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Abstract  23 

Punicic acid (PuA; 18: 3Δ9cis,11trans,13cis) is an unusual 18-carbon fatty acid bearing three conjugated double 24 

bonds. It has been shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-25 

obesity, antioxidant, and anti-inflammatory properties. Pomegranate (Punica granatum) seed oil contains 26 

approximately 80% PuA, and is currently the major natural source of this remarkable fatty acid. While both PuA and 27 

pomegranate seed oil have been used as functional ingredients in foods and cosmetics for some time, their value in 28 

pharmaceutical/medical and industrial applications are presently under further exploration. Unfortunately, the 29 

availability of PuA is severely limited by the low yield and unstable supply of pomegranate seeds. In addition, 30 

efforts to produce PuA in transgenic crops have been limited by a relatively low content of PuA in the resulting seed 31 

oil. The production of PuA in engineered microorganisms with modern fermentation technology is therefore a 32 

promising and emerging method with the potential to resolve this predicament. In this paper, we provide a 33 

comprehensive review of this unusual fatty acid, covering topics ranging from its natural sources, biosynthesis, 34 

extraction and analysis, bioactivity, health benefits and industrial applications, to recent efforts and future 35 

perspectives on the production of PuA in engineered plants and microorganisms.  36 
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 41 

Introduction  42 

Conjugated linolenic acids (CLNA) are polyunsaturated fatty acids bearing three conjugated double bonds 43 

(alternating single and double bonds). The most common positional and geometric CLNA isomers in seed oil 44 

include punicic acid (PuA; 18: 3Δ9cis,11trans,13cis), α-eleostearic acid (18: 3Δ9cis,11trans,13trans), calendic acid (18: 3Δ 45 
8trans,10trans,12cis), jacaric acid (18: 3Δ 

8cis,10trans,12cis), and catalpic acid (18:3Δ9trans,11trans,13cis) (Fig. 1a; Smith 1971). PuA 46 

has drawn considerable interest over the past two decades as researchers continuously unravel its extensive array of 47 

beneficial properties. Among others, it has been shown to exhibit anti-cancer, anti-diabetes, anti-obesity, 48 

hypolipidemic, and anti-inflammatory activities through various in vitro and in vivo animal studies (Suzuki et al. 49 

2001; Arao et al. 2004; Kohno et al. 2004; Koba et al. 2007; Boussetta et al. 2009; Grossmann et al. 2010; 50 

Costantini et al. 2014; Wang et al. 2014; Yuan et al. 2014; Aruna et al. 2016). While the seeds of pomegranate 51 

(Punica granatum, Fig. 1b) are the major natural source of PuA, this plant is not suitable for large-scale agronomic 52 

production due to its low yield, low seed oil production and restricted cultivation to sub-tropical and tropical 53 

climates (Takagi and Itabashi 1981; Joh et al. 1995). Consequently, due to its beneficial bioactivities and limited 54 

availability, efforts are ongoing to generate a biotechnological platform for PuA production through the metabolic 55 

engineering of plants and microorganisms (Mietkiewska et al. 2014a; 2014b; Garaiova et al. 2017). Although there 56 

is increasing interest in PuA production and utilization, a comprehensive review about PuA-related research is 57 
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lacking. Here we describe recent advances in PuA research, focusing on its bioactivities, natural sources, extraction, 58 

and biotechnological production in plants and microorganisms. 59 

 60 

Natural sources, biosynthesis, extraction and analysis of punicic acid 61 

PuA is naturally present as a component of triacylglycerol (TAG), which is a storage lipid making up the 62 

major constituent of vegetable oil, in the seeds of some terrestrial plant species. The most abundant natural source of 63 

this fatty acid is by far pomegranate (P. granatum), which is a member of the Punicaceae family (recently re-64 

classified within the Lythraceae family). Pomegranate contains up to 80% PuA and less than 4% other CLNAs in its 65 

seed oil (Takagi and Itabashi 1981), the content of which depends on genotype and ranges from 12–20% of the seed 66 

weight (Özgül-Yücel 2005; Khoddami et al. 2014). While pomegranate is certainly the major source of PuA, seed 67 

oils from several species of the Cucurbitaceae family also contain relatively high amounts of this fatty acid, and 68 

include Ecballium elaterium (22%), Fevillea trilobata (30%), Trichosanthes anguina (43%), T. bracteata (42%), T. 69 

nervifolia (52%), T. kirilowii (40%), and Momordica balsamina (50%) (Chisholm and Hopkins 1964; Tulloch and 70 

Bergter 1979; Gaydou et al. 1987; Lakshminarayana et al. 1988; Joh et al. 1995).  71 

To accumulate PuA in seed oil, these plant species have evolved a unique mechanism for both synthesizing 72 

this fatty acid and channeling it from phospholipids into TAG. TAG biosynthesis begins with fatty acid biosynthesis 73 

inside the plastid. The de novo synthesized fatty acids, mostly in the form of palmitic (16:0), stearic (18:0) and oleic 74 

acid (18:1Δ9cis), are then converted to acyl-Coenzyme A (CoA) through the action of acyl-CoA synthetase (ACS) 75 

before being exported out of the plastid for TAG assembly (Ohlrogge and Jaworski 2003; Harwood 2005; Chapman 76 

and Ohlrogge 2012). In plants producing oils enriched in conjugated fatty acids, the nascent fatty acids at the level 77 

of phosphatidylcholine (PC) undergo further modifications such as desaturation and conjugation on the ER (Cahoon 78 

et al. 1999). Oleic acid in the sn-2 position of PC is first desaturated to linoleic acid (18:2Δ9cis,12cis) and α-linolenic 79 

acid (18:3Δ9cis,12cis,15cis) via the sequential catalytic action of fatty acid desaturase (FAD) 2 and FAD3, respectively 80 

(Browse et al. 1993; Vrinten et al. 2005). The subsequent formation of conjugated fatty acids is then catalyzed by 81 

fatty acid conjugases (FADXs), which are divergent forms of FAD2 (Hornung et al. 2002; Iwabuchi et al. 2003; 82 

Mietkiewska et al. 2014a). In the developing seeds of T. kirilowii and P. granatum, FADXs catalyze the conversion 83 

of the Δ12cis double bond of linoleic acid to Δ11trans and Δ13cis double bonds to form PuA (Hornung et al. 2002; 84 

Iwabuchi et al. 2003). Similarly, FADXs in tung tree (Aleurites fordii) and Momordica charantia catalyze the 85 

conversion of the Δ12cis double bond of linoleic acid to Δ11trans and Δ13trans double bonds to produce α-eleostearic acid 86 

(Cahoon et al. 1999; Dyer et al. 2002). In the case of calendic acid, FADX from Calendula officinalis catalyzes the 87 

conversion of the Δ9cis double bond of linoleic acid to Δ8trans and Δ10trans double bonds (Cahoon et al. 2001; Qiu et al. 88 

2001). The formation of conjugated double bonds catalyzed by FADXs resulting in the production of PuA and other 89 

C18 conjugated fatty acids, such as α-eleostearic and calendic acid, are depicted in Fig. 2. 90 

Following the synthesis of conjugated fatty acids on PC, they can then be incorporated into TAG via several 91 

distinct acyl-editing routes (Fig. 2) (Chen et al. 2015; Bates 2016). TAG assembly occurs on the ER and involves 92 

the sequential acylation of sn-glycerol-3-phosphate (G3P) to yield TAG. This process is known as the Kennedy 93 
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pathway and is catalyzed by three acyl-CoA dependent acyltransferases, including sn-glycerol-3-phosphate 94 

acyltransferase (GPAT), lysophosphatidic acid acyltransferase (LPAAT) and diacylglycerol acyltransferase (DGAT) 95 

(Snyder et al. 2009). Phosphatidic acid phosphatase (PAP) catalyzes the removal of the phosphate group from the 96 

glycerol backbone prior to the final acylation step. Fatty acids, including those that are modified, may also be 97 

channeled from PC to TAG directly through the catalytic action of phospholipid:diacylglycerol acyltransferase 98 

(PDAT; Kim et al. 2011; van Erp et al. 2011; Pan et al. 2013). In addition, fatty acids modified on the sn-2 position 99 

of PC can enter the acyl-CoA pool via a reverse reaction catalyzed by lysophosphatidylcholine acyltransferase 100 

(LPCAT) (Stymne and Stobart 1984; Lager et al. 2013; Pan et al., 2015) or combined action of phospholipase A2 101 

(PLA2) and long chain acyl-CoA synthetase (LACS; Lands 1960). The subsequent acylation of the resulting 102 

lysophosphatidylcholine (LPC) with an unmodified acyl-CoA through the forward action of LPCAT regenerates PC 103 

for further modifications. Exchange of the acyl groups between the sn-1 and sn-2 positions of PC may also occur 104 

through the catalytic action of glycerophosphocholine acyltransferase (GPCAT) and lysophosphatidylcholine 105 

transacylase (LPCT) (Lager et al. 2015). Furthermore, PC-modified fatty acids can also be incorporated into TAG 106 

through a sn-1,2-diacylglycerol (DAG) intermediate. In this instance, de novo synthesized DAG can be converted 107 

into PC through the catalytic action of CDP-choline:1,2-diacyl-sn-gycerol cholinephosphotransferase (CPT) (Slack 108 

et al. 1983; Slack et al. 1985), and converted back to DAG and/or phosphatidic acid (PA) once the acyl chains on PC 109 

have been modified via the catalytic action of phospholipase C and/or D, respectively (Chapman and Ohlrogge 2012; 110 

Bates et al. 2013). Finally, phosphatidylcholine: diacylglycerol cholinephosphotransferase (PDCT) also catalyzes 111 

the conversion between PC and DAG (Lu et al. 2009; Wickramarathna et al. 2015; see Fig. 2 for a schematic 112 

diagram of TAG biosynthesis in plants producing conjugated fatty acids). 113 

The commercial production of PuA largely relies on the extraction of seed oils from producer plants. Various 114 

extraction procedures, including cold pressing (Khoddami et al. 2014), solvent extraction with stirring (Abbasi et al. 115 

2008), Soxhlet extraction (Abbasi et al. 2008; Habibnia et al. 2012), microwave irradiation or ultrasonic irradiation 116 

solvent extraction (Abbasi et al. 2008), supercritical CO2 extraction (Abbasi et al. 2008; Liu et al. 2009; Sargolzaei 117 

and Moghaddam 2013), and superheated solvent extraction (Eikani et al. 2012) have been used to extract 118 

pomegranate seed oil. In general, the oil yield largely depends on the efficiencies of the different extraction methods. 119 

The lowest yields of 1~4% (dry weight, extraction efficiency < 22%) and 6.9% (dry weight, extraction efficiency 120 

54%) are obtained from supercritical CO2 extraction and cold pressing, respectively, whereas the highest yield of 121 

22.18% (dry weight, extraction efficiency 124%) is obtained using superheated solvent extraction (Eikani et al. 122 

2012). Although cold pressing results in low yield, this method provides an environmentally friendly process for 123 

pomegranate seed oil extraction and the resulting oils display enhanced physico-chemical properties including lower 124 

atherogenicity and higher thrombogenicity compared to oils extracted using organic solvents (Khoddami et al. 125 

2014). Superheated solvent extraction provides a higher extraction efficiency and yields oil with a similar fatty acid 126 

profile to that obtained using the cold pressing approach (Eikani et al. 2012). Supercritical CO2 extraction, on the 127 

other hand, yields oils with a similar fatty acid profile to those extracted using solvents, but results in an extracted 128 

oil with a higher tocopherol content (Liu et al. 2009).  129 
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Since the conjugated fatty acids derived from plant seed oils are usually composed of different positional and 130 

geometric isomers (Özgül-Yücel 2005), a reliable method for the separation and characterization of each conjugated 131 

fatty acid isomer is necessary. Gas chromatography (GC)-based methods are the most commonly used for the 132 

separation, quantification and identification of PuA and other conjugated fatty acids from plant seed oils (Joh et al. 133 

1995; Cahoon et al. 1999; Cahoon et al. 2001; Hornung et al. 2002; Cahoon et al. 2006; Mietkiewska et al. 2014b; 134 

Garaiova et al. 2017). These methods, however, only provide information regarding the C=C double bond location 135 

rather than the bond configuration (i.e., cis versus trans) (Cao et al. 2007). Thus, they cannot be used to separate 136 

PuA from its CLNA isomers, which display very minor positional and geometrical differences in their structures. 137 

For example, GC in conjunction with acetonitrile chemical ionisation tandem MS was successfully used to 138 

determine both the position and configuration of the double bonds of conjugated linoleic acid (CLA) isomers 139 

(Michaud et al. 2003), However, when the same technique was applied to PuA and other CLNAs, only the double 140 

bond position, but not configuration, could be obtained (Lawrence and Brenna 2006). To fully characterize the 141 

double bond position and configuration of CLNA isomers, additional separation or characterization methods are 142 

required.  These methods include thin layer chromatography (TLC) (Sita Devi 2003), capillary electrophoresis 143 

(Bohlin et al. 2003), gas liquid chromatography (Takagi and Itabashi 1981), silver ion impregnated high-144 

performance liquid chromatography (Ag+-HPLC) (Cao et al. 2006; Chen et al. 2007), and NMR spectroscopy (Cao 145 

et al. 2006; Cao et al. 2007; Sassano et al. 2009), all of which have been successfully applied to separate PuA from 146 

other CLNA isomers and thus provide alternative approaches for geometrical identification.   147 

 148 

Bioactivity, health benefits and potential industrial uses of punicic acid 149 

PuA has been reported to exhibit a host of beneficial therapeutic benefits (Fig. 3; reviewed by Shabbir et al. 150 

2017, Yuan et al. 2014; AlMatar et al. 2017). As cancer remains to be the leading cause of death in developed 151 

countries, there is a need for a safe and acceptable bioactive oil that could be used in prevention and treatment. In 152 

the case of prostate cancer, pomegranate seed oil has been shown to suppress the proliferation of a number of 153 

different prostate cancer cell lines, including LNCaP, PC-3 and DU-145 (Albrecht et al. 2004). Although the other 154 

components of the pomegranate fruit (namely ellagic acid, caffeic acid and luteolin) also have anti-cancer activity 155 

against human prostate cancer cells (Lansky et al. 2005a), PuA has been demonstrated to have anti-cancer activity 156 

on its own and act synergistically with the other bioactives in pomegranate (Lansky et al. 2005a). Indeed, combining 157 

PuA, caffeic acid and luteolin in equal amounts (3 µg/mL) was reported to synergistically inhibit the invasive 158 

properties of PC-3 prostate cancer cells (Lansky et al. 2005b). PuA has also been shown to reduce the growth of 159 

LNCaP cells through effects on antiandrogenic and proapototic signals (Gasmi and Sanderson 2010). In another 160 

study involving a mouse (Mus musculus) model injected with human prostate cancer cells, PuA in combination with 161 

other pomegranate phytochemicals (luteolin and ellagic acid) inhibited the progression of tumor growth, migration 162 

and chemotaxis towards CXCL12, a chemokine involved in metastasis (Wang et al. 2014).  163 

PuA (Grossmann et al. 2010) and a PuA-enriched pomegranate seed oil fraction (Costantini et al. 2014) were 164 

also found to inhibit the proliferation of triple negative (MDA-MB-231) and estrogen receptor positive (MCF-7) 165 
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breast cancer cells. These studies suggest that PuA induced apoptosis and mitochondrial membrane potential 166 

disruption, possibly through mechanisms related to lipid peroxidation and protein kinase C pathways (Grossmann et 167 

al. 2010) or through a reduction of inflammatory mediators (Costantini et al. 2014). There is also evidence for a 168 

beneficial effect of PuA or pomegranate seed oil and PuA against other forms of cancer, including bladder 169 

carcinoma (Wang et al. 2013), colon adenocarcinoma (Kohno et al. 2004, Constantini et al. 2014), skin cancer (Hora 170 

et al. 2003), liver cancer (Costantini et al. 2014) and leukemia (Suzuki et al. 2001). 171 

PuA has also been found to have potentially beneficial effects on diabetes/insulin intolerance in various 172 

animal models (reviewed by Shabbir et al. 2017). For example, an obese rat strain with type II diabetes (Otsuka 173 

Long Evans Tokushima Fatty rats) fed with PuA exhibited reduced hepatic TAG compared to the control group 174 

(Arao et al. 2004). In this study, the mechanism of TAG reduction was partly attributed to the inhibition of a ∆9 175 

desaturase. Similarly, in rats with streptozotocin-induced type II diabetes, the addition of pomegranate seed extract 176 

to their diet lowered their fasting blood glucose levels, thus reducing the incidence of obesity and insulin resistance 177 

(Das et al. 2001). However, in the same model, feeding PuA increased insulin secretion but did not change blood 178 

glucose levels (Nekooeian et al. 2014).  It has been suggested that PuA may serve as an agonist of peroxisome 179 

proliferator-activated receptors (PPAR), which are present in adipose tissue and are common drug targets of anti-180 

diabetic agents (Anusree et al. 2015). Pomegranate seed oil has also been shown to prevent obesity induced by a 181 

high-fat diet and enhance insulin sensitivity in mice (Vroegrijk et al. 2011), consequently reducing the tendency to 182 

acquire type II diabetes (McFarlin et al. 2009). Supplementation with PuA has also been shown to reduce the effects 183 

of diabetes in mouse models through its antioxidant and anti-inflammatory activities (Saha and Ghosh 2012). In 184 

vitro studies have suggested some other mechanisms behind PuA activity. For example, incubation with PuA 185 

stimulated adiponectin secretion and upregulated GLUT4 expression and translocation in adipocytes, which is 186 

possibly mediated by the high binding affinity of PuA to PPARγ (Anusree et al. 2014). Furthermore, mitochondrial 187 

dysfunction is observed in insulin resistant states such as diabetes, and PuA treatment improved glucose uptake and 188 

prevented changes in mitochondrial proteins associated with dysfunction in 3T3-L1 adipocytes (Anusree et al. 189 

2015).  More recent data from this group found that in this in vitro model, PuA prevented the deleterious effects of 190 

TNF-α on leptin and insulin receptor substrate production (Anusree et al. 2017). Despite these promising results, not 191 

all animal studies have found beneficial effects of feeding PuA/pomegranate seed oil (reviewed by Banihani et al. 192 

2013) and further research is needed. 193 

PuA may also have beneficial effects on a number of cardiometabolic risk factors. In several mice models, 194 

feeding PuA reduced adipose tissue accumulation and suppressed adipogenesis (reviewed by Shabbir et al. 2017).  195 

For example, mice supplemented with PuA have been shown to display decreased body fat mass, possibly through 196 

the stimulation of carnitine-palmitoyl transferase in adipose tissues (Koba et al. 2007), while mice supplemented 197 

with PuA exhibited reduced perirenal and epididymal adipose tissues and decreased hepatic TAG accumulation 198 

(Yuan et al. 2009). Consistent with this, supplementation with pomegranate seed oil has been shown to lower TAG 199 

in the plasma lipids of hypercholesterolemic rats (Elbandy and Ashoush 2012). PuA has also been shown to display 200 

anti-inflammatory activity in mice and sheep (reviewed by Shabbir et al. 2017, Yuan et al. 2015). In a rat model 201 

with 2, 4, 6-trinitrobenzenesulfonic acid-induced colitis, feeding PuA relieved colon inflammation by inhibiting 202 
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TNFα-induced priming of NADPH oxidase, an enzyme associated with the intestinal inflammatory response 203 

(Boussetta et al. 2009). In other studies, PuA has been shown to relieve intestinal inflammation and activate PPARγ, 204 

a key regulator of inflammatory and immune responses (Bassaganya-Riera et al. 2011; Yuan et al. 2015). In 205 

neonatal rats, oral administration of 1.5% pomegranate seed oil decreased the incidence and severity of necrotizing 206 

enterocolitis, a life threatening intestinal inflammatory condition observed in preterm infants (Coursodon Boyiddle 207 

et al. 2012).  In this study, improved outcome was associated with improvements in intestinal integrity and 208 

decreased mRNA encoding inflammatory cytokines (Coursodon Boyiddle et al. 2012). Another mechanism for the 209 

anti-inflammatory effects of PuA may be its antioxidant properties (Saha and Ghosh 2009; Saha and Ghosh 2012), 210 

which likely contribute to the anti-nephrotoxic effects reported in rats (Boroushaki et al. 2014).   211 

In summary, there is a growing body of literature that ingesting PuA may have beneficial effects on a variety 212 

of chronic health conditions. Although most of this work has been done in cell culture and animal models, PuA and 213 

other pomegranate-derived phytochemicals have been available on the market for a number of years as a 214 

nutraceutical, primarily in the form of powdered capsules (Newman et al. 2007). Carefully conducted clinical trials 215 

are needed to determine the potential benefits of this bioactive lipid for potential use in the prevention and treatment 216 

of chronic diseases.  217 

Although the use of PuA as a functional food product has been well-established, the possible industrial 218 

application of this fatty acid has yet to be explored in depth even though other CLNAs have been widely used in a 219 

number of industries. For example, α-eleostearic acid, which is found at high levels in tung tree oil, has been used 220 

for many years as an industrial drying oil for coating wood and as a component of different inks, coatings, and resin 221 

formulations (He et al. 2014). CLAs have also been used in the poultry industry as a feed supplement to improve 222 

meat quality (Suksombat et al. 2007; Cho et al. 2013; Jiang et al. 2014). The fact that PuA has limited availability as 223 

it is exclusively extracted from seeds that are not readily available almost certainly contributes to this lack of 224 

industrial interest, and it is therefore likely that the development of sustainable alternative sources of PuA would 225 

enable its full exploitation. 226 

 227 

Production of punicic acid in plants via genetic engineering  228 

Although a handful of plant species are known to naturally produce seed oils enriched in conjugated fatty 229 

acids (Smith 1971; Badami and Patil 1980; Takagi and Itabashi 1981; Joh et al. 1995), these plants (including 230 

pomegranate) usually possess challenging agronomic characteristics and are therefore not suitable for large-scale or 231 

widespread production. As a result, the price of pomegranate seed oil is generally very high, with the cost of oil of 232 

unknown quality varying from $2,000 - $100,000 USD per metric tonne (based on prices from 50 suppliers on 233 

www.alibaba.com, Accessed 15 November 2017). Therefore, one promising strategy to address our need for 234 

conjugated fatty acids is to produce them via the metabolic engineering of established oilseed crops. Varying 235 

degrees of success have been achieved thus far in the model plant Arabidopsis thaliana (hereafter Arabidopsis) and 236 

oilseed crops [e.g., canola (Brassica napus)] in terms of their genetic manipulation to produce conjugated fatty acids 237 

in the seed oil. However, even in the highest accumulators only exhibited modest PuA production at best (Table 1).   238 

http://www.alibaba.com/
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Both TkFADX (from T. kirilowii) and PgFADX (from P. granatum) have been found to recruit linoleic acid 239 

as substrate and convert its ∆12-double bond into conjugated ∆11trans and ∆13trans double bonds to form PuA (Hornung 240 

et al. 2002; Iwabuchi et al. 2003). These enzymes are bifunctional as they also exhibit ∆12-oleate desaturase activity 241 

(Iwabuchi et al. 2003). As expected, the expression of PgFADX and TkFADX in Arabidopsis led to the accumulation 242 

of PuA, but only at levels up to 4.4% (w/w) and 10.2% (w/w) of the total fatty acids in seeds, respectively (Iwabuchi 243 

et al. 2003). Similarly, over-expression of TkFADX in canola-type B. napus resulted in the production of transgenic 244 

lines that accumulated PuA up to only 2.5% of the seed oil (Koba et al. 2007). This limited accumulation of PuA in 245 

the seed oils of these transgenic plants may be due to the poor availability of the linoleic acid substrate for FADX, 246 

with less than 27% and 20% linoleic acid present in wild-type Arabidopsis and B. napus seeds, respectively. In 247 

addition, the low accumulation of PuA in transgenic Arabidopsis expressing FADX cDNAs was also accompanied 248 

by elevated levels of oleic acid, suggesting that the activity of FAD2 was somehow inhibited in these lines 249 

(Iwabuchi et al. 2003). Similar effects have also been observed in transgenic plants expressing cDNAs encoding 250 

other FAD2-like enzymes (Napier 2007). It is therefore possible that the conjugated fatty acid product may trigger 251 

the transcriptional repression of genes encoding other relevant enzymes in its biosynthetic pathway (Song et al. 252 

2017). Additionally, post-transcriptional gene silencing may occur in PgFADX transgenic lines considering the high 253 

sequence identity (>65%) between PgFADX and AtFAD2, and the fact that reduced AtFAD2 expression levels were 254 

observed in Arabidopsis plants expressing PgFADX (Mietkiewska et al. 2014b). To address these issues, PgFADX 255 

was expressed either alone or in combination with P. granatum FAD2 in an Arabidopsis fad3fae1 mutant 256 

background, leading to the accumulation of PuA in seed oil up to 11.5% in PgFADX lines and up to 21.0% in 257 

PgFAD2 + PgFADX over-expression lines (Mietkiewska et al. 2014b). Arabidopsis fad3fae1 mutant lines lack the 258 

activities of FAD3 and the fatty acid elongase 1 (FAE1) condensing enzyme, and thus provide a suitable fatty acid 259 

background with more than 50% linoleic acid available for conjugated fatty acid production (Smith et al. 2003). 260 

Along these same lines, when PgDGAT2 was expressed in conjunction with PgFADX and PgFAD2, the resulting 261 

PuA content in seeds increased up to 24.8% in Arabidopsis fad3fae1 transgenic lines. The efficiency with which the 262 

promoter contained within the transgenic cassette drives the expression of the PgFADX cDNA may also affect the 263 

yield of PuA in engineered plants. While the napin promoter was used in the aforementioned studies, the linin 264 

promoter has been found to be the most efficient for this purpose, leading to the accumulation of PuA in Arabidopsis 265 

seeds up to 13.2% of the total fatty acid content, which is 30% higher than that obtained using the napin promoter 266 

(Song et al. 2017). Considerable effort is also being devoted to the production of PuA in established oilseed crops, 267 

including canola-type B. napus and flax (Linum usitatissimum), and the results are promising (Weselake and 268 

Mietkiewska, 2014). 269 

Considering that up to 40% and 80% PuA accumulates in the oil of T. kirilowii (Joh et al. 1995) and P. 270 

granatum (Takagi and Itabashi 1981) seeds, respectively, the level of PuA that accumulates in transgenic plants has 271 

been modest at best. A major challenge that hinders the production of conjugated fatty acids in these plants involves 272 

the inefficient trafficking of conjugated fatty acids from PC into TAG (Cahoon et al. 2006; Mietkiewska et al. 2014a; 273 

2014b; Napier et al. 2014). Indeed, in contrast to P. granatum seeds in which PuA is predominantly present in TAG 274 

(60%) rather than PC (0.8%), transgenic Arabidopsis co-expressing PgFADX and PgFAD2 accumulated more PuA 275 
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in PC (12.5%) than TAG (6.6%) (Mietkiewska et al. 2014b). Therefore, it appears that native plants that naturally 276 

accumulate conjugated fatty acids have evolved unique mechanisms for efficiently channeling these fatty acids into 277 

TAG following their synthesis on PC (Mietkiewska et al. 2014a). To further increase conjugated fatty acid 278 

production in non-native species, it will therefore be necessary to first identify native acyl-trafficking enzymes from 279 

plants accumulating conjugated fatty acids and introduce them along with other necessary enzymes. Such an 280 

approach has shown great promise in terms of improving the accumulation of other unusual fatty acids. For instance, 281 

hydroxy fatty acid production was attained via the co-expression of cassettes encoding specialized acyltransferases 282 

and acyl-editing enzymes, including DGAT, PDAT, phospholipase A and PDCT (Burgal et al. 2008; van Erp et al. 283 

2011; Pan et al. 2013; Bayon et al. 2015; Wickramarathna et al. 2015). It has also been suggested that the 284 

introduction of exogenous lipid biosynthetic machinery from other plant sources into oilseed crops may lead to 285 

competition with the endogenous enzyme network, which could impose a limitation on accumulation of the desired 286 

target fatty acid (Vanhercke et al. 2013; van Erp et al. 2015). This is supported by recent research on producing 287 

unusual fatty acids in transgenic plants in which the accumulation of unusual fatty acids was limited by the 288 

competition between endogenous and transgenic isozymes (van Erp et al. 2015). Therefore, it may be possible to 289 

further enhance the accumulation of conjugated fatty acids in transgenic plants by reducing this competition through 290 

silencing the expression of endogenous genes encoding the enzymes which compete with those that are introduced. 291 

Moreover, since TAG is exclusively stored in lipid droplets, it has been suggested that plant seeds 292 

accumulating unusual fatty acids may have developed a mechanism allowing them to possess two or more pools of 293 

lipid droplets, each exclusively enriched in different TAG species. For instance, one pool of lipid droplets containing 294 

TAG enriched in common fatty acids might serve to provide precursors for the generation of cell membranes and 295 

signaling, whereas lipid droplets enriched in TAG species containing PuA might play a different role in seeds (e.g., 296 

germination, protection from predators, attraction of animals for its nutritional effects). The process by which 297 

various types of lipid droplets may coexist in a single cell is currently being investigated (Wolins et al. 2005; 298 

Fujimoto and Parton 2011; Hsieh et al. 2012; Ohsaki et al. 2014). Such studies might shed additional insight into 299 

PuA production in both engineered plants and microorganisms (as described in the section below) in the future. 300 

 301 

Biotechnological production of PuA in microorganisms 302 

Although plants naturally accumulating PuA have great industrial potential, many factors such as plant over-303 

utilization, climate-dependency, large space requirements and sensitivity to the environment are limiting in terms of 304 

the ever increasing demand of the growing market. In contrast, microorganisms could provide a less challenging 305 

alternative for PuA production due to their capacity to recycle industrial waste, minimal space requirements for 306 

controlled cultivation, rapid growth and wide availability of genetic resources and tools (Ledesma-Amaro 2015; Liu 307 

et al. 2017). For example, oleaginous microorganisms are considered a suitable source for renewable fuel production 308 

since these organisms accumulate more than 20% lipids per dry cell weight. Among them, the oleaginous yeast 309 

Yarrowia lipolytica, which is recognized as a safe microorganism for humans, has been successfully employed to 310 

produce a variety of fatty acids, including CLAs (reviewed in Ledesma-Amaro and Nicaud 2016). As an example, in 311 
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the case of 18:2Δ10trans,12cis CLA production, a strategy employing soybean-based growth media combined with 312 

multi-copy integration and co-expression of heterologous genes was used to greatly enhance its accumulation 313 

(Zhang et al. 2013; Ledesma-Amaro and Nicaud 2016). The lack of efficient and established genetic manipulation 314 

methods in oleaginous microorganisms, however, has restricted their widespread use until very recently.  315 

To date, only a small number of research groups have investigated the recombinant production of enzymes 316 

required for the synthesis of PuA in microorganisms. For example, the activities of native FADX from P. granatum 317 

(PgFADX) and T. kirilowii (TkFADX) have been characterized in the yeast Saccharomyces cerevisiae (Hornung et 318 

al. 2002; Iwabuchi et al. 2003). In these studies, the formation of PuA in strains heterologously expressing the 319 

corresponding cDNAs was not detected. Instead, linoleic acid and hexadecadienoic acid (16:2 ∆9cis,12cis) accumulated 320 

up to 1.2% (w/w), confirming that these FADX enzymes possessed FAD2 activity (Hornung et al. 2002; Iwabuchi et 321 

al. 2003). Further experiments have shown that PuA is only detected in strains expressing FADX after 322 

supplementation of the culture media with linoleic acid and that the accumulation of PuA was reduced at lower 323 

cultivation temperatures, which is in contrast to linoleic acid and hexadecadienoic acid formation derived from 324 

FAD2 desaturase activities (Hornung et al. 2002). In both studies, however, the heterologous production of PuA in S. 325 

cerevisiae reached less than 2 % (w/w) of total fatty acids, suggesting that as is the case for plants, additional 326 

modifications will be necessary to further improve PuA accumulation. 327 

Recently, we metabolically engineered the fission yeast Schizosaccharomyces pombe, which naturally has a 328 

high oleic acid content, to produce PuA by heterologously co-expressing codon optimized PgFAD2 and PgFADX 329 

coding sequences under the control of the strong, inducible, nmt1 promoter (Garaiova et al. 2017). In contrast to 330 

previous studies carried out in S. cerevisiae, expression of PgFADX on its own resulted in the production of PuA at 331 

levels up to 19.6% (w/w) of total fatty acids without any fatty acid supplementation. In addition to PuA 332 

accumulation, a limited production of linoleic acid up to 2.2% of total fatty acids was also observed in these strains. 333 

Co-expression of codon optimized PgFADX with PgFAD2 resulted in a further increase in PuA content up to 25.1% 334 

of total fatty acids (corresponding to 38.7 µg PuA/mL culture). In addition, differences were also noted in PuA 335 

accumulation dynamics between single and double expression strains. In cells expressing PgFADX alone, the level 336 

of PuA was steadily high from day 3 to day 6, with the maximal content occurring on day 4. In the case of cells co-337 

expressing PgFAD2 and PgFADX, PuA content only peaked at days 2 and 3. Interestingly, the accumulated PuA in 338 

S. pombe expressing PgFADX is mainly found at a single position of the glycerol backbone of TAG (Fig. 4), which  339 

is in contrast with pomegranate seed oil, where the majority of PuA incorporated into TAG occupies all three 340 

positions of the glycerol backbone (Fig. 4; Kaufman and Wiesman 2007). This indicates that S. pombe may lack the 341 

enzyme specificities that are needed to maximize PuA accumulation in TAG.  342 

The results obtained from our studies with S. pombe imply that metabolically engineered microorganisms can 343 

potentially represent an alternative source of PuA, and even higher yields of PuA could be expected in the event that 344 

oleaginous microorganisms were to be similarly engineered. Recently, CRISPR-Cas9 technology for multigene 345 

editing of the Y. lipolytica genome was established (Gao et al. 2016), thus providing an efficient and precise tool that 346 

might pave the way for designing industrial microbial strains that rapidly generate PuA. Other cutting edge 347 
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approaches such as metabolome (Pomraning et al. 2015), transcriptome and proteome analyses (Horn et al. 2016), 348 

cDNA library screening (Yazawa et al. 2013), lipid body proteome analysis (Zhu et al. 2015) and in silico metabolic 349 

engineering (Zhang and Hua 2015) may also help to identify key players required for the efficient heterologous 350 

production of this unusual fatty acid in microorganisms. As seems to be the case in plants, high levels of microbial-351 

based PuA production may require the heterologous co-overexpression of acyltransferases (e.g., DGAT and PDAT) 352 

from plants naturally producing PuA along with modifications of enzymes involved in lipid remodeling processes in 353 

order to redirect the flow of PuA from PC to TAG. Furthermore, blocking PuA degradation and decreasing any 354 

microorganism-specific toxicity might also enhance accumulation in this system. Indeed, it is anticipated that by 355 

combining a variety of these strategies, we will begin to reach, and potentially surpass, PuA contents of 60-80% 356 

total fatty acids within microbial cells as is observed in the seed oils of plants that naturally produce this bioactive 357 

fatty acid. 358 

 359 

Conclusions and future perspectives  360 

PuA is being studied extensively for its beneficial effects in terms of alleviating cancer, diabetes, obesity, and 361 

inflammation, among others. As researchers continue to expand our knowledge regarding its wide range of 362 

bioactivities, interest in the use of this fatty acid as a functional food product and nutraceutical will continue to grow. 363 

However, the full exploitation of PuA for food, medical, and possibly industrial applications will require the 364 

establishment of a viable alternative source due to the fact that natural sources of PuA are not amenable to 365 

widespread agronomic production. As the biosynthetic genes for PuA production are already well-characterized, and 366 

those likely to be required for high levels of expression are in the process of being deciphered, a genetic toolkit is 367 

well on its way for biotechnological production efforts. Recently, Arabidopsis and S. pombe have been successfully 368 

engineered to produce this compound at moderate levels using genes derived from pomegranate, and as our 369 

synthetic biology tools become more advanced and readily available, future research involving the optimization of 370 

plant and microbial pathways will almost certainly result in further increases in PuA accumulation to reach its 371 

maximum potential in the future.  372 
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 705 

 706 

Figure Legends 707 

 708 

Fig 1. (a) Structures of conjugated linolenic acids commonly found in seed oil. Fatty acid structures were drawn 709 

using ChemDraw Prime (PerkinElmer Informatics); (b) pomegranate (Punica granatum) (Photograph by Roman 710 

Holic).  711 

 712 

Fig 2. Schematic representation of triacylglycerol (TAG) biosynthesis and acyl-editing in plants producing oils 713 

containing conjugated fatty acids. Fatty acid modification, such as desaturation and conjugation, occurs on the sn-2 714 

position of phosphatidylcholine (PC). In major oil crops, linoleic acid (18:2Δ9cis,12cis) and α-linolenic acid 715 

(18:3Δ9cis,12cis,15cis) are synthesized from oleic acid (18:1Δ9cis) via the sequential catalytic action of fatty acid 716 
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desaturase (FAD) 2 and FAD3. In plant species producing conjugated fatty acids, the formation of conjugated fatty 717 

acids is catalyzed by fatty acid conjugases (FADXs), which are a divergent form of FAD2, using linoleic acid or α-718 

linolenic acid as substrates. Other abbreviations: ACS, acyl-CoA synthetase; CPT, choline phosphotransferase; 719 

DAG, sn-1,2-diacylglycerol; DGAT, diacylglycerol acyltransferase; FA, fatty acid; FAE, fatty acid elongase; GPAT, 720 

sn-glycerol-3-phosphate acyltransferase; GPC, glycerophosphocholine; GPCAT, glycerophosphocholine 721 

acyltransferase;  G3P, sn-glycerol 3- phosphate; LPA, lysophosphatidic acid; LPAAT,  acyl-CoA:lysophosphatidic 722 

acid acyltransferase; LPC, lysophosphatidylcoline; LPCAT, lysophosphatidylcholine acyltransferase; LPCT, 723 

lysophosphatidylcholine transacylase; PA, phosphatidic acid; PAP, phosphatidic acid phosphatase; PDAT, 724 

phospholipid:diacyglycerol acyltransferase; PDCT, phosphatidylcholine: diacylglycerol cholinephosphotransferase; 725 

PLA2, phospholipase A2; PLC, phospholipase C; PLD, phospholipase D; TAG, triacylglycerol. Fatty acid structures 726 

were drawn using ChemDraw Prime (PerkinElmer Informatics). 727 

 728 

Fig 3. Beneficial bioactivities of punicic acid found through studies involving in vitro and in vivo animal models 729 

(see section Bioactivity, health benefits and potential industrial uses of punicic acid for details). 730 

 731 

Fig 4. Thin layer chromatography of pomegranate (Punica granatum) seed oil and neutral lipids of fission yeast 732 

Schizosaccharomyces pombe strains expressing empty vector (EV) and PgFADX, respectively. Detection of fatty 733 

acid composition of various triacylglycerol (TAG) species was performed by gas chromatography analysis. 734 

Abbreviations: Erg, ergosterol; Lan, lanosterol; OA, oleic acid; PgFADX, Punica granatum fatty acid conjugase 735 

gene; SE, steryl ester (cholesteryl oleate); SQ, squalene; St, standards; TAG (triolein); TAG-A, TAG containing one 736 

punicic acid (PuA) moiety; TAG-B, TAG containing two PuA moieties; TAG-C, TAG containing three PuA moieties; 737 

TAG-N, TAG containing no PuA; TAG-T, TAG containing traces of PuA. 738 
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Table 1. Examples of the production of PuA in transgenic plants. 739 

Target gene(s) Native species Promoter Transgenic plants/ 

engineered microorganism 

PuA content 

(%, w/w) 

Total lipid content 

(%, w/w) 

References 

FADX Punica granatum Napin Arabidopsis 4.4 Not reported (Iwabuchi et al. 2003) 

FADX Trichosanthes kirilowiiI Napin Arabidopsis 10.2 Not reported (Iwabuchi et al. 2003) 

FADX Trichosanthes kirilowiiI Napin Brassica napus 2.5 Not reported (Koba et al. 2007) 

FADX Punica granatum Napin Arabidopsis fad3fae1 mutant 11.5 22.4% (Mietkiewska et al. 

2014b) 

FAD2 +FADX Punica granatum Napin Arabidopsis fad3fae1 mutant 21 Not reported (Mietkiewska et al. 

2014b) 

FAD2+FADX+

DGAT2 

Punica granatum Napin Arabidopsis fad3fae1 mutant 24.8 Not reported (Weselake and 

Mietkiewska 2014) 

FADX Punica granatum Linin Arabidopsis fad3fae1 mutant 13.2 Not reported (Song et al. 2017) 
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