INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UM! a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

University of Alberta

EcoPRO: AN EXERCISE IN MODEL-BASED INTERACTIVE SYSTEM DESIGN

by

Zhaohui Zhong@

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2001

il

National Library
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington

Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-60520-5

Canada

Ottawa ON K1A ON4

Bibliothéque nationale

services bibliographiques

Your file Votre réference

Qur file Notre reférence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent Etre imprimés
ou autrement reproduits sans son
autorisation.

University of Alberta

Library Release Form

Name of Author: Zhaohui Zhong

Title of Thesis: Ecopro: An Exercise in Model-Based Interactive System Design

Degree: Master of Science

Year this Degree Granted: 2001

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material

form whatever without the author’s prior written permission.

ez~

Zhaohui Zhong/
818-10 Edgecliff Golfway
Toronto, ON, M3C 3A3

Date: ./Z/QV.‘ ./.’ .‘2. L.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled Ecopro: An Exercise
in Model-Based Interactive System Design submitted by Zhaohui Zhong in
partial fulfillment of the requirements for the degree of Master of Science.

./

Mark Green (SuperviS‘or)

oy Grent |
Robert Grant (External)

Jim Hoover (Internal)

/! L./”/- 7, 2eeD

Date:

Abstract

This thesis describes an implementation of a model-based development process using
a set of design techniques throughout the system life cycle. The development of
the system is based on the integration of a task model, a dialogue model and an
implementation model.

The entire process begins with task analysis. which takes user requirements and
produces a set of tasks to be supported by the design. After the initial task model
is defined, the views for the objects in the task model are identified for supporting
mechanisms to achieve the various tasks. Once cbjects and views are identified, imple-
mentation details are specified for system programming. As an iterative methodology,
users participate in the design. changes in requirements are handled, and designs are
refined through the entire design process.

Acknowledgements

I would like to thank everyone who supports me all my past two years in University
of Alberta, especially my supervisor Dr. Mark Green and co-supervisor Dr. Robert

Grant, who encourage me throughout this project.
At last, and for the most, [want to thank my parents who are proud of me and

give me love and support forever.

Contents

1 Introduction
1.1 Motivation
1.2 OQutline of the thesis

2 Background Overview

2.1 An introduction to €COSYS o o it L i oo oo e e e e
2.2 Interactivesystem oo
2.3 Thedesign world oo
2.4 Methodology overview ool
2.4.1 User centereddesign
2.4.2 Design based onmodels (P
2.4.3 Design techniques oo
2.5 Design processo e o oo oo
2.5.1 Modelsused in Ecopro
2.5.2 Design process v o vttt e e e

3 User Requirements and
3.1 Requirements definitio
3.2 User profile analysis .
3.3 Task model generation

Task Analysis
2

3.3.1 User task model development
3.3.2 Initial task model generationo
3.3.3 Envisioned task model generation

3.3.4 Scenarlos test

4.1 Syntactic level of dialo

Dialogue Design and Design Evaluation

gue modeling

4.2 Semantic level of dialogue modeling
4.3 Interactionstyle oo n oo
4.4 Lexical level of dialogue modeling
4.5 Design evaluationo oo

5 System implementation

5.1 Basicclassesin Ecopro oo
5.1.1 Identification of the main classes

N = et

o~ =1~ oW W

5.1.2 Identification of the semantic component of each main class

5.1.3 Identification of interactions among main classes
5.2 Subclasses
5.2.1 Subclassesof Model
5.2.2 Subclassesof Viewo
5.2.3 Subclasses of Controller
5.3 Interactions among subclasseso o000

Usability Testing
6.1 Thinkingaloudo Lo

6.2 USersurvey o o v v i v v ot b e e e e e e e e e e e e e

Conclusion and future work
7.1 Conclusion v v o e e e e e e e e e e e e e e e e
7.2 Future Work e e e e e e e e e e e e e

List of Figures

2.1 Ecopro structure e e e e e e 5]
22 Adesignworldo oo 6
2.3 Various techniques involved in user interface design 9
2.4 Ecopro models and design process 12
2.5 Model-View-Controller state and message sending 19
3.1 First level of task analysis in Ecopro 25
3.2 More levels of task analysis in Ecopro e e e e e e 26
3.3 First level of task analysis after refinement 28
3.4 Task model of adding input files, 29
3.5 Task model of inputting topographicfile 30
3.6 Task model of inputting one scenario 31
3.7 Task model of modifving one scenario 32
3.8 Task model of modifying input files 33
3.9 Task model of invokingecosys 34
3.10 Task model of visualizing output data 35
3.11 “User” object state diagram in envisioned task model 40
3.12 “Evaluation process” object state diagram in envisioned task model . 41
3.13 Object relationship diagram in envisioned task model 42
4.1 Object relationship diagram in dialogue modeling (I) 47
4.2 ATN diagram of initial “user” view 48
4.3 ATN diagram of “evaluation process” view 49
4.4 ATN diagram of “user view” after completeness and reachability check 51
4.5 Object relationship diagram in dialogue modeling (IT) 54
4.6 Prototyping of initial view of Ecopro(I) 55
4.7 Prototyping of initial view of Ecopro (II) 56
4.8 Prototyping of evaluation process view (I) 56
4.9 Prototyping of evaluation process view (IT) 57
4.10 Prototyping of scenario view L0 oo 37
4.11 Prototyping of site file view (I} 58
4.12 Prototyping of site file view (II) 38

(o]
oo

5.1 A high level class diagram of Model-View-Controller in Ecopro
5.2 MVC triad set up processo e 64
5.3 MVC triad work process e 65

Class diagram of subclasses of Model in Ecopro (I)
Class diagram of subclasses of Model in Ecopro (I}
Class diagram of subclasses of View in Ecopro
Class diagram of subclasses of Controller in Ecopro
Collaboration diagram of “ input file ” scenario in Ecopro.

List of Tables

V]
e

Level of dialogue modeling

3.1 [Initial user requirement of Ecopro
3.2 Applying user profile on design .
3.3 Sample questions in user interview
3.4 Usability considerations in Ecopro

3.5 General rules for task allocation in Ecopro

it
(@)}

IO N
[V (V]

[VVERVVER (V)
o ~1 Ot

Chapter 1

Introduction

1.1 Motivation

The rapid growth and spread of computer software has raised the important issue of
providing effective support for the end users. In the past, little attention was paid
to the user interface, because both software developers and customers focused on
maximum functionality within cost and performance constraints. Recently. however,
there has been a growing awareness that the success of computer software depends
to a significant degree on the quality of the user interface. This thesis explores the
principles and choices in developing a graphical user interface (GUI) for an existing
software system.

The system for which the GUI is built is called ecosys. The long-term objective
of ecosys is to provide means for predicting ecosystem behavior under different en-
vironmental conditions. The problem with the existing implementation of Ecopro is

that it is not user friendly for the following reasons:

e The user needs to have advanced knowledge of the input files that are based on
different scenarios. For example, the user needs to remember the file format of

each input file and understand the relationship among different files.
e In some cases, the amount of information input could be enormous.

e The output files are not straightforward, thus they are hard for the user to

understand.

e The user needs to have certain computer background.

The disadvantages discussed above motivated the development of an interactive, user-

friendly system called Ecopro. This system aims to:

e make all intricate system details transparent to the user.
e provide support to the user in system input.
e help user understand system output.

e maintain a robust system structure for ecosys.

1.2 OQOutline of the thesis

The following is a brief outline that describes the thesis structure:

Chapter 1 - Introduction

Chapter 2 - Background overview

A short description of the interactive system design methodology and the models
used in implementing Ecopro.

Chapter 3 - User requirements and tasks analysis

This chapter provides answers to questions directed towards understanding the
user’s needs - a key requirement for designing and implementing Ecopro. The general
steps include contacting the user, analyzing and modeling their tasks, as well as
defining system constraints and usability targets.

Chapter 4 - Interface design, prototyping and evaluation

In this chapter, a visual presentation of the system is designed. The main topics
relate to matching graphical presentation with the tasks and evaluating the design.

Chapter 5 - System implementation

This chapter deals with implementing the design. Development issues such as
identifying main classes and their relationship are invovled.

Chapter 6 - Usability testing

This chapter describes how to evaluate the system.

Chapter 7 - Conclusion

This chapter summarizes the process from the preliminary design to the final

implementation, and offers some thoughts for further improvements.

o

Chapter 2

Background Overview

2.1 An introduction to ecosys

Ecosys is developed for the construction and testing of a comprehensive mathematical
model of natural and controlled ecosystems. It was written in Fortran running under
the UNIX operating system. Its operation is directed by a shell script in which input
files for soil, management and climate are read, and output files for C, N, P. ion. water
and energy distribution are generated. For example, ecosys allows the user to examine
the ecosystem behavior in Edmonton from 1980 to 1990. In this situation, the user
needs to input a set of files according to the specific characteristics of Edmonton
and what happened during the ten- vear time period. Basically the user will need to
input the latitude and altitude of Edmonton, the weather condition in Edmonton from
1980 to 1990, the plants that grew there, and events related to fertilization. tillage,
irrigation, etc. The user also needs to specify his or her particular requirements to
ecosys. For example, the frequency of output may be every five hours instead of every
hour, thus significantly reducing modeling time. After inputting all necessary files,
the user needs to write a script file to trigger the running of ecosys. Once the system
is invoked and executed, a set of output files are generated. The term “evaluation
process” is used to describe all the activities from inputting all files until output data

is generated. For each evaluation process, the following input files are needed:

1. A site file describing the site characteristics (latitude, altitude, average annual

temperature etc) of the specific site in which the user wishes to model the

ecosystem.

[}

. A topographic file describing topographic characteristics (such as slope of the
earth face, depth of snow-pack, roughness of surface etc.) of landscape units in

the specific place.

3. A soil file describing the characteristics of soil (such as how many lavers in the

soil, water content, sand and silt content etc.) in the specific place.

4. A control file containing information about user’s requirements. such as the

time period for the model run, output control etc.

5. A weather file describing the weather condition in the specific place during the

evaluation time period.

6. One or several plant management files describing various species of plants in the
specific place and harvest related events that occurred during the evaluation

time period.

R

A tillage file describing any tillage related events that happened in the specific

place during the evaluation time period.

A fertilization file describing events related to soil modification that happened

0]

in the specific place during the evaluation time period.

9. An irrigation file describing any irrigation related events that happened in the

specific place during the evaluation time period.

Tillage, fertilization and irrigation related files are optional and they vary depending
on whether any related events occurred in the specified time frame. The contents
of site, topographic and soil related files are determined once an evaluation site is
chosen. The other six files also depend on the time period of evaluation. This causes
a problem, because during different time periods, different events may have occurred
in different combinations. For example, in 1980, harvest, tillage, fertilization and
irrigation events happened, while in 1981, only tillage and irrigation events happened.
This change makes it difficult for ecosys to model the environment.

The designers of ecosys tried to solve these problems by defining the term “sce-

nario”. Each scenario corresponds to data input within one year. It includes one

Ecopro

interface visualization

€CoSsys
tools tools

Operating System

Figure 2.1: Ecopro structure

control file, one weather file, one or several plant management file(s). tillage. fertiliza-
tion and irrigation files if there are any. Consequently, a typical “evaluation process”
contains one site file, one topographic file, one soil file and several scenarios depend-
ing on the number of years that the user wishes to model. For example, if the user
wants to model the ecosystem in Edmonton from 1980 to 1990, he or she will need
to input one site file, one topographic file, one soil file and ten scenarios consisting of
ten control files, ten weather files and so on. This makes it very difficult for people
to use ecosys.

The goal of the current approach is to provide an interactive system based on
ecosys that we call Ecopro. It is aimed at helping the user to input all necessary files,
execute ecosys and view the output data in a user-friendly manner. Not only is the
user interface design emphasized, but also the overall system purpose, functionality,
and structure. All these aspects are treated within the scope of the current user

interface design.

2.2 Interactive system

According to the definition of [Newman, 1995], “an interactive system supports com-
munication from user to computer and back. The user takes actions such as pressing
buttons, and the system reacts accordingly. All of this takes place via the system’s
user interface, the part of the system that provides access to the computer’s inter-
nal resources. The most crucial property of any interactive system is its support for

human activity”.

descriptions

user’s world

designers
referents
v
A]
new system
implementation
referents
system design
Figure 2.2: A design world

The approach of user interface development is different from general software engi-
neering methodology and requires extra resources and expertise. Using an interactive
system is a human activity. Beyond simply doing what is needed, a successful system
has to merge smoothly into the user’s existing world. There is a basic fundamental
difference between the approaches taken by software engineers and human computer
interaction(HCI) specialists. HCI specialists are user centered and software engineers
are system centered. Software engineering methodologies are useful for specifying and
building the functional aspects of a software system. Human computer interfaces em-
phasize developing a deep understanding of user characteristics and a clear awareness
of the tasks a user must perform. Thus an iterative design technique is required for
the development of user interfaces. The waterfall approach to software development
does not work for user interface design since an user interface cannot be specified

without repeated testing with users.

2.3 The design world

User interface designers support users who have particular goals within some context.
This framework is called a design world as illustrated in Figure 2.2. A user’s world
is a system that is of interest to a population of users and designers for some period
of time. A user’s world can be described in different terms and at various levels of
abstraction. Referents are entities in the user’s world that have meaning to users.
They may be users themselves, physical objects in the user’s world, or events and
tasks. Not only may referents already exist in the user’s world, but they may also be
added as the result of the activities of computer systems. Designers create descriptions
of the world that enable the process of user interface design. A design method or
approach is a way of performing user interface design. A design method uses design
techniques such as task analysis. Designers use a specific design technique, or combine
them to produce a description expressed in a notation. The description is then used
for system design, and the feedback from system design adds to the user’s world for

further improvement. A designer is thus interested in:

e how to form descriptions of the user’s world.

e how to match these descriptions to computer system and generate the system

design.

e how to evaluate his or her design.

2.4 Methodology overview

2.4.1 User centered design

Since a common concern within interface design is the involvement of the user, a set of
methods have been developed which aim to improve the human involvement in system
development. These methods advocate the following approaches which undoubtedly

improve system and interface design.

e Users participate design[Newman, 1995]: Users should be actively involved in

the process of design and should be assigned to the design team to share in de-

-~

cision making. This is intended to narrow the gap between computer specialists

and computer users.

o User centered design[Norman and Draper, 1986]: The system design should be
driven by the needs of the users instead of functional processing requirements,
limits of hardware, etc. In this way it is ensured that the design will be based on
real data, not on imagination, and will be about people and how they perform

their tasks.

2.4.2 Design based on models

The discipline of model based user interface design[Forbrig 1997] advocates the ex-
plicit denotation of information that is required for user interface design. This formal
description can then be used for information analysis, interaction prediction. system
specification and generation.

The primary strength of user interface models is in their descriptive power and
high level of abstraction. The design group will develop knowledge of the process
structure in a much more explicit and precise way. Also, when designs are expressed
formally there is a chance that parts of them would be reused in other projects. which
is almost impossible otherwise.

There are some inherent weaknesses in the model based approach. The biggest
problem is that the user or the client might not understand the formal model, and
the designer could get lost in the formal design space, due to overwhelming complex
formalism. The expressiveness of the formal language is also a critical issue. On
one hand, the formalism should be easy to use, on the other hand it should be
powerful enough to allow the full expression of everything needed. Finally different
disciplines need different formal models and support tools, which sometimes may not

be compatible with each other.

2.4.3 Design techniques

Figure 2.3 lists a set of techniques which may be used through the design process.

user studies task analysis prototyping design evaluation usablity test

interviews Hierarchical task analysis paper sketches cognitive walkthrough thinking aloud
observation knowledge based analysis HyperCard heuristic evaluation field tests
questionnaires Visual Basic GOMS model experimental measures

time
early stage later stage

Figure 2.3: Various techniques involved in user interface design

User study

Human-computer interface is built to suit the needs of people. therefore. it is im-
portant to find out who will use the system, their general abilities and other factors
which affect their usage of the system. The objective of a user study[Rosson, 1988]
is to obtain a thorough knowledge of the skills and experience of all users in order to
be able to predict what kinds of tasks they want to perform and how they will react
to different interface designs. User studies may also be used in support of evalua-
tion by conducting user tests. Several methods are available for user study including

interview, observation and questionnaires{Newman, 1995].

Task analysis

A task is a unit of human activity, carried out in order to achieve a specific goal. The
performance of a task usually involves a sequence of steps, each step contributing in
some way to the achievement of the task’s goal. Task analysis[Lewis, 1993] is the
process of analyzing the way people perform their tasks. It is an important technique
that enables users to be involved in the design process and enables designers to

understand user’s work.

Prototyping

Prototypes are used to test design ideas and obtain feedback from the user. The result
of prototyping might be as simple as a series of paper sketches showing the interface
while a user steps through one of the representative tasks, or it may be a detailed
design using a system such as Visual Basic. The entire design doesn’t need to be

implemented at this stage. Initial efforts concentrate on parts of the interface needed

for the representative tasks so that feedback from users can be quickly generated and

used for re-design.

Design evaluation

Evaluation after prototyping [Shneiderman, 1998] has the advantage that problems
can be found before considerable effort and resources have been expended on im-
plementation. A number of methods have been proposed for this purpose such as
cognitive walk-through[Carroll, 1995]. heuristic evaluation and model based evalua-
tion. The basic intent is to identify any areas which are likely to cause difficulties

because they violate known cognitive principles, or ignore accepted empirical results.

Usability testing

The distinction between prototype evaluation and usability testing is the existence
of an actual implementation of the system in the latter case. There is something
concrete to test, thus usability tests tend to be experimental involving real users while
prototype evaluation tends to be analytic. There are various kinds of techniques which
can be explored for usability testing such as thinking aloud, field tests, experimental

evaluation etc.[Shneiderman, 1998]

2.5 Design process

As we mentioned above, an experimental approach is necessary in interface design
because there is not a sufficiently strong theory from which a theoretically based
design could be constructed. A designer may choose to combine different approaches
depending on the specific needs in different cases. In Ecopro, an attempt is made to
combine user centered design with a task centered approach by using different models.
In the subsequent sections, the models that are used in Ecopro will first be described

and then a brief explanation will be given of the design process using these models.

2.5.1 Models used in Ecopro

The models in combination with their use form the basis of design methods and

techniques. Figure 2.4 illustrates the models that are used in Ecopro and the design

10

steps.

User model

A user model is used to understand and model an activity as it is understood by
the user. If the designer can get the model right then he or she can use it to create
a design that will be intuitive to the user. User models come in several categories
depending on the interest of the authors. The following types are currently found in

the human computer interface literature:

e Theoretical cognitive models as constructed by psychologists. The purpose 1s

to understand human mental processes.

e Model of user knowledge as inspired by computer based training(CBT) interests
and adaptive interfaces. The model is constructed of domain knowledge to assess

how users learn by traversing the knowledge network.

e Model of user characteristics attempting to classify users in terms of skill and

ability; It is also called user profile.

e User task model that reflects the user’s concept of how a task is constructed in
terms of its functions and operational sequence. It is an attempt to discover
how much users know about the system in terms of its operation and what are

their expectations about how it will work.

e User view is the user’s model of the system structure which may be expressed in
terms of visual presentation of system components. It is also called user system

image.

In Ecopro, a user profile is acquired during the user requirement analysis stage.
The user task model and user view are generated in tasks analysis and dialogue design
stages respectively. Theoretical models and models of user knowledge are not used

because they have less direct relevance to the present design.

11

USER MODEL

INITIAL
TASK MODEL

ENVISIONED
TASK MODEL

N Prototype
DIALOGUE MODEL &

IMPLEMENTATION
MODEL

1

Figure 2.4: Ecopro models and design process

12

1
/Evaluation

", Implementation

,,’ Usability Test

Task model

A task model describes the activities in which users engage to achieve their goals, the
details of those goals and the strategies adopted to achieve them. The task model is
described in terms of the actions that users perform, the sequencing of the actions,
and the objects involved in those actions.

Task modeling can essentially be done on two different levels, leading to differ-
ent models. First, it represents the tasks that users perform with existing systems.
Secondly, it represents the tasks that are envisioned as being performed with one or
more proposed systems. This envisioned task model documents the task structure
and the division of labor between the human user and system. Based on this second
task model, the dialogue structure of the interface is developed and captured in a

dialogue model.

Dialogue model

A dialogue model represents important information about the conversation between
the user and the computer system. Ultimately, this information supports the devel-
opment of a concrete user interface. Using a continuously developed, explicit dialogue
model can ensure the consistency between different levels of interface modeling, and
provide a common ground for communication between user and designer [Dix, 1993].

Dialogue models can be described by diagrammatic as well as textual notations.

Implementation model

An implementation model is a concrete model that drives the implementation. [t is

a level of detail which is deemed desirable for generating implementation codes.

Object-oriented model

An object model is a description which is composed of objects and links between them.
Many of the advantages claimed for object-oriented design have particular attraction
to the developers of interactive application, in that a key aspect of designing such
systems is the creation of tasks and interfaces that are accessible to users but also

extensible as user’s needs evolve.

13

In Ecopro, the object-oriented concept is employed in the envisioned task model,
dialogue model and implementation model. The initial task model is not object-
oriented because it seems natural to describe the initial model by tasks and their
sequence rather than by objects directly. Consequently the initial task model focuses
on the tasks, their structure and sequencing, each object is linked to those tasks
which operate on itself; while the envisioned task model emphasizes the objects, their
properties and relations, each task is linked to those objects which are involved in the

task execution and the sequencing of tasks is of less importance.

2.5.2 Design process

Design methods generally describe a series of phases with each phase involving one or
more activities using models, e.g. eliciting the information in the model, manipulating

the model or using the model to create further design models.

User analysis

The first stage in the design process involves collecting and analyzing data about the
users, their tasks, the way they may interact with the system, and the system image
in their mind.

An analysis of user characteristics is important. The general ability, computing
and task experience of the user contributes towards measures of level of support.
These measures can then be used to generate the task model and plan suitable types
of interfaces at later stages.

Knowledge about how users perform tasks enables designers to contemplate the
aspects of work that could or could not be supported, how they could be supported
and what changes to the work will come about as a result of a design. This is achieved
by generating the user task model and view model. A detailed explanation of the two

models will be offered in the next two chapters.

Task analysis

The more knowledge about the user tasks available during design time, the more it
can be exploited when defining the system’s properties and features, and the higher

the degree of user acceptance and satisfaction obtained when using the system. After

14

understanding more about the user, modeling and analyzing of the user’s tasks begins.
The output of this process is then used in the subsequent system design and evaluation
phases. The task analysis concentrates on the tasks that the user wants to perform
and the level of support that can be provided. There are six steps involved in the

task analysis.

1. Interview the user and generate the user task model.

[SV]

Apply domain knowledge, analyze and refine all tasks, generate the task model.
3. Consider level of support and system constraints, and apply to the task model.
4. Allocate the tasks from the user and system’s perspective.

5. Identify objects and actions in the task model, and apply the result of 3 and 4

to generate the envisioned task model.
6. Use scenarios to evaluate the envisioned task model.

The process starts with interviewing users, collecting data on the tasks they work
on and their means of performing tasks. Then data is analyzed to build a model or
abstraction of the activities. This provides a blueprint for the initial version of the
user task model.

Since the user task model provides the designer with only the user’s thoughts, it
is not complete and specific enough for further design. It needs to be refined with
domain expertise to generate the task model.

Usability is a fundamental concern for interface design. Once it is known who will
use the system and what they’re going to do, targets need to be set for the levels of
support that the system will provide to the user.

Another consideration is system constraints that may affect the choice of solution.
A successful design for an interactive system requires the recognition that any sys-
tem may involve many layers of technology including application software, operating
system, networked resources and hardware. Often it is these systems that constrain
the design.

The construction of the envisioned task model allows the designer to identify the

new tasks to be supported in the system under design. To determine the focus of the

15

level task

lexical description of shape of icons, objects and keys in the Ul

description of order and structure of methods/services used to

syntactic satisfy a main goal

description of dialogue in terms of its effect on the functional

semantic ..
application core

Table 2.1: Level of dialogue modeling

system and how it fits within the current work organization, a clear understanding is
needed of the distinction between the tasks performed by the computer and the tasks
that are performed manually. This process is called task allocation.

After applying system constraints and usability targets to the task model, the
model is then transferred from task based to object based. Given the task model, for
each task an initial set of objects and their corresponding actions are identified. The
most frequently occurring objects form the basis of the envisioned task model, and
the relationships between the objects are defined by their roles in the tasks. As the
analysis proceeds, the model is expanded to map all tasks.

To enable early discovery of errors, scenarios are produced and utilized as sample
tasks to make sure all functionality required in the system is covered and various

features of the system work seamlessly together to accomplish real tasks.

Interface design

All tasks have to be performed through a friendly user interface, hence it is very
important to design the visual presentation of the interface to effectively support the
user in performing these tasks.

In Ecopro, an explicit dialogue model is used to describe the user computer con-
versation. There are three levels within the model[Elwert, 1995]. The lexical level

describes low-level tokens. For the input language, these tokens include keystrokes,

16

mouse clicks, or mouse motion. For the output language, these tokens include the
components that can appear on an user’s display, their layout characteristics. and the
visual dependencies among them. Normally the lexical level incorporates principles
of graphic design[Shneiderman, 1998] in order to give a comprehensive support to the
dialogue designer. The syntactic level defines the structure of the dialogue between
the user and the application. It controls the execution of the logic of the dialogue by
describing the sequencing between different presentation units called dialogue views.
Semantics refers to the meaning or intentions of the end user. The semantic level of
the dialogue model provides an interface between the dialogue and the task model. It
deals with the functional description of the dialogue within a dialogue view including
the realization of state changes of user interface objects.

Five steps are followed to generate the dialog model.

1. Based on the envisioned task model, define the syntactic level of the dialogue

model.

N

Define the semantic level of the dialogue model.
3. Verify the model for completeness and reachability.
4. Select an appropriate interaction style of the interface.

5. Define the lexical level of the dialogue model

During the syntactic level of dialogue modeling, a view is attached to each object.
[t can be considered as an abstract representation of an object in the user interface.
Afterwards, the structure of views and the sequence of interactions within each view
is identified.

Then interactions within each view are mapped to the functions residing in the
task model. In this way it is assured that the task fits into the view.

Once the views have been defined in terms of the tasks they support, the model
can then be checked for completeness and reachability.

The design can then be further defined in terms of the mechanism that the user
employs for interaction with the computer system. An appropriate interaction style

depends on the specific tasks and the usability issues.

17

Finally details of visual aspects of the interface are defined which transform the
dialogue model from an abstract level to a concrete level and smoothes out the de-

velopment process.

Prototype and design evaluation

In Ecopro, low-fi techniques - paper sketches, are used for pfototyping. The sketches
are then shown to the user with an explanation on structure, navigation path and
the details of visual design.

Cognitive walk-throughs are used for design evaluation. This is a formalized way
of depicting people’s thoughts and actions when they use an interface for the first
time. Sample tasks are selected to specify what a user would see and how they react

step-by-step in performing the task. The feedback is used for redesign.

Implementation

At this moment there are objects, their corresponding views, and the set of inter-
actions by which users and system communicate with each other. Next. the Model-
View-Controller (MVC) is used to generate the implementation model. MVC was
introduced by smalltalk developers [Goldberg, 1933} and has been used as a frame-
work for interactive system implementation for quite some time.

The standard interaction cycle in the MVC begins with the user taking some
input action and the active controller notifying the model to change itself accordingly.
The model carries out the prescribed operations, possibly changing its state, and
broadcasts to its dependents (views) that it has changed. Views can then update
their display if necessary. This message-sending is shown diagrammatically in Figure
2.5.

Since there already exist objects, views, and interactions in the task and dialogue
models, little effort is required to integrate them and generate the implementation
model. The system is described using the set of notations in Unified Modeling Lan-
guage (UML). Thus the final implementation model is a set of class diagrams and

interaction diagrams.

18

Controller

user input device
interaction
interaction view

. Display layout
_ ., User input
q devices

Model
access &

/ editing
messages

Dependents
~C P
change
messages

pplication domais
state and

behavior

Figure 2.5: Model-View-Controller state and message sending

Usability testing

The point of testing is to anticipate what will happen when real users start using
the system. Thinking aloud [Nielsen, 1993] and user survey are used in Ecopro for
usability testing.

To use thinking aloud, the user is asked to perform some tasks. and talk to the
designer at the same time. They are asked to tell what they are thinking; what
they are trying to do, questions that arise as they work, etc. The designer makes a
recording of their comments. Process data is collected after applying think aloud to
the user. Process data are observations of what the test users are doing and thinking
as they work through the tasks. These observations tell us what is happening step
by step, and suggests why it is happening.

A user survey is used to coliect bottom-line data which give us a summary of what
happened. For examples. how long did users take, were they successful, how many
errors did they make. The survey form may cover the topics such as overall reaction to
the system, satisfaction on system capabilities, terminology and information, screen
representation etc.

After all the tests, the data is analyzed and the results are used for further im-

19

provement of the initial design.

Chapter 3

User Requirements and Task
Analysis

In this chapter, we start with the analysis of user requirements and their profiles.
Then the task model is generated and finally a scenario test is used to check the

model.

3.1 Requirements definition

As the first step of our design, we define the main problems that we are going to
solve, identify users, understand their usability demands, and consider alternative
functional forms that may enable these requirements to be met more easily.

The initial problem can be viewed as “design an interactive system on top of
existing software applications and provide the user with a high level of interaction
support”. The main users of this system are people working in the ecology field. In
order to have a clear understanding of the problem, the problem statement needs to
expanded to include a level of detail which defines the major interactive functions

and the initial usability targets that the system is to provide. The result is shown in

Table 3.1.

3.2 User profile analysis

The Ecopro user profile analysis focuses on four aspects:

e psychological characteristics includes users’ motivational level, their attitudes,

and their cognitive style.

1 General
1.1 The system should provide a mechanism to help the user enter all necessary information
to run an existing model
1.2 The system should provide a mechanism to help the user update exisiting information
which was entered before and rerun the model
1.3 The system should provide a mechanism to help the user visualize the output data

2 Support
2.1 The system should hide all details of "ecosys” and the computer system
2.2 The system should provide convenience for user’s work

2.3 Manual should provide the user with initial training and information on its use

Table 3.1: Initial user requirement of Ecopro

e knowledege and experience includes users’ education level, typing skill, experi-
& P yYping P

ence of similar applications, and computer literacy.

e task characteristics includes users’ job category, task experiences, frequency of

usage, any training on working field, and task structure.

e physical characteristics includes users’ gender, handedness, and whether they

are color-blind.

Users of Ecopro have high motivation and positive attitudes. They have solid
background on task knowledge, but moderate level of experience with computer sys-
tems. They do not have experience with similar applications in the past. Frequency
of usage won’t be high for Ecopro, which means users won’t use the system everyday.
On the other hand, due to the heavy input load, they may have to spend a long time
to get the output result every time they use the system.

Based on the considerations above, decisions are made on usability and visual
design which are illustrated in Table 3.2. The results can be used in the later de-
sign stages such as task analysis, usability performance set up, dialog modeling and
usability testing.

We notice that sometimes the usability targets may conflict with each other, such
as the trade off between ease of use and ease of learning . As a general rule. the more

flexible a system is, the easier it is to use, but the harder to learn and control. Since

22

User Definitions

high movitation

psychological characteristics . .
positive attitude

moderate level of computer literacy

knowledge and experience . s e e
no experience with similar applications

sound background knowledge
task characteristics low frequency of usage
highly structured tasks

Design Choices

easy to learmn

usability easy to use

. . familiarity: use existing framework for visual design
visual Design .
consistency

system controlled interaction instead of
others user controlled interaction (less flexibility)
user-participative design

Table 3.2: Applying user profile on design

the frequency of usage in Ecopro is low, users will not be able to learn and remember
unless the system is designed for ease of learning. This factor will be one determinant
that guides us in the ease of use versus ease of learning trade off. Another point is
that usage of Ecopro is discretionary. Hence first impressions are very important to
create motivation. Again ease of learning has a higher priority which implies that the
system should provide simple and structured interactions with more instructions and

feedback.

3.3 Task model generation

3.3.1 User task model development

After the initial user requirements are defined, more details are needed on overall
functionality that the system is required to provide. By interviewing users. an un-
derstanding of the users and the tasks they perform can be obtained.

A clear structure is necessary for the interview to make sure all the relevant topics
that are of interest are covered. Table 3.3 lists a few questions which are used in the
interview.

The outcome of interviews with users is a set of written transcripts describing the
tasks in users’ minds and the means to perform those tasks. These transcripts are
used to generate the user task model and user view. The user view will be elaborated
upon in Chapter 4.

By arranging tasks in a hierarchical structure based on the goals they achieve and
the steps they involve, the user task model is generated. Various subtasks must be
accomplished in order to perform the main task and they are further subdivided into
dependent tasks. Hence the user’s task model is a hierarchy of tasks and subtasks
and plans describing the order in which they are performed.

A graphical notation is used to represent the tasks. Figure 3.1 is an example of
the first level of task analysis in Ecopro. and figure 3.2 is a further task breakdown

of the tasks shown in figure 3.1.

[ssue Specific questions

what is the purpose of this system from your point of view? why?

Purpose what are the main differences between the new system and the old one, why?
Enumerating frorn. the functionality perspective, what do you expect the system will
.. provide for you, why?
Activies . 9
can you show me some specific examples?
in the given example, is there any other way that you may try to
Working get the result? why you choose yours rather than this one?
Methods what would you like to do if this develops a fault?
any specific tools you want to use in the system?
Support which level of help information do you think is appropriate? why?
which is more important for you, ease of use or ease of learning?
Issues 9
why?
Table 3.3: Sample questions in user interview
0 .
Ecopro running plan 0:
dolor2
then 3
if user wants, do 4
- R oonn
L 2 modify a set of 3 invoke ecosys 4
add a set of input files inpu); files laccording to user)ilnput get output data

Figure 3.1: First level of task analysis in Ecopro

1 add one set of
input files

plan I:

dol.land 1.2and 1.3

thendo 1.4

1.1 input

1.2. -
topographic file input soil file

L3 input site file

1.4)
add one scenario

plan 1.4:
14.1-142-143-144
-1.45-14.6
1.4.1 142 [.4.3 .44 145 1.4.6
input input input input input input
control file plant file fertilize file tilliage file weather file irrigate file
plan 4.5:
do145.1 [1.45.1 1.45.2 "
input contro append specifiq
then 1.4.5.2 | parmmeters weather data
plan 1.1:
1Ll -012-L13-1.14-01.15-1.1.6-1.1.7-1.1.8 - .1.9- L.1.10 - L.1.11
S DU U ViR T Uk S Y DS 0 U S OO U - 8 P S 8 L iLL9 + LLIO COLLI
vinput ! :input ! ‘input | !input | linput {input ! !input | ‘input | ‘input .+ .input i ‘input !
ino.of i ino.of : ,western inorth ieast. : :soyth i j-aspecti ;sloye i isurface ! !smowpack: soil filg
columns :rows @ posiior position position: position (deg.) : (ded.) | roughness i depth , iname !

task decomposition
stops at this point

Figure 3.2: More levels of task analysis in Ecopro

3.3.2 Initial task model generation

The model showed in figure 3.1 and figure 3.2 provides the current designer with a
general idea about user requirements. More detailed information is needed for further
design. For example, is there any parallelism or iteration of the tasks depicted in the
figures; are all the tasks necessary; are they completely covered by all the scenarios
of usage; is the order of tasks correct. Hence there is an need to analyze the model
together with domain expertise and refine it.

After refinement, the model is presented in a more formal descriptive way which

contains the following information:

e the structuring of tasks into subtasks by using graphical notations.
e temporal relations between tasks by using plans.

e possible user decisions.

And each task in the model contains the following items:

e name of the task.
e pre- and post conditions for the task.

e objects used within a task context.

Figure 3.3 depicts the first level of task analysis of Ecopro after refinement. There
are several changes compared to figure 3.1. Each evaluation process is assigned a
name because there could be many such processes in the system. As the user may
want to run the process with different sets of input files for multiple times, repetitions
need to be allowed in steps 1 to 4. In order to perform step 2, there must be files
which need to be pre-loaded. Thus, if step 1 does not occur, there should be no step
2. All these considerations are added to the model in figure 3.1 to generate the model
in figure 3.3.

Similar to the refinement of the model depicted in figure 3.1, the model in figure
3.2 is refined to generate a detailed model for the task of adding input files (figure

3.4 -3.7). Other main tasks in Ecopro are illustrated in figure 3.8-3.10.

27

s102[qo

UONIPUOI-1S0C

uonpuoa-ad

iStL

1
'
1
'
'
'
'
)
l
I
1
'
1
' QBN
[}
'
'
1
1
'
|
'
'
1
'

SIA 10} §[00) *s9]1 IndIno
ssao04d uonenjeAs

$£5009 1d1ios uni
$$200.d uonENjEAD

soq1) [enud
ssao01d uonenjeAd

9y (v
ss9001d uoneneAd

paresauad st viep indino Jo

Funuud 10 uonvzijensia

G ysu) 10} Aprol

pawtauad si mep ndino

¥ yse) 10} Apras

patipouw safyy {{evd

{10 ¢ ysv) 10§ Kpeal

paweIauad ale safiy v

paysiuly ¥ ysel

paysiuy ¢ 10 g ysu)

(porouad aie sof1))
patstuty g yse)

paystul) [yse)

viep 1ndino ajessusd ¢

indut Jasn 01 Suipiodor
$£5009 9j0AU] ¥

sa(1) induy
Jowse Appow ¢

saq1j indut jo 198 v ppe

ssaooud uonenjeAs
SIUj) Jo Qweu duAp

@

-~ ()< p< (D)<

.0 unyd

Suiuuni oxdoog

0

First level of task analysis after refinement

Figure 3.3

- 8V LT< (90 <-6T< (T 1< FO< €T
10
| | |
B — 87 < LT TV 1< 0D<CT<-HD<€T
10
| h h «
e B87<-LT<-(90<-ST<-(PD<¢T<-(TO< 1T
;g upyd
oG il Yy [1os) d d] I
pue OLIBl190S pue oLIBl90S i [13 [10S 9[1j odo} 9]}y odoy 9L s d[Y s
ssaooad ssao0.d ssao0ud ssaso.d ssaoo.d ssaoo.d ssaoo.d ssao00ad
uonen[eAd Uonen[rA? uoneN|eAd uonen[ead uonen[eAd uonen|eAd Uonen|eA?d uonen[eA?
pajetouoag st paie.udg st poljipotu paeiousd patjipowt paeroudd paijopowt pojeIouag

OLIBUQJS U0

OLIBU3IS JUO

st o[y [10s

st 9[1) [10s

st 91} odoy

s1 91 odoy

s1 91} AN

S1 9[1J IS

paystuy - ppysiuly 9°¢/S°g paystuy paysIul ' paystuy poysiuy paystuyy poystuy
Le® | yyetrune G'T Ase) 10 €7 sty €' el [st} 1T 3ise) I 3se)
OLIPUDOS OLIBUAOS Ay Y oy oquy owydead Yy Yy
auo £jipouw ouo ppe tos Ajipow posndut | odoy £pipow -odoyindut| {ous Ajipows ayis indut
8T Lc 9T St bz €T 4 '

sot} indur
JO 195 quo ppe

[4

Figure 3.4: Task model of adding input files

aueu
9y [10s
198
paysiulj
['C 350

auieu
o[y 10
11z

dop
yoedmous

198

pausiuyy
1'7 s

S

brmrmemmea «d
souygnou
i 90BJINS

198

paysiuy
1'T Y8t

bimimim it -
ssouy3nos

20uJIns

) ‘ou
(ovn_o_m
198

®) ‘ou
mow%a
198
paystuy

1°¢ 3se

uonisod
yinos

198
paystul]
['c ysel

uonisod
Inos

ﬁ.-;.-.-.-.-,-,.
uonisod
1589

108

paysiuyy
17 ysm

R

uonisod
189

e

01'1e
6'1°C
81T

L'1e

91°¢C
1
v

€re

paystuy
1"z ysw
uonisod

(ou

o[y odoy

uonisod
159M

198

paysiuy
1°C 3sel

uonisod
15oM

e
10
I'1'e
;g uerd
o[y odoy i {oyy odoy
ﬁ lllllllllllllll -4 ﬁ IIIIIIIIIIIIIII -4
(v) "ou (») "ou
MOI | i uwinjod
108 108
e emiiimimad Bieimimimim i]
paystuy | i paysiuy
[3se) I yse)
T ou T ou |
mol i | uwmjod
........ AN

[y owydea3odoy indut

1'C

Task model of inputting topographic file

.5

Figure 3

30

ou

2

DL} JoyImami bl1p J3U[ILaAY

papuadde’i | payipow
(1§ JaUEaM | diep (010D

UU3ds OLIRUADS

........ -4

4

‘.-;__
DILJ JOUIAY PIIJ JoIeaAy Pl1f 1ayInam
OLRUDS | | OHIEBUIIS

patjipotu | | payesouod
[1} JOUIBIA | P (OO |hep [0H0d

RHIERN

........ 4

papuadde

4

<~ (TOI'LT

?

<-1or

Y
LD EELT< TELD<T6LT
201°Lg pue 'Lz ued

paystuly
paystulyi | paysuyy _uwm_w._w_._m pausuy | | 9'7/S'T i
A §) [y L gy < 61T
roI'Le 6LT nerel | reve|] ot _ oty <eLe
WiEp I5UIEaAT frep jonuoa __f..mm.h.mp._mm&,“ 21ep (01103 HIEp [0NU0d @ULD<IrLT
puaddu Ajipow puadde Ajipow mdui AA%%N%M- %%.m <-(TLD<1'LT
. X . Iy VAN EL e g Vary - A\
. ToILTi| T0ILT L geLTi| ToLT 1'6'L'C | wlo<rit —
bi1y 21ed 1t |pry eS| iy tayieosy by satpeasy oy a8urin | 1y a8uin | Py ozqmay | py szpnaay | | eyyuerd | | oy wuerd | by jonuoa| ity jonuos
opeudss || opeudss || owvuads || omeusdss|| ouweudds|| oupuads|| ouEuIdS | OLIEUIDS] | OLBUIIS| | OLIBUIIS| | OEUAIS| | OLIEUIIS
payipow |[paresauad || payipouw || parwessuad || payipow || paesausd || parppow || pareaouad| | paytpow | | payesouad| | paytpow | | pajesouss
DIy Q1L Haal | pr1y o3 Lun {1y JoURuoA [ty Jaypuaas | iy oFun i |Piy aSunn By szipua) piy dzijmay | | opyueid | | opy wueid | ppy [oNU0d | Pl [ONUOD
! paysiuyy _ S paysiuy
paysiy || PV pousiuy || Comiez|| pousiug || PUSU N poyspay || POPE | paysiay | PP | poysuy || Cozis
o Lt . YUET . LT . LT o Lt YET
el e 6LT| e el e Slell et tLe nLe ezl rune
oy oG opowmd|| ooyl opyroyy| oqyoSen| opyofey|| oSpyozyy| oqyozyw | oyyuerd [oy ued |91y jonuoy |3y jonuod
taat Ajtpow || -1 andugflom pipowt |{-vam indut {{-in Appowr || -jundur {aay Kpipot || 135 andug Ajipow nduy AJipowt nduy
TI'Le 11°Le 01°L'T 6'LT 8LT L'Le 9LT S'Le Y'Le £Le TLT 'L

OLIBUDS QUO PpY

L't

Ing one scenario

tt

inpu

: Task model of

Figure 3.6

31

e

~—— 0G8T<-I'GBT<LT

Copproyieam | [oy sayizom
OLIRUROS | OLIBUADS :¢'g'z ueyd
PAIRIAUAZ (1) i | pAILIdUIT BIBp
.0 L [017109 «
poysiuy poysiuy B o
1'6'8°C 358l L'T yse b'8T
“ejep 2ILom | | ejep [01U0D = €8T <-LT
puadde Ajipowt 78T
e 68 8L 158 — (98D)<-(¥'80)<H(€'8 7)< (T8 T)<- 18T
;g7 uerd
11} 91e3 L 9[1J Joyleam a1y 281 J1y 9Z[1119J oty yuerd 91} [0nu0°
OLIBUIDS OLIBUADS OLIBUJDS OLIBUIOS OLIRUS OLIBUJDS
PAILIGUIZ 21 | | pAIRIOUIS 91} | | pAILIdUAZ I} | | pAIRIUIT Il | | paresduasd o[y peI2UIZ 1Y
gregdi Iayjeam a3erl[n QZI[1}19) yued [o1nu0d
paystuy paystuiy paystuij paystuy paysiuyy paystuij
L'T ¥se) L'T ¥se) L7 Hse LT ¥se) L'C se) LT ysel
o_w Jes.L EITTRETIETY 1] 3¢ (1} AZI[1113) aquy yued (1} JONUOD
Jipow Ajipowt Ajipowt Ajipowt JIpout AJipour
9'8°C 687 V'8¢ €8T 87 187

OLIBUQJS U0 AJipow

8¢

g one scenarlo

Figure 3.7: Task model of modify

32

3 modify one set of
input files
3.1 3.2 33 3.4 35
modify site modify topo | modify soil add one modify one
file file file scenario scenario
task 2 task 2 task 2 task 2 task 2
finished finished finished finished finished
site file is topo file is soil file is one scenario one scenario
modified modified modified is added is modified
evaiuation evaluation evaluation evaluation evaluation
process process process process process
site file topo file soil file scenario and scenario and
iis files its files
plan 3: | 31 -
3.2->(3.3)
2> 3.3
34
—3,5 —

T

Figure 3.8: Task model of modifying input files

33

4

€COSYS running process plan 4:

4.1.1>4.12->413 —

]

4.1] 4.2 i 4.16<-4.1.5<-4.14
generate run script i invoke ecosys | I:
; ; 4.1.7->4.1.8->4.19
task 2 or 3 finished | itask 4.1 finished |]
run script generated %routput files generatedf 2<41.11<-4.1.10
evaluation process r evaluation process

run script file run script file

: weather file! | control file | :tilliage file :

f4.1.1 L4112 11413 17414 17415 1416
igen.noof ! !gen.site i fgen. topo ! 'gen. weather ! gen. control! | gen. tilliage:
rrows & colsi ifile name _ : ifile name i file name file name | i file name K
‘task2or3 ! itask4.1.1 !itask4.12 !itask4.13 litask4.14 @ itask4.15 |
: finished : | finished ¢ ¢ finished ¢ i finished i !finished i i finished :
script partial } script partial } script partial | script partial | script partial} script partial ;
: generated ! { generated igenerated _ | | generated : generated i generated
i script ! i script ! Iscript ! i script ! | script i iscript :

 control file | isite file | itopo file

417 1 i4.1.8 P 419 P 14.1.10 fi4.1.11 :
i gen. fertilze: !gen. irrigate! !gen.no.of ! !gen. plants ! gen. plant :
.file name | ifile name | : plants i inames i ifile name
itask4.1.6 | itask4.1.7 | itask4.18 ! itask4.1.9 !itask4.1.10 |
finished : ! finished : ¢ finished : ! finished ¢t finished :
script partial | script partial | script partial| script partial} script file |
| generated : generated igenerated ! ! generated éé_generated
i script ! {script ! iscript i iscript ! {script ;
: fertilize file | irrigate file | i control file control file i iplantfile

Figure 3.9: Task model of invoking ecosys

34

generate output

53 i54
visualize output file print out the file

i5.1
mput output file name :

o

‘5.
ise

,-.

elect vis style

5.1 & 5.2 finished

generate vis result

i task 4 finished ! task 4 finished 5.1 and 5.2 finished

output file is printed

evaluation process
output file, printer

i1 output file is selected iv1$ style is selected
P -eva.luation process

! evaluation process
i specific output file

evaluation process
output file, vis tool

B il Eh ettt e

plan 5:
3 1—1__, (5.3)
4-> [o 4)1——>
Figure 3.10: Task model of visualizing output data

An important issue is identifying when the tasks are basic enough and their sub-
division can be stopped. The stop point criteria used for this purpose is when the
task involves user response such as input operations or internal decision making. In
the first case, further breakdown would not be productive, because explaining how
such actions are performed is unlikely to be either accurate or useful. In the second
case, the task sub- division would be done only if any decision making is related to
external actions, such as reading help documents, but not when the activity is purely

cognitive.

3.3.3 Envisioned task model generation

The construction of the envisioned task model allows the identification of the new
tasks to be supported in the system under development. For this purpose, the current
designer considers system constraints and usability performance, and applies them to
the initial task model. Then the designer determines how it fits within the current

work organization.

35

System constraints

A successful interface design is based on the recognition that interactive systems
involve many strands of technology. They include application software, operating
system, networked resources and hardware. The designer may need to understand
requirements for any or all of these other strands. And the new system will need to
be integrated with these other systems.

Currently, Ecopro is running on UNIX, the designer choose to translate it to the
personal computer environment so it can be easily accessed by most users. Java is
employed as the interface development tool, and visualization toolkit (VTK) is used
as the tool for output data visualization. One reason of choosing these tools is that
they are platform independent. Another reason is that they are powerful high level

tools, which means it is faster and easier for implementation.

Usability targets

In an interactive systems, usability requirements are of prime importance, because
they define the means to design a system that supports the user’s activity properly.
To determine the level of support provided to the user, basic usability goals are set
for Ecopro. Some of them result from the user study and others are general usability
considerations [Shneiderman, 1998]. Priority is given to each usability issue in the

following order:

1. ease of learning

[SV]

. recovery from errors

[\

. speed and performance
4. ease of use

Ease of learning can be defined in terms of the amount of time that users need
for making their decision while interacting with the system. If the appearance of
the interface and its operations are familiar to users, the amount of decision time
will be significantly reduced. Thus for the visual design of the interface, the existing

framework and style is adopted so as not to surprise the user. An easily accessed

36

Functional part Non-functional part

easily accessable help documents consistency

feed back of operations familarity: use existing framework

undo and redo functions disable interface parts which are not accessable
multiple threads warning of mistakes

default value for data entry keep user memeory load to minimum

Table 3.4: Usability considerations in Ecopro

help function and documentation for the system is also provided. The change in the
system’s status as a result of user interaction should be visible as a way of feedback to
the user. Consistency is another important issue while considering support for ease of
use. The current design tries to be consistent on input expressions, output response,
interaction style, and visual appearance of the interface.

Predictability helps reduce user errors. Users should be able to anticipate when
and which operations can be performed. This user anticipation is used to disable parts
of the interface when operations associated with those parts cannot be performed in
the given scenario. In case of user error, there should be a warning to tell the user
about the kind of error he or she just made. Undo and redo functions are provided.

To determine meaningful speed of operation requirements, the current designer
focused on those activities that can be speeded up significantly by the system. To
speed up Ecopro as compared to ecosys, multi threading is implemented so that
several tasks can be executed concurrently.

Ease of use is another usability factor. If too much power of control is given to
the user, such as more flexibility to customize the interface, and reorganize activities,
the system will become more complicated and difficult to use. As ease of learning has
higher priority than ease of use, only the basic support is provided which is enough
for task completion, such as giving a default value for input data.

Table 3.4 shows the result of the current usability performance analysis.

37

file storage
System: source of data as default input values
file and system administration (save, undo...)

make decision on sequence of tasks
User:)
input data

Table 3.5: General rules for task allocation in Ecopro

Envisioned task model generation

Based on the above considerations related to system constraints and usability targets,
an envisioned task model is defined. The current designer starts with task allocation
which shows the division of labor between the user and the system, so that interactive
functions of the system are identified and details of how tasks fits into the system are
understood.

Within each task, actions are allocated to either the computer or the user, or
both the user and the computer. Normally heuristic or associative tasks as well as
tasks requiring initiative or judgment are allocated to the user while repetitive tasks,
calculations or high volume data handling are allocated to the system. Table 3.5
shows the result of task allocation in Ecopro.

Afterwards the task flow in the original task model is used to generate an object-
oriented envisioned task model. There are three steps associated with the model

development.

1. Apply the results of system constraints analysis and usability targets analysis.

Functions such as undo, redo, help access, etc. are added.

2. Identify important objects. For each object, identify its attributes (status etc.)
and apply actions to it. The object state diagram is used to describe the object-
action relationship. Here the purpose is not to generate any machine representa-

tions of the objects, but to describe their participation in human and computer

38

tasks. Thus, few details related to each object’s attributes are brought in here.

3. Identify relationship among objects by applying tasks to the objects. The object
relationship diagram is used to describe the object relationship. Tlhe most
frequently used objects form the basis of the initial diagram, and the initial
relationships are indicated by the most frequently performed tasks. As the
analysis proceeds, the model is expanded to map all tasks. In the initial stages
of modeling, it is often helpful to define relationships loosely. That is. to simply
indicate that objects are related without specifying further details. In the object
relationship diagrams, this is indicated by a simple line connecting two objects.
When relationships are clear, they can be further defined as "contains’.’decides’,

etc.

In figure 3.11, the object state diagram for the user is shown to desctibe the
relationship between the user object and its corresponding actions. The user may
add one evaluation process at the initial state. He or she may also set up preferences
or access help. However, if the user wants to modify or delete one evaluate process,
the system will tell him or her that there is no evaluation process to be rmodified
or deleted at this time. After one evaluation process is added, the user may add
another, modify or delete it. Similarly, figure 3.12 describe the relationship between
the evaluation process and its corresponding actions.

Object relationships in Ecopro are described in figure 3.13. Each user may have
multiple evaluation processes to run. Each evaluation process contains one site file,
one topographic file, one soil file, multiple scenarios etc. And each scenario <ontains
one control file, one fertilize file, one tillage file, one irrigate file, one weather file and
multiple plant management files. Since site and topographic files contain infoermation
which are required for soil data entry, a relationship “decides” is defined which means
if the soil information in site and topographic file is modified, the soil file has to be

modified accordingly.

3.3.4 Scenarios test

The outcome of the task analysis step is used as a starting point for interface de-

sign, as it imposes requirements on the dialogue model. All decisions macle when

39

modify/
delete

evaluation

process

add an ep

add an ep

(empty)

user has
no evulation
process (ep)

ep(s) is (are)

generated

delete an ep

warning:
can’t modify/
delete ep
before adding

set preference

preferences

are set

access help

Attributes:

shows

help document

-—_—————

name of user

number of ep(s)
name(s) of ep(s) :

Action:

add an ep
modify an ep
delete an ep
set preference
access help

status

modify an ep

Figure 3.11: “User” object state diagram in envisioned task model

40

scenario

B R A R e R

input site file

| I

input site file

no topo file
no soil file

no scenario(s

(empty)
no site file
no topo file
no soi! file
no scenario(s

input
soil/

input topo file

no site file
no soil file

no scenario(s

input soil/scenario

input topo

warning:
can’t input soi
before site

nput soil/sce;

input site file

and topo

nario

no soil file

no scenario(s

warning:
can’t input soi
before site
and topo

Attributes:

name of site file

name of topo file
name of soil file
number of scenarios
names of scenarios
name of run script file
names of output files

Action (*):
input site file

input topo file

input soil file

add scenario

modify scenario

copy scenario

delete scenario
visualizing output data
print output data
access help

name of evalution process

L |

input topo file

L

input scenario

input site/topo file

.
)
‘
‘
:
.
.
! {is generated
.
'
:
‘
.
.
,
:
:

output files
are generated

) invoke

vis result - e

) visualization

is generated

printing file(s) jnvoke
printing

invoke ecosys
rr—————

input soil file

no scenario(s

input site/topo (*)

input soil/scenario

all information

input
scenario

ready

input site/topo (*)

Figure 3.12: “Evaluation process” object state diagram in envisioned task model

41

SOpLOP N
A
9uo 0} 2u0 ale s.IaYlo0 .O_QS:_.: 01 2u0 | A I
SUIRIU0D
:diysuone|oy
£ 4 A 4 23,
1y Jat1eam oy eS| foq1y 98w o1} 9ZI[11I9) oy ueyd q1j jonuod
I A] L N
so|Uy Jnsas # AN *s
indino Sunuud || wonezijensia | [sofy ndino | PIY duios uniaf - pojIj oLIRUDOS 91 [10s apiy odoy [y AIs
, , , A , , ,
L N

$s9%0.4d uone[neAs

I9sn oxdoog

isioned task model

lagram in env

d

Object relationship

Figure 3.13

developing the task model are ultimately transferred to the user interface. Hence, all
mistakes made during analysis or modeling normally remain undetected until the first
prototype of the user interface is evaluated. To enable early discovery of mistakes,
the task model itself has to be briefly tested.

In Ecopro, sample scenarios are used to test the task model. A key contribution
of scenarios to interface design is that they provide a specific context for designers
to analyze a task model. This is especially valuable in the present case because an
object-oriented model is used as the envisioned task model. Since scenarios provide a
view into the design’s “flow of control” which is explicit in procedural designs. but is
distributed across objects in object-oriented design. Sample scenarios are collected by
the current designer imagining herself as the user trying to use the system in different
situations.

When scenarios are used to go through the paths in the task model, thoroughness
and preciseness are the main concerns. The current designer needs to find out whether
the task structure in the model takes all possible aspects into consideration. For
example, Does the task model show all possible tasks a user can perform in a given
situation?, Is it sufficient and capable of supporting all the user tasks? For a specific
task, does it clearly depict all the involved objects?

Once the scenario test is finished, the task model is assumed to be complete and

specific enough for further design.

43

Chapter 4

Dialogue Design and Design
Evaluation

The purpose of this chapter is to synthesize the visual representation of the system
and its tasks. In the design of user interfaces, dialogue means the structure of the
conversation between the user and the computer system. A dialogue model is used
to describe the human-computer conversation. It describes when the end-user can
invoke commands, select or specify input and when the computer can query the end-
user and present information. Three levels of abstraction are employed to describe
the present dialogue model. They are the lexical, syntactic and semantic levels.

In this chapter the user interface is designed first at the syntactic level by defining
the structure of the interface. Then the design is linked to the task model. Afterwards,
the physical screens of the user interface are organized and the dialogue modeling is
completed. Finally prototyping techniques are used to present the interface to the

user followed by design evaluation.

4.1 Syntactic level of dialogue modeling

During the syntactic level of dialogue modeling, the dialogue model represents the
structure of the interface and the order of actions used to meet a main goal.

It is started by defining the necessary views for each object. A view can be
considered as an abstract representation of an object in the user interface. The
object state diagram and the object relationship diagrams from the envisioned task

model can assist the designer in determining the necessary views of objects. Each

44

relationship identified for an object will result in a view, or part of a view of that
object. The object corresponding to the view is called the viewed objects. Each
dialogue view must provide attributes that control how they are presented to the end
user, and methods that determine the high-level interactions that the end user can
have with the view object.

In figure 4.1, it can be seen that there are views of the Ecopro user, evaluation
process, scenario and each input file. They are called user view, evaluation process
(ep) view, scenario view and file view. The diagram indicates that the user view
shows the information displayed on the screen when the system is started. It includes
one or several evaluation processes, system feedback, user preferences, timer and
help documents. The evaluation process view shows information on scenarios, site,
topographical and soil files, visualization results and help documents. The scenario
view shows six input files, user preference and help documents. High level interactions
are defined that may occur within each view. For example, within the user view,
the user may add, modify or delete an evaluation process; he or she may also set
preferences, read help documents and exit from the system.

As showed in this illustration, views are modeled as abstract objects themselves.
The view of a file is not defined as a text area on the screen but simply as “the view
of a file”. This allows the design methodology to be isolated from any specific visual
or graphic design concerns and helps ensure accuracy and completeness of the view
definition. It is known that an interface has to be maintained more often. probably
more than any other parts of the system, therefore it is important that it is easy to
change.

After defining the structure of the interface, the sequencing between different
dialogue views is described. Augmented transition network (ATN)[Green, 1986] is
used as part of the dialogue notation for syntactic dialogue modeling. It describes
the progress of sequences of events within a system and has four basic components:
a state is an object or entity that is represented as a circle; an event is something
causing one state to finish and an object to change from one state into another that
is represented as a arc; a register is a storage location that the transition network can
set and test; a function refers to the system’s registers and the event that only occurs

if the function is true. Translated into dialogue terms, a state will be the computer

45

awaiting a user’s reply. The user’s reply is an event that the interface has to deal
with. It changes the interface from one state into another, if the user’s interaction is
allowed. The computer reacts to the user until it requires more human interaction.
In this way the whole question and answer sequence in a dialogue can be described
and planned.

Figure 4.2 is the ATN diagram for an initial view of Ecopro. As shown. sl is the
initial state. The events that may occur at sl are el, e4, e6 or e8. If the user interacts
with the interface by adding one evaluation process(el), fl is first checked and the
number of evaluation processes is increased. Then the corresponding action al is
executed and the state of the view will change from sl to s2 accordingly. The diagram
describes the sequence of events that may happen and the corresponding state of
views. Similarly figure 4.3 illustrates interactions which may occur in the evaluation
process view including input files, adding scenarios, running ecosys. visualizing output
data etc. The sequence of views is described by the arcs from one state to another.
Object state diagrams from the envisioned task model are used again to identify the
state of objects and the sequence of events.

ATNs are chosen instead of a grammar for dialogue modeling because a grammar
is too complex for practical use and it is not good enough to give a clear illustration of
event sequencing, though it has the advantage of making the structure of a dialogue
clear and specifying permissible computer and human actions concisely. On the other
hand, diagrams are good for sequences. They allow the designer to see at a glance the
structure of the dialogue, though they often have trouble with more complex cases.
The task structure of Ecopro is not very complicated. Therefore, using ATN diagrams
is sufficient to generate a clear dialogue model. Another reason for the use of ATN
diagrams is that it is easier to perform dialogue modeling because it matches object

state diagrams in the envisioned task model very well.

4.2 Semantic level of dialogue modeling

The semantic level of dialogue modeling covers the extension of the dialogue model by
determining the disposition of tasks across the views of objects. Actually this process

is initiated in the syntactic level modeling. When the sequence of views is defined,

46

evaluation

pr

object

ZCSSS

user evaluation
! rocesss i
vise Pv:ew view
te?dbaCk‘ o~ feedback site file
view object : :
view ..
view object view ebjec
help - SOl! file soil file
view € e el
help
pre'ferenCt _ view
view Qbjec

scenario
object

J

scenarnio

control

file view

user view actions:
display
add an evaluation process
modify an evaluation process
delete an evaluation process
set preference
get help document
exit

scenario view actions:
display
input control file
input plant file(s)
input weather file
input fertilize file
input tillage file
input irrigate file
set preferences
get help document
exit without save
exit with save

AN

evaluation process view actions:

display
input site file

input topographical file

input soil ﬁlc

add a scenario
modify a scenario
copy a scenario
delete a scenario
run "ecosys”

get help document
visualize output data
print output data
exit without save
exit with save

control file view actions:

display
input output control

input climate changes
input more output control

tnput other control

input plant management

action undo
action redo

set preferences
get help document
exit without save
exit with save

™

lant
e view

weather
file view

tillage
file view

irrigate

file view

L1 help

view

output
control
view

-

climate
change
view

more out-
put control
view

other
control
view

lant
managemem
vVicew

help
view

preference
view

preference
° objec

Figure 4.1: Object relationship diagram in dialogue modeling (I

el/al/fl

e2/a2/f2
Cb\r)
S &
@ el/al/tl CZ/a) eR8/a8 s5
aya

e3/a3/f3

register: events (interactions): actions:
rl: number of evaluation processes (ep) el: add one ep al: add a subview ep view, set its status=1:
functions: e2: modify one ep change feed back view accordingly
fl: rl = rl+1; return (true); e3: delete one ep a2: add a subview ep view, set its status=2;
£2: if (r1>0) return (true); ed: set preference change feed back view accordingly
else return (false): e5: close preference a3: delete specific ep information
f3: if (r1>0) rl=rl+1; return (true); e6: access help change feed back view accordingly
else return (false);
e7: close help ad: preference view open
e8: exit

a5: preference view close
a6: help view open
a7: help view close

a8: Ecosys view close, exit

Figure 4.2: ATN diagram of initial “user” view

48

el/al/fl

e2/a2/f2

e3/a3/f3
register:

rl: site file finish input

r2: topographic file finish input
r3: sotl file finish input

r4: number of scenarios

r3: output data is generated

functions:
f1: ri=true; return (true);
f2: r2=true; return (true);
f3: if (r! && r2) r3=true; return (true);
else return (false);

£4: if (r] && r2 && r3) rd=Il; return (true);

else return (false);

f5: rd=rd+1; return (true);

f6: if (r4>0) rd4=r4+1; return (true);
else return (false);

£7: if (r4>0) rd=r4-1: return (true);
else return (false);

{8: if (r4>0) rS=true; return (true);
else return (false);

9: if (r3) return (true);
else return (false):

f10: if (r4>0) return (true);
else return (false):

Pesraliseg €6/29/t6
e7/al0/f7
actions:

ewvents (interactions):
el: input site file

e2: input topographic file

e3: input soil file

e4: add a scenario

e3: modify a scenario
¢6: copy a scenario
e7: delete a scenario
e8: invoke ecosys

€9: access help

el0:
ell:
el2:
el3:
eld:
els:

close help
visualizate output
close visualization
print output

exit without saving
exit with saving

al: add a subview site view

a2: add a subview topo view

a3: add a subview soil view

a4: add a subview scenario view

aS: add a subview site view

a6: add a subview topo view

a7: add a subview soil view

a8: add a subview scenario view

a9: copy scenario information

al0: delete scenario information

all: generate run srcipt, call "ecosys”
al2: help view open

al3: help view close

al4: visualization view open

al5: visualization view close

al6: ep view closes

al7: ep view closes, save all information

Figure 4.3: ATN diagram of “evaluation process” view

49

each transition is linked to an action residing in the task model, since views and tasks
are tightly coupled. At this stage only granularity not notation of the dialogue is
changed.

Views are verified to check whether they support tasks in an appropriate way
rather than merely representing the visual aspect of objects. No single view of an
object should attempt to support too many tasks, because the view will be overly
complex and those tasks will be difficult for the user to accomplish. If tasks, as iden-
tified in the task analysis, are grouped together for some reason, then such groupings
should be maintained and incorporated in the view definition.

Once the views have been defined in terms of the tasks they support. the model
can be checked in two steps. The first focuses on user interactions to see whether
they are adequately specified and consistent. The second concerns the dialogue states,
including those that the user wants to get to and those not.

At the first step, for each state of the dialogue, all events must be mentioned.
This is called completeness. During this process, besides finding out that some states
are missing certain events, it may also be discovered that some states have several
arcs labeled with the same event. That is, the specifications are not exclusive for
that action. At the second step, the user wants at least to be able to get to a desired
dialogue state and ideally to be able to get there with ease. In general, characteristics
like these are grouped under reachability. A basic check of reachability is whether
there is full connection. That is, for any two states there is a sequence of actions
which will take the user from the first state to the second.

After the completeness check, an error feedback view is added to the evaluation
process view and the scenario view as an error pathway. This will ensure that the
user will not stumble even if they don’t understand the sequence of tasks within each

view. Figure 4.4 is the improvement of figure 4.2 after dialogue model checking.

4.3 Interaction style

After refinement of the semantic level of the dialogue model, the designer can create
the metaphoric representations of the interface objects and actions. This begins with

the selection of appropriate interaction styles.

50

el/al/fl
e2/a2/f2

& GD

A
el/al/fl _e773) e8/a8 @

register: events (interactions): actions:
rl: number of evaluation processes (ep) el: add one ep al: add a subview ep view, set its status=1;
-. . . .
functions: e2: modify one ep change feed back view accordingly
fl: rl = rl+1; return (true); e3: delete one ep a2: add a subview ep view, set its statu= 2;
£2: if (r1>0) return (true); ed: set preference change feed back view accordingly
I t false); . 7
else return (false); e5: close preference a3: delete specific ep information
£3:if (r1>0) ri=rl+1; return (true); e6: access help change feed back view accordingly
else return (false); X
e7: close help a4: preference view open
:exit
e8: exi a5: preference view close

e9: close error feed back
a6: help view open

a7: help view close

a8: Ecosys view close, exit
a9: error feed back view open

al0: error feed back view close

Figure 4.4: ATN diagram of “user view” after completeness and reachability check

51

An interaction style is the way in which the user addresses data or functions
provided by the system. For any given task interaction, there may be several different
techniques to perform it. Consequentiy, when choosing a particular interaction style,
the designer needs to consider the merits and limitations of each particular type, the
task on which it is applied, and the usability issues.

Direct manipulation (DM)[Shneiderman, 1987] is selected as the main interaction
style for commands. while fill-in forms are selected for data entry, editing and display
in the present design. DM is selected due to its advantage of ease to learn. which is
a main concern in reaching usability targets. DM interfaces tap the user models that
people already have (manipulating objects in two dimensional space), thus they are
relatively easy to learn and remember. Another reason is the popularity that DM has
as the interaction style in many other applications. It takes little time for the user to
get familiar with it. The disadvantage of DM is that there is little or no prompting
in a DM interface, thus it is not intuitive to the first-time user. Because of this, a
high level of support needs to provided by immediate feedback, concrete and realistic
icons etc. Form filling is selected because of its suitability for data entry and display.
It provides context and self-explanation, requires little memory and makes efficient
use of screen space. Though it has the disadvantage of inflexibility, it is not a main
concern in the present design as compared to other usability issues.

A high level visual presentation of the interface is generated after the interaction
style is defined. Views which contain more actions (ep view, scenario view, file view)
can be represented by windows, and within those views, icons and pop-up menus are

provided representing objects and commands for user interaction.

4.4 Lexical level of dialogue modeling

This is the process for completing the remainder of the concrete user interface Design,
so that users can decompose their plan into a series of intermediate actions, all the
way down to a series of detailed keystrokes and clicks.

Two pieces of information are used to accomplish this objective. The first is the
object diagram, which indicates all views to be shown and their relationship. The

other is the ATN diagrams of views that show how views may vary. User views

52

which may be generated during the user analysis stage could alsoc be used if there are
any. Besides the above, there are established interface design principles [shneiderman,
1998] such as guidelines for graphics design, use of color, data entry, and data display
which are used as a basis for our final decision.

From the information mentioned above, an initial layout is designed for each view
in each of its states. For example, an evaluation process view includes components
such as scenario views, site file view, topographic file view, soil file view, and feedback
view.

Control commands of each view in each of its states are also identified. Again,
those controls should be defined abstractly as an object. That is to say, rather than
defining a control as a “button”, such controls may be defined as something like a
“triggering” control. This abstraction allows a complete and accurate interaction def-
inition while still allowing for flexibility or variation in the final design. For example,
the ’triggering control’ may be represented by a button, a menu item. or an icon.
When the design is further defined in terms of controls, it is important to update the
object diagram. In the object model, such controls are objects; and for the model to
be complete they must be reflected in the object diagrams such as in figure 4.5.

Components within each view are then represented by detailed graphical widgets.
The graphical widgets should be designed so as to help the user to understand the
interaction and correctly interpret the information displayed on the screen. They can
take many different forms or can be hidden behind some metaphor which is familiar
to the user. For example, for the evaluation process view in Ecopro, considering the
one to many relationship between evaluation process view and scenario views, a list
is used as a container for all scenario views within one evaluation process. Dialogue
windows are used as error message views. And realistic icons are used to represent
site, topographic and soil file views. When the icons are selected, the corresponding
files are opened. All widgets are clearly defined. For example, the content within
each widget, the relationships with other widgets, and the user actions they allow.

In Ecopro, more attention is paid to data entry as it is one of the major user
tasks. The purpose of data entry is to minimize the user’s work load, and make entry
error rate as low as possible. This is achieved by keeping the user’s memory load to

a minimum, setting defaults for commonly entered items, giving clear explanations

53

aduep
1D]]0UOD SUIBILOD MDA

asn

MOTA SUIEIUOD MDA

192[(j0 Jaq101u0

192(40 PoMaIA

MIIA
yorqpas
2eapaz) m 100[q0 MaIA
]
MIA
SIA ,|/ .
MOIA
dioy fe--f-
3 MIIA s
Aty 1108 Ay pos .
5 e MOIA
P~ apyy odor Jwn
ou.a.u__m o Mt
)
14 ol ayuy ans j Youqpaay
]
]
MIIA [waw |-
| oueuas sss2001d em e pmm e e mimi e
-~~~ JONEN[EAY i |
[} : i
AAAAA .- - iMie e i _
m | P w M
L ' H i
OLILUIIS oUBUIIS i
! 19alqo daun da ue da ue ppe
: £doo 21Iep b sssavond a191p Jipout "
v\ tonenjead
' |
[PRV ". leeeemcemuanea . “ ! !

(IT)

ing

in dialogue model

t relationship diagram

jec

Ob

Figure 4.5

54

Manage Your Run Prefgrence Toals Help Exit

test3
testl

mytest

e C O huf

Add Select Delete Exit

Welcome to Ecosys

The ecosys modelling program is dedicated to the construction and testing of a comprehensive

mathematical modeiCecosys”) of natural and managed ecoystems. The long-tarm objectives of

feelect @ run_ l [rFeb 21, 2000 11:27:4

Figure 4.6: Prototyping of initial view of Ecopro (I)

of content of each item, providing data type checking, and providing undo and redo
options. However, the ability such as skipping automatically from one data field
to another is not provided. Instead the user is given the flexibility to control the
sequence of communication. Consistency is provided by using similar display formats
and control interactions among all views which are used for data entry.

Now we have a specific system image which could be used for further prototyping.
A paper sketch technique is used for prototype development. All views in each state
are drawn and shown to the user for walk-through evaluation. The following figures

illustrate a few examples.

4.5 Design evaluation

A cognitive walk-through is used for design evaluation because it focuses on evalu-
ating a design for ease of learning, which is the most important usability issue in

our design. It is a usability inspection method that evaluates a design for ease of

99

Prefarance Tools Help Exit

Add a Runrn Name
Delete a Run Name »
test3
act:Ru m Select test3
testl
Select test1 mytast
Select mytest hui
Select hul ®
I Add [Select ” Delete : Exit é

Welcome to Ecosys

The ecosys madelling program is dedicated to the construction and testing of a comprehensive

mathematical model("ecosys”) of natural and managed ecoystems. The long—term objectives of

status lselect a run... : @ ’ Feb 21, 2000 n:ze:os‘}
] : s

T

Figure 4.7: Prototyping of initial view of Ecopro (II)

File Scenario Execute Cutput Help

scel
~ sce2
sitel phtopocn
trixcn
E Add ” Copy I[Select H DeleteJl ok ” cancel
— —_ i — — — —

Run Window

The Run Window represents your running process. Normally there‘re four steps that may

heln van tn rmin the mnreal

Figure 4.8: Prototyping of evaluation process view (I)

56

Open Tepographics File

Scenario Execute Output Help

Open Site File

sce
Open Soil Files »
sCe2
Cancel
Exit ocn
wrixcn
! Add ” CopyJ[SelectJl Delete H ok ” cancel

=
Run Window
The Run Window represents your running process. Normally there’re four steps that may
1 heln unte ta min the mndol o
|
Figure 4.9: Prototyping of evaluation process view (II)
File Preference Help
gontroll weatherl swheat1
fertilizet jrrigatel tilliage1
[OK J [r Cancel I
Scenario Window (o
Here are the files that you have to input for one scenario. 17.,;;
4
You may input the files by clicking on the little graphical buttons which represents 3;'?.
different files. A
Z
Please note that control, soil, weather and plant files are the basic that you must input. -
For fertilization, irrigate and tifliage files, it depends whether you have these files in your
mode! (you input all these in the control file). For plant file, when you click an it,
depends on how many species of plants you have and whether there’s a management __
-

file for it (you aiso input these in the control file), different numbers of windows will come

Figure 4.10: Prototyping of scenario view

57

!'sail Layer Numbers]

Atmospheric Characteristics |
tatitude (deg): ; [33 :
Altitude (m:) |355 !
Annual témneratm’e (deg- O): [23 !
Time of Salar noon (h): [12.83

[ok || cancel !

Site Data File
HOW TO INPUT THE DATA... i

Fill in all data you wsant to change, click OK to finish your input. You may cancel whatever you've done by ;
click the Cancel buttan. Also you may use undo and redo button to undo and rede. Help button 1s used to pop !
up a help window for everything. If you're going through the library instead of inputiing your own file, you may
click saveAs button to save the file as another name in your library.

(
1
i

The site file cotnains the site data to of the ecosys running madel. It 1s made up of S parts.

The first part is Site Characteristics includes latitude. aftitude, alverage annual temperature and time of solar

mamn Tha simed fac Ladideindn in et o Aactin mad vamemncants Sardi an A4S manems ASAE and

Figure 4.11: Prototyping of site file view (I)

File Edit Preference Help
S22 4N
e]
iT acte =3 Boundary Conditions [Soil Layer Numbers |
Site Characteristics]’ Atmospheric Characteristics |
Experimental conditions: [o natural !
Plant residue: 'S straw vj
1 maize
PH & salinity effect: 2 wheat
3 soybean
4 ~————— decomposed
Depth to water table (m): i3 straw
DG I s
17 green manure B
[ok || cancet |

Site Data File

HOW TO iINPUT THE DATA...

Fill in ali data you want to change, click OK to finish your input. You may cancel whatever you've done by
click the Cancel button. Also you may use undo and redo buttan to undo and redo. Help bdutton s used to pop
up a help window for everything. if you're going through the library instead of inputting your own file, you may
click saveAs button to save the fila as ancther name in your litrary

The site file cotnains the site data tc of the ecosys running madel. It is made up of S parts.

The first part is Site Characteristics includes latitude, altitude, alverage annual temperature and time of solar

mnnn Tha vinit far iatiterrn i ~n A Rlndih and rrmmncants Saith cn AT manne ASM and —

Figure 4.12: Prototyping of site file view (II)

58

learning by exploration. The method finds mismatches between user’s and designers’
conceptualization of a task, such as poor wording choices for menu titles and button
labels, and inadequate feedback about the consequences of an action etc.

In the cognitive walk-through process, the reviewers evaluate a proposed interface
in the context of one or more specific user tasks. The input to a walk-through session
includes an interface’s detailed design description, task scenarios, and a sequence of
actions that a user should successfully perform to complete the designed tasks. The

steps to perform a cognitive walk-through are as follows:

1. select sample tasks for evaluation.

S

. define action sequence for completing the tasks.
3. walk-through the action sequences for each task.

4. record critical information, such as user knowledge requirements, side issues and

design change.

A walk-through involves a detailed analysis of the tasks. In general. the analysis
should be limited to a reasonable but representative collection of benchmark tasks.
Task selection should be based on results of task analysis which means functionality
and usability targets are the main concerns. Our sample tasks include basic func-
tions such as data input or modification of evaluation prrocesses and invoking ecosys.
Situations in which users often make mistakes are also considered for task selection.

After task selection, for each task, a description of the sequence of actions that
occur to accomplish the task within the current interface is generated. These actions
may be simple movements, such as “move cursor to File menu”, or they may be group
of simple actions that a user could typically execute as a block. A sequence of actions
is defined by describing the prompts preceding every action required to accomplish
the task as well as the reactions of the interface to each of the actions. For example,
if the user wants to input a scenario, a dialog box wiLl pop up asking the name of
scenario, then a scenario view will be opened and the mame of that scenario will be
added to the scenario list in the evaluation process view.

After sample task selection and action sequence definition, a walk-through begins

with examining each action in the solution path and attempting to tell a credible

59

story as to why the expected users would choose that action. Credible stories are
based on assumptions about the user’s background knowledge and goals, and on an
understanding of the problem-solving process that enables a user to guess the correct

action. As the walk-through proceeds, we consider the following questions:

e Will the user try to achieve the right effect?
e Will the user notice that the correct actions are available?

e Will the user associate the correct action with the effect that the user is trying

to achieve?

e If the correct action is performed, will the user see that progress is being made

towards a solution for the task?

Notes are taken while performing the evaluation. The notes include both user
information and design information. The first is related to what the user must know
prior to performing the task and what the user should learn while performing the
task. The second includes issues of inappropriate design with detailed context so that
decisions may be made for reconstructing the interface at a later time. For example,
inappropriate design related to improperly named menu item, or confusing action
prediction. In the evaluation process for the Ecopro design, we find that providing
defaults for data entry is not powerful enough for cases that need huge amounts of
user input. Therefore another function is added into the task model that provide a
library including the necessary information associated with different scenarios. A user
may copy the data from his or her library so that the amount of input information
that must be entered is reduced significantly.

After prototyping and design evaluation, the task model and the design model are

refined accordingly and the system implementation may be started.

60

Chapter 5

System implementation

The previous four chapters detail a black box functional description of the system’s
desired behavior. In this chapter a high level description of the Ecopro system struc-
ture is presented using UML notations. The implementation model is used to describe
how objects in the problem domain collaborate to provide the desired system behav-
ior. Two aspects of the implementation model are considered in Ecopro. One is the
system static model which describes classes and their associations. The other is the

dynamic model which describes object interactions among classes.

5.1 Basic classes in Ecopro

The static model is developed by first defining the main classes, their associations and
interactions. Subclasses are defined later to fulfill the implementation details. The
dynamic model is developed later by identifying the interactions among these classes.
UML class diagrams and collaboration diagrams are used to represent the static and

dynamic domain models respectively.

5.1.1 Identification of the main classes

Since MVC is utilized as the framework for implementing Ecopro, it is obvious to
identify the top three main classes as, Model, View and Controller. These classes
hold the generic behaviors and states of the three parts of MVC. Concrete subclasses
are defined later to hold the specific states and behaviors for Ecopro functionality

and user interface components.

61

The Model class defines the problem-domain that will be solved by the user inter-
face. The View class displays output to the user (e.g., display boxes, colored symbols,
visualizations, etc.). The Controller class receives input from the user (e.g., mouse
movement, keyboard input, button clicks, key presses, etc.).

Java is used as the implementation language in Ecopro. It integrates the MVC
paradigm into its structure by providing two components named Observable class
and Observer interface. Class Observable represents a model object in MVC. Its
states can be observed by an Observer which represents a view in MVC. Another
component in Java which may be thought of as representing the Controller of MVC
is the EventListener interface. Different types of listeners catch different interactions
between user and interface.

Based on the above notation, Ecopro class “Model” is defined as a subclass of
the Java Observerable class and “View” is defined as a subclass of Observer. “Con-
troller” is an abstract class and its concrete subclasses implement different types of

EventListener interfaces depending on its corresponding view type.

5.1.2 Identification of the semantic component of each main
class

The MVC structure defines an “observer relationship”. The model contains a pointer
to a list of its corresponding view objects. This pointer is only a base class pointer;
the model knows nothing about the kind of view which it observes. By contrast, the
view knows exactly what kind of model it is observing. For this purpose, it has a
pointer to the model. In addition, the view also has a pointer to the controller. The
controller has pointers to both the model and the view.

The attributes and operations in these three classes are described in Figure 5.1.

In the Model class, methods “addObserver 7 and “deleteObserver” are provided
to add or delete a view from the observer list. The method “NotifyObserver” is
used by the model to notify all its corresponding views in the observer list that the
status of the model has changed. The “setChanged” method gives the ability to
change the status of the model. The primary responsibility of the view is keeping
the MVC triad together as a family with consistent information. Two attributes are

defined in the View class to represent its corresponding model and controller. A view

62

Observable (Java) Observer (Java) EventListener (Java)
setOfObservers myObservable
Observable() update(Observable, Object)
addObserver()
deleteObserver()
setChanged()
notifyObservers(Object)
Model View Countroller
myController myModel
R myView
setChanged(Object) View(Model)
initialize() Controller{ View)
Model getModel() handleEvent()
Controller getController()

Figure 5.1: A high level class diagram of Model-View-Controller in Ecopro

sets up its model by invoking the “addObserver” method in the Model class when
it is instantiated. Its controller is established as an instance of the corresponding
controller class when the “initialize” method of the View class is invoked. Hence
the view’s constructor together with its “initialize” method is sufficient for setting
up the MVC structure. It is a controller’s job to handle the control of a model
and a particular view. The class Controller contains two attributes “myMlodel” and
“myView” pointing to its model and view. The method “handleEvent” is provided to
detect user interactions. Concrete subclasses of Controller implement different types
of Java EventListener interfaces and override the method according to their specific

views.

5.1.3 Identification of interactions among main classes

To identify various interactions among classes, the dynamic model is explored to de-
scribe how the objects collaborate to provide the behavior described by user require-
ments. Basically two aspects are considered when identifying the interactions. The
first is the set up process for the MVC triad, and the second is the work mechanism

for each triad.

Figure 5.2 illustrates the set up process for a MVC triad. First a model is created

63

2.1 addObserver(this)
Model View
&
6\1\
e
:Controller

Figure 5.2: MVC triad set up process

by invoking the constructor of the Model class. Its status is set up by assigning the
initial values of internal data and defining the observer list to be null. Then a view
is created by setting its model to the newly constructed model and linking itself to
the observer list of this model. Finally a view sets up its controller by invoking the
constructor of the Controller class. The controller links the view to itself and defines
the model of the view as its model.

After the MVC triad is set up, when the user interacts with the interface, the
“handleEvent® method is triggered. The controller catches this event, interprets it
and invokes a service procedure of the model by sending the message “setChanged”
and passing the event. The model changes its status accordingly and notifies all
its associated views about the change. The “update” method of each view is then
invoked. This alerts the view that something has changed in the model and causes
them to re-draw themselves. The details of the MVC work mechanism interaction

are described in figure 5.3.

5.2 Subclasses

Subclasses of Model, View and Controller are the various classes that hold specific

states and behaviors for Ecopro functionality and user interface components. With

64

2.1 setlnternalData() .
.2 notifyObserver(object) 2.2.1.1 display()

2.2.1 update(object) \
:View

:Controller

1 handleEvent()

Figure 5.3: MVC triad work process

65

the help of the object relationship diagram generated in dialogue modeling (such as
figure 4.5), it becomes intuitive to determine the different subclasses and their role in

a MVC triad.

5.2.1 Subclasses of Model

The viewed objects in the object relationship diagrams depicted in the dialogue mod-
eling stage(figure 4.5) can be considered as subclass of Model, since they represent
the problem domain which holds the states and values of all objects required for Eco-
pro functionality. The subclasses of Model include User, EProcess, Scenario, File,
HelpDoc, Library etc. The aggregation relationship among these classes is shown in
figure 5.4.

The User class represents all the objects used by a user who is running the system.
These objects include a help document, a set of files and their statuses which are
necessary for various evaluation processes running. They are represented by HelpDoc
and EProcess classes respectively. Each user may have one or several instances of
EProcess.

The Scenario class represents all the objects a user requires within a scenario. Each
instance of the EProcess class contains one or several instances of scenario class. Each
instance of EProcess also includes a library system and a set of output data which are
represented by the classes Library and OutputData respectively. The library system
contains the default value of all information which is necessary to run ecosys. The
user may customize his/her library and copy required data from the library to his/her
run processes instead of manually inputting it one by one.

The OutputData class is the output of the ecosys system run and may be used
for future visualization. The File class in Ecopro represents a file and its status.
Each instance of Scenario contains several instances of File which represents different
types of files. For example, SiteFile represents the site file and TopoFile represents
the topographic file. Figure 5.5 illustrate the inheritance relationship among different
classes.

After identifying the subclasses, attributes and methods may be defined accord-
ingly for each subclass to provide the desired Ecopro functionality. Object status

diagram which are developed in the envision model generation stage are used for this

66

I

HelpDoc

User

Library

VisData

Figure 5.4: Class diagram of subclasses of Model in Ecopro (I)

67

1_‘*
S
1..1
<> RunProcess 1.*
1..1 g 1
Scenario

*

File

Model Model Model
))
User EvaluationProcess Scenario
user_name eproces_name scenario_name

eprocess_number
eprocess_names
active_eprocess

boolean activeep_exit
boolean activeep_inputting
boolean user_exit

sitefile_name
.

o
boolem.l site_exit

L
boolean script_running

controlfile_name

.
blloean contrile_exit
.

.
boolean irrigate_inputting

Model

File

file_name
path_name
temp_value
written_value

setChanged setChanged() setChanged(setChanged()
addEProgces(s)() addSitefile() addControlfile() se[_Tcmapvalue(
slelectEProcess() . . getTempValue()
modifyEProcess() visOut -5 save()
putQ addIrrigatefile()
deleteEProcess() runSeript() addFe;ilzeﬁ[e()
Model
File
SiteFile TopoFile SoilFile ControlFile WeatherFile PlantFile FertilizeFile TillageFile IrrigateFile

Figure 5.5: Class diagram of subclasses of Model in Ecopro (II)

63

purpose. For example, as shown in figure 3.11, the user class may have attributes
such as name of the user, number of EProcess, name of each EProcess and currently
active EProcess. Boolean attributes are added to distinguish different status of the
model. For example, if activeep_exit is false, it implies that no evaluation process
has been defined. If activeep_inputting is true, it implies that the user is inputting
something and consequently the corresponding view of the active EProcess is plugged
in at this moment. The method “SetChanged” is overridden to handle the internal
status of each subclass. For example, in the User class, “setChanged” will invoke
“addEProcess” , “select EProcess”, “modifvyEProcess” or “deleteEProcess™ separately

according to the event passed by its controller.

5.2.2 Subclasses of View

In object relationship diagrams (figure 4.5), all view objects together with the visual
appearance of all controller objects within it are defined. They are considered to be
subclasses of View. For example, in user view, the controller objects are add. modify,
select and delete. The visual appearance of these objects is a set of menus and
buttons. Hence the user view together with the set of menus and buttons are defined
as the UserView class which inherits from View. Figure 5.6 illustrate subclasses of
View and their aggregation relationship.

In Ecopro, UserView is the corresponding view of the User class. It is the ini-
tial window which appears when Ecopro is starting. Within this view, there is an
EProcessView which displays the information for an evaluation process, a HelpView
which displays the help documents, a FeedBack View which notifies the user about
the status of Ecopro, and a TimeView which displays the date and time. Each in-
stance of EProcessView has one or several instances of ScenarioView as its sub view.
Each ScenarioView contains a set of menus, buttons and graphic icons to handle the
different files (such as weather file, plant file etc)within a scenerio. In Ecopro, the
FileView is responsible for showing the data values in a file. It contains a set of menus
and buttons for user interaction control, a tab panel to display the data and a help
view to show the help documents.

The main purpose of View is to display current status of its model. Attributes

and operations are set for this purpose. Basically the “update” method is overridden

69

HelpView

FeedbackView

TimerView

PreferenceView

ControlFileView

-

UserView

EProcessView

P

WeatherFileView

LatitudeView

PlantFileView

WaterDepthVig

|

ScenarioView

[

SiteFileView

[

TopoFileView

FertilizeFileVigw

HelpView

TillageFileView

IrrigateFileView

HelpView

SoilFileView

FeedbackView

[

HelpView

—

VisView

Figure 5.6: Class diagram of subclasses of View in Ecopro

in each subclass to draw itself according to the status of its model and the layout of

the components within the view.

5.2.3 Subclasses of Controller

In Ecopro, subclasses of Controller implement different types of Java EventListener
interfaces according to its specific corresponding view.

As described earlier, each view contains the visual appearance of one or several
controller objects whose visual appearance form a part of the view. For example,
the set of menus, buttons and a list is part of the UserView. The corresponding
type of EventListener for this part is defined as the controller of that particular view.
Hence the controller of UserView (UserController) implements ActionListener and
ListSelectionListener.

Since controller and view are tightly coupled, the relationships between controllers
are the same as those between their views as shown in figure 5.6. Figure 5.7 illustrates
subclasses of Controller and their relationships.

Subclasses of Controller contain the behavior for identifying the type of interaction
between user and the system. Thus “handleEvent” is overridden in each subclass
accordingly. Basically it catches user interactions within its view, identifies the type of
event and invokes the “setChanged” method of its model. The details of interactions

among the MVC triad in Ecopro are explained below.

5.3 Interactions among subclasses

Interactions within each MVC triad are the same as those mentioned before for the
MVC work mechanism. For example, in the case of user inputting or modifying a
site file, the model is SiteFile; the view (SiteFileView) is a window which contains a
set of text fields, menus and control buttons; and its controller is SiteFileController
which implements ActionListener and DocumentListener.

When a user inputs or modifies a data value, the “ handleEvent ” operation is
triggered. The SiteFileController catches the event and records the value that the user
inputs. It then passes the message “setChanged” together with the new value to the

model. SiteFile changes its internal data to the new value and notifies SiteFileView

71

HelpController
Ll ! UserController L*
<
FeedbackController
TimerCoantroller
EProcessController
PreferenceController
®_| ScenarioController
ControlFileController
- [
LatitudeController | | ; ™ SieFileController
WeatherFileController
WaterDepthController - [
PlantFileController| — TopoFileControlien
HelpController
FertilizeFileController . |
SoilFileController
TillageFileController [
FeedbackController
IrrigateFileController
[
HelpController
HelpController
VisController

Figure 5.7: Class diagram of subclasses of Controller in Ecopro

:EProcessController

l :UserController

A
z %
72 — .
% Al.1 addEPro(name) 9 B1l.1 addSite(name) CL.1 setTmp Value(object)
Z\\ ALLI setInternalData(n B1.1.1 setinternalData(nameP!-1 saveQ)
2 Q. D1.2 sendAck() L.1 cancel()
% ﬂ ALL2 new() & ﬂ ng.zl_s’e%t_z(c)ko D DL setChanged(obj)
:User | _2EP=——"90 |.EProcess/|aSiteFile-——o| :SiteFile El ig[—mn—gm(oqj.)SiteFiIeCOntroller
fi=l...n] t
: T ahanged
> = om mo
g bl B g o [Q
= =il Es =5 3
2 Sy|lvES g g
< A2.1.1l new() = = B2l new& &
-UserView| =57 :EErocessView“SFView :SiteFileView
U U U
A2.1 addSubview() B2.1 addSubview() > 1 di
A2.2 display() B2.2 display() C2.1display0
D3.1 delSubview()
D3.2 display()
E3.1 delSubview()
E3.2 display()

Figure 5.8: Collaboration diagram of “ input file * scenario in Ecopro

that the value has changed. The SiteFileView then redisplays the text fields and
redraws itself with the new values.

In Ecopro, MV C triads are tied together in a way that a model in one triad may
change the status of a model in another triad when the user interacts with its interface.
For example, if the user inputs a weather file into a scenario, the scenario model is
changed to include the weather file. It also changes the status of the weather file
model from “not available” to “available”. Thus consecutive interactions and status
changes of the models make all MVC triads work together.

Figure 5.8 demonstrates a use case scenario where a user starts the system and
inputs a site file. Initially a MVC triad (User-UserView-UserController) is available
to fulfill the scenario. It gets launched when the user clicks the button “add EPro-
cess” in the UserView. The UserController catches the event and passes the message
“setChanged” together with the event to the model (User). This causes the User
to understand that the user wants to add an evaluation process (EProcess), and the
“addEProcess” method is invoked. The User first sets up its internal data, such as

the name of the Eprocess and increases the number of EProcesses by one. It then

73

creates a new instance of EProcess. After this, the User notifies its corresponding
view (UserView) by invoking the “update” method. The UserView gets informed that
the status of User has changed and there is an EProcess object that has been added.
The UserView then adds another sub view (EProcessView) to itself and redisplays it-
self. At this time, another MVC (EProcess-EProcessView-EProcessController) triad
is created and its view is ready for further user interaction. Now, if the user adds
a site file to the newly created EProcess, The EProcessController catches the event
and asks the model (EProcess) to change its status by creating a new instance of
SiteFile. The EProcess model then, notifies EprocessView to update itself by adding
a sub view (SiteFileView). Thus a new instance of SiteFileView is created and the
user may start to input the data. Within the SiteFileView when the user inputs any
value, SiteFileController catches the event and passes it to the SiteF'ile. The SiteFile
changes its internal data to the new value and invokes the “update” method. As a
result the SiteFileView displays the new value according to user input. When the
user clicks the “save file” or “cancel file” button, the SiteFileController catches the
event and passes it to the SiteFile. The SiteFile then changes its status and sends
an acknowledgement back to the model (EProcess), which tells the model whether
the SiteFile has been successfully input or not. The EProcess changes its boolean in-
stance variable according to the type of acknowledgment that it gets from the SiteFile
and invokes the “update” method which causes the SiteFileView to disappear.

In this stage of software structure description, the UML collaboration diagram is
used to describe the messages passed from class to class for some key scenarios which
are generated in the task analysis stage. The key scenarios include user input and
modification of a file, input and modification of a scenario, invocation of ecosys script,
customization of the library etc.

With the help of the UML class diagrams and interaction diagrams, classes, their
relationship and dynamic behaviors among all classes are defined in Ecopro. This
information forms the basis for the coding stage. After the system has been imple-

mented, an initial system is ready for system test.

74

Chapter 6

Usability Testing

Regardless of the extent of analysis that has been done in designing an interface,
experience has shown that some problems tend to appear when the system is tested
with end users. Thus a usability test is necessary to assess a system’s ability to meet
user satisfaction and performance objectives. Two kinds of techniques are used for

usability testing in Ecopro, thinking aloud and user survey.

6.1 Thinking aloud

The thinking aloud method involves having one test user at a time using the system
for a given set of tasks while being asked to talk to the observer. By verbalizing
his/her thoughts, the user enables an observer to determine not just what the user
is doing with the interface, but also why he/she is doing so. This additional insight
into a user’s thought process can help pinpoint concrete interface elements that cause
misunderstandings, and help in the redesign to better suit the needs of the end user.

The advantage of thinking aloud is the wealth of qualitative data that can be
collected from a fairly small number of users.

The main disadvantage of the thinking aloud method is that it is not well suited
for most types of performance measurement. This is because, the need to verbalize
can slow users down, thus making any performance measurement less representative.
As performance is not the most important concern in Ecopro, thinking aloud is a
good choice for usability testing.

Before the usability testing begins, a set of tasks is selected to decide what the

user tries do in the test. These tasks should reflect real-life tasks, which would be

75

executing once the system has been delivered to the end-user. In Ecorpo, the same
set of tasks that were selected for the design evaluation are used for the user test. No
modification to the tasks is required, as the test users are the same people who took
part in the design evaluation. It is assumed that these test users therefore have all
the background that would be needed for the test.

During the test, the user is asked to express his/her feelings and reactions while
performing the various tasks. The feelings and reactions of the user relate to issues
such as what he/she is trying to do, questions and concerns that arise as the user
works his way through the various tasks, decisions that the user makes, things that
the user views and reads and so on. Help is provided when necessary and notes are
taken to record observations related to what the user does, what the user says, and
a list of all difficulties that the user encounters.

The purpose of the test is to get all possible information that can help improve the
system. Thus after the test, analysis is done based on the collected data and decisions
are made to determine what changes need to be made to improve the system.

There are two steps that are involved in the analysis. The first step involves
checking whether the system works as the designer expected. For example, whether
the test users took the expected approaches, or were they working in a different
way? This step is useful as it enables the designer to rethink the design to make it
better suited to the needs of the users. The second step involves creating a list of all
difficulties that the test users encountered and, for each of the difficulties, attempt to
find out why the problem occurred, how important the problem is, and how it would

to be fixed.

6.2 User survey

Many aspects of usability can best be studied by simply questioning the users. This is
especially true for issues relating to the users’ subjective satisfaction, which are hard
to measure objectively. User survey is a useful method which give us a summary of
user’s level of satisfaction with the system.

User survey involves asking users a set of questions and recording their answers.

It has the advantage that it finds subjective user preferences and is easy to repeat.

76

In Ecopro, rating scales are used to ask users how well they liked various aspects
of the system or how useful they found different features. The survey form contains
a checklist, which covers various topics about the system. A number of questions are

taken directly from [Shneiderman, 1993]. There are six sections all together:

e Overall user reactions are used to test the user’s satisfaction with the system.
This includes questions such as: Is the interface easy to use; does the user feel
helpless using the system; are adequate functionalities and features provided

with the system.

e Visual clarity is used to test whether information displayed on the screen is
clear, well organized and unambiguous. For example, does the sequence of
screens confuse the user; is important information highlighted; is it easy to go

back to previous screen.

e Since ease of learning is the first usability goal in Ecorpo, a learning section is
used to test whether the system meets this objective. For example, how many
steps are needed to perform a task; is there any requirement for the user to

remember names and commands.

e Terminology and system information is used to test whether helpful information
and feedback is provided by the system. For example, are the error messages
helpful; does the user feel confused and wonders what is going on: is there

sufficient amount of information on how to use the system.

e System capabilities test is used to determine whether the system meets the
needs and requirements of end users. For example, does the system provide
appropriate functionality; is the system reliable; is the response time for most

operations durable.

e Other usability issues include error prevention and correction, consistency, and
flexibility. For example, is there any undo action for the user to reverse an
error situation; are there standard procedures for carrying out similar or related
operations; can the user choose to name and organize information which may

need to be recalled at a later stage.

77

The experience with usability testing conducted in Ecopro is positive and encour-
aging. A lot of usability problems and issues such as the contents of help documents,
the size and position of the different windows and the way that the user edits a library
file are identified. For each usability problem the possible solutions are considered.
Most of the solutions consist of redesigning part of the interface to improve the us-
ability, whilst some others consisted of designing new functionality which would be

part of the future work.

78

Chapter 7

Conclusion and future work

7.1 Conclusion

This thesis describes an implementation of a model-based development process using
a set of design techniques throughout the system life cycle. The development of
the system is based on the integration of a task model, a dialogue model and an
implementation model.

The entire process begins with task analysis, which takes user requirements and
produces a set of tasks to be supported by the design. After the initial task model
is defined, the views for the objects in the task model are identified for supporting
mechanisms to achieve the various tasks. Once object views are identified to support
the required tasks, implementation details are specified for system programming. As
an iterative methodology, users participate in the design, changes in requirements are
handled, and designs are refined through the entire design process.

The main contributions of this thesis are summarized below.

e By defining a complete and accurate task model, a clear description is presented
to describe the user’s world. In Ecopro, two levels of task modeling is provided.
The first level is a scenario-based model describing an enumerated list of tasks
that must be supported. The scenario-based structure for the initial task model
has the advantage of making the user feel comfortable to describe their tasks in
a sequence rather than in terms of objects. The second level is an object based
task model that integrates the level of support and system constraints into

the model. By transferring the model from scenario-based to object-oriented

79

based, we take the advantage of object-oriented design. For example, the system

becomes easy to extend as user needs evolve over time.

e By defining a continuous and explicit dialogue model, the description of the
user’s world is well matched to the computer system. The dialogue model in
Ecopro covers all three levels of dialogue modeling. By doing this, consistency
between different levels of interface modeling is ensured, and a common ground
for communicating between the end user and the system is provided. The
diagrams used in dialogue modeling serve as excellent input to code design and
programming, because they are explicit, and they use a notation familiar to

those working in object-oriented programming.

e By using different techniques for design and usability evaluation, user satisfac-
tion is achieved. In Ecopro, iteration takes place between any two adjacent
stages of the design, as well as through the entire life cycle of the system. Dif-
ferent evaluation techniques are used according to their specific advantages and
disadvantages. User participation at the various stages ensures that the design

changes are driven by actual user feedback.

7.2 Future Work

As mentioned above, a complete and accurate design is not possible in a single it-
eration. [terations need to take place throughout the entire life cycle of the system.
Such iterations help ensure completeness and accuracy, and tend to lead to a more

fully defined system. In Ecopro, three areas are identified for improvement.

e More work could be done on usability testing to evaluate the success of the
system. Empirical evaluation can be done by experts on usability engineering.
Videotaping or data logging could be used to keep track of user behavior and

the time required to accomplish a task.

e There are some more functionalities that could be added to the system. For
instance, the system could be enhanced to visualize more output files. Also

the system can be transformed to a web based application so that the client

80

may invoke ecosys even their computers are not powerful enough to do all the
calculations. When each new feature is added, prototypes of the design should
be created and usability should be tested.

System usability is always important for user interface design. This is an issue
which requires continuous refinement and enhancements. More features may be
considered for usability enhancements in Ecopro. For example, more flexibility
could be provided to user, and error prevention and correction ability could be

improved to make the system more usable.

81

Bibliography

[1]

[Diaper89] D Diaper (ed.): “Task Analysis for Human-Computer Interaction.

Chichester” Ellis HOrwood, 1989.

Dix A., Finlay J., Abowd G. and Beale R. Human-Computer Interaction. Pren-
tice Hall, London, 1993

[Foley, 1982] Foley, J.D. and van Dam, A. (1982). “Fundamentals of [nteractive
Computer Graphics”, Addison-Wesley, MA.

[Forbrig, 1997] Forbrig, Peter; Schlungbaum, Egbert: “Model-based approaches
to the development of interactive systems”, In seond multidisciplinary workshop

on cognitive modeling and user interface development, Freiburg 16 - 13.12.1997

[Elwert, 1995] Elwert T. and Schlungbaum E. “Modelling and Generation of
Graphical User Interfaces in the TADEUS Approach”, in Palanque P. and
Bastide R. Design, Specification and Verification of Interactive Systems’95.
Springer, Wien, 1995, 193-208.

[Goldbert, 1983] Goldberg, Adele 1983. Smalltalk-80: “The Interactive Program-

ming Environment”. Addison-Wesley Publishers, Menio Park, 1983.

[Green, 1986] Green, Mark, 1986. “A Survey of Three Dialogue Models. ACM
Transactions on Graphics”, Vol. 5, No. 3, July 1986, Page 244-275.

[Newman, 1995] Newman, William M 1995. “Interactive System Design”.

Addison-Wesley Publishers, 1995.

[Norman, 1986] Norman, D. & Draper, S.W. (eds.), 1986. User Centered Sys-
tem design: New perspectives on Human-Computer Interaction Hillsdale NJ:

Lawrence Erlbaum Associates.

[10] [Rosson, 1988] Rosson, M.B., Maass, S. and Kellogg, W.A. “The designer as
user: Building requirements for design tools from design practice”. Commun. of

the ACM, 31, 1988, 1288-1298.

[11] [Rosson, 1990] Rosson, M. B. and Alpert, S. R. “Cognitive consequences of

object-oriented design”. Human-Computer Interaction 5, (1990), 345-379.

[12] [Shneiderman, 1987] Shneiderman, B. (1987). “Designing the User Interface”,
Addision-Wesley, MA.

[13] [Shneiderman, 1998] Shneiderman, Ben, 1998. “Designing the user interface:

Strategies for effective human-computer interaction”. Addison-Wesley Publisher.

[14] [Nielsen, 1993] Neilsen, Jakob, 1993. “Usability Engineering”. AP Pressional.

83

