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A ll truths are easy to understand once they are discovered; the point is to discover them.

-  G alileo Galilei (1564 - 1642)
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Abstract

In the oil sands industry, screening is a critical part o f the m ining process. Syncrude C anada Ltd., 

an oil sand com pany, uses screens to separate oversized lum ps from  the oil-rich sand before it enters 

the extraction process. However, under unknow n screening conditions, som e o f the sand will pass 

over the screens, resulting in unexplained variations in screening perform ance. To investigate these 

variations, m ultiple linear regression is used on data from  historical databases to  identify  w ater and 

geological variables that affect screening perform ance. A prediction m odel, developed using partial 

least squares regression, is com pared to a sim ple linear m odel that uses only the oil sand feed rate. 

Results show an average 25 percent reduction in RM S error over a feed-rate-only m odel. This is 

the first know n study to identify p lant variables, o ther than the feed rate, that provide insight into oil 

sand screening behaviour.
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Chapter 1

Introduction

Separating material has preoccupied humans for thousands of years. The action of separation has 

extended into such fields as agriculture [56], mineral processing [36 ,26], and m ore recently, sorting 

of recycled household products [46, 40]. In oil sand mineral processing, material separation is 

accom plished using large static and vibrating screens.

The current understanding of oil sand screening phenom ena is lacking despite the growing in­

terest in optim izing the screening process. This forces screen installation engineers and operation 

personnel to consider theory from the hard rock m ineral processing industry. Unfortunately, hard 

rock material is geologically different from oil sand material and it is unknown if hard rock m od­

els can be applied to oil sand screens. For this reason, there exists a strong desire for a greater 

understanding of oil sand screening phenom ena and those factors that affect screen performance.

The goal o f this research is to identify water and geological variables that exhibit a strong rela­

tionship with screen performance. From the identification o f im portant variables, explanatory and 

predictive screen m odels can be developed. Ultimately, a greater understanding o f the screening 

system and those factors that affect screen performance can be acquired.

1.1 Oil Sand Mineral Processing

Oil sand mineral processing in Northern Alberta, Canada is currently growing at a phenomenal rate. 

A t the heart o f the industry is a material referred to as oil sand. Oil sand is a m ixture o f bitumen, 

sand, clay, and water, and its physical properties are found to vary from  season to season. In warm 

summer conditions, oil sand is thick and sticky resembling a m ixture of molasses and rocks. In 

colder w inter conditions, oil sand freezes creating material that resembles hard rock. At the heart 

of oil sand are oil sand particles, shown in Figure 1.1, that contain a layer o f  water sandwiched  

between a particle o f sand and a layer of bitumen. The layer o f w ater enables the bitum en to be 

easily rem oved from the oil sand using water-based extraction methods [27]. Once the bitumen is 

removed from the sand particle it is processed to form products like oil and gas.

Syncrude Canada Ltd., currently one of the largest Oil sand companies in the world, operates

1
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Sand Particle

Surrounding W ater 

Bitumen Film

Figure 1.1: Exam ple of a magnified oil sand particle with surrounding layers o f w ater and bitumen.

an oil sand extraction facility in Northern Alberta known as North M ine [27], A schem atic o f the 

comm inution and separation system is provided in Figure 1.2.

Oil Sand Material
I  I

Crusher 1 Crusher 2

C O Conveyor
Belts

Surge Facility Screen Screen
ToweiTower

Reprocessing

o  o
Slurry to Bitumen 

Extraction

Figure 1.2: Syndrude Canada Ltd. North M ine oil sand com m inution and screening system.

Syncrude Canada Ltd. processes, on average, between 10 and 12 thousand tonnes per hour of 

oil sand material in their North M ine mineral processing facility. Oil sand is first placed into dump 

trucks using either hydraulic or cable shovels and transported to large toothed roll crushers. Once 

the material has been crushed, it passes through a surge facility and is dum ped onto conveyor belts 

that transport the oil sand to one of two screen towers. Each screen tower contains a series o f large 

static screens, shown in Figure 1.3, that remove material too large to be handled in the subsequent 

extraction process. M aterial that passes over the static screens is transported to a reprocessing system 

where it is again crushed and screened using an im pact hamm er and a vibrating screen. Material 

that fails to pass through the vibrating screen is placed in a dump truck and either returned to the 

crushers or m arked as waste material. M aterial that does pass through the static screens or the rejects 

reprocessing vibrating screen is mixed with hot water to form  a slurry. The slurry is then pum ped to
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an extraction facility where bitumen is removed from the sand particles.

I
Feed 
Oil Sand

Static Screens

S
Properly 
Sized 
Oil Sand

s Reject 
s  nn  Sand

S N

Figure 1.3: A profile view o f the static screens in use at Syncrude Canada Ltd. North M ine. In this 
work, reject oil sand material is referred to as overflow material.

The static screens play a critical role in the oil sand mining process. The static screens ensure 

a fixed maxim um  particle top size in the material allowing the process downstream  to be operated 

effectively. However, during typical screen operation, poor operating conditions and complex parti­

cle screen dynam ics cause oil sand particles to be rejected when they should have passed through. 

This creates variations in the screen overflow tonnage that are not explained by the feed tonnage 

alone. To address this problem, a static screen model is needed to understand and predict variations 

in screen overflow tonnage.

A system model relates a series o f input variables to one or more output variables. In the mining 

industry, com m inution and screening systems are comm only modelled using a black box model. 

Black box models create relationships between input variables and output variables using large data 

sets. Examples of screen input variables are the feed particle size distribution and the feed tonnage. 

Common output variables are the overflow tonnage and the screen efficiency.

Screen m odelling research has never been carried out in detail for large static screens sim ilar to 

those in operation at Syncrude. W hile a screen model may not be available for the specific type of 

screen considered in this work, existing screen models for other types o f screens may adequately 

capture the behaviour o f the system. W hen considering all available industrial screens, industrial 

aggragate vibrating screens are similar to oil sand static screens in terms o f both the size range of

the particles screened and screen’s physical characteristics. Further d iscussion o f  the sim ilarities

between static and vibrating screens are discussed in C hapter 2 along with three m ajor areas of 

vibrating screen models.

Screen m odelling has been well researched in the hard rock industry. However, accurate pre­

diction of screen perform ance in an operational plant is often not realized from  existing screen

1.2 Screen Modelling

3
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models. Inconsistent screen model performance is attributed to the large num ber o f variables, such 

as the particle size distribution, that can influence particle motion. Since existing m odels are diffi­

cult to im plem ent and m ay be inaccurate, plant designers comm only rely on their own background 

knowledge or trial and error experiments to select screen specifications. This approach can increase 

dram atically the tim e and cost investm ent o f a screen installation. Furtherm ore, due to the absence 

of accurate screen m odels, screen operation becomes reliant on operator experience resulting in 

suboptimal screen perform ance. This is also true for the oil sand industry and motivates the devel­

opment o f an oil sand screen model. This research is the first step towards an oil sand screen model 

that will enable designers to select screen specifications with confidence and allow screen operators 

to make inform ed decisions during screen operation, ultim ately resulting in an increase in screen 

performance.

1.3 Thesis Objectives and Contributions

The work presented in this thesis focuses on identifying significant water and geological variables 

and developing a predictive oil sand screen model. Currently, overflow tonnage variation is modelled 

using only the feed tonnage, with often poor results. We test the hypothesis that through the identi­

fication of significant w ater and geological variables, a screen model can be developed that allows a 

stronger understanding o f overflow tonnage variation. The goal is to show that w ater and geological 

variables will provide a greater explanation and prediction o f screen perform ance variation than feed 

tonnage alone.

A num ber o f research contributions are made in this thesis to the field o f oil sand screen m od­

elling. We provide a general overview of traditional approaches to screen m odelling and justify  the 

decision to take an empirical approach to designing an oil sand screen model using historical plant 

data. We identify significant w ater and geological variables that show strong correlations with the 

overflow tonnage. Furtherm ore, the identified significant variables validate claims made by opera­

tors concerning their significance. We develop an explanatory model using the identified significant 

variables to provide insight into screen performance variance for both sum mer and w inter screening 

conditions. Finally, we develop predictive models that are shown, using cross-validation, to per­

form significantly better than current oil sand screen models that use only the feed tonnage. The 

result o f this work is a greater understanding of the screening process at Syncrude’s oil sand mineral 

processing facility.

1.4 Methodology and Results

To test the hypothesis presented in this work, oil sand geological variables, such as the ore grade, 

and w ater variables, such as the water flow, are collected for eight months o f sum m er operation and 

eight months o f w inter operation over two years. The data is cleaned and grouped into 30 minute

4
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periods to account for uncertainty in the data. From the original set o f variables, significant variables 

are identified for both sum m er and winter screening conditions using forward stepwise multiple 

linear regression to gain insight into the oil sand screening process. The significant variables are 

then used to build a prelim inary explanatory screen model using m ultiple linear regression. The 

coefficients o f the explanatory model are analyzed to understand the relationship of each variable 

with the overflow tonnage. Finally, multiple linear regression, response surface regression, principle 

component regression, and partial least squares regression are used to develop a prediction model. 

Each regression method is run a first time on either the sum mer or winter significant variables and 

then a second tim e on all variables. An exception is the response surface regression method, which is 

not run on all variables due to computational restrictions resulting from  the large num ber of predictor 

variables. Each resulting model was evaluated, using five-fold cross-validation and standard error 

analysis methods, to select an oil sand screen model that provides the greatest predictive accuracy.

In this work, im portant variables are identified for both sum mer and w inter screening conditions 

that are shown to be statistically significant. M ultiple linear regression is used to develop explanatory 

models for both sum m er and winter months. It is determined that a noticeable difference in Train 

1 and Train 2 screen perform ance exists during the winter screening period. A predictive model 

developed using partial least squares regression provided the best perform ance, with an average 

reduction in RMS error o f 25 percent over a simple feed-only model. The analyses were carried out 

using data representing both sum mer and winter conditions over a two year period ensuring that the 

results are statistically significant.

1.5 Organization

The organization of the rem ainder of the thesis is as follows. C hapter 2 provides an overview of ex­

isting screen models and identifies lim itations that motivate the developm ent o f a new static screen 

model using statistical regression methods. Chapter 3 outlines the m ethodology of building a re­

gression model, presents four comm on statistical regression methods, and introduces several typical 

regression perform ance measures. Chapter 4  discusses data collection and cleaning o f historical data 

and the identification o f significant water and geological variables for sum mer and w inter screening 

conditions. In addition, four regression methods are used to develop oil sand prediction m odels that 

are com pared to a simple screen model that uses only the feed tonnage as input. Finally, results 

are presented followed by a discussion o f the various insights gained into oil sand screen operation. 

C hapter 5 provides a summary of the work and a number of possible future directions for oil sand 

static screen m odelling research.

5
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Chapter 2

Background and Related Work

In the previous chapter we introduced background information on oil sand m ineral processing at 

Syncrude Canada Ltd. and the research problem addressed in this thesis. In this chapter we present 

background and related work in the area of oil sand screen modelling. Finally, we present motivation 

for the developm ent o f a new static screen model using an empirical approach.

2.1 Introduction

Syncrude’s oil sand static screens are among the largest in the world at over two metres in width and 

eight m etres in length. However, due to their relatively recent introduction into oil sand screening, 

public research is unavailable. Before undertaking the developm ent o f an oil sand specific empirical 

static screen model, background literature on comm on aggragate industrial screens are presented 

followed by an overview of industrial hard rock screen models.

General particle separation systems can be classified based on the size o f the m aterial to be sep­

arated and the m edium in which the particles are transported. For material transported in water, 

hydrocyclones are used to separate fine material [36] and sieve bends allow dewatering and separa­

tion of larger material [28], For dry screening of particles below 50 microns air cyclones can be used 

[34], For dry material above 50 microns, vibrating and static screens are typically used [62], For 

particles above several hundred millimetres, static and vibrating grizzly screens are comm only used 

[36], For general hard rock screening of material between several to several hundred millimetres, 

similar to material in the oil sand industry, vibrating screens such as banana screens, centrifugal 

screens, and shaking screens are commonly used.

W hen considering each o f the above screen types, vibrating screens are found to offer the greatest 

similarity to oil sand static screens. The particle size range and volum e o f  material processed is sim ­

ilar in both cases. Furtherm ore, vibrating screen surfaces are typically either w ire mesh, perforated 

steel, or polyurethane, which are similar to Syncrude’s oil sand static screens. A final advantage 

of using vibrating screen models is the existence of publicly available research that can be quickly 

evaluated on data from  Syncrude’s static screens. In the following sections, screen perform ance
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evaluation methods, typical screening variables, and comm on hard rock vibrating screen models are 

presented. In the last section we address the applicability o f hard rock screen models to oil sand 

screens.

2.2 Evaluation of Screen Performance

The m ineral processing industry has developed two comm only used means of m easuring screen 

performance: efficiency m easures and capacity measures. Efficiency m easures evaluate how well 

the screen is separates the material into two size categories. Two efficiency measures are efficiency 

indices and efficiency curves. Capacity measures evaluate the quantity o f m aterial a screen can 

separate effectively.

Efficiency Indices

Representing the screen perform ance by a single value is the simplest way to convey performance 

information. Efficiency indices range from zero to one, where a higher value typically indicates 

greater screening efficiency. A comm only used efficiency index, shown in Equation 2.1, calculates 

the ratio o f material that actually passed through the screen to the material that should have passed 

through the screen [22, 34].

F - O
Efficiency = — —------ (2.1)

F - O • 0o

where F  is the feed tonnage, O  is the overflow tonnage, or tonnage of material that passes over the 

screen, and oa is the percentage o f oversize material in the overflow tonnage, where oversize material 

are particles larger than the screen aperture. This efficiency index assumes that oversize particles do 

not pass through the screen. However, if the screen contains worn or oversized apertures, Equation

2.1 will not capture the resulting decrease in screen efficiency due to misplaced oversize particles.

Alternative indices include an index proposed by Hess [22] which accounts for particles whose 

size are approxim ately equivalent to the screen aperture. These particles were shown to reduce 

screen efficiency by requiring a longer time to pass through the screen. In other work, A pling [1] 

proposed Equation 2.2, which accounts for both the percentage of oversize material in the underflow, 

u a, and the percentage o f undersize material in the overflow, ou . As the percentage o f m isplaced 

material decreases resulting from  better material separation, the efficiency o f the system  increases.

Efficiency — 1 — u a — ou (2.2)

Alternatively, Partridge [42] proposed a screen efficiency index which is equal to the percentage of 

undersize in the underflow minus the percentage of oversize in the underflow. This index penalizes 

for both m isplaced undersize and misplaced oversize particles.
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Efficiency indices assume that the desired cut size is the size o f the aperture, which results in 

a negligible probability o f m isplaced oversize particles. This is not the case in situations where 

the cut size is less than the aperture size or when the particles are irregularly shaped. Ultimately, 

efficiency indices are typically developed towards a specific application. Consequently, transferring 

an efficiency index from  one type of screen to another may result in unsatisfactory evaluation of 

screen perform ance [22],

Efficiency Curves

A common concern in screen performance evaluation is that a single value does not provide sufficient 

information o f the actual material separation [22], Efficiency indices do not capture the particle size 

distribution o f the overflow or underflow material that gives inform ation of the quality o f separation.

An alternative to using an index is to use an efficiency curve sim ilar to the one in Figure 2.1. 

Efficiency curves are constructed from the percentage of particles that pass over the screen for each 

particle size bin. Efficiency curves are also referred to as oversize partition curves or overflow 

partition curves.

100

T y p ica l  Eff ic iency  
Curve v. Ideal  E ff ic iency  

Curve
S
o

4J
>
O
o
h-
<u
cnfC*-/
c<vKJ

Screen
A perture

<u0_

P a r t ic le  S i z e

Figure 2.1: Exam ple of a typical efficiency curve and an ideal efficiency curve.

Three well known distribution functions that successfully describe the shape of the efficiency 

curve are the R osin-Ram m ler distribution [45], the Weibull distribution [11], and the Gaudin-Schuhm ann 

distribution [47], The R osin-Ram m ler distribution, shown in Equation 2.3, was first used to describe 

the overflow particle size distribution, P (x ,  a ) ,  o f powdered coal after crushing.

P (x ,  a )  =  1 — exp
3163.2

(2.3)
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where x  is the particle size, typically m easured as the diam eter o f a sphere with equivalent volume, 

and £ 6 3 .2  is the bin size where 63.2 percent of the particles have a diam eter less than the aperture. 

The Weibull distribution [11] was first proposed to model the fracture o f materials under repetitive 

stress and was later used to describe screen efficiency curves. The functional form  of the Weibull 

distribution is

where x  is the particle size, (3 is a characteristic size, typically assumed to be the aperture size, such 

that 63.2 percent o f the particles will pass, and a  is a fitting constant. The third com m only used size 

distribution function is the Gaudin-Schuhm ann equation [47] shown in Equation 2.5.

where x  is the particle size, k  is a size modulus, and m  is the distribution m odulus. The param eter 

values in all three size distribution functions are determined from fitting the distribution function to 

collected overflow particle size distribution data. The advantage of describing the efficiency curve 

as a function is that perform ance information can be obtained for any bin size w ithout the need for 

imprecise linear interpolation between known values.

Screen Capacity M easure

The second screen perform ance measure is based on the tonnage of material a screen can separate 

effectively and is referred to as the capacity measure. In the mineral processing industry, often the 

goal is to process as much material as possible and as quickly as possible. The capacity measure 

is then simply the tonnage o f material processed effectively by a screening system, where a higher 

tonnage is better.

However, the capacity m easure is inversely related to the efficiency m easure making it difficult to 

maximize both the efficiency m easure and the capacity measure. Any increase in feed tonnage will 

decrease the screen efficiency until the majority o f material is passing over the screen to overflow. 

Therefore, screening is a delicate balance between maximizing both screening efficiency and screen 

capacity. In the m ineral processing industry, the capacity measure is typically given the higher 

priority where higher capacities result in a greater amount o f processed material.

2.3 Traditional Screen Variables

A large num ber o f input screening variables have been used in hard rock screening m odels [51, 10, 

2], They are traditionally divided into two areas: design variables and operating variables [7], Table

2.1 lists the screen variables associated with each area.

(2.4)

(2.5)
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D esign Variables Operating Variables
Screen Length and Width 
A perture Size and Shape 
Percentage o f Open Area 
Screen Angle 
Screen M edia

Feed Particle Size Distribution
Bulk Density
Feed Tonnage
Screen M otion
M aterial M oisture Content
Wet Screening
Particle Shape

Table 2.1: Traditional screen design and operating variables.

Design variables are addressed during the design phase of screen development. Once the screen 

is installed, and during screen operation, design variables remain relatively constant. Operating 

variables, however, cause screen performance to vary during operation. Traditionally, operating 

variables are m easured and data is collected using sampling techniques [26]. D ue to the complex 

nature of the m ining process, in both sum mer and winter conditions, the num ber o f sam ples needed 

is beyond the scope o f this work. In essence, data collected over a long period of tim e on a continual 

basis, or tim e series data, is needed to capture the dynamic nature o f the screening system. We 

turn instead to historical process data collected by Syncrude Canada Ltd. and placed into a Process 

Information (PI) database. Syncrude’s PI database is a centralized historical process data collection 

and storage system that allows staff and researchers to easily access data collected throughout the 

plant [41], The historical time series data contained within PI is collected on a continual basis 

throughout the year and allows the questions posed in this research to be addressed. The following 

sections review traditional operating variables and identify whether they are m easured by Syncrude 

and placed into the PI database. Note that the screen motion variable listed in Table 2.1 is not 

discussed further as it does not apply to static screens.

Feed Particle Size D istribution

The feed particle size distribution is an im portant screen variable for m odelling screen performance. 

Researchers often describe the particle size distribution using three characteristic size ranges. The 

first size range consists o f particles having a size greater than the aperture size and are referred 

to as oversize particles. A higher percentage of oversize particles enables the screen to handle 

higher capacities as well as unplugging the screen by im pacting lodged particles [51]. The second 

range consists o f particles having a size less than half the aperture size and are referred to as half­

size particles. A higher percentage of half-size particles is advantageous since half-size particles 

easily flow through the screen. The last range consists o f  particles having a size  75 to 125 percent 

of the aperture size and are referred to as near-size particles. N ear-size particles are known to 

increase plugging and require much longer screening times to be sized correctly [42]. Currently, at 

Syncrude’s North M ine, tim e series data is not available for the feed particle size distribution.
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Bulk Density

The bulk density is the density of material when it is not compacted. It has been shown that material

with a higher bulk density is heavier and tends to fall through the screen more easily, while material 

with a lower bulk density is lighter and tends to bounce further along the screen [26], Currently, at 

Syncrude’s North M ine, tim e series data is not available for the material bulk density.

Feed Tonnage

The feed tonnage is critical to the performance of the screen [51]. Too low a feed tonnage and the 

particles bounce quickly over the screen without settling. Too high a feed tonnage and particles will 

have difficulty traversing through the bed of material to get to the screen’s surface. Experim ents 

have found that screen efficiency, as a function of feed tonnage, has a parabolic shape sim ilar to the 

one in Figure 2.2 [60], Currently, at Syncrude’s North M ine, time series data is available for the feed 

tonnage.

Figure 2.2: Exam ple o f the observed relationship between the screening efficiency and the feed 
tonnage.

M oisture C ontent

M oisture content refers to the am ount of water contained within or surrounding each particle. H igher 

moisture levels are found to increase particle adhesiveness, resulting in increased plugging and 

blinding in the screening m edia [34,43]. An increase in adhesiveness also results in sm aller particles 

sticking to oversized particles and being carried to overflow. To alleviate the affects o f high moisture 

content, pre-drying the material or the use of spray bars to push material through the screens, also 

known as wet screening, are typically used [42], Currently, at Syncrude’s North M ine, tim e series 

data is not available for the material moisture content.

Wet Screening

Wet screening, as previously mentioned, is used when m oisture is present in the m aterial. Wet 

screening uses high pressure spray bars to push material through the screen. This approach works 

well for small particles that tend to attach to larger particles and pass to overflow [15]. Syncrude

F eed  T o n n ag e  (TPH)
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uses high pressure spray bars to aid the screening process, however, existing m odels that contain wet 

screening [13, 31, 20, 39, 15] only consider its influence for aperture sizes less than 50 millimetres. 

The static screens considered in this work contain aperture diam eters o f approximately 57 millim e­

tres. Therefore, wet screening is not considered significant, or perhaps was never considered, by 

existing screen models for the aperture sizes used in oil sand screening. Currently, at Syncrude’s 

North M ine, tim e series data is not available for wet screening.

Particle Shape

Research has shown that the shape of the particles can affect screen perform ance where elongated 

or slab-like particles are harder to screen than spherical particles [34, 26]. Slab-like particles have 

a higher chance o f skipping over screen apertures since particles tend to lie on their axis o f greatest 

stability. Currently, at Syncrude’s North M ine, time series data is not available for the material 

particle shape.

To sum marize, in this section traditional vibrating screen variables were reviewed and it was 

determined that historical tim e series data is only available for the feed tonnage variable. The re­

maining variables are not currently m easured during plant operation and w ould require a large num ­

ber o f samples to be taken to obtain the necessary data to investigate their affect on oil sand screen 

performance.

2.4 Traditional Screen Models

In Section 2.1, different screen, types were presented and it was determ ined that large aggregate 

vibrating screens showed the greatest similarity to oil sand static screens. Vibrating screens have 

been studied since as early as the 1930’s in order to increase screening efficiency [19]. Since then, 

proposed screen m odels have typically fallen into three major categories: empirical models, proba­

bilistic models, and kinetic models. For each category, an overview of the theory is presented below. 

In the last section, the applicability o f each category towards the m odelling o f oil sand screens is 

presented.

2.4.1 Empirical Models

Empirical models use regression methods to extract relationships between input variables and output 

variables from  large data sets. They are typically system specific and require no inherent knowledge 

o f the screening process. Empirical models are often developed when existing m odels perform 

poorly or when none is available for the system of interest. There are three main groups o f empirical 

models. The first group contains capacity models that use em pirically derived screening factors 

to relate screening variables to the screen capacity. The second group contains efficiency models 

that fit efficiency curves to collected screen data. The last group o f empirical m odels use advanced 

statistical regression m ethods on large data sets and places no assumptions on the underlying form.
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Advanced statistical regression empirical methods often create m ore accurate m odels o f the systems 

o f interest, however, the resulting models typically provide little insight into the underlying system.

Capacity M odels

Capacity models are developed by screen manufacturers using designed experim ents and are typ­

ically screen specific [13, 15, 31]. They are used to evaluate the screen size needed based on the 

screening conditions and the desired feed tonnage. Screen operators can also use the capacity model 

to control the am ount o f feed entering their screening system if the screening conditions change. 

Therefore, capacity m odels consider both the screen design and operating variables.

A capacity m odel calculates the rated capacity of a screen. The rated capacity is the feed tonnage 

that the screen can handle under a set o f screening conditions. The screening conditions are calcu­

lated from the screening variables, presented in Section 2.3, through a series o f screening factors 

K i. D uring typical operating conditions the screening factors are set to one and the rated capacity 

is called the based capacity, I u . Typical operating conditions are those conditions that the m an­

ufacturer assumes the screen will be operating in the majority o f the time. The rated capacity is 

calculated from the base capacity and the screening factors using Equation 2.6.

Rated Capacity =  I u K i  (2.6)
i

where i  is the num ber o f screening variables. As m entioned earlier, during typical screening condi­

tions the screening factors are set to one. Unfortunately, screening conditions are often not typical. 

When screening conditions do change, the screening factors attempt to capture the effect a change 

in a screening variable has on the actual screen capacity. For example, if  a  screening variable in­

creases the actual screen capacity then the value o f the factor becom es greater than one. Similarly, 

if a screening variable decreases the actual screen capacity, then the factor becom es less than one. 

The screening factors attem pt to affect the rated capacity in the same m anner the screening vari­

ables affect the actual screen capacity. Table 2.2 lists typical screening factors and base capacity 

calculations [26].

Capacity m odels are generally used in the mineral processing industry because they are easy 

to understand and simple to use. However, their simplicity often results in poor perform ance and, 

consequently, the models are often modified based on user background knowledge and experience 

of the screening system.

Efficiency M odels

King [26] proposed a screen model that relates the rated capacity of the screen to the screen effi­

ciency. King defines a new value called the rating ratio (R R ),  which is simply the rated capacity, 

presented in the previous section, divided by the feed tonnage. Using a large data set, a model 

relating the rating ratio to the screen efficiency is developed (see Equation 2.7).
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Factor Name Equation
A perture Size 
Base Capacity

O pen Area 
H alf-Size 
Oversize 
Bulk Density 
Deck Location 
Screen Angle 
Wet Screening 
A perture Shape 
Particle Shape

Surface M oisture

h
I u =  20.0h 0-33 -  1.28 for h <  25 mm
I u =  0.783h  +  37 for h >  25 mm
K \  =  (Screen Percentage Open Area)/50
K 2 =  2-(% < 0.5h) + 0.2
K 3 =  0 .914exp(exp(4 .22(%  >  h) — 3.50))
fQ  =  Bulk D ensity/1600
K 5 =  1.1 — 0.1- Deck Position
K 6 =  1.0 — 0.01(Screen A ngle—15 degrees)
K 7 =  1.0 for h > 25 mm 
See Table 2.3
For spherical particles, A'n=1.0
For feed with about 15% elongated particles, AT9=0.9
See Table 2.4

Table 2.2: Comm on screening factors for screen design and operating variables. The deck position 
variable indicates the deck level that is being considered [26].

S hape o f Screen O pening k 8
Round 0.8
Square 1.0
2 to 1 rectangular slot 1.15
3 to 1 rectangular slot 1.20
4 to 1 rectangular slot 1.25

Table 2.3: Standard screen aperture shapes and their respective factor values [26],

Condition of Feed K io
Wet, muddy or sticky material
Wet surface quarried and material from surface
stock piles with up to 15 percent moisture by volume
Dry crushed material
N aturally or artificially dried material

0.75

0.85
1.00
1.25

Table 2.4: Standard feed conditions and their respective factor values [26].

Efficiency =  0.95 -  0 .25 (R R  -  0.8) -  0 .0 5 (R R  -  0 .8 )2 for RR >  0.8 

=  0.95 — l .6 7 ( R R  — 0 .8 )2 for RR <  0.8

(2.7)

The model presented by King is simple to im plem ent assuming that a good knowledge o f the 

screening variables and their relationship with the rated capacity is available.

Karra [24] also developed an efficiency screen m odel that relates the rated capacity and the feed 

particle size distribution to the screen efficiency, E { x ) .  Equation 2.8 was determ ined by fitting a 

distribution function to a large data set using statistical regression.

E (x )  =  1 — exp -0 .6 9 3  ( — 'j
\ x 5 0 /

(2 .8)
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where x  is the feed particle size, c is a constant set at 5.9, and x 5o is the feed particle size that has a 

50 percent chance o f passing through the screen. The value of xr,n is calculated using

X5O  —  h f

-0.148

(2.9)

where h t is the effective aperture, G  is the near-size factor, and K  is the rating ratio o f the screen 

given the current screening conditions. Referring to Figure 2.3, the effective aperture is calculated 

as ht =  (h  +  d)cos9 — d, where h  is the current aperture, d  is the width of the wire, and 9 is the 

screen angle.

Effective Aperture Screen  A n g le

Figure 2.3: Cross-section of a screen aperture showing the effective aperture used in the K arra model 
[24],

The near-size factor G  is calculated using Equation 2.10 where X n is the percentage of near-size 

material and a' and c ' are regression constants determ ined to be 0.844 and 3.453 respectively for the 

test screen.

(2 . 10)

The model proposed by Karra works well for the data range contained in the data set. U nfortu­

nately, using the model outside o f this data range may result in large inaccuracies [36], Hess [22] 

notes that the overflow partition curve has the unfortunate property o f always passing through the 

origin and so can cause difficulty when fitting at low particle sizes. The value o f the constant in 

Equation 2.8 was originally kept static, however Hess found better fitting when varying both a;50 

and c. Finally, the K arra m odel is easy to im plem ent and performs well if the screening conditions 

are sim ilar to those found in K arra’s experimental data set.

Alternative efficiency models proposed by Hatch and M ular [21] and Batterham  et al. [4] require 

only the feed particle size distribution and the screen aperture size. The m odels use regression to 

fit distribution functions, used to describe the efficiency curve, to collected data. The models are 

accurate until screening conditions change, at which time new data m ust be collected and the models 

refit.
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Advanced Statistical Regression M odels

Several researchers in the field o f industrial screening developed m odels purely from  data without 

imposing constraints on the m odel’s functional form. Rongguang et al. [12] used a comm ercial 

software package to find correlations between input and output variables using multiple regression 

analysis. In his work, data was collected from 172 controlled runs that allowed adequate exploration 

of the range of variables and their influence on the response variables. Their approach was to find all 

combinations o f powers, fractional powers, and cross-products o f primary variables, keeping only 

those that contributed significantly to the model. The authors provided no details in the paper as to 

how the significant independent variables were identified. Good correlation was noted between their 

regression results and general understanding o f screening behaviour. The authors com pared their 

results to a M onte Carlo probability screen simulation conducted earlier by Beeckm ans and Jutan 

[5] and the level o f agreem ent was found to be satisfactory.

Van der Walt et al. [57,58] successfully m odelled a hydrocyclone classifier using both sigmoidal 

back-propagation neural networks (SBNN) and m ultiple adaptive regression splines (M ARS). The 

data was first scaled linearly and logarithmically to ensure proper behaviour when used in the 

SBNN ’s and scaled linearly for MARS. Several training runs were conducted for SBNN to de­

termine the best num ber of hidden nodes. Model selection was based on the norm alized absolute 

error and it was found that the SBNN had the best performance since the system  was nonlinear.

Karr and Week [23] used fuzzy linguistic models with genetic algorithms to m odel hydrocyclone 

circuits. The hydrocyclone was characterized by the split size defined as the size where a particle has 

an equal chance o f passing through the hydrocyclone or passing over. A series o f eight hydrocyclone 

parameters, including the diam eter and the height of the hydrocyclone, were related to the split size 

using fuzzy linguistic methods. Genetic algorithms were used to develop rules for the linguistic 

models and test the resulting model. Results show a 0.76 correlation between the model and the 

actual split size for test runs. Performance loss is attributed to poor representation of the system by 

the training data and the large num ber of search parameters.

Summary

Empirical screen models use data collected during typical operating conditions. Regression methods 

are used to relate input variables to output variables resulting in a screen specific model. Capacity 

models were found to be easily understood, however, the perform ance of capacity models are lim ­

ited [15]. M odels that related screening variables to the screens efficiency curve were reviewed and 

efficiency m odels by King [26] and Karra [24] were presented. Finally, several models were pre­

sented that use advanced statistical regression methods to relate input variables to output variables. 

The advantage of em pirical models is that they are relatively simple and are easily applied to screen 

performance prediction and operation. Furthermore, if no applicable model exists for the screen of 

interest, empirical methods can be used to develop a new model. However, in all cases, the resulting
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empirical screen m odels are lim ited to the quality and range o f data collected. The first two groups 

o f empirical m odels rely on the feed particle size distribution data as the m ain com ponent for pre­

dicting screen perform ance. Since time series feed particle size distribution data is not available, 

the sole empirical method that rem ains is the advanced statistical regression approach which can be 

used with available historical tim e series data to build an oil sand screen model.

2.4.2 Probabilistic Models

Probability m odels look at screening phenom ena as a series o f probabilistic events, where each 

time a particle interacts with the screen it will have a certain probability o f passing through. The 

probability o f a particle passing through the screen is dependent on both design and operating screen 

variables. Probability models can also be defined as the probability o f a particle not passing through 

the screen, which forms an overflow partition curve. An overflow partition curve is simply the 

percentage of particles in each size bin that will probabilistically pass to overflow. Figure 2.4 shows 

a typical overflow partition curve for a vibrating screen.

R e g io n  AR e g io nR e g i o n  C
1 0 0

Screen
A perture

0

Particle Size

Figure 2.4: A typical overflow partition curve for a vibrating screen.

The typical overflow partition curve has three regions [36], The first region, Region A, is simple 

to model since all particles are larger than the screen aperture and pass to overflow. Region B 

contains particles that are within 75 percent o f the aperture diam eter and are the focus of most 

probability models. Region C contains particles that are less than 25 percent o f the aperture diameter. 

M odels for Region C are rarely developed as the particles in this region are assum ed to easily pass 

through the screen apertures.

The area o f probabilistic modelling has been well researched [19, 32 ,9 , 59 ,53]. Two well-known
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probability m odels, the Gaudin model and the W hiten model, are outlined below.

Gaudin M odel

Gaudin first introduced his probability model in 1939 [19], noting that the probability o f a round 

particle passing through a square aperture, p(x) ,  could be described by:

p (x )  =
(h -  X ) 2

1 for d < <  h (2 . 11)
(h, 4 - d )2 L h i

where h  is the aperture size, d  is the wire diameter, and x  is the particle size. Each tim e the particle 

hits the screen, the probability o f it passing through increases. The probability o f a particle reaching 

the end of the screen without passing through a screen aperture would be (1 — p ( x ) )N , where N  is 

the num ber of times the particle hits the screen. Figure 2.5 is a plot o f Equation 2.11 and shows that 

the resulting overflow partition curve is similar to that o f Region B in Figure 2.4.

100

20
&

200 40 60

Particle S i z e  ( m m )

Figure 2.5: Graph of G audin’s overflow partition curve for N = 5 and N = 15. The aperture size is 
55 mm. N ote the sim ilar shape to that o f Region B in Figure 2.4.

The m odel proposed by Gaudin is simple and has been used as a basis for several probability 

models [36, 59, 53]. Its simplicity, however, does not extend to particle-particle interaction and fails 

to model complex screening behaviour when the screen bed is m ore than one particle high. In the 

next section we show how W hiten et al. have extended the Gaudin model to real world screening.

W hiten M odel

W hiten’s model [59, 61, 60] is based on G audin’s work on screening theory. The resulting model 

put forward by W hiten is

E ( x )  =  exp (2 .12)

where N  is the num ber o f passage attempts along the screen, f a is the percentage o f open area, x  is 

the particle size, h  is the aperture size, and A; is a fitting param eter typically set at 2. All variables in
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Equation 2.12 are easily m easured except for N ,  the num ber o f passage attempts. There is currently 

no simple means to measure the num ber of times each particle hits the screen. An alternative is to 

indirectly m easure the value through regression of N  to collected data such as the feed tonnage and 

the material used in the screening media.

W hiten also developed a model to estimate the passage of fines to overflow for Region C in 

Figure 2.4. The passage rate is estim ated by a fines factor that is calculated using A s x  S F ,  where 

A s is the total surface area of the particles and S F  is a fitting parameter. The fitting param eter is a 

function of the percentage o f fines in the feed and feed rate o f the fines material. To determine the 

total surface area o f the particles, W hiten proposes Equation 2.13.

where di is the mean diam eter o f particles in size bin i. Hess notes that W hiten’s model requires 

no special sam pling techniques which increases its applicability in m odelling existing screening 

systems. The simplicity o f this model is in its im plem entation and has been used successfully in 

several pilot and online plants [61] [59],

Probability models use probability theory to model the screening phenomena, and com pared to em ­

pirical models, are based on a greater understanding of screening physics. Probability models are 

popular for aggregate industrial screening and have been successfully used in modelling real screen­

ing applications [59, 28, 61]. However, the main screening variable used in probability models is the 

feed particle size distribution, which is used to estimate the overflow partition curve. Unfortunately 

time series feed particle size distribution data not available at Syncrude’s North M ine. Therefore 

probability models cannot be considered for modelling oil sand static screens at this time.

2.4.3 Kinetic Models

The last category of screen m odels is kinetic models. Kinetic m odels are the m ost studied of all 

screen models as they have been shown to provide the m ost accurate modelling o f test screens. 

Kinetic m odels m easure the passage rate o f material along the screen’s length. The material passage 

rate depends largely on the size of the particles. Very large particles will never pass through and 

very small particles will pass through the first time they see the screen. Figure 2.6 shows a typical 

passage rate curve for a vibrating screen.

The passage rate is a function o f screening variables such as the feed particle size distribution, 

the feed tonnage and the aperture size. Referring to Figure 2.6, typically the first region is considered 

very short and is often hard to see [54], The second region, referred to as the crowded region, occurs 

when sufficient material is placed on the screen to form  a bed. In this region, stratification of the 

bed occurs when sm aller particles move through spaces created by larger particles. The third region,

(2.13)

Summary
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Figure 2.6: The passage rate as a function of the position along the screen. A lso marked are the 
crowded and separated regions on the screen.

referred to as the separate region, occurs when a single layer o f material exists on the screen and 

little interaction betw een particles occurs. The transition point, L c, is located where the crowded 

region ends and the separate region starts.

Table 2.5 gives a quick summary of definitions for com m on variables used in the following 

overview o f kinetic screening theory.

V ariab le D efinition
w x (l)
W ( l )
m x (l)

Flow rate o f feed per unit width in size interval x  at position I on the screen. 
Total flow rate o f feed per unit width at position I on the screen.
M ass of feed per unit width in size interval x  at position I on the screen.

Table 2.5: L ist o f kinetic variables used in the overview of kinetic screening theory.

Kinetic m odelling assumes steady-state screening conditions, dry screening m aterial, and the 

feed entering the screen is assum ed to be perfectly mixed. A simple kinetic m odel and the Ferrara 

kinetic model are now presented.
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Simple Kinetic M odel

A simple kinetic model is presented by King [26], Equation 2.14 shows the general passage rate 

equation, where the change in flow rate o f material at point I along the screen, d w x ( l ) / d l ,  is equal 

to the amount o f material that passes through the screen, or the rate o f transmission r x .

d w x (l)
- g 1  =  - r x (2.14)

The rate o f transm ission in the crowded region in size bin x ,  r x , is kx m x {0), where k x is the 

kinetic constant for the crowded region. The kinetic constant captures how quickly material in each 

size bin passes through the screen. The rate o f transmission is then a function o f the kinetic constant 

and the amount o f material on the screen, m x . The rate o f transmission is assum ed constant across 

the crowded region and so the initial value o f m x can be used. The constant rate o f transmission is 

due to particles from  the bed presenting themselves to the screen at the same rate particles on the 

screen surface pass through. This creates a steady flow of material through the screen in the crowded 

region. Substituting r x =  kxm x {0) into Equation 2.14 and integrating the length o f the crowded 

region from  0 to L c, the passage rate at position L c along the screen is written as:

w x ( L c) = w x (0) -  k x m x (Q)Lc (2.15)

Using w x (l) — m x (l)u,  where u  is the average speed at which the particles are moving, Equation 

2.15 can be rew ritten as:

w x ( L c) = m x (0) (u -  k x L c) (2.16)

Assuming that the rate o f transmission in the crowded region is constant then k x is not dependent 

on I. To determ ine L c, King assumes that the transition point occurs when the sm allest size fraction 

o f the material is no longer present on the screen. Once the position of L c is known, the rem ainder 

o f the values of kx can be determ ined through regression to collected data.

The separate region is easier to model as it assumes that there are no interactions between par­

ticles. The separate region is also described by Equation 2.14, where r x =  s xm x (l) and s x is the 

kinetic constant for the separate region.

d w x (l)  ̂ ^  /n  s x ^
(2.17)

Integrating Equation 2 .17 from L v to I gives:

w x ( l ) — w x ( L c) e x p ( - ^ ( l - L c)^ (2.18)

Equation 2.18 gives the complete mass flow rate o f material in the separate region of screening. 

Combining Equation 2.15 and 2.18 we get the passage rate at any point along the screen.
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where s x can be approxim ated by probability theory for single particle screen interaction.

King determ ines the partition factor, C x , also known as the overflow partition curve, from equa­

tion 2.19, where C x — v j x { L ) / w x {0).

Cx exp  —  (I — L c) ) (2.20)
w x ( 0 )

The simple kinetic m odel provides a quick introduction to kinetic modelling theory. However, 

the assumption that the rate o f transmission in the crowded region is not dependent on the distance 

along the screen often fails in reality. The next model, proposed by Ferrara et al., includes the change 

in rate o f transm ission along the screen to produce a more accurate model o f screen passage rates in 

the crowded region.

Ferrara M odel

Ferrara and Preti [17] also proposed a zero-order process for the crowded region and a first-order 

process for the separate region. Unlike the simple kinetic model, where the load M  on the screen 

is assumed constant throughout the crowded region, the Ferrara model assumes that the load on the 

screen changes with position I. The zero-order process used to represent the crow ded portion of the 

screen is written as:

<2 .2 i)

where k [  is the rate constant for crowded screening conditions, and f x (l) is the fraction of material 

in size bin x  at position I. Note that the kinetic constant introduced in the simple kinetic model is not 

equivalent to the rate constant presented here. The material density variable can also be rewritten as:

U l )  =  ^  (2 .2 2 )
w x J0 w x ( l ) d X

where X  can be any of the other bin sizes including x.  Ferrara defines a new variable X — 

l n ( E x ( l ) ) / l n ( E x (l)),  where E x (l) is the fraction o f material rem aining on the screen in size bin x  

at position I. The variable E x (l) can also be written as w x ( l ) / w x (0). Rearranging Equation 2.22 

and substituting in w x (l) =  w x (0 ) E x (l), w x (l) =  wx (0 )E x (l), and E x (l) =  E x (l)x  gives:

W x {Q)dXEx {l)x ~ l ^ ^ w x {Q) =  - k l  (2.23)

Now Equation 2.23 is in a form  that can be used to investigate k [ ,  which is the unknown, and 

how it relates to operating variables such as the aperture size. Ferrara et al. proposed that kjr should 

be represented as:
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where h  is the size o f the screen aperture, k[0 is the kinetic constant for when x j h  =  0.5, and a  is a

fitting factor.

The form  o f the m odel for the separate region is similar to that o f the simple m odel presented 

earlier and is written as:

=  ~ 4 M l )  (2-25)

where s{: is the kinetic constant for size bin x.  Ferrara et al. propose that s[  can be m odelled 

as s f  = n ln [ l  — p x ], where n  is the number o f times the particle sees the screen and px is the 

probability o f passage o f a particle o f size x.  Using G audin’s expression for the probability of 

passage of a particle written as:

p(x) = G S )  = / ° /2 (1 - D CT (2-26)
where a  is typically set to 2 , f a is the fraction of open area, and h  is the diam eter o f the aperture. 

Integrating Equation 2.26 from L c to L  gives:

E X(L)  =  exp  { - n l n  [^1 -  / 2  ( l  -  0  j L j  (2.27)

By fitting Equation 2.27 to collected data, n  can be determ ined for a specific set o f screening 

conditions. The kinetic model proposed by Ferrara et al. is more com plicated and for practical use 

requires the rate equation for the crowded region to be solved using finite difference approximation 

[26],

Feed Bed Stratification

The stratification rate is the speed at which particles pass through the material bed to arrive at the 

screen. Figure 2.7 shows the stratification of particles within a bed of material.

©i® #  K lip ) ^

S c reen

’■ -1 *o*;Q. 0^(1 * Q * h y \

”'-rG  °  O o o  )  -

Figure 2.7: The stratification of particles within a bed of material.

The rate o f stratification depends on the relative particle sizes in the feed, the particle den­

sity curve and the screen m otion [55], Soldinger [49] also notes the influence o f bed thickness on
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the screening process. Stratification is known to aid screening, enabling particles to quickly move 

through material to the screen below. Stratification is found to increase with a greater breadth in 

feed particle size distribution allowing smaller particles to fall betw een larger particles. The level o f 

stratification will decrease when the average particle size decreases. Finally, wet conditions hinder 

stratification as sm aller particles are more likely to stick to larger particles [49], It was noted that 

particle density and particle shape have less o f an influence on the rate o f stratification as compared 

to the particle size distribution [33].

The rate o f stratification is typically m odelled as a first order process [55, 25]. Referring to 

Soldinger’s work on stratification [49], if the amount o f material in the bottom  layer is S ,  and the 

remaining am ount o f material in the screen bed is 1 — S ,  then the rate o f stratification of material is 

written as:

S  =  c ( l  — S ) (2.28)

where c represents the rate o f stratification. Soldinger observed that the value o f c varied along the 

length of the screen. Integrating Equation 2.28 gives:

S  =  1 -  (1 -  S o ) e x p ( - c t )  (2.29)

M odelling particle stratification within the material provides im portant additional information 

o f the particle behaviour on the screen.

Summary

Kinetic models use passage rate information to model screen performance. Knowing the passage 

rate along the screen at different lengths, the percentage of overflow material for each particle size 

bin can be determined. In both the simple kinetic screen model and the Ferrara kinetic screen model 

the screen was divided into a crowded region and a separate region, which were modelled separately. 

The simple kinetic m odel was shown to be easily derived, however the kinetic screen model proposed 

by Ferrara et al. was shown to more realistically model the crowded region. A dditional kinetic screen 

models are available that use sim ilar assumptions and result in sim ilar model forms [52, 16, 63, 6 ], 

Overall, kinetic m odels have perform ed well in controlled experiments [22] [18] [50],

To im plem ent a kinetic screen model, the underflow tonnage is required at regular intervals along 

the screen. This is easily accom plished in a pilot plant situation, but can be a tim e consum ing and 

costly undertaking for an operational plant. Consequently, the kinetic model is not a feasible option 

for the analysis o f an operational plant screening system such as the one investigated in this work.

2.4.4 Evaluation of Traditional Screen Models

In Sections 2.4.1 to 2.4.3 three categories o f screen models were covered and it was found that only 

the category of empirical models that use advanced statistical regression methods is applicable to oil
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sands screen m odelling at this time. However, o f the traditional screening variables listed in Section 

2.3, time series data is only available for the feed tonnage variable. A representative sam ple o f data 

points is plotted to determ ine w hether a simple relationship does exist between the feed tonnage and 

the overflow tonnage. If a high percentage of the overflow tonnage variance is explained by the feed 

tonnage alone, then the rem aining traditional variables can be considered to play a relatively minor 

role in oil sand screen performance.

Figures 2.8 and 2.9 plot the overflow tonnage versus the feed tonnage for two years o f data 

collected during sum m er months (May to August) and two years o f data collected during the winter 

months (D ecem ber to M arch) respectively. Both plots show that the feed tonnage is in general a 

poor predictor o f the overflow tonnage. This result motivates the need for further understanding of 

the overflow tonnage variance as it relates to other screening variables. Using statistical regression 

methods, pertinent process variables, from Syncrude’s historical databases, can be identified and 

used to improve prediction of overflow tonnage variance.

3000 4000 5000 0000 7000

Feed T on n a ge (J P H )

Figure 2.8: A gray coded scatter plot o f overflow tonnage versus feed tonnage during summer 
months (M ay to A ugust) for 2005 and 2006 for the screening system  in Figure 1.2. The varying 
levels o f gray represent the local data point density ranging from zero (white) to 30 (black).
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Figure 2.9: A gray coded scatter plot o f overflow tonnage versus feed tonnage during w inter months 
(December to M arch) for 2005 and 2006 for the screening system in Figure 1.2. The varying levels 
of gray represent the local data point density ranging from zero (white) to 30 (black).

It was shown in this chapter that traditional screen models depend heavily on the feed particle size 

distribution. Flowever, time series feed particle size distribution is currently not available for Syn- 

crude’s North M ine. Before undertaking the extensive work needed to collect data for traditional 

screening variables, plant variables are considered such as the screening system ’s water usage and 

oil sand geological properties. Taking an empirical approach, statistical regression methods, in­

troduced in C hapter 3, are used to build a model relating water and geological variables to screen 

performance.

2.5 Summary
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Chapter 3

Regression Techniques

The previous chapter introduced traditional screening variables and screen models. Unfortunately, 

traditional screen m odels could not be evaluated on Syncrude’s static screens due to the lim ited avail­

able historical tim e series data. Consequently, an empirical statistical regression screen modelling 

approach is adopted. In this chapter, we outline the general approach taken for the developm ent 

o f a screen m odel using historical time series data and present in detail four statistical regression 

methods.

3.1 Introduction

Statistical regression methods have been applied to many different research areas in order to gain 

insight into com plicated systems. They enable researchers to isolate potential relationships between 

predictor variables and response variables without requiring in-depth knowledge of the underlying 

system. In this chapter we introduce a quick overview of the experimental process as applied to 

the analysis o f historical data. We overview four well-known statistical regression methods: m ulti­

ple linear regression, response surface regression, principal com ponent regression, and partial least 

squares regression. Finally, we discuss tools used to evaluate and extract conclusions from  regres­

sion results.

3.2 Outline of Regression Model-Building Process

In this work, a general approach is taken to identifying significant variables and the developm ent of 

a regression model. A typical strategy for building a regression model is presented in Figure 3.1.

The first stage provides the problem formulation that addresses the goals o f the experiment. 

Following that, the data is explored to remove obvious errors, extreme outliers, and provide summary 

statistics. Summ ary statistics include the mean, variance and range of the data. The second stage is to 

screen the input variables using linear models to identify which are the most significant. During the 

process o f identifying significant variables, an explanatory model is developed to provide insight into 

the general oil sand screening process. In the third step, prediction models are developed with more
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Figure 3.1: Regression model-building process [37].

advanced regression m ethods to increase the predictive power o f the model. Prediction regression 

methods typically include interaction terms, polynomial terms, and nonlinear functions for each 

predictor variable. Four regression methods used in this work are outlined in the following section. 

The fourth stage analyzes the goodness o f fit o f the developed model. Com m on forms of result 

analysis are coefficient analysis with 95% confidence intreval, RM S error, f-statistics, t-statistics, 

variance inflation factors, and the coefficient o f determination. The last stage considers the results 

and evaluates w hether satisfactory results have been achieved or if the process should be repeated.

3.3 Statistical Regression Methods

In this section we overview m ultiple linear regression, response surface regression, principal com po­

nent regression, and partial least squares regression. In the presentation of each regression method, 

M  is the num ber o f variables, including the bias term, and N  is the num ber o f data points. The 

mean of the response m atrix is denoted by Y  and the standard deviation o f the response matrix is 

denoted by a Y .  D ata used to train a screen model is denoted by a t r a i n  subscript and data used to 

test a screen m odel is denoted by a t e s t  subscript.

3.3.1 Multiple Linear Regression

Multiple linear regression (M LR) is a statistical regression method for determ ining linear relation­

ships between multiple predictor variables and a single response variable. M LR is widely used for 

its simplicity and the ease with which the resulting coefficients can be interpreted.

The functional form  o f M LR is given in Equation 3.1, where Y  is a N x l matrix o f response 

variable data points, B  is a M x l matrix o f system coefficients, X  is a NxM  m atrix o f predictor 

variable data points, and e is an error term that represents the rem aining system variance not captured 

by the model. Typically, the model coefficients are determ ined from  a training data set using least 

squares estimation.

Ytrain — Xtrain ' B  T  € (3.1)
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Once the coefficients are determ ined from the training data set, testing o f the m odel is easily 

carried out. Each data point o f the test set, X test , is m ultiplied by the coefficients and the resulting 

values are linearly sum m ed to give a predicted value for the response variable. The functional form 

is provided in Equation 3.2.

M LR assumes that the predictor variables are m easured with little error and that the relationships 

between the two sets are approximately linear [35], M LR also assumes that the predictor variables 

are independent since M LR is simply a series o f univariate regressions. A disadvantage o f MLR 

is that if  predictor variables are not independent, problems o f m ulticollinearity arise that can limit 

performance [30]. Additional assumptions include non-stochasticity in the predictor variables and 

statistical independence and normal distribution, with zero mean and constant standard deviation, of 

model errors. Preprocessing o f data using centring or scaling techniques is not necessary due to the 

linear properties o f MLR.

To sum marize, M LR is a simple yet powerful method for quick evaluation o f data from complex 

systems. D espite a num ber of lim itations, M LR ’s strength is in its ability to provide information 

about the system  by analyzing the resulting coefficients. Prelim inary relationships can be identified 

between response variables and significant predictor variables, which could not easily be accom ­

plished using m ore advanced regression methods.

3.3.2 Response Surface Regression

Response surface regression (RSR) is an extension of M LR that includes interaction terms and 

higher order terms. In this work we limit the higher order terms to at most degree two. An example 

o f the response surface regression form  for two predictor variables is given in Equation 3.3.

A general form  o f the RSR model is Y  =  X B  +  e, where Y  is a matrix o f response variable 

data points, B  is a m atrix o f system  coefficients, X  is a m atrix o f predictor variable data points 

including all interaction and quadratic terms, and e is an error term that represents the remaining 

system variance not captured by the model. For RSR, both the predictor variables and the response 

variable are centred and scaled. As in MLR, the coefficients are determ ined using least squares 

estimation.

Prediction using a test data set is accom plished by subtracting the mean o f the training data set, 

Xtra in . from  the test data set, X tl,si, and then multiplying by the coefficients determ ined from  least 

squares estim ation. The result is then multiplied by the standard deviation and added to the mean of 

the original response matrix, as shown in Equation 3.4.

(3.2)

y  =  b0 +  b\Xi  +  b2X2 +  b3x \  +  b4x  \  +  6 5 * 10 :2  +  e (3.3)
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t r a in ■ w - B - Y t r a inr a in (3.4)
t r a in

Response surface regression enables m odelling o f relationships caused by the interaction of 

variables, but suffers from overfitting if proper care is not taken. Response surface regression is 

often used in applied research [8 ],

3.3.3 Principal Component Regression

Principal com ponent regression (PCR) addresses the problem  o f m ulticollinearity betw een predictor 

variables. In PCR, principal com ponent analysis (PCA) is used to decom pose the predictor matrix 

X  into a series o f orthogonal components. Regression methods then use a subset o f the resulting 

components to develop a model o f the system.

The system takes the linear form Y  =  X B  +  e, where Y  is a matrix o f response variable data 

points, B  is a m atrix o f system  coefficients, X  is a matrix o f predictor variable data points, and 

e is an error term that represents the remaining system variance not captured by the model. PCA 

generates a set o f eigenvectors, w,  and eigenvalues o f X T X .  Both Y  and X  are first centred by 

subtracting their respective means and scaled by dividing by their respective standard deviations. 

Each eigenvector accounts for a portion of the system variance. The m agnitude of the variance 

is m easured by the m agnitude o f the eigenvalue. The PCR components are then determ ined by 

multiplying the eigenvectors by the original predictor matrix. Typically, the num ber o f components 

chosen account for 80 to 90 percent the total system variance, where the rem aining com ponents are 

assumed to represent noise [29], Figure 3.2 shows a simple example o f principal com ponents in a 

two-dimensional data set.

The resulting subset o f eigenvectors, w,  are then used to decom pose the original data set into 

orthogonal com ponents by multiplying each data point by the set o f eigenvectors. The new predictor 

matrix is now in the form  X w .  Once the new predictor matrix is formed, then M LR is performed, 

using Equation 3.5, to determ ine coefficients, B ,  that relate the response variable to the new predictor 

matrix.

•  ̂ Component 2

4 Component 1

Figure 3.2: Exam ple of principal components in a two-dimensional data set.
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Strain B  • Ytrain "L Strain (3.5)
X t r a i n  X t r a i  

X t r a i n

Prediction using a test data set is accom plished by subtracting the mean o f the training data 

set, X ^ a i n > from  the test data set, X test, and then multiplying by the coefficients determ ined from 

MLR. The result is then m ultiplied by the standard deviation and added to the mean of the original 

response matrix, as shown in Equation 3.6.

Ytr • W • jB ' Y t r a i n  T  Y t r a i n  ( 3 .6 )
X t r a i n

It was discussed earlier that M LR can behave poorly in data sets with highly correlated variables. 

The advantage o f using PCA prior to using MLR, is that the new data set satisfies the assum ption of 

orthogonality. A second advantage of PCR is the inherent data reduction gained from  using only a 

subset o f the total num ber o f components. For example, in Figure 3.2, the data can be represented 

using simply the first com ponent allowing for a small amount o f error in the final results. One 

disadvantage of PCR is that PCA only considers the variance of the predictor matrix. Consequently, 

if the com ponents with the lower percentage of explained variance are the m ore im portant variables 

then they can be rem oved inadvertently when selecting the subset o f principal components. This 

results in the selection of a sub-optimal set o f components. Therefore a better method, presented in 

the following section, is to evaluate components not based solely on the variance in the predictor 

variables, but also on the variance in the response variable.

3.3.4 Partial Least Squares Regression

Partial least squares regression (PLSR) identifies latent vectors that maximize the explained vari­

ance between the predictor variables and the response variable [29]. Unlike PCR, where the top k  

components may not be the optimal set o f principal components, the top k  latent vectors in PLSR 

are optimal for the system  as they are determined by maximizing the explained variance o f both the 

predictor and the response variables.

As before, the system  is assum ed to take the form Y  =  X B  +  e, where where Y  is a matrix of 

response variable data points, B  is a matrix o f system coefficients, X  is a m atrix o f predictor variable 

data points, and e is an error term that represents the rem aining system variance not captured by the 

model. Once again the predictor and response matrices are centred by subtracting the mean and 

scaled by dividing by the standard deviation.

A com m only used method for identifying latent vectors in a system is N onlinear Iterative PLS 

(NIPALS) [29]. NIPALS builds a weight matrix, w,  that de-correlates X .  The general algorithm  for 

NIPALS is reproduced in Table 3.1.

Referring to Table 3.1, NIPALS finds the latent vectors Wh and then subtracts the resulting ex­

plained variance from  the predictor and response matrices. This is repeated until a preset percentage 

of the system  variance is represented by the identified latent vectors. At this point we have a set
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X i = X, Y X = Y, C l = I 
For h =

w h = norm (ChX'hYh)
th — XfoW}l
Yh+1 = Y h -  ( tht>hYh)/ (t 'ht h ) 
Ch+i = C h  -  (w ht'hX h) / (t'ht h) 
Xh +i  = X h -  ( t ht'hX h ) / (t'h t h) 

End For

Table 3.1: NIPALS pseudo-algorithm  [29], where N is the num ber o f desired latent vectors.

o f weight vectors, or latent vectors, that are used to decompose the predictor matrix as shown in 

Equation 3.7.

Y t r a i n
Xt , . - X f ,

■ B  ■ Ytr +  Ytr (3.7)
X t r a i n

Sim ilar to PCR, the new decorrelated predictor matrix is then fit to the response m atrix using 

MLR or a sim ilar regression method. Prediction is carried out in the same m anner as PCR. The 

result is then multiplied by the standard deviation and added to the mean o f the original response 

matrix, as shown in Equation 3.8.

Ytest —
X t e s t  X ,t r a i n '■ B  - Ytr Ytr (3.8)

X t r a i n

An example is often helpful in understanding the difference between PCR and PLSR. In Table 

3.3 we have a response variable and two predictor variables with a series o f values. Table 3.4 gives 

the centred and scaled values o f the original data. As we can see from a quick glance, to predict the 

response variable, only the second predictor variable is needed.

Y Xi x 2
1 20.2 1
2 13.4 2
3 21.2 3
4 34.5 4
5 6.7 5

Y X i x 2

-1.26
-0.63

0

0.63
1.26

0.096
-0.56
0.19
1.48

- 1 .2 1

-1.26
-0.632

0

0.632
1.26

Figure 3.3: Exam ple values for a response vec- Figure 3.4: Values of the response and predic­
tor, Y ,  and two predictor variables, X i  and X 2. tor variables after centring and scaling.

Both PCR and PLSR are run on the scaled and centred data in Table 3.4. Figure 3.5 plots the 

data with the PCR com ponents and Figure 3.6 plots the data with the PLSR latent vectors.

Wc can sec  that PCR ignores the values o f  the response variable and identifies the m axim um  

variance in the predictor variables only. From Figure 3.6 we can see that PLSR takes into con­

sideration the variance o f the response variable and, while m aintaining orthogonality in the latent 

vectors, rotates the com ponents accordingly. Table 3.2 gives the results of applying m ultiple linear 

regression to the first com ponent o f both PCR and PLSR and the response vector.
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Figure 3.5: Plot o f centred and scaled example Figure 3.6: Plot o f centred and scaled example
data with overlaid PCR components. data with overlaid PLSR latent vectors.

Y Y P C R Y P L S R
1 1.92 1 .0 1

2 2.94 1.99
3 2.85 2.97
4 2.33 3.78
5 4.95 5.14

Error 0 .75±0.66 0.10±0.08

Table 3.2: Final results using M LR on only the first resulting com ponent from  PCR and PLSR 
respectively.

From Table 3.2, we can see that PLSR provides a stronger first component, or latent vector, 

because it takes into account the variance in the response vector.

3.4 Presentation of Results from Regression Analysis

In this section we present several typical regression performance measures that are used for the 

evaluation of experim ental results. First, an example is provided to aid in explaining the regression 

performance measures. Table 3.3 lists example data for five predictor variables and one response 

variable.

A m ultiple linear regression model is built relating the predictor variables to the response vari­

able. The resulting perform ance m easures are presented in Table 3.4.

In Table 3.4, in the top section under the source heading, model  refers to the regression model, 

total refers to the system  under investigation, and residual refers to the difference, or error, be­

tween the model and the system. Table 3.5 summarizes the variable symbols used in the following 

discussion of regression perform ance measures.

Regression m odels are comm only evaluated using the residual root mean squared error (RMS 

error). The residual RM S error provides an evaluation of the average error betw een the model and 

measured value. The residual RMS error is calculated using Equation 3.9.
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Response Var. 1 Var. 2 Var. 3 Var. 4 Var. 5
5.00 -1.56 1.45 169.5 15.69 3.45
9.00 -3.56 3.45 200.1 16.23 2.99
3.33 -0.56 0.99 212.1 15.45 3.33
1.45 -4.50 1.23 145.2 14.23 4.42
12.7 -3.69 4.56 123.3 13.69 2.58
20.4 -0.23 1.56 134.9 1 2 . 1 2 3.45
15.4 -1.34 1.65 111.2 18.23 6.23
1.23 -6.75 2.34 178.4 19.23 4.56
23.0 -3.45 4.34 194.4 16.56 3.24
5.69 -1.23 2.45 138.2 15.99 1.23

Table 3.3: Example data set for one response variable and five predictor variables.

R esponse Variable: Overflow Tonnage
A nalysis o f Variance

Source D F Sum  o f Squares M ean Square F-Value Prob >  F
M odel 5 428.61 85.72 2.78 0.1717
Residual 4 123.30 30.83
Total 9 551.91

RMS Error 5.55
R 2 0.777
adj-R 2 0.497

Param eter Estimates
Variable D F Reg. Coef. Standard Error T for HO Prob >  |T
C onstant 1 1.91 16.98 0 . 1 1 0.916
Var 1. 1 2.82 1.14 2.47 0.069
Var 2. 1 6.16 1.84 3.35 0.029
Var 3. 1 0 . 0 1 2 0.06 0 . 2 0 0.855
Var 4. 1 -0.996 1 . 1 2 -0.89 0.423
Var 5. 1 4.06 1.91 2.13 0 . 1 0 1

Table 3.4: Resulting perform ance measures from m ultiple linear regression perform ed on the exam­
ple data set in Table 3.3.

Variable Symbol Variable Definition
Sample Overflow Tonnage 
M odel Overflow Tonnage 
Residual Values 
Total Sum  of Squares 
Residual Sum  o f  Squares 
M odel Sum  of Squares 
Total Degrees o f Freedom  
Model Degrees of Freedom  
Residual Degrees of Freedom

^ s a m p le

Y m o d e l

R E S

sstotal
Q Qo  iJ r e s id u a l

S ^ m o d e l  

D F t o t a l  

D F m o d e l  

D F r e s i d u a l

R E S  — Y m o d e l  ~ ^ s a m p l e  

(̂ s a m p l e  ^ 6 tt?T<(Vgamp/e))
( R E S  -  m e a - n . ( R E S ) ) 2
S S f n o d e l  — S S i 0i a i -  S S r e s id u a l

DFtotai -  num ber of data points minus 1 . 
D F m o d e i  = num ber o f predictor variables. 
D F r e s id u a l  — D F i 0t a i -  D F m o del

Table 3.5: Variables used in the discussion of regression performance measures.
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Residual RMS Error =  J  (3 .9 )
V Ur r e s id u a l

The coefficient o f determination, R 2, is the proportion of variability in the response variable that 

is explained by the model. The coefficient o f determination is calculated as:

R 2 = SSresiduaL (3.10)
SStotal

where a value o f one indicates that the model has perfect predictability and a value o f zero implies 

that the m odel has none. Unfortunately, R 2 can be increased by adding new variables even though 

the new variables add little predictive capability to the model. The adjusted coefficient o f determ i­

nation, a d j - R 2, accounts for variables that provide little or no new predictive capability. The adj-R 2 

is calculated using Equation 3.11.

a d j - R 2 =  1 -  (1 -  R 2) J l Ftotal (3.11)
U r  r e s id u a l

In Table 3.4, the standard error (SE), or standard deviation, o f the coefficient value is used for

hypothesis testing and constructing a confidence interval. The standard error is calculated as:

S E yJ d ia g  ( R - 1 ■ ( R ~ 1)T ■ M S E )  (3.12)

where R is calculated from a QR decom position of X and M SE is the residual mean squared error. 

The confidence interval is constructed by multiplying the SE by k,  where k  is a constant related to 

the level o f confidence desired. For a 95 percent confidence limit, the value o f k is 1.96.

The t-statistic tests the hypothesis that the regression coefficient for the population is zero in the 

presence of the rem aining predictor variables. It is calculated as:

. . regression coefficient — hypothesized value
t-statistic =  — -----------------------------------  (3.13)

b h

where the hypothesized value is set to zero in order to evaluate if the regression coefficient is zero 

in the presence of the rem aining variables. The t-statistic is then m apped to a norm al distribution 

to determine the P-value of the coefficient. The P-value is the observed significance levels for 

the t-statistic. The P-value is used to identify variables that could potentially be rem oved without 

significantly reducing the m odel’s predictive power. Insignificant variables should be rem oved one 

at a tim e since a variable that is insignificant in the presence o f a set o f variables, may become 

significant when a variable from  that set is removed. If a P-value has an insignificant value (>  5%) 

then that variable can be considered for removal.

The F-value is a statistic used to evaluate the model as a whole. The F-value is calculated using 

Equation 3.14.

p    M S E model  j  „

M S E total -  M S E model
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where the mean squared error (M SE) is calculated by dividing the sum of squares value by the 

num ber of degrees o f freedom  for the model  and the residual respectively. This value is used to 

determine if  the null hypothesis, indicating that the model has no predictive capability, should be 

rejected. The m odel is rejected if  the F-value is less than zero, when S S totai < S S residuai-

N ot shown in Table 3.4 are variance inflation factors (VIF) that evaluate multicollinearity be­

tween variables [38], If  the predictor variable is uncorrelated with the rem aining variables then the 

value of the variance inflation factor is equal to one. A larger value indicates a  higher level o f redun­

dancy of predictor variables. Typically, a predictor variable having a variance inflation factor greater 

than 10 should be considered for removal. The V IF is calculated using Equation 3.15.

V I F i  =  (3.15)

where i  is the variable o f interest and /?,'• is the unadjusted R 2 when you regress X , against the 

remaining predictor variables in the model. Once highly correlated variables are identified and 

removed, a stronger assum ption of independence can be made for MLR.

The regression models developed in this work are evaluated using the RM S error and the adj-R 2 

value. Further significance testing is carried out using t-statistics and VIF. The RMS error provides 

a measure o f the average error o f the model and the adj-R 2 value provides a m easure o f the system 

variance explained by the model. Together, they provide a measure of m odel perform ance and allow 

the evaluation and ranking of different regression models created using the same data set.

3.5 Summary

In this chapter, a general approach for the developm ent of a screen m odel was introduced along with 

four statistical regression methods: m ultiple linear regression, response surface regression, principal 

component regression, and partial least squares regression. The next chapter will outline steps taken 

to collect data, identify significant variables, and develop explanatory and predictive screen models.
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Chapter 4

Model Development

In the previous chapter, we outlined the general approach to regression data analysis and overviewed 

four comm on linear regression methods. In this chapter we collect and clean raw water and geologi­

cal data and identify significant variables for sum mer and winter screening conditions using forward 

stepwise multiple linear regression. We show that a single screen model is sufficient for summer 

screening conditions for both Train 1 and Train 2, however, separate models are needed for Train 

1 and Train 2 in w inter screening conditions. Candidate prediction m odels are developed using 

the four linear regression methods discussed in Chapter 3 and are com pared using five-fold cross- 

validation. Each regression method was run a first time on either the sum mer or w inter significant 

variables and then a second tim e on all variables. The response surface regression method is not 

perform ed on all 52 variables due to computational restrictions resulting from  the large num ber of 

predictor variables. We show that a PLSR model developed using all 52 w ater and geological vari­

ables perform ed the best with an average 25 percent decrease in RMS error over a simple feed-only 

model. D etailed results are presented followed by a discussion o f various insights that are gained 

into oil sand screen operation.

4.1 Introduction

It was shown in C hapter 2 that traditional screening variable data is not available in Syncrude’s h is­

torical databases and collecting a sufficient number of samples to capture plant behaviour is beyond 

the scope of this work. It was decided, based on suggestions from oil sand screen operators, that 

water and geological variables should be considered for the developm ent o f an advanced statistical 

regression em pirical model. In the next section, we present water and geological time series vari­

ables that are recorded by Syncrude. The process o f extracting raw data from the databases and 

cleaning it o f erroneous and atypical values is then presented. Once data collection is completed, 

significant variables are identified using forward stepwise m ultiple linear regression for both sum ­

mer and w inter screening conditions. An explanatory model is developed showing that the identified 

significant variables provide additional explained variance of the screening system. Four predictive
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models are developed using water and geological variables, and are evaluated using five-fold cross- 

validation. Each prediction m odel is then compared against the perform ance o f a feed-only linear 

regression model. Finally, the significant variables and the explanatory and prediction models are 

discussed.

4.2 Plant Screen Variables

In this section, we present water and geological variables that have been identified by screen oper­

ators as potential reasons for screen performance fluctuation. The identified water and geological 

variables are m easured using online sensors and placed into historical databases. The water vari­

ables contain w ater flow, pressure, and temperature variables. The geological variables provide oil 

sand physical inform ation such as the ore grade and the percentage of clay.

4.2.1 Water Variables

Water variables describe the screen water system and local w eather conditions. In the screen water 

system, water is added to the oil sand material before reaching the screens and material is sprayed 

with high pressure w ater as it passes over the screens. Local w eather conditions may also contribute 

to material m oisture content as material can be subjected to rain and high hum idity as it moves 

through the open air sections o f the plant. In Section 2.3, high levels o f m oisture content was shown 

in previous work [34, 43] to reduce screen performance due to screen plugging and blinding. It 

is currently unknown how the screening system water usage influences the perform ance of static 

screens.

Figure 4.1 shows a diagram  o f the screen water system and Table 4.1 lists pertinent water system 

variables m easured and placed in a process information database. The location o f each sensor in the 

screen water system  in Figure 4.1 is also provided.

In Figure 4.1 we see that water first enters the water system from the extraction facility. At this 

point sensors collect data on the extraction water flow rate, pressure, and tem perature. Further on, a 

portion o f the w ater is directed to the vortex vessel where it is added to the oil sand material arriving 

from the surge facility. The flow rate o f the water to the vortex is recorded. Over the screens, 

high pressure w ater from  spray bars is used to help push material through the screen apertures. 

Unfortunately, at the time o f this work, there were no available tim e series water flow rate or water 

pressure data for the spray bars. A portion of the water is diverted to the slurry pum p glands and 

time series water pressure data o f the diverted water is available. The rem aining portion of the water 

from extraction is directed to the pump box where oil sand is mixed with water to form a slurry that 

is pumped to extraction. The amount o f water that enters the pumpbox is controlled by a valve and 

time series data is available for the percentage that the valve is open. A portion o f the w ater in the 

pumpbox is also pum ped through a recycle line back to the vortex vessel. The last sensor that is 

considered in this work records the pressure o f the water in the recycle line.
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Oil Sand from Surge F a c i l i t y  ►

Recycle Line 
From Pump Box
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Sump

Gland
Water

Rejects
Conveyor•  4

Slurry To 
Extraction

Pump
Box

Recycle Line 
to Vortex

Figure 4.1: D iagram  of water flow in the screening system.

Location in 
Figure 4.1

Variable Nam e

1 Flow rate o f water from extraction
1 Pressure o f water from extraction
1 Temperature of water from extraction
2 Flow rate o f water to vortex
3 Pressure of water at the pum p glands
4 Percent opening o f the pumpbox valves
5 Water pressure in the recycle line

Table 4.1: L ist o f water system  variables. The first column lists the location in Figure 4.1 where the 
variable is recorded in the water system.

4.2.2 Geological Variables

Geological properties are known to vary from one area of the mine to the next, and the large vari­

ation in oil sand physical properties has been hypothesized by screen operators to affect screen 

performance. However, it is currently unknown how oil sand geological properties influence screen 

performance.

Oil sand geological survey data is collected by geologists from core sam ples taken at 100 metre 

spacings and entered into a SURPAC geological model [48, 14], Later, global positioning systems

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



use the location o f the shovel to tag each truck load of oil sand material with the pertinent SURPAC 

geological inform ation listed in the first three rows of Table 4.2. W hen the dum p trucks deposit 

their material into one o f two toothed roll crushers, NM FB 6  or N M FB7, the geological information 

is saved into the Quality Production Data (QPD) database. Table 4.2 lists the geological variables 

considered in this work. The first three variables are extracted from the QPD database. The last 

variable, the material ore grade, is extracted from  Syncrude’s Process Information (PI) database.

G eological Variables Unit Database
Bitum en Content % QPD
Clay Content % QPD
35 Facies Types % QPD
Ore Grade % PI

Table 4.2: List o f geological variables extracted from the QPD and PI databases.

In Table 4.2, the bitumen content is the approximate percentage by w eight o f bitum en, a form of 

crude oil, in the oil sand material at the location where it was dug from  the ground. The ore grade 

variable is the approxim ate percentage of bitumen in the oil sand exiting the surge facility. The clay 

content is the approxim ate percentage of clay in the oil sand m aterial at the location where it was 

dug from  the ground. A facies type describes the lithology and sedimentary textures and structures 

o f oil sand material [44], In the oil sands industry there are approximately 35 nam ed facies types 

and there can be any num ber of different facies types in a given core sample location. Figure 4.2 

illustrates the identification o f various facies types in a core sample.

Facies 7

\
Facies 8

\
Facies 13

\
Facies 21

/

Ground Core Sample

Figure 4.2: The extraction of a core sample and identification o f different facies. The percentage
value indicates the percentage o f  the total volum e that facies occupies.

At Syncrude, each facies type belongs to one of three categories that are based on the environ­

ment in which the facies was formed: marine facies, estuarine facies, or fluvial facies. The facies 

categories are calculated based on the percentage o f each facies in the sample. For example, in 

Figure 4.2, let us say that Facies 7 and 8  are marine, Facies 13 is estuarine, and Facies 21 is fluvial.
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Therefore, in the core sample shown in Figure 4.2, the percentage of m arine facies is 50 percent, the 

percentage of estuarine facies is 20 percent, and the percentage o f fluvial facies is 30 percent. The 

three facies categories are not contained in the QPD database and m ust be calculated prior to the 

analysis o f the geological data.

4.3 Data Collection

The data collection, integration, and cleaning steps taken to process the raw data are outlined below 

with careful consideration o f the physical aspects o f the plant setup. It is known w ithin the oil sands 

industry that oil sand physical properties vary considerably betw een sum mer and w inter conditions. 

To test w hether differences exist between seasons, data is collected for sum m er and w inter periods in 

one minute intervals. It is also noted that operating differences m ay exist betw een the two crushers 

and the two static screens. Consequently, the data is cleaned so that only one crusher and one static 

screen are in operation for each data point. Raw data is collected for two years (2005 to 2006) 

o f summer screening conditions (May to August) and w inter screening conditions (D ecem ber to 

M arch). Due to tim e restrictions, screening for spring and fall conditions are not considered in this 

research and are left to future work. Throughout the data cleaning process, assumptions are made 

regarding system  operation so that atypical and erroneous data points are removed.

D ata for the 52 water and geological variables, listed in Table 4.3, are gathered from three 

data sources. The first source is Syncrude’s Process Information (PI) database, which contains 

water sensor data, the material ore grade, and the feed and overflow tonnages. The second source 

is Syncrude’s Quality Production D ata (QPD) database, which contains oil sand geological data. 

The last source is Environm ent C anada’s historical environment website [3], which contains local 

temperature, humidity, and w eather data.

W ater and G eological Variables
Feed Tonnage 
Humidity 
Temperature 
W eather

Ore Grade 
35 Facies Types 
Clay Content 
B itum en Content 
Estuarine Content 
M arine Content 
Fluvial Content

Flow rate o f water from extraction 
Pressure o f water from  extraction 
Temperature o f water from extraction 
Flow rate o f water to vortex 
Pressure o f water at the pump glands 
Percent opening o f the pump box valves 
Water pressure in the recycle line

Table 4.3: L ist o f 52 water and geological variables under study.

In this work, a series o f steps are taken to extract, combine, and clean the raw data. The number 

o f data points that were rem oved at each step set are sum marized in Table 4.6 for the Sum m er data 

set and in Table 4.7 for the W inter data set.

To start, geological data is extracted from the QPD database. D ata points for crushers located in 

other areas o f the plant are deleted. For each data point, the percentage of m arine facies, estuarine 

facies, and fluvial facies are calculated from  the 35 different facies types and added to the extracted
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data.

The geological data is recorded and tim e stamped when the material is dum ped into the crushers 

and so must be time shifted forward to correspond with data recorded at the screens. The time shift 

is calculated as the tim e for the material to move from the crushers, through the surge pile and to the 

static screens, and is referred to as the traversal time. The m aterial’s traversal time is a function o f 

both the amount o f m aterial in the surge facility and how quickly the material is rem oved from the 

surge pile. The algorithm  in Table 4.4 calculates the traversal time for each truck load.

1 • surgePileCapacity = 10000 tonnes
2 ■ for i = 2 to sizeOfData
3 • percentThrough; = 1 - pileHeightPercentage,
4 • tim eElapse = dataTimeStamp,; - dataTim eStam p,_ j
5 ■ tonnageExitirigSurgePile = feedTonnage* x timeElapse
6  • percentM oveThroughPile = tonnageExitingSurgePile/surgePileCapacity
7 • for j = 1 to i-1
8  • perccntThroughj = percentThrough^ + percentM oveThroughPile
9 • if  percentThroughj > = 1 0 0  percent
10 • totalTim ej = dataTimeStampj - dataTim eStam pj
1 1  • end if
1 2 - end for
13 • end for

Table 4.4: A lgorithm  used to calculate the time taken for a truck load of material to move through 
the surge pile, or the traversal time. The totalTimej is the traversal tim e of truck load j .

The algorithm  in Table 4.4 calculates the traversal tim e based on the surge pile height and the 

rate at which m aterial exits the surge facility. It is assumed that the capacity of the surge pile is 

10000 tonnes. On Line 3, the algorithm  calculates the initial position o f the truck load in the surge 

pile based on the surge pile height. The surge pile height is m easured using four laser range finders 

located on the exit end of the crusher conveyor belts, as shown in Figure 4.3. The height is converted 

to a percentage where 1 0 0  percent indicates a full surge pile and zero percent indicates an empty 

surge pile. The surge pile height for each crusher is assumed to be the mean o f the two laser range 

finders associated with the respective crusher conveyor belt. In Line 4, the elapsed tim e between 

the previous truck load i — 1 and the current truck load i  is calculated. Using the elapsed tim e and 

the feed tonnage when truck load i is dumped, the approximate am ount o f material that exited the 

surge pile is calculated. The feed tonnage when truck load i is dum ped is assum ed to be the sum 

of both Train 1 and Train 2 feed tonnages. The percentage the pile moved down, the incremental 

percentage through, is then calculated by dividing the exited material by the total capacity o f the 

surge pile. In lines 7 through 12, the incremental percentage through  is added to the percentage 

through o f each o f the previous truck loads that have not finished moving through the surge pile. In 

lines 9 through 11, the total tim e is recorded if the total percentage through o f a truck load reaches 

100 percent. The total tim e for the material to move through the surge pile is the current tim e minus 

the time when the truck load entered the surge pile. This process is repeated for each data point in
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the QPD data set. N ote that the algorithm in Table 4.4 ensures that the order o f the data points in 

the QPD database is kept. This parallels the actual process where the material m ust exit the surge 

pile in the order it entered. It is assumed that any traversal time less than 15 m inutes or greater than 

five hours indicates either false data or a temporary plant shutdown. The m inim um  transversal time 

o f 15 minutes is based on a 2000 tonne surge pile and an 8000 TPH feed tonnage. The maximum 

traversal tim e o f five hours is based on a 10000 tonne surge pile and a 2000 TPH  feed tonnage. Any 

data point having a traversal tim e outside of this range is removed.

Crusher Conveyor Belts

Laser Range 
Finders Truck Load Layer

\ /

Feed Conveyor Belts

Figure 4.3: Surge pile with two crusher conveyor belts depositing material onto the surge pile and 
two feed conveyor belts rem oving material from underneath. Two laser range finders are located on 
the exit end o f each crusher conveyor belt to m easure the height o f the surge pile.

The data for the Environm ent Canada weather variable, which is entered as text, such as ‘rain’ 

or ‘clear’, are divided into data points with rainy or snowy weather and data points with sunny or 

clear weather. D ata points with rainy or snowy weather are given the value 1, and data points with 

sunny or clear w eather are given the value 0. A t this point the QPD data set and the Environment 

Canada data set are ready to be com bined with the PI data set.

The three data sets from the PI database, the QPD database, and Environm ent C anada’s historical 

environment website are com bined for the sum mer period and then for the w inter period. Each of 

the three data sets has a unique sample frequency. The PI data set is sam pled in m inute tim e steps, 

the QPD data set is sam pled in nonuniform time steps that depended on when the truck arrived at the 

crusher, and the Environm ent Canada data set is sampled in hour time steps. The QPD dataset and 

the Environm ent Canada data set will be up sampled to minute frequency and concatenated with the 

PI data set. The Environm ent Canada data set is expanded to minute data through linear interpolation 

under the assumption that tem perature, humidity, and w eather move linearly betw een hourly data 

points. For the QPD data set, each data point is shifted forward by the previously calculated surge 

pile traversal time. Every QPD data point is then assigned to the nearest chronological data point 

in the PI data set. If  the nearest chronological data point is greater than 15 m inutes, then the data
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point in the PI data base is assum ed to have no ore data and is removed. Figures 4.4 and 4.5 show 

the tim e difference in minutes between each PI data point and the nearest ore data point. For spikes 

that show a period greater than one day, the period in which the spike occurred is recorded in Table 

4.5. A t this point 354240 data points are in the Summ er data set and 348480 data points are in the 

W inter data set.
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1.5

0.5

Time

Figure 4.4: Plot o f the tim e difference in minutes between the PI data point and the nearest QPD ore 
data point for the Sum m er data set.
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Figure 4.5: Plot o f the tim e difference in minutes between the PI data point and the nearest QPD ore 
data point for the W inter data set.

Sum m er Period Description
1 Jun 30, 2005 - Jul 03, 2005
2 Jul 21, 2005 - Jul 22, 2005
3 Aug 02, 2005 - Aug 10, 2005
4 A ug 18, 2005 -A u g  31, 2005
5 A ug 22, 2006 - Aug 29, 2006

NM FB 6

NM FB 6

NM FB 6

NM FB 6

NM FB 6

and NM FB7 not 
and NM FB7 not 
and NM FB7 not 
and NM FB7 not 
and NM FB7 not

in operation 
in operation 
in operation 
in operation 
in operation

W inter Period Description
1 Dec 12, 2004 - Dec 17, 2004
2 Dec 21, 2004 - Dec 23, 2004
3 Feb 11, 2005 -F e b  18, 2005
4 Feb 25, 2006 - M ar 31, 2006

NM FB 6

N M FB 6

NM FB 6

NM FB 6

and NM FB7 not 
and NM FB7 not 
and NM FB7 not 
and NM FB7 not

m operation 
in operation 
in operation 
in operation

Table 4.5: Periods in Figures 4.4 and 4.5 that are longer than one day.

The next step rem oves all data points for when both crushers are operating simultaneously. The
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QPD data set is traversed with a 30 minute window centred around the data point o f interest. If a 

crusher different from  that o f the current data point is in operation during the 30 m inute window, the 

current data point is marked for removal. The 30 m inute window reflects a 15 m inute uncertainty 

in the material surge pile traversal tim e and is chosen based on a 1 0  percent approxim ate error in 

the surge pile height measurem ents. A 10 percent error in surge pile height for a 10000 tonne surge 

pile and a low feed tonnage rate o f 2500 TPH results in 24 m inutes o f possible error in traversal 

time. An additional six m inutes o f uncertainty is included to account for uncertainty in the feed 

tonnage w eightom eter reading and the time to travel from the crusher to the surge facility and the 

surge facility to the screen. All data points having two crushers in operation within a 30 minute 

window are rem oved from  the PI data set. Figures 4.6 and 4.7 show histogram s o f the period length 

between a data point recorded at one crusher and a data point recorded at the second crusher for the 

the Sum m er and W inter data sets respectively. Period lengths greater than 15 m inutes are placed 

in the 15 minute bin. A pproxim ately 180 thousand data points from the sum m er period and 160 

thousand data points from  the w inter period are recorded when only one crusher is in operation.
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Figure 4.6: H istogram  o f the period lengths be- Figure 4.7: H istogram  o f the period lengths be­
tween a data point recorded at one crusher and tween a data point recorded at one crusher and
a data point recorded at the second crusher for a data point recorded at the second crusher for
the Sum m er data set. Period lengths greater the W inter data set. Period lengths greater than
than 15 m inutes are placed in the 15 m inute bin. 15 minutes arc placed in the 15 minute bin.

W hen the reject reprocessing system is not in operation, screen overflow material bypasses the 

overflow conveyor belt and is dumped on the ground. Consequently, the w eightom eter measuring 

the tonnage o f overflow m aterial, located on the overflow conveyor belt that carries material from  the 

screens to the rejects reprocessing system, is recording values for an empty conveyor belt. To ensure
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that the rejects reprocessing system  is in operation and that the overflow tonnage m easurem ent is 

valid, a status flag in the PI database is checked for each data point. A flag value o f one indicates the 

rejects reprocessing system  was running and a value of zero indicates it was not running. All data 

points when the status flag indicates rejects reprocessing is not running are removed. Figures 4.8 

and 4.9 show histogram s o f the num ber o f data points for the sum m er and w inter periods for each 

value of the status flag. Approxim ately 130 thousand data points from the sum m er period and 100 

thousand data points from  the w inter period have valid overflow tonnage measurem ents.
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Figure 4.8: H istogram  of the status flag values 
for the Sum m er data set.
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Figure 4.9: H istogram  of the status flag values 
for the W inter data set.

To ensure that the overflow tonnage is within typical operating ranges, histogram s of the overflow 

tonnage data are plotted in Figures 4.10 and 4.11 for sum mer and winter periods. It was decided 

that data points in the Sum m er and W inter data sets having an overflow tonnage less than 100 TPH 

are assumed to be invalid and are removed. Figure 4.10 shows that approximately 1500 data points 

have an overflow tonnage value less than 100 TPH in the Sum m er data set and Figure 4.11 shows 

that approximately 100 data points have an overflow tonnage less than 100 TPH  in the W inter data 

set.

To ensure that the feed tonnage is within typical operating ranges, histogram s o f the feed tonnage 

data is plotted in Figures 4.12 and 4.13 for sum mer and winter periods. Note that in Figures 4.12 and 

4.13 bins for feed tonnages less than 250 TPH are not included as they are considered to represent 

the system  when it is not in operation. It was decided that data points in the Sum m er and W inter 

data sets having a feed tonnage between 2000 TPH and 8000 TPH  are considered to be recorded 

during typical operation.

The sum m er and W inter data sets are now subdivided based on which train is in operation. The
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Figure 4.10: H istogram  of the overflow ton- Figure 4.11: Histogram of the overflow ton­
nage values for the Sum m er data set. nage values for the W inter data set.
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Figure 4.12: H istogram  o f the feed tonnage val­
ues for the Sum m er data set.

Figure 4.13: H istogram  of the feed tonnage val­
ues for the W inter data set.

Summ er Train 1 data set is com piled of data points where the Train 1 feed tonnage is betw een 2000 

and 8000 TPH  and the Train 2 feed tonnage is less than 1 TPH. Similarly, the Sum m er Train 2 data
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set is com piled o f data points where the Train 2 feed tonnage is between 2000 and 8000 TPH and 

the Train 1 feed tonnage is less than 1 TPH. This procedure is repeated for the W inter data set.

Earlier it was rem arked that it is observed within the oil sands industry that oil sand properties 

vary between sum m er and w inter months. For this reason, M ay through A ugust was selected to 

represent the sum m er period and Decem ber through March was selected to represent the winter 

period. However, a strict adherence of the tem perature to these assumed states during the selected 

months is unlikely. For this reason, each data set is cleaned based on the am bient temperature. 

Typical tem peratures for sum mer months are assumed to be greater than 5 ° C  and, therefore, any 

data point having an am bient tem perature below 5°C  is removed. Typical tem peratures for winter 

months are assum ed to be below -5°C  and, therefore, any data point having an am bient tem perature 

above -5 °C  is removed. Figures 4,14 and 4.15 show the histogram  o f the am bient tem perature for 

the sum mer and w inter periods.
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Figure 4.14: H istogram  o f the tem perature val­
ues for the cleaned Sum m er data set.

Figure 4.15: H istogram  of the tem perature val­
ues for the cleaned W inter data set.

As data is entered into the PI database from sensors, circum stances, like a plant shutdown, may 

cause data to fall outside o f typical operating range. In these situations the database replaces the 

invalid data values with tags, such as ‘Bad D ata’ or ‘Scan O ff’. Data points that were found to 

contain non-num erical values were removed.

At this point the cleaning of the data is complete. Tables 4.6 and 4.7 list the num ber of data 

points rem oved at each stage for the sum mer months and the w inter months respectively. Note that 

the cleaning steps were applied serially and the number o f  data points that were rem oved in each  

step rely on the order the steps were performed. A reordering o f the steps would result in a change

in the num ber o f data points rem oved at each step.

Tables 4.6 and 4.7 show that after cleaning 32.7 percent o f the Sum m er data set and 18.2 percent

o f the W inter data set is usable for analysis o f the screening system.
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Summ er Data Set
Initial num ber o f data points 354240 1 0 0 .0 %
PI D ata points that don’t have ore data 64675 18.3%
C l and C2 in operation at same time 102424 28.9%
Rejects reprocessing not operating 54312 15.3%
Overflow tonnage less than 100 TPH 1741 0.5%
Feed tonnage outside 2000 and 8000 TPH 7828 2 .2 %
Divide data: Train 1 and Train 2 Train 1 Train 2
Initial num ber o f data points for each train 46774 13.2% 76486 2 1 .6 %
Temperature values less than 5°C 5645 1 .6 % 1606 0.5%
Erroneous data 0 0 .0 % 7 0 .0 %
N um ber of data points after cleaning 41129 1 1 .6 % 74873 2 1 . 1 %

Table 4.6: The num ber of data points removed at each stage of the data cleaning process for the 
Summ er data set. C l and C2 refer to crushers NM FB 6  and NM FB7 respectively.

W inter Data Set
Initial num ber o f data points 348480 1 0 0 .0 %
PI D ata points that don’t have ore data 96843 27.8%
C l and C2 in operation at same time 93063 26.7%
Rejects reprocessing not operating 57629 16.5%
Overflow tonnage less than 100 TPH 133 0 .0 %
Feed tonnage outside 2000 and 8000 TPH 16408 4.7%
Divide data: Train 1 and Train 2 Train 1 Train 2
Initial num ber o f data points in each train 53983 15.5% 30421 8.7%
Temperature values greater than -5°C 15077 4.3% 5664 1 .6 %
Erroneous data 76 0 .0 % 60 0 .0 %
N um ber o f data points after cleaning 38830 1 1 . 1 % 24697 7.1%

Table 4.7: The num ber o f data points rem oved at each stage o f the data cleaning process for the 
W inter data set. C l and C2 refer to crushers NM FB 6  and NM FB7 respectively.

The data is further divided into subsets when only one crusher and one screen are in operation. 

The resulting num ber o f data points for each perm utation of crusher and screen are listed in Table 

4.8. Note that the terms Crusher 1 and Crusher 2 refer to crushers N M FB 6  and NM FB7 respectively. 

In Table 4.8, the data is further grouped into 30 minute periods. The periods reflect the uncertainty in 

the accuracy o f the cleaned data. A median filter is applied to each group to obtain one representative 

data point. W hen grouping the data points, a m inim um  data point density of 75 percent, or 23 data 

points, in each group is required.

Summ er Data Set W inter D ata Set
Train 1 Train 2 Train 1 Train 2

Original
Crusher 1 37624 5725 20753 733
Crusher 2 3505 69148 18077 23964

Grouped
C rusher 1 1 2 2 2 166 629 15
Crusher 2 1 0 1 2239 573 767

Table 4.8: The num ber of data points for each data set w ithout grouping and the num ber of data 
points in each data set when grouped using a 30 minute median filter. The 30 minute median filter 
required a m inim um  o f 23 data points for each group. Crusher 1 and Crusher 2 refer to crushers 
NM FB 6  and NM FB7 respectively.
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Table 4.8 shows that the number of data points in the sum mer months for when Train 1 & 

Crusher 1 and Train 2 & Crusher 2 are in operation are significantly higher than when Train 1 & 

Crusher 2 and Train 2 & Crusher 1 are in operation. In the winter months, only the num ber o f data 

points for when Train 2 & C rusher 1 are in operation are significantly lower than the rem aining three 

configurations. To simplify the analysis, only data points for when Train 1 & Crusher 1 and Train 

2 & C rusher 2 are in operation will be used. The combined Train 1 & Crusher 1 system will be 

referred to as Train 1 and the combined Train 2 & Crusher 2 system  will be referred to as Train 2.

The data set naming convention used for the analysis o f the data is given in Table 4.9.

D a ta  Set N am e D ata  Set D escrip tion
Summ er D ata Set 
W inter D ata Set 
Summ er Train 1 D ata Set 
Summer Train 2 D ata Set 
W inter Train 1 D ata Set 
W inter Train 2 D ata Set

All data during the sum mer months 
All data during the w inter months
All data when Train 1 is in operation during the sum m er months 
All data when Train 2 is in operation during the sum m er months 
All data when Train 1 is in operation during the w inter months 
All data when Train 2 is in operation during the w inter months

Table 4.9: D ata set naming convention used in the data analysis portion o f this work.

In this section, through a series o f data collection, integration, and cleaning steps based on an 

understanding o f plant operation, water and geological data were prepared for analysis.

4.4 Outline of Analysis

A series o f analyses are carried out in this work to identify significant variables and develop explana­

tory and prediction oil sand screen models. The goal o f this work is to gain as much information 

as possible from the cleaned data in order to provide the screen operators with insight into how the 

screens behave and a prelim inary tool with which to predict w hat m ay happen when the screening 

environment changes.

An interesting question often posed regarding oil sand screening is which variables o f those 

considered are the m ost significant. If  these variables were known, then steps could be taken to 

adjust screen operation accordingly. Forward stepwise multiple linear regression (FSM LR) is used 

to identify a prelim inary set o f significant screen variables for both sum mer and w inter screening 

conditions. FSM LR initially starts with zero variables in the model and iteratively adds to the model 

the variable, taken from the set o f unused variables, that provides the greatest explanation of the 

remaining system  variance. FSM LR is stopped when the reduction in RMS error o f an additional 

variable is less than 3 TPH. An explanatory M LR m odel o f  the screening system  is then created 

using the significant variables and studied using coefficient analysis to gain insight into the screening 

process. The resulting explanatory m odel is evaluated using p-values, standard error, and variance 

inflation factors to ensure that model is statistically significant.

Once an explanatory model is completed, more powerful regression methods can be used to cre-

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ate m odels with greater predictive accuracy. Four common regression methods were presented in 

Chapter 3: multiple linear regression (M LR), response surface regression (RSR), principle com po­

nent regression (PCR), and partial least squares regression (PLSR). Each regression method is run 

first on either the sum m er or w inter significant variables and then a second tim e on all variables. The 

response surface regression method is not run on all 52 variables due to com putational restrictions 

resulting from  the large num ber o f predictor variables. To put into context the perform ance o f the 

prediction models, a simple linear regression (SLR) model is also developed. SLR will use only the 

feed tonnage as input variable and will provide a baseline in performance that the other regression 

models can be com pared against. The resulting models are evaluated using five-fold cross-validation 

and the average RM S error and adj-R 2 values are compared. A discussion o f the resulting prediction 

model perform ances is presented in Section 4.6.

4.5 Results

In this section the results o f the analytical procedure are presented. Significant variables are identi­

fied for both sum m er and w inter screening conditions using FSM LR. An explanatory model is devel­

oped based on the identified significant variables and validated using measures o f multicollinearity 

and statistical significance. Finally, seven prediction models are developed using M LR, RSR, PCR, 

and PLSR and com pared to an SLR model that uses only the feed tonnage as input variable. We 

show that a partial least squares regression prediction model using all 52 w ater and geological vari­

ables perform ed the best with an average 25 percent decrease in RMS error over a sim ple feed-only 

model.

4.5.1 Explanatory Model Development

FSMLR is used to identify significant variables for both sum mer and winter screening conditions 

using the cleaned data. The resulting significant variables are listed in Table 4.10, along with the 

resulting RMS error and adj-R 2 values, in the order in which they were identified.

Sum m er D ata Set W inter D ata Set
Variable Nam e RM S Error Adj-R 2 Variable Name RM S Error A dj-R 2

Feed Tonnage 315 TPH 0 . 2 1 Pumpbox % Open 335 TPH 0.28
Pumpbox % Open 293 TPH 0.32 Water Temperature 310 TPH 0.38
Ore Grade 277 TPH 0.39 Feed Tonnage 287 TPH 0.47
Facies 21 271 TPH 0.41 Gland W ater kPa 274 TPH 0.51
Facies 8 268 TPH 0.43 Recycle Line kPa 265 TPH 0.55

Vortex Flow 261 TPH 0.56

Table 4.10: L ist o f the significant variables for sum mer and w inter screening conditions.

From  Table 4.10, we see that five variables were found to be significant for sum m er screening 

conditions and six variables were found to be significant for w inter screening conditions. Notice 

that the significant sum m er variables are composed primarily o f geological variables and the winter
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significant variables are com posed primarily of water variables. This result supports the observa­

tion that differences exist between sum mer and winter screening behaviour and that two separate 

screening models are needed for each period.

For each o f the Train 1 and Train 2 screening conditions for sum m er and winter, four explanatory 

models are created and evaluated to understand how significant the identified variables are. The first 

model, SLR, is a simple linear regression model using only the feed tonnage as input. The second 

model, M LRsig, is an M LR model that uses the significant variables in Table 4.10 for sum mer or 

winter screening conditions. The third model, MLR,,;;, uses all 52 water and geological variables. 

The last model, M LRcorrt;„ is a combined model for both Train 1 and Train 2, where the same 

coefficients are used. This last model is used to determine w hether a com bined m odel for both Train 

1 and Train 2 is possible. Looking first at the sum mer data set, Table 4.11 lists each of the four 

summer models for both the Train 1 and Train 2 data sets.

M odel
S u m m er T ra in  1 S u m m er T ra in  2
R M SE A dj-R 2 R M SE A dj-R 2

SLR 262 TPH 0.51 312 TPH 0.16
M L R S;S 244 TPH 0.58 274 TPH 0.35
M LR„;( 223 TPH 0.65 252 TPH 0.45
\11 .R,,;,,, if 253 TPH 0.55 276 TPH 0.35

Table 4.11: M odels used to determ ine how significant the identified sum mer screen variables are for 
summer screening conditions. The first model, S L R ,  is a simple linear regression model using only 
the feed tonnage as input. The second model, M L R , , , , ,  uses only the sum mer significant variables 
in Table 4.10. The third model, M L R , , ; ; ,  uses all water and geological variables. The last model, 
M L R c o m i , ,  a m odel that uses a comm on set o f variable coefficients for both the Train 1 and Train 2 
data sets. It is used to determ ine whether a combined model for both Train 1 and Train 2 is possible.

Table 4.11 shows that MLR.,;,, performs, on average, 10 percent better than SLR, as m easured by 

the RMS error. Furtherm ore, MLR„;/ performs, on average, 17 percent better than SLR, as m easured 

by the RMS error. This shows that using the five summer significant variables provides roughly 60 

percent o f the total reduction in RMS error achieved by using all 52 water and geological variables. 

This result indicates that the selected sum mer variables are significant in reducing the residual error 

and increasing the am ount o f explained system variance for sum mer screening conditions. W hen 

using a com m on set o f coefficients for the significant sum mer variables for both Train 1 and Train 2 

it was found that the RMS error increased by 2 percent. This result indicates that a com m on model 

is applicable for both Train 1 and Train 2 during sum mer screening conditions.

Table 4.12 shows that M LR,,,, performs, on average, 32 percent better than SLR, as m easured by 

the RMS error. Furtherm ore MLR,,;; performs, on average, 38 percent better than SLR, as measured 

by the RMS error. This shows that using the six w inter significant variables provides roughly 84 

percent o f the total reduction in RMS error achieved by using all 52 water and geological variables. 

This result indicates that the selected winter variables are significant in reducing the residual error 

and increasing the am ount o f explained system variance for w inter screening conditions. W hen
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M odel
W inter Train 1 W inter Train 2

RM SE A dj-R 2 RM SE A dj-R 2
SLR 409 TPH 0.24 273 TPH 0.05
M LR sig 298 TPH 0.60 173 TPH 0.62
M LRa;; 279 TPH 0.65 150 TPH 0.71
M LR comb 324 TPH 0.57 199 TPH 0.55

Table 4.12: M odels used to determ ine how significant the identified winter screen variables are for 
winter screening conditions. The first model, SLR, is a simple linear regression model using only 
the feed tonnage as input. The second model, M LRsln, uses only the w inter significant variables 
in Table 4.10. The third model, M LR 0;/, uses all water and geological variables. The last model, 
MLRcomb, a m odel that uses a comm on set o f variable coefficients for both the Train 1 and Train 2 
data sets. It is used to determ ine whether a combined model for both Train 1 and Train 2 is possible.

using a com m on set o f coefficients for the significant w inter variables for both Train 1 and Train 2 

it was found that the RM S error increased by 12 percent. This result indicates that a  comm on model 

is not applicable for both Train 1 and Train 2 during winter screening conditions. Figures 4.16 and 

4.17 plot the w inter data for Train 1 and Train 2 respectively.
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Figure 4.16: M odel overflow tonnage versus 
the actual overflow tonnage for the Winter 
Train 1 data set.
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Figure 4.17: M odel overflow tonnage versus 
the actual overflow tonnage for the Winter 
Train 2 data set.

From  Figures 4.16 and 4.17, we see that there is a noticeable difference betw een the Train

1 screening system  and the Train 2 screening system that is not captured in the list o f variables 

considered in this work. Further investigation into reasons for the perform ance difference between 

the Train 1 and Train 2 screening systems is beyond the scope of this research and is left for future

work.

The list o f significant variables in Table 4.10 contains three variables associated with ore char­

acteristics for the sum mer period and five variables associated with water variables for the winter 

period. The next two sections present data from  the Sum m er Train 2 data set and the W inter Train

2  data set that underline the significance o f considering geological variables for m odelling sum mer 

screening perform ance and water variables for modelling w inter screening perform ance.
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Significance o f Ore Variables For Sum m er Screening

To underline the im portance o f using geological variables during the sum mer period, two linear 

regression m odels are com pared that use two different sets o f variables. The m odels are developed 

using the Sum m er Train 2 data set. The first model uses only the feed tonnage, which is typically 

used as the prim ary m eans of m odelling the overflow tonnage. The second m odel uses the significant 

summer variables listed in Table 4.10. The pumpbox valve percent open variable is not included in 

order to illustrate the im portance o f the geological variables. The results o f the two m odels are 

presented in Table 4.13.

Regression Model RM S Error A dj-R 2
SLR: Feed Tonnage
M LR: Significant Geological Variables

312 TPH 
275 TPH

0.16
0.35

Table 4.13: The results o f two regression models that use two different sets o f variables on the 
Summer Train 2 data set. The average overflow tonnage during the period is 1076 TPH. The SLR 
model uses only the feed tonnage as input variable. The M LR m odel uses the identified significant 
geological variables, including the feed tonnage variable, listed in Table 4.10. The pumpbox valve 
percent open variable is not included in order to underline the im portance o f the geological variables.

Table 4.13 shows that including the significant geological variables in the M LR model results 

in a 19 percent decrease in RMS error over the SLR model. Figures 4.18 and 4.19 show the model 

overflow tonnage versus the actual overflow tonnage for the SLR m odel and the M LR model respec­

tively.
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Figure 4.18: M odel overflow tonnage versus 
the actual overflow tonnage for the SLR model 
for the Sum m er Train 2 data set.
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Figure 4.19: M odel overflow tonnage versus 
the actual overflow tonnage for the M LR model 
for the Sum m er Train 2 data set.

The results presented in Table 4.13 underline the significance of using geological variables to 

model sum m er screening performance.
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Significance o f System  W ater Variables For W inter Screening

To underline the im portance o f using water variables to model screen perform ance during the winter 

period, two linear regression models are compared that use two different sets o f variables. The 

models are developed using the W inter Train 2 data set. The first model uses only the feed tonnage, 

which is typically used as the primary means of m odelling the overflow tonnage. The second model 

uses the significant water variables listed in Table 4.14. The results o f the two models are presented 

in Table 4.14.

R egression  M odel R M S E r ro r A d j-R 2

SLR: Feed Tonnage
MLR: Significant Water Variables

273 TPH 
171 TPH

0.05
0.63

Table 4.14: The results o f two regression models that use two different sets o f variables on the 
Winter Train 2 data set. The average overflow tonnage during the period is 855 TPH. The SLR 
model uses only the feed tonnage as input variable. The M LR model uses the identified significant 
water variables listed in Table 4.10.

Table 4.14 shows that including the significant water variables in the M LR m odel results in a 39 

percent decrease in RM S error over the SLR model. Figures 4.20 and 4.21 show the model overflow 

tonnage versus the actual overflow tonnage for the SLR model and the M LR m odel respectively.
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Figure 4.20: M odel overflow tonnage versus 
the actual overflow tonnage for the SLR model 
for the W inter Train 2 data set.
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Figure 4.21: M odel overflow tonnage versus 
the actual overflow tonnage for the M LR model 
for the W inter Train 2 data set.

The results presented in Table 4.14 underline the significance o f using w ater variables to model 

winter screening overflow tonnage.

E x p lan a to ry  M odel D evelopm ent

The developm ent o f an explanatory model provides insight into the screening system  behaviour. 

The explanatory m odel is com posed of one submodel for sum mer screening conditions, and two 

submodels for w inter Train 1 screening conditions and winter Train 2 screening conditions. The
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following section presents multiple linear regression explanatory subm odels for each screening con­

dition along with evaluation m easures that ensure the results are statistically significant.

Sum m er Screen Subm odel
Variable Coef. Stand. Err. VIF T for HO Prob >  |T|

Feed Tonnage 0 . 2 1 1 0.0055 1 .2 1 38 < 0 . 0 0 0 1

Ore Grade 58.73 2.9 1 . 2 2 2 1 < 0 . 0 0 0 1

Facies 8 8.72 0.42 1.05 2 1 < 0 . 0 0 0 1

Facies 21 -2.62 0.27 1.03 -9.8 < 0 . 0 0 0 1

Pumpbox Valve % Open 19.42 1.7 1.06 1 1 < 0 . 0 0 0 1

Constant -1248 52 0 . 0 0 -24 < 0 . 0 0 0 1

Table 4.15: Coefficient values and statistical evaluation measures for the sum m er screen submodel.

In Table 4.15 we see that for all variables in the sum mer screen subm odel the V IF is close to 

one and the p-value is very small indicating the each variable is significant in the presence of the 

remaining variables. The calculated f-value of the sum mer screen subm odel is 520 indicating a 

statistically significant submodel.

W inter Train 1 Screen Subm odel
Variable Coef. Stand. Err. VIF T for HO Prob >  |T|

Feed Tonnage 0.187 0.013 1.85 14 < 0 . 0 0 0 1

Extraction W ater Temperature 23.62 4.5 1.42 4.9 < 0 . 0 0 0 1

Flow rate o f water to vortex -1.42 0 . 2 0 2.41 -7.0 < 0 . 0 0 0 1

Pump G land W ater Pressure -2.42 0.31 2.69 -7.7 < 0 . 0 0 0 1

Pumpbox Valve Percentage Open 12.65 2 . 0 1.60 6 . 2 < 0 . 0 0 0 1

Recycle Line W ater Pressure -13.35 1 . 2 1.67 - 1 1 < 0 . 0 0 0 1

Constant 959 550 0 . 0 0 1 .8 0.0805

Table 4.16: Coefficient values and statistical evaluation m easures for the w inter Train 1 screen 
submodel.

In Table 4.16 we see that for all variables in the w inter Train 1 screen subm odel the V IF is close 

to one. Furtherm ore, we see that the significant variables are statistically significant, except for the 

constant, which is only significant at the 8  percent level. A t the 5 percent level, the p-value for the 

constant shows it can be ignored without series loss in performance. The calculated f-value of the 

winter Train 1 screen subm odel is 154 indicating a statistically significant submodel.

W inter Train 2 Screen Subm odel
Variable Coef. Stand. Err. VIF T for HO Prob >  |T|

Feed Tonnage 0.0765 0.0078 1.71 9.8 < 0 . 0 0 0 1

Extraction W ater Temperature 33.41 1 .8 1.29 18 < 0 . 0 0 0 1

Flow rate o f water to vortex -0.89 0.092 2.08 -9.7 < 0 . 0 0 0 1

Pump G land W ater Pressure -0.17 0.15 3.01 - 1 . 2 0.2428
Pumpbox Valve Percentage Open 14.51 1 . 6 3.27 9.0 < 0 . 0 0 0 1

Recycle Line W ater Pressure -7.03 0.75 3.42 -9.4 < 0 . 0 0 0 1

Constant -1449 2 1 0 0 . 0 0 -6.9 < 0 . 0 0 0 1

Table 4.17: Coefficient values and statistical evaluation m easures for the w inter Train 2 screen 
submodel.
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In Table 4.17 we see that for all variables in the w inter Train 2 screen subm odel the V IF is close 

to one. Furtherm ore, we see that all variables except the pump gland water pressure are statistically 

significant. The pump gland water pressure was found to be significant in the W inter Train 1 data set 

but not in the W inter Train 2 data set. For this reason the pump gland water pressure can be ignored 

for the Train 2 screen submodel. The calculated f-value of the w inter Train 2 screen subm odel is 

215 indicating a  statistically significant submodel.

In this section, significant variables were identified for sum mer and w inter periods. The sum mer 

significant variables were found to be composed primarily o f geological variables, whereas the win­

ter significant variables were found to be com posed primarily of water variables. Furtherm ore, the 

Summ er Train 1 and Train 2 data sets were found to be well modelled by the same set o f coefficients, 

however, the W inter Train 1 and Train 2 data sets were not. A final explanatory m odel is therefore 

composed of three subm odels, a submodel for the summer period and two subm odels for the winter 

Train 1 period and the w inter Train 2 period. In the next section the three subm odels are extended 

by m ore advanced regression methods.

4.5.2 Prediction Model Development

In the previous section we looked at developing an explanatory model, com posed o f three sub­

models, using identified significant variables. The three subm odels included a sum m er screening 

submodel, a w inter Train 1 subm odel, and a w inter Train 2 submodel. M ore advanced regression 

methods were not considered for explanatory model developm ent as they are ill-suited for gaining 

insight into the underlying system. However, in this section, the goal is to develop a model that 

minimizes the RM S error and maximizes the explained variance. For this reason, m ore advanced 

regression m ethods can be investigated.

Four advanced linear regression methods, overviewed in C hapter 3 and listed in Table 4.18, are 

evaluated for the developm ent o f a prelim inary prediction model. Each regression method is run a 

first tim e on the sum m er or w inter significant variables, and then a second tim e with all 52 water 

and geological variables. The response surface regression method is not run on all 52 variables due 

to computational restrictions resulting from the large number o f predictor variables.

Five-fold cross-validation is used to evaluate the resulting models. For five-fold cross-validation, 

the Sum m er Train 1, Sum m er Train 2, W inter Train 1, and W inter Train 2 data sets are each divided 

into five groups using random  selection. Four o f the groups are used to train a  m odel, and the 

fifth is used to evaluate the new model. The previous step is repeated, setting a different group as 

the test group for each iteration, until each group has been used as a test group. The m ean and 

standard deviation o f the five results are recorded. The Sum m er Train 1 and Sum m er Train 2 data 

sets are used in place o f the Sum m er data set to further evaluate the regression methods in Table 

4.18. The data sets are divided into five groups in place of 10 or 20 groups to ensure that the test 

group was sufficiently large for proper evaluation o f the m odel’s performance. For PCR and PLSR,
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M ethod N am e D escrip tion
SLR
M LR
RSR
PCR
PLSR
M LRa
PCRa
PLSRa

Sim ple L inear Regression 
M ultiple L inear Regression 
Response Surface Regression 
Principle Component Regression 
Partial Least Squares Regression 
M ultiple L inear Regression 
Principle Component Regression 
Partial Least Squares Regression

Using Only Feed rate 
Using Significant Variables 
Using Significant Variables 
Using Significant Variables 
Using Significant Variables 
Using All Variables 
Using All Variables 
Using All Variables

Table 4.18: A list o f regression methods used to develop prediction models. Each regression method 
is run twice, a first tim e on the sum mer or winter significant variables, and then a second tim e with
all 52 water and geological variables. The response surface regression method is not run on all 52
variables due to com putational restrictions resulting from the large num ber o f predictor variables.

the percentage of explained variance of the data set that was represented by com ponents or latent 

vectors was thresholded at 85 percent.

In the following four tables, showing the results from each prediction model, the first column 

gives the name o f the model. The second and third columns give the mean and standard deviation 

of the RM S error and adj-R 2 o f each model. Since the results o f each model will shift up or down 

together based on the random ly selected groups of data, the last two columns show the relative per­

formance, as m easured by the difference in RMS error and the adj-R2, between the best performing 

model and each o f the rem aining models. Table 4.19 shows the method used to calculate the relative 

performance betw een the best performing model, b, and a second model, i. The method in Table 

4.19 is repeated for each o f the rem aining models. Table 4.20, lists the results for the Sum m er Train 

1 data set.

1 • for j  = 1 to M  = 5
2 • T  = [ T  , R M S t  - R M S j  ]
3 • end for
4 • RM Smean = mean(T)
5 • RM Sstd = std(T)

Table 4.19: M ethod used to calculate the relative performance between the best perform ing model 
and the rem aining models. M  is the total num ber of random ly selected groups o f data in the cross- 
validation and b is the best perform ing model.

Table 4.20 shows that when only the significant variables were considered, RSR has the best

performance with a  10 percent lower RMS error than the SLR model. W hen all variables were 

included, the PLSRa model had the best performance of both groups with a 12 percent decrease in

RM S error over the SLR m odel. H owever the PLSRa m odel did not perform significantly better 

than the RSR model. However, PLSRa did perform on average better than RSR and, for this reason, 

is selected as the top perform ing prediction model. In all cases, the regression methods that used the 

water and geological variables perform ed significantly better than the feed-only SLR model. The 

process is repeated using the Sum m er Train 2 data set and Table 4.21 lists the results.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M odel
M odel Performance PLSRa
RM SE A dj-R 2 RM SE A dj-R 2

SLR
M LR
RSR
PCR
PLSR

263 ±  20 TPH 
247 ±  15 TPH 
237 ±  13 TPH 
249 ±  13 TPH 
247 ±  13 TPH

0.51 ± 0 .0 4  
0.57 ±  0.05 
0.60 ±  0.05 
0.56 ±  0.05 
0.57 ±  0.05

30 ± 8  TPH 
15± 6  TPH 
4 ± 9  TPH 
17±7 TPH 
14±7 TPH

0.11 ± 0 .0 3  
0.05 ±  0.02 
0.01 ±  0.03 
0.06 ±  0 . 0 2  

0.05 ±  0.02
M LRa
PCRa
PLSRa

244 ±  13 TPH 
263 ±  14 TPH 
232 ±  12 TPH

0.58 ±  0.04 
0.51 ± 0 .0 5  
0.62 ±  0.04

12±3 TPH 
31 ± 9  TPH

0.04 ±  0.01 
0.12 ± 0 .0 3

Table 4.20: Results for each m odel for the Summ er Train 1 data set. The relative performance 
between the best perform ing model and the rem aining models is provided in the last two columns. 
The best perform ing m odel for the Summ er Train 1 data set is the PLSRa model. The overflow 
tonnage for the Sum m er Train 1 data set is 1142±375 TPH.

M odel
M odel P erfo rm ance P L S R a
R M SE A d j-R 2 R M SE A d j-R 2

SLR
M LR
RSR
PCR
PLSR

312 ± 9  TPH 
276 ±  12 TPH 
265 ±  12 TPH 
276 ±  12 TPH 
276 ± 1 1  TPH

0.16 ± 0 .0 3  
0.34 ±  0.04 
0.39 ±  0.04 
0.34 ±  0.04 
0.34 ±  0.03

56 ± 7  TPH 
19±5 TPH 
8 ± 7  TPH 

3 2 ± 6  TPH 
19±5 TPH

0.27 ±  0.03 
0.09 ±  0.02 
0.03 ±  0.03 
0.15 ± 0 .0 3  
0.09 ±  0.02

M LRa
PCRa
PLSRa

265 ±  9 TPH 
291 ±  10 TPH 
257 ±  8  TPH

0.39 ±  0.04 
0.27 ±  0.04 
0.43 ±  0.03

8  ± 2  TPH 
3 4 ± 6  TPH

0.04 ±  0.01 
0.16 ± 0 . 0 2

Table 4.21: Results for each model for the Summ er Train 2 data set. The relative performance 
between the best perform ing model and the rem aining models is provided in the last two columns. 
The best perform ing m odel for the Sum m er Train 2 data set is the PLSRa model. The overflow 
tonnage for the Sum m er Train 2 data set is 1076±340 TPH.

Table 4.21 shows that when only the significant variables were considered, RSR had the best 

performance with a 15 percent lower RMS error than the SLR model. W hen all variables were 

included, the PLSRa model had the best performance of both groups with an 18 percent decrease 

in RMS error over the SLR model. In all cases, the regression methods that used the water and 

geological variables perform ed significantly better than the feed-only SLR model. The process is 

repeated using the W inter Train 1 data set and Table 4.22 lists the results.

Table 4.22 shows that when only the significant variables were considered, PLSR had the best 

performance with a 26 percent lower RMS error than the SLR model. W hen all variables were 

included, the PLSRa model had the best performance o f both groups with a 27 percent decrease in 

RMS error over the SLR model. Note that PLSRa did not perform  statistically better than the MLR 

model or the PLSR model. However, PLSRa did perform on average better than M LR or PLSR 

and, for this reason, is selected as the top performing prediction model. In all cases, the regression 

methods that used the water and geological variables perform ed significantly better than the feed- 

only SLR model. The process is repeated using the W inter Train 2 data set and Table 4.23 lists the 

results.
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M odel M odel Performance PLSRa
RM SE A dj-R 2 RM SE A dj-R 2

SLR
M LR
RSR
PCR
PLSR

412 ± 2 8  TPH 
306 ±  22 TPH 
325 ±  35 TPH 
310 ± 2 1  TPH 
305 ± 2 1  TPH

0.24 ±  0.09 
0.57 ±  0.06 
0.55 ± 0 .1 1  
0.57 ±  0.07 
0.58 ±  0.07

110± 20T P H  
9 ± 11 TPH 

26± 23  TPH 
21 ± 1 4  TPH 
6± 11  TPH

0.35 ±  0.06 
0.03 ±  0.03 
0.07 ±  0.06 
0.06 ±  0.04 
0.02 ±  0.03

M LRa
PCRa
PLSRa

330 ±  20 TPH 
349 ±  21 TPH 
300 ±  17 TPH

0.51 ± 0 .0 6  
0.45 ±  0.07 
0.59 ±  0.05

30 ± 5  TPH 
4 9 ± 1 6  TPH

0.08 ±  0 . 0 2  

0.15 ± 0 .0 5

Table 4.22: Results for each model for the W inter Train 1 data set. The relative perform ance between 
the best perform ing m odel and the rem aining models is provided in the last two colum ns. The best 
performing model for the W inter Train 1 data set is the PLSRa model. The overflow tonnage for the 
W inter Train 1 data set is 1086±469 TPH.

M odel
M odel P erfo rm ance P L S R a
R M SE A dj-R 2 R M SE A d j-R 2

SLR
M LR
RSR
PCR
PLSR

273 ±  27 TPH 
180 ±  18 TPH 
182 ±  18 TPH 
173 ±  20 TPH 
176 ± 2 0  TPH

0.05 ±  0.05 
0.59 ±  0.04 
0.59 ±  0.04 
0.59 ±  0.06 
0.60 ±  0.05

114±  13 TPH 
15±7 TPH 

17 ± 2 2  TPH 
16± 14 TPH 
15±8 TPH

0.63 ±  0.04 
0.07 ±  0.03 
0.06 ±  0.07 
0.07 ±  0.03 
0.07 ±  0.03

M LRa
PCRa
PLSRa

176 ± 1 1  TPH 
192 ±  13 TPH 
160 ±  10 TPH

0.60 ±  0.05 
0.53 ±  0.05 
0.67 ±  0.04

17±3 TPH 
33± 11 TPH

0.07 ±  0.02 
0.15 ± 0 .0 4

Table 4.23: Results for each m odel for the W inter Train 2 data set. The relative perform ance between 
the best perform ing m odel and the rem aining models is provided in the last two colum ns. The best 
performing m odel for the W inter Train 2 data set is the PLSRa model. The overflow tonnage for the 
Winter Train 1 data set is 855± 279  TPH.

Table 4.23 shows that when only the significant variables were considered, PCR had the best 

performance with a 37 percent lower RMS error than the SLR model. W hen all variables were 

included, the PLSRa m odel had the best performance of both groups with a 41 percent decrease in 

RMS error over the SLR model. Note that RSR also perform ed statistically sim ilar to PLSRa due 

to large fluctuations in RMS error values resulting in a high standard deviation. In all cases, the 

regression methods that used the water and geological variables perform ed significantly better than 

the feed-only SLR model. W hen comparing the results for the W inter Train 1 data set and the results 

for the W inter Train 2 data set, we see again, as in Section 4.5.1, the significant difference in model 

performance between Train 1 and Train 2 screening systems.

From Tables 4.20 to 4.23, we can see that PLSRa provided the overall best screen model for 

all data sets. This perform ance is attributed to its ability to isolate important latent vectors that 

enable good representation o f the underlying system behaviour. This enabled a stronger model to be 

developed for prediction. In general it was found that using water and geological variables enabled 

a greater prediction of the screen performance than a simple feed-only model.
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4.6 Discussion

In the previous two sections, significant variables were identified for screen operation during summer 

and w inter months. The significant variables were used to develop an explanatory model using 

multiple linear regression. Several prediction models were then developed using m ore advanced 

regression methods. A t this time, the significance o f the results are discussed.

In Section 4.5.1, significant variables were identified using forward stepwise multiple linear re­

gression for both sum m er and winter screening conditions. Interestingly, in the sum m er months 

geological variables provide a significant portion of the explained variance, however, in the w inter 

period, the w ater usage variables provided a significant portion of the explained variance. An expla­

nation for this finding is that the cold months freeze the ore transform ing it into a rock-like material 

that is independent o f the underlying ore makeup. This supports the observations in the oil sand 

industry that there exists differences in screening behaviour betw een sum mer and w inter screening 

conditions. It was shown that Train 1 and Train 2 behaved similarly during the sum m er months, 

however they did not behave similarly in the winter months. As a result, an explanatory screen 

model required three subm odels, a single submodel for summer screening conditions and two sepa­

rate subm odels for w inter Train 1 screening conditions and winter Train 2 screening conditions. The 

coefficients for each o f the three screen submodels are listed in Table 4.24.

Sum m er Screen M odel W inter Screen M odel

Variable Nam e Coef. Variable Name
Train 1 

Coef.
Train 2 

Coef.
Feed Tonnage 
Pumpbox Valve % Open 
Ore Grade 
Facies 8  

Facies 21

0 . 2 1 1

19.42
58.73
8.72
-2.62

Feed Tonnage 
Pumpbox Valve % Open 
Extraction Water Temperature 
Flow rate o f water to vortex 
Recycle Line Water Pressure 
Pump G land Water Pressure

0.187
12.65
23.62
-1.42

-13.35
-2.42

0.077
14.51
33.41
-0.89
-7.03
-0.17

Table 4.24: Variable coefficients for the Sum m er screen model, the W inter Train 1 screen model, 
and the W inter Train 2 screen model.

The goal o f an explanatory model is to provide insight into the underlying system of interest 

using the resulting coefficients obtained from multiple linear regression. M eaningful ranking of 

the variables using the coefficients is difficult due to the complex nature o f the collected data. For 

example, consider the im portance o f the feed tonnage in the prediction of overflow tonnage. Its 

ranking should be first because it is directly responsible for the am ount o f material present on the 

screen. However, if the screening system is operated in a relatively steady-state manner, the variance 

of the feed tonnage will be insignificant compared to other variables such as the ore grade which 

may vary considerably. As a result, the ore grade would be considered a much greater significant 

variable than the feed tonnage if a ranking system is applied. This results in an inaccurate depiction 

o f the relative im portance o f each variable. Consequently, a ranking o f variables is not considered
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until proper designed experim ents are conducted.

A second option is to consider the sign of the coefficient o f each variable. The sign o f the 

coefficient, or the directional correlation with the response variable, can be used to gain insight into 

the underlying system. In all three models the feed tonnage is positively correlated with the overflow 

tonnage. This result is expected since an increase in feed tonnage should cause an increase in 

overflow tonnage. The second significant variable comm on to all three m odels is the pumpbox valve 

percentage open variable, which was found to be positively correlated with the overflow tonnage. 

One possible explanation for this result is that as the pumpbox valve closes less water enters the 

pumpbox and m ore water is diverted to other areas of the screening system such as the vortex vessel 

and the spray bars.

The rem aining significant variables for the summer period are geological variables. The ore 

grade variable was found to be positively correlated with the overflow tonnage. Interestingly, this 

result does not correspond with what is generally understood in the oil industry where increasing the 

ore grade is found to decrease the overflow tonnage. Facies 8  was found to be negatively correlated 

with the overflow tonnage and Facies 21 was found to be positively correlated with the overflow 

tonnage. D escriptions o f Facies 8  and Facies 21 are provided in Table 4.25.

Facies D escrip tion C atego ry

Facies 8
Sand with 10 - 35% clay, clays are in mm to cm  thick 
distinct bedsand dispersed throughout the sand (bioturbated)

Estuarine

Facies 21
Clay/m ud with very thin beds (mm) of sand, 
sand/silt content is 10 - 35%; waste facies

Estuarine

Table 4.25: Facies 8  and 21 descriptions.

From  the description of Facies 8  in Table 4.25, an explanation for the negative correlation could 

be attributed to the presence of large quantities o f sand in the material. Unlike Facies 8 , Facies 21 

contains m ud and silt that could increase the level of stickiness in the m aterial, thereby increasing 

the overflow tonnage.

The rem aining significant variables for the winter explanatory regression m odels are water vari­

ables. The w ater tem perature variable was found to be positively correlated with the overflow ton­

nage. Interestingly, this is opposite to the current understanding at Syncrude where it is observed 

that the oil sand material residence time on the screens is insufficient for heat transfer from the 

water to the material. However, since the coefficient o f the w ater tem perature variable indicates 

a positive correlation, is the residence time sufficient for some am ount o f heat transfer that would 

affect screen perform ance? The vortex flow rate variable was found to be negatively correlated with 

the overflow tonnage. A possible reason for this result is that an increase in flow rate results in a 

greater amount o f material being pushed through the im pact screens creating a decrease in overflow 

tonnage. Sim ilarly the recycle line pressure variable was found to be negatively correlated with the 

overflow tonnage. A possible explanation is that increasing the recycle line pressure pushes more
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water through the line to the vortex. Earlier it was noted that an increase in w ater flow to the vortex 

is correlated with a decrease in overflow tonnage, which is now further supported by the results for 

the recycle line pressure variable. Finally, the pump gland water pressure variable was found to be 

negatively correlated with the overflow tonnage. A possible explanation is that increasing the pump 

gland water pressure results in less water to the pump glands and m ore water the rest o f the system 

such as the vortex. A greater understanding o f where the pressure measurem ents are recorded along 

the water system  is needed for further understanding of the recycle line pressure and the pump gland 

water pressure variables.

Using the above significant variables, an explanatory model com posed of three subm odels was 

developed for sum m er and w inter screening conditions. It was found that a com m on sum mer screen 

submodel increased the RM S error by 2 percent, as m easured by the RMS error, over two separate 

Train 1 and Train 2 screen models. The sim ilar performance of the com m on and separate sum mer 

screen subm odels supports the conclusion that Train 1 and Train 2 have similar perform ance during 

the sum mer months. D uring the w inter screening period, it was found that the com m on screen 

model increased the RM S error by 12 percent over two separate Train 1 and Train 2 screen models. 

This result suggests that there exists a difference in behaviour between Train 1 and Train 2 during 

winter screening conditions. In general, further design o f experim ent is needed to understand the 

relationships identified here, however this first step is an im portant one to identify those variables 

that have the greatest potential for influence on screen performance.

Following the com pletion o f the explanatory model, predictive models are com pared using the 

identified significant variables. Four linear regression methods, listed in Table 4.26, are considered.

M ethod N am e
M LR
RSR
PCR
PLSR

M ultiple Linear Regression 
Response Surface Regression 
Principle Component Regression 
Partial Least Squares Regression

Table 4.26: List o f the four regression methods used to develop the oil sand prediction screen models.

Each method was run a first time on the sum mer or winter significant variables and then again 

using all 52 water and geological variables. The only exception is the response surface regression 

method, which is not run on all 52 variables due to computational restrictions resulting from  the 

large num ber o f predictor variables. Each of the resulting m odels was evaluated using five-fold 

cross-validation. Each model was found to perform significantly better than a feed-only model. 

Among the prediction m odels, it was found that PLSRa had the best perform ance with an average 

25 percent lower RM S error than the SLR model. In the sum mer PLSRa decreased the RMS error 

by 15 percent over the SLR model and 34 percent over the SLR model in the winter. In summary, 

the results show that using w ater and geological variables provides greater prediction accuracy of 

the screen perform ance than only the feed tonnage.
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4.7 Summary

In this chapter, raw data was collected, integrated, and cleaned using assum ptions based on typical 

system operation. The cleaned data was analyzed using forward stepwise m ultiple linear regression 

to identify significant variables for both sum mer and winter operating conditions. It was found that 

for the sum m er period, the feed tonnage variable, the ore grade variable, the pumpbox valve percent 

open variable, the Facies 8  variable, and the Facies 21 variable were significant. For the winter 

period, the feed tonnage variable, the pumpbox valve percent open variable, the recycle line pressure 

variable, the water tem perature variable, the gland pump pressure variable, and the vortex flow rate 

variable were significant. U sing the identified significant variables, an explanatory model composed 

o f one subm odel for the sum m er period and two submodels for the w inter period was developed. 

Four regression m ethods were used to create predictive models using water and geological variables. 

It was found that a PLSR model that uses all 52 water and geological variables perform ed the best 

with an average 25 percent decrease in RMS error over a simple feed-only model. This shows that 

substantial im provem ent in system  description and system perform ance prediction can be achieved 

through the inclusion o f water and geological variables.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Conclusion and Future Work

5.1 Oil Sand Screen Modelling

Through the analysis o f geological and system water data, a new model is developed for oil sand 

screens in operation at Syncrude Canada Ltd. The model is com posed o f one subm odel for summer 

screening conditions and two subm odels for w inter screening conditions. The subm odels for winter 

screening conditions take into account unexplained differences found between Train 1 and Train 2 

screening perform ance. Several statistical measures were used to ensure that each submodel was 

statistically significant.

An interesting result from  the formation of the submodels was that sum m er screening perfor­

mance is affected by primarily geological variables, and w inter screening perform ance is affected 

primarily by system  water variables. Sum m er screen variables include the feed tonnage, the ore 

grade, the pum pbox valve percent open, the Facies 8 , and the Facies 21 variables. W inter screen 

variables include the feed tonnage, the pumpbox valve percent open, the recycle line pressure, the 

water tem perature, the gland pum p pressure, and the vortex flow rate variables. However, the gland 

pump pressure variable was found to be significant for only Train 2 data. The identified significant 

variables validate claims m ade by operators concerning their significance.

Seven separate prediction m odels developed using four linear regression methods were evaluated 

using five-fold cross-validation. Each model was shown to perform  significantly better than a model 

that considered only the feed tonnage as input variable. O f the seven models, a partial least squares 

regression m odel using all 52 significant variables perform ed the best with an average 25 percent 

reduction in RM S error over a simple feed-only model.

A num ber o f research contributions are made in this work. We have shown that geological and 

system water variables are im portant in modelling oil sand screens. A prelim inary screen model was 

developed and shown to provide significant additional explained variance over a simple feed-only 

screen model. Furtherm ore, im portant geological and system water variables were identified for 

both sum mer and w inter screening conditions that provide direction for future studies.

The overall relative increase in performance of the new screen model over that o f the previous
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feed-only m odel is significant, particularly for w inter screening conditions. However, the perfor­

mance was lim ited in part due to the lack of time series feed particle size distribution information. 

Consequently, the overall absolute explained variance rem ains low, particularly for sum m er screen­

ing conditions, which motivates the need for future work in the area o f oil sand screen modelling.

5.2 Future Work

The historical nature o f the data limits the conclusions made in this work to those situations observed 

by the data. Consequently, it is im portant to understand that the findings of the regression methods 

are only correlational and not causal. Further analysis carried out in a controlled process is an 

essential step towards validating the relationships proposed in this work. We now present several 

directions for future work in oil sand screen modelling.

Previous vibrating screen m odelling research focused largely on the feed particle size distribu­

tion which was not available at the time o f this work. This lim ited the applicability o f previous 

research work and the existing knowledge of screen behaviour that may have been transferable to 

oil sand static screens. Future work should involve detailed collection of the feed particle size dis­

tribution.

The accuracy o f the sensor data collected throughout the plant is largely unknown and affects 

the quality o f the regression results and subsequent conclusions. To increase the accuracy o f the data 

analysis, the m easurem ent error should be evaluated and ultim ately reduced if it is found that the 

accuracy of the measurem ents is not within reasonable limits.

In this work, it was determ ined that unexplained differences betw een Train 1 and Train 2 screen 

performance existed. Further investigation into the reasons for this would require the collection of 

additional screen variables not considered in this work. A greater understanding o f the screening 

performance difference w ould lead to better operating practices for both screening systems.

The work presented here addresses summer and winter screening behaviour. Future work should 

address the developm ent o f spring and fall screening models so that a model for the entire year is 

developed.

The future w ork outlined in this section would enhance the results obtained thus far and provide 

a stronger understanding of the oil sand static screening system in use at Syncrude’s North Mine.
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