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Abstract

In this thesis, the stability of the Magnetohydrodynamic (MHD) shear flow bound-

aries for the Kelvin-Helmholtz Instability (KHI) is investigated. We have focused our

attention on the emission of magnetosonic waves from the Kelvin-Helmholtz (K-H) un-

stable shear flow boundaries of MHD plasmas. We have shown for the first time that the

Kelvin-Helmholtz Instability is a mechanism for fast and slow MHD wave, i.e. magne-

tosonic wave, generation along MHD shear flow boundaries. Our results is significant in

showing that the emission of MHD waves from an unstable MHD shear flow boundary is

possible and these waves may provide a efficient mean of energy transportation in between

two MHD media. The Kelvin - Helmholtz generated fast/slow waves are introduced in

the context of the primary/secondary KHI.

First, the primary and secondary K-H surface wave modes on the Earth’s magne-

topause are studied. The primary KHI is caused by fast MHD waves while the secondary

KHI is caused slow MHD waves. The secondary KHI usually is possible at smaller shear

flow speeds and have smaller growth rates than the primary KHI. The Earth’s magne-

topause is considered as an infinitely thin MHD shear flow boundary. Phase velocity

diagrams are presented that allow us to identify the excited MHD waves that correspond

to growing modes of the KHI under different conditions of the regions on both sides

of the magnetopause boundary. The relation between the primary and the secondary

KHI to magnetosonic wave interactions under different solar wind conditions is revealed

through these diagrams. Using the observational values of the KHI relevant waves and

the results of our study, general behavior of the primary and the secondary KHI relevant

waves along the K-H unstable magnetopause is provided. A relation between the KHI

waves and Negative Energy Waves (NEWs) is also shown.

Following, the KHI of the Earth’s magnetotail flow channels associated with bursty

bulk flows (BBFs) is investigated. The BBF channel boundary is also considered as an

infinitely thin MHD shear flow boundary and an inner boundary is assumed in the middle
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of the channel. MHD oscillations of the BBF channels in both kink and sausage modes

are investigated for the KHI. Both the primary and the secondary KHI are found to cause

the emission of magnetosonic waves along these boundaries. These instabilities are shown

to be important for stopping the BBFs where the KHI removes energy from the flow. We

have provided a model that can explain, for the first time, the generation mechanism for

the observations of waves propagating towards both flanks of the Earth’s magnetopause

and emitted from BBF channels in the central magnetotail. Results shown in this section

was published in Geophysical Research Letters and the paper was chosen as a spotlight

paper with innovative ideas by American Geophysical Union.

Then a finite width boundary layer is added and emission of magnetosonic waves due

to KHI from superfast relative flows across MHD plasma boundaries are investigated.

While previous studies have focused their attention on the most unstable KHI waves,

we have shown that the most significant modes are not the fastest growing modes. In

contrast, the KHI wave growth resulting in emission of magnetosonic waves, which usu-

ally does not efficiently take place for the fastest growing modes, is the main source of

energy transport. With the results obtained, the processes of the KHI and magnetosonic

wave emission along various MHD shear flow boundaries in the Earth’s magnetosphere

and the solar corona is discussed. We have concluded that while the KHI would be more

favorable on the day-side magnetopause and Coronal Mass Ejection (CME) boundaries,

emission of magnetosound would dominate along the nightside magnetopause, BBFs in

the inner plasmasheet and Supra-Arcade Downflows (SADs) in the solar corona.

Finally, nonlinear evolution of the KHI and emission of magnetosound due to the

action of the KHI are investigated using the FLASH code which is provided by Flash

Center at the University of Chicago. The same parameter space as the linear calculations

for finite transition thickness is used to study the nonlinear KHI along MHD shear flow

boundaries. Results obtained from the FLASH code were in very good agreement with

the linear results. Emission of magnetosound from MHD shear flow boundaries in the

linear stages of the KHI is confirmed.
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Chapter 1

Introduction

1.1 Overview

In this chapter I introduce some basic facts concerning the KHI. These topics include

a description of plasmas, the solar wind as a plasma and the interaction of the solar wind

with the Earth’s magnetic field lines. The formation and the regions of the Earth’s mag-

netosphere and coordinate systems used in magnetospheric studies are also described.

We have provided a detailed description of plasmas as magnetohydrodynamics (MHD)

fluids and MHD waves in plasmas which is closely related to KHI studies on MHD shear

flow boundaries. Geomagnetic pulsations and geomagnetic field line resonances are also

introduced which are suggested to be generated by the KHI.

In chapter 2, a detailed description of the KHI and plasma instabilities are given. The

MHD theory and derivations of KHI waves dispersion relations are shown and models

used in the thesis are described. Negative energy waves (NEWs) are also described as a

related subject to the KHI.

In chapter 3 we show the results obtained and the paper published [Turkakin et al.,

2013] on the KHI of the Earth’s magnetopause using the derivations and models described

in chapter 2 and section 2.3.1. Results showing a relation between KHI waves and NEWs
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are also shown in this chapter.

Chapter 4 shows the results obtained and the paper published [Turkakin et al., 2014]

on the KHI and the emission of the magnetosound along Bursty Bulk Flow (BBF) bound-

aries in the central plasmasheet of the Earth. In this chapter the derivations and models

described in chapter 2 and section 2.3.1 are used.

In chapter 5, the KHI and emission of magnetosound from MHD shear flow bound-

aries with finite transition thickness is investigated. The possible applications to the

shear flow regions in the Earth’s magnetosphere and the solar corona are discussed. The

results obtained using the derivations and model described in chapter 2 and section 2.3.2

are shown. The contents of this chapter is submitted to the Journal of Geophysical re-

search for publication.

In chapter 6 nonlinear evolution of the KHI on MHD shear flow boundaries with finite

thickness is studied using the FLASH code. Linear and nonlinear results are compared

and nonlinear effects on the emission of magnetosound are discussed.

In chapter 7 conclusions are given and possible future work is discussed.

1.2 Definition of a Plasma

The fourth state of the matter, which is the plasma, is not commonly known al-

though a large fraction of our visible universe is in the plasma state. Plasma is a gas of

charged particles which are, on average, electrically neutral [Kivelson and Russell , 1995;

Baumjohann and Treumann, 1999]. Microscopic space charge fields of the individual

charge carriers must cancel each other in each volume element to provide macroscopic

charge neutrality. The Coulomb potential field of any charge is shielded by other charges

in the plasma, which is called Debye shielding [Gurnett and Bhattacharjee, 2004].

The Coulomb potential of a charged particle with charge q is

φC =
q

4πε0r
, (1.1)
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and Debye potential is

φD =
q

4πε0r
e−r/λD , (1.2)

where, ε0 ' 8.85−12 C2/Nm2 is the free space permittivity, r is the distance from the

particle, and λD is the characteristic distance called Debye length. The Debye length is

defined as,

λD =

(
ε0kBT

ne2

)1/2

, (1.3)

where, kB ' 1.38× 10−23 J/K is the Boltzmann constant, T is temperature, n is number

density, and e is electron charge. The exponential function in the Debye potential cuts

off the potential at distances r > λD.

In order for a plasma to be quasineutral, the physical dimension of the system, L,

must be large compared to the Debye length,

L� λD (1.4)

which marks the first criterion for an ionized medium to behave as plasma. The average

physical values of the Debye length in the inner magnetosphere is ' 2.31 m, in the outer

magnetosphere is ' 1.72 m and in the solar corona is ' 4−3 m.

Collective behavior inside the Debye sphere of radius λD is the cause of the shielding.

Therefore, for Debye shielding to take effect, the number of particles inside the Debye

sphere must be large enough, which is the second criterion for the plasma. The number

of particles inside such a sphere will be 4π
3 neλ

3
D and thus for a plasma the condition

neλ
3
D � 1 (1.5)

must hold. The term neλ
3
D is called the plasma parameter and referred to as, Λ. The

average physical values of the number of particle in the Debye sphere is ' 5.412 in the

inner magnetosphere, ' 1.913 in the outer magnetosphere and ' 3.62 in the solar corona.
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When an external force disturbs the quasineutrality of a plasma, the electrons will

be accelerated to restore charge neutrality. Since the ions are much heavier, they will

stay relatively stationary and electrons will oscillate. The typical oscillation frequency of

electrons in a fully ionized plasma is the electron plasma frequency, ωpe which is expressed

as

ωpe =

(
nee

2

ε0me

)1/2

. (1.6)

If the plasma is not fully ionized and has a substantial number of neutral particles, these

particles will collide with electrons during their oscillations with frequency ωpe. If these

collisions are too frequent, the electrons will be forced into equilibrium with neutrals

and the medium will become a neutral gas. Therefore, for electrons to stay unaffected

by the collisions with the neutrals, the collision frequency should be smaller then their

oscillation frequency around the ions, i.e. ωpe. In other words the average time between

two collisions, τn, must be larger than the inverse of the ωpe

ωpeτn � 1. (1.7)

This is the third criterion for an ionized gas to behave as a plasma [Gurnett and Bhat-

tacharjee, 2004].

1.3 Space Plasmas and Solar Wind

In our solar system, plasmas are abundant even in the neighborhood of the Earth. Above

approximately 80 km of altitude, the atmosphere gradually turns into the ionosphere and

the magnetosphere which are to be described in terms of plasma physics. The source of

energy and plasma in the near-Earth space environment is the solar wind. The solar

wind is a flow of ionized solar plasma and solar magnetic field that is released into

interplanetary space at speeds ranging between ∼ 300 − 1400 km/s. The solar wind

is produced as a result of the expansion of the solar corona due to the strong pressure
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difference between the solar corona and interplanetary space. Solar wind is strongly

influenced by the solar activity and transmits these effects into the interplanetary space,

planets, comets and moons [Kivelson and Russell , 1995; Baumjohann and Treumann,

1999]. It consists of electrons and protons, i.e. ionized hydrogen, a low percentage of

helium and a few ions of heavier elements [Kivelson and Russell , 1995]. An image of

solar wind is shown in Figure 1.1.

Figure 1.1: A picture showing the solar coronal eruption.
(from http://naturalwondernl.weebly.com/how-do-the-northern-lights-work.html)

1.4 Solar Wind’s Interaction with the Earth - a Magnetized

Planet

The Earth’s magnetic field, a nearly perfect dipole at distances ∼ 2RE (Earth radii)

[Kivelson and Russell , 1995], is an obstacle to and deflects the solar wind around the

Earth leading to the formation of a cavity called magnetosphere (see Figure 1.2). The

solar wind hits the Earth’s magnetic field with supersonic speeds and a bow shock wave is

generated. At this point the plasma is slowed down and the kinetic energy of the particles
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Figure 1.2: Deflection of the solar wind around the Earth , i.e. formation of the magne-
tosphere.
(from http://www.davidreneke.com/solar-wind-could-affect-earths-magnetosphere)

are converted into thermal energy, forming the magnetosheath with hotter and denser

plasma and with higher magnetic field strength compared to that of the solar wind. The

solar wind is a highly conducting plasma which results in the solar magnetic field’s being

frozen in with it. This magnetic field is called interplanetary magnetic field (IMF) and

has a strength typically of the order of 5 nT. As a result of being frozen-in, or captive of

the solar wind, the IMF cannot penetrate the terrestrial field lines and thus a boundary

called magnetopause is formed. The Magnetopause separates the magnetosheath region,

the region of flowing solar wind plasma, from the region of geomagnetic field lines - the

magnetosphere.

In the following sections, an overview of the regions of the Earth’s magnetosphere is

given. Magnetohydrodynamic (MHD) treatment of plasmas and MHD waves in homoge-

neous plasmas are then introduced which are strongly related to the current study. To aid

with the understanding of the studies done in this thesis, we will also briefly describe the

box model of the Earth’s magnetosphere, GSM coordinate system as one of the various co-
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ordinate system commonly used in the magnetospheric studies and Ultra-Low-Frequency

(ULF) waves observed in the Earth’s magnetosphere.

1.5 Structure of the Earth’s Magnetosphere

Figure 1.3: Plasma regions of the Earth’s magnetosphere.
(from http://survive2012.com/news/2011/02/sun-moon-earth-936.html)

The outer part of the terrestrial dipole magnetic field is distorted by the solar wind,

with kinetic pressure stretching the nightside and compressing the dayside. As a result,

a tail-like structure is formed on the nightside called the magnetotail extending beyond

the lunar orbit. The position of the magnetopause extends up to approximately ∼ 10RE

on the dayside and ∼ 200RE on the nightside (1 RE = 6371 km) [Kivelson and Russell ,

1995]. The plasma in the magnetosphere mainly consists of electrons, protons and small

fractions of He+, He++ and O+ [Baumjohann and Treumann, 1999]. The Earth’s magne-

tosphere has complicated dynamics and different plasma regions with different densities

and temperatures. The plasma regions of the Earth’s magnetosphere are illustrated in

Figure 1.3. The main components are the magnetotail lobe, the plasma sheet boundary
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layer, and the plasma sheet. Closer to the Earth are the radiation belts and the plasma-

sphere [Kivelson and Russell , 1995].

The magnetotail lobe is the outer part of the magnetotail with low-density plasma,

≤ 0.1 cm−3. The ions in the tail lobe are believed to be of ionospheric origin. Tail lobes

are named as North and South lobes which are magnetically connected to the polar re-

gions of the Earth [Kivelson and Russell , 1995].

The plasma sheet boundary layer is generally observed as a transition region between

magnetotail lobes and the hot plasma sheet. It is the distant part of the plasma sheet in

which the ion flow velocity is high with densities of order ∼ 0.1 cm−3.

Most of the plasma in the magnetotail is contained in the plasma sheet, at ∼ 10 RE

in the tail mid-plane. The plasma sheet consists of hot particles with densities of

∼ 0.1 − 1 cm−3 [Kivelson and Russell , 1995]. The plasma sheet is populated mainly

by solar wind particles during quiet times and particles originating from the ionosphere

during active times. A current sheet, also called neutral sheet, lies in the center of the

tail embedded within the plasma sheet.

The radiation belts, also called Van Allen belts, are structures that lie between

∼ 2− 6 RE with the energetic particles oscillating between two hemispheres. These par-

ticles drift azimuthally around the earth due to the magnetic field gradient, thus forming

the ring current. The number density and the energy density of the particles are more

intense near the equatorial plane and less intense at low latitudes since they interact

with the neutral atmosphere and become lost. There are two radiation belts namely the

inner radiation belt and the outer radiation belt. The characteristic electron density in

the radiation belts is ∼ 1 cm−3, the temperature is ∼ 5× 107 K, and the magnetic field

strength varies between ∼100 and 1000 nT [Kivelson and Russell , 1995; Baumjohann and

Treumann, 1999].

The plasmasphere coexists in approximately the same region as the radiation belts

[Kivelson and Russell , 1995]. It contains cold dense plasma of ionospheric origin with

densities ∼ 103cm−3 and temperatures ∼ 1eV . The plasmasphere corotates with the
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Earth and extends up to ∼ 4− 6RE in the equatorial plane.

The ionosphere is also an important region forming the inner edge of the magneto-

sphere. It is formed by the photo-ionization of high altitude atmospheric molecules by

UV and X ray radiation from the sun. At high latitudes, it is also produced by the solar

wind impinging on the Earth and ionizing part of the neutral atmosphere. A typical

electron density in the ionosphere is ∼ 105 cm−3 and temperatures are of order ∼ 103

K and the magnetic field strength is of order ∼ 104 nT. The ionosphere merges into the

plasmasphere at low and mid-latitudes.

The plasma in the magnetosphere can also sustain currents that feed back and affect

the shape of the magnetosphere. Electrons and ions move in different directions pro-

ducing electric current which affects the dynamics of the magnetosphere significantly by

transporting charge, mass, momentum and energy, and producing magnetic fields. For

instance, the magnetopause current, the current flowing across the magnetopause sur-

face, affects the compression of the terrestrial field lines on the dayside magnetosphere.

There is also magnetotail current in the tailside. Different types of currents in the Earth’s

magnetosphere is shown in Figure 1.4. In Figure 1.4, the ring current which is caused

by particles in the Van Allen belts is also seen. The ring current flows around the Earth

in the westward direction and it affects the inner configuration of the magnetosphere.

Although electrons drift around the Earth eastward they do not have a significant effect

on the net westward current, due to their relatively low mass, compared to ion masses.

There are also field aligned currents mainly carried by the electrons and they have strong

effects on the exchange of energy and momentum between different current regions. At

altitudes of 100− 150 km, some currents exist in the conducting layers of the ionosphere

such as the auroral electrojets, and the equatorial electrojet [Kivelson and Russell , 1995;

Baumjohann and Treumann, 1999].
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Figure 1.4: Synopsis of the magnetospheric currents. (from www.ngdc.gov/seg/geomag)

1.6 Coordinate Systems in Space

In this section, we describe the dipole coordinate system which is the best to define the

properties of the geomagnetic field lines. We introduce the box model of the magneto-

sphere as an approximation to describe geomagnetic field lines in the regions close to the

equatorial plane of the magnetosphere. We also describe the GSM coordinate system,

one of many coordinate systems used in the solar-terrestrial environment [c.f., Kivelson

and Russell , 1995]. The box model approximation and GSM coordinate systems are used

in our calculations throughout the thesis.
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1.6.1 Dipole Coordinates

At distances not very far from the Earth’s surface, the geomagnetic field can be approx-

imated as a dipole field. The Earth’s dipole magnetic field is presented with parameters:

λ and r, where λ is the magnetic latitude and r is the distance to a magnetic field line

at a certain magnetic latitude. A dipolar coordinate system and field lines are displayed

in Figure 1.5. The strength of the geomagnetic field at a particular location can be

described as,

B =
µ0

4π

ME

r3
(1 + 3sin2λ)1/2 (1.8)

where, µ0 = 4π×10−7 N/A2 is the permeability of free space andME = 8.05×1022 Am2

is the Earth’s dipole moment. The locus of a point on a particular field line is described

Figure 1.5: Dipolar magnetic field lines, λ is the magnetic latitude and r
is the radial distance to a field line at a particular magnetic latitude.(from
http://www.bbc.co.uk/schools/gcsebitesize/science/ )
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as;

r = req cos2 λ,

where req is the equatorial distance of a field line (see Figure 1.5). If the radius of the

Earth is used as a unit of distance the L-shell parameter can be introduced, L = req/RE ,

and the above field line equation can be written as,

r = LREcos
2λ.

The value of the equatorial geomagnetic field, BE = µ0ME/(4πR
3
E), together with the L

parameter can be inserted in the Equation 1.8 resulting a new equation for the strength

of a geomagnetic field as,

B =
BE
L3

(1 + 3sin2λ)1/2

cos6λ
. (1.9)

1.6.2 Box Model of the Magnetosphere

The box model of the magnetosphere is a common approximation used in the context of

magnetospheric dynamics. In this approximation, magnetic field lines are straightened

and bounded by the ionosphere at top and bottom Kivelson and Russell [1995] (see Figure

1.6). Only the variation of the magnetic field intensity in the perpendicular direction is

taken into account. The problem can then be formulated in rectangular geometry, with

a choice of B oriented along the z coordinate and the magnitude of B varying in the

x direction. Here x, y, z coordinates correspond to radial, azimuthal and north-south

directions. The box model is a valid approximation for low magnetic latitudes, i.e. regions

close to the equatorial plane. At higher magnetic latitudes, dipole coordinates provide a

better approximation.
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Figure 1.6: Schematic showing the box model and its relation to the dipole field
lines. The Cartesian coordinates, x, y, and z are shown as a possible choice
of the magnetic field direction for the straightened field lines. (adapted from
http://www.unc.edu/depts/oceanweb/turtles/juvenilemap/EarthMF.html)

1.6.3 Geocentric Solar Magnetic (GSM) Coordinate System

There are many different coordinate systems used in space physics studies. Here we

describe one of them, the Geocentric Solar Magnetic (GSM) coordinate system, since

it is used for the results shown in Chapter 4 of this thesis (see [Kivelson and Russell ,

1995] for a detailed explanation of different coordinate systems). The GSM system of

coordinates is based on the center of the Earth, the sun and the geomagnetic field. The

GSM system has its origin at the center of the Earth, the positive x axis directed towards

the sun, and the positive z axis is in the same direction as the northern magnetic pole in

a plane containing the x axis, so that the x-z plane contains the dipole axis [Kivelson and

Russell , 1995]. The y axis is set such that x,y,z form a right handed system of orthogonal

coordinates. Figure 1.2 shows a sample of the GSM coordinates set up together with the

Earth-sun system. The GSM system is widely used in magnetopause and shock-boundary
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calculations since in this system the orientation of the magnetic dipole is not a problem

for the cylindrical symmetry of the solar wind flow [Kivelson and Russell , 1995]. In this

system the direction of the geomagnetic field lines is well ordered near the nose of the

magnetosphere and magnetotail, and thus it is the best system to use when studying the

effects of the IMF on the magnetosphere. Longitude is measured in the x-y plane from

the x toward the y, and latitude is in the y-z plane from the y toward north. An

enormous numbers of particles are involved in the behavior of plasmas, and each of these

particles move in the electromagnetic field arising from all the others and from external

sources. Thus a statistical approach is the best to describe the collective behavior of

the plasmas. This approach is called the kinetic theory [e.g., Gurnett and Bhattacharjee,

2004; Walker , 2005]. In many cases of plasma studies, however, it is not necessary to

know the exact evolution of the particles’ collective behavior. In such cases, it is sufficient

to describe the spatial and temporal evolution of the macroscopic quantities of plasmas,

such as densities and velocities, which are quantities of fluid dynamics [Walker , 2005].

Therefore, this approach is known as the fluid theory of plasmas. Since the plasmas are

magnetized fluids, this approach is commonly known as magnetohydrodynamic (MHD)

theory. In this study the magnetohydrodynamic theory of plasmas is used since the prob-

lem investigated is better to be described with this approach. Therefore it is relevant at

this point to give a detailed explanation of MHD approach.

The MHD approximation requires that the characteristic frequency of any changes

must be smaller than the particle cyclotron frequency, ω � Ωc = qB/m, and charac-

teristic length scale be longer than the particle cyclotron radius, L � rc = mv ⊥ /qB,

where Ωc and rc are defined as the particle gyration frequency and radius around the

background magnetic field, respectively.

1.6.4 Magnetohydrodynamic Equations

The Magnetohydrodynamic theory investigates the evolution of the basic macroscopic

quantities, number density, ns(r, t); bulk flow velocity, Vs(r, t); pressure tensor, Ps(r, t);



CHAPTER 1. INTRODUCTION 15

and kinetic temperature, Ts(r, t), of the particle species in plasma [Baumjohann and

Treumann, 1999; Walker , 2005]. Following are the MHD equations,

1. Continuity equation

The continuity equation has the physical meaning that the particle mass density

is conserved during the fluid’s motion if any interaction process that create or

annihilate particles species is absent [Kivelson and Russell , 1995]. The continuity

equation of the s-component fluid of particles in the plasma is

∂ns
∂t

+∇ · (nsVs) = 0. (1.10)

2. Equation of Motion

The equation of motion is the momentum density conservation equation of the

s-component fluid of the plasma. This equation relates the fluid velocity to density

and electromagnetic force acting on the fluid element. The equation of motion

is basically the Navier-Stokes equation with the inclusion of the electromagnetic

Lorentz force acting on the charges in plasma and is described as,

∂(nsVs)

∂t
+∇ · (nsVsVs) = − 1

ms
∇ ·Ps +

qs
ms

ns(E + Vs ×B). (1.11)

The appearance of the Lorentz force in the equation of motion couples the plasma

fluid to the full set of electromagnetic equations and distinguishes magnetohydrody-

namics from the conventional hydrodynamics [Walker , 2005; Kivelson and Russell ,

1995].

3. Equation of State

Fluid equations of plasma form a hierarchy of ever-increasing order with each order



CHAPTER 1. INTRODUCTION 16

containing a next-order quantity. Therefore, they must be closed by a truncation

of hierarchy. The most common of truncation methods is assuming an equation of

state for the pressure. The form of pressure tensor - isotropic or anisotropic, defines

the equation of state. For isotropic and isothermal cases the pressure simply takes

the ideal gas equation form,

Ps = nskBTs, (1.12)

where, kB is the Boltzmann constant and Ts is the temperature of the particle

species. If the temporal variations are sufficiently slow so that plasma has enough

time to redistribute energy in order to maintain a constant heat bath temperature,

i.e, isothermal condition applies.

If the time variations are fast and heat exchange can not take place, then plasma

evolves adiabatically and the change in temperature is related to the change in

density. In this case pressure is defined by adiabatic law,

Ps = Ps0

(
ns
ns0

)γ
(1.13)

Where, γ, is the ratio of specific heat at constant pressure to specific heat at con-

stant volume and is constant in collisionless isotropic plasmas; γ = 5/3 for the

adiabatic case, γ = 1 for isothermal - constant temperature - case [Kivelson and

Russell , 1995; Walker , 2005] .

The pressure splits into parallel and perpendicular components for anisotropic plas-

mas. In this case it is still a good approximation to use the ideal gas law for

isotropic, isothermal case for both pressures

Ps‖ = nskBTs‖ (1.14)

Ps⊥ = nskBTs⊥ (1.15)

It is not clear however, if both parallel and perpendicular pressures evolve according
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to the same adiabatic law.

1.6.5 One-Fluid Theory

Plasmas consist of electrons, of mass me, charge qe and average velocity Ve, and ions, of

mass mi, charge qi and average velocity Vi. It is possible to neglect differences between

the particle species and consider plasma as a conducting fluid that carries magnetic and

electric fields. This approximation is called the one-fluid theory of plasmas where fluid

variables are assumed to be combinations of variables such as densities and velocities of

the different single components of the plasma. This approximation allows one to define

a set of one-fluid MHD variables such that.

• The mass density is the total mass per unit volume,

ρ = (mene +mini);

• The fluid velocity is the mass-weighed velocity,

V = (miniVi +meneVe)/(mene +mini);

• the charge density is,

q = e(ni − ne);

• The current density is,

J = e(niVi − neVe);

• The plasma pressure is,

P = Pi + Pe.
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Under this approximation the MHD equations can be written as follows;

∂ρ

∂t
+∇ · [ρV] = 0, (1.16)

∂

∂t
[ρV] +∇ · [ρV] = −∇P + J×B, (1.17)

d

dt

(
P

ργ

)
= 0. (1.18)

The equations 1.16 - 1.18 describe one fluid version of the continuity equation, the equa-

tion of motion and the adiabatic law, where electric field, magnetic field, current density,

mass density, and pressure are E B, J, ρ, and P , respectively. An often used assumption

of quasineutrality neglects the term qE in the equation 1.17 for one-fluid MHD plasmas

[Walker , 2005; Baumjohann and Treumann, 1999].

1.6.6 Additional MHD equations

Since plasma is magnetized, additional electromagnetic equations, i.e. Maxwell equations,

are also important in the MHD treatment of the plasmas; namely, Faraday’s law,

∇×E = −∂B
∂t
, (1.19)

Ampere’s law

∇×B = µ0J (1.20)

and ideal MHD equation, which is a result of the assumption that plasmas are infinitely

conducting.

E = −V ×B. (1.21)

1.6.7 Magnetic Tension and Magnetic Pressure

The term J×B on the right hand side of equation of motion introduces an effect which

is the effect of magnetic tension on a conducting MHD fluid. The second term on the
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right hand side of Ampere’s law, eq. 1.20, can be neglected if the variations are slow

which results in the reduced Ampere’s law as,

∇×B = µ0J (1.22)

If we take the cross product of both sides of equation 1.22 with B we can rewrite

J×B = − 1

µ0
B×∇×B (1.23)

Applying vector algebra,

B× (∇×B) =
1

2
∇(B2)−∇ · (BB)

the above equation results in

J×B = −∇
(
B2

2µ0

)
+

1

µ0
∇ · (BB). (1.24)

The first term on the right hand side of the above equation is the pressure term and the

second term is the divergence of the magnetic stress tensor. Magnetic pressure, B2/2µ0

simply adds to the plasma pressure and magnetic stress BB/µ0 contributes to the tension

and torsion of the plasma.

The plasma pressure P and magnetic pressure, B2/2µ0, defines the total pressure of

the plasma and can be used to define the plasma beta parameter, β. The plasma beta

parameter defines the relative importance of the particle and magnetic field pressures.

For an isotropic and quasineutral plasma in equilibrium the plasma beta is expressed as

β =
P

B2/2µ0
(1.25)
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For anisotropic plasmas beta splits into parallel and perpendicular components as for the

plasma pressure.

β(⊥,‖) =
P(⊥,‖)

B2/2µ0
(1.26)

If β � 1 a plasma is called low-beta plasma and if β � 1 high-beta plasma.

1.6.8 Magnetohydrodynamic Waves in Homogeneous Plasmas

MHD equations, 1.16, 1.17 and 1.18, are nonlinear and complicated. Nevertheless, we

can study waves with small amplitudes by expressing the wave amplitudes as small per-

turbations and linearize the MHD equations by neglecting the second-order terms. In

this approach, the dependent variables are assumed to be a superposition of an equilib-

rium value, F0, and a perturbed value δf . The following substitutions are made to MHD

equations

V = V0 + δv E = E0 + δE B = B0 + δb

ρ = ρ0 + δρ J = J0 + δj P = P0 + δp

where, V0, E0, B0, ρ0, J0, and P0 are unperturbed flow velocity, electric field, magnetic

field, mass density, current density and pressure, respectively. δv, δe, δb, δρ, δj, and δp

are perturbations to these background values. After substituting the above values and

neglecting the second order terms, linearized MHD equations are obtained as:

∂δρ

∂t
+∇ · (ρ0δv) +∇ · (δρV0) = 0, (1.27)

ρ0
dδv

dt
+ δρ

dV0

dt
+ ρ0(δv · ∇)V0 = −∇δp+ (δj ×B0) + (J0 × δb), (1.28)

dP0ρ0

dt
+
dρ0δp

dt
= γ

dP0δρ

dt
− ρ0(δv · ∇P0)− P0(δv · ∇ρ0) (1.29)

∂δb

∂t
= −(∇× δE). (1.30)

Equations 1.33 - 1.34 are the continuity equation, the equation of motion, the adiabatic

law and Faraday’s law respectively.

Substituting the electric field and current density from the linearized ideal MHD law,
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δE = −V0 × δb− δv ×B0, (1.31)

and reduced Ampere’s law

δj =
1

µ0
∇× δb (1.32)

and using the vector relations,

∇ · (φA) = A · ∇φ+ φ(∇ ·A)

and

A× (∇×B) = ∇(A ·B)− (A · ∇)B− (B · ∇)A−B× (∇×A)

we obtain a more useful set of linearized equations as;

dδρ

dt
+ ρ0(∇ · δv) + δρ(∇ ·V0) + δv · (∇ρ0) = 0, (1.33)

ρ0
dδv

dt
+ δρ

dV0

dt
+ ρ0(δv · ∇)V0 = −∇δpT +

1

µ0
[(B0 · ∇)δb + (δb · ∇)B0] , (1.34)

dP0ρ0

dt
+
dρ0δp

dt
= γ

dP0δρ

dt
− ρ0(δv · ∇P0)− P0(δv · ∇ρ0), (1.35)

dδb

dt
= (δb · ∇)V0 − δb(∇ ·V0) + (B0 · ∇)δv −B0(∇ · δv)− (δv · ∇)B0. (1.36)

where, d/dt is the convective derivative,

d

dt
=

∂

∂t
+ V0 · ∇ (1.37)

and, δpT is the total pressure perturbation or generalized pressure,

δpT = δp+
B0δb

µ0
. (1.38)
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If we assume that all the background values are uniform and V0 is zero, the normalized

MHD equations reduce to,

∂δρ

∂t
+ ρ0(∇ · δv) = 0, (1.39)

ρ0
∂δv

∂t
= −∇

(
δp+B0

δb

µ0

)
+

1

µ0
(B0 · ∇)δb, (1.40)

∂δp

∂t
= γ

P0

ρ0

∂δρ

∂t
, (1.41)

∂δb

∂t
= (B0 · ∇)δv −B0(∇ · δv), (1.42)

and the ideal MHD law reduces to,

δE = −δv ×B0. (1.43)

We obtain
∂δρ

∂t
=

1

C2
s

∂δp

∂t

from equation 1.41 and substitute into equation 1.39 which yields;

1

C2
S

∂δp

∂t
+ ρ0(∇ · δv) = 0 (1.44)

where

CS =

(
γ
P0

ρ0

)1/2

(1.45)

is the speed of sound.

If equation 1.40 is differentiated with respect to time and ∂δb/∂t and ∂δp/∂t are

eliminated using 1.42 and 1.44 and the following wave equation is obtained:

∂2δv

∂t2
= ∇(C2

S + VA
2)(∇ · δv)−∇(VA · ∇)(VA · δv)

− VA(VA · ∇)(∇ · δv) + (VA · ∇)2δv (1.46)
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where

VA =
B0√
µ0ρ0

(1.47)

is the Alfvén speed. We now assume a harmonic wave solution

Aei(k·r−ωt) (1.48)

where A is a complex amplitude, k is the wave number, r is position, ω is complex

frequency and t is time. The physical quantity is the real part of this representation and

plane waves advance with a velocity ω/k in the direction of k̂. The phase velocity is

defined as

Vp = k̂
ω

k
. (1.49)

We replace the operators ∇ and ∂/∂t by ik and iω, respectively. Equation 1.46 then

becomes,

[ω2− (k ·VA)2]δv−k(C2
S +V 2

A)(k · δv) + (k ·VA)[k(VA · δv)−VA(k · δv)] = 0. (1.50)

The above equation can be written by its components in Cartesian coordinate system

and arranged as, 
d1 d2 d3

d4 d5 d6

d7 d8 d9




vx

vy

vz

 =


0

0

0

 (1.51)
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Where,

d1 = ω2 − (k ·VA)2 + [(k ·VA)VAx − (C2
s + V 2

A)kx]kx − (k ·VA)kxVAx,

d2 = [(k ·VA)VAy − (C2
s + V 2

A)ky]kx − (k ·VA)kyVAx,

d3 = [(k ·VA)VAz − (C2
s + V 2

A)kz]kx − (k ·VA)kzVAx,

d4 = [(k ·VA)VAx − (C2
s + V 2

A)kx]ky − (k ·VA)kxVAy,

d5 = ω2 − (k ·VA)2 + [(k ·VA)VAy − (C2
s + V 2

A)ky]ky − (k ·VA)kyVAy,

d6 = [(k ·VA)VAz − (C2
s + V 2

A)kz]ky − (k ·VA)kzVAy,

d7 = [(k ·VA)VAx − (C2
s + V 2

A)kx]kz − (k ·VA)kxVAz,

d8 = [(k ·VA)VAy − (C2
s + V 2

A)ky]kz − (k ·VA)kyVAz,

d9 = ω2 − (k ·VA)2 + [(k ·VA)VAz − (C2
s + V 2

A)kz]kz − (k ·VA)kzVAz.

For studying MHD waves of a stationary uniform medium, it is appropriate to choose

a coordinate system where the plane of incidence is defined as the plane containing the

background magnetic field B and the wavenumber k. This approach is appropriate for

such a medium since the properties are cylindrically symmetric. In such a coordinate

system we reduce the problem to a two-dimensional problem which makes the wave

properties easier to understand [Walker , 2005]. Without loss of generality we can set the

magnetic field along the z axis and wave number k in the x− z plane, the equation 2.47

simplifies to


ω2 − k2

zV
2
A − k2

x(V 2
A + C2

S) 0 −kxkzC2
S

0 ω2 − k2
zV

2
A 0

−kxkzC2
S 0 ω2 − k2

zC
2
S




δvx

δvy

δvz

 =


0

0

0

 (1.52)

The determinant of the coefficients of the perturbations, δvx,y,z, in the equation 1.52 has

two factors for perturbations in the y direction and in the x−z plane, the plane containing
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k and B. The dispersion relation of MHD waves requires that this determinant goes to

zero, which yields the dispersion relation as,

ω2 − k2
zV

2
A = 0 (1.53)

ω4 − ω2k2(V 2
A + C2

S) + k2k2
zV

2
AC

2
S = 0. (1.54)

Equations 1.53 and 1.54 now can easily be converted to an arbitrary coordinate system

by replacing the term kzVA with k ·VA. This causes the above equation to be modified

to a more general form as,

ω2 − (k ·VA)2 = 0 (1.55)

ω4 − ω2k2(V 2
A + C2

S) + k2(k ·VA)2C2
S = 0. (1.56)

Where k =
√
k2
n + k2

t is the total wave number, kt is the component along the magnetic

field, and kn is the wave number perpendicular to the magnetic field. The direction of

VA is the same as the background magnetic field. In equations 1.55 and 1.56, we insert

k ·VA = kVAcosθ and divide the equations by k2 and k4 respectively to obtain the phase

velocities of MHD waves - Alfvén , fast and slow waves. Here θ is the angle between the

background magnetic field and the wave number. The resulting phase velocity equations

are,

V 2
p(Alf) = V 2

Acos
2θ (1.57)

V 4
p(f,s) − V p

2
f,s(V

2
A + C2

S) + V 2
AC

2
Scos

2θ = 0. (1.58)

Equation 1.57 describes the phase velocity of the Alfvén waves as,

Vp(Alf) = ±VAcosθ, (1.59)
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and equation 1.58 can be solved to give the phase velocities of fast and slow MHD waves

as,

Vp(f,s) =
1

2

(
(V 2
A + C2

S)±
√

(V 2
A + C2

S)2 − 4V 2
AC

2
Scos

2θ

)1/2

. (1.60)

Equation 1.59 describes the shear Alfvén wave, which propagates parallel to the

ambient magnetic field and is a transverse electromagnetic wave. The shear Alfvén wave

perturbs the plasma in the direction perpendicular to the plane containing the background

magnetic field and the wave vector k [Kivelson and Russell , 1995; Walker , 2005]. Alfvén

waves do not cause any change in either magnetic field magnitude or the plasma density

and thus they are also called non-compressional waves.

Equation 1.60 gives the phase velocities of magnetosonic waves, fast and slow waves.

The fast wave solution is with the positive sign and the slow wave solution is with the

negative sign. The phase velocity of the magnetosonic waves depends on the Alfvén

and sound velocities and the angle between the magnetic field and wave number. The

magnetosonic wave perturbs the plasma within the plane of wave number and background

magnetic field, which implies that the waves of this type change the plasma density and

magnetic field magnitude and thus they are named compressional waves [Kivelson and

Russell , 1995]. Phase relations of magnetic and plasma pressure perturbations for fast

and slow compressional MHD waves are shown in Figure 1.7. The thermal or plasma

pressure and magnetic pressure are out of phase for slow MHD waves (Figure 1.7 a) and

in phase for fast MHD waves (Figure 1.7 b).

Another important property of MHD waves is their group velocity, Vg, the velocity

at which the wave packet moves [Sutherland , 2010]. The group velocity can be found

using

Vg =
dω

dk
= x̂

dω

dkx
+ ŷ

dω

dky
+ ẑ

dω

dkz
, (1.61)

and can be obtained from the dispersion relation in Equations 1.55 and 1.56. The group

velocity is in the direction of energy transfer by a wave packet that is physically realistic

and may contain a spread of wave vectors. The direction and values of the group veloc-
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Figure 1.7: Phase relations of the magnetic and plasma pressures for slow and fast waves.
Panel (a) shows the slow waves and panel (b) shows the fast waves phase relations.

ity are not necessarily equal to those of the phase velocity [Walker , 1977; Kivelson and

Russell , 1995; Sutherland , 2010]. Figure 1.8 displays the distinction between phase and

group velocities of a wave. Figure 1.8 (a) shows that phase and group velocities can be

obtained using the dispersion relation curve. The phase velocity at certain values of ω

and k is equal to the slope of the line drawn to the point from the origin. The group

velocity is found using the value of the derivative at the point of interest. Figure 1.8

(b) shows a wave packet and envelope of the wave moving with the group velocity while

the planes of constant phase moving with the phase velocity [Gurnett and Bhattacharjee,

2004].

The polarization relations of the electric field , velocity, current density and magnetic

field perturbations of the MHD waves are shown in Figure 1.9. In Figure 1.9, the back-
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ω
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 Vg = dω/dk 

 Vp = ω/k 

 Dispersion curve 

(a)

Vp

Vg

(b)

Figure 1.8: Distinction between phase and group velocities. The phase and group veloc-
ities of a wave can be determined using its dispersion curve, displayed on panel (a). The
difference between the phase and group velocities are shown on panel (b); the envelope
of a wave packet moves at the group velocity and the planes of constant phase move at
the phase velocity.

ground magnetic field B0 is assumed to lay on the xz plane and the wave number k is

assumed to be along x. The Poynting vector, S = 1/µ0δE×δb, is also added which shows

the direction of energy propagation [Kivelson and Russell , 1995]. Panel (a) shows the

polarization relations for the Alfvén wave and panel (b) shows the polarization relations

for the fast and slow compressional waves.

The polar plot of the MHD waves phase velocity with one axis aligned with the back-

ground magnetic field is a useful tool for understanding the wave properties. These phase

velocity diagrams are known as Friedrichs diagrams, and are shown in Figure 1.10. The

angle related to the axis of the magnetic field is the angle between, k and B0, and the

distance from the origin to a point is the phase velocity value at the referred point. The

contours of the phase velocity diagrams change with the relative values of Cs and VA.

Figure 1.10 shows these contours for VA > CS on panel (a) and VA < Cs on panel (b).

In both cases, fast wave phase velocity is largest when k is perpendicular to B0 and can
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Figure 1.9: Schematic of the electric field, magnetic field, velocity and current polariza-
tions of Alfvén wave, panel (a), and fast and slow waves, panel (b).

propagate in all directions. Slow and Alfvén waves phase velocities are largest at parallel

angles and do not propagate in the direction perpendicular to B0.

Similar to phase velocity diagrams, group velocity diagrams can also be represented

in a polar plot with respect to the background magnetic field. Figure 1.11 shows group

velocity diagrams of MHD waves; panel (a) is for VA > CS and panel (b) is for VA < CS .

The fast MHD wave group velocity is finite in all directions while that of slow and Alfvén

waves is mainly along B0. The Alfvén wave has a group velocity that is along ±B0 for

all values of k with amplitude VA. The slow wave on the other hand, has a group velocity

of ±CS if k is along B0, and increases slightly as the angle between k and B0 increases

and rotates away. As k continue to increase the slow wave group velocity decreases align-

ing more closely to B0 [Kivelson and Russell , 1995]. Group velocities are significant in
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Figure 1.10: Phase velocity, Friedrichs, diagrams of MHD waves, fast, slow and Alfvén
waves. The angle relative to the axis of B0 is the angle between, B0 and k. The phase
velocity value at any point is the distance from the origin to the point. Panel (a) shows
the diagrams for VA > CS and panel (b) shows the diagrams for VA < CS .

describing the direction of energy propagation associated with the waves. Therefore, we

can conclude from Figures 1.11 (a) and (b) that fast MHD waves can carry energy in

any direction while slow waves can carry energy over a relatively narrow range of angles

with respect to B0. Alfvén waves on the other hand, can carry energy only along the

background magnetic field even if the phase fronts are arbitrarily oriented [Kivelson and

Russell , 1995]. The direction of the Poynting flux which also shows the direction of the

energy propagation, agrees with the conclusions drawn from group velocity diagrams

( see Figure 1.9 ).

1.7 Geomagnetic Pulsations

The existence of oscillations of the Earth’s surface magnetic field or geomagnetic pul-

sations has been known for centuries [Kivelson and Russell , 1995; Walker , 2005]. Here
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Figure 1.11: Group velocity diagrams of MHD waves. The background magnetic field,
B0, is aligned along x axis. Panel (a) shows the diagrams for VA > CS and panel (b)
shows the diagrams for VA < CS .

we consider long period waves with scales comparable to the size of the magnetosphere,

namely Ultra Low Frequency (ULF) waves, and ignore the shorter periods oscillations

that are the result of processes out of the MHD limit [Walker , 2005]. These oscilla-

tions are actually MHD waves and they are classified according to their frequency range,

which is divided into five intervals, Pc1 − Pc5 for continuous pulsations and two inter-

vals, Pi1 − Pi2 for irregular pulsations [e.g., Kivelson and Russell , 1995; Baumjohann

and Treumann, 1999; Walker , 2005]. Table 1.1 shows frequency and period range of the

ULF pulsations.

Name Pc-1 Pc-2 Pc-3 Pc-4 Pc-5 Pi-1 Pi-2
T (s) 0.2-5 5-10 10-45 45-150 150-600 1-40 40-150
f 0.2-5 Hz 0.1-0.2 Hz 22-100 mHz 7-22 mHz 2-7 mHz 0.025-1 Hz 2-25 mHz

Table 1.1: Period and frequency ranges of ULF waves observed in the magnetosphere.

ULF fluctuations were observed long before their connection to space plasmas were

found. They were suggested as originating from MHD waves in the outer atmosphere
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about a century after their first observations [Kivelson and Russell , 1995]. Continuous

oscillations (Pc) are quasi-sinusoidal and have longer durations while irregular oscilla-

tions (Pi) are shorter lived and do not have a well defined spectral peak. Pi pulsations

are also more localized in latitude and longitude than the Pc pulsations. Geomagnetic

pulsations can inject a significant amount of energy into the magnetosphere [Taroyan

and Ruderman, 2011]. In many cases, the pulsating disturbances observed are associated

with Alfvén waves.

Boundary conditions are important for frequencies of the ULF waves that can be ex-

cited. The high latitude ionosphere forms boundaries at the ends of most field lines and

the near-equatorial ionosphere forms the inner boundary while the magnetopause forms

the outer boundary. If conductivity is very high, the ionosphere will reflect back the

waves that are incident on it. Like waves on a string, Alfvén waves can satisfy reflection

conditions for only a certain range of wavelengths and thus only certain frequencies can

be resonant. These frequencies are controlled by the length of the field lines between

two ionospheres, the plasma density and the strength of the magnetic field [Kivelson and

Russell , 1995].

Pc5 pulsations are usually referred as Field Line Resonances (FLRs) and they rep-

resent a resonant Alfvén wave standing on the geomagnetic field lines [Walker , 2005;

Taroyan and Ruderman, 2011; Baumjohann and Treumann, 1999]. FLRs are caused by

the oscillations of the geomagnetic field lines often as a mixture of poloidal and toroidal

oscillations [Baumjohann and Treumann, 1999]. The energy source of FLRs or Pc5 pul-

sations is thought to be near magnetopause since they are usually observed close to the

magnetopause flanks. [Taroyan and Ruderman, 2011].

There are several possible driving mechanisms for the FLRs. One possible mechanism

is the Kelvin Helmholtz Instability (KHI) generated surface waves excited on the mag-

netopause. These KHI surface waves can set the inner magnetosphere into oscillations

which can become resonant with a certain geomagnetic field line [Southwood , 1974; Chen

and Hasegawa, 1993]. It is found that there is a strong correlation between the solar
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wind speed and the FLRs which is a strong indicator that the energy source of the FLRs

can be KHI [Mills and Wright , 1999].

Other possible excitation mechanisms of FLRs are suggested to be the compressional

waves generated by solar wind entering into the magnetosphere directly from high lati-

tudes [Baumjohann and Treumann, 1999; Walker , 2005] and magnetospheric waveguide

modes [Mann et al., 1999; Mills et al., 1999; Mills and Wright , 1999].

Southwood [1974] proposed a model that illustrates fast waves coupling to the ob-

served FLRs. Their model however did not fully describe the mechanism which drive

the fast waves. In this thesis we have shown for the first time that the Kelvin-Helmholtz

Instability is a mechanism for fast and slow MHD waves generation along MHD shear

flow boundaries. The KHI generated MHD waves may propagate into the regions on

either side of the boundary and provide a significant mechanism for energy transport.

MHD waves generation due to KHI on the magnetopause boundary could explain the

unknown generation mechanism of fast waves coupling to FLRs suggested by Southwood

[1974]. The Kelvin - Helmholtz (K-H) generated fast/slow waves are introduced in the

context of the primary/secondary KHI.
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Chapter 2

Kelvin-Helmholtz Instability on

MHD Shear Flow Boundaries:

Background and Theory

2.1 Introduction

Shear flows of magnetized plasmas are observed in the solar atmosphere, in interplan-

etary space and planetary magnetospheres. They are also important elements of remote

astrophysical objects such as accretion disks, black holes and neutron stars. Understand-

ing physical processes such as plasma mixing, energy and momentum transport between

two media on both sides of these flow boundaries is strongly related to their stability

conditions [Ruderman and Belov , 2010]. The Kelvin-Helmholtz Instability (KHI) which

is the subject of study in this thesis, is a type of instability often observed along such

shear flow boundaries.

On the Earth’s magnetopause, the KHI is generated due the velocity shear between

magnetosheath and magnetosphere flows and it plays momentous roles in many magne-

tospheric phenomena. Such are generation of geomagnetic pulsations [Agapitov et al.,
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2009; Villante, 2007; Rae et al., 2005; Chen and Hasegawa, 1993; Miura and Pritchett ,

1982; Walker , 1981; Southwood , 1974], inducing magnetic reconnection and plasma mix-

ing at the magnetopause during northward Interplanetary Magnetic Field(IMF) [Nakai

and Ueno, 2011; Pegoraro et al., 2008; Nakamura et al., 2006; Fairfield et al., 2000], and

causing momentum and energy transport across the magnetopause [Hasegawa et al., 2006;

Kivelson and Chen, 1995;Miura, 1984; Pu and Kivelson, 1983b]. Kelvin-Helmholtz(K-H)

driven surface waves can couple to the cavity modes in the magnetosphere and initiate

field line resonances [Mann et al., 1999; Mills and Wright , 2000]. The KHI generated

surface waves on the shear flow boundaries in the inner magnetosphere may also be a

possible motive for the substorm expansion onsets which are key elements for solar wind

interaction with the Earth’s magnetosphere and the ionosphere [Uberoi , 2006; Lui , 2004;

Yoon et al., 1996; Rae et al., 2005].

The KHI on MHD shear flow boundaries is also a significant tool for understand-

ing many physical processes in solar atmospheres [Andries et al., 2000; Andries and

Goossens, 2001; Foullon et al., 2011, 2013; Nykyri and Foullon, 2013; Möstl et al., 2013;

Cécere et al., 2014] and remote astrophysical objects such as accretion disks [Michikoshi

and Inutsuka, 2006; Johansen et al., 2006; Barranco, 2009; Pessah, 2010; Guillochon

et al., 2010; Lee et al., 2010a, b], galactic centers [Anninos et al., 2012; Kamaya, 1998;

Roediger et al., 2012, 2013], molecular clouds [Berné and Matsumoto, 2012] and cometary

tails [Ershcovich and Chernikov , 1973; Ershkovich, 1979; Ray , 1982; Niedner et al., 1983;

Ershkovich and Mendis, 1986]. In the solar atmosphere for instance, the KHI is a process

that could lead to plume/interplume mixing, provide a source for Alfvénic fluctuations

[Andries and Goossens, 2001; Andries et al., 2000] and mixing of Coronal Mass Ejection

(CME) regions with the outside region of the solar corona [Foullon et al., 2011, 2013;

Nykyri and Foullon, 2013; Möstl et al., 2013]. The heliopause, the boundary between

the solar system and interstellar wind, is also a type of MHD shear flow boundary and

subject to the KHI which can enhance the energy transport from the interstellar medium

into the solar system [Ruderman and Fahr , 1993, 1995; Taroyan and Ruderman, 2011].
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Negative energy waves (NEWs) are also supported by plasmas with relative motion

[Andries and Goossens, 2002; Walker , 2000; Ruderman and Wright , 1998; Ruderman

and Goossens, 1995; McKenzie, 1970; Fejer , 1963]. Existence of NEWs in between two

media with relative motion is also a prominent physical phenomenon in hydrodynamics

[Ostrovskii et al., 1986; Cairns, 1979; Acheson, 1976], atmospheric sciences [Lindzen and

Rosendhal , 1982], and solar atmosphere [Tirry et al., 1998; Joarder et al., 1997]. The

KHI surface modes are theorized to be related to negative energy waves or over-reflected

waves in many studies [Lashmore-Davies, 2005; Taroyan and Erdélyi , 2003b, a, 2002;

Mann et al., 1999; Mills et al., 1999; Mills and Wright , 1999; Lindzen and Rosendhal ,

1982; Cairns, 1979; McKenzie, 1970; Ruderman and Belov , 2010]. The concept of the

connection between the KHI and NEWs however, needs further investigation.

In this Chapter we describe governing equations and boundary conditions for var-

ious models of the KHI that are used in this thesis and show derivations. The models

presented may be applicable to MHD shear flow boundaries in the Earth’s magnetospheric

regions as well as those of the solar corona or remote astrophysical objects. We will also

briefly discuss the possible relation between the KHI and Negative Energy Waves.

The KHI can evolve spatially (grow in space) or temporally (grow in time) or

both Itoh et al. [2004]. A spatial KHI is called absolute if initiated wave modes grow

exponentially with time at any fixed location in space, and it is called convective if they

are convected very quickly and decay with time at any fixed spatial position despite in-

creasing amplitude. [Bers, 1983]. Only temporal evolution of the KHI is considered in

the current study.

2.2 Concept of Instabilities

In Chapter 1 Section 1.6.8, we have obtained wave solutions for which frequency, ω, is

purely real. These types of solutions represent waves whose amplitudes are constant in

time which implies that plasma neither loses energy to the waves nor gains energy from
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the waves [Kivelson and Russell , 1995]. If there is energy accumulation or a source of free

energy in a plasma, energy exchange between the plasma and the waves will be possible

and average wave amplitude will change with time [Kivelson and Russell , 1995]. The

plasma conditions that lead to wave growth in time are referred as instabilities, or more

precisely temporal instabilities [Kivelson and Russell , 1995]. Instabilities develop as a

way of redistributing the available free energy to reach an equilibrium state [Kivelson

and Russell , 1995].

If waves described by the equation

Aei(k·r−ωt) (2.1)

are to change amplitude with time, ω must have an imaginary part, ω = ωr + iωi. For

positive values of ωi the wave amplitude grows and for negative values of ωi the wave

amplitude decays exponentially with time. Therefore ωi is called the growth rate.

The plasma regions in space and astro-space are not closed systems in thermal

equilibrium and are driven by energy and momentum input from outside [Baumjohann

and Treumann, 2001]. Therefore free energy and instabilities are generally available in

these plasma systems. The energy and momentum input from outside produces inho-

mogeneities and spatial gradients on macroscopic scales which cause the large-scale or

macroinstabilities. On the microscopic scale this input causes the deformation and dis-

tortion of the local plasma distribution and small scale or microinstabilities [Baumjohann

and Treumann, 2001]. The scale sizes of macroinstabilities are comparable to the bulk

scales of plasma and that of microinstabilities are comparable to the particle inertial

lengths and gyroradii [Baumjohann and Treumann, 2001]. Therefore, macroinstabilities

can be treated within the frame work of fluid plasma (MHD) theory while microinstabili-

ties should be treated with kinetic plasma approach [Baumjohann and Treumann, 2001].

The Kelvin-Helmholtz Instability is a macroinstability and therefore is treated with MHD

theory in the current study.
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2.3 KHI Models and Equations

As mentioned earlier the KHI is a macroscopic instability generated by shear flows in

magnetized plasmas, thus the best way to study this phenomenon would be magnetohy-

drodynamic (MHD) theory which is used in the current study. Since plasma is considered

to be collisionless in space, the ideal MHD equations are used where the plasma is as-

sumed to be infinitely conducting and the displacement electric field is zero. A standard

approach to the problem of the KHI on MHD shear flows is the use of normal mode anal-

ysis, which is based on the linearized MHD equations - shown in Chapter 1 and Section

1.6.8.

KHI can develop on a Tangential Discontinuity (TD) boundary, where normal com-

ponents of the background magnetic field and plasma flow velocity are absent. Two

different shear flow boundary configurations that may lead to KHI on a TD boundary

is illustrated on Figure 2.1 (a) and (b). In Figure 2.1 (a) flow velocities, V01,02, are in

opposite directions and in Figure 2.1 (b) region 2 is stationary, V02 = 0, while plasma

in region 1 has a flow velocity V01 in the −y direction. Physically a TD boundary has a

finite thickness, ∆x, as shown in Figure 2.1 (a) and (b). However, it could be assumed

to have zero transition thickness if waves with large wavelength are considered.

In this thesis, we first consider a zero boundary thickness approach with infinite

plasmas on both sides of the boundary. Following, an inner boundary on one side is

included which introduces the effects of the reflected waves. Finally we will consider a

finite thickness boundary which provides a wider wavelength regime for the investigation

of the KHI waves. For all three models considered, we have assumed warm homogeneous

plasmas in two media on both sides the boundary. A TD boundary is assumed to lay in

the y − z plane and the x direction is chosen to be the boundary normal. The follow-

ing sections describe each of the models used and show derivations for the KHI waves

dispersion relations.
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Figure 2.1: Two configurations that may lead to Kelvin-Helmholtz instability. The
boundary has a nonzero thickness, ∆x. However, zero thickness boundary can be as-
sumed if the wavelengths of the considered waves are larger than the thickness of the
boundary, λ� ∆x.

2.3.1 Thin Boundary Layer Model

In this section, the dispersion relations for the KHI waves are derived corresponding

to the zero thickness boundary assumption. Zero transition thickness is suitable if the

wavelengths, λ, of the generated waves are considerably larger than the thickness, ∆x,

of the boundary; λ� ∆x. A sinusoidal perturbation is assumed, depending on time and

space as in equation 2.1, and a Cartesian coordinate system is used. The set up used is

displayed in Figure 2.2. Boundary conditions corresponding to a TD boundary, namely

continuity of the displacement, δx, and total pressure perturbation, δpT , across the MHD

shear flow boundary, are applied.
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Figure 2.2: Model used for the zero thickness boundary derivations. An inner boundary
is set at x = d in region 2 for bounded calculations, and is removed for calculations with
semi-infinite plasmas in both regions.

KHI on a Boundary With Infinite Plasmas on Both Sides

Here we consider a shear flow with two semi-infinite plasma media on both sides of the

boundary. In this approach, one uses the boundary conditions across the TD boundary

as mentioned above and the assumption that the perturbations vanish at ±∞.

We make use of the linearized one-fluid MHD equations shown in Chapter 1 and Section

1.6.8 ( equations 1.33 - 1.36). Considering a plasma with a uniform background flow veloc-

ity, magnetic field, electric field, current density, pressure and density as,V0,B0,E0,J0, P
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and ρ0 respectively we simplify the linear equations to obtain:

dδρ

dt
+ ρ0(∇ · δv) = 0 continuity equation, (2.2)

ρ0
dδv

dt
= −∇δpT +

1

µ0
[(B0 · ∇)δb] equation of motion, (2.3)

dδp

dt
= C2

S

dδρ

dt
adiabatic law, (2.4)

dδb

dt
= (B0 · ∇)δv −B0(∇ · δv) Faraday’s law. (2.5)

Notice here that d/dt is the convective derivative,

d

dt
=

∂

∂t
+ V0 · ∇, (2.6)

and δpT is total pressure perturbation or generalized pressure,

δpT = δp+
B0δb

µ0
. (2.7)

If we assume space and time variation as Aei(kr−ωt) as shown in Equation 2.1 , then we

can use the following replacements;

∂
∂t = −iω, ∇ = ik,

and thus the convective derivative can be replaced by,

d

dt
= −iω + V0 · k = −iω′,

where we have introduced the Doppler-shifted frequency,

ω′ = w −V0 · k. (2.8)
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Using above the replacements the Equations 2.2 - 2.5 may be written as;

−iω′δρ + ρ0(ik · δv) = 0, (2.9)

−iω′ρ0δv = −ikδpT +
1

µ0
[(B0 · ik)δb] , (2.10)

−iω′δp = −iω′C2
Sδρ, (2.11)

−iω′δb = (B0 · ik)δv −B0(ik · δv). (2.12)

We now substitute δb from Equation 2.12 and δρ from Equation 2.11, in Equation 2.10

and 2.9 reducing the above equations to two;

−ω′ 1

C2
S

δp + ρ0(k · δv) = 0, (2.13)

−ω′ρ0δv = −kδpT +
1

µ0ω′
(B0 · k) [−(B0 · k)δv + B0(k · δv)] . (2.14)

Let us now adopt the Cartesian coordinate system shown in Figure 2.2, where all the

background values are uniform along the y, z coordinates and change sharply at x = 0.

Using Tangential Discontinuity (TD) boundary conditions such that the normal compo-

nents of the B0,V0 are zero and taking the x component of equation 2.14 we obtain:

−ω′ρ0δvx = −kxδpT −
1

µ0ω′
(B0 · k)2δvx. (2.15)

We choose the total pressure perturbation, δpT , and the normal displacement, δx, as

the fundamental quantities to be determined since TD boundary conditions require

that they are continuous across the boundary even though the zero order quantities

are discontinuous. Therefore we rewrite Equation 2.15 in terms of δpT and replace

δvx = dδx/dt = −iω′δx which yields;

ikxδpT = ρ0

[
ω′2 − 1

µ0ρ0
(B0 · k)2

]
δx. (2.16)
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Now we apply TD boundary conditions to the above equation. Since plasma parameters

will change across the boundary we distinguish the quantities for both sides with indices

1 and 2. Therefore we use the following conditions;

δpT1 = δpT2, δx1 = δx2 (2.17)

to obtain;

[
(
ω′1
)2 − (B01 · kt)2

ρ01µ0
]
ρ01

kx1
+ [
(
ω′2
)2 − (B02 · kt)2

ρ02µ0
]
ρ02

kx2
= 0. (2.18)

In deriving equation 2.18, we take into account the fact that the normals on both sides

of the TD boundary are directed oppositely.

Rewriting equation 2.18 in terms of background Alfvén velocities, we obtain a more

useful form as;

[
(
ω′1
)2 − (VA1 · kt)2]

ρ01

kx1
+ [
(
ω′2
)2 − (VA2 · kt)2]

ρ02

kx2
= 0, (2.19)

where ω′1,2 are Doppler-shifted frequencies, VA1,A2 are Alfvén velocities, CS1,S2 are sound

speeds and kx1,x2 are wave numbers normal to the boundary in regions 1 and 2 respec-

tively(see Figure 3.2). Similar derivations can be found in [Pu and Kivelson, 1983a].

However, we have considered fully arbitrary values of background parameters and specif-

ically magnetic field directions in our calculations which is not done in the past and

results are shown in chapter 3 of this thesis. The equations for the normal wave numbers

in each homogeneous plasma region can easily be derived from the equation 1.56 as;

kx1,x2 =
(
ω′41,2/

[
ω′21,2(V 2

A1,A2 + C2
s1,s2)− (VA1,A2 · kt)2C2

s1,s2

]
− k2

t

)1/2
. (2.20)

Equation 2.18 is used in Chapter 3 to find the solutions to the Kelvin-Helmholtz

unstable waves on the boundary of the Earth’s magnetopause with semi-infinite plasmas

on both sides. Allowing kx1,x2 to be complex provides solutions that can describe not
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only purely oscillatory or evanescent modes, but also modes that have both oscillations

and a background growth or decay in x. The arbitrary conditions we have adopted allow

us to find modes which decay in time and have a spatially growing nature in either region.

KHI with a Reflecting Boundary in the Region 2

If a perfectly reflecting boundary is added in one of the regions as shown on Figure

2.2, this may cause significant impacts on the evolution of the KHI.

We assume that a perfectly reflecting boundary is added in region 2 at x = d. Two

types of MHD wave modes with different boundary conditions at x = d become possi-

ble namely kink and sausage waves. The sausage modes will oscillate on the shear flow

boundary causing expansion and contraction of the plasma while not disturbing the in-

ner boundary. Kink modes on the other hand will cause symmetric oscillations along the

shear flow and in the inner boundary giving the plasma a serpentine motion.

In addition to connecting MHD wave solutions in regions 1 and 2 through TD bound-

ary conditions, one also has to match inner boundary conditions at x = d. The boundary

conditions at x = d are different for the kink and sausage modes, since the kink modes

will have an anti-node and sausage modes will have a node at this position. Hence the

boundary condition at x = d for the sausage modes is

δvx2 = 0, (2.21)

from which it follows that
dδpt2
dx

= 0, (2.22)

and those of kink modes are
dδvx2

dx
= 0, (2.23)

and

δpT2 = 0, (2.24)
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where δvx2 is the perpendicular velocity perturbation. Connecting the MHD wave so-

lutions across x = 0 using TD boundary conditions in Equation 2.17 together with the

inner boundary conditions 2.21 and 2.22 at x = d, MHD sausage modes are found to be

governed by the equation

i tan(kx2d)[
(
ω′1
)2 − (VA1 · kt)2]

ρ01

kx1
− [
(
ω′2
)2 − (VA2 · kt)2]

ρ02

kx2
= 0. (2.25)

Similarly applying the boundary conditions 2.23 and 2.24 at x = d together with TD

boundary conditions, MHD kink modes are found to be governed by the equation

i cot(kx2d)[
(
ω′1
)2 − (VA1 · kt)2]

ρ01

kx1
+ [
(
ω′2
)2 − (VA2 · kt)2]

ρ02

kx2
= 0. (2.26)

Equation 2.25 is used in Chapter 3 to find the solutions to the Kelvin-Helmholtz

unstable waves on the boundary of the Earth’s magnetopause with an inner boundary

added in the magnetosphere at x = d. Additionally Equations 2.26 and 2.25 are used

in Chapter 4 for finding solutions to the KHI kink and sausage modes along the Bursty

Bulk Flow (BBF) channels in the central plasmasheet. The coordinate system used in

Chapter 4 is modified to represent Geocentric Solar Magnetic (GSM) coordinate system

and boundary is assumed to be at the half channel position, y = 0. A change of coordinate

system or the position of inner boundary does not alter the derivations shown above for

the kink and sausage modes.

2.3.2 Finite Width Boundary Layer Model

In this section we derive the KHI wave dispersion relation for a finite thickness MHD

shear-flow boundary.

Assume a plane geometry where all the zero order quantities are dependent only on

x. In this case, the perturbations to background plasma parameters should be of the
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form,

δg(r, t) = g(x)ei(kt.r−ωt), (2.27)

where g is any perturbed quantity, g(x) is the corresponding amplitude, ω is the com-

plex frequency and kt = (0, ky, kz) is the tangential wave number. With the type of

perturbation shown in Equation 2.27 the following replacement can be used

d
dt = −iω′, ∇ = x̂ ∂

∂x + ikt,

and the linearized MHD equations, equations 2.2 - 2.5, can be written as

−iω′δρ+ iρ0(kt · δv) + ρ0
∂δvx
∂x

+ δvx
∂ρ0

∂x
= 0, (2.28)

−iω′ρ0δv + ρ0δvx
∂V0

∂x
= −iktδpT − x̂

∂δpT
∂x

+
1

µ0

(
i[B0 · kt]δb + δBx

∂B0

∂x

)
, (2.29)

−iω′(δp− C2
Sδρ) +

(
∂P0

∂x
+
C2
S

γ

∂δρ0

∂x

)
δvx = 0, (2.30)

iω′δb = B0

(
∂δvx
∂x

+ i(kt · δv)

)
+ δvx

∂B0

∂x
− δbx

∂V0

∂x
− i(B0 · kt)δv. (2.31)

First we take the x component of equation 2.31 and replace δvx = ∂δx/∂x = −iω′δx

to obtain

δbx = i(kt ·B0)δx. (2.32)

Then we take the x component of equation 2.29, and replace δvx = −iω′δx and δbx

from 2.32. Applying these steps provides a general equation connecting two important

parameters δpT = δp+ (B0 · δb)/µ0 and δx;

∂δpT
∂x
− Ωδx = 0. (2.33)

where

Ω = ρ0[ω′2 − (VA · kt)2]. (2.34)
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In order to find a solution to equation 2.33, we need to find a second equation involving

these variables. We will next find an expression describing δpT in terms of δx and replace

it in equation 2.33. This will provide us with a solvable equation for δx only.

First take the scalar product of both sides of equation 2.31 with kt and replace

δvx = −iω′δx to obtain an equation for the term kt · δb as,

kt · δb = −(kt ·B0)
∂δx

∂x
− ∂(kt ·B0)

∂x
δx. (2.35)

Next take the scalar product of equation 2.29 with kt and replace kt · δb from equation

2.35 to obtain,

kt · δv =
(kt ·VA)2

ω′
∂δx

∂x
− ∂(kt ·V0)

∂x
δx+

k2
t

ω′ρ0
δpT . (2.36)

Insert δρ from the equation 2.30 into the equation 2.28 and replace δvx = −iω′δx to

write an expression for δp as,

δp =
1

2µ0

∂B2
0

∂x
δx−

ρ0C
2
S

ω′2
[ω′2− (kt ·VA)2]

∂δx

∂x
−C2

S

(
1 +

1

γ

)
∂ρ0

∂x
δx+

k2
tC

2
S

ω′2
δpT . (2.37)

Take the scalar product of B0 with equation 2.29 and arrange the results in terms of the

magnetic pressure perturbation B0 · δb/µ0 to obtain,

(kt ·B0)

[
B0 · δb
µ0

+
δx

µ0

∂B2
0

∂x

]
= (kt ·B0)δpT −ω′ρ0(B0 · δv)−ω′ρ0

∂(B0 ·V0)

∂x
δx. (2.38)

Take the scalar product of B0 with both sides of equation 2.31 and arrange in terms of

B0 · δv to obtain,

B0 · δv =
1

B0 · kt

(
B2

0k
2
t

ω′ρ0
δpT −

B2
0

ω′
[ω′2 − (kt ·VA)2]

∂δx

∂x
− ω′∂B

2
0

∂x
δx (2.39)

−∂(B0 ·V0)

∂x
δx− ω′(B0 · δb)

)
.



CHAPTER 2. KHI ON MHD SHEAR FLOW BOUNDARIES 48

Region 1 Region 2

∆x

ρ01

ρ02

B02

U02

B01

U01

x−x

y

−h h 

Figure 2.3: Schematic of the MHD boundary layer model used for the finite with boundary
thickness. ∆x = 2h is the boundary layer thickness.

Then insert equation 2.39 in equation 2.38 to obtain a more simplified equation for

magnetic pressure perturbation as,

B0 · δb
µ0

= −ρ0V
2
A

∂δx

∂x
− δx

µ0

∂B2
0

∂x
−

(kt ·VA)2 − k2
t V

2
A

ω′2 − (kt ·VA)2
δpT (2.40)

Finally add equations 2.37 and 2.40 to obtain an expression for δpT as,

δpT = χ
∂δx

∂x
− 1

L

δx

2µ0

∂B2
0

∂x
− C2

S

1

L

(
γ + 1

γ

)
∂ρ0

∂x
. (2.41)

Where χ = −Ω/k2
x, L = [ω′4 − ω′2k2

t (C
2
S + V 2

A) + k2
tC

2
S(kt ·VA)2]/[ω′4 − ω′2(kt ·VA)2],

and kx is the complex wave number normal to the boundary which is described in the

equation 2.20.

We now assume that only the plasma flow velocity varies along x and all the other

background values are constant. The boundary layer is set as an additional region between

x = −h and x = h which makes the thickness ∆x = 2h. The variation of the flow velocity

across the boundary is chosen as V0(x) = V01
2

(
1− x

h

)
+ V02

2

(
1 + x

h

)
(this set up is shown

in Figure 2.3 ). When we apply these assumptions, the last two terms in equation 2.41
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are cancelled and a simpler equation for δpT is obtained,

δpT = χ
∂δx

∂x
. (2.42)

Finally we substitute δpT from equation 2.42 into equation 2.33 to obtain the following

equation for the amplitude of the plasma displacement, δx;

∂

∂x

(
χ
∂δx

∂x

)
− Ωδx = 0, (2.43)

Equation 2.43 is applied to the boundary regions described above. We will now

have three regions, region 1, region 2 and the boundary layer region. Thus four bound-

ary conditions are to be matched. Following the standard approach in previous studies

[Chandrasekhar , 1961; Lee and Olson, 1980; Roberts, 1991; Farrugia et al., 1998; Gratton

et al., 2004], solutions to equation 2.43 in these three regions are chosen as;

δx1 = A1e
ikx1x, x ≤ −h

δxbl = A2e
ikxblx +A3e

−ikxblx, −h < x < h (2.44)

δx2 = A4e
ikx2x. x ≥ h

The subscripts 1 and 2 corresponds to regions 1 and 2, respectively. The boundary layer

region values are symbolized as δxbl and kxbl. The solutions in region 1/2 have been so

chosen that perturbations vanish at −∞/ +∞. Therefore, the imaginary parts of the

perpendicular wave numbers are chosen as, negative in region 1, kx1i < 0, and positive

in region 2, kx2i > 0. Boundary conditions corresponding to a tangential discontinuity,

namely continuity of the displacement and total pressure is applied to the boundaries at
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x = ±h, resulting in the following matching conditions;

χ1
∂δx1

∂x
= χbl

∂δxbl
∂x

, δx1 = δxbl, x = −h (2.45)

χbl
∂δxbl
∂x

= χ2
∂δx2

∂x
, δxbl = δx2, x = h (2.46)

Applying matching conditions in equations 2.45 and 2.46, we obtain four linear equations

for four unknown constants, A1, A2, A3, and A4 which can be written in matrix form as;



e−ikx1h e−ikxblh eikxblh 0

iχ1kx1e
−ikx1h iχblζ1e

−ikxblh −iχblζ1e
ikxblh 0

0 eikxblh e−ikxblh eikx2h

0 iχblζble
ikxblh −iχblζble−ikxblh iχ2kx2e

ikx2h





A1

A2

A3

A4


=


0

0

0


(2.47)

The compatibility of these equations requires that the determinant of the matrix multi-

plying constants A1, A2, A3 and A4 must be equal to zero which leads to the dispersion

relation,

χ1kx1

(
κei(kx2+kxbl)∆x + ξ

)
+ ζχbl

(
κei(kx2+kxbl)∆x − ξ

)
. (2.48)

The following notation applies:

χ1 =
−Ω1

k2
x1

,

χbl =
−Ωbl

k2
xbl

,

ζ = kxbl − kt cosα
(V01 − V02)

4kxbl

(GblHbl − Fbl)
G2
bl

,

κ = kt cosα
(V01 − V02)

4kx2

(G2H2 − F2)

G2
2

,

ξ = 2kx2 + κ,

Gbl,2 = ω′2bl,2(C2
Sbl,S2 + V 2

Abl,A2)− (VAbl,A2 · kt)2C2
Sbl,S2,
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Hbl,2 = 4ω′3bl,2 − 2k2
tω
′
bl,2(C2

Sbl,S2 + V 2
Abl,A2),

Fbl,2 = 2ω′bl,2(C2
Sbl,S2 + V 2

Abl,A2)(ω′4bl,2 − k2
tGbl,2).

Here α represents the angle between the tangential wave number, k t, and flow velocity,

V 01,02. Equation 2.48 is used in Chapter 5 to find the solutions to the Kelvin-Helmholtz

unstable waves on an MHD shear flow boundary with finite thickness. This approach

allows us to investigate the effect of finite thickness on the KHI growth rates and MHD

wave emission due to the KHI. Moreover, with this approach we were able to consider

waves with wavelengths comparable to the size of the boundary thickness.

2.4 KHI and Negative Energy Waves

There is an ongoing discussion on the possibility of a relation between KHI and

Negative Energy Waves (NEWs). Negative energy waves, when incident on a non-rigid

boundary such as magnetopause, can extract energy from it and reflect back with en-

hanced amplitude and energy [Walker , 2000; McKenzie, 1970]; then the transmitted wave

should be assumed to have negative energy in order to keep energy conservation of the

wave [Mann et al., 1999; McKenzie, 1970; Fejer , 1963]. Negative energy waves are also

called over-reflected waves and they can better be defined by an active boundary method

where instead of assigning negative energy to the transmitted waves, an energy exchange

between the waves and the boundary is considered [Walker , 2000]. Interaction of a neg-

ative and a positive energy wave is suggested to be a initiator for the onset of the linear

KHI [Taroyan and Erdélyi , 2003a, 2002; Cairns, 1979]. The KHI is proposed to start

when a negative and a positive energy wave coalesce [Taroyan and Erdélyi , 2002; Mills

et al., 1999; Mills and Wright , 1999; Cairns, 1979]. Mann et al. [1999] have studied K-H

unstable and waveguide modes in connection with the over-reflection and propagation

of negative energy waves in the Earth’s magnetosphere. They have postulated that the

KHI-generated waves are always over-reflected at the magnetopause, a fact implied ear-
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lier by Pu and Kivelson [1983a], and thus K-H waves are possible through NEW. Mills

and Wright [1999] have employed the theory of over-reflection to study the K-H excited

waveguide modes and their impacts on driving field line resonances. In Chapter 3 we

show results confirming that the KHI waves are always over-reflected.
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Chapter 3

Primary and Secondary

Kelvin-Helmholtz Instabilities on

the Earth’s Magnetopause

3.1 Introduction

Numerous studies are conducted on KHI of the Earth’s magnetopause and physical

facts on this instability have been found in the past. There are, however, a number of am-

biguous features that remain to be solved. In this chapter of the thesis we provide a com-

plete investigation of the Kelvin-Helmholtz instability along the Earth’s magnetopause.

We show a clear distinction between the two types of KHI, primary and secondary, on

the Earth’s magnetopause. We also demonstrate the characteristics of the primary and

secondary KHI waves for the dayside and nightside magnetopause with the comparison of

two different approaches where either plasmas on both sides of the boundary are assumed

to be semi-infinite or a reflecting boundary is included in the magnetospheric side. All

of the results shown in this chapter are our contributions to the area of research on the

KHI of the Earth’s magnetopause and published in the Journal of Geophysical Research,
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2013. We have provided a brief explanation of the derivations used for the equations

in the paper and refer the reader to chapter 2 section 2.3.1 for the detailed derivations.

Detailed explanations to the box model of the magnetosphere used in this study can also

be found in chapter 1, section 1.6.2 (see also Figure 1.6 ). The following section provides

the details of the published paper:1

3.2 Paper 1: "Primary and Secondary Compressible Kelvin-

Helmholtz Surface Wave Instabilities on the Earth’s Mag-

netopause"

3.2.1 Abstract

Primary and secondary Kelvin-Helmholtz surface wave modes on the Earth’s magne-

topause are studied within the framework of warm plasma ideal magnetohydrodynamics

(MHD) across an infinitely thin magnetopause tangential discontinuity (TD). With the

increase of background flow velocity, a KHI unstable boundary separating two uniform

semi-infinite plasma regions is always ultimately stabilized to KHI growth at an upper

cut-off while inclusion of an inner boundary in one plasma region removes this stabiliza-

tion. Phase velocity Friedrichs diagrams are presented that allow us to identify unstable

fast and slow modes that correspond to growing modes of the KHI under different mag-

netosphere and magnetosheath conditions. For a TD on the near Earth flanks unstable

fast and slow surface modes are created. On the deeper flank, and into the magneto-

tail, where the magnetosheath and magnetosphere fields become more aligned, new KH

unstable intermediate-fast modes are created which can have phase speeds above the

Alfvén speed but which cannot propagate exactly perpendicular to the magnetic field.

In the plasma frame, primary unstable KH waves show fast/fast, while secondary KH
1Turkakin, H., Rankin, R. and Mann, I.R., "Primary and Secondary Kelvin-Helmholtz Sur-

face Wave Instabilities on the Earth’s Magnetopause", Journal of Geophysical Research, Vol.118,
doi:10.1002/jgra.50394,2013



CHAPTER 3. PRIMARY AND SECONDARY KHI ON THE MAGNETOPAUSE 55

waves show slow/fast mode behavior in the magnetosphere/magnetosheath. Secondary

KHI occurs at slower flow speeds than the primary KHI and grows more slowly and at

a narrow range of propagation angles. Our analysis is placed in the context of in-situ

satellite observations of the phase speed of KHI-related waves in the magnetosheath and

magnetosphere in the long wavelength regime where our analysis applies. We conclude

that KH unstable surface waves on the near-Earth magnetopause flanks are likely to be

secondary KHI waves, while those further down the flanks and on the night-side mag-

netopause are likely to be primary KHI waves - the latter being the most important for

energy transport at the magnetopause.

3.2.2 Introduction

The Kelvin-Helmholtz Instability (KHI) can arise when the equilibrium of a strat-

ified heterogeneous fluid with relative motion in different layers is considered [Chan-

drasekhar , 1961]. It evolves temporally and/or spatially corresponding to whether wave

modes grow with time and space, respectively [e.g., Itoh et al., 2004]. The velocity shear

between the magnetospheric and magnetosheath plasma in the Earth’s magnetosphere

generates a magnetohydrodynamic KHI, which plays an important role in many magneto-

spheric phenomena, such as the generation of geomagnetic pulsations [Southwood , 1974;

Walker , 1981; Miura and Pritchett , 1982; Chen and Hasegawa, 1993; Rae et al., 2005;

Villante, 2007; Agapitov et al., 2009], magnetic reconnection and plasma mixing at the

magnetopause especially during northward Interplanetary Magnetic Field (IMF) [Otto

and Fairfield , 2000; Fairfield et al., 2000; Nakamura et al., 2006; Pegoraro et al., 2008;

Nakai and Ueno, 2011], and as an agent for momentum and energy transfer across the

magnetopause [Pu and Kivelson, 1983b;Miura, 1984; Kivelson and Chen, 1995; Hasegawa

et al., 2006]. It has also been proposed that the surface waves generated by the KHI may

have an influence on substorm expansion phase onset in the plasmasheet [e.g., Rostoker

and Eastman, 1987; Yoon et al., 1996; Lui , 2004; Uberoi , 2006]. All of these are key

elements for solar wind interactions with the Earth’s magnetosphere and ionosphere. In
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the solar atmosphere KHI is also a process that can lead to plume/interplume mixing

and may be a source for Alfvénic fluctuations in the solar wind [e.g., Andries et al., 2000;

Andries and Goossens, 2001].

Due to the significant effects it has on the magnetosheath-magnetosphere boundary,

understanding the KHI and the behavior of the waves related to it is an active area of

research in magnetospheric physics. Several early works shed light on this subject for

incompressible [Sen, 1963] and compressible [Fejer , 1964; Sen, 1964, 1965; Lerche, 1966]

plasmas. Sen [1965] identified the regions of the day-side/night-side magnetopause and

magnetotail that may be KH unstable. Southwood [1968] studied the magnetospheric

boundary allowing different magnetic fields on both sides of the magnetopause and dis-

covered that the maximum growth rate occurs when shear flow is perpendicular to the

background magnetic field.

In the KHI studies, the magnetopause boundary is often assumed to have zero thick-

ness [Pu and Kivelson, 1983a, b; Mann et al., 1999; Mills et al., 1999; Mills and Wright ,

1999]; this assumption is valid for waves with wavelengths bigger than the thickness of

the boundary layer. Under this assumption the growth rates of the KH unstable waves

increase without limit as the tangential wave number increases [Southwood , 1968; Ong

and Roderick , 1972; Mann et al., 1999]. Study of KHI with the finite transition thickness

was first done by Ong and Roderick [1972] employing both incompressible and compress-

ible flow analysis. They found that the finite thickness of the transition layer stabilizes

the boundary for short wavelength perturbations. They also noted that the component

of the background magnetic field parallel to the shear flow reduces the growth rate of the

instability and confirmed the fact that the compressibility has a stabilizing effect as well,

which was suggested earlier by Sen [1964]. It is also found that when a boundary finite

thickness is included, growth rates have a maximum value for a finite wave number and

tends towards to zero growth as the wave number tends to infinity [Ong and Roderick ,

1972; Walker , 1981; Miura and Pritchett , 1982; Allan and Wright , 1997].

Although the KHI of the magnetopause has been investigated extensively in the past,
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there are still a number of features that remain to be fully explained. For instance, it is

well known that there is an upper and a lower cut-off velocity for the onset of the KHI

surface wave when the plasmas on both sides of the magnetopause are unbounded [Pu

and Kivelson, 1983a, b; Mills and Wright , 1999; Mills et al., 1999; Mann et al., 1999;

Taroyan and Erdélyi , 2002, 2003a, b]. It is also known that the upper cut-off velocity is

removed when an inner boundary is included in the magnetosphere [Fujita et al., 1996;

Mann et al., 1999; Mills et al., 1999; Mills and Wright , 1999]. A lower cut-off velocity

below which the boundary is stable exists due to magnetic tension on the boundary [Pu

and Kivelson, 1983a, b; Miura, 1995; Mann et al., 1999]. The upper cut off velocity is

typically explained as the point where KHI generated surface waves turn into oscillatory

modes and propagate into the magnetosphere and magnetosheath stabilizing the KHI

[Fujita et al., 1996; Pu and Kivelson, 1983a; Mann et al., 1999; Mills et al., 1999]. How-

ever, in the bounded case there can be an influence of the inner boundary on the shear

flow boundary and this has not been fully examined.

Less well-known is the fact that in a compressible plasma there can be two KH unsta-

ble, often distinct flow speed regions, which allow for the existence of a primary as well

as a less intense secondary KHI interval, depending on the ambient plasma parameters

[González and Gratton, 1994; González et al., 2002; Taroyan and Erdélyi , 2002, 2003a].

This secondary instability region occurs for flow speeds typically below the primary KHI

and with usually smaller growth rates. Nevertheless, the secondary instability should not

be ignored since it could be the only active instability under certain physical conditions

[e.g., González et al., 2002] and might hence be the only means of energy propagation

at the boundary. We examine the generation of the primary and secondary KHI in the

context of the magnetopause KHI in this paper.

When waves are incident on a non-rigid boundary such as the magnetopause, they

can extract energy from the boundary and be reflected back with an enhanced amplitude

and energy [e.g., McKenzie, 1970; Walker , 2000]. In this case, the transmitted wave

can be considered to have negative energy in order to maintain energy conservation [Fe-
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jer , 1963; McKenzie, 1970; Mann et al., 1999]. However, for the more realistic scenario

where wave-packets have finite length, causality suggests that the interactions can better

be described by an active boundary where, instead of assigning negative energy to the

transmitted waves, energy exchange between the waves and the flow is described in terms

of the work done by Reynolds and Maxwell stresses at the boundary [Walker , 2000]. The

interaction of a negative and a positive energy wave has also previously been theorized

to be an initiator of the onset of the KHI [Cairns, 1979; Mills et al., 1999; Taroyan and

Erdélyi , 2002, 2003a], however, we revisit this conclusion here.

In the current study, the behavior of MHD modes in a bounded and unbounded

magnetosphere and magnetosheath separated by a shear flow across a tangential discon-

tinuity (TD) are explored and compared. An analysis of a bounded magnetosphere is

more applicable to the dayside magnetosphere and the near-Earth flank night-side mag-

netosphere where the plasmapause may represent an inner boundary. Further down the

magnetotail, the two regions on both sides of the magnetopause can be assumed to be

semi-infinite, since the average value of the diameter of the magnetotail can reach up to

∼ 50 − 60RE [Pertinec and Russell , 1996]. In this latter case the boundary is far away

from the shear layer to the extent that any waves reflected from the distant boundary

may have little or no impact on the dynamics of the magnetopause.

We describe the primary and secondary KHI and their relevance to excited MHD

wave modes using the physical framework of linear mode interactions. A strong corre-

lation between the linear interactions of MHD waves and the onset and stabilization of

primary and secondary KHI is revealed. Similar studies have been performed in the past,

but a clear explanation of the relationship between the wave-wave interactions and the

properties of the primary and secondary KHI was not provided [e.g., Mills et al., 1999;

Taroyan and Erdélyi , 2002, 2003a, b]. This framework also reveals some physics of the

upper cut-off. Finally, we examine the fast and slow mode characteristics of the primary

and secondary KHI waves, showing that the modes can have different characteristics of

slow or fast on either side of the magnetopause. We further examine the observational
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implications of this in the magnetospheric context.

3.2.3 KHI Dispersion Relation and Numerical Method

Observations have demonstrated that the region of the magnetopause which is most

susceptible to the KHI is the low latitude boundary layer in the equatorial plane on

the flanks starting from the dayside flanks and extending into the magnetotail [e.g.,

Hasegawa et al., 2004, 2006; Foullon et al., 2008, 2010]. In the present study, the dayside

Figure 3.1: Regions of the magnetosphere investigated. Region A corresponds to the
dayside flanks, region B corresponds to the night-side flanks, and region C corresponds
to the far down the magnetotail. A representative position of the plasmapause is shown
as the inner boundary for a bounded magnetosphere calculations of regions A and B. The
size of the Earth is exaggerated for clarity.

and night-side flanks of the magnetosphere, and the magnetotail, will all be probed along

the equatorial plane for the onset of the KHI. These regions are labelled as region A, B,

and C respectively for clarity throughout the rest of this paper (see Figure 3.1). Region

A corresponds to the dayside flanks of the magnetosphere, region B corresponds to the

night-side flanks until distances ' 10 − 15RE downtail from the terminator where the

plasmapause remains as a possible inner boundary, and region C is even further down

the magnetotail where the shear-flow boundary is effectively unbounded on either side.

In the analysis presented here, a tangential discontinuity (TD) boundary with zero
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thickness is assumed. At a TD, the normal components of the background magnetic field

and plasma flow velocity are zero. We have assumed a zero transition thickness which

is suitable if the wavelengths, λ, of the generated waves are considerably larger than the

thickness, l, of the boundary. Observations have revealed that the magnetopause bound-

ary thickness typically varies between ∼ 0.1 − 1RE [e.g., Gnavi et al., 2009; Nakai and

Ueno, 2011; Hwang et al., 2011], while wavelengths of long period KHI relevant waves can

vary between ∼2−15RE [e.g., Chen and Kivelson, 1993; Kivelson and Chen, 1995; Owen

et al., 2004; Hasegawa et al., 2006; Foullon et al., 2008; Agapitov et al., 2009; Gnavi et al.,

2009; Foullon et al., 2010; Nakai and Ueno, 2011; Hwang et al., 2011], indicating that

λ� l in most cases. Therefore, a zero transition thickness can be assumed to be a valid

model for the magnetopause when these long period KHI waves with long wavelengths

are under investigation. Shorter period waves which will have shorter wavelengths are

better explored with a model magnetopause of finite thickness [e.g., Walker , 1981; Miura,

1984; Taroyan and Erdélyi , 2002, 2003a, b]

In region A, the magnetic fields on both sides of the boundary are chosen to be per-

pendicular to each other. In regions B and C, the magnetic fields are set parallel (or

anti-parallel - the dispersion relations are symmetrical) to each other. The flow velocity

is set parallel to the background magnetic field in the magnetosheath in all the regions,

A, B and C. A box model is used that corresponds to a Cartesian coordinate system with

a zero transition thickness shear flow boundary, as displayed in Figure 3.2. In Figure

3.2, region 1 represents the magnetosheath, and region 2 represents the magnetosphere.

B01,02 are the background magnetic fields and d is the distance to the inner boundary

in the bounded magnetosphere cases (A and B) expressed in units of the Earth’s radius,

RE ; d is set to ∞ for the isolated unbounded shear flow boundary in case C. U01,02 are

the background flow velocities in regions 1 and 2, where U01 is assumed to be directed

along y and U02 is set to zero.

The KHI is a macroscopic instability where the scale length of the generated waves is

comparable to the bulk scales of the plasma [Baumjohann and Treumann, 2001]. Thus
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Figure 3.2: Model used for the bounded magnetosphere; region 1 is the magnetosheath,
Msh, and region 2 is the magnetosphere, Msp. The magnetosheath has a uniform flow
in the y direction and the magnetosphere has zero flow velocity. Both regions have
background magnetic fields at arbitrary directions with respect to the direction of wave
propagation. An inner boundary is set at x = d in the magnetosphere for bounded mag-
netosphere calculations, and is removed for the unbounded magnetosphere calculations.

an appropriate approach for studying this phenomenon is to use magnetohydrodynam-

ics (MHD), and ideal MHD is the approach used in the current study. We follow the

standard approach where the ideal MHD equations are linearized under a small ampli-

tude approximation for compressible warm homogeneous plasmas on both sides of the

boundary. The dependent variables are assumed to be a superposition of an equilibrium

value, g0, and a perturbed value δg; g(r, t) = g0(r, t) + δg(r, t), where g represents the

dependent variable. A sinusoidal perturbation is assumed, depending on time and space

as δg(r, t) = Dei(k.r−ωt), where ω is the complex frequency, k = kt + kx is the wave num-
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ber - kt is the tangential wave number and kx is the complex wave number normal to

the boundary - and D is a constant amplitude. The setup displayed in figure 3.2 is used,

and boundary conditions corresponding to a tangential discontinuity, namely continuity

of the displacement and total pressure perturbation across the magnetopause boundary,

are applied to the dispersion relation:

[
(
ω′1
)2 − (B01 · kt)2

ρ01µ0
]
ρ01

kx1
+ [
(
ω′2
)2 − (B02 · kt)2

ρ02µ0
]
ρ02

kx2
= 0. (3.1)

Here, ρ01,02 are the background mass densities and µ0 is the permeability of free space.

Rewriting equation 3.1 in terms of background Alfvén velocities, we obtain;

[
(
ω′1
)2 − (VA1 · kt)2]

ρ01

kx1
+ [
(
ω′2
)2 − (VA2 · kt)2]

ρ02

kx2
= 0, (3.2)

where

ω′1,2 = ω −U01,02 · kt, (3.3)

V2
A1,A2 = (B01,02)2 / (ρ01,02µ0) , (3.4)

k2
x1,x2 =

((
ω′1,2

)4
/
[(
ω′1,2

)2 (
V 2
A1,A2 + C2

S1,S2

)
− (VA1,A2 · kt)2C2

S1,S2

])
− k2

t , (3.5)

C2
S1,S2 = γP01,02/ρ01,02. (3.6)

In equations 3-6, ω is the frequency in the stationary frame, ω′1,2 are Doppler shifted

frequencies, VA1,A2 are Alfvén velocities, kx1,x2 are wave numbers normal to the boundary,

and CS1,S2 are the sound speeds in regions 1 and 2, respectively. The adiabatic index γ

is taken as 5/3. When a perfectly reflecting boundary is included in the magnetosphere,
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equation 3.2 becomes

i tan(kx2d)[
(
ω′1
)2 − (VA1 · kt)2]

ρ01

kx1
− [
(
ω′2
)2 − (VA2 · kt)2]

ρ02

kx2
= 0. (3.7)

Eigenfrequencies of equations 3.2 and 3.7, representing an unbounded and a bounded

magnetosphere respectively, are computed numerically using a Newton-Raphson scheme.

The growth rates and real frequencies of KHI unstable surface waves are determined

for different sets of parameters applied to three different regions: regions A, B and C

(see Figure 3.1). Stable and unstable waveguide modes are also possible in the bounded

magnetosphere case [Mann et al., 1999], however they are not examined in the current

study. Phase velocity Friedrichs diagrams are plotted as an aid to understanding wave-

wave interactions and their connection to the KHI. Group velocity diagrams are also

plotted in order to investigate the direction of energy propagation of the KH unstable

waves.

In the following sections of the paper normalized flow velocities V01,02 are used such

that V01,02 = U01,02/VA2 with normalization with respect to the Alfvén speed, VA2, in

the magnetosphere. The distance, d, is normalized by RE , and wavenumbers, k, are

normalized by 1/d. Normalized frequencies are; real frequencies, ωrd/VA2, growth rates,

ωid/VA2, and Doppler shifted frequencies, ωrd/VA2−V01.ktd. The background physical

parameters are set such that β1 = 2.5, β2 = 0.64, B01/B02 = 2/3, ρ01/ρ02 = 10, ktd =

2.82, with V01 in the range of 1-10, and V02 = 0. These are characteristic values across

the magnetopause [e.g., Pu and Kivelson, 1983a, b; Taroyan and Erdélyi , 2003b]. Here,

β1,2 = (P01,02) /
(
B2

01,02/2µ0

)
, such that the parameters chosen represent realistic values

of the plasma beta on each side of the boundary. We set B01 ⊥ B02 in region A, B01 ‖ B02

in regions B and C. We have investigated unbounded magnetospheric cases applicable to

regions A, B and C. We also examined cases of a bounded magnetosphere, for regions A

and B, where the inner boundary is set at d = 9RE in region A, and at d = 17RE in
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region B. Note that the results of unbounded region B also apply to unbounded region C

since the magnetic field and the background flow velocity configurations are the same for

these two regions. All the physical values are calculated in the stationary frame of the

plasmas on either side of the magnetopause. Since the background flow is set to zero in

region 2, the stationary plasma frame is also the magnetospheric stationary frame such

that ω′2 = ω.

3.2.4 Results

In this section, KH surface modes excited by the shear flow TDs with five different

wave propagation directions with respect to the background magnetic fields will be con-

sidered in regions A, B and C of the magnetosphere. The magnetic field orientations are

summarized in Table 3.1. All of the generated MHD modes have been investigated, and

Regions
A B C

θ1 θ2 d θ1 θ2 d θ1 θ2 d
0◦ 90◦

9

0◦ 0◦

17

0◦ 0◦

∞
30◦ 60◦ 30◦ 30◦ 30◦ 30◦

45◦ 45◦ 45◦ 45◦ 45◦ 45◦

60◦ 30◦ 60◦ 60◦ 60◦ 60◦

90◦ 0◦ 90◦ 90◦ 90◦ 90◦

Table 3.1: Magnetic field configurations for regions A, B, and C; θ1 and θ2 represent
the direction of wave propagation with respect to the background magnetic fields in the
magnetosheath and the magnetosphere, respectively, and d is the distance to the inner
boundary, where appropriate.

the KHI - related modes examined in the context of wave-wave interactions and their re-

lation to the primary and secondary KHI and to negative energy waves. The MHD waves

will be classified as slow and fast modes based on their phase velocity with respect to the

Alfvén speed using phase velocity diagrams, i.e., Friedrichs diagrams, and the effect of the

background flow on the phase velocity in the magnetosheath will be displayed through

these diagrams as well. Significantly, the importance of the primary and secondary KHI

waves under different conditions along the magnetopause in regions A, B and C, will be
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summarized and compared to previous satellite observations.

1. Growth Rates and Frequencies

For the case of an unbounded shear flow interface, the KHI can be understood through

the linear mode interactions that can occur when the waves have equal frequencies and

wave numbers, i.e., when they have equal phase velocities [e.g., Swanson, 1989; Shiryeava,

2001]. Across our warm plasma interface, four physically distinct modes (numbered from

1-4 for clarity) associated with the KHI are obtained with the set of the parameters listed

in Table 3.1. The real frequencies and growth rates corresponding to θ1 = 0◦, θ2 = 90◦

(left panels (a) and (c)) and θ1 = 60◦, θ2 = 30◦ (right panels (b) and (d)) for an un-

bounded magnetosphere are shown in Figure 3.3 as examples illustrating the charac-

teristics and physical aspects of the interacting MHD modes. This is equivalent to an

unbounded case of region A. Here θ1 and θ2 are the angles of propagation with respect

to the background magnetic field in regions 1 and 2, respectively. In Figure 3.3 the real

frequencies (top row) are shown with solid lines and the growth rates (bottom row) are

shown with symbols; the growth rate of a specific mode is shown with the same color as

its real frequency. Since magnetic tension was present for all the cases presented in Figure

3.3, a lower cut-off velocity, that is a background flow velocity value above which KHI

onset occurs, always existed. The primary and the secondary KHI intervals are marked

with vertical lines and corresponding labels. For this unbounded case, mode interaction

regions are observable when two modes have equal real frequencies, ωr, and growth rates,

ωi, in complex conjugate pairs. For each unbounded configuration, KH instability occurs

when two linear wave modes can be considered to interact; in Figure 3.3a modes 3 and

4 are interacting, while in Figure 3.3b modes 3 and 2 are interacting throughout the

primary KHI interval. It is also seen in Figure 3.3c and 3.3d that these interacting modes

have complex frequencies in complex conjugate pairs as expected.

The secondary KHI does not exist in Figure 3.3 for θ1 = 0◦, θ2 = 90◦, but is present

for the configuration of θ1 = 60◦, θ2 = 30◦ in the interval of instability with lower V01.

Figure 3.3b shows that the secondary KH instability occurs when mode 1 and mode 2 are
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interacting, again in complex conjugate pairs. The phase velocity of these wave modes

are also calculated and found to be equal to each other, as expected, throughout inter-

vals of the primary and secondary KHI. In this unbounded case, there is an upper cut-off

speed for both the primary and secondary KHI. The real frequencies and growth rates

of the surface wave modes obtained for the unbounded (d → ∞) cases of the night-side

and the magnetotail configurations in regions B and C display similar characteristics to

those in Figure 3.3.

When an inner boundary is included, however, the KH unstable modes no longer oc-

cur in complex conjugate pairs and can have different frequencies. Therefore, the concept

of linear wave-wave interactions are not valid in the case of a bounded magnetosphere.

This fact is illustrated in Figures 3.4a and 3.4c for a bounded dayside magnetosphere

for θ1 = 90◦, θ2 = 0◦ (region A) and in Figures 3.4b and 3.4d for a bounded night-side

magnetosphere for θ1 = θ2 = 60◦ (region B). It is seen in Figures 3.4c and 3.4d that the

KHI still exists in the bounded case, but with the exclusion of an upper cut-off veloc-

ity, i.e, once a mode becomes unstable it remains unstable even though the growth rate

decreases as the background flow speed increases. Physically, this can be understood to

arise from the fact that waves can now be reflected from the bounded magnetosphere

and influence the instability conditions at the shear flow magnetopause boundary. As

in the semi-infinite magnetosphere case, stable non-growing waves are present before the

onset of the primary and secondary KHI. Such stable MHD surface wave modes could

potentially still be excited on the magnetopause by processes such as solar wind dynamic

pressure perturbations at flow speeds below the onset of the KHI. Figure 3.4c displays

the additional feature that for the configuration θ1 = 90◦, θ2 = 0◦, the magnetic tension

is not strong enough to quench the KHI so that mode 2 has a small growth rate even for
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Figure 3.3: Real frequencies, (a) and (b), and growth rates, (c) and (d), of two different
configurations of regions A for the case of unbounded magnetopause. Modes are labelled
1-4 for clarity. For each configuration, where different modes have equal real frequen-
cies and are in complex conjugate pairs, this implies the presence of linear wave-wave
interactions and the possibility of instability. Positions of KHI onsets and upper cut-off
velocities are marked with vertical lines and primary and secondary KHI intervals are
labelled.

very small flow speed. For the bounded case, it seems likely that the effects of magneto-

spherically reflected waves can cause the waves to become KH unstable even at very low

background flow speeds.

In the semi-infinite magnetosphere case, complex conjugate pair wave-wave interac-

tions are possible throughout the primary and the secondary KHI intervals and for flow
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speeds above the unstable region all the modes have different frequencies and are purely

propagating with zero growth rates (see Figure 3.3 as an example). For the bounded
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Figure 3.4: Growth rates and real frequencies for a bounded magnetosphere. Panels (a)
and (c) show results for bounded dayside flanks, region A, and panels (b) and (d) show
results for bounded night-side flanks, region B. It is clearly seen that the unstable modes
are no longer characterized by complex conjugate pairs, and the real frequencies of the
stable and unstable branches are not exactly equal.

magnetosphere, however, the wave modes are not in complex conjugate pairs anymore

and don’t have equal real frequencies, implying that the two mode complex conjugate

wave-wave interaction does not hold anymore and thus the upper cut-off speed does not

exist (see Figure 3.4 as examples from our results). We suggest that the absence of com-

plex conjugate pairs, and thus symmetric wave-wave interactions, are the reason for the
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removal of the upper cut-off speed in the bounded magnetosphere case. The fact that

the KHI occurs in the bounded magnetosphere case, although there are no symmetric

wave-wave interactions, also indicates that the onset of the KHI is not related to the

two wave interactions in contrast to what has been previously suggested [Taroyan and

Erdélyi , 2003a, b, 2002; Mills et al., 1999; Cairns, 1979].

All of the other configurations in Table 3.1 demonstrate a similar distinction between

the unbounded magnetosphere and bounded magnetosphere.

2. Doppler Shifted Frequencies: Are KHI Relevant Waves Negative Energy

Waves?

Negative energy waves or over-reflected waves have been suggested to have nega-

tive Doppler shifted frequencies [e.g., Mann et al., 1999; McKenzie, 1970]. Our results

show that the Doppler shifted frequencies of unstable wave modes have negative values

after the onset of the primary and secondary KHI, implying that they are negative en-

ergy waves. This result agrees with the previous results by Pu and Kivelson [1983a]

and Mann et al. [1999] that the KHI waves always have negative energy. This fact

is displayed in Figure 3.5a for an unbounded magnetosphere with magnetic field con-

figuration θ1 = 60, θ2 = 30◦, and in Figure 3.5b for a bounded magnetosphere with

magnetic field configuration θ1 = θ2 = 30◦, representative of regions A and B, re-

spectively. In Figure 5 normalized Doppler shifted frequencies are shown such that,

ωdoppler = ωrd/VA2 −V01.ktd. In the unbounded case, for flow speed above the upper

cut-off speed, previously KH unstable modes still have a negative Doppler shifted fre-

quency (see Figure 3.5a). Therefore a negative Doppler shifted frequency (and negative

energy waves) is a necessary but not sufficient condition for the KHI to be unstable.

However, extraction of energy from the background flow by the waves remains responsi-

ble for the onset of the KHI.

Walker [2000] offers an attractive alternative approach, where energy exchange be-

tween the waves and the background flow is considered instead of emphasizing the neg-

ative energy of the waves. In Walker [2000], the energy extraction is also shown to
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Figure 3.5: Normalized Doppler shifted frequencies, ωdoppler = ωrd/VA2 −V01.ktd, (a)
for region A for an unbounded magnetosphere with θ1 = 60◦, θ2 = 30◦, and (b) for region
B for a bounded magnetosphere with θ1 = 30◦ and θ2 = 30◦. All the modes have negative
Doppler shifted frequencies after the onsets of the primary and secondary KHI. Vertical
lines mark the flow speed for the onset of the primary and secondary KHI.

be possible through the work done on the wave by the background flow which can be

explained and is dependant on the Reynolds and Maxwell stresses on the boundary. Fol-

lowing Walker [2000]’s idea, we believe that the K-H unstable waves also extract energy

from the background flow through the work done by the Maxwell and Reynolds stresses.

In order to fully explain the relationship between the KHI, negative energy waves and

work done by the stresses at the boundary, further work is needed using the approach

suggested by Walker [2000] and this is left as a future work.

3. Characteristics of KH Unstable MHD Modes: Dependence on the Angle

of Propagation

(a) Phase Velocity Diagrams

In this section, the angles of propagation, θ1 and θ2, in the two media are varied from

0 to 2π while the magnetic field and flow velocity orientations are maintained constant.

This allows the classification of the wave modes as fast and slow by comparing their

phase velocities with the Alfvén speed using phase velocity diagrams. The total phase

velocity of the modes are plotted in a polar coordinate system with their magnitude along
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k with respect to the background field direction (i.e., in the form of Friedrichs diagrams).

For each different value of propagation angle, the total phase velocity is calculated using

the solution for the frequencies and wave numbers from the dispersion relation, with the

equation

Up =
ωr

(k2
t + k2

x)
k. (3.8)

Normalized phase velocity, Vp = Up/VA2, diagrams of KHI relevant MHD modes for

the dayside magnetosheath and magnetosphere, region A, are shown in Figure 3.6 at flow

velocity value V01 = 2.3. The phase speeds for decoupled Alfvén modes propagating at

the Alfvén speed in each medium are shown in each diagram both for comparison and for

classifying modes as slow or fast. These Friedrichs diagrams aid with understanding the

behavior of the MHD modes in the magnetosheath and magnetosphere which are cou-

pled across the magnetopause under the influence of background plasma flow. Figures

3.6a show that in the magnetosheath, the phase velocity of the modes is distorted due

to the effects of the background flow and coupling to the modes in the magnetosphere.

Figures 3.6b displays that in the magnetosphere, only mode 1 is a slow mode for all

propagation angles and all the other modes have fast mode characteristics. Interestingly,

for the same flow speed Figure 3.6b also shows that mode 2 and 4 become slow modes at

values of θ2 . 30◦. The intervals of the primary KHI are highlighted with grey colors and

those of the secondary KHI are highlighted with yellow colors. The primary KHI which

holds for the propagation angles θ2 ' 26◦ − 90◦ for the first quadrant of Figure 3.6b;

the other three quadrants are symmetric with respect to the first quadrant. Throughout

this interval, mode 3 is the unstable mode at θ2 ' 26◦ − 32◦ and is interacting with

mode 2, and mode 4 is unstable at θ2 ' 33◦ − 90◦ and is interacting with mode 3. The

secondary KHI holds for propagation angles θ2 ' 19◦−24◦, where mode 1 is unstable and

is interacting with mode 2. Remembering the result found in section 1 that in an infinite

unbounded medium the wave-wave interaction is related to both primary and secondary

KHI, Figure 3.6b shows that in region A of a semi-infinite dayside magnetosphere, the
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Figure 3.6: Friedrichs phase speed (normalized by VA2) diagrams at flow velocity value 2.3
for dayside unbounded region A, (a) in the magnetosheath, and (b) in the magnetosphere.
Wave mode 3 is a fast mode in the magnetosphere at angles of propagation θ2 ' 30◦−90◦,
and its phase velocity is smaller than the Alfvén wave at angles θ2 ' 0◦−30◦. Modes 2 and
4 are fast for θ2 & 30◦ and slow for θ2 . 30◦ angle of propagation. In the magnetosheath,
all the modes are fast modes at all values of θ1. Yellow shaded areas mark the secondary
KHI zones and grey shaded areas mark the primary KHI zones.

primary KHI is related to a fast-fast mode interaction and the secondary KHI is related

to a slow-slow mode interaction in the magnetosphere. Of course the mode interaction

(overlap) is seen in both the magnetosphere and magnetosheath on either side of the

shear flow boundary.

Interestingly, of course, the modes can have different fast or slow characteristics on

either side of the magnetopause. For example the secondary KHI wave seen in Fig-

ure 3.6a and 3.6b (at low θ2) is a slow mode in the magnetosphere, but a fast in the

magnetosheath. For the primary KHI it is a fast mode in both magnetosphere and mag-

netosheath.

The results for the bounded dayside magnetosphere are morphologically similar to

the unbounded cases shown in Figure 3.6, despite the fact that perfect wave-wave interac-

tions do not occur in the bounded case. To illustrate this point, phase velocity diagrams

for unbounded and bounded dayside magnetosphere flanks, with other parameters from

region A, are shown in Figures 3.7a and 3.7b, respectively, for V01 = 1.6. The primary
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and secondary KHI zones are again marked with grey and yellow highlights. In Figure

3.7a (the unbounded case), mode 4 is unstable to the primary KHI for θ2 ' 32◦ − 90◦

and it has a phase velocity equal to that of mode 3 throughout this interval. Whereas,
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Figure 3.7: Friedrichs (normalized) phase speed diagrams at flow velocity value
V01 = 1.6, on the magnetosphere side of region A, (a) semi-infinite, and (b) bounded
magnetosphere respectively, displaying the presence/absence of linear wave-wave mode
interaction in each case. Throughout the primary and secondary KHI intervals, grey and
yellow shaded areas, mode 3 and 4 and mode 1 and 2 have exactly equal phase velocity
for a semi-infinite magnetosphere while they are propagating at different phase velocities
for a bounded magnetosphere.

in Figure 3.7b, these two modes propagate at different phase velocities although mode 4

is still unstable to the primary KHI at about the same range of angles as in Figure 3.7a.

Similarly, mode 1 is unstable to the secondary KHI for θ2 ' 26◦−32◦ in both unbounded

and bounded magnetosphere cases and it has equal phase velocity to that of mode 2 only

in the unbounded case. Despite the fact that symmetric complex conjugate wave-wave

interactions do not occur in the bounded case, there remains regions of primary and

secondary KHI. Therefore, in the bounded magnetosphere, the upper cut-off velocity is

removed and the boundary is never again perfectly stabilized with increasing flow speed
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once it becomes unstable.

Example Friedrichs diagrams of MHD modes for the unbounded magnetotail, region

C, are shown in Figures 3.8 for the magnetosheath and the magnetosphere at magne-

tosheath flow velocity values V01 = 1 and 2.3, respectively. A new result shown in Figure

3.8 is that none of the modes propagate perpendicular to the background magnetic fields,

and hence also perpendicular to the magnetopause boundary. Hence the MHD waves in

the magnetotail cannot have k exactly perpendicular to B01,02, such that they must

propagate either sun-ward or anti-sunward with a component of phase speed parallel or

anti-parallel to B01,02. These type of surface modes have been obtained in the past when

a background plasma flow is present [e.g., Tajiri , 1967; Kato et al., 1966; Namikawa and

Hamabata, 1981]. These wave modes are considered to be a type of mixed fast-slow mode

which we call intermediate-fast mode following the terminology of Namikawa and Ham-

abata [1981]. Intermediate-fast modes are defined in this paper as the modes that have

phase velocity values in the expected range of fast mode waves but do not propagate

exactly perpendicular to the background magnetic field.

Figures 3.8a and 3.8c show that, on the magnetosheath side, mode 3 and mode 4 con-

verts to intermediate-fast from slow modes as flow velocity increases, while mode 1 and 2

stay as intermediate-fast. Mode 4 is also a slow mode for flow velocity values V01 < 1 and

converts to intermediate-fast at larger flow speeds. On the magnetosphere side, mode

2, mode 3 and mode 4 are generated as slow modes and converted to intermediate-fast

modes as the flow velocity increases, while mode 1 is generated and remains as a slow

mode in Figures 3.8b and 3.8d. Mode interaction zones match with the intervals of the

primary and secondary KHI, grey and yellow shaded areas, and are similar to those shown

for the dayside magnetosphere flanks, region A, in Figure 3.6. Figure 3.8b shows that in

the magnetosphere, at flow velocity V01 = 1, both mode 1 and mode 2 are slow modes

and are interacting with each other during the secondary KHI interval. Again these same

modes show a fast-fast interaction on the magnetosheath side.
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Figure 3.8: Normalized phase velocity diagrams at two different flow velocity values for
region C, for the magnetosheath (panels (a) and (c)), and the magnetosphere (panels (b)
and (d)). Only secondary KHI is obtained on panels (a) and (b), yellow shaded areas, and
only primary KHI is obtained on panels (c) and (d), grey shaded areas. Characteristics of
the wave propagation are significantly different than region A; specifically perpendicular
propagation of the modes does not occur on either side of the magnetopause, which
introduces a new type of modes labelled intermediate-fast modes in this paper (see text
for details).
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Friedrichs diagrams of the MHD modes obtained on the bounded night-side mag-

netosphere flanks, region B, show similar characteristics to those in region C in the

magnetotail. However, due to the presence of the inner boundary for bounded region B,

perfect linear two wave-wave interactions are not obtained in regions of instability due to

the impact of reflected modes and their interaction at the shear flow boundary. Figures

3.9 shows the Friedrichs diagrams for wave modes in the magnetosheath, for regions C

and B, to enable a comparison of wave-wave interaction in the unbounded and bounded

magnetotail similar to that shown for region A in Figure 3.7. In Figure 3.9, only sec-

ondary KHI holds and intervals are highlighted with yellow colors as well. In Figure 3.9a,

mode 1 is unstable for the propagation angles of ' 0◦− 80◦ and is interacting with mode

2 throughout this interval, i.e, has equal phase velocity. While in Figure 3.9b, although

mode 2 is unstable for the propagation angles ' 0◦ − 88◦, it does not show linear wave-

wave interactions with mode 1 or with any other existing modes. Figures 3.9c and 3.9d

also show similar characteristics for the case where the background flow value V01 = 1,

where mode 1 is unstable for θ1 = 0◦ − 42◦ in Figure 3.9c, and mode 2 is unstable for

θ1 = 0◦ − 45◦ in Figure 3.9d. Again there are no wave-wave interactions in the bounded

case of Figure 3.9d, while mode 1 and mode 2 are linearly interacting through complex

conjugate pairs throughout the secondary KHI zone in Figure 3.9c. Note that while mode

1 and mode 2 are intermediate fast waves at these flow velocity values on the magne-

tosheath, they are slow waves on the magnetosphere side at the background flow speeds

shown in Figure 3.9 (see Figure 3.8b for V01 = 1 as an example). Figure 3.9a also shows

that the phase speed of mode 3 diminishes at θ1 ' 30◦, on the magnetosheath side, where

the phase velocity is either zero or purely imaginary and the wave propagation direction

changes from upstream to downstream.

(b). Growth Rates Dependence on the Angle of Propagation

A polar plot of the growth rates of the unstable modes with respect to the propa-

gation angle is shown in Figure 3.10 for the semi-infinite magnetosphere case with B01

perpendicular to B02 as in region A with V01 = 2.3.
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Figure 3.9: Friedrichs (normalized) phase speed diagrams in the magnetosheath at two
background flow values: (a) and (b) V01 = 0.9, and (c) and (d) V01 = 1. Left column
shows region C (unbounded) and right column shows region B (bounded). Secondary
KHI regions, which is the only present instability at these flow speeds, are highlighted
with yellow colors. The presence/absence of the linear wave-wave interactions in the
semi-infinite/bounded case representing region C/B are clearly seen (see text for details).
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At this value of the background flow both the primary and the secondary KHI are pos-

sible at different values of the angle of propagation. Figure 3.10 shows that at this value of

the background flow velocity the primary KHI is generated by mode 3 for θ2 ' 26◦− 32◦

and by mode 4 for θ2 ' 33◦− 90◦ in the first quadrant. The secondary KHI is generated

purely by mode 1 at θ2 ' 19◦ − 23◦. It is also visible on Figure 3.10 that the growth

rates of the primary KHI peak around θ2 = 45◦, and that of the secondary KHI peak

at θ2 = 22◦, where θ2 is the angle of propagation with respect to the magnetic field in

the magnetosphere, B02. Exactly the opposite holds for propagation angles (θ1) with

respect to the magnetic field in the magnetosheath, B01. The bounded magnetosphere

case for region A (not shown) displayed very similar characteristics as the unbounded

magnetosphere case presented in Figure 3.10.

For regions B and C there is not a single flow velocity at which both the primary

and secondary KHI are obtained simultaneously. Therefore, the primary KHI growth

rate is calculated at the background flow velocity value V01 = 2.3 and the secondary KHI

growth rates are calculated at V01 = 1. Both are plotted for clarity in Figure 3.11 for

region C. The primary KHI growth rates are caused partially by mode 3 and partially by

mode 4 similar to Figure 3.10; mode 3 is unstable at θ1 = θ2 ' 23◦ − 40◦ and mode 4 is

unstable at θ1 = θ2 ' 40◦ − 90◦. Figure 3.11 shows that the primary KHI growth rates

peak at θ1 = θ2 ' 56◦, and secondary KHI growth rates peak at θ1 = θ2 ' 0◦. There is

no unstable mode at θ1 = θ2 = 90◦ which is expected since there is no propagating mode

at this direction for region C. The growth rate characteristics for region B (not shown)

displayed similar characteristics to those for region C shown in Figure 3.11.

(c). Energy Propagation into the Magnetosphere with the Primary and Sec-

ondary KHI waves

The direction of energy propagation resulting from KH unstable modes can be un-

derstood using polar group velocity Friedrichs diagrams. Group velocities are calculated
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Figure 3.10: Growth rate dependence on the angle of propagation for V01 = 2.3, in region
A for a semi-infinite magnetosphere. Primary and secondary KHI regions are labeled and
the background magnetic field orientations in the magnetosheath and magnetosphere are
shown with arrows. At this flow velocity, the primary KH instability is caused by mode
3 and mode 4, shown with red triangles and blue points, at different propagation angles.
Secondary KHI is caused by mode 1 and is shown with black lines. Primary instability
growth rate peaks at orientation angles ' 45◦, and secondary growth rate peaks at ' 22◦,
with respect to B02 on the magnetosphere side, while exactly the opposite holds with
respect to the B01 on the magnetosheath side. Primary KHI is possible at a wide range
of angles ' 30◦ − 90◦, while secondary KHI only occurs at ' 19◦ − 23◦.

using the equation;

Ugr =
dω

dk
,

and normalized group velocities are plotted, which is Vgr = Ugr/VA2. These are shown

in Figure 3.12 for region A for a semi-infinite magnetosphere with the same value of

background flow speed from Figure 3.6. Since our primary interest is investigating energy

propagation into the magnetosphere from the magnetosheath, the group velocities are

calculated only for the magnetosphere. In Figure 3.12 the primary KH unstable mode

consists partially of mode 3 and partially of mode 4, depending on the angle of k, while

the secondary KH unstable mode is mode 1(see Figure 3.6 and the text related to it
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Figure 3.11: Growth rate dependence on the angle of propagation in the magnetotail,
region C, for the primary and secondary KHI. The results for the primary KHI were
obtained at flow velocity value V01 = 2.3, and for the secondary KHI were obtained with
V01 = 1. The growth rate of the secondary KHI peaks about 0◦, and the growth rate
of the primary KHI peaks at about 56◦, with respect to the direction of the background
magnetic fields, B01 and B02. Growth rates are zero at 90◦ propagation angle for both
the primary and the secondary KHI.

for details). Normalized group velocity diagrams of primary KHI modes in Figures 3.12

shows that modes 3 and 4 are able to propagate energy perpendicular to the background

magnetic field in region A. However, these modes have zero group velocity at a small

range of angles θ2 ' 0◦, and thus cannot propagate energy along this direction. The

secondary KHI is only obtained in Figure 3.12 for θ2 between 19◦ − 23◦ and is caused

by mode 1.The Figure 3.12 hence shows that secondary KH modes can propagate energy

into the magnetosphere only at a very narrow range of angles of propagation.

In regions B and C, although the phase velocity diagrams have shown that the primary

and the secondary KHI waves are not able to propagate purely perpendicular to the

background magnetic field and the phase velocity values become comparably small as
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diagrams shown on Figure 3.6.

the propagation angles approach to 90◦, the group velocity diagrams do not show the

same characteristics due to the behavior of the intermediate-fast modes, in this case and

discussed earlier. Figure 3.13 shows an example of this for region C. In Figure 3.13a, the

secondary KH unstable mode is mode 1 and the primary KHI is not obtained for this

background flow at all. Figure 3.13a shows that for V01 = 1, mode 1 has a group velocity

comparable to its phase velocity across a wide-range of angles of propagation, and can

propagate energy in these directions. The primary KHI is obtained once the flow speed is

fast enough and at V01 = 2.3 it is seen to be caused partially by mode 3 and partially by

mode 4 as shown in Figure 3.13b (see also section 3.2.4 Figure 3.8, and the text related

to it). The group velocities of mode 3 and mode 4 have high values at all angles of

propagation except for a very narrow range of angles close to 90◦, which shows that the

energy transport is very efficient by these modes at these highly oblique angles despite
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the small values of phase speed. Exactly at θ2 = 90◦, where intermediate-fast modes have

zero phase speed, the group speed is undefined. We have also investigated the normal
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Figure 3.13: Normalized group velocity diagrams for (a) V01 = 1.0, and (b) V01 = 2.3
in region C for a semi-infinite magnetosphere. The same as in the corresponding phase
velocity diagrams (see Figure 3.8) the primary and secondary KHI intervals are marked
with grey and yellow colors, respectively.

and the parallel phase velocities of the modes in order to investigate the energy transport

by the primary and secondary KHI modes as flow velocity increases. All of the modes

have zero normal components of phase speeds at low shear flow velocity where neither

secondary nor primary KHI lower cut-off velocities have been reached. The modes start

to pick up finite perpendicular phase speeds at the onsets of the primary and secondary

KHI. This fact is displayed in Figure 3.14a for θ1 = 30◦, θ2 = 60◦ representing region

A, and Figure 3.14b for θ1 = 30◦, θ2 = 30◦, representing region C, for a semi-infinite

magnetosphere. The primary KH instability is caused by mode 4 in Figure 3.14a, and

by mode 3 in Figure 3.14b. Both of these modes have zero normal phase speeds before,

and they pick up large normal speeds after, the onset of the KHI. After the upper cut-off

velocity is reached the normal phase velocity of mode 4 decreases to a constant value

while that of mode 3 continue to increase. This result suggests that propagation and

energy transport away from the magnetopause may be efficient due to the waves excited
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by the primary KHI.

The secondary KHI is caused by mode 1 in Figures 3.14a and 3.14b and it also picks

up a finite normal phase speed after the KHI onset, however it is significantly smaller than

the normal speed of the primary KHI waves. After the upper cut-off velocity is reached,

the normal phase speed of the secondary KHI mode decreases to zero, suggesting that

energy transport due to the secondary KHI is mainly possible only during the narrow

KHI unstable interval. Nevertheless, since under certain slow values of the background

magnetosheath flow the secondary KHI may be the only active instability it could be

the only means of extracting energy from the flow and thus it could still be dynamically

important. With the difference between the perpendicular phase speeds it is possible that

such characteristics may provide a diagnostic mechanism for distinguishing between the

primary and secondary KHI waves. The wave propagation characteristics of the primary

and the secondary KHI wave on the magnetopause are examined in detail in the following

section.
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Figure 3.14: Normal phase velocities of the primary and secondary K-H unstable modes
for semi-infinite magnetosphere with magnetic fields orientations (a) θ1 = 30◦, θ2 = 60◦,
corresponding to region A, and (b) θ1 = 30◦, θ2 = 30◦, corresponding to region C. Onsets
of the primary and the secondary KHI are marked with vertical lines. Primary KHI is
caused by mode 4 in panel (a) and mode 3 in panel (b), and the secondary KHI is caused
by mode 1 in both panels.
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4. Comparison to Observations

In this section we compare our results to KHI observations from the literature. Specif-

ically we inspected various papers where KHI waves are observed in-situ at the magne-

topause, and identified them with the three regions of the magnetosphere we have con-

sidered throughout this study, namely regions A, B and C in Figure 3.1. The observed

phase velocities of the waves and the Alfvén speed in the magnetosphere are calculated

in km/s using the observed values reported in the papers. Background flow velocities at

which the KHI waves are observed, and the phase velocities of these waves are normalized

using the observed Alfvén speed in the magnetosphere in the same way as in this paper.

The observational KHI papers examined and the values deduced from these observations

are summarized in Table 3.2.

Paper Region U01 VA2 Vp Vp/VA2 U01/VA2

[Agapitov et al., 2009] A 300 264 190− 240 0.7− 0.9 1.1− 1.2

[Hasegawa et al., 2006] A 250 500 150 0.3 0.5

[Gnavi et al., 2009] B 300 308 200 0.7 1

[Owen et al., 2004] B 150 163 65 0.4 0.6− 1.2

[Chen and Kivelson, 1993] B 200 327 106 0.3 0.6

[Hwang et al., 2011] C 538 436 322− 400 0.7− 0.9 1.2

[Nakai and Ueno, 2011] C 330 308 50− 250 0.1− 0.8 1.07

[Gnavi et al., 2009] C 300 436 200 0.5 0.7

[Foullon et al., 2008] C 200 165 36− 95 0.3− 0.6 1.2

[Hasegawa et al., 2006] C 300 155 200 1.3 1.9

[Fairfield et al., 2000] C 338 209 230− 250 1.1− 1.2 1.6

[Kivelson and Chen, 1995] C 560 655 320 0.4 0.9

Table 3.2: In-Situ Satellite Observations of KH Surface Waves. U01 is the background
flow velocity in the magnetosheath, and V01 = U01/VA2 is the normalized value of U01 with
respect to the background Alfvén speed in the magnetosphere. Vp is the phase velocity of
the KHI waves, in units of km/s , which are either directly given in the inspected papers
or calculated using the given wavelengths and frequencies. Each published observation
from the literature is also identified with one of regions, A, B and C.

Normalized phase velocity values from our results varied between ' 0.3− 1.2 in the

magnetosheath, and ' 0.5 − 1.3 in the magnetosphere, which are in general agreement

with the observed phase velocity values of KHI waves summarized in Table 3.2. Com-
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bining the results of observations from Table 3.2 and global MHD simulation results

from Lavraud et al. [2007] and Lavraud and Borovsky [2008] we can highlight a range of

expected values of the normalized magnetosheath flow speed to generally vary between

0.5− 1.3 in region A, 0.6− 2.6 in region B, and 0.7− 4 in region C. From our dispersion

relation, which has a number of limitations including uniform plasma assumptions and

an infinitely thin magnetopause, we can nonetheless identify that the intervals of the sec-

ondary KHI happens at normalized magnetosheath flow speed values of ∼ 0.7− 1.8, and

the intervals of the primary KHI happens at flow speed values of ∼ 0.8−4. This suggests

that observed KHI waves in region A are mostly secondary KHI waves and in regions B

and C they could be primary or secondary KHI waves. The peak values of the growth

rates happen at background flow speeds ∼ 0.8− 1.5 for the secondary KHI waves and at

∼ 1.5 − 2.9 for the primary KHI waves. These results suggest that if KH surface waves

are seen on the near-Earth magnetopause then the secondary KHI is a prime candidate,

although secondary KHI is possible elsewhere too. Since the flow speed is usually smaller

in region A, the primary KHI would be expected to be mainly observed in regions B

and C. This could be the reason for relatively fewer observations of KHI waves in region

A [Hasegawa et al., 2006] than regions B and C. Since the secondary KHI waves have

relatively small growth rates and wave amplitudes in comparison to the primary KHI

waves, they could also be detected less frequently. However, they can remain important

since at low flow speeds they are the only KH unstable waves and thus perhaps might be

the only cause of energy transport via KHI in region A.

Energy transport at the magnetopause might be mainly caused by the primary KHI

in regions B and C since the magnetosheath flow may reach the lower cut-off for the

primary KHI, and the peak values of the primary KH growth rates are typically larger

than those of the secondary KHI. Overall, this suggests that the energy transport due to

the KHI are likely more efficient in regions B and C, since waves which grow to larger

amplitudes can carry more energy into the magnetosphere. We have also compared the

new result we found on the direction of KHI wave propagation in regions B and C; namely
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that propagation at angles exactly perpendicular to the background magnetic field, which

in our case are exactly perpendicular to the magnetopause, is not possible. This agrees

with observations of KHI wave propagation shown by Foullon et al. [2008], where the

direction of observed KHI waves in region C varied between 50◦− 86◦ either propagating

sunward or anti-sunward (see table 5 in their paper). We summarize in the form of a

schematic, the general behavior of unstable primary and secondary KHI surface waves

along the magnetopause in Figure 3.1. overhere

3.2.5 Discussion and Conclusions

In this paper, we have investigated the primary and secondary KHI surface wave phe-

nomena in a warm homogeneous plasma in three regions of the magnetosphere, regions

A, B and C as shown in Figure 3.1. Our results show that the exclusion of the KH upper

cut-off speed in a bounded magnetosphere is due to the interaction of magnetospheri-

cally reflected waves with the shear flow magnetopause boundary. In this case, unlike for

an unbounded semi-infinite shear flow region, the unstable KH surface modes no longer

occur in complex conjugate pairs. In the semi-infinite magnetosphere, wave-wave inter-

actions between the two complex conjugate pairs of modes, an exponentially growing

and a decaying mode, are always allowed. These wave pairs have equal phase velocities

and thus they can interact with each other throughout the KH unstable intervals. Since

the linear and symmetric two wave mode interactions are not present in the bounded

magnetosphere case due to the effects of the waves reflected from the inner boundary,

the upper cut-off stabilization does not take place anymore.

We identified the MHD surface waves as fast and slow waves by comparing their

phase speed to the Alfvén speed through Friedrichs diagrams, i.e, phase velocity dia-

grams with respect to the direction of the background magnetic fields. On the dayside

magnetosphere flanks, MHD waves are allowed to propagate in all directions. On the

night-side magnetosphere flanks and in the magnetotail, waves cannot propagate exactly

perpendicular to the magnetic field. They propagate in either sunward or anti-sunward

directions and and have the general characteristics of a fast mode but which cannot

propagate exactly perpendicular to the background magnetic field and which we have
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described as intermediate-fast.

The Doppler shifted frequencies of the primary and the secondary KH unstable sur-

face waves are found to always have negative values. However, in contrast with [Cairns,

1979; Mills et al., 1999; Taroyan and Erdélyi , 2002, 2003a, b], our results indicated that

linear interaction of a negative energy wave with a positive energy wave is not a necessary

condition for the onset of the KHI. This is consistent with our suggestion that the onset

of the KHI in the general case is not related to wave-wave interactions between complex

conjugate pairs but to the extraction of energy by the wave from the background flow.

This supports the suggestion by Walker [2000] that interestingly, the process of energy

extraction from the shear flow is better described using the concept of work done by

Maxwell and Reynolds stresses rather that in terms of negative energy waves. Further

investigation of the relation between KH unstable MHD modes and energy exchange be-

tween the MHD wave modes and the background flow arising from work done by Maxwell

and Reynolds stresses is left as a future work.

The behavior of the primary and the secondary KHI unstable surface waves on the

magnetopause is summarized in Figure 3.1. The phase velocity of the primary unstable

KH waves have a large component perpendicular to the magnetopause once they become

unstable. The group velocities show that energy propagation by unstable primary KHI

wave modes is possible at all propagation angles, except for a very narrow range of the

propagation angles close to 90◦ in regions B and C. Therefore this wide range of the

energy propagation angles shows that the energy propagation is likely to be more effi-

cient when the primary KHI is active on the magnetopause. Regions B and C generally

have background flow in the magnetosheath above the lower cut-off speed of the primary

KHI, such that these regions are more liable to the primary KHI than region A. Energy

transport into the magnetosphere from the magnetosheath are hence likely to be more

efficient in regions B and C than in region A. The secondary unstable KH modes also

have a finite but smaller perpendicular phase speed after the onset of the KHI. However,

the value of this perpendicular component decreases with increasing flow speed above

the peak value of the growth rate. Since the flow velocity in the magnetosheath in re-

gion A is mostly in the range of the lower cut-off velocity for the secondary KHI, the

energy propagation via KHI in this region is mostly possible only with the secondary
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KHI waves. Comparison of our results to previously published in-situ observations of the

KHI surface waves also shows that the primary KHI is mostly possible on the night-side

flanks and in the magnetotail, i.e, in regions B and C in Figure 3.1. In contrast, likely

only the secondary KHI is possible in region A. Therefore, the energy transport into the

magnetosphere from the magnetosheath is more efficient on the night-side flanks and in

the magnetotail, in regions B and C, than in the nearer noon dayside flanks, in region A.

Overall, the energy transport arising from the primary KH unstable surface wave is

found to be more efficient than the secondary KHI, since the primary KHI waves have

larger growth rates and larger phase speeds perpendicular to the magnetopause than the

secondary KHI waves. On the magnetospheric side of the magnetopause, the primary

KHI is caused by a fast wave and the secondary KHI is caused by a slow wave which is

consistent with our results showing that the secondary KH unstable surface wave gener-

ally propagates energy at a smaller range of propagation angles than the primary KHI

surface wave.

Future studies could examine the evolution of the KHI including the effects of a fi-

nite transition thickness layer at the magnetopause boundary, which would allow one to

look at the waves at shorter wavelengths. This would help to develop a better under-

standing of the KHI phenomenon of magnetopause surface waves across a wider range of

wavelengths. Allowing inhomogeneities in the magnetosphere would also provide better

physical information on characteristics of the wave propagation into the magnetosphere,

and an examination of the efficiency of the primary and secondary KHI in driving field

line resonances in the magnetosphere. Finally, as discussed by Mann et al. [1999], the

KHI may also be able to excite body (waveguide) modes in a bounded magnetosphere in

addition to the surface waves examined here. The role of primary and secondary KHI in

exciting KH unstable waveguide modes remains a subject for further study.
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Chapter 4

Kelvin-Helmholtz Unstable

Magnetotail Flow Channels

4.1 Introduction

Kelvin-Helmholtz Instability is possible in different regions of the magnetosphere where shear

flow boundaries exist. In the plasmasheet region for instance, it is possible to obtain Earthward

flow of plasmas reaching up to 1500 km/s called Bursty Bulk Flows (BBFs) [c.f., Angelopoulos

et al., 1997; Shiokawa et al., 1997]. The (BBFs) occur in narrow regions, ' 2− 3RE along yGSM

and ' 1.5 − 2RE along zGSM , of the central plasmasheet which are called BBF channels [c.f.,

Angelopoulos et al., 1992, 1994; Nakamura et al., 2004]. Outside of these flow channels there is

relatively slow plasma flow (' 10−100 km/s) which provides a very efficient shear flow boundary

for the KHI growth. These BBFs are usually generated at distances ' −20RE xGSM and stopped

closer to the Earth, ' −6RE xGSM , and the reason of this stopping is not clearly explained [c.f.,

Shiokawa et al., 1997; McPherron et al., 2011]. There are also observations of waves emitted from

these BBF shear flow boundaries [Sergeev et al., 2006; Zhang et al., 2002, 2005; Runov et al.,

2003; Volwerk et al., 2003, 2005] which are suggested to be possibly related to KHI [Volwerk

et al., 2007, 2008]. We refer the reader to chapter 1 section 1.5 for general properties of the

plasmasheet region and section 1.6.3 for description of GSM coordinate system ( see also Figures

1.2 and 1.3).
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In this chapter, the KHI of the magnetotail BBF channels is investigated with compressible

warm plasma approach. Two types of possible MHD oscillations, kink and sausage, are investi-

gated for the KHI. The primary and secondary KHI are shown to be possible at sufficiently high

flow speeds for both kink and sausage type oscillations. The primary and secondary kink and

sausage KHI waves are shown to be fast and slow MHD waves respectively. These MHD waves

are shown to be propagating out of the flow channel boundary at sufficiently large flow speeds

and carry the flow energy out of the channel. We conclude that this mechanism is a situation

of spontaneous emission of magnetosonic waves from a shear flow boundary in the magnetotail

and could be a reason for the flow breaking in the near Earth region. The results shown in

this chapter contribute to the area of research as the first theoretical study demonstrating the

existence of the KHI and magnetosonic (MHD) wave emissions as a result of the KHI on the

BBF channel boundaries in the Earth’s plasmasheet and is published in Geophysical Research

Letters, 2014.

Brief descriptions of derivations can be found in this chapter, however detailed derivations are

shown in chapter 2 and section 2.3.1. The following section provides the details of the published

paper which was chosen as a spotlight paper with innovative ideas by American Geophysical

Union: 1

4.2 Paper 2: "Kelvin-Helmholtz Unstable Magnetotail Flow

Channels: Deceleration and Radiation of MHD Waves"

4.2.1 Abstract

The Kelvin-Helmholtz Instability (KHI) of magnetotail flow channels associated with bursty

bulk flows (BBFs) is investigated. MHD oscillations of the channel in both kink and sausage

modes are investigated for KHI and both the primary and secondary KHI are found to drive

MHD waves. These instabilities are likely to be important for flow channel braking where the

KHI removes energy from the flow. At flow speeds above the peak growth rate, the MHD modes

excited by KHI develop from surface modes into propagating modes leading to the radiation of

1Turkakin, H., Mann, I.R. and Rankin, R., "Kelvin-Helmholtz Unstable Magnetotail Flow
Channels: Deceleration and Radiation of MHD Waves", Geophysical Research Letters, Vol.41,
doi:10.1002/2014GL060450
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MHD waves from the flow channel. The coupling of BBF driven shear-flow instabilities to MHD

waves presented here represents a new paradigm to explain BBF excitation of tail flapping. Our

model can also explain, for the first time, the generation mechanism for the observations of waves

propagating towards both flanks and emitted from BBF channels in the magnetotail.

4.2.2 Introduction

Earthward Bursty Bulk Flows (BBFs) with flow speeds varying between 200−1500 km/s have

been observed in the central plasmasheet for decades [e.g., Baumjohann et al., 1990; Angelopoulos

et al., 1992, 1997; Shiokawa et al., 1997]. These BBFs start at distances xGSM . −20RE and

are stopped at distances about xGSM ' −6RE [e.g., McPherron et al., 2011]. The details of the

braking mechanism of these Earthward BBFs remains unclear with deceleration due to magnetic

field dipolarization [e.g., Shiokawa et al., 1997] or due to Kelvin-Helmholtz instabilities [e.g.,

Volwerk et al., 2007] both having been postulated. Both kink and sausage type oscillations

of the current sheet, propagating either along the magnetotail or towards the tail flanks, are

also often observed; these flankward waves having been suggested as being driven by a poorly

understood emission process in the central part of the magnetotail [e.g., Sergeev et al., 2004].

Observations have suggested that such oscillations may be initiated by Earthward BBFs in the

central plasmasheet [e.g., Volwerk et al., 2005] and the boundaries of the BBFs may possibly

be Kelvin-Helmholtz unstable [e.g., Volwerk et al., 2007]. However, theoretical details of the

relationship between the wave excitation, especially those propagating towards both flanks, and

the BBFs have not been established.

In this paper we investigate the excitation of MHD waves by the Kelvin-Helmholtz Instability

(KHI) on flow channels in the plasmasheet, such as Earthward BBFs, following the suggestion

by Volwerk et al. [2007, 2008]. Our results show that both slow and fast kink and sausage MHD

waves may become KH unstable at sufficiently fast flow speeds, resulting in the primary and

secondary KHI, respectively [cf. Turkakin et al., 2013]. We further investigate the possibility

that the KHI may cause the emission of MHD waves from the shear flow boundary in a similar

manner to that suggested by Mann et al. [1999] as applied to the magnetopause. Our results are

significant as the first numerical results showing not only that the KHI is a plausible physical

mechanism for braking BBFs, but also that the emission of MHD waves from the flow channels

can be triggered by KHI process. Our results can provide for the first time an explanation for
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the observations of flankward propagating waves, sometimes described as tail flapping, which can

be emitted from such flow channels in the magnetotail [cf. Sergeev et al., 2004; Volwerk et al.,

2005]. Two earlier models of magnetic double gradient and ballooning instability waves in a

curved magnetic field were suggested by Erkaev et al. [2008] and Golovchanskaya and Maltsev

[2005] to explain tail flapping modes. However as described by Forsyth et al. [2009]: "Neither

of the models considers the generation mechanism for the flapping motion of the plasma sheet,

only the mechanism that supports the wave propagation". Our paper provides the first theoretical

framework which explains the link between BBFs, KHI, and the excitation of wave modes such

as tail flapping by tail flows. It is also the first to consider MHD wave emission from the flow

channel towards the flanks, excited by shear flow KH instability.

4.2.3 Flow Channel Model Geometry and Boundary Conditions

A simplified 1-D flow channel model is used consisting of a plasmasheet flow channel separated

by a thin boundary from a semi-infinite plasmasheet. Since the magnetic field orientation is

mainly along xGSM in the magnetotail, this model provides a good approximation to the tail[c.f.

Sergeev et al., 2004]. A box model whose coordinates are analogous to GSM, Geocentric Solar

Magnetic, coordinate system is used. The y coordinate has flow channel boundaries at y = ±d as

illustrated in Figure 4.1. Region 1 represents the external magnetotail plasmasheet and region 2

represents the flow channel. The background magnetic fields in regions 1 and 2, B01,02, are set

parallel to the flow channel boundary and the background flow velocity, U01, is set to zero and

U02 > 0 directed along positive x. Since the wave behavior of kink and sausage waves analyzed

here is symmetric about y = 0, we have considered a domain assumed to be half of the flow

channel for y > 0. We adopt a symmetric inner boundary in the mid-channel, and half-channel

width of d. A tangential discontinuity (TD) with zero transition thickness is assumed at y = d

which is a valid model for long-period KHI waves with wavelengths much larger than the thickness

of the transition layer.

4.2.4 MHD Wave Model

We follow the standard approach where the ideal MHD equations are linearized under a small

amplitude approximation for compressible warm homogeneous plasmas on both sides of the flow

channel boundary. We have assumed space and time variation of the form ' Dei(k.r−ωt), where
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ω is the complex frequency, k is the wave number, and D is a constant.

We consider two types of MHD wave modes, kink and sausage surface waves, that are

observed along the plasmasheet flow channel boundaries [e.g., Sergeev et al., 2003; Volwerk et al.,

2005]. The sausage modes are characterized by expansion and contraction and the kink modes

are characterized by wavy flapping motion of the flow channel [cf., Roberts, 1991]. The general

oscillation characteristics of the kink and sausage modes are illustrated in the top right corner

of Figure 4.1.

MHD wave solutions in regions 1 and 2 are connected through TD boundary conditions

namely continuity of normal displacement, δy, and total pressure perturbations, δpt, across the

flow channel boundary. Therefore matching conditions across the boundary between region 1,

and 2 are δpt1 = δpt2, and δy1 = δy2. The inner boundary conditions in the mid-channel, y = 0,

are different for the kink and sausage modes, since the kink modes will have an anti-node and

sausage modes will have a node at this position. Hence the boundary condition at y = 0 for

the kink modes is dδvy2

dy = 0, from which it follows that δpt2 = 0, and those of sausage modes

are δvy2 = 0, and dδpt2
dy = 0, where δvy2 is the perpendicular velocity perturbation in the flow

channel, region 2. With the above boundary conditions MHD kink modes are governed by the

equation

i cot(ky2d)[(ω′1)
2 − (VA1 · kt)2

]
ρ01

ky1
+ [(ω′2)

2 − (VA2 · kt)2
]
ρ02

ky2
= 0, (4.1)

and MHD sausage modes are governed by the equation

i tan(ky2d)[(ω′1)
2 − (VA1 · kt)2

]
ρ01

ky1
− [(ω′2)

2 − (VA2 · kt)2
]
ρ02

ky2
= 0. (4.2)

Where ω′1,2 = ω −U01,02 · kt are the Doppler shifted frequencies, VA1,A2 are the Alfvén speeds,

and ky1,y2 are wave numbers normal to the boundary, in regions 1 and 2, respectively.

The eigenfrequencies of equations 4.1 and 4.2, representing kink and sausage wave modes

respectively, are computed numerically using a Newton-Raphson scheme, yielding complex eigen-

frequencies for a set of given parameters. In the following sections of the paper normalized

flow velocities V01,02 are used such that V01,02 = U01,02/VA2 with normalization with respect to

the Alfvén speed, VA2, in the flow channel, region 2. The distance, d, is normalized by RE ,

and wavenumbers, kx, ky, are normalized by 1/d. Normalized frequencies are; real frequencies

ωrd/VA2 and growth rates ωid/VA2. Assuming hydrogen plasma, the background physical pa-
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rameters are set such that densities ρ01/ρ02 = 0.75, B01/B02 = 1.8, VA1/VA2 = 2.1, β1 = 0.78,

and β1 = 4.88 which are observable values in the plasmasheet regions [e.g., Angelopoulos et al.,

1992; Volwerk et al., 2007, 2008]. The adiabatic index γ is taken as 5/3, and d = 2RE which is

an appropriate value for flow channel half thickness [c.f., Nakamura et al., 2004]. A normalized

tangential wave number is chosen such that one wavelength would fit in the half flow channel,

kt = 2π/d, and directed along +x, kt = kx, and waves propagate in the plane of the tail such

that kz = 0 (see Figure 4.1).

Figure 4.1: Coordinate system considered for calculations of BBF initiated KHI waves.
x, y, z coordinate directions are chosen to be analogous to GSM. Region 1 is out of the
channel and region 2 is inside the channel. The boundary of the flow channel lies at
y = ±d = ±2RE .

4.2.5 Results

The eigenfrequency variation with increasing normalized flow speed, V02 = U02/VA2, in the

channel is shown in Figures 4.2 (a) and (b), where both kink and sausage modes show two distinct

K-H unstable regions representing primary and secondary KHI [c.f., Turkakin et al., 2013]. The

secondary KHI becomes unstable at lower BBF flows, V02 ' 2.8, than primary KHI, V02 ' 3.3,

which agrees with the results in Turkakin et al. [2013]. Figures 4.2 (a) and (b) show that the

primary and secondary sausage modes (red and black solid lines) have slightly larger real fre-



CHAPTER 4. KHI ON BURSTY BULK FLOW CHANNELS 95

 2

 6

 10

 14

 18

ω
rd

/V
A

2

(a)
Primary Kink

Secondary Kink

Primary Sausage

Secondary Sausage

 0

 5

 10

 15

 20

ω
rd

/V
A

2

(d)

V 02
 =

 4.43

V02
 = 3.23

−0.4

 0

 0.4

 0.8

 1.2

ω
id

/V
A

2

(b)

 0

 1

 2

 3

 4

ω
id

/V
A

2

(e)

20
ο

40
ο

60
ο

80
ο

876543210

V02

(c)

β

10
ο

20
ο

30
ο

40
ο

50
ο

60
ο

876543210

kxd

(f)
β

Figure 4.2: The variations of real and imaginary frequencies and the propagation angle
as a function of the background flow speed, V02 = U02/VA2 (panel (a)-(c)) and of the
normalized tangential wave number, kxd (panels (d)-(f)).

quencies and smaller growth rates than the kink modes (blue and green dashed lines). Since the

primary KHI onsets occur at larger background flow speeds, V02, it is possible that both primary

and secondary KHI may be important during BBF evolution. For example, primary KHI excited

kink and sausage modes could be generated during the bursts within the BBFs which can have

flow speeds reaching up to 1500 km/s and which last for about 2-4 minutes [c.f., Angelopoulos

et al., 1997; Shiokawa et al., 1997]. Secondary KHI kink and sausage modes might be excited

more continuously during the core of BBFs where the flow speed can reach up to 700 km/s and

last about 10-30 minutes [e.g., Angelopoulos et al., 1992; Nakamura et al., 2004], or at slower

speeds during BBF deceleration.

We also calculated the phase velocities, Up = ωr

(k2x+k2y)k, periods, Tr = 2π/ωr, and the propa-

gation angles with respect the background flow, β = tan−1(ky/kx) for these modes. Normalized
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phase velocities show that the primary kink and sausage modes are fast waves, while the sec-

ondary kink and sausage modes are slow waves in the stationary plasma frame in region 1 (not

shown here) consistent with the results shown in Turkakin et al. [2013]. Variations of propagation

angles, β, with background flow are displayed in Figure 4.2 (c) and are found to vary between

' 0◦−64◦ for primary and ' 0◦−40◦ for secondary KHI waves. Sharp peaks in the propagation

angles of the secondary KHI waves happen at flow speeds below that for the onset of instability

and are the result of a slow resonance [c.f., Kozlov and Leonovich, 2011], analysis of which is

beyond the scope of this paper. With the use of an appropriate Alfvén speed in the channel as 200

km/s we have calculated the periods and wavelengths of the MHD waves emitted from the BBF

boundary. The periods vary between ' 10− 70 s and wavelengths vary between ' 2− 4 RE for

both growing primary and secondary KHI waves. These values are in good agreement with the

observed values of the waves along the plasma flow channels [e.g., Sergeev et al., 2003; Volwerk

et al., 2004, 2008]. We also investigated the effects of the magnetic tilt along the zGSM direction

in the flow channel and found that the growth rates increase with the increasing magnetic tilt

(not shown).

We also explored the dependence of the eigenmodes on the normalized tangential wave num-

ber, kxd, at a specific BBF speed, selecting V02 = U02/VA2 = 4.43 for primary KHI waves and

V02 = U02/VA2 = 3.23 for secondary KHI waves where both kink and sausage modes growth

rates are close to maximum (see Figure 4.2 (b)). The results are shown in Figure 4.2 (d)-(f). As

expected for a zero thickness boundary, the normalized real frequencies and growth rates of both

kink and sausage primary and secondary KHI waves monotonically increase with kxd [e.g., Mann

et al., 1999] (see panel (d) and (e) in Figure 4.2). As kxd increases, the primary and secondary

KHI kink modes propagation direction approach 51◦ and ' 35◦, respectively, while that of the

sausage modes approach ' 54◦ and ' 23◦, respectively. This result is in very good agreement

with the observed values for the propagation directions of the waves seen in association with

BBFs, varying between ' 30◦ −48◦ with respect to the flow boundary [e.g., Sergeev et al., 2003;

Volwerk et al., 2004, 2008].

Density profiles of the kink and sausage modes reveal that wave propagation away from the

flow channel is possible during the KHI process. Figure 4.3 shows eigenmode density profiles for

the primary and secondary KHI kink modes, panels (a)-(d), and sausage modes, panels (e)-(g).

Panels (a) and (e) display the density profiles of the primary KHI modes at the peak growth
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rates, flow speed V02 = 4.45 for the primary kink mode (panel (a)) and V02 = 4.4 for the primary

sausage mode (panel (e)). Panels (b) and (f) show the profiles at V02 = 5.5. It is clearly visiblein

Figure 4.3: Normalized plasma density profiles of the eigenmodes of the primary and
secondary kink, panels (a)-(d), and sausage, panels (e)-(h), KHI waves on the flow channel
boundary. Panels (a) and (e) show the primary kink and sausage KHI waves at their
peak growth rate, V02 = 4.45 and V02 = 4.4, respectively. Panels (b) and (f) during MHD
wave emission at , V02 = 5.5. Similarly panels (c) and (g) show the secondary kink and
sausage modes at their peak growth rate, V02 = 3.25 and V02 = 3.2, respectively, and
panels (d) and (h) during period of MHD wave emission for V02 = 3.65. Emission of
MHD waves from the shear flow boundary are visible for V02 & 5.5 for primary KHI and
for V02 & 3.65 for secondary KHI.

Figures 4.3 (b) and (f) that both the kink and sausage primary KHI modes excite waves which

propagate away from the flow channel at V02 = 5.5. The secondary kink and sausage mode

density profiles are also shown at background flow speeds values at peak growth rates, V02 = 3.25

for the secondary kink modes (panel (c) ) and V02 = 3.2 for the secondary sausage modes (panel

(g)), as well as at a larger flow speed, V02 = 3.65 (panels (d) and (h)). The secondary KHI modes
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are also able to excite waves which propagate out of the flow channel boundary after a certain

value of the flow speed is reached. There is a considerable difference however between the flow

speed at which the transition from predominantly surface to a propagating mode takes place:

V02 = 5.5 for the primary and V02 = 3.65 for the secondary KHI. Observations have shown that

these normalized flow speed values can be reached during a BBF in the central plasmasheet [c.f.

Angelopoulos et al., 1992, and Figure 4 (c) in this paper].

These results illustrate cases of the emission of magnetosonic waves from the boundary of

a moving medium [Landau and Lifshitz , 1987; Mann et al., 1999] which in the current study

are applied to the BBF channel dynamics in the magnetotail and which offer an explanation for

the waves observed to be emitted from BBF channels in the central plasmasheet. Our results

also suggest that the energy in the BBFs may be fed into primary and secondary KHI kink and

sausage modes, including into waves emitted from the flow channels, causing BBF braking in the

near-Earth region.

Figure 4.4 displays the spatial variation of the eigenmode profiles across the flow channel

boundary at V02 = 5.5 for the primary KHI modes, and V02 = 3.65 for the secondary KHI modes

where emission of MHD waves from the BBF channel is present (c.f. Figures 4.3 (b), (f), (d)

and (h)). What is very clear in Figure 4.4 is that the amplitude of the perturbed velocity and

magnetic fields peaks at the shear flow boundary at the edge of the BBF, as expected. Also clear

in Figure 4.4 is that there is considerable oscillating eigen-structure as a function of y at constant

x for the primary KHI, and not for the secondary KHI, despite propagating MHD waves being

emitted from the boundary in both cases. The explanation, of course, relates to the angle of

propagation of the phase fronts of the propagating modes outside the BBF in each case. Overall

both the primary and secondary KHI kink and sausage modes may be able to extract kinetic

energy from the background flow and impact the flow evolution and braking of BBFs as they

travel towards the Earth.

We have calculated mode group speeds using the eigenfrequencies and wave numbers obtained

above using the equation Ugr = dω
dk . We also calculated the e-folding growth times and distances

traveled by wave packets using the group speeds during an e-folding time, i.e. e-folding length,

in search of energy dissipation efficiency by the primary and secondary KHI kink and sausage

waves.
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Figure 4.4: The eigenmode profiles of perturbed x and y components of normalized
magnetic field and velocity variation across the flow channel boundary for primary and
secondary kink (panels (a)-(d)) and sausage modes (panels (e)-(h)). V02 = 5.5 for the
primary modes and V02 = 3.65 for the secondary modes, with the same parameters as
in Figures 4.3 (b) and (f) for the primary, in Figures (d) and (h) for the secondary KHI
modes. Panel (i) is the schematic showing the characteristics of the propagation direction
of kink and sausage modes which are excited by the KHI at the edges of the BBF channel.
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We have again assumed a value of the physical Alfvén speed in the region 2 as 200 km/s and

calculated the physical values of e-folding times and e-folding lengths using this Alfvén speed.

At the flow speed values for peak growth rates, the primary kink and sausage modes e-folding

times are calculated as 58.8 and 84.6 seconds, respectively. Their normalized group speeds, i.e.,

the speed of energy propagation, Vgr = Ugr/VA2, along the flow are calculated to be 1.84 for the

primary kink and 1.82 for the primary sausage waves. With these group speeds the e-folding

lengths of the primary kink and sausage wave are calculated to be ' 3.4RE and ' 4.8RE ,

respectively. Therefore, these waves will travel distances ' 7− 10RE during two e-folding times

which is an appropriate distance compared to that which the BBFs generally travel from the tail

to the near-Earth region during flow braking. This shows that the primary kink and sausage

KHI waves may grow sufficiently fast to be able to dissipate a significant amount of the initially

available kinetic energy of the flow causing flow braking in the near-Earth region. The secondary

KHI kink and sausage modes are found to have group speeds along the flow as 1.85 and 1.74 at the

growth rate peaks and e-folding times of ' 89.5 and ' 138.4 seconds resulting e-folding lengths

of ' 4.7RE and ' 7.5RE , respectively. Therefore, these waves will travel distances ' 10− 16RE

during two e-folding times which could also be appropriate for BBF flow braking. Although not

as fast growing as the primary modes, these secondary modes may also grow fast enough to cause

flow braking. These results also display the fact that the primary and secondary KHI kink modes

can dissipate energy somewhat faster than those of the sausage modes. Since the growth rates

increase with increasing angle between the flow and the background magnetic field (not shown),

it is possible that as the waves move closer to the Earth, the increase of the magnetic tilt due to

the dipolarization might allow strong KHI even in the later stages of BBF evolution. However,

at least 2-D simulations would be needed to examine this possibility in detail. Nonetheless,

our results strongly suggest that the often observed magnetotail flapping and flankward moving

waves can be explained by these primary and secondary KHI radiating MHD waves away from

the BBF channels.

4.2.6 Conclusions

In this paper we have presented a theoretical framework for understanding the role of KHI

in the evolution and braking of BBF channels in the magnetotail. We have shown for the first

time not only that the earthward BBF channels in the central plasmasheet may become unstable
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to KHI, but perhaps more importantly proposed an explanation for the observed association

between BBFs and MHD waves which propagate towards both flanks. According to our model,

this can be explained through the excitation and emission of MHD waves from the BBF shear

flow boundaries due to the action of the KHI. At sufficiently high flow speeds these KHI waves

may extract kinetic energy from the bulk flow in the BBF channel resulting in the braking of the

BBFs closer to the Earth. This is shown schematically in Figure 4.4 panel (i).

Future studies could examine the evolution of the KHI sausage and kink modes along BBF

channels including the effects of a finite transition thickness layer at the flow channel boundary,

perhaps in 2-D including the effects of the changing magnetic field geometry in the BBF as they

approach the Earth, which would help to develop a better understanding of the phenomenon

across a wider range of wavelengths. Nonlinear studies of the KHI waves along the flow channel

boundary could also shed more light especially on the role of the KHI in the evolution and brak-

ing of BBFs in the nightside plasmasheet.

Acknowledgements. I.R.M. and R.R. are supported by Discovery Grants from Canadian

NSERC.

4.3 Appendix

Additional figures that were not included in the paper due length restrictions are included

in this section.

Figure 4.5 shows the effect of dipolarization on the KHI along BBFs. In Figure 4.5 the panels

(a) and (b) show the real frequency and growth rates for the KHI kink modes and panels (c)

and (d) show the real frequency and growth rates for the KHI sausage modes. It is displayed in

Figure 4.5 that with the increase of the magnetic field tilt inside the BBF channel the growth

rates of both the primary and the secondary kink and sausage KHI waves become larger. The

real frequencies, however, do not change significantly.

Figure 4.6 shows the phase velocity values of the primary and the secondary kink and sausage

KHI waves. It is displayed in the Figure 4.6 that the primary/secondary kink and sausage KHI

modes phase velocities are in the range of the fast/slow MHD wave phase velocities.
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Figure 4.5: Variation of real frequencies and growth rates with the magnetic tilt. Growth
rates increase with the magnetic tilt while there is not a significant change in the real
frequencies. The change in the real frequencies and the growth rates become more sig-
nificant with bigger magnetic tilts.
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Chapter 5

Effects of Finite Boundary

Thickness on KHI

5.1 Introduction

We have used the zero boundary thickness assumption so far in our calculations. This assumption

is valid only for waves with wavelengths considerably larger than the thickness of the boundary.

It is possible to obtain waves with wavelengths comparable to the thickness of the shear flow

boundaries in which case the boundary should be assigned a finite thickness. In this Chapter we

have investigated the effects of a finite thickness boundary on the KHI and MHD wave emission.

We give a brief explanation of the equations used and refer the reader to Chapter 2, Section 2.3.2

for a detailed description. Work done in this Chapter is submitted to the Journal of Geophysical

Research as a paper. Following Section provides the details of the submitted paper: 1

1Turkakin, H., Rankin, R. and Mann, I.R., "Emission of Magnetosound From MHD-Unstable Shear
Flow Boundaries, Journal of Geophysical Research, 2014
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5.2 Paper 3: "Emission of Magnetosound FromMHD-Unstable

Shear Flow Boundaries"

5.2.1 Abstract

The emission of propagating MHD waves from flow channels that are unstable to the Kelvin-

Helmholtz Instability (KHI) in magnetized plasma is investigated. The KHI and MHD wave

emission are found to be two competing processes. It is shown that the fastest growing modes of

the KHI surface waves do not coincide with efficient wave energy transport away from a velocity

shear boundary. MHD wave emission is found to be inefficient when growth rates of KHI surface

waves are maximum, which corresponds to the situation where the ambient magnetic field is

perpendicular to the flow channel velocity vector. The efficiency of wave emission increases

with increasing magnetic field tension, which in the Earth’s magnetosphere dominates along the

nightside magnetopause, within Bursty Bulk Flows (BBFs) in the inner plasma sheet, and in the

solar corona dominates in Supra-Arcade Downflows (SADs). Our results suggest that efficient

emission of propagating MHD waves along BBF and SAD boundaries can contribute to explaining

the observed deceleration and stopping of BBFs and SADs.

5.2.2 Introduction

Kelvin-Helmholtz Instability (KHI) is a type of instability that may occur along hydrodynamic

and magnetohydrodynamic (MHD) shear flow boundaries. Due to its significant effects on fluid

mixing and energy and momentum transfer in-between two different flowing media, the KHI

has been studied extensively in both hydrodynamic [e.g., Lawrence et al., 1991; Malik et al.,

1994; Jean and Laurent , 2000] and magnetohydrodynamic (MHD) [e.g., Walker , 1981; Miura

and Pritchett , 1982; Pu and Kivelson, 1983a; Taroyan and Erdélyi , 2003a; Lai and Lyu, 2006]

limits. The evolution of the KHI is more complex in the presence of magnetic fields and ionized

media [Taroyan and Ruderman, 2011] because magnetic pressure and tension forces act on the

flowing plasma in a variety of ways different from the hydrodynamic case. With the inclusion

of ambient magnetic fields, magnetic pressure and tension forces combined with non-magnetic

forces introduce new types of waves resulting in more complex interactions between the flow and

perturbations [Taroyan and Ruderman, 2011]. A component of the background magnetic field
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parallel to the shear flow boundary inhibits the evolution of KHI. With larger parallel compo-

nent of the ambient magnetic field, the cut-off speed at which KHI onset occurs increases and

the strength of the growth decreases [e.g., Miura and Pritchett , 1982; Pu and Kivelson, 1983a;

Mann et al., 1999].

Studies have been performed on the characteristics of the linear [Walker , 1981; Miura and

Pritchett , 1982; Pu and Kivelson, 1983a; Taroyan and Erdélyi , 2002] and nonlinear [Miura, 1982;

Rankin et al., 1997; Lai and Lyu, 2006, 2008] evolution of MHD KHI. Several important aspects of

the KHI have been discovered, such as the possibility for driving field line resonances [Southwood ,

1974; Walker , 1981], causing magnetic reconnection during northward Interplanetary Magnetic

Field (IMF) [Fairfield et al., 2000; Takagi et al., 2006], and carrying energy and momentum across

the magnetopause boundary [Hasegawa et al., 2006; Taroyan and Ruderman, 2011].

Some studies have assumed a zero thickness boundary, which is appropriate if the wavelengths

of the generated waves are significantly larger than the thickness of the boundary [Pu and Kivel-

son, 1983a; Mann et al., 1999; Turkakin et al., 2013, 2014]. The effects of a finite boundary

thickness have also been investigated in several studies [Ong and Roderick , 1972; Walker , 1981;

Farrugia et al., 1998; Contin et al., 2003; Gratton et al., 2004]. The main effect of including a

finite thickness boundary is that the growth rates become small at finite values of the tangential

wavenumber [Walker , 1981; Miura and Pritchett , 1982; Gratton et al., 2004].

The KHI is also an important process along the interface of the heliopause, in the solar atmo-

sphere and in remote astrophysical objects such as accretion disks near neutron stars and black

holes [Taroyan and Ruderman, 2011]. The KHI is suggested to be possible in solar plumes lead-

ing to the disruption and mixing of plumes with interplume plasma [e.g., Andries and Goossens,

2001]. The Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory

(SDO) and the Large Angle and Spectrometric Coronograph Experiment (LASCO) on board

the Solar and Heliospheric Observatory (SOHO) have observed occurrences of KHI in the solar

corona at velocity shear boundaries including the flanks of high speed Coronal Mass Ejections

(CMEs) [Liu and Ofmann, 2006; Foullon et al., 2011, 2013; Möstl et al., 2013], solar promi-

nences, and high-corona streamers [Feng et al., 2013]. Liu and Ofmann [2006] have also reported

observations of KHI and associated waves in the solar corona. Several numerical studies have

also investigated the KHI along the boundaries of CMEs [Foullon et al., 2013; Möstl et al., 2013;

Nykyri and Foullon, 2013], Supra-Arcade Downflows (SADs) [Cécere et al., 2014], coronal plumes
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[Andries and Goossens, 2001] and coronal streamers [Feng et al., 2013].

Surprisingly, the emission of propagating MHD waves from a shear flow boundary as an effect

of the KHI has received little attention. The spontaneous emission of sound waves between two

counter-streaming media was first suggested by Landau and Lifshitz [1987] as propagating small

perturbations in a medium moving with relative supersonic velocities. Mann et al. [1999] have

suggested that at sufficiently large magnetosheath flow speeds, overreflected surface modes may

turn into body modes and carry energy into the magnetosphere. This situation was suggested to

be a representation of emission of magnetosound from the boundary of a moving medium. Planar

waves moving away from KHI vortices have been reported in a few studies in the past [Lai and

Lyu, 2006, 2008]. In these studies propagating waves are attributed to nonlinear processes and no

connection between them and the linear growth of the KHI was inferred. Turkakin et al. [2014]

have shown that KHI and MHD wave emission due to KHI may occur along the boundaries of

Bursty Bulk Flows (BBFs) in the central plasmasheet of the Earth. These KHI emitted waves

are suggested to be a possible means of carrying available energy out of BBF channel boundaries

and stopping the BBFs in the near Earth regions.

In the current study, emission of MHD waves from a shear flow boundary is shown to exist

during the linear stages of the KHI evolution. The relation between the emission of propagating

magnetosonic waves, the growth rates of KHI surface waves, and their wavenumbers is clearly

described. Linear MHD theory is used to compute the KHI growth rates of the MHD modes sup-

ported by a shear flow boundary with a nonzero thickness. The effects of background magnetic

field directions on magnetosonic wave emission is investigated in detail. The results are used to

predict the efficiency of MHD wave emission along shear flow boundaries in the magnetospheric

regions of Earth - along the magnetopause and the edges of BBF channels. The possibility of

spontaneous MHD wave emission due to KHI along shear flow boundaries in the solar corona,

such as SADs and CMEs, is also discussed.

5.2.3 Boundary Layer Model and KHI Dispersion Relation

A 1-D simplified model of a shear flow boundary is considered consisting of two semi-infinite

plasma regions separated by a boundary layer region of thickness ∆x = 2h. All zero-order

quantities are assumed to vary only along the x-direction. Figure 5.1 shows a schematic of the

model, which represents the change of ρ0,B0, and P0 with discontinuous jumps over an interface
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Figure 5.1: Schematic of the MHD boundary layer model used. ∆x = 2h is the boundary
layer thickness. The background values of magnetic fields, B01, B02 and densities, ρ01, ρ02

are varied sharply at x = −h. Velocity, U0(x), connects two intervals of constant values
U01 and U02 with a linear function in the transition layer region such that U0(x) =
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)
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of zero thickness at x = −h and a continuous variation of U0 over a thickness of ∆x. Here,

ρ0, P0,B0, and U0 are background values of density, plasma pressure, magnetic field, and flow

velocity, respectively. The background magnetic field is assumed to lie in the tangent plane of

the boundary, i.e., the y − z plane. The zero-order streaming velocity is assumed to have the

same direction everywhere. Without loss of generality this is taken as the y direction. The

values of U0 are set to constant values of U01 in region 1 and U02 in region 2, and vary as

U0(x) = U01

2

(
1− x

h

)
+ U02

2

(
1 + x

h

)
in the transition layer region. This set up is applicable to

different MHD shear flow boundaries, such as Earth’s magnetopause, BBF channels in the central

plasmasheet [e.g., Turkakin et al., 2014] and shear flow boundaries in the solar corona [Andries

and Goossens, 2001; Foullon et al., 2011; Ofman and Thompson, 2011; Foullon et al., 2013;

Nykyri and Foullon, 2013; Cécere et al., 2014].

The stability of the boundary defined above is studied with linearized ideal MHD assuming

small amplitude perturbations in warm compressible homogeneous plasmas in regions 1, 2 and

the boundary layer region. Perturbations are assumed to be of the form δg(r, t) = g(x)ei(ktr−ωt),

where g is any perturbed quantity, g(x) is the corresponding amplitude, ω is the complex fre-

quency, and kt = (ky, kz) is the tangential wavenumber.
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Linearization of the warm compressible ideal MHD equations results in the following equation

for the amplitude of the plasma displacement, δx;

∂

∂x

(
χ
∂δx

∂x

)
− Ωδx = 0. (5.1)

The function Ω in Equation 5.1 is defined as Ω = ρ0

[
ω′2 − (VA · kt)2

]
, χ = −Ω/k2

x. kx is the

complex wavenumber normal to the boundary, defined by,

kx =
(
ω′4/[ω′2(V 2

A + C2
S)− (VA · k)2C2

S ]− k2
t

)1/2
. (5.2)

Here, VA = B0/
√
ρ0µ0 is the Alfvén speed, CS =

√
γP0/ρ0 is the sound speed, and ω′ = ω−U0 ·k

is the Doppler shifted frequency. The detailed derivation of equation 5.1 can be found in Walker

[1981].

Equation 5.1 is applicable to regions 1, and 2, and the boundary layer region. Following the

standard approach used in previous studies [cf., Chandrasekhar , 1961; Roberts, 1991; Gratton

et al., 2004], the solution to equation 5.1 in these regions is chosen as;

δx1 = A1e
ikx1x, x ≤ −h

δxbl = A2e
ikxblx +A3e

−ikxblx, −h < x < h (5.3)

δx2 = A4e
ikx2x, x ≥ h

The subscripts 1 and 2 correspond to regions 1 and 2, respectively. The boundary layer values

are symbolized as δxbl and kxbl. The solutions in regions 1 and 2 have been so chosen that

perturbations vanish at +∞ and −∞. This brings the choice of the imaginary parts of the

perpendicular wavenumbers as negative in region 1, kx1i < 0, and positive in region 2, kx2i >

0. Boundary conditions corresponding to a tangential discontinuity, namely continuity of the

displacement and total pressure are applied to the boundaries at x = ±h, resulting in the

following matching conditions;

χ1
∂δx1

∂x
= χbl

∂δxbl
∂x

, δx1 = δxbl, x = −h (5.4)

χbl
∂δxbl
∂x

= χ2
∂δx2

∂x
, δxbl = δx2, x = h (5.5)
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Applying matching conditions in equations 5.4 and 5.5, we obtain four linear equations for

four unknown constants, A1, A2, A3, and A4. The compatibility of these equations requires that

they must be satisfied simultaneously, which leads to the dispersion relation,

χ1kx1

(
κei(kx2+kxbl)∆x + ξ

)
+ ζχbl

(
κei(kx2+kxbl)∆x − ξ

)
= 0, (5.6)

with the following notation:

χ1 =
−Ω1

k2
x1

,

χbl =
−Ωbl
k2
xbl

,

ζ = kxbl − kt cosα
(U01 − U02)

4kxbl

(GblHbl − Fbl)
G2
bl

,

κ = kt cosα
(U01 − U02)

4kx2

(G2H2 − F2)

G2
2

,

ξ = 2kx2 + κ,

Gbl,2 = ω′2bl,2(C2
Sbl,S2 + V 2

Abl,A2)− (VAbl,A2 · kbl,2)2C2
Sbl,S2,

Hbl,2 = 4ω′3bl,2 − 2k2
tω
′
bl,2(C2

Sbl,S2 + V 2
Abl,A2),

Fbl,2 = 2ω′bl,2(C2
Sbl,S2 + V 2

Abl,A2)(ω′4bl,2 − k2
tGbl,2).

Here, α represents the angle between the tangential wavenumber, kt, and flow velocity, U0.

The eigenvectors and eigenvalues of Equation 5.6 are computed numerically for different

parameters using a Newton-Raphson iteration scheme. Normalized flow velocities V01,02 are used

such that V01,02 = U01,02/VA2, where the normalization is with respect to the Alfvén speed

in region 2, VA2. The transition layer thickness ∆x is normalized by RE , wavenumbers by

1/∆x, and frequencies ωr,i by VA2/∆x. The background physical parameters are set such that

B01/B02 = 1.25, ρ01/ρ02 = 1, β1 = 0.5, and β2 = 1.4. Here, β1,2 = (P01,02)/(B2
01,02/2µ0), such

that the parameters chosen represent realistic values of plasma beta on each side of the boundary.

These chosen parameters are representative such that they could be considered applicable to the

Earth’s magnetopause [Hasegawa et al., 2006; Foullon et al., 2010; Hwang et al., 2011], BBF

channel boundaries in the central plasmasheet [Angelopoulos et al., 1994; Grigorenko et al., 2012;

Ma et al., 2012] and shear flow boundaries in the solar atmosphere [Andries and Goossens, 2001;
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Foullon et al., 2013; Ofman and Thompson, 2011; Nykyri and Foullon, 2013; Cécere et al., 2014].

The flow speed in region 2, V02, is set to zero, while several values of the flow speed in region

1, V01, are considered. The normalized tangential wavenumber is set along y - parallel to the

background flow speed direction, kt = (ky, 0). The variation of KHI growth rates with ky∆x is

calculated for different values of V01 and background magnetic fields directions.

5.2.4 Results

In this section we present numerical results for cases with and without magnetic stress acting

at the boundary where the KHI is initiated. The ambient parameters were defined in section

2, and only the direction of magnetic fields on either side of the flow boundary, θ1 and θ2, and

background flow velocity, V01, remain to be varied. Here θ1 and θ2 are the angles between the

tangential wavenumber, ky, and background magnetic fields, B01 and B02, in region 1 and region

2, respectively. Since the tangential wavenumber is chosen along the direction of the background

flow, θ1/θ2 also describes the angles between B01/B02 and the background flow velocity, V01.

Particular focus is placed on the effect of magnetic tension on the strength of KHI surface

waves growth rates, and on the initiation of the emission of propagating magnetosonic waves after

the KHI has developed on the boundary. For each configuration, the variation of KHI surface

waves growth rates and the MHD wave emission efficiency as a function of normalized tangential

wave number, ky∆x, is investigated.

Since the focus of this paper is propagating MHD wave emission due to the KHI, we consider

only cases for MF2 > 1, after which the wave emission is found to be possible. MF2 is the fast

mach number defined as MF2 = U01/Vfast2 and

Vfast2 =

[
1

2

(
V 2
A2 + C2

S2 +
√

(V 2
A2 + C2

S2)2 − 4V 2
A2C

2
S2cos

2θ2

)]1/2

,

is the fast MHD wave phase speed in region 2. Smaller values of MF2 have variations in growth

rates that are similar to cases with MF2 > 1, but propagating MHD wave emission only possible

for flow speed values of MF2 > 1.
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KHI Surface Waves Growth Rates and MHD Wave Emission in the Absence

of Magnetic Tension

The calculations presented in this section show the KHI surface wave growth rates and sponta-

neous magnetosonic wave emission process for the case in which B01, B02 are perpendicular to

the shear flow direction and tangential wavenumber, i.e. θ1 = θ2 = 90◦. This removes the effect

of magnetic tension on the shear flow boundary, since the tangential components of the magnetic

field are zero on either side.

Figure 5.2 shows the growth rates of KHI surface waves as a function of normalized tangen-

tial wavenumber, ky∆x. Three different values of the flow speed, V01, are chosen corresponding

to MF2 = 1, 1.25 and 2.25. As displayed in Figure 5.2, normalized growth rates first increase
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Figure 5.2: KHI surface waves growth rates dependence on the normalized tangential
wave number, ky∆x and fast mach number, MF2 = V01/Vfast2, θ1 = θ2 = 90◦. As MF2

increases, the growth rates decrease and ky∆x values corresponding to the fastest growing
modes are shifted to the left. The ky∆x value beyond which all the modes are stable is
also shifted to the left. Valleys in the growth rates profiles at ky∆x ' 1.1 for MF2 = 1.0
and ky∆x ' 0.9 for MF2 = 1.25 are possibly due to spontaneous wave emission trying
to prevail the KHI growth without success. Wave emission starts at MF2 = 2.25 for this
configuration and is mainly into region 1.

with ky∆x, reach a maximum, and then decrease to zero. Valleys in the growth rates profiles

at ky∆x = 1.1 and 0.9 for MF2 = 1.0 and 1.25 are the consequence of propagating MHD wave
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emission prevailing over growth of the KHI surface wave on the shear flow boundary. As MF2

increases, KHI surface wave growth rates and tangential wavenumbers corresponding to maxi-

mum growth decrease - i.e., the wavelengths of the fastest growing modes increase. The value of

the tangential wavenumber beyond which modes are stable also decreases with increasing MF2.

These results overall agree with previous studies [e.g., Walker , 1981; Miura and Pritchett , 1982;

Gratton et al., 2004]. In these studies, however, flow speeds up to MF2 = 2 are considered with

the argument that growth rates decrease considerably for values of MF2 > 2 [e.g., Miura and

Pritchett , 1982].

Figure 5.3: Density profiles corresponding to Figure 5.2; MF2 = 1.25 for panel (a) and
MF2 = 2.25 for panel (b). The normalized tangential wavenumber ky∆x = 0.6 for both
panels. It is visible that waves propagate mainly into the region 1 on panel (b), while no
propagation is observed on panel (a). The flow speed values corresponding toMF2 < 2.25
did not result wave propagation into either region.
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We find that in the absence of magnetic tension, propagating MHD wave emission due

to the action of the KHI at the shear flow boundary starts at flow speed values of MF2 ≥ 2.25.

Figure 5.3 displays this fact showing density profiles for V01 = 1.25 (panel (a)) and V01 = 2.25

(panel (b)); ky∆x = 0.6 for both panels. MHD wave emission is not seen in Figure 5.3 (a) while it

is clearly present and directed mainly into region 1 in Figure 5.3 (b). Although growth rates are

larger for flow speed values corresponding to MF2 ≤ 2.25 (see Figure 5.2 ), MHD wave emission

is not found. These results suggest that not necessarily the largest growing KHI surface modes

are the most significant modes on a K-H unstable boundary. In contrast, growing modes of the

KHI characterized by the emission of magnetosound is more important. These magnetosonic

waves will propagate into both regions and provide a significant source of energy transport.

To aid with the understanding of the physical reason behind MHD wave emission on a K-

H unstable MHD shear flow boundary, real and imaginary wavenumbers perpendicular to the

boundary are calculated using Equation 5.2. Figure 5.4 shows normalized values of perpendicular

wavenumbers, kxr,xi∆x, as a function of ky∆x for flow speed values corresponding to the MF2

values in Figure 5.2. Panel (a) and (b) of Figure 5.4 display the real and imaginary wavenumbers

normal to the boundary in region 1, and panels (c) and (d) show real and imaginary wavenumbers

normal to the boundary in region 2. The real part of the perpendicular wavenumbers represents

the physical wavelength and the imaginary part represents the rate of the spatial decay away from

the boundary. As seen in panels (a) and (b) in Figure 5.4, for flow velocity values corresponding to

MF2 < 2.25 the real parts of the perpendicular wavenumbers, kx1r, are small while the imaginary

parts, kx1i, are large. This suggests that the waves are mainly surface type and confined to the

boundary for MF2 < 2.25. For flow speed values corresponding to MF2 = 2.25 however, kx1r

picks up large values while kx1i becomes considerably smaller, which suggests that waves change

their dominant character into propagating modes and carry energy away from the boundary into

region 1. Panels (c) and (d) in Figure 5.4 show that in region 2 the real parts of the perpendicular

wavenumbers, kx2r, are always small while imaginary parts, kx2i, are always large. Although for

MF2 = 2.25 there are some regions of small imaginary wavenumber values, wave propagation into

region 2 is still insignificant since the real wavenumber in comparison to the imaginary part never

becomes large enough for a strong propagation. This is also visible in Figure 5.3 as considerably

weaker wave emission into region 2 than into region 1.
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Figure 5.4: Dependence of normalized perpendicular wavenumbers on MF2 and ky∆x

- the background parameters are the same as in Figure 5.2. Panel (a)/(b) shows the
real/imaginary parts of perpendicular wave numbers in region 1 and panel (c)/(d) shows
the real/imaginary parts of perpendicular wave numbers in region 2. For region 1 in panel
(a)/(b) we see that the real/imaginary wavenumbers for MF2 = 2.25 has considerably
larger/smaller values than those for MF2 < 2.25. This means that the KHI waves attain
large propagation part and small decay and thus propagate away from the boundary at
flow speeds corresponding to MF2 = 2.25. Panel (c) and (d) show that perpendicular
wavenumbers have considerably small real and large imaginary values in region 2 for all
the values of MF2. Therefore for θ1 = θ2 = 90◦ configuration, the spontaneous emission
of MHD waves is mainly possible into region 1 at MF2 ≥ 2.25.
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KHI Surface Waves Growth Rates and MHD Wave Emission Under the Ef-

fects of Magnetic Tension

Magnetic tension effects are now included by changing the values of θ1 and θ2 to 60◦ and

30◦, respectively. This will result in stronger magnetic tension in region 2 due to a larger parallel

magnetic field component. Figure 5.5 shows the variation of KHI surface waves growth rates
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Figure 5.5: Growth rate vs ky∆x for θ1 = 60◦, θ2 = 30◦. KHI growth rates and value of
ky∆x where modes stop growing are smaller than the θ1 = θ2 = 90◦ case due to the effect
of the magnetic tension on the boundary. Spontaneous emission of MHD waves however,
starts at considerably smaller flow speed values - for MF2 ≥ 1.

as a function of ky∆x for this configuration, and for values of MF2 that were used to obtain

Figure 5.2. As a result of increased magnetic tension, KHI growth rates and critical values of

normalized tangential wavenumber at which modes become stable decrease, which agrees with

previous results [Miura and Pritchett , 1982]. Emission of MHD waves also occurs for flow speeds

as low as MF2 ≥ 1.

Density profiles shown in Figure 5.6 (a) and (b) for θ1 = 60◦ and θ2 = 30◦, clearly display the

fact that there is strong wave emission into region 2. In Figure 5.6, panel (a) is for ky∆x = 0.7

and MF2 = 1.25, panel (b) is for ky∆x = 0.5 and MF2 = 2.25. Although considerably weaker

than the MF2 = 1.25 and 2.25 cases displayed in Figure 5.6, wave emission is also found to be
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Figure 5.6: Density profiles showing waves propagating into region 2 for θ1 = 60◦, θ2 =
30◦. Panel (a) is for MF2 = 1.25 and ky∆x = 0.7, panel (b) is for MF2 = 2.25 and
ky∆x = 0.5. Both panels show spontaneous emission of MHD waves only into region 2.
Although weaker, wave emission is also found to be possible at MF2 = 1.

possible at flow speed values corresponding toMF2 = 1 for this magnetic field configuration. The

results displayed in Figures 5.5 and 5.6 suggest that increased magnetic tension is favorable for

spontaneous MHD wave emission due to KHI. Likely the inhibition of KHI surface wave growth

rates by the tension may contribute to the increasing dominance of the emitted wave solution for

smaller angles between the boundary and the magnetic field direction (larger magnetic tension

forces inhibiting the growth rates of the fastest growing surface wave solutions).

Figure 5.7 shows the real and imaginary parts of perpendicular wavenumbers in region 1

(panels (a) and (b)) and region 2 (panels (c) and (d)), for the same MF2 values used to obtain

Figure 5.5. In Figures 5.7 (a) and (b) perpendicular wavenumbers have small (large) values of

real (imaginary) parts in region 1.
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Figure 5.7: Perpendicular wavenumbers vs ky∆x for θ1 = 60◦, θ2 = 30◦. Panels (a)
an (b) display the perpendicular wavenumbers for region 1, kx1r, kx1i, and panels (c)
and (d) display the wavenumbers for region 2, kx2r, kx2i. Very small/large values of
real/imaginary wavenumbers on panel (a)/(b) reveals the fact that wave propagation
into the region 1 is not present. In contrast, panels (c) and (d) show that waves start
to have large real wavenumbers while decay or imaginary wavenumbers becomes very
small for MF2 ≥ 1.25 which means strong wave emission into region 2. Due to the strong
magnetic tension on the boundary, wave emission into region 2 is possible even at flow
speed values corresponding to MF2 = 1.

In region 2, however, Figures 5.7 (c) and (d) display solutions showing that the modes

have perpendicular wavenumbers whose imaginary parts are considerably smaller than their real

parts which means that waves propagate into region 2. The variations of real and imaginary

perpendicular wave numbers in Figure 5.7 supports the results previously shown in Figure 5.4, i.e.,

that MHD wave emission from a K-H unstable boundary starts when perpendicular wavenumbers

pick up large real values and at the same time have correspondingly small imaginary values. This

condition holds only for superfast flow speed values - i.e., flow speed values corresponding to

MF2 ≥ 1. These results show that for the magnetic fields configured as θ1 = 60◦ and θ2 = 30◦,
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wave propagation is not at all possible into region 1, while it is clearly present into region 2 once

MF2 ≥ 1.

MHD Wave Emission Thresholds: Relation to Wavenumbers and Phase Ve-

locities

In this section, the phase speed values of the KHI unstable waves, both those with dominantly

surface mode characteristics as well as those demonstrating the emission of magnetosound, are

calculated using

Up =
ωr

(k2
t + k2

x)
k , (5.7)

in order to investigate the phase speed values of KHI waves when modes which emit magnetosound

occur. Comparison of normalized phase speeds, Vp = Up/VA2, is shown in Figure 5.8 with panels

(a) and (b) for θ1 = θ2 = 90◦ and panels (c) and (d) for θ1 = 60◦, θ2 = 30◦. Flow speed values

are the same as in Figures 5.2 and 5.5. The normalized phase speed of fast MHD waves, Vfast1,2,

in the absence of flow are also shown by way of comparison (thick grey and brown lines).

Figure 5.8 shows that the phase speed values of the KHI waves is in the range expected of fast

MHD waves. This is consistent with the findings of Turkakin et al. [2013], who showed that fast

MHD waves were responsible for generating the primary KHI. This contrasts with the secondary

KHI occurring at lower background flow speeds, which has smaller growth rates and is initiated

by slow MHD waves [Turkakin et al., 2013]. The secondary KHI, however, is not investigated in

the current study.

Figure 5.8 (a) shows that for the θ1 = θ2 = 90◦ case, the phase speeds of KHI surface

waves increase to reach the values of fast wave phase speeds in region 1 for ky∆x = 0.6 and

MF2 = 2.25, i.e., where propagating wave emission starts (see Figure 5.3). In region 2, wave

emission is considerably weaker for ky∆x = 0.6 and MF2 = 2.25 (see Figure 5.3). Panel (b) in

Figure 5.8 shows that phase speeds of KHI waves are smaller than fast MHD wave phase speeds

in region 2. The phase speeds reach background fast wave phase speeds at ky∆x > 0.6, at which

point propagating wave emission into both regions is possible. Panel (c) in Figure 5.8 shows that

the phase speeds of KHI surface waves do not reach fast MHD wave phase speeds in region 1

for θ1 = 60◦ and θ2 = 30◦. Panel (d) shows that phase speeds exceed the fast MHD wave phase

speed in region 2 for MF2 ≥ 1 where strong wave emission is obtained (see Figure 5.6).
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Figure 5.8: Phase velocities vs. ky∆x for θ1 = θ2 = 90◦ ( panels (a) and (b) ) and
θ1 = 60◦, θ2 = 30◦ ( panels (c) and (d) ). Flow speed values are the same as in Figures
5.2 and 5.5. Phase speed values of fast MHD waves in the absence of flow, Vfast1, Vfast2,
are shown for comparison (grey and brown thick lines). Wave propagation starts into
the flowing side ( region 1 ) for θ1 = θ2 = 90◦ at flow velocities MF2 ≥ 2.25 and into
the stationary side ( region 2 ) for θ1 = 60◦, θ2 = 30◦ at flow velocities MF2 ≥ 1. Phase
velocity of KHI waves only reach to the fast MHD wave phase speeds for θ1 = θ2 = 90◦,
while they exceed the fast MHD wave speeds for θ1 = 60◦, θ2 = 30◦.

The results shown in Figure 5.8 (a) - (d) suggest that propagating MHD wave emission starts

at a point where the values of KHI wave phase speeds reach or exceed the fast MHD wave phase

speeds in either medium. In the presence of a strong magnetic tension the KHI waves phase

speeds exceed the fast wave phase speeds. If magnetic tension is absent, however, they cannot

exceed the fast MHD wave phase speed and propagating wave emission is weaker.

Another example showing propagating wave emission driven by KHI at a shear flow boundary

is provided in Figures 5.9 and 5.10 for θ1 = θ2 = 60◦ and MF2 = 2.5. Figure 5.9 shows density

profiles for this configuration for ky∆x = 0.35 (panel (a)) and ky∆x = 0.45 (panel (b)).
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Figure 5.9: Density profiles for magnetic field configuration θ1 = θ2 = 60◦. While wave
emission is weakly seen on panel (a), waves visibly propagating into region 1 and region 2
in panel (b) - MF2 = 2.5; ky∆x = 0.35 for panel (a) and ky∆x = 0.45 for panel (b). The
above Figure displays the fact that for a specific configuration, not all the wavelengths
can be emitted from a K-H unstable boundary. Strong magnetic tension in region 1
cause the KHI waves with bigger wavelengths, i.e. smaller ky∆x, to be emitted from the
boundary on panel (a). KHI waves with smaller wavelengths are seen to be emitted into
both regions on panel (b) where visible stronger emission into the region 1 is due to the
stronger magnetic tension.

Figure 5.9 panel (a) displays the fact that at normalized tangential wavenumber value

ky∆x = 0.35, there is very little wave emission into region 1. When the value of ky∆x increases to

0.45, propagating MHD wave emission becomes possible into both regions, as displayed in Figure

5.9 panel (b). This result suggests that there exists a certain wavelength regime for each region

where the KH shear flow instability can excite modes which emit propagating waves from the

boundary. Stronger magnetic tension in region 1 initiates propagating emission of MHD waves

with larger wavelengths, smaller ky∆x, while emission into region 2 is possible for KHI waves
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with smaller wavelengths. Figure 5.9 (b) also displays that due to the stronger magnetic tension,

wave emission into region 1 is stronger than wave emission into region 2.
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Figure 5.10: Comparison of KHI waves phase velocities, growth rates and real and imag-
inary perpendicular wave numbers corresponding to Figure 5.9. Vertical grey lines mark
the position of ky∆x = 0.35 and ky∆x = 0.45 corresponding to Figure 5.9 (a) and (b).
Panel (a) displays the growth rates with phase speed values of KHI waves and panels (b)
and (c) shows real and imaginary wavenumbers for region 1 and region 2. Values of fast
MHD wave phase speeds in the absence of flow are also shown for region 1 and region
2 (grey and brown lines). Above Figure suggests that there exist a certain wavelength
regime for each region where KHI waves are emitted. Spontaneous wave emission into
region 1 starts at wavelengths corresponding to ky∆x = 0.35 while wave emission into
region 2 could only start at wavelengths corresponding to ky∆x = 0.45.

KHI wave growth rates, phase velocities, and perpendicular wavenumbers corresponding to

the values in Figure 5.9 (a) - (b) are shown in Figure 5.10 (a) - (c). Figure 5.10 (a) shows growth

rates (red solid line) and phase velocities of the waves in region 1 and 2 (green and blue dashed

lines) with the left vertical axis corresponding to phase speed values and the right vertical axis

corresponding to growth rates. Background values of the fast MHD wave phase speeds in region

1 and region 2 are also shown for comparison (grey and brown solid lines). Panels (b) and (c)
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show real and imaginary perpendicular wavenumbers ( blue and green dashed lines ) for region

1 and region 2, respectively. In panels (b) and (c) the left (right) vertical axes show imaginary

(real) parts of perpendicular wavenumber. Vertical grey lines mark the values of ky∆x = 0.35

and 0.45 corresponding to Figure 5.9 (a) and (b), respectively.

Figure 5.9 (a) shows that propagating wave emission into region 1 starts at wavelengths

corresponding to ky∆x = 0.35, while wave emission into region 2 starts at wavelengths corre-

sponding to ky∆x = 0.45. Comparing Figure 5.10 (a) to Figure 5.9 (a), it can be seen that at the

start of the region characterized by the emission of propagating magnetosound, the growth rates

of these modes are such that they decrease with increasing ky∆x. The fact that wave emission

starts at normalized tangential wave number values where growth rates are decreasing is also

obtained for the magnetic field configuration θ1 = θ2 = 90◦. Only for the configuration θ1 = 60◦

and θ2 = 30◦, is the MHD wave emission found to be possible at the ky∆x peak in growth

rates. In the case of θ1 = 60◦ and θ2 = 30◦, the strong magnetic tension available on the side

of region 2 is able to break up the KHI vortices and initiate propagating wave emission near the

peak values of the growth rates. This result is very significant in supporting the suggestion that

magnetic tension works against KHI surface wave growth and in favor of the excitation of MHD

waves characterized by the emission of magnetosound from a KH unstable shear flow boundary.

The growth rates start decreasing with ky∆x after the wave emission starts, since these emitted

MHD waves carry energy away from the boundary and weaken the growth of the KHI modes. In

other words, KHI surface wave growth and wave emission from a K-H unstable boundary are two

processes competing for the control of the physical evolution of the shear flow boundary. Either

process may prevail depending on the ambient physical parameters.

The values of KHI waves phase velocities in Figure 5.10 (a) show that at points of spon-

taneous MHD wave emission (vertical grey lines) the phase speed of the waves reach or exceed

background fast MHD wave phase speeds. Figures 5.10 (b) and (c) display that the real parts

of perpendicular wave numbers, kx1r, kx2r, become considerably larger than the imaginary parts,

kx1i, kx2i, at the value of ky∆x which characterizes the onset of propagating waves from the

boundary. These results support the previously shown results in Figures 5.4, 5.7 and 5.8.
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The Effects of Magnetic Field Rotation in the Flowing Region

In this section we investigate the variation of KHI waves growth rates and real and imaginary

perpendicular wavenumbers with ambient magnetic field direction in the flowing region 1. The

direction of the magnetic field in region 1, θ1, is varied from 0 − π while the direction of the

magnetic field in region 2, θ2, is set to a constant value. Resulting values of growth rates and

wavenumbers are shown in Figure 5.11 (a)-(c) for four chosen values of the magnetic field direction

in region 2 - θ2 = 0◦, 30◦, 60◦, and 90◦. The flow velocity is chosen such that MF2 = 2.25 and

ky∆x = 0.3.

Figure 5.11 (a) shows that as θ1 varies from 0 − π the growth of the KHI surface waves

increases to reach a maximum at θ1 = 90◦ and decrease thereafter. The growth rate profiles are

similar for all θ2 values considered, while the magnitudes of growth rates become larger as θ2

increases. Panels (b) and (c) show the real and imaginary parts of perpendicular wavenumbers in

region 1 and region 2, respectively. Left vertical axes on panels (b) and (c) show imaginary parts

and right vertical axes show real parts of the perpendicular wave numbers. Imaginary parts, kx1i

and kx2i, are shown with solid lines and corresponding real parts, kx1r and kx2r, are shown with

dashed lines of the same colors. Similar to how growth rates vary, kx1i and kx2i increase with

increasing θ1, reach to maximum values at θ1 = 90◦ and decrease thereafter. As θ1 approaches

to 90◦, kx1r initially decreases and then slightly increases while kx2r decreases. For θ1 > 90, kx1i

and kx2i decrease, while kx1r first slightly decreases and then increases as kx2r slightly increases.

Notice that variations are symmetric for values of θ1 = 0◦−90◦ and θ1 = 90◦−180◦. This is due

to the fact that the dispersion relation is symmetric for parallel and anti-parallel configurations

of tangential magnetic field components. For θ2 = 90◦, kx2r values are small for all values of θ1,

suggesting that KHI wave emission into region 2 is very weak or not possible. Nevertheless, not

much difference is observed in the values of kx1r in region 1.

The results presented in Figure 5.11 overall suggest that while the growth rates of the KHI

waves increase to a maximum at θ1 = 90◦, modes that support propagating wave emission

is not favorable since they have strong spatial decay, large imaginary parts of perpendicular

wavenumbers, kx1i, kx2i. Small values of kx1i, kx2i and large values of kx1r, kx2r for θ1 = 0◦ −

30◦ and θ1 ' 150◦ − 180◦ suggest that these configurations are more favorable for emission of

propagating MHD waves from a KH unstable boundary. This is due to the effect of magnetic

tension on the boundary provided by the components of the magnetic fields parallel or anti-
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parallel to the flow and the boundary. As the value of θ2 increase the KHI waves growth rates

and imaginary and real parts of the perpendicular wavenumbers also increase, while overall

variations with θ1 stay the same. Results for θ2 = 90◦ marks a special case of very weak or

nonexistent modes supporting the emission of propagating MHD waves into the region 2.

Applications to Shear Flow Boundaries in the Earth’s Magnetosphere and the

Solar Corona

We will now discuss our results in the context of shear flow regions in the Earth’s magneto-

sphere and in the solar corona. Although magnetic fields, densities, and flow velocities are widely

different in these cases, certain characteristics hold that are common between them.

If we consider Earth’s magnetopause boundary, flow is large in the magnetosheath region

while the strengths and directions of the magnetic fields vary depending on the point of obser-

vation [Nakai and Ueno, 2011; Hwang et al., 2011; Foullon et al., 2008; Hasegawa et al., 2006].

In Figure 5.1, region 1 approximates to the magnetosheath and region 2 to the magnetosphere.

Using observational values in [Nakai and Ueno, 2011; Hwang et al., 2011; Fairfield et al., 2000;

Hasegawa et al., 2006], MF2 is between ' 0.5− 1.2 in the dayside region and ' 0.5− 3.5 in the

nightside and magnetotail regions. This implies flow speeds corresponding to MF2 ≥ 1, which

means that spontaneous emission of magnetosonic waves is obtainable along the magnetopause

boundary. Ambient magnetic fields corresponding to θ1 = θ2 = 90◦ are applicable to the day-

side magnetopause when the IMF is purely northward or southward. Under these conditions

our results suggest that on the dayside magnetopause, the KH surface wave growth is possi-

ble with large growth rates. Energy propagation into the magnetosphere from the emission of

propagating waves would not be very efficient due to the lack of modes supporting the emission

of MHD waves in this configuration. A configuration with θ1 = 60◦, θ2 = 30◦ however, is also

possible on the dayside magnetopause, in which case very efficient spontaneous wave emission

into the magnetosphere can occur (see Figure 5.6). On the dawn and dusk flanks and into the

nightside magnetopause, the magnetic fields on either side of the boundary are usually parallel

or anti-parallel to each other with large tangential components parallel to the magnetopause

boundary and flow direction [e.g. Hasegawa et al., 2006; Nakai and Ueno, 2011]. The nightside

magnetopause and dawn and dusk flanks are therefore favorable for spontaneous emission of

MHD waves.
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Figure 5.11: Comparison of KHI waves growth rates, real ( kx1r, kx2r ) and imaginary
( kx1i, kx2i ) perpendicular wavenumbers in region 1 and region 2 as θ1 varies from 0−2π.
MF2 = 2.25, ky∆x = 0.3 and θ2 is chosen as 0◦, 30◦, 60◦, and 90◦. Panel (a) shows that
growth rates reach the maximum at θ1 = 90◦ and decreases to their initial values at θ1 =
180◦. Panels (b) and (c) show that as θ1 approaches to 90◦, kx1i and kx2i considerably
increase, showing that KHI waves are strongly evanescent. Therefore, spontaneous MHD
wave emission would not be very efficient while KHI growth is the largest at values
θ1 ∼ 90◦. Wave emission would be most efficient for θ1 = 0◦ − 30◦ and θ1 = 150◦ − 180◦

where kx1i and kx2i are small while kx1r and kx2r are large. kx2r values are significantly
small for θ2 = 90◦ for all values of θ1, suggesting that KHI wave emission into region 2
is very weak or not possible. Nevertheless, not much difference is observed in the values
of kx1r in region 1 for θ2 = 90◦.
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This is due to strong magnetic tension, which enhances wave emission from a KHI unstable

flow boundary.

In the central plasmasheet of Earth’s magnetotail, Bursty Bulk Flow (BBF) channel bound-

aries may also be subject to the KHI and spontaneous wave emission [Turkakin et al., 2014].

At the edges of BBF flow channels, region 1 would correspond to inside and region 2 would

correspond to outside the channel. Bursty Bulk Flows (BBFs) usually form at ' 19RE in the

magnetotail and move towards the Earth decelerating and stopping at ' 6RE [e.g. McPherron

et al., 2011]. The flow speed in BBFs varies between 200-1500 km/s [e.g., Angelopoulos et al.,

1997; Shiokawa et al., 1997]. Using observations from [Angelopoulos et al., 1992; Volwerk et al.,

2007; Ma et al., 2012], BBF speeds normalized by the phase speed of the fast MHD wave in the

region outside of the channel are between 0.2 - 2.5, implying that the KHI and modes support-

ing MHD wave emission can be excited along these shear flow boundaries. Magnetic fields are

parallel to the BBF channel boundary in the far magnetotail and change direction due to geo-

magnetic field dipolarization as BBFs move closer to Earth. In other words θ1 and θ2 increase as

BBFs move closer to Earth. Results presented in Figure 5.11 then suggest that on BBF channel

boundaries, KHI growth is more efficient at positions closer to Earth and wave emission is more

efficient further from Earth. Strong emission of MHD waves due KHI at positions further away

from Earth may be able to transfer available energy out of BBF channels, resulting in decelera-

tion and stopping of BBFs in near Earth regions. Due to larger values of magnetic fields and thus

magnetic tension, propagating MHD wave emission due to KHI would be more observable along

BBF channel boundaries than the magnetopause boundary. This can explain often observed kink

and sausage wave oscillations emitted from BBF channel boundaries that propagate towards the

magnetotail flanks [Sergeev et al., 2004; Volwerk et al., 2005; Zhang et al., 2005].

KHI and shear flow driven propagating MHD wave emission may also be possible on the

shear flow boundaries of coronal plumes, Supra-Arcade Downflows (SADs), Coronal Mass Ejec-

tions (CMEs) and coronal streamers. Although magnetic field strengths and plasma densities

are considerably larger in the solar corona, plasma beta values are of order 1 [Foullon et al.,

2013; Feng et al., 2013; Nykyri and Foullon, 2013] and normalized values used in this paper are

still applicable. Studies performed on the numerical KHI on the boundaries of CMEs [Foullon

et al., 2011; Ofman and Thompson, 2011; Nykyri and Foullon, 2013; Foullon et al., 2013; Möstl

et al., 2013], SADs [Cécere et al., 2014], coronal plumes [Andries and Goossens, 2001] and coronal
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streamers [Feng et al., 2013] have used configurations similar to those used in the current study,

and are therefore amendable to analysis.

SADs have strong similarities to BBF channels occurring in Earth’s central plasmasheet

[McKenzie and Savage, 2009; Cécere et al., 2014]. Cécere et al. [2014] investigated numerically

the occurrence of KHI on the boundaries of SADs, but did not investigate the possibility of

the KH driven modes generating the emission of propagating fast magnetosonic modes. Simi-

lar to the breaking of BBFs suggested in Turkakin et al. [2014], propagating wave emission due

to KHI along SAD boundaries is possible and can potentially explain observed deceleration of

SADs. Coronal plumes and streamer boundaries have similar characteristics to SADs [Andries

and Goossens, 2001; Feng et al., 2013] and can thus support MHD wave emission as well. In fact

coronal streamer waves, which show very similar characteristics to the waves emitted from BBF

channels, have been observed [Chen et al., 2010]

CME boundaries have similarities to the magnetopause boundary [Foullon et al., 2011]. The

magnetic field, however, has a helical configuration on one side and is smoothed out on the other

side of a CME boundary. With high resolution images provided by the Atmospheric Imaging

Assembly (AIA) on-board the Solar Dynamic Observatory (SDO), KHI waves along fast CME

ejecta were detected [Foullon et al., 2011; Ofman and Thompson, 2011; Foullon et al., 2013] and

numerically investigated by [Ofman and Thompson, 2011; Nykyri and Foullon, 2013; Möstl et al.,

2013]. While Nykyri and Foullon [2013] and Ofman and Thompson [2011] studied the side of the

CME boundary where magnetic fields are in a helical configuration, Möstl et al. [2013] considered

the side where the helical configuration is smoothed. With the flow speed values chosen, they

concluded that if there is a parallel component of the magnetic field of strength 20 % of the

background field, the KHI is stabilized.

Using observed values in [Foullon et al., 2011, 2013; Möstl et al., 2013; Cécere et al., 2014],

we have calculated that values of MF2 in solar coronal regions vary between 0.5 - 2.0. The con-

dition of sufficiently fast flow speeds MF2 ≥ 1 implies that along shear flow boundaries in the

solar corona the growth of KH modes supporting the emission of magnetosound may be possible.

Since background magnetic fields tend to be parallel to the boundary of SADs [Cécere et al.,

2014], propagating wave emission due to the KHI will be more probable along these boundaries.

In contrast magnetic fields on CME boundaries usually have stronger perpendicular components

[Ofman and Thompson, 2011; Foullon et al., 2013; Nykyri and Foullon, 2013] and thus KHI
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surface wave growth will be more favorable than shear flow driven modes supporting the char-

acteristics of propagating wave emission. On the side of the CME boundary where the magnetic

field is smoothed, the available strong magnetic tension may support KH modes generating prop-

agating wave emission if flow speeds corresponding toMF2 ≥ 1 are reached. These emitted MHD

waves on shear flow boundaries of the solar corona can play a significant role in energy transfer

between different regions during solar eruptions.

5.2.5 Discussion and Conclusions

A theory has been developed to investigate the excitation of modes which cause the emission

of magnetosonic waves due to the KHI on MHD shear flow boundaries. The parameters chosen

are applicable to different shear flow boundaries in Earth’s magnetosphere and solar corona. We

have determined threshold values of flow speed and tangential wavenumber for modes support-

ing MHD wave emission under different configurations of the background magnetic fields, B01,02.

Varying the background magnetic fields allowed us to investigate the effects of magnetic tension

on wave emission due to the KHI. The dependence of the modes supporting MHD wave emission

on perpendicular wavenumbers and phase velocity of KHI waves has also been investigated.

It is found that for KH modes which generate propagating MHD wave emission from shear

flow boundaries, the onset of the wave emission starts at flow speed values corresponding to

MF2 = V01/Vfast2 ≥ 1. As the component of the magnetic field parallel to the MHD shear flow

boundary is increased on either side of the boundary, the threshold values of the flow speed where

KHI can generate modes which emit magnetosound decreases. Our conclusion is that increasing

magnetic tension is supportive of the generation of modes supporting propagating wave emission

on shear flow boundaries. While magnetic tension enhances the excitation of modes characterized

by propagating wave emission, it hinders the growth of KH surface modes.

Shear flow generation of modes supporting propagating wave emission into either side of an

MHD shear flow boundary is possible depending on the strength of magnetic tension. Emission

is more efficient into the region where there is a stronger magnetic field component parallel to

the boundary, a stronger magnetic tension. Therefore, most of the energy available on the shear

flow boundary will be carried into the region with stronger magnetic tension.

The determination of real and imaginary wavenumbers perpendicular to a flow boundary

shows that the emission of MHD waves starts when the real parts become larger than the imag-
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inary parts. This shows that waves transition from being spatially evanescent surface waves to

propagating body waves. When the phase velocity of KHI waves reaches or exceeds background

fast MHD wave phase speeds, the perpendicular wavenumber of waves emitted from the flow

boundary develops a real part exceeding the imaginary part. In this situation propagating waves

carry energy efficiently away from the boundary.

Wave emission usually starts at the point where growth rates are decreasing with ky∆x.

However, if there is a strong magnetic field component parallel to the flow on either side of

the boundary wave emission may start at peak values of KHI wave growth rates with respect

to ky∆x. Our results show that MHD KH modes supporting the propagating wave emission is

possible for the fastest growing KH modes only for the θ1 = 60◦, θ2 = 30◦ configuration. For

θ1 = θ2 = 90◦ and θ1 = θ2 = 60◦ configurations, the KH modes supporting the propagating wave

emission are not the fastest growing modes. This supports the suggestion that magnetic tension

works in favor of excitation of KH modes supporting MHD wave emission.

We have investigated the effects of varying magnetic field direction in region 1, while the

magnetic filed direction in region 2 is kept constant. Four different θ2 values were considered

while θ1 was varied from 0 − π. For all of the θ2 values considered we found that the growth

rates peak at θ1 = 90◦ while modes supporting propagating wave emission was more probable for

θ1 ' 0− 30◦ and θ1 ' 150− 180◦, which corresponds to the situation in which the magnetic field

has a strong parallel or anti-parallel component to the background flow. These results confirm

that strong magnetic tension enhances MHD wave emission on a KHI unstable boundary.

Applications of the results to shear flow boundaries in the Earth’s magnetosphere and in

the solar corona is discussed. We have concluded that on the boundaries of the dayside magne-

topause and within interplanetary CMEs, KHI surface wave growth dominates the evolution of

the boundary. In contrast, on the boundaries of the nightside magnetopause, magnetotail, BBF

channels, SAD channels, coronal plumes, and coronal streamers, the shear flow may support the

excitation of modes which emit propagating MHD wave disturbances from the boundary. This

will also weaken the growth of the KH surface modes as a result of waves carrying energy away

from shear flow boundaries of the flow channels. The generation of unstable KH modes which

causes the emission of MHD waves can therefore provide a significant source of energy transport

between different regions. Propagating KHI driven wave emission and energy transport out of

BBF and SAD channels may provide a possible explanation for the deceleration and stopping of
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BBFs and SADs.
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Chapter 6

Nonlinear Effects on the KHI and

Emission of Magnetosound

6.1 Introduction

In the analysis of the KHI waves in previous chapters, we have always assumed that the

wave amplitudes were small so that the governing equations can be linearized. This assumption

provides remarkably accurate description of small amplitude KHI waves. If the wave amplitude

becomes large, which always happens for the KHI waves, the linearization breaks down. Non-

linear effects on the KHI waves then must be taken into account. When the nonlinear stage is

reached, the growth of the wave amplitude is stopped due to the nonlinear effects.

The equations used in MHD theory which are described in chapter 1 section 1.6.5 have non-

linear terms. For example, ρV term in the continuity equation, J × B term in the equation of

motion, and V ·∇V term in convective derivative represent potential sources of non-linear effects.

In this chapter the nonlinear effects on KHI and emission of magnetosound are investigated using

FLASH code.
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6.2 Description of the FLASH Code

FLASH is a publicly available, component based, massively parallel code capable of simulat-

ing the compressible, reactive flows in many astrophysical environments. It has been developed

primarily at the University of Chicago’s ASC/Alliances Flash Center. The FLASH code has a

wide user base and is unique among astrophysics application codes [Dubey et al., 2008].

FLASH is a collection of code units and each unit controls a particular aspect of an applica-

tion. FLASH units are categorized as; infrastructure, physics, driver, monitoring, and simulation.

The infrastructure unit is responsible for the management of the runtime environment, the han-

dling of the input and output, and the administration of the solution mesh. It views the physical

domain as composed of blocks, where each block covers different fractions of the domain. The

physics unit has solvers for hydrodynamics, equations of state, MHD, gravitational fields, cos-

mology, and particles. The driver unit initializes and finalizes the code, implements the time

advancement and controls the connection of units with each other for a specific run. The moni-

toring unit logs the progress of the simulation. The simulation unit is the most important since

it defines the initial, boundary conditions and any other parameters for a particular simulation

run[Dubey et al., 2008].

The FLASH code provides MHD solvers included in physics unit. Algorithms are provided

to solve the equations of compressible ideal and non-ideal MHD in one, two and three dimensions

on Cartesian system. We have used MHD solver for compressible ideal MHD to investigate the

KHI and the emission of magnetosound from MHD shear flow boundaries. In simulation unit

we have provided a new magnetohydrodynamic KHI unit where we have described our specific

problem and defined initial and boundary conditions as well as other plasma parameters such as

background flow, plasma density, plasma pressure, and magnetic field. We have used Adaptive

Mesh Refinement (AMR) which is implemented with PARAMESH in FLASH. PARAMESH uses

a block-structured adaptive mesh refinement scheme in which the fundamental data structure

is a block of cells arranged in a logically Cartesian fashion. The complete computational grid

consists of a collection of blocks with different physical sizes, which are related to each other in

a hierarchical fashion using a tree structures. The blocks at the root of the tree have the largest

cells, while their children have smaller cells and are refined.

Assuming the plasma as collisionless and without resistivity we can use the equations of ideal
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MHD. The one-fluid MHD equations used in FLASH in normalized form are;

∂ρ

∂t
+∇ · (ρV) = 0, (6.1)

∂(ρV)

∂t
+∇ · (ρVV −BB) = −∇(PT ), (6.2)

∂ρE

∂t
+∇ · (V(ρE + PT )−B(V ·B)) = 0, (6.3)

∂B

∂t
−∇ · (VB−BV) = 0. (6.4)

where V is flow velocity, ρ is the mass density, B is the magnetic field.

PT = P +
B2

2
, (6.5)

E =
V 2

2
+

P

ρ(γ − 1)
+
B2

2ρ
= 0 (6.6)

are total pressure and specific total energy. As we described in previous chapters, the total

pressure consist of the plasma pressure P and the magnetic pressure B2/2. The three terms

in specific energy represent the kinetic energy, the internal energy, and the magnetic energy,

respectively.

Normalization in FLASH code is done using a reference velocity, υ0, a reference density %0,

and a reference length R0. These three factors are then used to scale all quantities in the MHD

equations. Letting an overbar indicate the variables in SI units the normalization is done as,

r =
r

R0
ρ = ρ

%0
V =

V

υ0
. (6.7)

From above the normalization for the other important parameters becomes,

t =
υ0

R0
t B = B

υ0
√
µ0ρ0

P =
P

%0υ
2
0

, (6.8)

where t is normalized time.

We have used the eight-wave MHD unit in FLASH code which solves the equations 6.1 - 6.4

based on a finite-volume, cell-centered method which was proposed by Powell et al. [1999]. The

unit uses directional splitting to evolve the MHD equations, making one sweep in each spatial

direction to advance equations. In each sweep, the unit uses AMR functionality to fill in com-
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putational cells and impose boundary conditions. Then it reconstructs characteristic variables

and uses these variables to compute time averaged interface fluxes of the conserved quantities.

In order to enforce conservation at jumps in refinement the unit makes flux conservation, calls

to AMR, which redistributes affected fluxes using appropriate geometric area factors. Finally,

the unit updates the solution and calls EOS (Equation of State) unit to ensure thermodynamical

consistency.

EOS unit takes a section of a block and translates it into the data format required by the Eos

function, then calls the function. Upon return from the Eos function, the returned data is trans-

lated back to the same section of the block. Four implementations of the Eos unit are available:

Gamma, which implements a perfect-gas equation of state; Gamma/RHD, which implements

a perfect-gas equation taking relativistic effects into account; Multigamma, which implements

a perfect-gas equation with multiple fluids with different adiabatic indices (γ), and Helmholtz,

which uses a fast Helmholtz free-energy table interpolations to handle degenerate/relativistic

electrons/positrons and includes radiation pressure and ions via perfect gas approximation. We

have used Gamma unit which is the best applicable approach for ideal MHD solutions. Gamma

unit in EOS models a simple ideal gas with a constant adiabatic index γ. The relationship be-

tween pressure, density and specific internal energy is P = (γ−1)ρH, where H is specific internal

energy. The expression relating pressure P to temperature T is

P = nkBT, (6.9)

Where n is number density of molecules and kB is the Boltzmann’s constant and T is temperature.

After all sweeps are completed, the MHD unit enforces magnetic field divergence cleaning,

i.e. ∇ · B = 0 condition, with a truncation error method. In the truncation error method, the

solenoidality of the magnetic field is enforced by including several terms proportional to ∇ ·B.

This removes the effects of unphysical magnetic tension forces and stimulates passive advection

of magnetic monopoles, if they are superiously created. This method can effectively bring the

superious magnetic monopoles to levels that are sufficiently low, so that generated solutions

remain physically consistent. More information on methods used can be found in FLASH user

manual at www.flash.uchicago.edu/site/flashcode.
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6.3 Code Testing

Validating code against published work is a crucial step in numerical studies in order to prove

that code is working properly and providing correct results. This will assure that the new results

obtained will be correct and accurate. In this section we provide two tests for the validation of

the FLASH code. The Kelvin-Helmholtz Instability is set up and tested against MHD results

from Rankin et al. [1993] and Waagan et al. [2011]. Both tests provided results that are in very

good agreement with the results in these papers.

6.3.1 Results Using Parameters in Rankin et al. [1993]

We run FLASH code for a 2D MHD shear flow boundary on yz plane and x-direction as

normal to the boundary. Using the initial conditions from Rankin et al. [1993], we initialized the

simulation with velocity profiles as;

vx = V0e
−x2/∆2

xεcos(kyy), (6.10)

vy = − V0

∆2
x

2x

kyR
e−x

2/∆2
x . (6.11)

Figure 6.1 shows the velocity profiles of equations 6.10 and 6.11.

Magnetic field is set along z direction and the velocity perturbation is applied to a uni-

form background plasma. The following parameters taken from Rankin et al. [1993] are used:

kyR = 0.3R−E1, ky = 6.8R−E1, VA = 280 km/s,
√

2V0/(e
1/2kyR∆x) = 90 km/s, ∆x = 0.18RE ,

ε = 0.02, T0 = 2 KeV, and B0 = 4 × 10−4 G. We have chosen background Alfvén velocity as

the normalization velocity υ0 = VA, Earth radii as the normalization distance R0 = RE , and

normalization density as background density %0 = ρ0. The boundary conditions are set as peri-

odic(wrap around) along y, and outflow(zero gradient) along x.

The results show very good agreement with Rankin et al. [1993]. Figure 6.2 shows the growth

in the maximum value of vx as a function of time. The linear stage of the KHI ends at ' 155s

where instability saturates. Figure 6.3 shows a log linear fit to the data displayed in Figure 6.2 for

the time interval where exponential growth is present. The growth calculated is ωi = 0.033s−1

which is in excellent agreement with Rankin et al. [1993]. These results imply that the FLASH

code provides physically correct results. The KHI vortices are shown at t = 248s in Figure 6.4.
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Figure 6.1: Initial velocity profiles used to initialize KHI based on Rankin et al. [1993].
Values are normalized with Alfvén velocity, VA = 280 km/s.
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Figure 6.3: Log linear fit for the data displayed in Figure 6.2 and value of the calculated
growth rate, ωi = 0.033 s−1 which is in perfect agreement with the values predicted by
Rankin et al. [1993].

Figure 6.4: Vector plot of total velocity at t = 248 s from FLASH run with parameters
set to same in Rankin et al. [1993].
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6.3.2 Results using parameters in Waagan et al. [2011]

Another test done on the validity of FLASH code is with set up parameters and initial

conditions in Waagan et al. [2011]. To match the set up conditions used in Waagan et al. [2011]

the boundary normal is chosen along y-direction, and all the background values are set in CGS

units. Region 1 corresponds to y > 0 and region 2 corresponds to y < 0. An initial velocity shear

is given along x-direction as, V01 = 0.5 cm/s and V02 = −0.5 cm/s. The velocity perturbation is

given along y-direction by

vy = 0.0125sin(2πx)e−100(y−0.5)2 .

The boundary conditions are set as periodic along x-direction and outflow along y-direction. The

initial parameters are set as; ρ01 = 2 g/cm3, ρ02 = 1 g/cm3, B01 = 0.5 G, B02 = −0.5 G, and

P01 = P02 = 0.6 Ba. Magnetic fields are set along x-direction, parallel to the shear flow. These

parameters are randomly chosen to test KHI evolution using FLASH code.

Figures 6.5 and 6.6 shows the density profiles for the KHI evolution at times, t = 1 s and

t = 9 s, respectively. These results are in very well agreement with the results shown in Waagan

et al. [2011] which also implies the FLASH code provides us with correct physical results.

Figure 6.5: Density profile at t = 1 s from runs with parameters in Waagan et al. [2011].
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Figure 6.6: Density profile at t = 9 s from runs with parameters in Waagan et al. [2011].

6.4 Nonlinear KHI and Spontaneous Emission of Magne-

tosound

6.4.1 Comparing Linear-Nonlinear Results

In this Section the perturbations of linear results obtained in chapter 5 are used as initial

perturbations for the KHI growth in FLASH code. KHI growth rate obtained from FLASH code

is compared to the linear results. The same set up described in chapter 5 section 5.2.3 with flow

velocity corresponding to MF2 = 2.5 is used. Here, MF2 = V01/Vfast2 is the fast mach number.

KHI growth from linear calculations is displayed in Figure 6.7. The perturbations corre-

sponding to ky∆x = 0.42 is used as initial perturbation for the KHI growth in FLASH code

simulation. Normalized growth rate from linear results is calculated as ωi∆x/VA2 = 0.056. Fig-

ure 6.8 shows density profile obtained for ky∆x = 0.42 from linear results where wave emission

is visible into both regions.



CHAPTER 6. NONLINEAR EFFECTS AND MHD WAVE EMISSION 141

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

ω
i ∆

x/
V

A
2

ky  ∆x

Figure 6.7: KHI growth from linear calculations, θ1 = θ2 = 90◦ and MF2 = 2.5. Pertur-
bations at ky∆x = 0.42, marked by vertical black line, is used as initial perturbation in
the FLASH code simulation. At this point normalized growth rate is ωi∆x/VA2 = 0.056.

Figure 6.8: Density profile showing wave emission into both regions at ky∆x = 0.42
corresponding the point marked by a vertical line in Figure 6.7.
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When the perturbations in above marked point is used in the FLASH code as initial pertur-

bation, obtained results show very well agreement with the linear results. The result showing

growth of vx with time and log linear fit to data for vx growth are displayed in Figure 6.9 panels

(a) and (b), respectively. Growth of the vx velocity saturates at normalized time t/τA2 ' 15.

The normalized growth rate, ωi∆x/VA2, is calculated as 0.054 which is in well agreement with

the linear result of 0.056. Figure 6.10 is a density profile obtained from FLASH simulation results

displaying that wave emission is present into both regions. Since initial perturbations have larger

amplitudes in region 1 than in region 2, superposition of the emitted waves with the initial per-

turbations distorts the shape of the waves. Therefore, the stronger wave emission into region 1 is

not clearly visible. As the amplitude of the waves increase in the nonlinear stages, the stronger

emission into region 1 is more visible.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70  80  90

v
x
/V

A
2

t/τA2

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

 0  5  10  15  20  25  30

lo
g
(v

x
/V

A
2
)

t/τA2

(b)

Figure 6.9: Time evolution of maximum vx and linear growth rate calculated from FLASH
results for θ1 = θ2 = 90◦, MF2 = 2.5, and ky∆x = 0.42. Calculated growth rate is
ωiVA2/∆x = 0.054 which is in very good agreement with linear results where normalized
growth rates is calculated as 0.056.
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Figure 6.10: Density profile showing wave emission into both regions at normalized time
t/τA2 = 12.5 obtained from FLASH code simulations where the linear perturbations
corresponding ky∆x = 0.42 Figure 6.7 are used as initial perturbations.

6.4.2 Nonlinear KHI and Magnetosonic Wave Emission with Arbitrary

Initial Perturbation

In this section the same perturbation as in Lai and Lyu [2006] is used and evolution of KHI

and magnetosonic wave emission from MHD shear flow boundaries is investigated. It is suggested

in Lai and Lyu [2006] that these emitted waves were a result of nonlinearity, i.e. magnetosonic

wave emission can only occur during nonlinear stages of the KHI. In chapter 5 of this thesis,

emission of magnetosonic waves is shown to occur during linear stages of the KHI. Therefore,

nonlinearity should not be a necessary condition for wave emission.

A 2-D model of a shear flow boundary is considered with a boundary layer thickness ∆x

with all zero order quantities varying only along the x-direction. Following hyperbolic tangent

function is used to set up the background equilibrium across the boundary;

g0(x) =
g01 + g02

2
+
g01 − g02

2
tanh

(x
a

)
, (6.12)

where the variable g0(x) represents any background parameters such as B0(x), V0(x), ρ0(x), and

a is proportional to the boundary thickness, ∆x = 3a. We assume the background velocity in

region 1, V01 along y-direction and zero in region 2, V02 = 0. The background magnetic fields,
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B01, B02, are assumed to lie in y−z plane. All the background values are assumed to be uniform

in y and z direction and only vary along x direction across the boundary. The background

plasma pressure is chosen such that the total pressure is uniform across the boundary, which

means P01 + B2
01/2 = P02 + B2

02/2 with the normalization used in FLASH code. The boundary

conditions along y is set as periodic, wrap around, and along x is set as outflow, zero gradient.

Initial velocity which satisfies the condition that ∇·δV = 0 adapted from Lai and Lyu [2006]

is given to FLASH code to trigger KHI. The initial velocity perturbation is described as;

δvx = −δv0sech
(x
a

)
sin

(
2πy

λy

)
, (6.13)

δvy = δv0
λy

2πa
sech

(x
a

)
tanh

(x
a

)
cos

(
2πy

λy

)
. (6.14)

Above initial perturbation is periodic in the y-direction and finite extend in the x-direction.

Wavelength is λy and perturbation decays along x with a spatial decay length a [Lai and Lyu,

2006].

The physical parameters chosen are applicable to various MHD shear flow boundaries; mag-

netosphere - magnetosheath boundary [Nakai and Ueno, 2011; Hwang et al., 2011; Agapitov

et al., 2009; Gnavi et al., 2009; Foullon et al., 2008; Hasegawa et al., 2006; Owen et al., 2004,

e.g.,], BBF flow channel boundaries in the central plasmasheet [e.g., Angelopoulos et al., 1994;

Grigorenko et al., 2012; Ma et al., 2012], and shear flow boundaries in the solar coronal regions

[e.g., Andries and Goossens, 2001; Foullon et al., 2013; Ofman and Thompson, 2011; Nykyri and

Foullon, 2013; Cécere et al., 2014]. We have chosen Flash code normalization parameters as

%0 = ρ02, υ0 = VA2 = B02/
√

(ρ02µ0), and R0 = RE . Corresponding normalization parameters

are then P0 = ρ02V
2
A2, B02 = VA2

√
ρ02µ0, and τA2 = RE/VA2. The wavenumber is normalized

with the thickness of the transition layer ∆x. With this normalization scheme the background

plasma parameters are set as, ρ01 = ρ02 = 1, B01 = 1.25, B02 = 1. P01 = 0.4, P02 = 0.7,

β1 = 0.5, and β2 = 1.4. Here, β1,2 = P01,02/(B
2
01,02/2µ0) are the plasma beta values in regions

1 and 2. The flow velocity in region 2 is set to zero, while different values of flow velocity in

region 1 is considered. The direction of background magnetic fields is varied and emission of

magnetosound with and without the effects of magnetic tension is investigated.

The results of the simulations show that nonlinearity is a sufficient but not a necessary con-

dition for magnetosonic wave emission from an MHD shear flow boundary. We have considered
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only flow velocities corresponding to MF2 ≥ 1, since MHD wave emission is found to be possible

for this range of flow speed values in chapter 5 of this thesis.

6.4.3 Wave Emission Due to KHI in the Absence of Magnetic Tension

In this section, we investigate the KHI and MHD wave emission under the condition that

magnetic tension is zero. When the background magnetic fields are set along z-direction in both

regions for the model described in the previous section, the effects of magnetic tension is removed

from the boundary. Flow in region 1 V01 is set along y. We investigate the dependence of the

KHI growth rates on the normalized wave number at four different flow speed values in region

1. Figure 6.11 displays the variation of the normalized growth rates with respect to ky∆x for
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Figure 6.11: Growth rates vs ky∆x, for MF2 varying from 0.75 - 2.5. Growth rate and
wavelengths of the fastest growing modes decrease asMF2 increases. Flow speed values of
MF2 > 1 is chosen since MHD wave emission is not found to be possible for smaller flow
speeds. ky∆x values at which the maximum growth occur decreases as MF2 increases.

MF2 values 1, 1.25, 2.25, and 2.5. The growth rates reach to a maximum and then decreases

to zero for all shear flow values considered. Figure 6.11 displays that the growth rate and

wavenumber of fastest growing modes decrease with increasing MF2. These results agrees with

linear results obtained in chapter 5. The wave emission starts for flow speed values corresponding

to MF2 ≥ 2.25. However, as MF2 increases beyond 2.5, wave emission process starts happening

only at nonlinear stages. There is no growing mode after MF2 = 6.5.

For the flow speed values corresponding to MF2 ≤ 2.25, wave propagation is not observed
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both in linear and in nonlinear stages. Figure 6.12 shows the maximum value of perpendicular

velocity change over the time for flow speed corresponding to MF2 = 1 and ky∆x = 0.83. It is

seen on the Figure 6.12 that linear growth of vx/VA2 saturates at normalized time t/τA2 ' 55

and magnetosonic wave emission is not present. If wave emission is existent, wavy structures

would be seen on the profile of the vx velocity component (see Figure 6.14 panel (a) ). KHI

growth rate form above graph is calculated as ωi∆x/VA2 = 0.13.
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Figure 6.12: Growth of vx component with t/τA2 for MF2 = 1.0 and kyδx = 0.83. It is
possible to conclude from this plot that MHD wave emission is not possible at any stages
of the KHI. If present, emission of magnetosound would show wavy structures on the
growth of vx profile (see Figure 6.14 ).

Figure 6.13 shows density profile superposed with velocity vector at normalized time t/τA2 =

51.35. Only KHI vortices without any sign of emission of magnetosound are seen on Figure 6.13.

We have investigated the process until normalized time t/τA2 = 300 and found that neither linear

nor nonlinear stages produce wave emission. We have also investigated different ky∆x and shear

flow values where emission of magnetosound is found not to be possible as long as MF2 < 2.25.

KHI growth rates decrease with increasing flow speeds and wave emission becomes possible

at MF2 ≥ 2.25. Wave emission is found to be present at both linear and nonlinear stages of the

KHI. Figure 6.14 show the growth of vx velocity (panel (a)) and calculated growth rate with log

linear fit (panel (b)) forMF2 = 2.5 and ky∆x = 0.45. Growth of vx saturates at t/τA2 = 180 after

which it decays and settles into a quasi steady oscillations. Sharp peak obtained at normalized
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Figure 6.13: Superposed plot of density and total velocity at t/τA2 = 51.5 for flow speed
value corresponding to MF2 = 1.0. KHI vortices are visible while wave emission is not
present.

time t/τA2 ' 25 is possibly due to resonances which is out of the scope of this thesis. Normalized

growth rate is calculated from log linear fit in panel (b) in Figure 6.14 as ωi∆x/VA2 = 0.02. The

small value of growth rate is due to MHD wave emission controlling the KHI evolution on the

boundary. When the wave emission starts the KHI growth is hindered since energy available on

the boundary is efficiently carried away with the magnetosonic waves emitted.

Figures 6.15 and 6.16 show density profile and vorticity at normalized time t/τA2 = 139.5.

Figure 6.15 shows wave emission into both region with stronger emission into the region 1. Figure

6.16 shows that the vortices are not very strongly rolled up due to the wave emission process.

Even at the nonlinear stages of the KHI, rolled up vortices are not found to be possible if wave

emission is occurring along the boundary.

Plasma and magnetic pressure variations are shown in Figure 6.17 at the same normalized

time as in Figure 6.15 at positions x = −7.5RE (panel (a)), x = 0RE (panel (b)), and x = 7.5RE

(panel (c)). These are corresponding region 1, along the boundary and region 2, respectively.

Pressure variations are in phase in both regions implying that the emitted waves are fast MHD

waves. This shows that the primary KHI is occurring on the shear flow boundary [Turkakin

et al., 2013]. An MHD shear flow boundary may also emit slow magnetosonic waves which would

be due to the secondary KHI which is subject to future work.
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Figure 6.14: Growth of vx component with t/τA2 (panel (a) ) and log linear fit (panel
(b) ) for MF2 = 2.5, and ky∆x = 0.45 . Normalized growth rate is calculated from panel
(b) is ωi∆x/VA2 = 0.02.

Figure 6.15: Density profile at t/τA2 = 139.5 for θ1 = θ2 = 90◦, Mfast2 = 2.5 and
ky∆x = 0.45 .
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Figure 6.16: Vorticity at t/τA2 = 139.5 at the same time as Figure 6.15, Mfast2 = 2.5 .
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Figure 6.17: Pressure perturbations along y-direction at three different positions along x
obtained from Figure 6.15. Panel (a) is for x = −7.5 in region 1, panel (b) is for x = 0,
and panel (c) is for x = 7.5 in region 2. Variations of plasma and magnetic pressure are
in phase implying that emitted waves are fast MHD waves in both regions.
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As the flow speed increases, wave emission starts to happen closer to the nonlinear stages

and only in nonlinear stages for MF2 = 3. Figure 6.18 shows this fact for flow speed value

corresponding to MF2 = 3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350

v
x
/V

A
2

t/τA2

Figure 6.18: Growth of vx component with t/τA2 for flow speed corresponding to MF2 =
3.0. Spontaneous wave emission is not obtained in the linear stages of KHI for this flow
speed value.

When we include a magnetic field component parallel to the boundary the KHI growth starts

at a later time. Although the growth rate is not smaller than zero magnetic tension case, growth

in amplitude is smaller. Figure 6.19 shows the growth of vx, panel (a), and log linear fit, panel

(b), for MF2 = 2.5, θ1 = 60◦, θ2 = 30◦, and ky∆x = 0.45. KHI growth rate is calculated as

wi∆x/VA2 = 0.02 and is quickly saturated due to the strong magnetic tension in both sides.

Density profile at t/τA2 = 204.5 shows that strong wave emission is present in linear stages of

the KHI for this configuration into both regions. This result agrees with the results obtained in

chapter 5.
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Figure 6.19: Growth of vx component with t/τA2 with parameters; MF2 = 2.5, θ1 =
60◦, θ2 = 30◦, and ky∆x = 0.45 .

Figure 6.20: density at t/τA2 = 204.5 from runs with parameters in this section,Mfast2 =
2.5 with angles changed to θ1 = 60◦, θ2 = 30◦.
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We have also found not only the values of background parameters, but also the type of

perturbations have significant effects on the growth of the KHI and emission of magnetosound

from an MHD shear flow boundary. Not all type of perturbations evolve to give a result of KHI

and emission of magnetosound. This fact is tested using the same perturbations as in Rankin

et al. [1993] and Waagan et al. [2011] and with the background parameters above, for which

MHD wave emission is obtained. The KHI growth is found to be possible depending on the shear

flow speed, however, MHD wave emission is not obtained. This result is significant in showing

that along the MHD shear flow boundaries in the solar-terrestrial environment and other remote

astrophysical objects the KHI and magnetosonic wave emission is not possible for all type of

initial perturbation.

6.5 Applications to Various MHD Shear Flow Boundaries

Kelvin-Helmholtz Instability (KHI) is often observed along shear flow boundaries in the

solar atmosphere, in interplanetary space and planetary magnetospheres. It is also possible on

the shear flow boundaries in remote astrophysical objects such as accretion disks, black holes and

neutron stars. KHI controls physical processes such as plasma mixing, energy and momentum

transfer in between two different media in both sides of these boundaries.

As studied in chapter 3 of this thesis, the KHI is generated due the velocity shear between

magnetosheath and magnetosphere flows of the Earth and it plays momentous roles in many mag-

netospheric phenomena. Such are generation of geomagnetic pulsations [Agapitov et al., 2009;

Villante, 2007; Rae et al., 2005; Chen and Hasegawa, 1993; Miura and Pritchett , 1982; Walker ,

1981; Southwood , 1974], inducing magnetic reconnection and plasma mixing at the magnetopause

during northward Interplanetary Magnetic Field(IMF) [Nakai and Ueno, 2011; Pegoraro et al.,

2008; Nakamura et al., 2006; Fairfield et al., 2000], causing momentum and energy transport

across the magnetopause [Hasegawa et al., 2006; Kivelson and Chen, 1995; Miura, 1984; Pu and

Kivelson, 1983b], and initiating field line resonances [Mann et al., 1999; Mills and Wright , 2000].

The KHI generated surface waves on the BBF boundaries in the inner plasmasheet, which is also

studied in chapter 4 of this thesis, may also be a possible motive for the substorms expansion

onsets which are key elements for solar wind interaction with the Earth’s magnetosphere and the

ionosphere [Uberoi , 2006; Lui , 2004; Yoon et al., 1996; Rae et al., 2005].
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KHI on the MHD shear flow boundaries is also a significant tool for understanding many

physical processes in solar atmosphere heliopause, and remote astrophysical objects such as ac-

cretion disks, galactic centers molecular clouds, and cometary tails. For instance, in the solar

atmosphere KHI is a process that could lead to plume/interplume mixing, provide a source for

Alfvénic fluctuations [Andries and Goossens, 2001; Andries et al., 2000] and mixing of Coro-

nal Mass Ejection (CME) regions with the outside region of the solar corona [Foullon et al.,

2011, 2013; Nykyri and Foullon, 2013; Möstl et al., 2013]. On the heliopause, the boundary

between the solar system and interstellar wind, the KHI can affect the energy transport from

interstellar medium into the solar system [Ruderman and Fahr , 1993, 1995; Taroyan and Ruder-

man, 2011]. KHI is also possible along the boundary of cometary plasma tails which causes the

mixing of the solar wind and cometary tail plasmas [e.g., Ershkovich and Mendis, 1986; Niedner

et al., 1983]. In protoplanetary disks, the KHI inhibits the settling of dust particles and stops

planetary formation by mixing the dust with the gas [Johansen et al., 2006; Baranov , 2009]. KHI

is also suggested to be an efficient mechanism for mixing chemical elements in interstellar medium

[e.g., Berné and Matsumoto, 2012] and deformation of the astrophysical jets [e.g., Micono et al.,

2000; Lai and Lyu, 2008].

We introduce emission of magnetosound due to the action of the KHI along MHD shear flow

boundaries as a new efficient way of energy transport in between two media. Results shown may

be applicable to all of the above mentioned shear flow boundaries.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we have investigated the Kelvin-Helmholtz Instability (KHI) and emission of

magnetosound due to KHI along various MHD shear flow boundaries in the solar-terrestrial en-

vironment and solar corona. Although parameters used are applicable to these environments,

characteristic behavior of the KHI and MHD wave emission will be similar in remote astrophys-

ical objects where KHI is also possible.

In chapter 1 we have introduced the background information about the solar-terrestrial envi-

ronment, MHD approach for studying plasmas and MHD waves which are closely related to the

KHI on MHD shear flow boundaries.

In chapter 2 we show background and theory for the KHI on MHD shear flow boundaries.

Derivations for three different approaches for solving the KHI along MHD shear flow boundaries

are shown in detail. First the linear development of the KHI where transition thickness between

two plasma regions is assumed to be zero is considered and detailed derivations are shown. Two

different boundary conditions are considered for zero transition thickness approximation, semi-

infinite plasmas in both regions and a boundary is added in one of the regions while other plasma

region is still assumed to be semi-infinite. Following, derivations for non-zero transition thickness

with two semi-infinite plasmas on both sided of the boundary is shown. In this chapter a possible

relation between the KHI and Negative Energy Waves (NEWs) is also discussed.

Chapter 3 shows the first paper published on the primary and secondary KHI along the
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magnetopause boundary using bounded and unbounded models and a zero thickness boundary

approach. We show that fast MHD waves generate the primary KHI and slow MHD waves

generate the secondary KHI along the magnetopause boundary. It is found that at sufficiently

high flow speed, a KHI unstable boundary separating two semi-infinite plasma regions is always

ultimately stabilized to KHI growth at an upper cut-off velocity. If an inner boundary is included

in one plasma region, however, this stabilization is removed. Phase velocity diagrams of fast and

slow MHD waves that correspond to growing modes of the KHI are shown. These diagrams have

shown that the KH unstable fast and slow MHD modes behave as expected on the near-Earth

flanks. On the deeper flank and into the magnetotail, where magnetic fields in the magnetosphere

and magnetosheath become more aligned, we have identified new intermediate-fast modes which

can have phase speeds above the Alfvén speed and cannot propagate exactly perpendicularly to

the magnetic field. In the plasma frame, the primary unstable KHI waves show fast MHD wave

behavior in both the magnetosphere and magnetosheath, while secondary KHI waves show slow

wave behavior in the magnetosphere and fast wave behavior in the magnetosheath. It is found

that the secondary KHI occurs at slower flow speeds and grows more slowly than the primary

KHI. Although the growth of the secondary KHI is only possible for a narrow range of angles

between the magnetosphere and magnetosheath magnetic fields, it is found to be the most prob-

able means of energy transportation on the dayside magnetosphere. This is due to the fact that

the flow speed needed to generate primary KHI is usually not observed on the dayside. Further

down the flanks and on the nightside magnetopause, both the primary and secondary KHI lower

cut-off speeds can be reached and thus energy propagation into the magnetosphere from the

magnetosheath can be possible due to both. Doppler shifted frequencies of the KHI waves have

shown that both fast and slow KHI waves are also NEWs - they have negative Doppler shifted

frequencies. This result suggests that, the same as NEWs, the KHI waves also extracts energy

from the background flow through the work done by the Maxwell and Reynolds stresses.

Chapter 4 shows the second paper published on the KH unstable magnetotail flow channels.

This work is significant in providing the first theoretical work which explains the link between

Bursty Bulk Flow (BBFs), the KHI, and excitation of wave modes in the central plasma sheet

which are often observed and referred to tail flapping. Our work is the first to consider emission

of magnetosound due to KHI from the BBF channels towards the flanks of the magnetopause. We

have investigated MHD oscillations of the channel in both kink and sausage modes for the KHI
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and found that both the primary and the secondary KHI drive MHD waves. We have also shown

that the yet unexplained flow channel breaking is likely the KHI where emitted magnetosonic

waves (fast and slow MHD waves) remove the energy from the flow. MHD wave emission due

to the KHI is found to occur at flow speed values past the peak growth rates when KHI surface

waves develop into propagating modes.

In chapter 5 we investigated the KHI and emission of magnetosound from an MHD shear flow

boundary with a finite thickness. We have assumed two semi-infinite plasmas on both sides of the

MHD boundary. We have found that the KHI and emission of MHD waves are two competing

processes and the fastest growing modes of the KHI surface waves do not coincide with efficient

wave energy transport. Directions of the magnetic fields on both sides of the boundary are found

to have significant impact on the development of the KHI and MHD wave emission. MHD wave

emission is found to be weak when the growth rates of the KHI surface waves are maximum,

which occurs when the ambient magnetic fields on both sides of the boundary are perpendic-

ular to the shear flow boundary. The efficiency of the wave emission increases with increasing

magnetic tension, with magnetic fields components parallel to the boundary. Application of the

results to the various MHD shear flow boundaries is also discussed. We have concluded that

emission of magnetosound dominates along the nightside magnetopause, within BBFs in the in-

ner plasma sheet, and in Supra-Arcade Downflows (SADs) in the solar corona, while the growth

of the KHI surface waves dominates along the dayside magnetopause and Coronal Mass Ejection

(CME) boundaries.

In chapter 6 we have investigated the nonlinear evolution of the KHI and MHD wave

emission from MHD shear flow boundaries using the FLASH code developed by University of

Chicago/Alliance Flash Center. We have tested the efficiency of the code using the same param-

eter setup as is Rankin et al. [1993] and Waagan et al. [2011] and our results were in excellent

agreement with the results obtained in these papers. Following, we have compared the linear

results obtained in chapter 5 with the FLASH code simulation results by using the linear pertur-

bations as initial seed for the growth of the KHI. The KHI growth rates obtained from FLASH

simulations were in good agreement with the linear results. Development of the KHI and wave

emission are then investigated using an arbitrary perturbation adapted from Lai and Lyu [2006].

We have investigated the effect of the magnetic tension by changing the direction of the ambient

magnetic fields in the FLASH code simulations as well. Results were in agreement with the



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 157

linear results obtained in the chapter 5. We have shown that contrary to what is suggested in Lai

and Lyu [2006], nonlinearity is a sufficient but not a necessary condition for the wave emission.

Our results have shown that the emission of magnetosound is possible both in the linear and

nonlinear stages of the KHI depending on the background parameters, specifically the flow speed

strength. When the magnetic fields are perpendicular to the boundary in both regions and flow

speed values corresponding to MF2 = V01/Vfast2 < 2.25 wave emission is not possible in either

the linear or nonlinear stages. When flow speed reaches a value corresponding to MF2 ≥ 2.25

MHD wave emission is found to be present in both linear and nonlinear stages. As we continue to

increase the flow speed up to MF2 ≥ 3 wave emission becomes mainly possible in the nonlinear

stages. We have included magnetic tension by changing the direction of the ambient magnetic

fields and found that the growth rates of the KHI wave did not change significantly. The time

where the KHI surface wave growth starts is increased however, the KHI surface wave growth is

saturated in a shorter time, and the growth of the wave amplitude is found to be smaller than

in the zero magnetic tension case. The emission of magnetosound is found to be stronger than

that of the zero magnetic tension case. This result suggests that strong wave emission may be

the cause for the early saturation of the KHI growth. We have discussed the application of the

results in this chapter to various shear flow boundaries in the solar-terrestrial environment and

remote astrophysical objects.

Future works may include Using resistive MHD, including inhomogeneities in the plasma re-

gions in both sides of the MHD shear flow boundaries and using two-fluid MHD approach which

may have significant impacts on the KHI and emission of magnetosound from MHD shear flow

boundaries. We have investigated the secondary KHI, which is generated by slow MHD waves,

and wave emission due to the action of the secondary KHI only for the zero thickness boundary

approach. Future work on the linear and nonlinear evolution of the secondary KHI for a finite

thickness MHD boundary may provide a better understanding of the phenomenon.
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