Potthastia longimana | 2  | 1  | 20  | 22  | 1  | 1  |
| gp.                  |    |    |     |     |    |    |

| Orthocladiinae        |   |    | 0    | 0    |   |    |
|-----------------------|---|----|------|------|---|----|
| Corynoneura sp.       |   |    | 0    | 0    | 1 | 1  |
| Cricotopus/Orthocladi | 3 | 58 | 1160 | 1163 | 4 | 75 |
| us spp.               |   |    |      |      |   |    |
| Epoicocladius sp.     |   |    | 0    | 0    |   |    |
| Eukiefferiella sp.    |   |    | 0    | 0    |   | 1  |
| Lopescladius sp.      | 2 |    | 0    | 2    | 3 |    |
| Nanocladius sp.       |   |    | 0    | 0    |   | 2  |
| Parakiefferiella sp.  | 3 | 2  | 40   | 43   | 2 | 16 |
| Synorthocladius sp.   | 1 | 2  | 40   | 41   |   | 1  |
| <i>Tvetenia</i> sp.   |   |    | 0    | 0    |   |    |
| Telopelopia sp.       |   |    | 0    | 0    |   |    |
| Thienemannimyia gp.   | 7 | 2  | 40   | 47   | 5 | 7  |
| COLLEMBOLA            |   |    | 0    | 0    |   |    |
| ARACHNIDA             |   |    |      |      |   |    |
| Hydracarina           | 2 | 12 | 240  | 242  | 2 | 15 |
| CRUSTACEA             |   |    |      |      |   |    |
| Copepoda              |   |    |      |      |   |    |
| Cyclopoida            |   |    | 0    | 0    |   |    |
| Ostracoda             |   |    |      |      |   |    |
| Candona sp.           |   |    | 0    | 0    |   |    |
| <i>Ilyocypris</i> sp. |   |    | 0    | 0    |   | 1  |
| Limnocythere sp.      |   |    | 0    | 0    |   |    |
| Amphipoda             |   |    |      |      |   |    |
| Gammarus lacustris    |   |    | 0    | 0    |   |    |
| Hyalella azteca       |   |    | 0    | 0    |   |    |
| Decapoda              |   |    |      |      |   |    |
| Orconectes virilis    |   |    | 0    | 0    |   |    |
| OLIGOCHAETA           |   |    |      |      |   |    |
| Enchytraeidae         |   | 1  | 20   | 20   |   |    |
| Naididae              |   |    | 0    | 0    |   |    |
| Tubificidae           |   |    | 0    | 0    |   |    |
| GASTROPODA            |   |    |      |      |   |    |

| Ferrissia sp.       | 7   |     | 0    | 7    | 9  | 1   |
|---------------------|-----|-----|------|------|----|-----|
| PELECYPODA          |     |     |      |      |    |     |
| <i>Pisidium</i> sp. |     |     | 0    | 0    |    |     |
| NEMATODA            | 1   | 3   | 60   | 61   |    |     |
| Total Taxa          | 27  | 20  | 20   | 30   | 19 | 23  |
| Total Numbers       | 137 | 115 | 2300 | 2437 | 95 | 173 |

| Таха                | Samp    | le 2  |        | Sar  | nple 3  |       | Mean  |
|---------------------|---------|-------|--------|------|---------|-------|-------|
|                     | FineX10 | Total | Coarse | Fine | FineX20 | Total | Total |
| EPHEMEROPTERA       |         |       |        |      |         |       |       |
| Acentrella sp.      | 0       | 0     |        |      | 0       | 0     | 0.0   |
| Acerpenna sp.       | 20      | 20    |        | 1    | 20      | 20    | 40    |
| Baetis sp.          | 10      | 10    |        | 1    | 20      | 20    | 10    |
| Fallceonsp.         | 0       | 1     |        |      | 0       | 0     | 0.3   |
| Plauditus sp.       | 0       | 0     | 1      |      | 0       | 1     | 7.3   |
| Baetisca sp.        | 0       | 0     |        |      | 0       | 0     | 0.0   |
| Ephemerella sp.     | 0       | 0     |        |      | 0       | 0     | 0.0   |
| <i>Ephemera</i> sp. | 0       | 0     |        |      | 0       | 0     | 0.3   |
| Heptagenia sp.      | 0       | 1     |        |      | 0       | 0     | 21    |
| Maccaffertium sp.   | 0       | 2     | 2      | 1    | 20      | 22    | 30    |
| Rhithrogena sp.     | 0       | 0     |        |      | 0       | 0     | 0.0   |
| Tricorythodes sp.   | 30      | 37    | 9      | 2    | 40      | 49    | 40    |
| PLECOPTERA          |         |       |        |      |         |       |       |
| Acroneuria sp.      | 0       | 0     |        |      | 0       | 0     | 0.0   |
| Isogenoides sp.     | 0       | 0     |        |      | 0       | 0     | 1.0   |
| <i>Isoperla</i> sp. | 0       | 1     | 1      |      | 0       | 1     | 1.3   |
| Pteronarcys dorsata | 0       | 0     |        |      | 0       | 0     | 0.0   |
| TRICHOPTERA         |         |       |        |      |         |       |       |
| Brachycentrus sp.   | 0       | 0     | 1      |      | 0       | 1     | 1.0   |
| Glossosoma sp.      | 0       | 0     |        |      | 0       | 0     | 0.0   |
| Cheumatopsyche sp.  | 0       | 0     | 3      |      | 0       | 3     | 1.7   |
| Hydropsyche sp.     | 50      | 65    | 31     | 3    | 60      | 91    | 65    |
| Hydroptila sp.      | 0       | 0     |        |      | 0       | 0     | 0.0   |
| Lepidostoma sp.     | 0       | 0     | 1      |      | 0       | 1     | 0.3   |
| Oecetis sp.         | 10      | 13    | 9      |      | 0       | 9     | 16    |
| Neureclipsis sp.    | 0       | 0     |        |      | 0       | 0     | 0.0   |
| Psychomia sp.       | 0       | 1     |        |      | 0       | 0     | 0.3   |

 TABLE B3 Raw data following benthic invertebrate identification for electroshocking samples from the North

 Saskatchewan River taken Septmember 1, 2009 (continued)

| ODONATA               |     |     |    |    |     |     |     |
|-----------------------|-----|-----|----|----|-----|-----|-----|
| Ophiogomphus sp.      | 0   | 0   |    |    | 0   | 0   | 0.0 |
| HEMIPTERA             |     |     |    |    |     |     |     |
| Callicorixa audeni    | 0   | 0   |    |    | 0   | 0   | 0.0 |
| Sigara sp.            | 0   | 0   |    |    | 0   | 0   | 0.0 |
| COLEOPTERA            |     |     |    |    |     |     |     |
| Liodessus sp.         | 0   | 0   |    |    | 0   | 0   | 0.0 |
| <i>Dubiraphia</i> sp. | 0   | 0   |    |    | 0   | 0   | 0.0 |
| DIPTERA               |     |     |    |    |     |     |     |
| Bezzia/Palpomyia gp.  | 0   | 0   |    |    | 0   | 0   | 0.3 |
| Chelifera sp.         | 0   | 0   |    |    | 0   | 0   | 0.0 |
| Hemerodromia sp.      | 40  | 70  | 63 | 7  | 140 | 203 | 137 |
| Psychodidae           | 0   | 0   |    |    | 0   | 0   | 0.0 |
| Hexatoma sp.          | 0   | 0   |    |    | 0   | 0   | 0.0 |
| Chironomidae          |     |     |    |    |     |     |     |
| Chironomus sp.        | 10  | 10  |    |    | 0   | 0   | 3.3 |
| Cryptochironomus sp.  | 10  | 10  |    |    | 0   | 0   | 3.7 |
| Demicryptochironomu   | 0   | 0   |    |    | 0   | 0   | 0.0 |
| s sp.                 |     |     |    |    |     |     |     |
| Microtendipes sp.     | 70  | 76  | 18 | 3  | 60  | 78  | 67  |
| Nilothauma sp.        | 0   | 0   |    |    | 0   | 0   | 0.0 |
| Paralauterborniella   | 0   | 0   |    |    | 0   | 0   | 0.0 |
| sp.                   |     |     |    |    |     |     |     |
| Polypedilum spp.      | 180 | 181 | 6  | 11 | 220 | 226 | 203 |
| Cladotanytarsus sp.   | 70  | 70  |    | 1  | 20  | 20  | 30  |
| Micropsectra sp.      | 0   | 0   |    |    | 0   | 0   | 0.0 |
| Paratanytarsus sp.    | 0   | 0   |    |    | 0   | 0   | 0.0 |
| Rheotanytarsus sp.    | 0   | 0   |    | 1  | 20  | 20  | 6.7 |
| Stempellinella sp.    | 0   | 0   |    |    | 0   | 0   | 0.0 |
| Sublettea sp.         | 0   | 0   |    | 1  | 20  | 20  | 13  |
| Tanytarsus sp.        | 20  | 20  |    |    | 0   | 0   | 20  |
| Potthastia longimana  | 10  | 11  | 1  |    | 0   | 1   | 11  |
| gp.                   |     |     |    |    |     |     |     |

|                       | -   | -   | 1  | 1  | -    | -    |     |
|-----------------------|-----|-----|----|----|------|------|-----|
| Orthocladiinae        | 0   | 0   |    |    | 0    | 0    | 0.0 |
| Corynoneura sp.       | 10  | 11  |    |    | 0    | 0    | 3.7 |
| Cricotopus/Orthocladi | 750 | 754 | 11 | 52 | 1040 | 1051 | 989 |
| <i>us</i> spp.        |     |     |    |    |      |      |     |
| Epoicocladius sp.     | 0   | 0   |    |    | 0    | 0    | 0.0 |
| Eukiefferiella sp.    | 10  | 10  |    |    | 0    | 0    | 3.3 |
| Lopescladius sp.      | 0   | 3   | 2  |    | 0    | 2    | 2.3 |
| Nanocladius sp.       | 20  | 20  |    |    | 0    | 0    | 6.7 |
| Parakiefferiella sp.  | 160 | 162 | 5  | 5  | 100  | 105  | 103 |
| Synorthocladius sp.   | 10  | 10  | 1  | 1  | 20   | 21   | 24  |
| Tvetenia sp.          | 0   | 0   |    |    | 0    | 0    | 0.0 |
| Telopelopia sp.       | 0   | 0   |    |    | 0    | 0    | 0.0 |
| Thienemannimyia gp.   | 70  | 75  | 8  | 5  | 100  | 108  | 77  |
| COLLEMBOLA            | 0   | 0   |    |    | 0    | 0    | 0.0 |
| ARACHNIDA             |     |     |    |    |      |      |     |
| Hydracarina           | 150 | 152 | 4  | 13 | 260  | 264  | 219 |
| CRUSTACEA             |     |     |    |    |      |      |     |
| Copepoda              |     |     |    |    |      |      |     |
| Cyclopoida            | 0   | 0   |    |    | 0    | 0    | 0.0 |
| Ostracoda             |     |     |    |    |      |      |     |
| Candona sp.           | 0   | 0   |    |    | 0    | 0    | 0.0 |
| Ilyocypris sp.        | 10  | 10  |    |    | 0    | 0    | 3.3 |
| Limnocythere sp.      | 0   | 0   |    |    | 0    | 0    | 0.0 |
| Amphipoda             |     |     |    |    |      |      |     |
| Gammarus lacustris    | 0   | 0   |    |    | 0    | 0    | 0.0 |
| Hyalella azteca       | 0   | 0   |    |    | 0    | 0    | 0.0 |
| Decapoda              |     |     |    |    |      |      |     |
| Orconectes virilis    | 0   | 0   |    |    | 0    | 0    | 0.0 |
| OLIGOCHAETA           |     |     |    |    |      |      |     |
| Enchytraeidae         | 0   | 0   |    | 1  | 20   | 20   | 13  |
| Naididae              | 0   | 0   |    |    | 0    | 0    | 0.0 |
| Tubificidae           | 0   | 0   |    |    | 0    | 0    | 0.0 |
| GASTROPODA            |     |     |    |    |      |      |     |

| <i>Ferrissia</i> sp. | 10   | 19   | 23  |     | 0    | 23   | 16   |
|----------------------|------|------|-----|-----|------|------|------|
| PELECYPODA           |      |      |     |     |      |      |      |
| <i>Pisidium</i> sp.  | 0    | 0    |     |     | 0    | 0    | 0.0  |
| NEMATODA             | 0    | 0    | 3   |     | 0    | 3    | 21   |
| Total Taxa           | 23   | 29   | 21  | 17  | 17   | 27   | 29   |
| Total Numbers        | 1730 | 1825 | 203 | 109 | 2180 | 2383 | 2215 |

APPENDIX C

BENTHIC INVERTEBRATE TALLIES FOR THE FLUME SAMPLES AND CALCULATED INDEPENDENT VARIABLES AND DEPENDENT DRIFT RATES FOR THE REPLICATES FROM THE FLUME SAMPLES FROM THE EXPERIMENT TO DETERMINE THE VARIABLES THAT AFFECT BENTHIC INVERTEBRATE DRIFT RATE

| Таха                   | Sample 1 09/10/21 |      |        |       | Sample 2 09/10/30 |      |         |       |  |
|------------------------|-------------------|------|--------|-------|-------------------|------|---------|-------|--|
|                        | Coarse            | Fine | FineX8 | Total | Coarse            | Fine | FineX20 | Total |  |
| EPHEMEROPTERA          |                   |      |        |       |                   |      |         |       |  |
| Acentrella sp.         |                   |      | 0      | 0     |                   |      | 0       | 0     |  |
| Acerpenna sp.          | 1                 |      | 0      | 1     | 1                 |      | 0       | 1     |  |
| <i>Baetis</i> sp.      |                   |      | 0      | 0     | 3                 |      | 0       | 3     |  |
| Fallceonsp.            |                   |      | 0      | 0     |                   |      | 0       | 0     |  |
| Plauditus sp.          |                   |      | 0      | 0     |                   |      | 0       | 0     |  |
| Baetisca sp.           |                   |      | 0      | 0     |                   |      | 0       | 0     |  |
| Ephemerella sp.        |                   |      | 0      | 0     | 3                 |      | 0       | 3     |  |
| <i>Ephemera</i> sp.    | 1                 |      | 0      | 1     | 2                 |      | 0       | 2     |  |
| Heptagenia sp.         | 4                 |      | 0      | 4     | 2                 | 1    | 20      | 22    |  |
| Maccaffertium sp.      | 7                 |      | 0      | 7     | 6                 |      | 0       | 6     |  |
| Rhithrogena sp.        | 2                 |      | 0      | 2     | 1                 |      | 0       | 1     |  |
| Tricorythodes sp.      | 20                | 1    | 8      | 28    | 21                | 1    | 20      | 41    |  |
| PLECOPTERA             |                   |      |        |       |                   |      |         |       |  |
| Acroneuria sp.         |                   |      | 0      | 0     |                   |      | 0       | 0     |  |
| <i>Isogenoides</i> sp. |                   |      | 0      | 0     |                   |      | 0       | 0     |  |
| <i>Isoperla</i> sp.    | 3                 |      | 0      | 3     | 1                 |      | 0       | 1     |  |
| Pteronarcys dorsata    |                   |      | 0      | 0     |                   |      | 0       | 0     |  |
| TRICHOPTERA            |                   |      |        |       |                   |      |         |       |  |
| Brachycentrus sp.      |                   |      | 0      | 0     | 1                 |      | 0       | 1     |  |
| Glossosoma sp.         | 1                 | 1    | 8      | 9     | 1                 |      | 0       | 1     |  |
| Cheumatopsyche sp.     |                   |      | 0      | 0     | 2                 |      | 0       | 2     |  |
| Hydropsyche sp.        | 45                | 3    | 24     | 69    | 89                | 1    | 20      | 109   |  |
| Hydroptila sp.         |                   |      | 0      | 0     |                   |      | 0       | 0     |  |
| Lepidostoma sp.        |                   |      | 0      | 0     | 1                 |      | 0       | 1     |  |
| <i>Oecetis</i> sp.     | 10                |      | 0      | 10    | 46                | 1    | 20      | 66    |  |
| Neureclipsis sp.       |                   |      | 0      | 0     | 2                 |      | 0       | 2     |  |
| Psychomia sp.          | 1                 |      | 0      | 1     | 2                 |      | 0       | 2     |  |

TABLE C1 Raw data following benthic invertebrate identification for the flume samples from the experiment to determine the variables that affect benthic invertebrate drift rate
| ODONATA                 |    |    |     |     |    |    |     |     |
|-------------------------|----|----|-----|-----|----|----|-----|-----|
| Ophiogomphus sp.        |    |    | 0   | 0   |    |    | 0   | 0   |
| HEMIPTERA               |    |    |     |     |    |    |     |     |
| Callicorixa audeni      |    |    | 0   | 0   | 1  |    | 0   | 1   |
| Sigara sp.              |    |    | 0   | 0   |    |    | 0   | 0   |
| COLEOPTERA              |    |    |     |     |    |    |     |     |
| Liodessus sp.           |    |    | 0   | 0   |    |    | 0   | 0   |
| Dubiraphia sp.          | 1  |    | 0   | 1   |    |    | 0   | 0   |
| DIPTERA                 |    |    |     |     |    |    |     |     |
| Bezzia/Palpomyia gp.    | 1  | 1  | 8   | 9   | 1  |    | 0   | 1   |
| Chelifera sp.           |    |    | 0   | 0   | 1  |    | 0   | 1   |
| Hemerodromia sp.        | 52 | 3  | 24  | 76  | 40 |    | 0   | 40  |
| Psychodidae             | 1  |    | 0   | 1   |    |    | 0   | 0   |
| Hexatoma sp.            | 1  |    | 0   | 1   |    |    | 0   | 0   |
| Chironomidae            |    |    |     |     |    |    |     |     |
| Chironomus sp.          |    |    | 0   | 0   |    |    | 0   | 0   |
| Cryptochironomus sp.    | 5  |    | 0   | 5   |    | 3  | 60  | 60  |
| Demicryptochironomus    |    |    | 0   | 0   |    |    | 0   | 0   |
| sp.                     |    |    |     |     |    |    |     |     |
| Microtendipes sp.       | 23 | 1  | 8   | 31  | 37 | 4  | 80  | 117 |
| Nilothauma sp.          |    | 1  | 8   | 8   |    |    | 0   | 0   |
| Paralauterborniella sp. | 1  | 2  | 16  | 17  |    |    | 0   | 0   |
| Polypedilum spp.        | 14 | 29 | 232 | 246 | 1  | 12 | 240 | 241 |
| Cladotanytarsus sp.     |    | 4  | 32  | 32  |    | 1  | 20  | 20  |
| Micropsectra sp.        |    | 1  | 8   | 8   |    |    | 0   | 0   |
| Paratanytarsus sp.      |    |    | 0   | 0   |    |    | 0   | 0   |
| Rheotanytarsus sp.      | 1  | 1  | 8   | 9   |    |    | 0   | 0   |
| Stempellinella sp.      |    |    | 0   | 0   |    |    | 0   | 0   |
| Sublettea sp.           |    |    | 0   | 0   |    | 2  | 40  | 40  |
| Tanytarsus sp.          |    | 2  | 16  | 16  |    | 2  | 40  | 40  |
| Potthastia longimana    | 2  |    | 0   | 2   | 1  |    | 0   | 1   |
| gp.                     |    |    |     |     |    |    |     |     |
| Orthocladiinae          |    |    | 0   | 0   |    |    | 0   | 0   |

| Corynoneura sp.            |          |    | 0   | 0   |    |    | 0    | 0    |
|----------------------------|----------|----|-----|-----|----|----|------|------|
| Cricotopus/Orthocladiu     | 9        | 58 | 464 | 473 | 33 | 85 | 1700 | 1733 |
| s spp.                     |          |    |     |     |    |    |      |      |
| Epoicocladius sp.          |          |    | 0   | 0   |    |    | 0    | 0    |
| Eukiefferiella sp.         |          |    | 0   | 0   |    |    | 0    | 0    |
| Lopescladius sp.           |          |    | 0   | 0   | 1  |    | 0    | 1    |
| Nanocladius sp.            |          | 1  | 8   | 8   |    |    | 0    | 0    |
| Parakiefferiella sp.       | 1        | 7  | 56  | 57  | 1  | 6  | 120  | 121  |
| Synorthocladius sp.        |          |    | 0   | 0   |    | 1  | 20   | 20   |
| <i>Tvetenia</i> sp.        | 2        |    | 0   | 2   | 9  |    | 0    | 9    |
| <i>Telopelopia</i> sp.     | 1        |    | 0   | 1   |    |    | 0    | 0    |
| <i>Thienemannimyia</i> gp. | 20       | 8  | 64  | 84  | 18 | 7  | 140  | 158  |
|                            |          |    | 0   | 0   |    |    | 0    | 0    |
|                            | <u> </u> |    | 0   | 0   |    |    | 0    | 0    |
| Hydracarina                | 3        | 1  | 8   | 11  | 3  | 1  | 20   | 23   |
|                            |          | 1  | 0   | 11  | 5  | 1  | 20   | 23   |
| Cononoda                   | <u> </u> |    |     |     |    |    |      |      |
| Cyclopoida                 |          |    | 0   | 0   |    |    | 0    | 0    |
| Ostracoda                  | ļ        |    | 0   | 0   |    |    | 0    | 0    |
| Candona sp                 | ļ        |    | 0   | 0   |    |    | 0    | 0    |
| llvocypris sp              | <br>     |    | 0   | 0   |    |    | 0    | 0    |
| Limpocythere sp            |          |    | 0   | 0   |    |    | 0    | 0    |
| Amphipoda                  |          |    | 0   | 0   |    |    | Ŭ    | Ŭ    |
| Gammarus lacustris         |          |    | 0   | 0   |    |    | 0    | 0    |
| Hvalella azteca            |          |    | 0   | 0   |    |    | 0    | 0    |
| Decapoda                   |          |    | -   |     |    |    |      |      |
| Orconectes virilis         |          |    | 0   | 0   |    |    | 0    | 0    |
| OLIGOCHAETA                |          |    | _   |     |    |    |      |      |
| Enchytraeidae              |          |    | 0   | 0   |    | 1  | 20   | 20   |
| Naididae                   |          | 10 | 80  | 80  |    | 6  | 120  | 120  |
| Tubificidae                |          |    | 0   | 0   |    |    | 0    | 0    |
| GASTROPODA                 |          |    |     |     |    |    |      |      |

| <i>Ferrissia</i> sp. | 6   |     | 0    | 6    | 10  |     | 0    | 10   |
|----------------------|-----|-----|------|------|-----|-----|------|------|
| PELECYPODA           |     |     |      |      |     |     |      |      |
| <i>Pisidium</i> sp.  |     |     | 0    | 0    |     |     | 0    | 0    |
| NEMATODA             |     | 1   | 8    | 8    |     | 2   | 40   | 40   |
| Total Taxa           | 29  | 20  | 20   | 36   | 31  | 18  | 18   | 39   |
| Total Numbers        | 239 | 136 | 1088 | 1327 | 341 | 137 | 2740 | 3081 |
|                      |     |     |      |      |     |     |      |      |

| Таха                |        | Sample 3 | 09/11/16 |       | S      | ample 4 | 09/11/11 |       | Mean  |
|---------------------|--------|----------|----------|-------|--------|---------|----------|-------|-------|
|                     | Coarse | Fine     | FineX10  | Total | Coarse | Fine    | FineX20  | Total | Total |
| EPHEMEROPTERA       |        |          |          |       |        |         |          |       |       |
| Acentrella sp.      |        |          | 0        | 0     |        |         | 0        | 0     | 0.0   |
| Acerpenna sp.       |        |          | 0        | 0     | 1      | 1       | 20       | 21    | 15    |
| Baetis sp.          | 1      | 1        | 10       | 11    | 3      | 1       | 20       | 23    | 11    |
| Fallceonsp.         |        |          | 0        | 0     |        |         | 0        | 0     | 0.0   |
| Plauditus sp.       |        |          | 0        | 0     |        |         | 0        | 0     | 0.0   |
| Baetisca sp.        |        |          | 0        | 0     |        |         | 0        | 0     | 0.2   |
| Ephemerella sp.     | 3      | 2        | 20       | 23    | 8      |         | 0        | 8     | 7.0   |
| <i>Ephemera</i> sp. |        |          | 0        | 0     |        |         | 0        | 0     | 0.6   |
| Heptagenia sp.      | 5      | 1        | 10       | 15    | 4      |         | 0        | 4     | 9.4   |
| Maccaffertium sp.   | 11     |          | 0        | 11    | 6      |         | 0        | 6     | 10    |
| Rhithrogena sp.     | 2      |          | 0        | 2     | 1      |         | 0        | 1     | 1.6   |
| Tricorythodes sp.   | 18     | 2        | 20       | 38    | 10     |         | 0        | 10    | 34    |
| PLECOPTERA          |        |          |          |       |        |         |          |       |       |
| Acroneuria sp.      |        |          | 0        | 0     |        |         | 0        | 0     | 0.0   |
| Isogenoides sp.     |        |          | 0        | 0     |        |         | 0        | 0     | 0.0   |
| Isoperla sp.        | 2      |          | 0        | 2     | 2      |         | 0        | 2     | 1.8   |
| Pteronarcys dorsata |        |          | 0        | 0     | 1      |         | 0        | 1     | 0.2   |
| TRICHOPTERA         |        |          |          |       |        |         |          |       |       |
| Brachycentrus sp.   | 2      |          | 0        | 2     | 2      |         | 0        | 2     | 1.0   |
| Glossosoma sp.      | 4      | 1        | 10       | 14    | 4      |         | 0        | 4     | 5.8   |
| Cheumatopsyche sp.  | 2      |          | 0        | 2     | 2      |         | 0        | 2     | 1.2   |
| Hydropsyche sp.     | 84     | 6        | 60       | 144   | 61     |         | 0        | 61    | 87    |
| Hydroptila sp.      | 1      |          | 0        | 1     | 1      |         | 0        | 1     | 0.4   |
| Lepidostoma sp.     |        |          | 0        | 0     |        |         | 0        | 0     | 0.4   |
| Oecetis sp.         | 17     | 1        | 10       | 27    | 6      |         | 0        | 6     | 30    |
| Neureclipsis sp.    | 1      |          | 0        | 1     | 2      |         | 0        | 2     | 3.6   |
| Psychomia sp.       | 1      | 1        | 10       | 11    |        |         | 0        | 0     | 5.0   |

TABLE C2 Raw data following benthic invertebrate identification for the flume samples from the experiment to determine the variables that affect benthic invertebrate drift rate (continued)

| ODONATA                 |    |    |     |     |    |    |     |     |     |
|-------------------------|----|----|-----|-----|----|----|-----|-----|-----|
| Ophiogomphus sp.        |    |    | 0   | 0   |    |    | 0   | 0   | 0.0 |
| HEMIPTERA               |    |    |     |     |    |    |     |     |     |
| Callicorixa audeni      |    |    | 0   | 0   |    |    | 0   | 0   | 0.2 |
| Sigara sp.              | 1  |    | 0   | 1   |    |    | 0   | 0   | 0.2 |
| COLEOPTERA              |    |    |     |     |    |    |     |     |     |
| Liodessus sp.           |    |    | 0   | 0   |    |    | 0   | 0   | 0.2 |
| <i>Dubiraphia</i> sp.   |    |    | 0   | 0   |    |    | 0   | 0   | 0.2 |
| DIPTERA                 |    |    |     |     |    |    |     |     |     |
| Bezzia/Palpomyia gp.    |    |    | 0   | 0   |    |    | 0   | 0   | 2.2 |
| Chelifera sp.           |    |    | 0   | 0   |    |    | 0   | 0   | 0.2 |
| Hemerodromia sp.        | 29 | 3  | 30  | 59  | 18 | 1  | 20  | 38  | 60  |
| Psychodidae             |    |    | 0   | 0   |    |    | 0   | 0   | 0.2 |
| Hexatoma sp.            |    |    | 0   | 0   |    |    | 0   | 0   | 0.2 |
| Chironomidae            |    |    |     |     |    |    |     |     |     |
| Chironomus sp.          |    |    | 0   | 0   |    |    | 0   | 0   | 0.0 |
| Cryptochironomus sp.    |    |    | 0   | 0   | 1  |    | 0   | 1   | 16  |
| Demicryptochironomus    |    |    | 0   | 0   |    |    | 0   | 0   | 2.0 |
| sp.                     |    |    |     |     |    |    |     |     |     |
| Microtendipes sp.       | 17 | 6  | 60  | 77  | 32 | 2  | 40  | 72  | 84  |
| Nilothauma sp.          |    |    | 0   | 0   |    |    | 0   | 0   | 1.6 |
| Paralauterborniella sp. |    | 1  | 10  | 10  |    |    | 0   | 0   | 5.4 |
| Polypedilum spp.        | 2  | 13 | 130 | 132 | 4  | 15 | 300 | 304 | 220 |
| Cladotanytarsus sp.     |    |    | 0   | 0   |    |    | 0   | 0   | 11  |
| Micropsectra sp.        |    |    | 0   | 0   |    |    | 0   | 0   | 1.6 |
| Paratanytarsus sp.      |    |    | 0   | 0   |    |    | 0   | 0   | 0.0 |
| Rheotanytarsus sp.      |    | 1  | 10  | 10  | 1  | 2  | 40  | 41  | 12  |
| Stempellinella sp.      |    |    | 0   | 0   |    |    | 0   | 0   | 0.0 |
| Sublettea sp.           |    | 1  | 10  | 10  | 1  | 1  | 20  | 21  | 16  |
| Tanytarsus sp.          |    |    | 0   | 0   |    | 1  | 20  | 20  | 17  |
| Potthastia longimana    | 2  | 2  | 20  | 22  | 1  |    | 0   | 1   | 7.4 |
| gp.                     |    |    |     |     |    |    |     |     |     |
| Orthocladiinae          |    | 1  | 10  | 10  |    |    | 0   | 0   | 2.0 |

| Corynoneura sp.            |          |     | 0    | 0    |    |    | 0    | 0    | 0.0  |
|----------------------------|----------|-----|------|------|----|----|------|------|------|
| Cricotopus/Orthocladiu     | 31       | 128 | 1280 | 1311 | 67 | 71 | 1420 | 1487 | 1207 |
| s spp.                     |          |     |      |      |    |    |      |      |      |
| Epoicocladius sp.          |          |     | 0    | 0    |    |    | 0    | 0    | 0.2  |
| Eukiefferiella sp.         |          |     | 0    | 0    |    |    | 0    | 0    | 0.0  |
| Lopescladius sp.           |          |     | 0    | 0    | 1  |    | 0    | 1    | 0.4  |
| Nanocladius sp.            |          |     | 0    | 0    |    |    | 0    | 0    | 3.6  |
| Parakiefferiella sp.       | 1        | 13  | 130  | 131  |    | 2  | 40   | 40   | 92   |
| Synorthocladius sp.        |          |     | 0    | 0    |    |    | 0    | 0    | 4.0  |
| <i>Tvetenia</i> sp.        | 5        | 1   | 10   | 15   | 12 |    | 0    | 12   | 15   |
| <i>Telopelopia</i> sp.     |          |     | 0    | 0    |    |    | 0    | 0    | 0.2  |
| <i>Thienemannimyia</i> gp. | 7        | 12  | 120  | 127  | 6  | 6  | 120  | 126  | 141  |
|                            |          |     | 0    | 0    |    |    | 0    | 0    | 2.0  |
|                            |          |     | 0    | 0    |    |    | 0    | 0    | 2.0  |
| Hydracarina                | 3        | 5   | 50   | 53   | 2  | 1  | 20   | 22   | 23   |
| CRUSTACEA                  | <u> </u> | 0   | 00   | 00   | 2  |    | 20   | ~~~  | 23   |
| Copepoda                   |          |     |      |      |    |    |      |      |      |
| Cyclopoida                 |          |     | 0    | 0    |    |    | 0    | 0    | 0.0  |
| Ostracoda                  |          |     |      | -    |    |    | -    | -    |      |
| Candona sp.                |          | 1   | 10   | 10   |    |    | 0    | 0    | 2.0  |
| llyocypris sp.             |          |     | 0    | 0    |    |    | 0    | 0    | 0.0  |
| Limnocythere sp.           |          |     | 0    | 0    |    |    | 0    | 0    | 0.0  |
| Amphipoda                  |          |     |      |      |    |    |      |      |      |
| Gammarus lacustris         |          |     | 0    | 0    |    |    | 0    | 0    | 0.0  |
| Hyalella azteca            |          |     | 0    | 0    |    |    | 0    | 0    | 0.0  |
| Decapoda                   |          |     |      |      |    |    |      |      |      |
| Orconectes virilis         |          |     | 0    | 0    |    |    | 0    | 0    | 0.0  |
| OLIGOCHAETA                |          |     |      |      |    |    |      |      |      |
| Enchytraeidae              |          | 2   | 20   | 20   |    |    | 0    | 0    | 8.8  |
| Naididae                   | 1        | 7   | 70   | 71   |    | 1  | 20   | 20   | 72   |
| Tubificidae                |          |     | 0    | 0    |    |    | 0    | 0    | 0.0  |
| GASTROPODA                 |          |     |      |      |    |    |      |      |      |

| Ferrissia sp.       | 5   |     | 0    | 5    | 3   |     | 0    | 3    | 10   |
|---------------------|-----|-----|------|------|-----|-----|------|------|------|
| PELECYPODA          |     |     |      |      |     |     |      |      |      |
| <i>Pisidium</i> sp. |     |     | 0    | 0    |     |     | 0    | 0    | 0.0  |
| NEMATODA            |     | 1   | 10   | 10   |     |     | 0    | 0    | 12   |
| Total Taxa          | 27  | 25  | 25   | 34   | 29  | 13  | 13   | 32   | 36   |
| Total Numbers       | 258 | 213 | 2130 | 2388 | 263 | 105 | 2100 | 2363 | 2278 |
|                     |     |     |      |      |     |     |      |      |      |

| DO(mg/L) | Temperature(°C) | Depth(m) | Area(m <sup>2</sup> ) | V (m/s) | Perimeter(m) | μ(kg(m*s)) | ρ (kg/m³) |
|----------|-----------------|----------|-----------------------|---------|--------------|------------|-----------|
| 9.83     | 8               | 0.12     | 0.053                 | 0.066   | 1.1          | 0.0014     | 1000      |
| 9.86     | 8               | 0.12     | 0.053                 | 0.066   | 1.1          | 0.0014     | 1000      |
| 7.71     | 8               | 0.12     | 0.056                 | 0.064   | 1.2          | 0.0014     | 1000      |
| 8.03     | 8.5             | 0.12     | 0.056                 | 0.063   | 1.2          | 0.0014     | 1000      |
| 5.54     | 8.5             | 0.12     | 0.056                 | 0.063   | 1.2          | 0.0014     | 1000      |
| 5.64     | 8.5             | 0.12     | 0.055                 | 0.065   | 1.2          | 0.0014     | 1000      |
| 4.38     | 6               | 0.13     | 0.059                 | 0.060   | 1.2          | 0.0015     | 1000      |
| 3.83     | 6               | 0.13     | 0.061                 | 0.059   | 1.2          | 0.0015     | 1000      |
| 4.92     | 6               | 0.13     | 0.059                 | 0.060   | 1.2          | 0.0015     | 1000      |
| 6.95     | 6               | 0.14     | 0.062                 | 0.057   | 1.2          | 0.0015     | 1000      |
| 7.09     | 5               | 0.14     | 0.062                 | 0.057   | 1.2          | 0.0015     | 1000      |
| 9.02     | 6               | 0.13     | 0.059                 | 0.061   | 1.2          | 0.0015     | 1000      |
| 9.04     | 6               | 0.15     | 0.066                 | 0.054   | 1.2          | 0.0015     | 1000      |
| 5.67     | 6               | 0.13     | 0.059                 | 0.060   | 1.2          | 0.0015     | 1000      |
| 5.76     | 6               | 0.14     | 0.064                 | 0.056   | 1.2          | 0.0015     | 1000      |
| 2.47     | 6               | 0.12     | 0.054                 | 0.066   | 1.1          | 0.0015     | 1000      |
| 2.73     | 6               | 0.14     | 0.066                 | 0.054   | 1.2          | 0.0015     | 1000      |
| 6.12     | 5               | 0.13     | 0.060                 | 0.059   | 1.2          | 0.0015     | 1000      |
| 6.23     | 6               | 0.13     | 0.059                 | 0.060   | 1.2          | 0.0015     | 1000      |
| 0.08     | 6               | 0.12     | 0.054                 | 0.066   | 1.1          | 0.0015     | 1000      |
| 0        | 6               | 0.12     | 0.054                 | 0.065   | 1.1          | 0.0015     | 1000      |
| 2.13     | 8               | 0.14     | 0.064                 | 0.056   | 1.2          | 0.0014     | 1000      |
| 2.63     | 8               | 0.14     | 0.064                 | 0.056   | 1.2          | 0.0014     | 1000      |
| 8.44     | 8               | 0.12     | 0.054                 | 0.066   | 1.1          | 0.0014     | 1000      |
| 8.48     | 8               | 0.14     | 0.066                 | 0.054   | 1.2          | 0.0014     | 1000      |
| 6.99     | 8               | 0.12     | 0.054                 | 0.067   | 1.1          | 0.0014     | 1000      |
| 7.19     | 8               | 0.14     | 0.063                 | 0.056   | 1.2          | 0.0014     | 1000      |
| 4.14     | 8               | 0.12     | 0.054                 | 0.066   | 1.1          | 0.0014     | 1000      |
| 4.4      | 8               | 0.14     | 0.066                 | 0.054   | 1.2          | 0.0014     | 1000      |

TABLE C3 Calculated independent variables for all of the replicates from the flume experiment to determine the variables that affect benthic invertebrate drift rate

| 5.01 | 5   | 0.12 | 0.054 | 0.062 | 1.1 | 0.0015 | 1000 |
|------|-----|------|-------|-------|-----|--------|------|
| 4.54 | 5   | 0.13 | 0.061 | 0.056 | 1.2 | 0.0015 | 1000 |
| 4.96 | 4.5 | 0.13 | 0.061 | 0.056 | 1.2 | 0.0015 | 1000 |
| 5.85 | 5   | 0.11 | 0.051 | 0.067 | 1.1 | 0.0015 | 1000 |
| 5.66 | 5   | 0.14 | 0.061 | 0.055 | 1.2 | 0.0015 | 1000 |
| 5.77 | 5   | 0.13 | 0.061 | 0.056 | 1.2 | 0.0015 | 1000 |
| 6.02 | 7   | 0.12 | 0.053 | 0.065 | 1.1 | 0.0014 | 1000 |
| 6.06 | 7   | 0.13 | 0.061 | 0.056 | 1.2 | 0.0014 | 1000 |
| 6.18 | 7   | 0.13 | 0.060 | 0.057 | 1.2 | 0.0014 | 1000 |
| 0.77 | 7   | 0.11 | 0.048 | 0.071 | 1.1 | 0.0014 | 1000 |
| 1.47 | 7   | 0.15 | 0.068 | 0.050 | 1.2 | 0.0014 | 1000 |
| 3.19 | 8   | 0.10 | 0.047 | 0.073 | 1.1 | 0.0014 | 1000 |
| 2.95 | 8   | 0.14 | 0.066 | 0.052 | 1.2 | 0.0014 | 1000 |

TABLE C4 Calculated independent variables and dependent benthic invertebrate drift rates for Ephemeroptera (E),<br/>Plecoptera (P), Trichoptera (T), Diptera (D), other benthic invertebrate species (O) and total benthic invertebrate<br/>species (To), for all of the replicates from the flume experiment to determine the variables that affect benthic<br/>invertebrate drift rate (continued)TurbShear(m/s)E(%drift/min)P(%drift/min)D(%drift/min)O(%drift/min)To(%drift/min)

| dini  | Snear(m/s) | E(%driff/min) | P(%drift/min) | i (%drift/min) | D(%aritt/min) | O(%aritt/min) | i o(%aritt/min) |
|-------|------------|---------------|---------------|----------------|---------------|---------------|-----------------|
| ulenc |            |               |               |                |               |               |                 |
| e(Re) |            |               |               |                |               |               |                 |
| 2197  | 0.0066     | 1.7           | 25            | 3.4            | 0             | 0.71          | 0.40            |
| 2197  | 0.0066     | 5.2           | 75            | 5.1            | 0.069         | 2.8           | 0.96            |
| 2202  | 0.0064     | 7.0           | 75            | 2.5            | 0.069         | 1.4           | 0.73            |
| 2227  | 0.0063     | 12            | 75            | 4.2            | 0.28          | 0             | 1.1             |
| 2215  | 0.0063     | 12            | 75            | 4.2            | 0.21          | 1.4           | 1.1             |
| 2226  | 0.0065     | 7.0           | 75            | 0              | 0.069         | 2.8           | 0.68            |
| 2037  | 0.0060     | 0.95          | 75            | 2.4            | 0.12          | 0.70          | 0.34            |
| 2037  | 0.0059     | 1.9           | 75            | 3.3            | 0.12          | 0             | 0.37            |
| 2031  | 0.0060     | 5.7           | 0             | 2.0            | 0.17          | 0             | 0.41            |
| 2010  | 0.0057     | 2.8           | 75            | 2.0            | 0.086         | 0             | 0.29            |
| 1963  | 0.0057     | 3.8           | 0             | 0.82           | 0.029         | 0             | 0.17            |
| 2060  | 0.0061     | 2.8           | 0             | 1.2            | 0.029         | 0             | 0.17            |
| 1977  | 0.0054     | 0.95          | 0             | 0.41           | 0             | 0             | 0.049           |
| 2039  | 0.0060     | 7.6           | 0             | 2.0            | 0.058         | 0             | 0.37            |
| 2007  | 0.0056     | 6.6           | 0             | 2.4            | 0             | 0             | 0.32            |
| 2096  | 0.0066     | 1.9           | 75            | 2.4            | 0.20          | 0.70          | 0.44            |
| 1986  | 0.0054     | 2.8           | 75            | 1.6            | 0.058         | 0.70          | 0.29            |
| 1969  | 0.0059     | 3.8           | 75            | 2.6            | 0.12          | 0             | 0.53            |
| 2045  | 0.0060     | 6.8           | 75            | 2.6            | 0.27          | 0.88          | 0.85            |
| 2078  | 0.0066     | 8.3           | 75            | 7.4            | 0.24          | 0.44          | 1.3             |
| 2066  | 0.0065     | 19            | 75            | 14             | 1.1           | 1.8           | 3.0             |
| 2126  | 0.0056     | 7.5           | 75            | 3.7            | 0.59          | 0.88          | 1.2             |
| 2126  | 0.0056     | 4.5           | 75            | 3.7            | 0.59          | 1.3           | 1.1             |
| 2216  | 0.0066     | 6.0           | 38            | 2.6            | 0.27          | 0             | 0.72            |
| 2100  | 0.0054     | 5.3           | 0             | 1.9            | 0.12          | 0             | 0.47            |

| 2220 | 0.0067 | 9.8 | 75 | 2.2 | 0.43  | 0.88 | 1.1  |
|------|--------|-----|----|-----|-------|------|------|
| 2124 | 0.0056 | 9.8 | 75 | 2.2 | 0.24  | 0.88 | 0.91 |
| 2210 | 0.0066 | 7.5 | 75 | 4.5 | 0.78  | 0.44 | 1.4  |
| 2100 | 0.0054 | 3.8 | 75 | 4.1 | 0.59  | 0.88 | 1.1  |
| 1917 | 0.0062 | 2.1 | 25 | 6.7 | 0.49  | 1.7  | 0.79 |
| 1871 | 0.0056 | 1.0 | 25 | 5.8 | 0.35  | 0    | 0.57 |
| 1848 | 0.0056 | 0   | 75 | 2.9 | 0.69  | 1.7  | 0.86 |
| 1946 | 0.0067 | 6.2 | 75 | 7.7 | 0.49  | 0    | 0.98 |
| 1870 | 0.0055 | 6.2 | 25 | 2.9 | 0.55  | 0    | 0.83 |
| 1874 | 0.0056 | 2.1 | 50 | 7.7 | 0.35  | 0    | 0.70 |
| 2061 | 0.0065 | 2.1 | 25 | 3.8 | 0.42  | 0    | 0.60 |
| 1989 | 0.0056 | 0   | 0  | 2.9 | 0.069 | 0    | 0.16 |
| 2002 | 0.0057 | 4.1 | 0  | 2.9 | 0.24  | 0    | 0.44 |
| 2097 | 0.0070 | 3.1 | 0  | 7.7 | 0.31  | 1.7  | 0.67 |
| 1920 | 0.0050 | 4.1 | 25 | 3.8 | 0.21  | 1.7  | 0.51 |
| 2165 | 0.0073 | 2.1 | 0  | 5.8 | 0.52  | 1.7  | 0.76 |
| 2011 | 0.0052 | 1.0 | 50 | 5.8 | 0.31  | 1.7  | 0.60 |