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ABSTRACT

Multiple-indicator kriging (MIK) manages outlier values through the indicator transform,
it generates the distribution of uncertainty non-parametrically through direct estimation
of the indicator-probability thresholds, and it readily incorporates secondary, categorical
data into the estimate. These features make it attractive for use in the mining industry, espe-
cially for mineral deposits containing highly positively skewed data distributions. Order-
relations corrections leading to an inconsistent probability distribution present a notable
drawback. Furthermore, the use of constant, indicator-class means impacts estimate qual-
ity in the upper tail of the distribution, which often comprises significant economic value.
The first contribution of this thesis documents the deviations and spatial variability of the
estimated probability distribution against a fully consistent, and known probability dis-
tribution. Next, the indicator-class-mean component of the MIK estimator is isolated and
compared to the known distribution of correct values. This research demonstrates that the
indicator-class means vary as a function of the conditioning values. The greatest variability
is observed in the lower and upper tails. The second contribution of this thesis is a com-
parison of MIK and multivariate-Gaussian kriging (MGK) estimates using non-Gaussian
data. Motivating the comparison is the assertion that when using Gaussian data, MGK
will always generate estimates with lower mean-squared error than MIK. Multiple scenar-
ios ranging from highly non-Gaussian to Gaussian, are generated with the expectation that
MIK will outperform MGK once the data were sufficiently non-Gaussian. In the scenarios
tested, MGK consistently generates more accurate and precise estimates, demonstrating
that MGK can produce robust estimates, even in the presence of highly non-Gaussian data.
The place of MIK remains unclear; however, the procedures and standards to assess the

relative performance of MIK and other techniques are documented more clearly.
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CHAPTER 1

INTRODUCTION

The initial and boundary conditions of diverse geological processes that lead to a concen-
tration of minerals in the Earth’s crust are never completely understood. The list of cir-
cumstances required to yield a mineral deposit include the following: 1) a source fluid
bearing the necessary minerals, 2) a network of pathways allowing the fluids to migrate,
3) favourable permeable and impermeable rock types acting respectively as mineraliza-
tion hosts and barriers to further fluid transport, 4) a chemical mechanism precipitating
the minerals from solution, and 5) chemical or physical processes concentrating the miner-
als. Though unrelated to the aforementioned processes, the roles of uplift and erosion are
paramount in providing access for geological sampling and subsequent mineral resource
evaluation. If an economic assessment of the resource model demonstrates the deposit
to be commercially viable, the deposit can be mined. The desire to study and model the
outcomes of these natural processes has led to the development of geostatistics, which com-

bines the fields of applied statistics and geology.

The objective of the mineral resource model is to represent, as best as possible, the out-
comes of subsurface phenomena in order to understand technical, environmental, social,
and economic impacts of a potential future mine. The mine plan relies on the mineral re-
source model to economically extract the mineral reserve. The mineral resource model
is impacted greatly by sampling, which is often highly selective and focused in zones of

higher anticipated value due to high acquisition costs.

Certain mineral deposits have characteristically positively skewed distributions, such
as those containing diamonds, gold, uranium, and to a lesser extent, silver and base metals.

The metal content represented by the relatively small proportion of samples comprising
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the upper tail of the distribution is often significant relative to the samples closer to the
mean or median of the distribution. When the coefficient of variation is greater than two,
which is not uncommon, outlier values negatively impact estimation quality (Journel, 1983).
Logically, accurate delineation and quantification of high-grade zones in these deposits is

essential to generate high-quality mine plans and reliable financial forecasts.

Common deterministic estimation techniques used to quantify mineral resources in
these types of deposits include, in order of increasing complexity, nearest-neighbour, inverse-
distance weighting, and kriging. The nearest-neighbour technique assigns the value of the
nearest sample to the unsampled location. Inverse-distance weighting, as the name im-
plies, weights nearby samples according to their proximity to the unsampled location. An
exponent, commonly of value two or three, can be assigned to the distance weighting so
as to give more weight to nearby samples. Kriging is a geostatistical technique that min-
imizes estimation error, which is the criterion used to define a “best” estimator. Kriging
considers the spatial relationships and similarities of neighbouring samples to each other
and to the unsampled location. While nearest neighbour and inverse-distance weighting
are commonly used estimation techniques, they suffer from two primary drawbacks in
comparison to kriging: 1) estimation error is high around outlier samples due to inflated
estimated grades proximal to the outlier values (Journel, 1983; Rossi & Deutsch, 2014), and
2) they cannot be used to quantify estimation uncertainty. All three techniques require
prior treatment of the outlier values through top cutting, also known as grade capping,
to mitigate over-estimation at unsampled locations, which paradoxically, can significantly
reduce the economic value of the deposit (e.g., Babakhani, 2014; Chiquini & Deutsch, 2017;

Costa, 2003; Parker, 1991; Rivoirard, Demange, Freulon, Lécureuil, & Bellot, 2013).

Probabilistic estimation quantifies the distribution of uncertainty at the unsampled lo-
cation. Simulation techniques such as sequential Gaussian simulation are commonly em-
ployed because they are theoretically straightforward and provide a joint distribution of un-

certainty between a set of realizations. Furthermore, today’s computer processing power
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has greatly reduced simulation run times. Non-simulation based techniques include indi-
cator kriging (IK), commonly implemented as multiple-indicator kriging (MIK), developed
by Journel (1983), and multivariate-Gaussian kriging (MGK) developed by Verly (1983).
Despite its relatively time-intensive workflow relative to MGK and simulation methods,
IK remains a commonly used technique in the mining industry. Three motivating factors
for the development of the IK methodology include 1) non-parametric construction of the
probability distribution, 2) management of outlier values through the indicator transform,
and 3) simple incorporation into the estimate of secondary, categorical data such as the
presence or absence of a rock type, geological structure, or some other geological feature
(C. Deutsch & Journel, 1998; Goovaerts, 1997). Counterbalancing the positive features of

the IK method are several implementation challenges, which form the basis of this research.

The following sections in this chapter review fundamental geostatistical concepts and
notation before introduction of the indicator formalism and IK. Estimation accuracy and
precision concepts are briefly presented to provide the basis for comparisons of estimate
quality. The IK implementation challenges are presented and are used to focus the research
goals. This chapter concludes with a thesis statement and an outline of the research in the

subsequent chapters.

1.1 Fundamental geostatistical concepts

1.1.1 Random variables and random functions

A key contribution to the geostatistical framework is the underlying random function (RF)
model, which permits the inference of statistical properties of the sample distribution (Math-
eron, 1970). It recognizes the inherent uncertainty of estimation at unsampled locations
and provides the mathematical tools, through probabilistic theory, for estimation and as-
sessment of estimation uncertainty (C. Deutsch & Journel, 1998; Goovaerts, 1997; Isaaks &

Srivastava, 1989; Journel, 1989). As the field of geostatistics has developed since its incep-
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tion under Georges Matheron, mineral resource estimates have evolved from deterministic,
single-value outcomes at each unsampled location to more complex probabilistic realiza-
tions that assess joint distributions of uncertainty between many variables. Simulation
methods are outside the scope of this thesis, but their importance to the field of geostatis-

tics and mineral resource estimation warrants mentioning.

A random variable (RV) can take on a series of values based on a probability distribu-
tion, either continuous or discrete. Continuous RVs have a range of values with a natural
order. These include elemental concentrations, rock densities, and other rock properties.
Discrete RVs have a finite number of outcomes and are often unordered. Geological ex-
amples include rock types or the binary presence or absence of a feature such as a fault
or alteration style (Goovaerts, 1997). Random variables are denoted by a capital letter, Z,
with an outcome of the RV denoted by its lower-case form, z. With earth-science datasets,
RVs are often location dependent, thus the notation Z(u) is used to describe the RV at the

location-coordinates vector of a finite number of locations, u,, a =1, ..., n.

The univariate cumulative-distribution function (CDF) of a continuous RV, Z(u), is de-
fined as the probability that the RV Z(u) is less than or equal to the specified value, z,
as: Fz(u;z) = Prob{Z(u) < z}, Vz. The function must be licit, meaning that it is non-
decreasing, F(u;z;) < F(u;zp) ¥V k < k', and the cumulative probabilities are bounded
within [0, 1]. The global univariate CDF does not account for neighbouring information at

other locations, u’, and is commonly referred to as the prior uncertainty.

Regionalization of an RV over the finite number of locations in a domain, A, defines
an RF: {Z(u,) V u € A}. Consider M-number of data types such as geochemical concen-
tration (grade), mineralogical suites, or other rock properties, where each property is in-
dexed as m = 1,..., M. The RF-notation defined in Equation 1.1 is unchanged from the

RV-notation, except it represents the M-variate CDF (Goovaerts, 1997):

Fz ..z, 21,0, 20) = Prob{Z(w) < z1,..., Z(uy,) < zm} (1.1)
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The M-variate CDF models the joint uncertainty and spatial variability about the n-
number of data locations in the same manner the univariate CDF is used to model un-
certainty about the value z(u,) (C. Deutsch & Journel, 1998). This permits the definition
of the random function probabilistically and facilitates the use of the expected-value op-
erator, E{}, to express key summary statistics of the random functions (Matheron, 1970).
The conditional, cumulative-distribution functions (CCDFs) defining the distributions of
uncertainty at a location given the surrounding data values are referred to as the poste-
rior uncertainty (Equation 1.2). Note that unless it is required, the data-type index, m, is

dropped henceforth to simplify notation.

Fz(u;z|(n)) = Prob{Z(u) < z|(n)}, Vz (1.2)

1.1.2 The decision of stationarity and the variogram

Repetitive sampling is required to make statistical inferences about a distribution and its
underlying parameters such as its mean, 7, and variance, o2, values. This is impractical in
a real-world setting because a sample can only be taken once at each location. No material
remains in that precise location to be drawn again. The decision of stationarity is made
to navigate this challenge. It permits samples to be grouped and considered for statistical
inference as a single “homogeneous” set within the domain limits, .4. Note that stationar-
ity needed to infer the characteristics of the RF, but it is not a characteristic of the natural
phenomena itself, since it cannot be proven or refuted based on the data (Goovaerts, 1997).
Domain limits can be as simple as defining a single rock type containing mineralization, or
more complex such as a network of faults acting as fluid conduits. Regardless of the do-
main complexity, geostatistical modelling requires simplification to infer univariate statis-
tics such as the mean and variance from the histogram, bivariate statistics such as spatial

covariance and semi-variogram functions, or other higher-order multivariate statistics.

The challenge of obtaining multiple samples to infer distribution parameters is man-

aged by evaluating all sample pairs, u, and ug, separated by a lag distance vector, h, where

5
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h = u, —ug, a # B. The criteria for a second-order stationary random function are 1) each
RV has a constant mean, 77, within A (Equation 1.3), and 2) the covariance function, C'(h),

between two RVs exists and depends solely on the h-lag vector (Equation 1.4).

E{Z(u)} =my (1.3)

E{[Z(u) —mz|[Z(u+h) —mz]|} = Cz(h) (1.4)

The semi-variogram, v(h), hereafter referred to as the variogram, is commonly used
to infer the covariance (Equation 1.5). It is a measure of dissimilarity between two RVs
separated by lag vector, h. The number of sample pairs separated by, h, is denoted by,

N (h). The *-symbol is used to denote inference from a set of samples over a finite number

of data.
12(h) = SE{[Z(w) - Z(u+ )P}
LY ) YueA (1.5)
72 = 33 ; 2(1a) = 2(u + h)|

where the variogram value, v (h), represents the average of the distance, d, of the data
pairs to the 45°-line in the bivariate h-scatter plot (Figure 1.1). Under second-order station-
arity, there is a straightforward relationship between the variogram and the covariance

(Equation 1.6).
v(h) = 0? — C(h) (1.6)

where, 02, denotes the stationary variance.

Experimental variogram points are calculated from composited sample data. If the ori-
entations of the local geological structures are not well understood, an omnidirectional
variogram is calculated by considering all data pairs at a specified h-lag distance. This
yields an isotropic variogram. If the geology is understood, then angular constraints may

be applied to restrict the data pairs considered in the calculation at each h-lag distance.
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Z(u) = Z(u + h)

N
~d
N

Z(u + h)

Z(u)

Figure 1.1: Example of bivariate h-scatter plot.

This defines orthogonal directions of maximum and minimum continuity, or in terms of
covariance, directions of respective least and greatest dissimilarity. These directions often
correspond to the strike and dip of the geological unit or package of units comprising the
region or domain, 4. A third direction is also defined when the data are in three dimen-
sions. The following terms apply to the directions in decreasing order of spatial continuity:
major, minor, and vertical. A common alternative naming convention uses the terms major,

semi-major, and minor.

1.1.3 Variogram modelling and the linear model of regionalization

Modelling of the experimental variograms along the major, minor, and vertical axes per-
mits the calculation of the variogram value at any possible distance and direction. Though
any analytical, continuous function could be used to model the experimental points, only
certain functions that guarantee a positive-definite covariance matrix can be used. The
most commonly used functions for modelling geochemical values in mining and petroleum

datasets are the spherical and exponential models (Equation 1.7 and Equation 1.8). The
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Gaussian model is often used to model surface boundaries or regions where there is sig-
nificant short-range continuity (Equation 1.9). The nugget effect describes the variogram
at lag distance, h = 0 (Equation 1.10). This value is theoretically zero, but due to sampling
and analysis errors and mineralogical heterogeneity at ranges smaller than the sampling
scale, a discontinuity may be modelled at the variogram origin (Goovaerts, 1997). Other

valid analytical functions exist, but they are not used in this work (e.g., Chilés & Delfiner,

2012).
h 152 —05(L)3, ifh<r
Sph(;) = (1.7)
1, otherwise
Exzp(h) =1—exp <_3h> (1.8)
T
_ap2
Gauss(h) =1 — exp ( 32h ) (1.9)
r
0, ifh=0
Nugg(h) = (1.10)

1, otherwise

The range parameter, r, defines the distance at which the variogram reaches the sta-
tionary variance, also known as the sill. The sill is often standardized to unity to facili-
tate easier modelling and interpretation of the variogram. The exponential and Gaussian
models reach the sill asymptotically, so their effective range values are considered to be at
95-percent of the sill. The models in Equation 1.7 through Equation 1.10 are expressed in
their isotropic form, where the scalar, ~ = |h|. To account for anisotropy, the distance is

calculated using the modelled ranges in Equation 1.11.

2 2 2
B = J (hmajor ) + (hminor > + (hvertical ) (111)
Tmagjor T'minor Tvertical
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Goovaerts (1997) nicely summarizes the development of the linear model of regional-
ization that is required to completely describe sample covariance in a region or domain, A.
It is often necessary to combine, or nest, two or more variogram functions to adequately
fit the calculated experimental variogram points. The linear model of regionalization ad-
dresses this need by creating a new random function, Z(u), that is a linear combination of
(L + 1)-independent random functions, X!(u), each with a mean of zero, that are defined

by some positive-definite variogram function, ¢'(h) (Equation 1.12).
L
Zu) =Y dX'u)+m (1.12)
1=0

where, ¢!

,is a scaling factor. Independence of the random functions means their covari-
ance is zero when, | # I/, which simplifies the inference of the variogram, v(h), to a linear

combination of variogram functions, g'(h) (Equation 1.13):

L
() =3 'd'(h) (1.13)

=0

where, b = (¢!)? > 0, is the variance contribution of the g'(h)-variogram model. The

nugget effect model is the (I = 0)-term by convention (Goovaerts, 1997).

1.1.4 Deterministic estimation

Deterministic estimation techniques commonly utilized in mineral resource estimates of
metalliferous deposits include nearest neighbour, inverse-distance weighting, and kriging.
Further information on the first two techniques can be found in introductory geostatistical

texts (e.g., Rossi & Deutsch, 2014).

Kriging is a least-squares, linear regression method that yields an estimate, z, at an un-

sampled location, ug, using a set of spatially correlated conditioning data (Equation 1.14).
Z(ug) —m(u) = > Aalz(ua) — M(ug)] (1.14)
a=1

where, )\, is the kriging weight assigned to the sample datum, z,. The mean term,
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m(u), is the expected value of the RV, Z(u).

Kriging is an unbiased estimator that minimizes estimation error variance, o%(u) =
E{[Z(ug) — Z(ug)]?}, which leads to the system of normal equations (Equation 1.15). The
system of equations is solved for the kriging weights, which are substituted into the kriging
estimator. The notation, C,, g3 and C, , respectively denote the covariance between two
sample locations, C'(u, — ug), and the covariance between the sample and the unsampled

location, C'(u, — up). The estimation variance is defined in Equation 1.16.

> AsCap=Cap, a=1,...n (1.15)
B=1
o7(0) =07 — 2> AaCao+ D> AaAsCap (1.16)
a=1 a=1p=1

There are several variants of kriging that vary by the treatment of the mean term, m,
in Equation 1.14. Simple kriging (S5K) assumes strict stationarity, such that the mean is
known and constant throughout the domain: m(u) = m, V u € A (Equation 1.17). The
estimation error, 8%, is minimized to yield the optimized kriging weights and the simple-

kriging variance, 5%, (Equation 1.18).

Zsr(ug) = DA Kz(ua) + [1- > AgK] -z (ug) (1.17)
a=1 a=1
Gar (o) =0z — Y AN Cay (1.18)
a=1

In ordinary kriging (OK), the stationarity requirement is relaxed such that the mean,
though unknown, is constant only within the local search neighbourhood, W (u), that is
centred on w: m(u’) = m, V u’ € W(u). An additional constraint is applied such that the
kriging weights sum to unity (Equation 1.19). This leads to an updated minimized error
variance that considers the constraint (Equation1.20).

Zox(wp) = Y AFz(u,), with Y A9F =1 (1.19)
a=1

a=1

10
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5o (o) =02 = > AJKCuo — pok (1.20)

a=1
where the LaGrange multiplier, j, accounts for the constraint forcing the kriging weights
to sum to unity. Other kriging variants are not required in this thesis, but they can be ref-
erenced in most geostatistical texts (e.g., Chilés & Delfiner, 2012; Goovaerts, 1997; Rossi &

Deutsch, 2014).

1.1.5 Probabilistic estimation

Probabilistic estimation is motivated by the need to define the distribution of uncertainty
at the estimate location, z(u). Kriging is used as the engine to generate the CCDF (Equa-
tion 1.2). Multivariate-Gaussian kriging and IK belong to this family of techniques. With
MGK, the Z(u)-random variable is transformed from original units to a standard-normal,
RV, Y (u), before SK estimation under a multivariate-Gaussian (MG) assumption (e.g., Goovaerts,

1997; Pyrcz & Deutsch, 2018; Verly, 1983) (Equation 1.21).
y =Gy (Fz(2) V= (1.21)

where G~! is the inverse of the standard-normal, CDF. The normal-score transform is a
quantile-to-quantile transform that matches quantiles, p, of the distribution in original units

to the same p-quantiles of the distribution in Gaussian units.

It is noteworthy that after a normal-score transform, the relationship between the RVs is
not necessarily multivariate Gaussian. This is due to non-linear, constraint, or non-uniform
variance (heteroscedastic) relationships (J. Deutsch & Deutsch, 2011). Multivariate normal-
ity is difficult to check in practice because it requires locating a sufficient number replicate
sets of data with the same spatial configuration. This quickly becomes untenable when
there are a large number of unsampled locations. There are multiple statistical tests avail-
able for the MG distribution, many of which are well summarized in Gnanadesikan (1997)

and Thode Jr. (2002), but they often require significant investigation into the marginal dis-

11
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tributions. For earth-sciences datasets involving many variables, this can be quite time

intensive and impractical for the geostatistics practitioner (J. Deutsch & Deutsch, 2011).

If a spatial distribution is considered to be bivariate Gaussian, then an MG distribution
is assumed (Goovaerts, 1997). It is mathematically tractable and has several useful prop-
erties that facilitate its use in geostatistics (Equation 1.22): 1) all lower-order marginal and
conditional distributions are Gaussian, 2) all conditional expectations are linear functions
of the conditioning data, 3) all conditional variances are independent of the data values (ho-
moscedastic), and 4) if two RVs are uncorrelated, they are also independent (C. Deutsch &
Journel, 1998; Goovaerts, 1997).

1

Ny p)y=—F77—-
(yip, %) (\/ﬂ)dlﬁlé

exp [—;(y —w)'= Ny - p) (1.22)

where, d, is the dimensionality of, y. Note that, i, is a (d x 1)-vector and the covari-
ance matrix, X, is a (d x d)-positive-definite, symmetric matrix. The determinant of X is
denoted as |X|. Simple-kriging estimation under the MG assumption leads to a univariate-
Gaussian CCDF at the unsampled location that is fully parameterized by the SK estimate,
Usk, and the variance, 5%, values. The probability distribution in original units is calcu-

lated through a back-transform of the p-quantiles discretizing the CCDF (Equation 1.23).
Zp:Fgl(GY(agKG}jl(p)+@\SK))a P = ]-a"‘vP (123)

where the terms, (5% Gy (p) +Jsk), denote a Gaussian p-quantile of the local CCDF deter-
mined from the SK mean and variance values. The term, Gy () is the corresponding quan-
tile of the global distribution in Gaussian units before the quantile-backtransform, F,*(), to
original units to yield the z,-quantile. The quantity of p-quantiles often numbers between
one hundred and two hundred. The MGK estimate, Zj;Gx (ug), and variance, &%/[G < (up),

are inferred through calculation of the mean and variance of the z,-quantiles.

12
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1.2 Indicator formalism and indicator kriging

The binary indicator transform of the Z-random variable, I(u; z), can be applied to con-
tinuous and discrete variables. The outcomes are either, 1 or 0, depending if they are less
than or greater than the threshold, 2z, k = 1,..., K at location, u, (Equation 1.24). Multi-
ple thresholds in increasing order, zr > z;, V k' > k, can be used to discretize the CDF of
the continuous Z-RV. When there is more than one threshold, each data location stores an
indicator value corresponding to each threshold. By transforming all values to either one
or zero based on their relative position to some threshold z, outlier values are eliminated.

1, if Z(u) < 2
I(u; z) = Prob{Z(u) < z} = k=1,..,K (1.24)

0, otherwise

The prior distribution of the binary indicator RV, I(u; z;), is the declustered n-number
of samples in the domain, which is the stationary mean (Equation 1.25). Since it only has
two outcomes, the expected value, E{I(u; zj)}, is easily calculated. The expected variance,

Var{Z} = E{Z*} — [E{Z}]? reduces to the result in Equation 1.26.

E{I(u;zx)} =1-Prob{Z(u) < z} +0- Prob{Z(u > z}
(1.25)

= Prob{Z(u) < Zk} = Fz(zk) =My

Var{l(u;z;)} = Prob{Z(u) < z} - (1 — Prob{Z(u) < z})
(1.26)

= Fz(z) - (1 = Fz(zr))

Indicator variograms reflect the probability that the z-values separated by h-lag dis-
tance are on either side of the threshold, z;, in a h-scatterplot (Figure 1.2). They do not
show the spatial continuity of ones or zeroes by themselves, but the probability of tran-
sition between the indicator values as a function of the h-lag distance at a threshold, z.

The indicator variogram value is the number of values falling in the hatched area for each

13
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indicator threshold divided by twice the number of data pairs, N (h) (Equation 1.27).

N(h)
PPN | N 2 _
w(hyzw—m(h);[z(ua,zw i(Wa +h;z)]?, k=1, K (1.27)

The indicator variograms relate to the same underlying continuous RV (Carvalho &
Deutsch, 2017). Figure 1.2 illustrates the transition between two indicator thresholds. The
h-scatter plot is contoured by density, with the grey and teal hatched regions representing
the data pairs corresponding respectively to the z;, and zj-thresholds. Moving from one
threshold to the other, some data pairs are lost while others are gained. Many remain
shared (cross-hatched region), which means that the experimental, indicator-variogram

modelling should not vary significantly between thresholds (Carvalho & Deutsch, 2017).

0.20
1
0.10
1
=
+ 2
= i
N Zk+1 7— — 7
2k = i | N
\l 0.05
—0.01
2k Zk+1
Z(u)

Figure 1.2: Hatched regions denote region of h-scatter plot (contoured by density) contributing to
the indicator variogram for indicators, zj, and zj41.

With bivariate-Gaussian data, indicator variograms exhibit a characteristic symmetrical
destructuration away from the median quantile. For example, the zp; and zp 9-quantiles
have the same indicator variogram. This is the symmetric property of the Gaussian dis-
tribution. It is important to note that the Gaussian distribution does not permit spatial

correlation of high or low values (Goovaerts, 1997). Non-bivariate-Gaussian data exhibit

14
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asymmetric destructuration away from the median indicator.

The posterior indicator probability, 7(ug; z|(n)), is directly estimated at each indica-
tor threshold by solving the ordinary-indicator-kriging systems of equations at each un-
sampled location for each threshold, z; (Equation 1.28). For K-thresholds, the CCDF at
comprises K-points at location ug. The term MIK is used when more than one indicator

threshold is considered.

—_—

i(uo; 2| (n)) = Prob{Z(ug) < 2z|(n)}
. (1.28)
= Al z) - i(Ua; 2)
a=1

where the kriging weights, \,(u; 2;,), are multiplied by the sample indicator value at
the k'"-threshold, i(u; z;). Simple kriging could be implemented. The estimated value,
Zumrk (up), is the sum of each indicator class mean weighted by the estimated probability

of the class (Equation 1.29).

K
Zmik(uo) = P(uo; Zkey1|(n)) — i(up; Zk’(n))} -,
paart (1.29)

i(u; 0) = 0; i(ug; 2z 41) = 1

where i(u; 24 1|(n)) and i(up; 21| (n)) are the estimated probabilities bounding the k"~
indicator class, and 7, is its mean value. Note that 7, is considered stationary. The two
constraints ensure the conditional distribution exists for all z-values. The volume support
of the estimated distribution is the same as the sample data, so a volume-support correction

is required in mining applications.

A required post-processing step, referred to as order-relations corrections, involves 1)
checking and correcting the conditional probabilities to ensure they are within the range,
[0, 1], and 2) the conditional probabilities are monotonically increasing to meet the require-
ments of a valid CDF. Order-relations errors are a direct result of the varying modelled
ranges of the indicator variograms, which means there is departure from the reproduction

of the indicator covariance models and constraint intervals (C. Deutsch & Journel, 1998).
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Several correction methods are available, but the one employed in the GSLIB-software is
an average of upward and downward corrections. In the upward direction, the conditional
probabilities are checked sequentially from the first threshold to the last, z; to zj, to ensure
they meet the order-relations criteria. This check is repeated moving in the opposite direc-
tion, zj, to z1. The upward and downward adjusted probabilities are then averaged to yield

the final conditional probability values.

After order-relations corrections, additional post processing is required to interpolate
the quantile values between the indicator thresholds, and to extrapolate the lower and up-
per tails from the bottom and top thresholds, respectively, to satisfy the constraints in Equa-
tion 1.29. Several methods exist, including linear and power-model interpolation between
the thresholds. Extrapolation of the tails can utilise linear, hyperbolic, and power-model
functions. An alternative model that scales the conditional distribution based on the global

representative distribution is considered to be best practice (Carvalho & Deutsch, 2017).

1.3 Assessment of estimation quality

Several criteria are used to assess overall estimation quality. Note that the terms verification
and wvalidation are avoided, despite their ubiquitous use in the mining and petroleum in-
dustries, because an estimate can never truly be considered valid or verified. This is due to
natural systems being open and our incomplete access to them during sampling (Oreskes,
Shrader-Frechette, & Belitz, 1994). The estimate can be confirmed to be a good predictor of
the observed data given the stated hypotheses, but this does not provide certainty as to
the future performance of the model given additional data, or a change in the underlying

hypotheses.

Confirmation of the quality of the estimate as a predictor is quantified through an as-
sessment of bias, accuracy, and precision. Current best practice utilizes K-fold analysis.
Synthetic datasets are used in this research, which provide exhaustively known values by

which to compare the estimates, and preclude need for K-fold analysis. Estimation bias is
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the expected difference between the estimated value and known truth value (Equation 1.30).
Conditional bias, which represents the slope of regression between the estimate and the

truth, is the expected value of the truth given the estimated value (Equation 1.31).

Bias = E{Z(u)} — E{Z(u)} (1.30)

Conditional Bias = E{Z(u)|Z(u) = z(u)} (1.31)

Estimation accuracy is assessed by direct comparison of the estimated and known values
values in a bivariate plot. When cut-off values are applied, false positives and false neg-
atives capture misclassified estimates. False positives (Type I) occur when the estimated
value is greater than the cut-off and the true value is less. False negatives (Type II) occur
when the estimated value is lower than the cut-off and the true value is higher. In addition,
accuracy can be checked by dividing the distribution of known values into probability inter-
vals of varying widths and then summing the number of estimated values that fall within
the probability intervals. Another measure of accuracy, mean-squared error (MSE), is the

expected, squared difference between the estimated and known values (Equation 1.32).
B{[Z(w) - Z(w)]*} (1.32)

Precision is a measure of the narrowness of a distribution. The mean of the variance of
the conditional distributions is compared to assess estimation precision. A lower average
variance indicates a more precise estimate. Note that the conditional distributions need to

be discretized by the same number of quantiles to avoid overweighting by the tails.

1.4 Problem motivation and thesis outline

The IK methodology faces several challenges that are used to identify research opportuni-
ties: 1) it yields an inconsistent probability model that requires order-relations corrections
to ensure a licit CCDF, 2) constant, indicator-class means are assumed, and 3) indicator es-

timation provides an incomplete probability distribution, which requires additional mod-
17
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elling of the distribution tails. This research first seeks to better understand the implemen-
tation of MIK. Deviations of the estimated probability distribution from known values are
investigated, and the variation of indicator-class means and the factors controlling their be-
haviour are documented. Next, the estimation performance of MIK and MGK is compared.
The motivating research question is based on the assertion that MGK generates a better es-
timate than MIK in a Gaussian environment. In the presence of non-Gaussian data, when

does MIK lead to a better estimate than MGK? This leads to the thesis statement:

Theoretical and practical understanding of multiple-indicator kriging leads to improved re-

source estimates and mining decisions.

Chapter 2 discusses the research methodology and generation of two-dimensional (2-
D), synthetic data used in the subsequent chapters. In Chapter 3 and Chapter 4, the com-
ponents of the MIK estimator are investigated: the indicator-probability estimates, and the
indicator-class means. Chapter 5 compares MIK and MGK estimation performance using
several datasets ranging from Gaussian to highly non-Gaussian. The final chapter presents
the research conclusions and contributions, limitations of the studies, and future research

avenues.
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CHAPTER 2

StupY DATA

Investigation of the estimated indicator probability model and the indicator class means re-
quires an environment that permits comparison against known values. Real-world datasets
are preferred, but the exact probability distributions cannot be known with certainty be-
cause of the highly multivariate nature of the geological processes forming the mineral
deposits. The chapters that follow in this thesis mostly use synthetic, Gaussian datasets,
which through the log-normal transform, can act as realistic analogues to the positively
skewed distributions often encountered in precious-metals, uranium, and diamond de-
posits. Furthermore, use of the MG framework for the investigation simplifies analysis
greatly, as the correct, conditional-probability distributions and conditional class mean
values are known and easily accessible. Additional benefits include 1) exhaustive, grid-
ded data that do not require declustering, 2) a known covariance function leading to exact

indicator variograms and 3) a data distribution that is free of sampling and analysis errors.

The calculation of the correct, conditional-indicator-probability distributions (Chap-
ter 3) and indicator-class-mean values (Chapter 4) using Gaussian datasets allows for a
direct comparison to the MIK-estimated values in order to answer the following motivat-
ing questions: 1) By how much do they differ? 2) Where do they differ? 3) On which factors

do the differences depend?

The motivating research question posed in Section 1.4 is based on the hypothesis that
MIK is a better estimator than MGK once the data distribution is sufficiently non-Gaussian.
Chapter 5 addresses this question by comparing estimation performance of MIK against
MGK in a non-Gaussian environment. The environment is generated through a transform

of the reference, Gaussian datasets into non-Gaussian RFs using the novel, piecewise, linear
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model of regionalization (PLMR) developed by Pereira and Deutsch (2020a, 2020b).

This chapter is outlined as follows: The first section summarises the software and script-
ing environment used for this research. The remainder of the chapter describes the pro-
cesses used to generate the study data used in the following chapters. Comments on the

quality of the study data are made to address the robustness of observed results.

2.1 Software environment and executables

All computations are executed in Jupyter Notebooks (Kluyver et al., 2016). Jupyter is a
web-based, interactive environment for data science and scientific computing across all
programming languages. Python is the computing language used in this research. The
following open-source computing packages are imported into Jupyter Notebook environ-

ments to undertake the numerical computations and data visualizations:

Matplotlib, version 2.2.3: data visualization and plotting (Hunter, 2007),
¢ NumPy, version 1.15.4: numerical computations with data arrays (Harris et al., 2020),

e Pandas, version 1.0.2: data analysis using data structures (dataframes) (McKinney,

2010; Reback et al., 2020),

¢ Pygeostat, version 0.6.6: Geostatistical software library (GSLIB) executables wrapped
in Python code and additional geostatistical functions developed by the CCG (J. Deutsch

etal., 2015),

e scikit-learn, version 0.24.2: machine-learning library for Python (Pedregosa et al.,

2011),

* SciPy, version 1.1.0: scientific computing including statistical and regression analysis

(Virtanen et al., 2020)

Anaconda is the open-source platform used in this research to manage the Python
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scripting environment and distribution of open-source computing packages (Anaconda
Software Distribution, 2016). Software executables used to generate unconditional real-
izations, normal-score transforms, and ordinary kriged and indicator kriged estimates are

sourced from C. Deutsch and Journel (1998).

2.2 Data generation

2.2.1 Gaussian random functions

All studies in this research utilize unconditionally simulated, 2-D, Gaussian, RFs as refer-
ence data. The RFs measure 512 m in the Northing and Easting directions (Figure 2.1). The
data points are spaced 1 m apart. Isotropic covariance functions with low nugget values
and a range of 64 m are used in Chapter 3 and Chapter 4. In Chapter 5, two RFs with

anisotropic covariance functions are needed to generate a non-Gaussian RF (Table 2.1).

500 S - —_— _7 > 95
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Figure 2.1: Example reference Gaussian RF.

A total of ten reference RFs are used in Chapter 3 and Chapter 5. A single reference RF

is used in Chapter 4.
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Table 2.1: Spatial structure of the RFs.

Chapter Random Field Factor Structure Type bl Range (m) Direction (°)
Y; X! (w) g(h) Tmajor Tminor AZ. Dip
, =0 Nugget 0.00 0 0 0 0
3 i=1 1=1 Spherical ~ 1.00 64 64 0 0
. =0 Nugget 0.01 0 0 0 0
4 i=1 I=1 Spherical 099 64 64 0 0
, =0 Nugget 0.01 0 0 0 0
; i=1 =1 Spherical 099 128 2 0 0
_ =0 Nugget 0.01 0 0 0 0
1=2 =1 Gaussian 0.99 128 64 90 0

2.2.2 Gaussian variograms and indicator variograms

Indicator covariances are analytically derived through integration of the truncated, bivariate-
Gaussian density represented by the hatched region of the bivariate scatterplot in Figure 2.2.
This region, truncated at the y go-indicator-probability threshold, represents the non-zero
portion of the non-centred, indicator covariance. The indicator covariance differs from
the calculation of the indicator variogram (Figure 1.2). Both calculations yield symmetric
densities about the median, ¢ 50-indicator-probability threshold. Note that the bivariate-
Gaussian densities are calculated through a power-series expansion because there is no
closed-form solution of the integral (Kyriakidis, Deutsch, & Grant, 1999). Calculation of
the indicator lag distances and direction requires the Gaussian covariance function and

the indicator-probability values as inputs for the GSLIB-program, bigaus (Figure 2.3).

All variograms are calculated directly from the gridded reference distributions at a lag
distance of h = 4 m. The Gaussian variograms are modelled with two spherical struc-
tures to the range of the original covariance function used to generate the reference RFs
(Figure 2.3). The correct indicator variograms derived from this covariance function are
illustrated in Figure 2.3. Note the symmetric destructuring of the indicator probability

classes.
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Figure 2.2: Integration region (hatched) of the bivariate-Gaussian density for calculation of the
indicator covariance.

2.2.3 Non-Gaussian random functions

In Chapter 5, anovel methodology by Pereira and Deutsch (2020a) to unconditionally simu-
late a non-Gaussian, regionalized RV using the PLMR is used. It merges two Gaussian RFs
through a combination of the indicator formalism (Equation 1.24) and a piecewise, linear
mixing rule. Recall that in a purely multivariate-Gaussian framework, the full multivari-
ate distribution is represented by a single covariance function (Journel & Alabert, 1989).
This is convenient, but spatial disorder is inflated and leads to a loss of spatial connectivity
and correlation in the data tails (Journel & Deutsch, 1993). The PLMR utilizes the indica-
tor formalism to provide detailed structural information of the regionalized variable (RF)
across multiple thresholds, while also permitting correlation of the extreme values (Pereira
& Deutsch, 2020b). Generation of the non-Gaussian RF is broken down into three steps: 1)
independently simulate stationary Gaussian RFs using different arbitrary covariance struc-
tures (Table 2.1), 2) define a Gaussian quantile cut-off value about which the RFs undertake
a piecewise-linear transform (Equation 2.1), and 3) combine the transformed RF using the

mixing rule in (Equation 2.2).
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Figure 2.3: Correct indicator variograms (bottom) derived from the Gaussian variogram (top).

The transform of the RFs, Y7 (u) and Y>(u), creates the regionalized variable, Y;(u;a, q).
It is a function of two parameters, 1) the truncation quantile, g, splits the RFs, and 2) the
scalar value, a, factors the RFs linearly above and below the g-truncation value (Equa-
tion 2.1):

JaYi(w), if Yiu) <,
Y(u;a,q) = , 1=1,2; a€(0,1); ¢ €10,1] (2.1

V1 —aYi(u), if Yi(u) >y,
The terms, \/a and /1 — a, sum to one when squared and prevent variance inflation in
the Y;(u; a,q)-RF. The truncation quantile, ¢ = 0.5, is considered to the be same value
for each standard-normal RF, Y;(u), and corresponds to a Gaussian value of zero. After

the transform, the RFs are combined following the mixing rule defined in Equation 2.2 to
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create the new regionalized variable, Z(u;a, q).

VaYi(a) + 1 — aYa(u), if Yi(u) < yg, Ya(u) < yq
VaYi(u) ++/aYz(u), if Y1(u) < yg, Ya(u) > yq
Z(w;a,q) = , a€(0,1), ¢€]0,1]

V1 —aYi(u) + 1 —aYs(u), if Yi(u)>y,, Yo(u) <y,

V1 —aYi(u) + aYs(u), if Y1(u) > y,, Ya(u) >y,
(2.2)
The magnitude of the a-scalar significantly impacts the transform. When a = 0.50,
the transformed variables combine linearly and generate a Gaussian scenario, Z(u;0.5, q)
(Figure 2.4; Step 2 and 3, left side). If a # 0.50, mixing is non-linear, resulting in a non-
Gaussian RF. When the a-parameter is very close to zero, or very close to one, mixing is
highly non-linear and generates a highly non-Gaussian end-member (Figure 2.4; Step 2
and 3, right side). In this research, a = 0.99 is used to represent the highly non-Gaussian
scenario. This mixing rule effectively removes the low-values from Y7-RF and the high
values from the Y5-RF. It also clearly shows the north-south anisotropy of the high values
superimposed over the east-west anisotropy of the low values (Figure 2.4). To adjust the

relative “non-Gaussianity” of the Z(u; a, ¢)-RF, six a-parameter values are considered:
a = {0.50,0.60, 0.70, 0.80, 0.90, 0.99}

The g-parameter is kept constant at 0.5.

As a final note, the combination of RFs, Y7 and Y>, with principle axes of continuity
oriented in perpendicular directions, provides an analogue to real-world geologic environ-
ments. For example, there may exist a low-grade dissemination of mineralization broadly
aligned to an internal rock fabric that has been cut and re-mineralized by relatively high-
grade, structurally controlled mineralization oriented in another direction. The PLMR pro-
vides a useful environment to test the performance of MIK and MGK. The degree of non-

Gaussianity of the reference Z(u; a, ¢)-RF can easily be adjusted through the a-parameter.
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1. Gaussian RFs: Yi(u)
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2. Piecewise, Linear Transform of Gaussian RFs: Y;(u; a, q)
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3. Transformed, Non-Gaussian RFs:
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Figure 2.4: Graphical description of PLMR transform; 1. Input Gaussian RFs; 2. Different a-scalar
values highlight the effect of the transform above and below, ¢ (vertical, grey, dashed line); 3. The
resulting non-Gaussian RF, Z(u; a, ¢), from mixing of the Y;-components.
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2. Study Data

2.2.4 Estimation and final reference distributions

In Chapter 3 and Chapter 4, multiple, regularly spaced grids are used to sample the Gaus-
sian reference RFs (in metres): 8 x 8, 16 x 16, and 32 x 32. In Chapter 4, an additional
64 x 64 m sample grid is used. The Gaussian variogram parameters are input for MGK esti-
mation under the MG assumption. The search parameters are aligned with the variograms
and consider up to 30 samples within twice the modelled variogram range. The estimates
yield exhaustive, correct conditional distributions that are parameterized by the estimated

mean, ys5, and estimated variance, 8% K-

Alog-normal transform is needed in Chapter 4 to understand the impact of the constant,
indicator-class means on the estimates. The log-normal distribution serves as an analogue
to a positively skewed, precious-metals dataset encountered in the mining industry. Before
estimation, the Gaussian sample values are converted to log-normal values that have a
target log-normal distribution with mean, 1z = 1, and variance, O’% = 4 (Equation 2.3).
For clarity, standard-normal values are multiplied by beta and then added to alpha before

exponentiating to obtain the log-normal value (Equation 2.4).

ay =1n(uz) — 55 /2
2.3)

By =1In(1+0%/u%)

z =-exp (ypf + @) (2.4)

where oy and 612, are the mean and variance, respectively, of Gaussian distribution that

yields the log-normal distribution with mean and variance parameters, yz and o%.

In Chapter 5, the non-Gaussian RFs are generated following the procedure outlined
in Section 2.2.3, and are then sampled by the same regularly spaced sample grids used in
Chapter 3. The sample data are then normal-score transformed following Equation 1.21

before variogram calculation and modelling. The normal-score transform is important,
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2. Study Data

as standard-normal data are required to assume MG before estimation. The search and
estimation parameters mentioned previously do not change. For reference, Table 2.2 sum-

marises the details discussed in this section.

Table 2.2: Generation of the reference conditional distributions.

Type of Data Sample Grids (m)
Chapter
Ref. Real. Transform  8x8 16x16 32x32 64 x 64
3 Gaussian None v v v -
4 Gaussian Log-Normal v v v v
5 Non-Gaussian Normal Score v v v -

2.3 Representivity of the study data

The conclusions drawn from this research require representative sampling of the bivariate
space of uncertainty defined by the conditional mean, ysk, and conditional variance, 0’% K
output from MGK. The analytical derivation of the valid ysx/o%, boundary is outside
the scope of this work, but the limit cases are known for the standard-normal (N(0, 1))
distribution: 1) a maximum 0% ;-value of 1.0 is only reached when the ysx-value is exactly
0.0, and 2) when the 0% ;-value is 0.0 (at the data locations), the ysx-value can assume any

Gaussian value.

The process followed to generate the data in Chapter 4 is used an example to illustrate
how the data are assessed for representivity. The four, regularly spaced grid patterns de-
tailed in Table 2.2 are divided into quarters using Easting and Northing values of 256 m.
One quarter from each grid is selected and combined with the others to create a new sample

grid from which the MGK estimate is generated (Figure 2.5).

After MGK estimation, the ysy / U% -distribution is assessed (Figure 2.6, left). To im-
prove the range of possible valid ysx /0% pairs to sample, the symmetric property of the
Gaussian distribution is invoked. The ysx /0% pairs are copied and the yss value is mul-
tiplied by negative one to yield a new set of values that are combined with the original

pairs (Figure 2.6, centre). The resulting dataset, comprising nearly 525, 000 data points, is
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Figure 2.5: Combination of four sample grids used to generate reference MGK estimate in Chapter 4.
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Figure 2.6: Conditional ysx /0% ;-pairs after MGK estimation (left); multiplication of ysx by nega-
tive one (centre); and data decimation using random sampling (right).
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decimated to around 10, 000 data points to reduce computation efforts (Figure 2.6, right).
Random sampling is used to decimate the data in order to reserve the relative density of
data values across the distribution (Figure 2.7). The data, coloured by kernel density in Fig-
ure 2.7 (left), are decimated using random sampling to maintain the correct data density
(Figure 2.7, right). Uniform sampling of leads to incorrect results (Figure 2.7, centre). The
10,000 sample pairs drawn are used to analyse the behaviour of the indicator-class means in
Chapter 4. Two final steps are completed prior to the data analysis: 1) the data are flagged
to identity original estimates (n = 5,024) versus those where the estimated, conditional-
mean value is multiplied by negative one (n = 4,976), and 2) estimates corresponding to
sample locations (i.e., where 0% - = 0) are removed to facilitate computation (n = 52). The

final dataset comprises 9,948 data values.

1.0

n = 524,288 n = 10,000 r High

Med.

0%y (Gaussian Units?)

Kernel Density Estimate

Low

0.0 40 -40 0.0 10
ysi (Gaussian Units)

Figure 2.7: Kernel-density colouring of ysr /0% -estimate pairs before decimation (left); decima-

tion by uniform, random sampling (centre, not used); and decimation using random sampling
(right).

In Chapter 3 and Chapter 5, slightly different procedures to yield the final datasets
are followed, but the process of multiplying the estimated conditional-mean value by neg-
ative one and using several sample-spacing grids is consistent. Data decimation is not
undertaken in these chapters. The data used in this research is considered statistically rep-

resentative and free of bias.
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CHAPTER 3

INDICATOR PROBABILITIES

Non-parametric construction of the conditional, indicator-probability distribution is an at-
tractive feature of MIK because an explicit mathematical model is not required. Order-
relations errors requiring corrections lead to questions about consistency and present a

drawback. This chapter utilizes the MG framework to compare the known conditional,
indicator-probability distribution output from MGK to the distribution estimated by MIK.
The objective is to characterise the differences between the conditional, indicator-probability
distributions generated by these estimation techniques. Two comparisons are conducted.
The first evaluates the conditional, indicator-probability values, and the second evaluates

the indicator-probability-class widths. Results presented in this chapter are generated us-
ing seven, unevenly spaced pj-indicator-probability thresholds that discretize the lower

and upper tails more than the centre of the distribution (Equation 3.1). The corresponding

Gaussian indicator thresholds, vy, are presented for reference.

pr = {0.05,0.10,0.30, 0.50, 0.70, 0.90, 0.95}
L ok=1,..,7 (3.1)

yr = {—1.645,—1.282, —0.524,0,0.524, 1.282, 1.645}
Since the Gaussian distribution is symmetric, the discussion focuses on the upper in-
dicators and indicator classes, where & > 4. Note that log-normal data are not required

because the normal-score transform is a quantile-to-quantile transform.

3.1 Comparison of indicator-probability estimates

The correct, conditional, indicator probabilities calculated by MGK, i(ug; yx|(n)), are di-
rectly compared to those estimated by MIK, i(ug; yx|(n)). Checks are completed to en-

sure all conditional distributions are monotonic and within [0, 1]. Figure 3.1 compares the
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3. Indicator Probabilities

distribution of indicator probabilities estimated by MGK (grey) and MIK (teal) at each k-

threshold. The summary statistics of the two distributions are identical, but deviations are

observed near the tails.
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Figure 3.1: CDF of indicator probabilities estimated by MGK (grey) and MIK (teal).

The following figures contrast the differences in the estimated conditional probabilities

for the upper indicator thresholds at individual locations. Error calculated at each indi-

cator, denoted as ¢,,, is calculated by subtracting the correct, MGK-estimated, indicator

probability from the MIK-estimated, indicator probability (Equation 3.2).

o = 1(uo; yg|(n)) arrxe — i(wo; | (n)) max,

€[-1,1], Vk

(3.2)

Figure 3.2 illustrates the error distribution and confirms the MIK-estimated probabili-
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ties are unbiased. The variance of the distributions decreases from the median indicator
threshold to the upper indicator threshold (Figure 3.2, upper left to bottom right), which is
attributed to the indicator constraints on the data. There are fewer data in the tails of the
distribution, so values near the tails are more likely to be zero or one unless the estimate

is located in low or high-valued areas. This is also shown in the cross-plots illustrated in

Figure 3.3.
k=4 (po.5) k=5 (po.7)
n = 262,144 n = 262,144
0.8 =0 m=—0
o=0.12 o=0.11
Tmin = —0.61 Topin = —0.66
T =0.67 Tmar = 0.6

0.6;

Frequency

0.2

0.0
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0.8 n =262, 144

0.6;
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0.2

0.0

[ e S
—0.4 -0.2 0.0 0.2 0.4 —0.4 —-0.2 0.0 0.2 0.4
Estimated Probability Error: e, Estimated Probability Error: e,

Figure 3.2: Error distribution of MIK-estimated indicator-probability thresholds.

There is strong agreement between the means of the indicator-probability values esti-
mated at each threshold, which is also aligns with the CDFs in Figure 3.1. In addition, the
cross-plots illustrate a decrease in the correlation coefficient and an increase in conditional

bias towards the upper, indicator-probability threshold (bottom right in Figure 3.3).

In Figure 3.4, the ¢, -error is plotted as a function of the correct, MGK-estimated, indi-
cator probability, i(uo; yx) mar. The MIK estimate appears to overestimate the indicator
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Figure 3.3: Cross-plots comparing the correct MGK-estimated and the MIK-estimated, indicator-
probability thresholds.

probability roughly below the pg 25-probability threshold, and underestimates the indica-
tor probability above the pg 75-probability threshold. The pattern observed in these plots
is consistent across the other reference RFs and sample grids, but the inflection points in-

dicating the over/underestimation are not always clear.

The ¢, -error distribution is contoured to assess spatial dependence. The maps in Fig-
ure 3.5 and Figure 3.6, illustrate the error contours for the py 50 and the pg 95 thresholds,
respectively. In Figure 3.5, the positive and negative 0.20-error contours are associated
with the transition away from high and low-value regions (refer to inset map). Note that

the error contours have a larger spatial extent than the pg 95-indicator probability threshold.
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Figure 3.4: Error distribution as a function of the correct, MGK-estimated, indicator-probability
thresholds.

In Figure 3.6, the error contours are locally associated with highest values, specifically
where the data transition to lower values. It appears that the positive error contours, where
?(uo; yr)MIk > i(Wo; yr) MGk, are spatially associated with higher data values, while the
negative contours are associated with lower data values. The spatial association appears
weak, so a plot displaying error as a function of distance from the nearest sample would
confirm/refute this observation. These observations also apply to the estimates using the

larger sample grids, but the spatial extents of the error contours are predictably larger.

The root-mean-squared error (RMSE) and correlation values are averaged across the
reference RFs for each indicator-probability threshold to provide representative statistics

(Table 3.1). Both the RMSE and correlation decrease as the indicator probability increases.
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Figure 3.5: Contoured error distribution at the MIK-estimated, pg 5o-probability threshold. Original
data distribution as inset plot for reference.

The apparent decrease in RMSE is misleading due to the constraint on the estimated prob-
ability values in the upper indicator-probability thresholds. The correlation coefficient is
a better measure of the quality of the indicator estimate. The relative increase in error and
the decrease in correlation as the sample spacing increases is expected due to fewer condi-

tioning data.
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Figure 3.6: Contoured error distribution at the MIK-estimated, pg g5-probability threshold. Original
data distribution as inset plot for reference.

500

Table 3.1: Expected RMSE and correlation values between the MIK-estimated indicator probabili-
ties and the known, correct probabilities.

] Sample Grid MIK Ind. Prob. (px)
Metric
(m) 050 070 090 095
8 x 8 0.118 0.109 0.078 0.060

RMSE 16 x 16 0.130 0.122 0.089 0.069
32 x 32 0.152 0.145 0.102 0.075

8§x8 0960 0960 0946 0.934
P 16 x 16 0942 0938 0910 0.882
32 x 32 0.890 0.874 0.814 0.774
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3.2 Comparison of indicator-probability-class widths

The indicator-class widths listed in Equation 3.3 are calculated from the pj-probabilities

listed in Equation 3.1:

Pets = D1 — P = {0.05,0.05, 0.20, 0.20, 0.20, 0.20, 0.05, 0.05}
(3.3)

po=0,pr+1 =1
The estimated widths of the conditional, indicator-probability classes, E(uo; Yk, Yk+1), are

calculated following Equation 3.4. Calculations are checked to ensure the indicator-class

widths sum to unity.

(W03 Yers) = (W03 Yrt1](n)) — i(wo; yk|(n))
(3.4)
i(up; 0) = 05 i(ug; y1) = 1

where the i-terms are the estimated probabilities of adjacent indicator-probability thresh-

olds. Calculation of the indicator-probability-class error, ¢, follows Equation 3.5.
€pers = (803 Yels) MTE — (W03 Yers)nicr, € [=1,1], cls =1,.., K +1 3.5)

Figure 3.7 compares the distribution of indicator probabilities estimated by MGK (grey)
and MIK (teal) for the upper classes, cls > 5. In contrast to the probability estimates in
Figure 3.1, the distributions show more variation. Note that the comparison in the upper
class (cls = 8) appears quite close due to scaling of the ordinate axis. Further investigation
(not presented) shows minor local deviations, but they are much less in comparison to the

other indicator classes.

The plots in Figure 3.8, Figure 3.9, and Figure 3.10 illustrate similar features observed
in the corresponding figures in the previous section, Figure 3.2, Figure 3.3 and Figure 3.4,
respectively. The estimated probability-class widths are correct on average, but the vari-
ances and RMSE values are higher and the correlation values are lower for all classes except

the upper tail (cls = 8).
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Figure 3.7: CDF of indicator-probability-class widths estimated by MGK (grey) and MIK (teal).
Maps of the error contours of indicator-class-widths for the indicator classes, cls =
4 and cls = 8§, are presented in Figure 3.11 and Figure 3.12, respectively. Both figures
show similar features observed in the corresponding maps in Figure 3.5 and Figure 3.6,
but the magnitude and spatial extent of the error in the map of the indicator-class widths
is much greater. In the upper class, the spatial extents of the contours are unchanged. The

magnitudes are inverted due to the symmetry of the Gaussian distribution.

RMSE and correlation values are averaged across the reference RFs for each indicator-
probability threshold (Table 3.2). Except for the upper class, the average error increases and

the correlation decreases, which is consistent with the observations made in this chapter.
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Figure 3.8: Distribution of conditional-indicator probability error between MGK and MIK for me-
dian and upper indicator classes.

Table 3.2: Expected RMSE and correlation values between the MIK-estimated indicator-class
widths and the known, correct class widths.

Sample Grid MIK Ind. Class Width
(m) 020 020 0.05 0.05

8 x 8 0.169 0.140 0.096 0.060
RMSE 16 x 16 0.165 0.145 0.090 0.069
32 x 32 0.186 0.164 0.090 0.075

8§x8 0.777 0.874 0.750 0.934
P 16 x 16 0.675 0.807 0.667 0.882
32 x 32 0486 0.686 0.548 0.774

Metric

3.3 Summary

Non-parametric estimation of the conditional, indicator-probability distribution output by
MIK is unbiased in comparison to the correct probability distribution output by MGK.
There can be significant local variation in the estimated conditional probability, but posi-

tive and negative errors do not show consistent spatial association with high or low values.
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Figure 3.9: Cross-plots comparing conditional-indicator probability between MGK and MIK for

median and upper indicator classes.

There is a marked increase in error when evaluating the indicator class widths in compar-

ison to the indicator threshold values. This suggests that the probability model output by

MIK is inconsistent. Order-relations corrections are made to ensure the MIK probability

distribution is licit, but their impact on its consistency could be investigated further.
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Figure 3.10: Error distribution as a function of the correct, MGK-estimated, indicator-probability-
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Figure 3.11: Contour map of the indicator-class-width error, ¢, , for the median class (cls = 4).
Note the increased spatial extent and magnitude of the contours in comparison to Figure 3.5. Orig-
inal data distribution as inset plot for reference.
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CHAPTER 4

INDICATOR-C1LASS MEANS

The MIK estimator assumes stationary indicator-class-mean values, my. This chapter dis-
cusses 1) definition and calculation of my, 2) mj, behaviour, 3) the factors upon which my,
depends, and 4) how the use of constant 7, impacts the estimate in comparison to the

correct indicator-class mean.

This study replicates an MIK estimate by utilizing the properties of the MG distribution
to calculate the exact conditional-probability and conditional, indicator-class-mean values,
Mk,,, ., from the sampled data (Section 2.2.4). This isolates the class-mean component of
the MIK-estimator (Equation 1.29). Note that true MIK estimation is not undertaken in
this chapter. The practical range of indicator thresholds used in MIK estimation of mining
datasets ranges between five and fifteen (K = 5, K = 15) (Carvalho & Deutsch, 2017). The
results mostly reflect the use of (K = 10)-indicator thresholds, but examples using the
lower and upper indicator-threshold ranges are also included to illustrate trends where

appropriate.

Similar to the presentation of results in Chapter 3, calculations corresponding only to
the upper classes of the Gaussian dataset are presented because of the symmetry of the
Gaussian distribution. Research results corresponding to the log-normal data are pre-
sented only for the upper tail because this class contains a significant proportion of the

economic value found in real-world mining datasets.

4.1 Class-mean definition and calculation

Gaussian values are calculated through the inverse of the Gaussian distribution using ten-

thousand, evenly spaced p-probability values, where p; = P%rl, Il =1,....,P,and y; =
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4. Indicator-Class Means

G~1(1). The corresponding log-normal quantiles, z;, are calculated following the log-normal

transform presented in Equation 2.4.

The my-values are calculated by averaging the quantiles between the indicator-threshold
limits, (yx—1, yx] (Equation 4.1). The lower-tail class mean is calculated between the interval
(—00, yg=1] and the upper tail over the interval (yx—x, o0). The log-normal lower tail class

mean is calculated between (0, zx—1).

Yk+1

N 1
M = %};yl, Yy € (—o0,00); I=1,...,L; k=1,...,K 4.1)

where L is the number of p;-quantiles in each indicator class.

Note that the discretization of the Gaussian and log-normal distributions constrains the
minimum and maximum quantile values to [-3.719 < y; < 3.719] and [0.004 < z; < 50.067],
respectively. As a check on the effectiveness of discretization in the distribution tails, the
upper-tail, class mean is calculated analytically and found to match the value from the
discretized distribution to the fourth decimal place. Hereafter, the class mean notation
adopted in this thesis is modified to distinguish between three indicator-class-mean values:
2) conditional, my,

1) global (stationary), my and 3) expected, E{my,, ,}. These are

glob” cond’

defined in the following sections.

41.1 Global indicator-class mean

The global, indicator-class-mean values are derived from the declustered, sample histogram.
They are calculated directly from the known Gaussian and log-normal distributions. Ta-
ble 4.1 summarizes the my,,, values for Gaussian and log-normal distributions with ten
indicator thresholds. The indicator-class intervals and relative locations of the 7y, val-
ues are illustrated in Figure 4.1. The inset Gaussian probability density function (PDF),
defined by parameters ay = —0.804 and 5% = 1.609, is provided to illustrate the link to
the corresponding log-normal distribution with mean, pz = 1.0, and variance, 0% = 4.0.

Note that the Gaussian thresholds and global, indicator-class means presented in Table 4.1
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Figure 4.1: Indicator classes (shaded) and 7,,,, (vertical dashed lines) for (K = 10)-indicator
thresholds. The log-normal plot is truncated at 6.0 units for display purposes, but is discretized
to an upper-quantile value of 50.067 units.

correspond to the standard-normal Gaussian distribution analyzed in this study, not to the

inset plot in Figure 4.1.

Table 4.1: Indicator thresholds (K = 10) and global, indicator-class means for Gaussian (uy = 0,

0% = 1) and log-normal (17 = 1, 0% = 4) distributions.

Class Number  Probability =~ Thresh. Limits My, Thresh. Limits My,
(Gauss) (Gauss)  (Log-Normal) (Log-Normal)
1 (Lower Tail)  0.001 - 0.091 y <-1.335 -1.798 z < 0.082 0.050
2 0.091-0.182 -1.335 <y <-0908 -1.105 0.082 <z <0.141 0.111
3 0.182-0.273 -0.908 <y <-0.605 -0.751 0.141 <z <0.208 0.173
4 0.273-0.364 -0.605 <y <-0.349 -0474 0.208 < z <0.287 0.246
5 0.364-0.454 -0.349 <y <-0.114 -0.230 0.287 <z <0.387 0.335
6 0.454-0.545 -0.114 <y <0.114 0.000  0.387 <z <0.517 0.448
7 0.545-0.636  0.114 <y < 0.349 0.230  0.517 < z < 0.696 0.601
8 0.636-0.727  0.349 <y <0.605 0.474  0.696 < z < 0.963 0.819
9 0.727 - 0.818  0.605 < y < 0.908 0.751 0963 <z <1.416 1.166
10 0.818-0.909  0.908 <y <1.335 1.105  1.416 <z <2433 1.838
11 (Upper Tail)  0.909 - 0.999 y > 1.335 1.798 z > 2433 5.160

4.1.2 Conditional indicator-class mean

The ysi and o5k values output from kriging parameterize the conditional distribution at

the unsampled location under the MG framework. The spatial arrangement of the con-

ditioning data and their covariance relationships determines the kriged conditional mean
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and conditional variance values. This leads to variability in the conditional, indicator-class-

mean values.

Figure 4.2 illustrates the calculation of my,, , in the upper tail of the standard normal
distribution for three unsampled locations. The global, Gaussian PDF, with 1y = 0, 012/ =1,
is plotted in black in each figure. The upper class is the dark-grey, shaded region under
the curve, with a class limit of 1.335 Gaussian units. There are (K = 10)-thresholds. The
conditional distributions are plotted in teal, with the teal, shaded region corresponding to
the portion of the conditional distribution situated within the upper class. The conditional,
indicator-class mean is denoted by the dashed, teal line. The position of my,___, relative to
Mk, depends on the neighbouring conditioning data. The distribution in the left-hand
plot is conditioned in an area of dominantly low values, thus only the uppermost part of

the conditional distribution overlaps the upper class, and my, , < My In the middle

cond glob*

plot, there is a broad range of conditioning data, so roughly the upper half of the condi-

tional distribution overlaps the upper class, and my,_, , ~ 7y Generally high values

cond glob*®

condition the distribution in the right plot. The conditional variance is low, thus most of
the conditional distribution overlaps the upper class, and my,_, , > My

cond glob*

The conditional, indicator-class mean is the average of the quantiles in each class. It
can theoretically be calculated for every class because the tails of the Gaussian conditional
distributions extend to (—o0, 00). In practice this is not done because probability values
become exceedingly small. Any indicator classes located sufficiently far into the tails of
the conditional distribution may not contain discretized quantiles and are undefined. This
explains the varying number of conditional means defining the histograms in Figure 4.3

and Figure 4.4.

The expected, indicator-class mean, E{my__ .}, is the mean of my_ . across the domain

cond

at all unsampled locations. The E{my,_ .} value is used to assess bias between the station-

cond

ary my,,,, and varying my,,, , values.
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Conditional Dist 1 Conditional Dist 2 Conditional Dist 3
0.10 Usk =-1.26 ysx = 1.30 Usk = 2.71
A G2, =081 G2 = 0.44 G2, = 0.18

Probability Density

0.0 1.34 1.58 4.0 0.0 1.34  1.85 4.0 0.0 1.34 2.72 4.0

Values (Gaussian Units)

Figure 4.2: Calculation of my,,,, from three example conditional distributions (teal) within the
upper class (dark-grey shaded region). The my,,,,, is denoted by the vertical, black dashed lines. The
portion of the conditional distribution overlapping the upper class is denoted by a thicker line. The
quantiles defining this portion of the conditional distribution are used to calculate my,__, (vertical,
teal, dashed lines). The variability of my__, is noteworthy.

4.2 Statistical variation of class means

The distribution of conditional, indicator-class means for all unsampled locations is pre-
sented for the scenario with (K = 10)-thresholds in Figure 4.3. The plotting limits of each
histogram correspond to the lower and upper values of each class, aside from the lower
and upper limits of the first and last classes. The varying number of data in each class
histogram indicates how many conditional distributions have at least one quantile in the
class limits. For example, Class 6 (upper-left histogram in Figure 4.3) contains at least one
quantile from 8, 948 out of the 9, 948 calculated conditional distributions. There are 1, 000
conditional distributions without any defined quantiles in this class. This means that the
tails of the distributions conditioned by either very high or very low data values do not

reach into the middle class.

The increasing histogram distribution asymmetry and change in the conditional vari-
ance as the class number increases is noteworthy. This causes the global, indicator-class
mean (vertical, teal, dashed line in each plot) to diverge from the expected, indicator-class
mean (vertical, black, dashed line in each plot). Furthermore, the expected, indicator-class
mean is consistently lower than the global value in the upper classes of the Gaussian dis-

tribution. The opposite is true in the lower classes (not shown). The divergence between

49



4. Indicator-Class Means

the expected and global, indicator-class means is consistent across all of the threshold sce-
narios considered, but the magnitude of the difference in the upper classes decreases with

an increasing number of thresholds considered.

The percent difference between the global and expected, indicator-class means (Equa-
tion 4.2), is presented in Figure 4.5 for the threshold scenarios: {K = 5,10,15}. The x-axis

denotes the class number (recall there are K + 1 classes).

m, — E{m
e~ — kglob — { kcond} (42)
1k E{mkt’ond}

The Gaussian data in Figure 4.5a show an diagnostic symmetric profile about the me-
dian class in each scenario, with the difference increasing towards the tail classes. The
difference between the global and expected, indicator-class mean in the tails of the distri-
butions is significant, nearly five times more than in the penultimate-tail classes. Increas-
ing the number of thresholds improves the discretization of the distribution and results in

smaller differences.

Similar trends are seen in Figure 4.5b, though the differences in the upper tail of the
log-normal data are significantly greater. The negative differences between the global and
expected, indicator-class means observed in the lower tails in Figure 4.5b are interesting,

but they are of little practical consequence in the context of economic mineralization.

4.3 Estimates with conditional and global indicator-class means

MIK-style estimates are undertaken to quantify the impact of using the global, indicator-
class means in comparison to using the correct, conditional, indicator-class means. The
conditional, indicator probabilities are calculated directly, so any observed variation is due
to the class-mean value used. A direct comparison of the plots in original units (left) and in
log-units (right) in Figure 4.6 highlights the significant differences in the upper tail when

the conditional, indicator-class mean is used.
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Figure 4.3: Distribution of the Gaussian my,,,, (K = 10). Only the upper classes are shown. The
vertical, grey, dashed lines represent the mean of the histogram (E{my,,,,}). The vertical, teal,
dashed lines represent the global (stationary), indicator-class mean, my,, , -

Upper Tail: 2z, > 1.53 (K = 5) Upper Tail: z;, > 2.43 (K = 10) Upper Tail: 2, > 3.13 (K = 15)
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Figure 4.4: Upper-tail, log-normal my,,, ,-distribution (K = 5,10, 15). The vertical, grey, dashed
lines represent the mean of the histogram (E{my,,, , }). The vertical, teal, dashed lines represent the
global (stationary), indicator-class mean, 7. The x-axis is truncated to 15.00 units.

Figure 4.7 maps the difference between estimates using the global and conditional,
indicator-class means (defined in Equation 4.2). The log-normal estimates (K = 10) are
presented as a set of error contours expressed in percent difference to highlight the rela-

tive magnitudes of the positive and negative errors. The conditioning data are overlaid,
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Figure 4.5: Percent difference between my,,,, and E{my,,,,} for K = 5 (light grey), K = 10 (teal),
K = 15 (dark grey). Each threshold scenario has K+1 classes, which correspond to the class number
values on the x-axis.
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Figure 4.6: Cross-plots comparing estimates using the correct, my,,,, and stationary my,,,, (log
data, K = 10). Log-scale plot (right) highlights the estimation error in both the lower and upper
tails.

with the lower and upper two indicator classes coloured to highlight their locations rel-
ative to the error contours. All conditioning data in the middle classes are coloured grey.
The greatest positive and negative errors are located around conditioning data in the lower

and upper tails.

In the middle of the plot (Figure 4.7), near coordinates (250 mE, 250 mN), is a region
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Figure 4.7: Contour map of estimation error between use of the correct, my,__,, and the stationary
Mk,,,, (log-normal data, K = 10). Note the general alignment between the magnitude of the smallest
and largest error contours and locations of the lower and upper two indicator classes.

with negative 50 percent error contours (blue fill) overlaid by conditioning data primarily
in the upper tail (yellow). Looking closely at the error contours, they transition to a positive
error of greater than 20 percent. Two features are explained: 1) the yellow-coloured data
within the negative 50 percent contour have conditioning values greater than the global,
indicator-class mean of 5.16 units, which results in high conditional, indicator-class means
and a strong negative error, and 2) the yellow conditioning data overlaying the positive
10 percent contours immediately to the west and south of the negative 50 percent contour
have values less than the global, indicator-class mean in the upper tail, which results in a
positive error. The reader is referred to Figure 4.4, middle plot, in conjunction with Fig-

ure 4.7 to view the distribution of conditional, indicator-class means relative to the global,
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indicator-class means.

Immediately to the west-southwest in Figure 4.7, located near coordinates (180 mE,
200 mN), is a region showing the opposite of the observations described above. The estima-
tion error at this location is greater than 50 percent. It is due to the conditional, indicator-
class means being less than the global, indicator-class means. Moreover, several small con-
tours of negative estimation error (—5 percent) surround the region of high positive error
and are overlain by conditioning data belonging to the lower two classes. In this instance,
the conditional, indicator-class means in the lower tail are greater than the global values.
The low magnitude of the conditioning data in the lower tail (2;—9 < 0.08 units), leads to

large estimation error in this region, but it has little practical economic implication.

The patterns described for the two locations above are consistent across the study area
and are similar across the range of evaluated threshold scenarios and sample grid spacings.
With (K = 5)-thresholds, the positive and negative error regions are larger in aerial extent
because there is a greater average error between the global and conditional class mean

values with fewer thresholds. With (K = 15)-thresholds, the opposite is true.

The error distribution of the log-normal data (K = 10) is asymmetrically centred about
zero, with estimates using the global, indicator-class means generally being greater than
estimates using the correct, conditional, indicator-class means (Figure 4.8). As expected,
the mean-squared error decreases as the number of thresholds increases. The mean of the
error is near zero because the magnitude of the negative errors is generally greater even

though they are fewer in number.

4.4 Class mean dependence

The spatial arrangement and covariance relationships of the conditioning data dictate the
conditional, indicator-class mean. A regression analysis using stochastic gradient boost-

ing is undertaken to better understand the factors upon which the class mean depends
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Figure 4.8: Contour map of estimation error between use of the correct, my, ,,, and stationary,
Mk,,,,, Values (log-normal data, K = 10). Note the general agreement between the magnitude of
the error contours and locations of the lower and upper two indicator classes.

(Friedman, 2002; Hastie, Tibshirani, & Friedman, 2009). Stochastic gradient boosting is a
supervised, ensemble-machine-learning technique that uses feature vectors to generate a

predictions of the response variable, my, The feature vectors are ysx and ogx. Itis

cond”®
an attractive technique because it manages non-linear feature interactions, it is resistant to
model overfitting, and it can handle features measured on difference scales. It requires pa-
rameter tuning and it is slow to train, but prediction is fast. Figure 4.9 illustrates the fitting

and evaluation of the my,__ -response surface using all data (left) after training with a test

cond

subset of the data (right).

Fit and Evaluated with All Data Fit to Training and Evaluated with Test

40
30

20

True Indicator-Class Mean

10 n = 6,932
m, = 3.877
my, = 3.877

p=0.955 p=0.952

RMSE = 0.515 RMSE = 0.530

0 SoR = 1.120 SoR = 1.129

0 10 20 30 40 50 0 10 20 30 40 50
Predicted Indicator-Class Mean Predicted Indicator-Class Mean

Figure 4.9: Fit and evaluation of a response surface.
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The results of the analysis are presented in two ways: 1) feature importance, which
expresses the relative importance of one predictor variable in comparison to the others,
and 2) partial dependence plots that summarize the influence of a feature averaged over

the input domain.

The relative importance of the conditional mean and conditional variance features does
not show much variation between the various threshold scenarios considered. The ygx-
value exerts approximately 60 percent of the influence on the value of the indicator-class
mean, with the ogx-value comprising the remainder (Table 4.2). The log-normal data re-
flect the opposite scenario, where the ogx-value exerts between 50 — 60 percent of the

influence.

Table 4.2: Relative importance of ysx and ogx features predicting my,
10).

by indicator class (K =

cond

Indicator Class

L.T. 2 3 4 5 6 7 8 9 10 U.T.

Feature

Relative Importance (Gaussian Data)

Ysk 060 056 062 063 064 061 062 064 064 056 0.61
OSK 040 044 038 037 036 039 038 036 036 044 0.39

Relative Importance (Log-Normal Data)

Ysk 058 050 048 046 041 044 044 045 043 039 044
OSK 042 050 052 054 059 056 056 055 057 0.61 0.56

Note: L.T. = Lower Tail; U.T. = Upper Tail.

Two representative partial dependence plots are presented from the (K = 10)-threshold
scenario for the Gaussian and log-normal data sets: Class 6 and the upper tail (Figure 4.10
and Figure 4.11, respectively). The x-axis plots the range of values, with the distribution
deciles plotted as small, vertical, black dashes on the axis. The y-axis displays the centred,
partial dependence of the m;,_ ,-response variable. In the Gaussian example (Figure 4.10),
a linear relationship between the response and predictor variables is observed for Class 6.
The 35k value results in little fluctuation in the conditional, indicator-class mean (40.02
Gaussian units). In the upper tail, there is a non-linear relationship between the predictor

variables, with each predictor exerting a ten-times greater influence on the conditional class
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mean in comparison to Class 6.
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Figure 4.10: Partial dependence relationship of the My, ,-response variable to the ysx (left) and
osk (right) for the median (top) and upper-tail (bottom) indicator classes (Gaussian data, K = 10).

In the log-normal example (Figure 4.11), the 6sx controls more of the variability of the
response variable. The predictor variables have significantly less impact on the response
variable in the median indicator class than in the upper tail. Note that the abrupt, vertical

change in the upper-right plot (¢sx, median indicator class) is likely not real.

4.5 Impact on estimated contained metal

Grade-tonnage curves contrasting estimates of the log-normal data using the conditional
and global, indicator class means are presented in Figure 4.12. Three indicator-threshold
scenarios are considered: {K = 5,10,15}. The estimates using the correct, conditional,
indicator-class mean (teal lines) predict fewer tonnes and a higher average grade than the
estimates using the global, indicator-class mean (grey lines). The plots illustrate the de-

creasing difference between the estimated tonnes and average grade above a cut-off as the
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Figure 4.11: Partial dependence relationship of the my,__,-response variable to the ysx (left) and
osk (right) for the median (top) and upper-tail (bottom) indicator classes (log-normal data, K = 10).

number of thresholds increases. These results are also expressed in terms of percent differ-
ence (Table 4.3). The contained metal is also presented in the last two columns to contrast
the (K = 5, 15)-scenarios. The scenario with (K = 15)-thresholds shows the least difference
in contained metal content, which is expected given the smaller average error between the

global and conditional, indicator-class-mean values.
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Figure 4.12: Grade-tonnage curves using y,,,, (teal) and 7., , (grey) values (log-normal data,
K = 5,10, 15). Vertical, black, dashed lines depict the global 50", 75" 90'"-percentile values.
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4. Indicator-Class Means

Table 4.3: Comparison of estimates using my,,,, and ., ,-values (log-normal data, K = 10).

cond

Cut-Off Grade A Tonnes A Avg. Grade A Metal A Metal A Metal
(Units) Above Cut-Off K=5 K=15

0.0 0.0 -39 -3.9 -5.3 -3.1

0.5 1.8 -5.8 -4.0 -5.3 -3.2

1.0 5.7 9.4 -4.2 -4.7 =315

1.5 14.2 -15.7 -3.7 -5.1 -3.2

2.0 15.5 -19.1 -6.5 -12.2 -4.5

2.5 18.9 -23.7 -9.3 -16.3 -7.3

3.0 20.4 -27.5 -12.6 -29.6 -8.5

4.6 Weighting of indicator probabilities

The results suggest the global, indicator-class mean in the upper two indicator classes is
biased high in comparison to the expected, conditional, indicator-class mean. The magni-
tude of the bias is a function of the neighbouring conditioning values, with the strongest
bias located in the areas of the lowest and highest values. It is important to note that the
results comparing estimates using the global and conditional, indicator-class-mean values
are not truly representative of a real-world scenario because the experiment is designed
to isolate the class-mean component of the MIK estimator. The impact of the conditional,

indicator-probability distribution is not yet considered.

Figure 4.13 illustrates the distribution of the Gaussian, conditional, indicator probabil-
ities as a function of the conditional, indicator-class-mean values (K = 10). In each class,
except for the upper tail, there is a roughly symmetric distribution of values about the
expected, mean value. The asymmetry in the upper tail causes the majority of the condi-
tional, indicator-class-mean values to be less than the expected value, while the highest

conditional-means have a near-zero probability.

When the conditional, indicator-class means are correctly weighted by the conditional,
indicator probabilities, they plot much closer to the global (stationary), indicator-class-
mean (black, dashed lines in Figure 4.14). In fact, in the upper-tail class the global value ap-
pears to be a slightly conservative estimate of the correctly weighted, conditional, indicator-

class means. In Figure 4.14, it is approximately seven percent less than the global-mean
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Figure 4.13: Distribution of conditional, indicator probabilities, against my,__,, (Gaussian data, K =
10). Vertical, dashed line is E{my.__,}-

value (K = 10).
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Figure 4.14: Upper-tail, log-normal distribution of my,___, (K = 5, 10, 15), with the weighted, my,__, ,
plotted as the vertical, black, dashed line. The x-axis is truncated to 15.00 units.

4.7 Summary

Evaluation of the indicator-class-mean values as currently implemented in IK-software

programs is conducted using both Gaussian and log-normal datasets under a MG frame-
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4. Indicator-Class Means

work. A practical range of indicator thresholds is considered: {K = 5,10,15}. As many
real-world mining datasets are positively skewed, the results of the log-normal dataset are
the focus of the final remarks. This study demonstrates that the conditional, indicator-class-
mean values vary statistically and spatially due to the magnitude of conditioning data and
their covariance relationships. The greatest estimation errors are spatially associated with

regions of high and low conditioning data.

Under conditions that isolate the class-mean component of the MIK estimator, the con-
ditional, indicator-class means differ the most from the global means in the tails of the
distribution. The expected, conditional means, E{my,_ ,}, are consistently lower than the
global means in the upper classes. As the coefficient of variation increases, the magnitude
of the error in the upper tail increases and leads to a larger apparent bias. Though the
upper tail is the focus of the analysis because of its disproportionate economic weight, ap-
parent bias is also noteworthy in the lower tail. This could have implications with respect

low-grade concentrations such as contaminant elements.

Under the conditions of this study, use of the global, indicator-class mean in the MIK
estimator leads to an apparent underestimation of metal content that varies between 3 —
30 percent depending on the number of thresholds used and the cut-off grade considered.
The apparent bias described in this research is not observed in real-world estimates because
the conditional-indicator probabilities weight the conditional mean. Probability weighting
of the conditional, indicator-class mean is not considered until the end of this chapter, as
the objective is to isolate and fully characterise the variability of the global, indicator-class
mean. The results demonstrate that assuming the indicator-class mean to be stationary
is not robust because a small bias remains even after probability weighting of the correct,
conditional, indicator-class-mean values. Furthermore, the global, indicator-class mean is

a slightly conservative estimate of the true value in the upper tail.

The stochastic gradient boosting analysis suggests the conditional, indicator-class means
depend almost equally on the ysx and 75k values output from MGK. Moreover, the good
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4. Indicator-Class Means

fit of the response surface to the predictor variables (p ~ 0.95) indicates there is potential
to generate a good local estimate of the indicator-class mean during MIK-estimation. Last,
there is an opportunity to estimate slightly higher grades (and contained metal) in high-
grade zones if the correct, conditional-indicator probabilities are used in conjunction with

the correct, conditional, indicator-class means.
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CHAPTER 5

MuLTIPLE INDICATOR KRIGING OF
NoN-GAUSSIAN DATA

Multivariate-Gaussian kriging calculates the correct mean and distribution of uncertainty
at the unsampled locations if the regionalized variable is MG. In comparison to an MIK
estimate using the same data, the mean-squared error of the MGK estimate will always
be lower because its multivariate model is fully consistent and correct. As discussed in
Section 1.1, it is difficult to prove a dataset is MG, but a high probability of bivariate Gaus-
sianity can be demonstrated (e.g, J. Deutsch and Deutsch (2011); Mardia (1974); Royston
(1992); Shapiro, Wilk, and Chen (1968); Svantesson and Wallace (2003)). Multivariate Gaus-

sianity is then assumed as an extension from bivariate Gaussianity.

Data sets encountered in mining and petroleum environments, however, are commonly
not multivariate Gaussian. Since indicator kriging does not rely on an underlying math-
ematical model, it seems reasonable that MIK should outperform MGK when a data set
becomes sufficiently non-multivariate Gaussian. Two prerequisites are needed to test this
hypothesis: 1) a controllable environment resembling realistic geological conditions that
can generate realizations of varying degrees of non-Gaussianity, and 2) a method to mea-

sure the degree of non-Gaussianity.

The PLMR developed by Pereira and Deutsch (2020b) discussed in Section 2.2.3 ad-
dresses the first prerequisite. Next, a measure of non-Gaussianity, m,,, is proposed to
quantify the non-Gaussianity of a PLMR realization. Concluding this chapter is a compar-
ison of MGK and MIK estimation performance from sampled, highly non-MG and MG
realizations. The mean-squared error of the estimates is plotted as a function of the m,, to

ascertain if, or at which point MIK outperforms MGK.
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5. Multiple Indicator Kriging of Non-Gaussian Data

5.1 Measure of non-Gaussianity

The degree of non-Gaussianity of the the Z(u;a, ¢)-RF is quantified to compare the MIK
and MGK estimates. As a preliminary step, the Z(u; a, ¢)-RF is normal-score transformed

to create a new, standardized RF, X (u;«a, ¢), that is required for MGK (Equation 5.1).

T = Glyag Fzag(?) V2 (5.1)

This research proposes a method that measures the departure of the experimental X (u; a, ¢)-
indicator variograms from the theoretically expected indicator variograms of a standard-
normal, Gaussian variable. The measure of non-Gaussianity, Mg, calculates the squared
difference between the experimental indicator variogram points, 7.z, and the correspond-
ing theoretical indicator variogram points, ¥;peor. The values are summed over all calcu-
lated h-lag distances, ny, and all K-indicators, n;, (Equation 5.2). The factor of 16 accounts
for an expected difference of 0.25 between the experimental and theoretical variograms.
The calculated value at lag, h = 0, is excluded from the calculation because the variogram
value is zero. Variogram points up to the specified ranges of the initial Gaussian Y; and
Y5 random fields detailed in Section 2.2.3 (Figure 2.4) are included in the calculation (Ta-

ble 5.3).

16 Nh Nk

Z Z {’Ytheor (h, k) — 'Ye:cp(h; k)} ’ (52)

Pk | 2

mng -

Figure 5.1 shows two indicator variogram h-scatter plots contrasting the difference in
point densities in the hatched regions between the x o5 (grey) and the z g5-indicator prob-
ability thresholds (teal). The left-side graph represents the data pairs from the linear com-
bination of the piecewise components, where a = 0.50. Since the linear combination of
Gaussian variables produces a Gaussian distribution, the number of data pairs captured
in the lower and upper tails should be equal. Note that the density contours of the data
pairs are progressively less elliptical away from the centre of the plot, demonstrating that
the distribution is not bivariate-Gaussian. There are approximately twenty percent more
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5. Multiple Indicator Kriging of Non-Gaussian Data

data pairs in the upper tail than in the lower tail.

The right-side plot of Figure 5.1 highlights the strong asymmetry between the lower
and upper tails, which is a reflection of the highly non-linear combination of the piecewise
components, where a = 0.99. There are more than 150-percent more data pairs in the
upper tail in comparison to the lower tail. The density contours are not elliptical in shape
and reflect the relative dominance of the values above the g-threshold as a function of the

a-scaling factor.

4.0
p=0.808 p=0.759 0.200
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Figure 5.1: Comparison of h-scatter density in the hatched regions for the zy 5 (grey) and z.95-
indicator probability thresholds (teal) for X (u;0.5,0.5) (Gaussian, left) and a X (u;0.9,0.5) (non-
Gaussian, right).

Figure 5.2 illustrates the corresponding indicator variograms of the upper and lower
tails calculated at a lag distance, h = 4 m (teal). The theoretical bivariate-Gaussian, in-
dicator variograms (light blue) contrast the difference between the experimental points
calculated from the MG scenario (X (u;0.50, 0.50)) on the left side and the highly non-MG
scenario (X (u;0.99,0.50)) on the right side. Note that the bivariate-Gaussian, indicator-
variogram points are the reference points for comparison to the experimental points. As
expected, the difference between the experimental and theoretical points is much greater

in the non-MG scenario.

In total, ten realizations of the random fields, Y7 and Y5, are generated. They are com-

bined using six different piecewise, linear-transform scenarios to create a total of sixty re-
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Figure 5.2: Comparison experimental indicator variograms (teal) against the corresponding theoret-
ical bivariate-Gaussian variograms (light blue). Left-side plots are X (u; 0.50, 0.50) and the right-side
plots are X (u;0.99, 0.50).

alizations that are normal-score transformed before calculation of the the theoretical and
experimental indicator variograms. The expected measure of non-Gaussianity, E{my}, is
calculated for the six X(u; a, q)-scenarios across the ten truth realizations (Table 5.1).

Table 5.1: Expected measure of non-Gaussianity.

X (u;a,0.5); where a =
E{mug}

0.50
0.0675

0.60 0.70 0.80 0.90 0.99
0.0678 0.0756 0.0904 0.1132 0.1531

The expected measure of non-Gaussianity steadily increases as the a-parameter in the
X (u;a,g)-random variable is increased to be more non-Gaussian. The m,¢-value is stable

across the different truth realizations.
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5. Multiple Indicator Kriging of Non-Gaussian Data

5.2 Estimation in a non-Gaussian environment

The data comprising the sixty realizations are sampled on regular grid spacings following
Table 2.2. The samples are the inputs for the MIK and MGK estimations. Each method uses
a maximum of 30 samples. The search orientations are equal to the specified continuity
directions of the initial Gaussian Y; and Ys-random fields, and the search distances are
equal to twice their specified ranges as listed in Table 2.1. Seven indicator thresholds are
chosen to discretize the MIK distribution of uncertainty (Table 5.2).

Table 5.2: MIK cut-off and threshold values.

Indicator quantile (z,) | o.05 T0.10 T0.30  To.50  T0.70  T0.90  T0.95
Threshold Value —1.645 —1.282 —0.524 0.000 0.524 1.282 1.645

A lag distance of h = 4 m is used to calculate the variogram and indicator variograms.
They are modelled using three spherical structures and low nugget values. Care is taken
during the modelling of the indicator variograms to ensure that ranges change smoothly

between each indicator threshold.

Figure 5.3 shows that both MIK (middle) and MGK (right) reproduce the spatial fea-
tures of the highly non-MG reference realization, X (u;0.99,0.50) (left). The highest and
lowest values are not reproduced well by MIK in comparison to MG (Figure 5.4). Also
note that the RMSE of the MGK estimate is lower than the MIK estimate. Unexpectedly,
the RMSE of all MGK estimates is lower than the MIK estimates, irrespective of the de-
gree of non-Gaussianity of the reference distribution (Table 5.3). The difference in RMSE
between the MIK and MGK estimates decreases as the data distribution becomes more non-
Gaussian, but a cross-over point where MIK outperforms MGK is not evident. This pattern

is consistent for the 16 x 16 m and 32 x 32 m-sample grids (Figure 5.5).

It is clear that the constant class mean is impacting the accuracy of the MIK estimate
in the lower and upper tails, but the cross-validation plots in Figure 5.4 do not provide

a good assessment of the relative accuracy of the estimated probability distributions. A
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Figure 5.3: Location maps comparing the reference realization (left) to the MIK (middle) and MGK
estimates (right).
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Figure 5.4: Cross validation plots comparing MIK (left) and MGK (right) estimates against reference
values.

Table 5.3: Expected RMSE of MIK and MGK estimates in comparison to reference realizations.

Sample Grid Estimate X (u;a,0.5)
(m) a=050 060 070 080 090 099
MIK 0308 0308 0309 0314 0321 0339
8x 8 MGK 0270 0271 0273 0277 0285 0.305
MIK - MGK 0039 0038 0036 0037 0036 0.034
MIK 0412 0414 0414 0419 0426 0445
16 x 16 MGK 0370 0371 0374 0379 0387 0410
MIK - MGK 0043 0043 0040 0040 0039 0.035
MIK 0592 0592 059 059 0601 0.617
32 x 32 MGK 0545 0546 0549 0554 0563 0584

MIK-MGK  0.047 0.046 0.047 0.042 0.038 0.033

comparison of the estimated MIK and MGK probabilities at each indicator threshold shows

thatin the upper tail, MGK consistently correctly estimates the value to belong to the upper-
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Figure 5.5: Comparison of expected RMSE as a function of expected measure of non-Gaussianity.

tail class more frequently than MIK. This is independent of the degree of non-Gaussianity

of the distribution.

Estimation accuracy and precision of the MIK and MGK estimates of the six X (u; a, ¢)-
scenarios are compared in Figure 5.6. The MIK estimates occupy the first two rows of the
plot and the MGK occupy the last two rows. The X (u; a, ¢)-scenarios become more Gaus-
sian moving from left to right. The accuracy plots show that both estimation methods are
accurate (plot on or above the 45°-line) and are in agreement with the RMSE values cal-
culated in Table 5.3. The data points at each probability interval reflect poorer precision
of MIK in comparison to MGK, as they plot further away from the 45°-line. Furthermore,
the MGK estimates noticeably increase in precision across the probability intervals as the
X (u; a, g)-realizations become more Gaussian. There is minor improvement in the preci-

sion of the MIK estimates.

Figure 5.7 quantifies the precision of the estimates, by calculating the mean of the vari-
ance of the conditional distributions (in squared, Gaussian units). One-hundred quantiles
are used to discretize the MIK conditional distribution. The layout of the plot similar to
Figure 5.6. The MIK estimates decrease from a mean conditional variance of 0.27 to 0.22.
Note that the scale of the x-axis changes between the MIK and MGK plots in the figure. It
is significantly higher than the MGK values, which decrease from 0.11 to 0.08. Note that

the mean of the MIK conditional variances could be skewed upward due to the discretiza-
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Figure 5.6: Accuracy of MIK (top two rows) and MGK (bottom two rows) for the six X (u;a, q)-
scenarios. 8 x 8 sample grid. Measure of non-Gaussianity decreases from left to right.

tion of the conditional distribution, so the interquartile range is also compared to discount
any potential effects of the distribution tails. In all cases, the upper quartile of the MIK
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distribution is greater than the maximum value of the MGK distribution.
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Frequency
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Figure 5.7: Conditional-variance distributions of MIK (top two rows) and MGK (bottom two rows)
for the six X (u; a, ¢)-scenarios. 8 x 8 sample grid. Measure of non-Gaussianity decreases from left
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5.3 Summary

Unconditional realizations are combined using the novel PLMR transform by Pereira and
Deutsch (2020b) to generate a set of realizations ranging from highly non-MG to MG that
act as synthetic analogues to real-world geological environments. A method is presented
to quantify the degree of non-Gaussianity of the realizations. The MIK and MGK estimates
generate accurate predictions for each of the realizations, but the distribution of uncertainty

predicted by MIK is consistently greater than the MGK estimate.

Comparison of estimation error shows that MGK is consistently lower than MIK across
all of the reference realizations, even in the highly non-MG scenario. Initially, it was ex-
pected that there would be a cross-over point where MIK would outperform MGK once
the distribution became sufficiently non-Gaussian. This warrants additional investigation.
The results show the multivariate-Gaussian probability distribution is more consistent than
the distribution generated non-parametrically by the indicator model. Values are more of-
ten correctly estimated to be in the upper tail by MGK. The indicator-class mean negatively

impacts estimation quality in the upper tail and does not reproduce the highest values.
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CHAPTER 6

CoNcLUusIONS AND FUTURE WORK

Multiple-indicator kriging is commonly used in the mining industry. It is attractive to geo-
statistics practitioners because the indicator transform manages outlier values and the con-
ditional distribution is non-parametric. This research utilizes an MG environment to study
the behaviour and dependencies of the component parts of the MIK estimator in isolation:
1) the conditional, indicator-probability distribution, and 2) the indicator-class means. Syn-
thetic non-Gaussian datasets provide analogues of geological conditions and are used to
compare the estimation performance of MIK and MGK. The bivariate conditional-mean /
conditional-variance distribution is used to assess the representivity of the results. Multi-
ple reference realizations sampled using several grid spacings provide representative ref-

erence values for the studies in this research.

6.1 Research contributions

In Chapter 3, estimation of the indicator-probability thresholds is shown to be unbiased,
but estimation accuracy varies locally over small distances and does not appear to exhibit
spatial dependence. When considering estimation of the indicator-class probability inter-
vals, the estimate remains unbiased, but the error of the interval probabilities relative to
the absolute CDF probabilities appears larger in both magnitude and spatial extent. The

research demonstrates that MIK generates unbiased, but erroneous values.

In Chapter 4, Gaussian and log-normally distributed datasets demonstrate that the
indicator-class means vary as a function of the conditioning data and their spatial covari-
ance relationships. Comparison of the global (stationary), indicator-class means to the

correct values reveals the greatest variability in the lower and upper-tail classes. In the

73



6. Conclusions and Future Work

upper-tail class, the highest values in the distribution cause a consistently high bias in the
global, indicator class mean in comparison to the expected, correct value. The opposite is
true in the lower-tail class. The number of indicator classes and the characteristics of the

tail distributions explain the magnitude of the observed bias.

Estimation using the global, indicator-class means reveals that the greatest estimation
error occurs in regions with the lowest and highest conditioning data. Changes in the
magnitude of the error are also greatest in these regions. Furthermore, the positive and
negative estimation errors exhibit spatial dependence on the global, indicator-class-mean
value. It is also noteworthy that estimates using the global, indicator-class mean are biased
low when the indicator-probability distribution is not considered. The apparent low bias
disappears during normal MIK estimation because the indicator probability distribution
weights the indicator-class means. An additional research contribution shows that the cor-
rect, indicator-class-mean value can be predicted by the conditional-mean and conditional-
variance values. This finding represents an opportunity to improve MIK estimates by vary-

ing the mean locally.

In Chapter 5, the PLMR transform is used to control the degree of non-Gaussianity of
the data distribution. A method is presented to quantify the degree of non-Gaussianity.
Estimates using samples of the non-Gaussian reference data consistently show that MIK
has higher estimation error than MGK. The uncertainty distribution determined by MIK is
also consistently wider and less precise than MGK. These results are unexpected, but they
demonstrate that MGK is a robust estimation technique across a variety of non-Gaussian
scenarios. The place of MIK remains unclear; however, the procedures and standards to

assess the relative performance of MIK and other techniques are documented more clearly.

6.2 Research limitations

Outlier management is not addressed in this research. Indicator kriging is presented as a

technique that manages outlier data, but there is no prior treatment of extreme values in the
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synthetic data sets or assessment of their affect on the upper-tail class mean. This research
shows that the estimated contained metal is sensitive to the number of indicator thresholds,
and most likely, to the extreme values in the distribution tail. An improved framework
would consider these in tandem. Furthermore, the assessment of the significance of the

indicator-class mean values is limited because it is case specific.

The findings show that MGK outperforms MIK in all tested non-Gaussian environ-
ments. It is important to note that it is not possible to test all non-Gaussian settings, so
a general conclusion cannot be reached. The synthetic non-Gaussian data, while necessary
to control the degree of non-Gaussianity, limits the findings. A carefully controlled study
using real-world mining data would be beneficial. Though synthetic data are required to

adequately control the experiments, it cannot replace real-world data.

Multiple-indicator kriging yields an estimate at the scale of the data. In mining applica-
tions, a volume-support correction is required to understand the grade-tonnage distribu-
tion at the scale of mining, commonly referred to as the selective mining unit (SMU). Local-
ized indicator kriging (LIK) developed by Hardtke, Allen, and Douglas (2011) is commonly
used to predict the distribution of grades inside the SMU since the local grade distribution
inside the SMU is not known after the change of support. This research does not consider

a change of support or localization of grades.

6.3 Future work

Avenues for future research could focus on topics of indicator-threshold selection, indicator-
variogram modelling, the estimation algorithm, construction of the CCDF, and post pro-
cessing. No formal methodology is followed during indicator selection. Common practice
relies on “rules of thumb” and the experience of the practitioner. The CDF is generally
modelled at the distribution deciles, with changes made to account for features in the CDF,
cut-off grade, and additional discretization of high grade bins. Research opportunities in-

clude optimization and placement of thresholds based on estimation performance criteria
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such as MSE, selecting thresholds based on the CCDF, and development of validation mea-
sures for threshold selection. A formal methodology, except for some “rules of thumb”,
also does not exist for calculation and modelling of indicator variograms. There is an op-
portunity to develop a technique to validate the indicator discretization of the bivariate

distribution in order to reduce order-relations errors.

Ordinary kriging is almost always used in MIK because it handles non-stationarity bet-
ter than simple kriging. Comparison of MIK using OK and SK with a locally varying mean
would be interesting. Also, the IK estimation algorithm could be modified to consider all
data as possible thresholds by projecting them on the unsampled locations to construct the
CCDFs. Distant data would be given a weight of zero and close data would be considered

to a variable extent depending on the indicator variogram.

The CCDF construction could be improved by modifying the scaling process to bet-
ter represent local conditions. Post processing of the MIK estimate could be improved
when applications require estimated values at a different volume support (e.g., a mining
volume). Current options available in software include affine and log-normal corrections,
but these are considered inadequate by current practice standards. Implementation of a

global-change-of-support option could be investigated.
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