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Abstract

The General User Interactive Design Environment (GUIDE) is an interactive programming
environment for software development which makes effective use of a graphical user
interface. A prototype has been implemented for Modula-2 on a Sun workstation using
Smalltaik-80. It provides a set of integrated tools that support program creation,
modification, execution and debugging. This thesis describes the runtime envicmment and
the debugger view in GUIDE. The debugger view provides a consistent user interface to
examine and control the internal runtime structure — a collection of statement trees and
activatior: records. The statement trees are incrementally built as the user is coding the
program 2nd the activation records are dynamically allocated at the activation of procedures
or funztiens. Editing capability and incremental compilation within the debugger view
sltow the user o use it as a single tool for editing, compiling and debugging. In addition, it
ofixrg many innovative features such as forward and backward execution, execution
hisu:=y veolay and pictorial display of data structures. With its graphical capability, it
produi-:+ ke effects of animation on the flow of execution and in-place updates of data
structsszs. The implementation of many desirable features will help to increase

productivity and veduce costs in software development.
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CHAPTER 1
INTRODUCTION

A graphical user . ’.x: {CUT) is becoming a standard feature in modern operating
systems [Hayes 89, Seymaar 89). Some older operating systems, such as Unix and DOS,
provide a GUI shell while keeping their command line version. Others, such as Macintosh
and OS/2, simply have a GUI implemented in their operating systems. GUI has gained
popularity over command line systems because it is easier to use and, obviously, more

appealing. In many situations, it also increases productivity.

The General User Inieractive Design Environment (GUIDE) is an interactive programming
environment for use in a GUI environment. A prototype has been implemented for
Modula-2 on a Sun workstation using Smalltalk-80. It is intended to support detailed
modular design, rapid error-free entry, incremental semantic analysis and interactive esting
[Szafron 86b). Multiple views are used to present a simple consistent user interface to
interact with the internal structures representing Modula-2 source code and the execution
state of the program. These views are tightly coupled together in that editing in a view

often causes explicit changes in other views.

This thesis describes the runtime environment and debugging in GUIDE. The runtime

environment consists of the activation and execution of procedures and functions. In this

thesis, we will use the term procedure collectively to refer to either a procedure or a

function, in those cases where the distinction is not important. To simulate the runtime

behavior of Modula-2, GUIDE uses two structures: a statement tree and an activation

record. The statement tree is the compiled version of the code and is built incrementally
1
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when the user is entering the code. The activation record is dynamically allocated when a
procedure is invoked. The object-oriented implementation of GUIDE allows each
activation record to control its flow of execution and distributes code interpretation to each
node in the statement tree, thus eliminating the need for a ceniralized code interpreter.

Debugging in GUIDE is done through a debugger view. The debugger view provides a
consistent user interface to examine and control the internal state of an executing program.
It is well integrated with the rest of the system. For example, deleting a variable declaration
in the declaration view would result in an immediate removal of that variable in the
debugger view. The objectives of implementing a debugger in GUIDE are:

. to present to the user a sipglc tool to modify, compile and debug a program,

. to implement many desirable features as a debugging tool, and

. to exploit the full capability of GUL

Typically, programmers use a loosely coupled set of tools to develop software: an editor,
compiler, linker, loader and debugger. The GUIDE debugger combines the functions of
&iting, compiling and debugging into one view. The user can edit and debug the program
without leaving the debugger view. Incremental compilation eliminates the need for a
separate compiler and the user does not have to control or even initiate the compilation
process. The syntax directed editor and incremental semantic analysis ensure the code
being entered is free of static errors. The major advantage is that the user is not required to
switch back and forth between several different tools znd to learn several command
languages. Many innovative features are also implemented, such as:

. forwand and ackward stepping of execution,

. execytiin nisiory replay,

o immes 1 execution of procedures without a calling program,



. pictorial display of data structures, and
. hardware independence.
Such features, combined with the effective use of a GUI, will increase programmer

productivity and reduce costs in software development.
1.1 Importance of Debugging

The cost of hardware has been decreasing to an affordable range for most home users. A
personal computer today costs only about half of what it used to three years ago, yet it is
more powerful with more memory and is much faster. Software, on the other hand, is
becoming more costly. Figure 1.1 shows the estimate of the software-hardware cost ratio
from 1955 to 1985 in the U.S. Air Force; this trend is probably characteristic of other

organizations as well.

This figure has been removed due to copyright restrictions.

Figure 1.1 Software-hardware cost ratio [Boehm 73].



Software developments are also typically a few years behind hardware technology
advances. In other words, software often does not take advantage of the capabilities of
new hardware. This is mainly because software is becoming more sophisticated and it
- takes longer to develop. Even when software is put into production, the first version is
usually "buggy" and it takes a few revisions to fix the problems. By the time the bugs are
fixed, hardware has already advanced to the next plateau. Software is not easy to develop
and to maintain, but a lack of good software development tools has made the matter worse.
A good software development tool can help in decreasing both development costs and
maintenance costs. If such tools were available, the gap between software developments

and hardware technology advances could be narrowed.

In software development, coding is perhaps the most visible activity. Most software
developers believe that once a program is coded, testing will be quick and easy. However,
experience shows that among the three activities in software development (design, coding
and testin_" tesiing is the most costly in terms of time and effort. Typically, design
comprises 35% of the development cost, coding 15% and testing 50% [Boehm 73].
Coding is in fact the least expensive step.

Let us cons:der the entire software cycle — from specification to development and to
n:iintenance. It is a surprise to many people that half of the total cost is spent in
maintenance. Figure 1.2 gives an approximate figure on the costs of the various phases in
the software life cycle. The high maintenance cost is primarily due to inadequate analysis
and design of the resulting software system.

The testing and mainsenan:e phases together consume 70% of the total costs, and they

involve a lot of debugging activities. A debugger is an indispensable tool in software
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development. Many modern commercial compilers, especiaily those for personal
computers, have realized the importance of debugging by including an integrated source

level debugger as part of the environment.

Maintenance 50%

Testing
20%

Figure 1.2 Cost ratio in software life cycle.
1.2 Probleins With Conventional Debuggers

If debugging is such an important activity, debuggers should be used widely. Yet
debuggers, although available, are rarcly used. One major obstacle is that most debuggers
have complicated command languages that are difficult to leam and remember. Careful
design of the command syntax (e.g. dbx [dbx 83]) will help, but on a graphical
workstation with a GUI other approaches are possible [Bovey 87]. The complexity is due
to the fact that the object under examination, that is the intenal state of an executing
program, is itself complicated. Furthermore, conventional debuggers are usually hardware
dependent. They often present the contents of the internal registers of the underlying
machine. But, to a user who is debugging a program written in a high-level language, the
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internal registers are imrelevant. Even today, a lot of debuggers (e.g. DOS debug utility
[DOS 88}, DEBUG program of Tandem Non-stop Systems [Tandem 85]) still present a
vast amount of information in a low-level format, such as & hex dump, which is totally

incomprehensible to most users.

Because of this, most programmers prefer to use the most straightforward technique of
debugging — inserting print statements at various places in their programs. Print
statements can be used to display the contents of variables or trace the flow of execution.
This method is not without pioblems. The programmer must first make a conjecture of
where the bugs might be, then insert the print statements at the appropriate places,
recompile the pizgram, and test the program. This cycle is repeated until the bugs are
found and removed. Finally, the print statements must be removed and the program
recompiled to produce a final version. Another problem is that the insertion or removal of
print statements may modify the behavior of the program in a way that creates or hides

bugs.

Conventional debuggers do not meet the needs of today's programmers. They are too

difficult to use and often present information at too low a level.
1.3 Debugging in Graphical User Interface Environments

High-resolution graphics is no longer a luxury of expensive workstations as in the past.
Technological advances have already brought this luxury down to low cost
microcomputers. At the same time, the cost of workstations is decreasing. It will not be
long before low cost powerful personal workstations become available and affordable to
most people. GUI will become a standard feature on these machines. A graphical
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debugger implemented in such an environment will be a valuable tool for software

developers.

With the availability of high-resolution graphics and pointing devices such as a raouse, it is
possible to design a debugger which provides all the necessary functionality without
sacrificing ease of use. A graphical debugger can employ menus and editable subficids
instead of a complicated command language for its operations. It can also present
information at the user’s level — even in the form of pictures. The user will be able to
interact with the debugger using the mouse to point at objects of interest rather than typing
out their names, thus minimizing mistakes and increasing productivity. More interestingly,
the debugger can animate the flow of execution through the source code and dynamically
update the variables modified during execution. Users can visualize the animated effect of
execution such as the sorting of an array. It would be a pleasant experience for the user to

use such a debugger.
1.4 Classification of Graphical Systems

Technological advances of high-resolution graphics and pointing devices has prompted the
recent development of systems that utilizes graphics to aid in programming and debugging
tasks. The terms "Visual Programming" and "Program Visualization" are often applied to
these systems. They provide a completely new way for programmers to interact with
software and the programs they write. Moreover, they add the ability to gain different
insights and new ways to deal with software through visual and graphical means [Grafton
85]. Myers has defined these terms in a precise manner [Myers 85}

Visual Programming. "Visual Programming (VP) refers to any system that allows the user
to specify a program in a two (or more) dimensional fashion. Conventional textual
languages are not considered two dimensional since the compiler or interpreter processes it



8
as a long, one-dimensional stream. Visual Programming includes conventional flow
charts, graphical programming languages, and systems that use icons. It does not include
systems that use conventional (linear) programming languages to define pictures.”

Program Visualization, "Program Visualization" refers to systems that use graphics to
illustrate some aspect of the program or its runtime execution. Program visualization can
be classified along two axes: whether they illustrate the code or the data, and whether they
are dynamic or static. "Dynamic" refers to systems that animate the running program,
whereas "static" is limited to systems that portray the program at some instant of

execution. Figure 1.3 classifies some Program Visualization systems according to Myers.

This figure has been removed due to copyright restrictions.

Figure 1.3 Classification of program visualization systems [Myers 85].



A distinction was made: in Visual Programming, the graphics is the program itself, but in
Frugram Visualization, the program is specified in the conventional, textual manner, while
some aspects of the program is illustrated using graphics.

Under this classification, the GUIDE debugger is a Program Visualization system,
visualizing both code and data. The in-place updates of variables and highlights that move
through code to indicate the line being executed make the GUIDE debugger a dynamic

SYsIemy.
1.5 Relevant Systems

The interest in program visualization has aroused the development of many systems [Myers
80, Teitelman 81, Brown 84, Cargill 84 and 85, Delisle 84, Reiss 84, Sherman 84, Brown
85, Teitelman 85, Adams 86, Reiss 86, Sherwood 86, Bovey 87, Isoda 87, Eisenstadt 89,
Feldman 89, Guarna 89]. They share a common goal: to aid in program understanding
and/or debugging utilizing graphics. Since an exhaust overview of all of them is worthy of
a separate paper, we will describe only four of the more well known ones: Incense [Myers

80], PECAN [Reiss 84], dbxtool [Adams 86] and the PV prototype [Brown 85].

1.5.1 Incense

Incense [Myers 80, Myers 83] was designed and implemented at the Xerox Palo Alto
Research Center. It was written in and for the Pascal-like language Mesa. The primary
goal of Incense was to present data structures to programmers in the way that they would
be drawn by hand, thereby making the debugging task casier. Incense automatically
gencrates static pictures for data structures based on the type of the data. Realizing that
during debugging, the programmer usually would like to view the data at a higher
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conceptual level rather than at a lower level of constituents, Incense allows the programmer
to define pictures of his own and modify the displays at various level. These user-defined
displays can eliminate unnecessary detail or more graphically portray the abstraction that the
data structure is implementing. A set of default displays is provided so that the

programmer can be freed from defining any of the types if he chooses to.

Figure 1.4 shows some of the default displays generated by Incense. In addition to
displaying data structures, the system supports a number of other operations on the display:

erasure, selection and editing.

This figure has been removed due to copyright restrictions.

Figure 1.4 Default boxed display for the basic types generated by Incense [Myers 80].

All user input is done using the mouse. To display a data structure, the user uses the
mouse to specify the size and position of the display and the system tries to fit the picture
into the specified area. When there is insufficient room to display the data at full size, the

gicture has to be scaled down so that it will fit (Figure 1.5).

Currently Incense does not support any debugging capabilities such as single stepping

[Myers 83].
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This figure has been removed due to copyright restrictions.

Figure 1.5 Two subformats for a record: full size (a) and scaled proportionally and centered
vertically inside a bounding rectangle (b) [Myers 80].

1.5.2 PECAN

PECAN [Reiss 84] is a generator of program development systems for algebraic
programming languages developed at Brown University. The PECAN environments
provide multiple views to visualize a program'’s syntax, semantics and cxecutions as the
program is being developed. The views supported by PECAN include: program listing,
Nassi-Schneiderman diagram, symbol table, data type definitions, parse tree, control flow
graph, execution stack, and input-output dialogue (Figure 1.6). An abstract syntax tree is
maintained such that if any one of the views modifies the tree, the system automatically

updates all other related views to ensure consistency.

PECAN supports interpretive program execution. It allows the program to be executed
forwards and backwards, breakpoints to be set, and the speed of execution can be adjusted.
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As the program is being executed, a stack view shows a display of the current execution
stack. On the stack each activation record is shown and each variable in the activation

record is labeled and its value displayed.

This figure has been removed due to copyright restrictions.

Figure 1.5 PECAN display showing execution [Reiss 84].
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1.5.3 Dbxtool

Dbxtool [Adams 86] is a standard software thit comes with the Sun-3 workstation. Itis in
fact a GUI to the teletype-based debugger dbx [dbx 83]. It combines a scrollable editor
window displaying the source code with a number of menu buttons representing the most
often used dbx commands. The menu commands are object-oriented, i.c. the user first
selects the object and then specifies the action to be performed on that object. For example,
a breakpoint is inserted by positionifig the cursor in the program code and then selecting the
stop at button from the menu. Similarly the value of a variable of expression is displayed
by first selecting it in the code and then selecting the print button. However, the use of
the menu to examine variable or expression only works when the desired expression occurs
in the source code. In order to examine the elements of a more complicated data structure,
such as individual array elements or the nodes of a linked list, the user has to type the dbx
commands directly into the command window without any help from dbxtool. Dbxtool
also makes use of its editor window to display debugging information by annotating. the
current line and breakpoints with special symbols. Because dbx supports single-line
stepping, the user can dynamically visualize code execution through the editor window.

1.5.4 The PV prototype

The PV prototype [Brown 85] provides a set of graphical tools which when tied together
can be used to visualize all phases of the software life cycle. The system was written in and
for the C language. Related to debugging is its ability to monitor changes in data structures

and to show the control flow of a program during execution.

During a debugging session, the user uses a pointing device to point t variables in Ccode
and the system automatically displays appropriate diagrams for the data structure. The user
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can also build or select diagrams from a library and "bind” them to the code. Bindings are
not implemented by inserting graphic statcments into the code, but by establishing
correspondences between the code and the graphical components from the information
provided by the user. Such a capability allows the user to view the data structures at a
higher conceptual level.

Dynamic code visualization is achieved by highlighting the linc being executed. The
system also provides execution speed control and stepping. If only one data structure is
being displayed, the pauses occur only when that data structure is updated. This feature
allows the user to localize the debugging to the parts of the program that are of interest.

1.6 Overview of Thesis

GUIDE is an interactive programming environment for software development. This thesis
describes the runtime environment and debugging in GUIDE. In this chapter, we have
presented a bricf introduction to GUIDE's runtime environment and its debugger view. A
number of problems found with conventional debuggers can be solved with a graphical
debugger implemented in a GUI environment. We have also classified the graphical tools
used in software development and presented a few examples. Chapter 2 introduces
GUIDE, its user interface and its solutions to many programming environment problems.
Chapter 3 describes the implementation of GUIDE and Chapter 4 describes its runtine
environment. In chapter 5, an overview of the debugger view is presented. Chagpter 4 it &
detail description of the implementation of the debugger view. The thesis concluds: in

Chapter 7 with a summary and recommendations for future work.
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CHAPTER 2
INTRODUCTION TO GUIDE

2.1 Introduction

The General User Interactive Design Environment (GUIDE) is an interactive programming
environm.~nt for the design, coding and testing of software. It is intended to support:

. detailed modular design,

. rapid error-free code entry,

. incremental semantic analysis, and

° interactive testing.

Modular design is accomplished by editing the calling sequence of modules. Rapid code
entry is achieved by syntax checking and recovery. Correctness is ensured by eliminating
static semantic errors through incremental analysis. As the declarations and code are
parsed, they are stored in symbol tables and statement trees. The statement trees can be

interactively executed, debugged and tested.

GUIDE is based on an interactive graphical interface which makes extensive use of a high
resolution bit-mapped display and a mouse. Besides making the environment much
simpler to use, this graphical interface provides solutions to several problems faced by
programming environment designers. Some of the problems are: simultaneous
representation of multiple views, convenient and regular structure selection and temporary

semantic error handling.
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The major contributions to programming environments made by GUIDE are its vision of
programs as collections of interacting structures and its novel and effective use of a
graphical interface. A Modula-2 version of GUIDE has bezn implemented on a SUN
workstation using Smalltalk-80.

2.2 Multiple Views In GUIDE

A program is composed of a collection of modules. A module can be regarded as a
collection of statements, a collection of declarations and a header comment which descrides
the module. Both the statements and the declarations are structured objects whose
components may be primitives, like identifiers, or other structured objects. The statements
form a tree while the declarations form a list (a special case of a tree). The header comment

is the only portion of the module which is repiesentcd by a swream of text.

Some of the declarations in a module may be procediires, which are themselves regarded as
a collection of statements, a collection of declarations and a header comment. Since the
structure of a procedure and a module are so similar, the name context will be used to refer
to either a procedure or a module, in those cases where the distinction is not important.

The recursive nature of procedure declarations suggests that a context can also be viewed as
a tree structure in which the nodes are procedures. Since this tree reflects the static

structure of the context, it is referred to as the static structure tree of the context.

GUIDE provides the user with a model in which a program is simply 2 collection of context
trees, declaration trees and statement trees. These trees are edited using structure editors.
Each of the different editors operates in & view. A view is just a visual representation of

one of the aspects of a context. Each view is associated with some internal structure. For
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example, the statement editor directly manipulates statement trexs and the declsration editor
directly manipulates symbol mables.

The current GUIDE prototype supports header, code, declaration, interface and context

views. Figure 2.1 lists the five views and the associated internal structures.

‘ View Internal Structure
¢ Header ¢ Text stream
¢« Code e Statement tree
e Declaration e Symbol table
e Interface e Module: Export list and Import list
¢ Procedure: Parameter list
* Context » Static structure tree

Figure 2.1 Multiple views in GUIDE.

The header view contains the documentation for a context and is edited by a text editor.
The other four views are edited by structure editors. The code view contains the statements
for a context. The declaration view contains all of the local declarations for a context except

proces* = dectzations. The interface view of a procedure contains the declarations of all of

the; -~ that procedure; the interface view of a module contains export and import
decla:: - -t module. The context view of a context contains the procedure
declarati % are local to that context. The collection of all context views of a module

is a distributed representation of the module's static structure tree.
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Each view is presented in its own window and there is no limit to the number of windows
which can be opened at one titoe. For example, the user can look at the declaration view of
a context while entering code in its code view. When a procedure call is to be entered, the
interface view of the procedure can bz opened to determine the required parameters. Figure

2.2 shows a typical screen layout during an editing session.

o cponStroam/lnhrfm R
IR P ARAMETER IN streamName IS Strmg

_‘_'oponotream/Code

aStreamStatus = shtusOfNamedStream
(streamName)

W mode = read“!ode TI-IEH

L openStrum/CodelAssiqnmmt ST
N Stroam /D»larahq hame : okToOpen
TYPE BufferRJ

j CARDINAL FROM
. CONSTANT mi

B 8) - 20) OF CARDINAL
o TYPE StreamBuffer IS ARRAY OF
B CHARACTER INDEXED BY BufferRange

expression: | aStreamStatus N
StreamStatusSet(readoniy) R

Figure 2.2 Typical screen layout during an editing session.

The removal of procedure declarations from the declaration view offers some distinct
advantages. A user interface which presents exactly one wey of directly manipulating each
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object is easier to leam and understand. This implies that manipulation of procedures (as
complete objects) should take place in one view. The question that remains is whether to
use the declaration view or a separate view. Note that the manipulation of procedures is
inherently more powerful and dangerous than the manipulation of local constant, variable
and type declarations, since they encompass so much more information (their own code,
declarations and procedures). In fact, the manipulation of procedures involves the
manipulation of the program's static structure. Therefore, this difference should be
reflected in the interface by providing an orthogonal editing mechanism. A separate context
view was chosen instead of a single declaration view to maintain a single regular editing

paradigm.

The distribution of context views in representing the static structure tree has one
disadvantage: the user has lost a global picture of the static structure of a module.
However, this is not as much of a disadvantage as one might expect. In programming
languages such as Algol and Pascal, procedure declarations are highly nested so the static
structure tree is deep. However, in more modern languages such as Modula-2 and Ada,
procedures are usually declared at the global level of modules and the static structure tree of
a program is a forest of trees of depth one. In such cases, the distributed context view

representation of the static structure does not present much of a problem.
2.3 An Integrated Set of Editors

The structure editor of each view is capable of performing its own syntax directed editing
function independent of the other views and their associated internal structures. A common
graphical editing paradigm is used in all the views to provide a simple, consistent user
interface. In addition, each editor performs static semantic checks as informaticn is
entered, incrementally analyzes the information and manipulates its associated internal

structure.
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While syntax directed editing in each view is independent of the other views, static
semantic checks often transcend view boundaries in their communication requirements.
For example, when an assignment statement is edited in the code view of a context, the
‘statement editor requires information about the identifier. This information is maintained in
a symbol table associated with the declaration view of the context in which the identifier is
declared.

In addition to communications between a view and the internal structure of other views,
editing in a view often causes explicit changes in other views. For example, changes in the
static structure tree must be reflected in the context view of the context containing the

declarations of the procedures involved.

Such interaction is the reason why a programming environment cannot be regarded as a set
of independent editors. The editors must be integrated in an environment and operate on an
integrated internal representation. This integration must not only be efficient, but it must
also ensure that editing operations result in changes which are reasonable and predictabie

by the user. The following presents the solution to this integration problem.
2.3.1 Syntax Directed Editing

A common editing paradigm is used in all of the views. The mouse provides rapid random
access to structures of any size and simple regular rules determine the structure being
selected. Individual structures can be selected by clicking the left mouse button when the
cursor is on the structure. The selected structure is then highlighted. An insertion point can
be selected by clicking the left button between structures. A carat is displayed to indicate the
location of the insertion point. Once a structure is selected, it can be operated on by
selecting an action in a pop-up menu invoked by holding down the middle button when the

cursor is inside the view.
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The selected structure may be primitive or composite. A composite structure is one which
can contain other structures while a primitive structure cannot. Because of this primary

difference, they require the use of different editing procedures and syntax checking

mechanisms.
2,3.1.1 Primitive Structure Editing

Since a primitive structure cannot contain other structures, it contains a fixed amount of
information in a fixed format. Some primitives Lke he EXIT statement do not require any
other information to be specified. An insertion request of such standalone primitives
results in an immediate insertion of the primitive. Other primitives require additional
information. These primitives when inserted into the view cause a template to be inserted.
The information required by the primitives is entered by editing the template. The editing is
done by selecting the template and choosing edit from the menu which will generate a

dialog window for entering the information.

The dialog windows that are used for primitive entry are non-modal. This means that the
users are not obliged to fill the box immediately. The user may choose to move the hox
aside and do something else, and retumn to the dialog window later. At any time the user
can cancel a dialog window by choosing close from the dialog window's menu. In this

case, the editing operation would be aborted.

All primitive dialog windows used in GUIDE are similar, but the number of fields and the
controls may differ. They all have the same menu and a title bar containing the context

name, the view name and the primitive structure name.

An assignment statement is an example of a primitive structure. It contains two pieces of

information: the variable and the expression. Figure 2.3 shows the template for an
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assignmcntsmementinsawdinawdeviewmdtheﬁnduwusedwenmmemfomaﬁm

for the assignment statement. A dialog menu which is common to all dialog windows is

also shown in the figure. A primitive template is shown in ifalics to differentiate it from

the primitive itself.

END

2]

openStream/Code.

BEGIN
Assrgnment

openStream/Code/Assignment

expression:

name: '~

aStream,

Mcontext

accept
cancel

Figure 2.3 An assignment template in a code view and a dialog window.

After filling in all of the ficlds and selecting the desired controls, the contents of the

window may be accepted by choosing accept from the menn or pressing the return key
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from the keyboard. At this point, the fields are checked for comect syntax. If a syntax
erTor exists, then an error message is inserted into the dialog window, immediately
preceding the error and the error text is selected. If no syntax errors are found then the
semantic validity is checked. This includes type checking, number of parameters,
undefined types, existence of imports, and so on. Section 2.3.2 discusses the handling of
semantic errors. If the fields are free of semantic errors, then the template is replaced by

the valid primitive structure.

Dialog windows are used not only for editing templates, but for editing existing primitives
as well. Primitives cannot be edited directly in the views but the same procedure for editing
a template is used. The same dialog w_indow for that primitive is displayed, except that
each field will contain its current value. After changing the appropriate field or fields, the
accept command must be selected from the menu or a carriage return be entered from the
keyboard. This results in the same syntactic and static semantic checks that take place

during editing a template.

A variant of the dialog window, the in-line dialog, is implemented in Godel [Lanovaz 88].
Godel is a programming environment prototype for Prolog. The design and
implementation of Godel are inherited mostly from GUIDE. In Godel, instead of creating a
dialog window for text entry, the in-line dialog is embedded within the program clause
window (see Figure 2.4). The user selects the position where he wants text entered and
then starts typing. The characters entered are surrounded by a thin-lined border. Within
this border, conventional text editing is allowed. If accepting the text does not lead to an
error, the in-lire dialog disappears and the text is automatically reformatted. If errors do
occur, the user can make changes and then re-accepting, or excise the text into a

conventior:al dialog window to escape from the in-line dialog mode. If the in-line dialog is
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also desired in GUIDE, the Smalltalk source code can be imported from Godel and be
integrated easily into GUIDE.

This figure has been removed due to copyright restrictions.

Figure 2.4 An in-line dialog of Godel: the border indicates the in-line dialog start and stop.
The insertion czrat indicates where typed text is inserted [Lanovaz 88].

2.3.1.2 Composite Structure Editing

An insertion request of a composite structure also results in the immediate insertion of a
template into the view. This template can then be filled by inserting other structures into it

at a later time. These other structures may be primitive or composite.

An IF statement is an example of a composite structure. It contains a condition and a
variable number of statements. The template for an IF statement is shown in Figure 2.5.
Notice that the keywords are shown in bold so that they can easily be differentiated from
identifiers. The null condition is represented by condition. Null primitives in composite
templates are also displayed using an italics typeface. A null primitive can be selected and

replaced by a non-null primitive. Of course, a dialog window is used to enter the primitive.



, open'St:re‘ar.n/'Code‘
BEGIN

\F caondrtion THEN

END IF
END

I~

Figure 2.5 An IF statement template in a code view.

Selecting a composite structure is accomplished by clicking the mouse on a keyword that
describes the bounds of the composite structure. For example, everything from the IF to
the ENDIF would be highlighted if the user clicked on: IF, THEN, or ENDIF. Clauses
are "local" composite structures that can be selected separately from the composite structure
that they lie within. An ELSE IF is a clause local to an IF statement. Clicking on a
boundary keyword of a clause will select everything from the first clause keyword to the
end of the last statement that the clause holds. A selected composite structure can be cut,
copied, or deleted, but it cannot be edited.

Multiple structures can be selected by dragging the cursor across them while holding down

the left mouse button. The following rules govemn which structure is selected:

Rule 1. Dragging across any two structures at the same level of

indentation selects all structures at that level.

Rule 2. Dragging across structures at different indentation levels
selects the outermost structure touched and all structures
contained within it.
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IF jcondition! | THEN

| statement 1 |

{statement2]

| statement3|

ELSE IF [condition2 | THEN
statement4
ELSE
statementS
END IF

Figure 2.6 Structure selection.

For example, suppose an IF statement contained three statements and two clauses as in
Figure 2.6. Dragging across statements 1 and 2 would select the block containing
statements 1, 2 and 3. Dragging across statements 3 and 4 would select the entire IF

statement. Dragging across condition 2 and statement 4 would select the ELSE IF clause.

Syntax directed editing is done by displaying only allowable items in the menu. For
example, if the condition expression of an IF statement is selected, then the menu shown in
Figure 2.7 is displayed which allows only again, undo, copy, cut and edit to operate
on the condition expression; if an insertion point is selected within the IF statement, a
hierarchical menu (Figure 2.7) with again, undo, and add statement is displayed.
Selecting the add statement operation will display a statement sub-menu which shows all

the statements that are allowed to be inserted at that insertion point. Users are not allowed



to type text directly into the view but must edit by choosing items from the menu. In this

way, a simple but effective syntax directed editing paradigm is achieved.

IF canoition THEN
JEND IF

again
undo
copy

cut
paste

edit

again
undo

paste

add statement P

—p RETURN

assignment...
procedure...

IF
ELSE IF
ELSE
CASE

WHILE
REPEAT
FOR
LOOP

WITH

Figure 2.7 Syntax directed editing using menus.
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2.3.2 Semantic Error Handling

One of the major decisions which programming environment designers must make is
whether to allow semantic errors on a temporary basis. For example, if the user enters an
assignment statement which contains an undeclared variable, should the statement be
rejected or should it be accepted and flagged. If the statement is rejected, the internal
structurz. of the program is consistent but the user must re-type the entire statcment. If the
statemen: is sccepted, then the environment must track a sequence of inconsistencies which

may become quite complex.

This complexity is due to the wide ranging consequences of simple editing operations.
Consider the situation where a variable declaration is deleted. All references to that variable
become invalid. Removing all of these references from the code results ina major hardship

for the user who must re-enter all of the statements involving these references.

On the other hand, maintaining semantically incorrect software defeats the purpose of a
programming environment in two ways. The first is that a programming environment
should prevent the user from making subtle errors, much the way strong typing works in a
programming language. The convoluted inconsistencies that can arise from a series of

editing operations can introduce subtle errors.

For example, consider the situation where a user makes many references to an undeclared
variable, say Stack. Of course they are flagged as references to an undeclared variable, but
the user plans to fix this later. The user then inadvertently declares the name Stack tobe a
type and subsequently makes many references to this type in variable declarations. Finally,
the user decides to execute some code and is faced with a warning: "references to the name
*Stack® which should be declared as a variable, but is declared as a type". Unfortunately,
changing the declaration from a type declaration to a variable declaration will just result in
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another warning: *references to the name "Stack” which should be deciared gs a type, but
is declared as a variable.” Of course this problem can be fixed by adding another name
and changing some references, but i is tedious.

‘The second way that allowing semantic inconsistencies defeats the purpose of a
programming environment is that it prevents code from being immediately executable.
Programming environments distribute the semantic analysis over time so that users can
execute the software at any time. This is crucial to fast software development. If a
collection of inconsistencies is maintained, then the user must be notified of these flaws and
correct them before execution can proceed. This can be a tedious process.

In fact, the decision as to whether or not to allow semantic inconsistencies is probably the
single factor which most affects the usability of a programming environment. GUIDE's
graphical user interface provides a solution with the advantages of both approaches and the
disadvantages of neither. Only semantically correct information is allowed in the views,
but incorrect information does not have to be re-typed since it is saved in the dialog

window while measures are taken 1o correct the semantic error.

When a semantic error occurs in GUIDE, an alert window is gencrated. It contains a
description of the cause of the error. For example, Figure 2.8 shows an alert window
generated by a code view when the user tries to enter a control expression containing an

undeclared variable in a FOR statement.



hlockCopy/Code/for

variable: index,
from: 0

to: maxCard
by: 1

The identifier "'maxCard” in the "to” field is not declared.

Figure 2.8 An alert window generated by a semantic error.

Alert windows are modal, that is, the user cannot perform any action other than reading the
information and closing the window by pressing the carriage return key or selecting the
single command close from a pop-up menu. Moving the mouse outside of the alert

window causes the window to flash. All other user actions are ignored.

The contents of the dialog window are unaffected by the alert. After closing the alert
window, the user can edit the fields of the dialog window and then try to re-accept it, or he
can eloso' it. Alternately, the user may wish to put the dialog window aside and edit
another view in order to correct the cause of the semantic error. In this case, the user can
return to the dialog window later. There is no need to re-type the information in the dialog
window. When the user returns, the context command in the dialog window menu
becomes useful. Choosing this command displays the window and highlights the template
or the original primitive structure which the new structure will replace if accepted.
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If no errors are detected, the new structure replaces the template or the original structure
and the dialog window is removed. The information in the views is always semantically

correct and consistent.

If the primitive structure that was deleted or modified was the declaration of an identifier,
then this may result in semantic errors where the identifier is referenced. The interface,
context and declaration views of a context all contain declarations. The interface view of a
procedure contains parameter declarations, the context view contains procedure declarations
and the declaration view contains local constant, type and variable declarations.

In the case of a name change to an identifier, GUIDE avoids the generation of semantic
errors by changing all references to the old identifier name to references to the new

identifier name.

Semantic errors can be generated if an attribute of an identifier (such as the type of a
variable) is changed or an identifier is deleted. If a change in a view causes semantic
errors, the user is informed by an alert window and asked if the change should be made. If
the change is made, then all inconsistent structures are excised from their views, and an
entry dialog window is created for each one and the windows are stacked in a corner of the
screen. In this way, the user is free to make other changes which will make the structure
correct (for example, by importing a declaration from another module). Then, each

structure can be accepted into the appropriate view without re-typing it.
2.4 Summary

The General User Interactive Design Environment (GUIDE) is an interactive programming
environment for the design, coding and testing of software. Its major contributions to

programming environment research are its successful vision of programs as collections of
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interact...g structures and its novel and effective use of a graphical user interface. It
demonstrates that a software development environment ¢::. ::force semantic consistency
while maintaining a simple regular user interface. It is also one of the few programming
environments in which the user can concentrate on programming instead of concentrating
on learning an awkward user interface which includes an unintuitive collection of key

presses, modes, rules and exceptions.
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CHAPTER 3
IMPLEMENTATION OF GUIDE

This chapter describes the implementation of GUIDE. We first introduce Smalltalk, which
is the implementation language for the prototype, and the concepts of object-oriented
programming. We then describe the user-interface paradigm used by Smalitalk and the
architecture of GUIDE. Lastly, we show the incremental compilation process of Modula-2
code into GUIDE objects. This information is necessary to understand how the debugger

was implemenied.
3.1 Smalltalk

3.1.1 The Advantage

Smalltalk is an attractive programming environment for prototyping research. It has been
used successfully in prototyping an animation system which visualizes programs and
algorithms [London 85). The designers of the system conclude, "Since Smalltalk is an
open system designed with much attention to the human interface and with many elegant
facilities at our disposal (modifiable, if necessary), it is not surprising that we have been
able to use it successfully in our exploratory and prototyping research.” The user i dace
and the graphics provided by Smalltalk are imponant to GUIDE's effective use of a
graphical users interface [Szafron 86b]. The user interface implementation of Stnalltalk,
which is called the Model-View-Controller (MVC) system, allows Lue display
representation of an object to be maintained in a view. The view monitors e state of the
object and reflects the changes in its own window. If the view dynavically reflects the

changing state of the object during the execution of a program, an animation effect is
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achieved. This aspect of the user interface is an invaluable tool to the dynamic display of
data structures in the GUIDE debugger. Details of the MVC system will be discussed
subsequently in this chapter.

Besides the rich gxaphibs library and the user interface, Smalltalk provides a facility to
monitor changes made to the system. All changes are recorded automatically and can be
migrated to another Smalltalk environment. It is therefore possible to have the GUIDE
prototype developed by a group of designers at the same time, each working on a different
part of the prototype and each keeps his own history of changes. Later, they can merge
their changes together and thus achicve synchronization of a design stage.

Even though Smalltalk, being an interpretive language, is often criticized for its speed, our
Smalltalk-80 interpreter runs suitably fast on a Sun-workstation and especially on a Sun-3.
Further, the versatility and flexibility of Smalltalk far outweighs its speed deficiency in the
development of the GUIDE prototype.

3.1.2 The Language

Smalltalk is an object-oriented language. In the world of object-oriented programming,
everything is represented by objects. An object is a self-contained entity which consists of
two parts: its state and its behavior. The state of an object is described by its own private
memory, using instance variables. The behavior is a set of operations to manipulate that
data. In terms of a conventional language, an object contains the data structures as well as

the procedures to manipulate those data structures.

The executsble instructions to perform the operations are called methods. A method is
invoked by sending a message to an object which is called the message receiver. A
message consists of the receiver, the message's name (called the selector) and perhaps a set

of arguments. The message specifies which operation is desired, but not how that
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operation should be performed. The receiver of the message determines how to perform
the requested operation by executing the corresponding method.

The only way to manipulate an object's private memory is by sending messages to the
object. The object then responds to the message and carries out the operations on its
private memory. The internal structure of an object is completely hidden from the rest of

the system. Thus the message passing mechanism ensures the modularity of the system.
Let's consider an example,
aninteger « 2 + 3.

The addition operation is performed by sending a message to the object representing the
number 2. The message specifies that the desired operation is addition and also specifies
that the object representing the number 3 should be added to the receiver. The message
does not specify how to perform the addition. The receiver will carry out the operation by
invoking the method for addition. The method, after completing the computation, returns
the object representing the number 5 and the system binds the variable, aninteger, to the

object 5.

Every object in the system is an instance of a class. A class describes the properties of a
collection of similar objects. These objects with similar properties are called instances of
the class. The class description includes a specification of its instances’ private memories,
called instance variables, and the set of methods to manipulate those instance variables.
The instances of a class all have the same number of instance variables &nd they all respond
to the same set of messages. It is the value of the instance variables that makes an instance

distinct from another instance of the same class.
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For example, class Rectangle defines two instance variables, origin and comer. The two
instances of Rectangle shown in Figure 3.1 store different values in the instance variables
and therefore have different sizes and locations. Both of them understand the saroe set of

messages such as move, origin, area, etc.

Rectangle (‘origin’' ‘corner’)

(10,200)

(550,250)

(210,400)

aRectangle
9 (650,500)

bRactangle

Figure 3.1 Instances of class Rectangle.

Classes are structured in a tree-like hierarchy. Except for the class Object, which is at the
top level of the hierarchy, every class is a subclass of one or more superclasses. Smalltalk
restricts a subclass to only one superclass. A subclass inherits all the superclass'
properties, i.c. the methods and instance variables. However, the subclass can add more
methods and instance variables to its description. It can also modify its behavior by
redefining a method with the same name, effectively overriding the superclass’ method.
Thus, a subclass is a specialization of its superclass. A superclass is usually a generic
description of several subclasses and each subclass refines the properties of the superclass.
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This inheritance property of object-oriented languages is a powerful tool in system
development. A large portion of the code is reusable, reducing both the code size and
development time.

3.2 User Interface

Smalltalk-80 has a user interface architecture known as the model-view-controller (MVC)
system. For example, pop-up menus, text windows, code editors, and process scheduler
are described by the MVC paradigm. GUIDE follows this scheme to construct its user
interface. The MVC structure has three components:

. model — the object that is being viewed and manipulated,

° view — the external display of the model to the user, and

. controller — an object that captures and interprets user input to the model.

A model may be any object in the system. A view is opened on the model by creating

instances of subclasses of View and Controller and connecting them to one another as

— Dependency
o

Figure 3.2 The Model-View-Controller structure.

shown in Figure 3.2.
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The view handles all windowing manipulations such as displaying, framing, labeling,
scrolling, bordering, and mapping local view coordinates to screen coordinates. It displays
a graphical representation of the model in the window. The controller accepts the user
input from the mouse or the keyboard and handles window scheduling; the set of all
controllers is polled by the process scheduler to determine which window wants control.

In this structure, the model has no explicit knowledge of its view or controller. Rather, it
communicates with the view via a dependent list. When a view is opened on a model, the
view is added to the dependent list kept by the model. When a view is closed, it is
removed from the list. There may be more than one view opened on the same model, in
which case all the views are on the model's dependent list. The model typically does not
know how many or who these dependents are. 'When the model changes its private state,
an update message is broadcast to all objects in the dependent list. Every dependent is then
aware of the change in the model and acts accordingly. Usually an argument that specifies
the model's changed aspect is sent along with the broadcast message. Only those
dependents who are interested in that specific aspect will act upor the change. Other
dependents simply ignore it.

If a model is removed from the system, all of its dependents are also informed. All views
that are opened on the model will be closed and subsequently their windows removed from
the screen. The MVC paradigm achieves the synchronization in a well-defined manner.

3.3 GUIDE Architecture
3.3.1 GUIDE User Interface

All of GUIDE's internal structures such as header text, statement tree, and symbol table are
manipulated using the MVC paradigm. However, the model is not the internal structure
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itself but a browser on the internal structure. The browser is a link between the internal
structure and the user interface. The browser, view and controller coexist together and
more than one browser can be opened on the same internal structure. With the same
model-view dependency concept, all browsers on the internal structure are on the
dependent list of the internal structure. Figure 3.3 depicts the relationship between the
internal structure and the MV C structure.

Browser

Internal Structure %
- -Dependency

L Controller

Figure 3.3 The relationship between the internal structure and the MVC structure.

When the private state of the internal structure changes, each browser will receive the
update message broadcast by the internal structure; and in turn, each view associated with
the browser will be updated and the changes will be reflected in the windows of the views.

3.3.2 Structure Browsers

Each internal structure has its own browser class. For example, the statement tree's
browser class is GuideCodeBrowser and the symbol table's browser class is
DeclarationBrowser. All of GUIDE's browser classes for internal structures are
subclasses of StructureBrowser. Each browser class provides the pop-up menus and
methods for manipulating its corresponding internal structure. The pop-up menus are
context sensitive. Depending on the current location of the insertion point or the current
selected structure, the browser generates a menu consisting of only allowable commands.

It is not possible for the user to illegally edit the internal structure. An instance variable
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called currentStructure in the browser keeps track of the current insertion point or the
current structure, and is able to provide the browser with all the information to generate the
context-sensitive menu. With the effective use of pop-up menus, syntax directed editing is
achieved. In the following sections, we will describe some of the subclasses of

GuideStruciure that are of particular importance.
3.3.3 Guide Structures

Any internal structure in GUIDE that can be manipulated using the syntax directed editor
must be an instance of a subclass of GuideStructure. Examples of the subclasses are
GuideParseNode and GuideSymbol. Each structure is able to dispiay itself textuaily and
define its boundary in the program text. The boundary is an inLeger pair that marks the
starting index and stopping index in the program text. It is used for structure selection and
highlighting during syntax directed editing. To select a structure, the user clicks on that
structure in the program text. The controller translates the position of the mouse cursor into
an index of the program text. The structure whose boundary encloses the index is selected
and highlighted.

3.3.3.1 StructureList

A special subclass of GuideStructure is the StructureList which is capable of holding
multiple GuideStructure(s). For example, the symbol table of a procedure is a
StructureList which holds the local declarations of the procedure such as types and

variables. Another example is the body of the IF statement.
3.3.3.2 GuideParseNode

GuideParseNode is the superclass of all parse node classes constructed for the Modula-2
language. Every node in the statement tree is an instance of a subclass of GuideParseNode.
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The nodes are arranged in a way tlutxeprmntsthelogicalﬂowofﬁccodc.lnaddiﬁon to
the editing capabilities inherited from GuideStructure, a GuideParseNode can evaluate itself
within its context. Each Modula-2 statement has a corresponding subclass under
GuideParseNode because each has a different runtime behavior. Details of the code
interpreter will be discussed in Chapter 4.

GuideParseNodes are categorized into five major subclasses based on their functionality.
Figure 3.4 shows the class hierarchy of GuideParseNode. The notation we used to
represent classes and their hicrarchical relationship is borrowed from Smalitalk-80. A class
name is an identifier starting with an uppercase letter. Following the class name and
enclosed in brackets is a list of instance variables defined in that class. Under the class

name and indented one tab position are the subclasses of that class.
3.3.3.2.1 GuideExpressionNode

A GuideExpressionNode retums a literal as the result of its evaluation. Examples are unary
expressions, binary expressions, array element accesses, and variable accesses. A
GuideExpressionNode cannot exist on its own; it must be a substructure of other parse
nodes such as the right hand side of an assignment statement or the condition expression of

an IF statement.
3.3.3.2.2 GuideEditableNode

Parse nodes of subclasses of GuideEditableNode will require additional information from
the user to complete their specification. When the user inserts such a node into the
statement tree, a template is first inserted into the code and then a dialog box is opened on
the structure (see Section 2.2.1.1) to prompt the user for more information. Assignment
statements and procedure calls are examples of GuideEditableNodes.
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GuideParseNode ()
BreakPoint ()
GuideCompoundNode (body' )
GuideBlockNode ()
GuideControiNode (‘expression’ )
GuideClauseControiNode (‘clause’ )
GuideCaseControiNode ()
GuideCaseClauseNode ()
GuideCaseNode ()
GuidelfControlNode ()
GuideElselfNode ()
GuidslfNode ()
GuideForNode ()
GuideRepeatNode ()
GuideWhileNode ()
GuideWithNode ()
GuideElseNode ()
GuideLoopiNode ()
GuideEditableNode (‘isTemplate' )
GuideAssignmentNode ('leftHandSide’ ‘rightHandSide’ )
GuideCaselLabelListNode (caselabellist’ )
GuideEditableExpressionNode (‘expression’ )
GuideCaseExpressionNode ()
GuideConditionNode ()
GuideRecordExpressionNode ()
GuideForControlNode ('variable' "initialValue' ‘finalValue' 'step' 'cachedFinalValue' )
GuideProcedureCaliNode (‘argumentList’ ‘procedure’ )
GuideReturnNode (‘'returnValue' )
GuideReturnTypeNode (‘returnType’ )
GuideExitNode ()
GuideExpressionNode ()
GuideArrayAccessNode (‘array’ ‘indexes’ )
GuideBinaryExpressionNode ('leftOperand’ ‘operator’ ‘rightOperand’ )
GuidelLiteralNode (‘literal' )
GuidePointerAccessNode (‘pointer’ )
GuideRecordAccessNode (‘record’ ‘field’ )
GuideSetAccessNode (‘setType' ‘elements’ )
GuideUnaryExpressionNode (‘operator’ ‘operand’ )

Figure 3.4 Class hicrarchy of GuideParseNode.

3.3.3.2.3 GuideCompoundNode

An instance of GuideCompoundNode has a body which is a StructureList that holds a
sequence of statements. The body of a compound statement may be empty. Examples arc

IF statements, WHILE statements, LOOP statements, REPEAT statements, and ELSE
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clauses of IF statements. StructureList provides the functions to insert, remove and select
statements in the body of these nodes.

3.3.3.2.4 GuideExitNode

GuideExitNode represents the EXIT statement. The EXIT statement exists only within the
body of a repetitive statement such as LOOP or WHILE. There is no subclass of
GuideExitNode.

3.3.3.2.5 BreakPoint

A BreakPoint is not a Modula-2 statement. It is used during debugging to mark the
location where execution should be suspended. When execution is suspended, a user may
inspect or modify the state of the executing program, such as the contents of the variables.
A user may also proceed to step through the code slowly to monitor the effects of

execution.
3.3.3.3 GuideSymbol

GuideSymbol represents all the symbols used by the Modula-2 language such as constants,
variables, types, procedures, and modules. Each symbol is identified oy a name. The
scope of a symbol is the procedure or module within which it is declared. Symbols with
the same name can exist in different scope. There are three major subclasses of
GuideSymbol — GuideDeclarationSymbol, GuideEnvironmentSymbol and
GuidelmportSymbol. Figure 3.5 summarizes the class hierarchy of GuideSymbol.



GuideSymbol ('name' ‘isTemplate' )
GuideDeclarationSymbol ('isPublic' )
GuideTypedDeclarationSymbol (‘type’ )
GuideArrayTypeSymbol (‘indexType' )
GuideString TypeSymbol ()
GuideEquivalence TypeSymbol ()
GuideOpenArrayTypeSymbol ()
GuideParameterSymbol ('mode’ )
GuidePointerTypeSymbol ()
GuideRecordFieldSymbol ()
GuideSetTypeSymbol ()
GuideSubrangeTypeSymbol (‘lowerBound' ‘upperBound’ )
GuideValuedDeclarationSymbol (‘'value' )
GuideConstantSymbol ()
GuideVariableSymbol ()
GuideUntypedDeclarationSymbol ()
GuideBaseTypeSymbol ()
GuideBooleanTypeSymbol ()
GuideCardinalTypeSymbol ()
GuideCharTypeSymbol ()
GuideintegerTypeSymbol ()
GuidelLiteralNumberTypeSymbol ()
GuideRealTypeSymbol ()
GuideTypeTypeSymbol ()
GuideUnassignedTypeSymbol ()
GuideProcedureTypeSymbo! (‘parameterTypes’ ‘returnType' )
CGuideRecordPlaceHolder {'identifier' ‘fieldList' )
GuideRecordTypeSymbol {fieldList' )
GuideScalarTypeSymbol (‘valuelist' )
GuideScalarValueSymbol (‘ordinalValue' )
GuideEnvironmentSymbol {'symboliTable' ‘environmentList’ )
GuideContextSymbol (‘comment’ ‘codeBody’ ‘deciarationList' 'activeContext’ )
GuideLanguageSymbot ()
GuideModuleSymbol (‘importList' ‘exportlList’ )
GuideProcedureSymbol (‘parameterList' 'returnType’ ‘isPublic’ )
GuideProjectSymbol ()
GuideSystemSymbol ()

Figure 3.5 Class hierarchy of GuideSymbol.

3.3.3.3.1 GuideDeclarationSymbol

Instances of GuideDeclarationSymbol are identifiers used in standard declarations such as

variables, types and constants. Subclasses of GuideDeclarationSymbol are
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GuideTypedDeclarationSymbol and GuideUntypedDeclarationSyimool. Typed symbols are

those that require a base type, ¢.g. array types, set types, subrange types, constants, and
variables. Untyped symbols do not have a base type. They include the predefined types,
j.c. INTEGER, CHAR, BOOLEAN, CARDINAL and REAL, and untyped declarations
such as record types and scalar types.

3.3.3.3.2 GuideEnvironmentSymbol

An environment (GuideEnvironmentSymbol) in GUIDE refers to a language
(GuideLanguageSymbol), a module (GuideModuleSymbol) or a procedure
(GuideProcedureSymbol). This class contains a symbol table which is a StructureList of

astances of GuideDeclarationSymbol. The symbol table contains the local declarations of
the environment. Currently, the only instance of GuideLanguageSymbol is Modula. Its

symbol table contains all the predefined types of the language.

The class GuidelvioduleSymbol has two instance variables, importList and exporiList,
which are used for exchanging information with the other modules in the system. The
importList is a StructureList of instances of GuidelmportSymbol (to be discussed next)

and the exportlist is a StructureList of symbols that can be seen outside of the module.
3.3.3.3.3 GuideImportSymbol

Import symbols are identifiers that are imported from another module. They are declared
elsewhere but must be imported before they can be used locally. GuidelmportSymbol acts
as a placeholder since it contains a pointer to the imported symbol and a pointer to the

symbol's module; it does not have the actual definition of the imported symbol.



3.3.3.4 GuideSymbolReference

The editing of primitive structure requires the GuideParser to parse the character stream
entered by the user in a dialog window (see Section 2.3.1.1). The parser is invoked by the
dialog interface when the user chooses accept from the dialog menu. The ability of the
parser is limited to parsing expressions and expression lists. Identifiers in the expression
being parsed are not bound to any environment yet; the parser is responsible for syntactic
error detection only. These unresoived symbols are represented by instances of the class
GuideSymbolReference. If a syntactic error is found during parsing, an error message is
inserted into the text in the dialog window. If the parsing is successful, the dialog then
attempts to bind the unresolved symbols to the current environment. During this symbol
binding phase, the semantic validity is checked. When a semantic error is found, an alert
window is generated (Section 2.3.2). If the user input is free of semantic errors, then
GuideSymbolReference is bound to the actual symbol by setting a pointer to it and the

primitive template in the program text is replaced by the resolved primitive structure.
3.4 Incremental Compilation

During syntax-directed editing of the program code, instances of GuideParseNode are
inserted into or removed from the statement tree. As the user is coding the program, the
statement tree is gradually built. Each parse node in the statement tree is able to execute
itself, i.e. each parse node is an executable instruction used internally by GUIDE. The
statement tree is in fact the compiled version of the program code. What the user sees in
the code view is a textual representation of the statement tree. Figure 3.6 shows an

example of a statement tree.
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3.5 Summary

In this chapter, we have presented an overview of object-oriented programming in
Smalltalk. The properties of class hierarchy and inheritance of object-oriented languages
promote code re-usability and modifiability. The design of the GUIDE architecture takes
advantage of these properties. Abstract classes are created so that subclasses can specialize
their superclass' behavior. We have described the class hierarchy structure of the parse

nodes and the symbols.

The user interface structure, called the model-view-controller (MVC) paradigm, used in
Smalltalk provides a modular architecture of window display, user input handling and
object manipulation. GUIDE uses this paradigm to produce a consistent user interface
throughout its implementation. We have also explained how syntax directed editing is
achieved and how synchronization of displays is done using the MVC paradigm.
Incremental compilation is done when the user is editing the code in the code view during

which the statement tree is built.
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CHAPTER 4
RUNTIME ENVIRONMENT IN GUIDE

This chapter describes the runtime environment in GUIDE. We will present the
implementation of activation record which contains all the information about the internal
state of an executing program. We will discuss how an activation record is initialized and
how memory is allocated when a procedure is invoked. Finally, we will show how
execution is performed in an object-oriented manner. Before moving on to the details, it is

necessary to review the runtime behavior of Modula-2.
4.1 The Runtime Behavior of Modula-2

Wiodula-2 is a block structured language that is ALGOL-like. ALGOL-like languages have
common properties in their runtime behavior. Most of the discussions that follow are

applicable to other ALGOL-like languages as well.
4.1.1 Activation Record

Modula-2 allows a program to be composed of a number of procedures. Variables declared
within a procedure are local to that procedure and globzl only to procedures that are nested
within itself. A procedure is activated when it is invoked by a procedure call from another
procedure. The activation of a procedure is composed of two parts: a code segment and an
activation record. The code segment consists of the static executable instructions of the
procedure. The activation record contains all the information required o0 execute the

procedure plus the storage allocated for the local variables declared in that procedure.
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Modula-2 also suppe- s 1..cursion. Hence, several activations of the same procedure may
exist at the same ti . | the activations have the same cede segment but different
activation records. This implies that an activation record must be allocated dynamically

when a procedure is activated.

When a procedure completes its execution, control is returned to the calling procedure. Its
activation record is no longer needed. The space accupied by the activation record can be
released and made available for new activation records. Since the activation record that is
deallocated is also most recently allocated, activation records are usually allocated on a last-

in-first-out manner, that is, using a stack-based storage.
4.1.2 Dynamic Link

In order to return contro! to the calling procedure, activation records must contain the
information to address the next instruction to be executed upon return and to access the
caller's activation record which will become active. The pointer to access the caller's
activation record is called the dynamic link. The chain of dynamic links from the currently
active activation record is called the dynamic chain. The dynamic chain represents the

calling sequence of procedures.

Figure 4.1a shows the layout of a program. In the figure, the following chain of calls is
issued:

Procedure A calls procedure E.

Procedure E calls procedure F.

Procedure F calls procedure G.

Procedure G calls procedure F.

Procedure F calls procedure G.

Procedure G calls procedure F.
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Note that procedures F and G are mutually recursive. The static structure of the program is
shown in Figure 4.1b. Figure 4.1c shows the dynamic links and chain on the execution

stack.

PROCEDURE A
VAR x;

PROCEDURE B

PROCEDUREC
VAR x;

PROCEDURED

E;

(a) Layout of a program showing procedure calls

(b) Static tree of the program
Figure 4.1 Example of procedure calls.
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PROCF §—— Top of stack
PROCG
PROCF
PROCG
PROCF

PROCE
PROCA

(c) Execution stack showing dynamic links

Figure 4.1 Example of procedure calls. (cont.)
4.1.3 Static Link

The static scoping rules specify thata variable declered within a procedure is local to the
procedure and global to the procedures nested within it. In Figure 4.1a, procedures B and
E are statically enclosed within procedure A; procedures F and G are statically enclosed
within E: C within B; and D within C. If a local variable is declared in a procedure P, it is
visible in P, but not in the procedures that enclose P. However, it is visible (with one

exception) to all the procedures that are statically nested within P.

The static tree can be used to determine the visibility of variables to any procedure; the local
variables of a node in the tree are visible only to itself and its descendents. For example in
Figure 4.1b, a local variable in procedure B is not visible to A, E, F and G; it is visible to
B, Cand D. Itis local to B and global to C and D. The exception to the above rule occurs
when a variable local to a procedure is given the same name as a variable declared in an
enclosing procedure. In such a case, the rule is that the local declaration overrides the
global declaration. For example, referring to Figure 4.1a, variable x is declared both in A
and C. Any references to x within A, B, E, F and G refer to the variable x declared in A,

whereas any references to x within C and D refer to the variable x declared in C. We can
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also determine the static scope of any given procedure from the static tree; a node on the
tree can access the local variables (with the above exception) of its ancestors. For example,

procedure F can access the local variables of A and E.

When a procedure is activated, its local variables are implicitly created in the activation
record. In referencing a local variable of a procedure, it is sufficient to'cxaminc the
activation record of that procedure since the storage of all local variables are allocated with
the activation record. However, a reference to a global variable requires access to the
activation record on the call stack that contains that global variable. This access is made
possible by having each activation record contains a pointer (static link) down the stack to
the activation record of the statically enclosing unit in the program. In other words, the
static link represents the back pointer of a node to its parent in the static tree of Figure 4.1b.

Figure 4.2 shows the static links for the example of Figure 4.1.

PROCF " @ Top of stack
PROCG
PROCF
PROCG
I-—— PROCF

—>1 PROCE
i_pj PROCA

Figure 4.2 Static links for Figure 4.1.

Referencing global variables can be done by searching down the static links until a binding
is found. In the example, a reference to x within D is bound to a storage location within
C's activation record and a reference to x within E is bound to a location within A's
activation record. Note that static links are not the only mechanism for accessing non-local

variables. For example, displays can also be used [Ghezzi 82].
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So far we have assumed that a procedure is accessible only from the procedure that
encloses it and therefore the above scheme would work. But this is not the case in Modula-
2. In Modula-2, a module allows other modules to access its procedures if they are
exported. If a procedure is called from outside of its own module, it will not be able tc find
the activation record of its module on the execution stack. It is because the module body is
not activated when the call to that procedure is made. The global variables declared in the
module body become inaccessible to the procedure.

To solve this problem, the module body must so:nehow be executed first and its activation
record not be deallocated after the execution is completed. This is done wi-« the main
program is invoked; all of the imported modules' bodies are executed in the same order
they are imported. A module is initialized only once even if it is imported by many
modules. The activation records of the imported modules may be kept on the same
execution stack or on another global stack. They continue to exist until the execution of the
program is completed. When an imported procedure is called, its activation record must set

up the static link to the activation record of its module.

Tre rracsgement of activation records discussed above is an implementation choice and is
not strictly implied by the semantics of Modula-2. Variations do exist and some are more
efficient; but the implementation of the debugger view follows closely to the above

description.
4.2 Activation Record

To simulate the runtime behavior of Modula-2, we will need to have activation records and
an interpreter to carry out the execution. The class ActivationRecord contains all the
information about the internal state of an executing program. It has several instance

variables that can be found in a conventional activation record. In addition, it also has
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instance variables for runtime execution (Section 4.7) and .ur keeping an execution history
(Section 6.3. The following instance variables are defined in ActivatiorRecr .

caller the caller's activation recor”, i.e. the dynamic link.

scope the activation record of the enclosing unit, i.e. the static link.
procedure  the context being executed.

valueTable a dictionary which binds local variables to their storage.
nextStatement the next statement to be executed.

importList  pointer to a global stack of activation records of imported modules.
stack a stack to hold the results of evaluation.

history an object for keeping the execution history.

The following sections will discuss how these instance variables are initialized.
4.3 Context Switching

A context switch is necessary when a procedure is invoked or when a procedure is
returning control to its caller. The current activation record is responsible for initiating the
context switch. When a procedure call is made, the arguments are first evaluated and their
values are pushed on the evaluation stack. The following message is then sent by the
current activation record to create a new one:
newActivationRecord « ActivationRecord new

caller: self

procedure: nextStatement procedure symbol

importList: importList.
In Smalltalk, self refers to the sender of the message. In this case, it is the current
activation record which is the caller of the new activation record. This message is sent
when the nextStatement to be executed is a procedure call (a GuideProcedureCaliNode).
The message nextStatement procedure symbol returns the context (a GuideModuleSymbol

or GuideProcedureSymbol) to be invoked. The argument importList is the instance
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variabl~ that points to the global stack for storing the activation records of imported

modules.

After the new activation record is created, its instance variables caller, procedurs and
importList are initialized with the values of the arguments. Tt then sets up the static link
and allocates storage for the local variables (including the formal paramcter's) of the new

context.

There are three kinds of parameters in Modula-2: IN, OUT and IN/OUT. The IN and
IN/OUT parameters are initialized by copying the values of the arguments from the caller's
evaluation stack. Finally, the first statement to be executed is initialized and the new
activation record takes over the execution control. Upon compietion of the procedure call,
the values of the OUT and IN/OUT parameters are copied back to the arguments. Control

is then returned to the caller.
4.4 Dynamic Link

An activation record is usually invoked by another activation record, i.e. the caller. The
first activation record is however invoked by the debugger, in which case the caller
instance variable is undefined. On this first invocation, the module of the procedure must
be initialized first and then kept in the instance variable importList. If the module has
imported other modules, each of the imported modules are initialized in turn and their
activation records are added to the importList. The imporiList of all activation records
points to the same global stack and therefore the activation records of initialized modules
are all kept in the same place. To ensure that each module is initialized only once, the
importList is searched to make sure that an activation record of that module does not
already exist.
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4.5 Static Link

The instance variable scope is the static link which points to the activation record of the
statically enclosing unit of procedure. During initialization of an activation record, it is
initialized by searching down the dynamic chain. If the scope is not on the dynamic chain,
then it must be on the global stack pointed to by the importList.

4.6 Storage Allocation

The instance variable procedure is used to access the context's symbol table. From the
symbol table, storage for the local variables is allocated and stored in valueTable.
valueTable is a Dictionary that associates the variables with their allocated mémory

storage.

A storage is represented by an instance of the class GuideStorage. A GuideStorage provides
the storage space, keeps a record of its modification history and displays itself graphically.
Because each data structure type may allocate memory and display itself differently,
siibclasses bf GuideStorage are created for each type. Figure 4.3 shows the class hierarchy
of GuideStorage. We will postpone the discussion of data structure display and history
recording until Chapter 6 since they are related to debugging.
GuidaStorage ( variable' ‘type’ 'display’ ‘activationRecord' )
GuideCompositeStorage (‘boundingBox' ‘slements’ ‘elementBoxes’ )
GuideArrayStorage ()
GuideRecordStorage ()
GuideSetStorage (‘history' ‘historylndex' )
GuicLiteralStorage (‘value' ‘history' ‘historyindex' )
*GuidePointerStorage ()
GuideStringStorage ()

*GuidePointerStorage is not implemented yet.

Figure 4.3 Class hierarchy of GuideStorage.
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GuideliteralStorage allocates space for all basic types (CARDINAL, INTEGER,
BOOLEAN, REAL and CHAR) and scalar type. These types are primitive structures that
do not cons” " any sub-structures. String is a special case that, by definition, it is an
array of ch. rs; however, it is often treated as a primitive type. Very seldom do
programmers need to inspect individual characters of a string. Implementing it as a
subclass of GuideLiteralStorage does not prevent one from accessing and manipulating
individual characters, but when the string is viewed by an inspector window, its elements
will not be listed as in the case of an array (Figure 5.6a). The advantage is speed gain and
less memory usage. Otherwise instances of GuidelLiteralStorage would have to be

allocated for the characters which will require more time and memory.

GuideCompositeStorage is for the type of composite data structures that encompass other
data structure types. They are ARRAY, RECORD and SET. The base type of SET must
be a basic type except REAL. Individual elements of a set are not accessible but they are
displayed as shown in Figure 5.7. Because its elements are displayable, each one must be

allocated as an instance of GuideliteralStorage.

ARRAY and RECORD are more complex because their base type can be another composite
type. Common examples are 2-dimensional arrays and arrays of records. The storage is
allocated recursively. Storzge space is first allocated to hold the elements’ storage, then
cach element is in tun requested to allocate space for itself. For example, an array of 10
records would be allocated using a GuideArrayStorage that has an array of 10 instances of
GuideRecordSterage; each instance in turn allocates space for itself. The allocation process
is stopped *:ien finally a literal type is encountered and an instance of GuideLiteralStorage

is allocatsd.
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Subrange types and equivalence types use the storage class of their base type for allocation.
For example an equivalence type of a record type uses the class GuideRecordStorage.

Currently, because POINTER type is not supported yet, GuidePointerStorage is also not
implemented. However, the allocation scheme would be quite straight forward: a space is
allocated to store the pointer to another storage. The storage that it is pointing to must
already be allocated by some other means, such as a call to NEW. It can be implemented as
a subclass of GuideLiteralStorage so tha: it would inherit most of the memory management
methods while overriding the display method so that it is displayed as a box with an arrow

pointing to another storage (Section 6.1.3).
4.7 Code interpretation

Because an activation record contains ali the information necessary for execution, it is
appropriate for the activation record to control its flow of execution. GUIDE does not have
a centralized interpreter as in conventional debuggers. Instead, each activation record is
responsible for controlling its owi: execution. An activation record can execute its code,
restart itself, step forward, step backward and replay its execution history. We will discuss
the implementation of the priraitive ¢xecution routine in this section and ieave the

discussion on the debugging-related functions until Chapter 6.

Because the statement tree is already in compiled form, there is no need for the activation
record to decode the statements in the program code. The actual execution is carried out by
the nodes in the statement tree. Each parse node knows what to do when it receives the

message to execute itself.

Before execution can begin, the activation record must search for the first statement to be

executed. This is done by sending the message firstStatement to the nodes in the tree.
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For example, referring to Figure 3.6, the GuideBlockNode at the top of the tree first receive
the message. It in turn sends firstStatement to its body, a StructureList. The body
passes the message to the first node in its list, which is the GuideAssignmentNode.
Eventually, the parse node at the bottom of the tree, which is the GuideSymbolReference
representing the variable b, reccives the message and responses to it by retuming itself.
The activation record saves this parse node in the instance variable nexiStatement and

execution may start.

Figure 4.4 shows the flow chart of the primitive execution routine implemented by
ActivationRecord. The activation record first checks whether a context switch is necessary.
Then it keeps evaluating nextStatement and obtaining the statement to be evaluated next
and saves it in nextStatement. This execution loop terminates when an error occurs or
when nextStatement is not a primitive statement any more. A primitive statement is one
that can be evaluaica immediately without any operation, i.e. variables, constants and
literals. Control is then returned to the debugger which is the sender of this routine.
Depending on which stepping forward command is specified by the user, the debugger
may choose to continue the execution or it may suspend itself so that the user can specify

further actions.

The following message is sent to nextStatement to evaluate itself within the current
activation record:

aValue « nextStatement valueln: self.
aValue saves the result of the evaluation so that it can be used to determine the flow of
execution. During the evaluation, temporary results are pushed on the evaluation stack
(instance variable stack) of the current activation record. As an example, the method

implemented by GuideBinaryExpressionNode is shown here.



Yes

procedure?

Evaluate
next statement

Error
occurs?

Yes Switch conext
to new procedure
Yes Return to
> caller
Yes Suspend

Obtain
next statement

next statement
is primitive?

®1 execution

Figure 4.4 Flow chart of primitive execution routine.
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GuldeBinaryExpressionNode

valuein: anActivationRecord
*Evaluate myself within the context of anActivationRecord.”

| leftResult rightResult result fiteralNode |

rightResult « anActivationRecord pop literal.
leftResult « anActivationR:zord pop literal.

result « self evaluateLeft: leftResuit right: rightResult.
literalNode « GuideLiteralNode new iiteral: result.
literaiNode scope: self.

?rrl:::maﬂonﬁecord push: fiteralNode.
When this message is sent to GuideBinaryExpressionNode, the operands are already
evaluated and their results are pushed on the evaluation stack of anActivationRecord.
GuideBinaryExpressionNode removes the results from the stack and performs the binary
operation on them. A new instance of GuideLiteraiNode is created 1o store the result of the

operation and then it is pushed on the evaluation stack.

If there is no runtime exror, then the statement to be evaluated next is obtained:

nextStatement « nextStatement scope
statementAfter: nextStatement
value: avalue.

This message is sent to the scope of nextStatement because only it will know which
statement comes after the current one. The result of the previous evaluation, aValue, is
passed along with the message so that the scope can determine the flow of execution.
Perhaps it is easicr to understand by looking at the method implemented by
GuidaWhileNode:

GuideWhlieNoda

siatementAfier: aStatement value: aValue
*Answer th.:: next statement fo be executed after aStatement.”

aStatemen! == expression
ifTrve:
[aValue
iTrue: [Tbody firstStatement)



%3
itFaise: [Tscope statementAfter: self value: nil]]
ifFalse:
[aValue == nil

True: [Texprosslon firstStatement]
ifFalse: [Tscope statementAfter: self value: aValue]].

GuideWhileNode first tests whether the previous evaluated statement is the cordition
expression. If it is, then aValue contains the result of the condition. If the condition is
true, then the first statement of the while body is returned to be evaluated next; otherwise,
the while loop is exited and its scope is requested to return the next statement after the while
loop. If the previous statement is not the condition expression, then it must be the while
body. The body may have a non-nil result if the while loop is to be exited immediately,
such as the encounter of a RETURN statement. In which case, the scope is notified with

the non-nil result. If the result is nil, then it loops back to test the condition again,

Let's consider one more example:

GuideBinaryExpressionNode

statementAfter: aStatement value: aValue
*Answer the next statement fo be executed after aStatement.”

aStatement == leftOperand
True: [TrightOperand firsiStatement]

ifFalse: [Tself]

One interesting point about this method is that GuideBinaryExpressionNoda returns itself as
the next statement to be executed after both operands are evaluated. This is necessary so
that it can receive the message valueln: in order to carry out the operation on the operands.

The methods firsiStatement, valueln: and statementAfter:value: are implemented by the
parse node to execute the code and determine the flow of execution. There is no need for
another code interpreter to decode the statement tree or to perform any flow control such as
branching.



4.8 Summary

The management of activation records is implemented in a conventional way, i.e. dynamic
link and static link are set upon the activation of a procedure, and memory storages arc
allocated to the local variables and stored in the activation record. Instead of having a
centralized interpreter, each activation record is responsible for controlling its own
execution and managing its own storage. Object-oriented design has distributed the
execution to each parse node. Each parse node knows how to execute itself and to return
the next statement to be executed. The activation record controls the flow of execution by
repeatedly sending messages to cach parse node to execute itself and to obtain the next

statement.



65

CHAPTER 5
AN OVERVIEW OF THE GUIDE DEBUGGER

As mentioned in Section 1.4, the GUIDE debugger is a program visualization system
which visualizes both code and data dynamically. It allows the user to interactively
execute, debug and test a program. Data structures in the program are displayed pictqrially
and they can be interactively examined and modified. As the program is being executed,
highlights move through the code to indicate the flow of execution. The displays of data

structures are updated immediately to reflect the actual state of the program.

In this chapter, the motivation for the GUIDE debugger is first presented and the desired
features are listed. Finally, the user interface of the GUIDE debugger is described.

5.1 Motivation for a Debuyger

The five GUIDE views (header, code, declaration, interface and context) described in
Chapter 2, present a graphical interface to manipulate the internal structure of a context.
Although the intemnal structure is guaranteed to be syntactically and semantically correct, the
logical correctness of the program is not addressed. However, logical errors are even more
difficult to locate than syntactic and semantic crrors. It has been estimated that fifty to
ninety percent of the programming task is spent in debugging [van Tassel 74, p.117]. An
integrated programming environment is not complete without a debugger.

Debugging is a creative activity. It "demands intuitive leaps, conjectures, experimentation,
intelligence, and freedom" [Beizer 84]. A debugger is only a diagnostic tool used to

control and examine the internal state of an executing program. It cannot substitute any
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thinking for the user. Therefore the GUIDE debugger, like any other debugger, cannot
guarantee the logical correctness of a program, but with its effective use of graphics and

many useful features, it can help to reduce the software development time significantly.
5.2 Desired Features

Myers [Myers 80, pp.5-9] lists many of the desired features of debugging and data display
systems. The following summarizes his findings and discusses how the GUIDE debugger

responds to each feature.
1. Speed

The most common complaint about many current systems is that they run too
slowly. Many powerful systems, such as DLISP [Teitelman 77} and Model's
system [Model 79], are seldom used because the response time is too long. Users

can adapt to the most complicated interface but are frustrated by long delays.

The GUIDE debugger, running under Smalltalk interpreter, also have the same
problem. But being a prototype system, speed is not a primary concern in the

current implementation.
2. Information at the user's level

"Information about the behavior of a program should be presented to the user at the
conceptual level at which the program was writien and in terms of the constraints
and operations of the programming languages used” [Model 79, p.55]. For
example, if the user requests the display of a character, the debugger should display
the character rather than a hexidecimal number. If the information is presented at a
higher ievel, the user can devote more resources to the demanding analytic and

creative phases of debugging activity [Model 79, p.55]. Furthermore, the system
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can help the user to better understand the information if the context of the

information is also presented.

The GUIDE debugger achieves this by presenting data structures at as high a
conceptual level as possible. For example, a character string is displayed as such
rather than as an array of characters; or a printable character is pmpe;'ly displayed
but a non-printable character is displayed as an octal number. The context of the
code being viewed and the context of the variable being displayed are

unambiguously shown.
Use of appropriate level of d.iai!

The amount of information produced should be reduced to what the user has
requested. When the user is interested in a particular value, he should not have to
search through a large amount of output to find it. If further details are desired, the

user should be allowed to request it selectively.

In the GUIDE debugger, when the user wants to see the value of a variable, he first
selects the context in which it is defined and then selects the variable. Only the
contents of the variable is displayed in the debugger view. In addition, if several
variables are of interest, a separate inspector window can be opened for each one so

that they can be viewed simultaneously.
Analogical display

Information should be converted into abstract pictures, such as bar graphs, icons,
arrows, tables, etc., for presentation so that it is easier for people to understand. It
is known that "analogical displays more effectively utilize the brain's innate

capacities” [Myers 80, p.7). Also, "people can more easily see differences in a
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pictorial representation more readily than small differences in print-outs of variable
contents” [Sherman 84]. Programmers often use diagrams to explain their data
structures to others rather than using numbers alone. Thus analogical displays
convey information in a more natural and understandable manner, making the

debugging activity more productive.

All data structures in the GUIDE debugger are displayed pictorially. For example,
an array of integers is displayed as one would expect as shown in Figure 5.1. Most
debugging systems present information in a textual manner; but with the graphics
capability of Smalltalk, the data structures can be updated dynamically during the
execution of a program. The mouse provides random access to any part of the data
structures so that they can be selected and modified easily. This is particularly
useful in modifying data structures that involve pointers such as linked lists and

trees.

1453
7898
4359
8832
920

3718
4832
3256

Figure 5.1 Example of a pictorial display of an integer array.

Currently, the debugger does not convert any data structure into a form that is an
analogy to the physical world. An analogical display would be application specific
and would be impossible to display without any input from the user. For example,

the user may want to display an iteration variable in a FOR loop as a "percent done
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bar" or as a pie chart. The &ystem cannot determine which format the user would
prefer. Future version of the debugger will allow the user to define his own display

routine (Section 6.1.4) so that this deficiency can be overcome.
Automatically generated pictures

Automatically generated pictures can be used for documentation. With manually
generated pictures, “"there is no guarantee of correspondence with a real
computation running on a real machine" [Yarwood 77, p.9]. Thus, the ability to
produce pictures automatically is required.

Currently, such a feature is not implemented in the GUIDE debugger. However a
utility in Smalltalk has been written to convert a specified area on the screen into
Macintosh MacPaint documents which can then be manipulated and reproduced on

a printer.
Meta-knowledge

A sophisticated system may help the user to understand the information at a more
global level. For example, the system might present the value of an array by
saying: "All have initial value except for element #17 which equals..." This is much
easier to understand than presenting a list of all the values. Even more, the system
may be asked to detect if anything unusual had happened during an execution.
Such a powerful system, however, would require knowledge and capabilities

beyond current available techrology.
Replay

It would be useful if the history of execution during a debugging session is

recorded. A replay of the history at a higher speed can be used to retrace the



70
execution of a program. Such 2 “xzility would be particularly useful if the running
time of the program is long. Furthkermore, the history can be used to reverse a
computation, allowing the user iu change something, and then repeat the
computation in the new environment. Thus the user can better understand a
complex change in data by moving randomly forward and backward around the part
of the program which caused the change [Yarwood 77].

The GUIDE debugger keeps an execution history that can reverse and replay the
execution. Recording is done when the user selects a step forward function in the
debugger view. When stepping backwards, the environment is restored to exactly

the same state before stepping forward was initiated.

The above list is not complete. There are several other features that can enhance the

usability of the debugger.
1. Ease of use

Even though a significant portion of software development time is spent in
debugging, debuggers are seldom used [Bovey 87, Leintz 80, Panel Session 83].
One major obstacle to the use of conventional debuggers is that they usually have a
command language which is complicated and difficult to remember. The
complexity is due to the fact that the structure of the object under examination and
manipulation, which is the state of a program, is in itself complicated. A careful
design of the command syntax (c.g. dbx [dbx 83]) will help, but with the
introduction of high-resolution graphics and mouse interface, other approaches

would be possible [Bovey 87].

In the GUIDE debugger, all commands are carried out by using the same pop-up
menu paradigm as the other five views. Textual information is required only during
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editing of primitive structures (Section 2.3.1.1). There is no command language

for the user to memorize.
Single-tool environment

Programmers typically use a loosely coupled set of tools in software development,
such as an editor, compiler, linker, loader and debugger. These tools often have
different command syntax and the user must switch to different tools between
modifying a program and debugging it. Integrated programming environments are
developed. to improve the situation. Well known examples are Interlisp [Teitelman
81] and { malltalk {Goldberg 84]. The tools in an integrated environment usually
share so -2 common internal structures that represent the program and provide a
consister.” user interface. Magpie [Delisle 84], an interactive programming
environmey: for Pascal, takes a further step towards integration. It provides an
environment that appears to the user as a single tool; there are "no firewalls
separating the various functions provided by the environment" [Delisle 84]. The
user is not aware of "being in the editor", "running the compiler" or "using the
debugger". The most significant advantage of the single-tool environment is that it
is easier and more pleasant to use. The user does not have to perform mental

context switches when developing a program.

The GUIDE debugger view provides a syntax directed editor that supports
incremental compilation. It presents a single tool for editing, compiling and
debugging. The view is divided into subwindows, or panes, which display a
complete picture of all aspects of the executing state of a program. The code pane
has the same editing paradigm as the code view (Section 2.3) and therefore
provides immediate feedback of any semantic error. Incremental compilation

generates the statement tree without any involvement from the user. It also implies
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that there is no need to re-compile the program or restart the debugger after

modifications are made to the code.
3. Immediate execution

Immediate execution allows procedures or functions to be invoked directly without
a calling program. Traditionally, a substantial part of a program must be written
before any ‘csting or debugging activity can begin. It is difficult to test the
procedures of the program before integrating them together. This feature allows
each procedure to be individually coded, tested and debugged. It also eliminates the

need for many test procedures and therefore saves a lot of development time.

When a debugging session is started on a procedure, the GUIDE debugger itself
initiates the procedure call. The user can supply the parameters to the procedure call

by directly modifying their values in the data display pane.

It should be noted that the GUIDE debugger prototype has implemented almost ail the
aforementioned desired features while maintaining an interface which is easy to leamn and

easy to remember.
5.3 The Philosophy of Debugging

The features provided by the debugger view have a major impact on the way programmers
would write a program. Typically, a program is written using a text editor. Then it is
compiled. If any syntactic or semantic error is detected, it is corrected with the editor and
re-compiled again. This process is repeated until no more static errors exist. The object
code produced by the compiler is then linked with the library to produce an executable
version. During the linking phase, duplicated or missing procedures may be discovered
which will require the program to be edited, compiled and linked again. Eventually, the
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program is ready to be tested and debugged. During testing, the intended behavior and the
actual behavior of the program are compared and analysed to find the cause of variance.
Usually, a substantial amount of the code has to be writien before any testing can begin.
Because of this, localizing the bugs is often a difficult task. A lot of time the programmer
has to make a conjecture of where the bugs might be. When the bugs are located, the
source code is edited again to implement the corrections. The entire cycle is repeated until
a sufficient match between desired and observed behavior is obtained. In the process,
many test procedures would have to be devised and then removed after testing is done.
The test procedures themselves may create more bugs or hide existing ones which make the

testing and debugging activities even more difficult.

Using the GUIDE debugger, the programmer will not face many of the problems in the
above conventional approach. First, the syntax directed editing and semantic error
handling mechanisms of the integrated editor guarantee the code to be syntactically and
semantically correct. Then the incremental compilation feature eliminates a scparate
compiler. Because the code is interpreted, there is no need for a linker and a loader. Once
a statement is entered into the code, it can be analysed, tested and debugged immediately.
It is not necessary for the program to be completed before debugging can begin because
immediate execution allows individual procedure to be invoked directly by the debugger.
The design of the debugger encourages the user to perform coding and testing
simultaneously and to debug each individual procedure before integrating it into a larger
program. This new way of programming can uncover the bugs at an carly stage before
they are obscured by other things. Software development time can be reduced significantly
with this approach.



5.4 The GUIDE Debugger View
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Figure 5.2 shows a debugger view. The view is divided into six subwindows, or panes,

which repres~- .~ “fferent aspects of the execution state of a program:

openStream/Debugger

EXaCUtioN [ o e e v e | 20 E T Evaluation
Stack —-{ RLARAALEALL TRUE ____. 94— Stack
BEGIN
Code —P» eStreamStatus := stetusOfNemedStream(streamName)
IF mode = resdMode THEN _ A _ ,
‘okToOpen := aStreamStatus IN StreamStatusSets
Static _f--r-=--=--~
Link—] Stresm
openStream
.......... Data
"letter doc" ;
Variable—$» ;\itdreeamsmus Display
okToOpen ‘
‘streamName’
Figure 5.2 Example of a debugger view.
1. Execution stack

Modula-2, and other ALGOL-like languages, divide the program into procedures.

A procedure is activated by another procedure. The execution stack displays what

procedures the program has called, and in which order, to reach the current

execution position. At execution time, when a procedure is called, an activation

record is allocated for that procedure. The activation record contains all the

information necessary to exccute the procedure, including the storage space

associated with the local variables of the procedure. Each item on the execution
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stack is actually an activation record and thus the exccution stack is in effect a
representation of the dynamic chain. The most recently called routine is displayed
on the top of the list, followed by its caller and the previous caller, all the way back
to the context invoked by the debugger. The current executing state of any
procedure on the execution stack can be examined by sclecting it in this pane. All
the other panes will be updated to display the current environment of that activation

record. The menu provided in the execution stack pane is shown in Figure 5.3.

restart

replay

proceed D
step backward
step forward D

[t:ide procedure |
shiow procedure

b

expression

statement
return

procedure

Figure 5.3 The execution pane menu.

The menu allows the user to control the flow execution by stepping forward and
backward, and replay the execution history. Each of the menu item is explained
below:

restart

Selecting restart command from the pop-up menu sets all local variables

in the selected context to their uninitialized state and the execution to the start
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of the context. All activation records above the selected one in the execution

stack are removed.

replay

The replay command rcpla&s the execution history from the start of the
debugging session to the current execution point. The flow of execution is
replayed by highlighting the executing statements in the code pane and the
variables are updated inplace in the data display pane.

proceed-—hide procedure

The proceed—hide procedure command continces execution from the

current point without stepping into procedure calls until one of the following

€vents OCCurs:
. the context terminates,
° a breakpoint is encountered, or
. the user holds down the left shift key to interrupt.

As the program is executing, each statement is highlighted to animate the
flow of execution and variables are updated so that the user can see the

effect.

proceed-—show procedure

Similar to the previous command, the proceed—show procedure

continues execution but also traces into procedure calls.
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step backward

The step backward command allows the state of execution to be restored
to the previous step. All variables that were changed since the previous step
are restored to their previous values and the highlight bar in the code pane is
set to the statement just before stepping has occurred. Stepping backward
allows the user to back up a computation, change something, and then

repeat the computation in the new environment.

step forward-—expression

There are several ways of stepping forward, the first is stepping into an
expression. Stepping into an expression reveals the flow of execution in a
more complicated expression. For example, consider the assignment

statement

aninteger = £ * (2 + 3)

The highlighting sequence of the expression and the contents of the

evaluation stack are shown in Figure 5.4.

aninteger = 4% (2+3

(a) Evaluating 2 + 3.

Figure 5.4 Expression stepping of anInteger :=4 * (2 + 3).
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aninteger :

(b) Evaluating 4 * 5.

anintegery:= 4

(c) Assigning 20 to anInteger.

Figure 5.4 Expression stepping of anlnteger := 4 * (2 + 3). (cont.)

step forward-—statement

The step forward—statement command completes the execution of the
current statement in the code view and suspends execution at the next
statement. Procedure calls will not be traced. To step into a procedure, the

step forward—statement command must be chosen instead.

step forward-—return

The step forward—+eturn command continues execution at the curren.
context until the current contexs is about to return to its calier. Procedure

calls will not be traced.
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This is useful in two circumstances: when the user has accidentally stepped
into a procedure that he is not interested in; or when the user has determined
that the current procedure works to his satisfaction, and he does not want to

slowly step through the rest of it.
step forward—procedure

The step forward—procedure coranmand continues execution until a
procedure call statement is encountered; then the procedure is invoked and

execution is suspended at the start of that procedure.

fCode in execution

The code pane shows the code of the highlighted context. As the code is executed,
the statement or expression to be evaluated next is highlighted. Thus the user can
see the flow of execution dynamically and is able to interpret the changes in the

execution environment.

The menu provided in the code pane is the same one as in the code view. The user
is allowed to edit the code directly in the code pane without having to open another
code view. Syntax and semantics checking are also carried out as in the code view.

This makes it easier to fix logical errors that are discovered during debugging.
Evaluation stack

The debugger emulates a stzck machine. ‘When an expression is to be evaluated,
the operands of a mathematical operation in the expression are pushed onto the
cvaluation stack. The debugger then pops the top elements on the stack, performs
the operation on them, and pushes the result on the stack so that it will be available

for use as an operand of the next operator. The actual parameters of a procedure
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call are also pushed onto the stack in the same way. Upon return of the procedure
call, the parameters are popped off the stack and the result of the procedure call, if
any, is pushed onto the stack. An example of executing an expression is shown in

Figur: 4.

This:. .~ - ..lows the user to observe in detail the evaluation of an expression.
Furthermove, any element on the stack can be modified at will. The user simply
selects the element to be modified, and activates the menu by pressing the middie
mouse button. A dialog box is or:ened for the user t =" i”¢ new value. A
complete type checking will be performed to ensure the v value is compatible
with the previous one. This feature is particularly useful in aiding the user to

understand the evaluation of a complicated expressiv:l.
Static link

Modula-2 adopts static scoping rules to spexify the scope of variables. Static
scoping has been discusiod in Chapter 4. The static link pane represents the static
chzin of a given context. Selecting a context in this pane will list the local variables

of the procedure in the variable pane as explained below.
List of visible variables and constants

The list of variables and constants is presented in the variable pane when a
particular activation record is selected in the static link pane. In the case of a
procedure cr function activation record, the list contains the local variables and
constants declared in that procedure or function. For the activation record of a
module, the list shows the global variables and constants declared in that module as
well as the public variables and constants of all imported modules. Private

variables and constants of an imported module are not displayed. This will
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preserve the concept of abstraction provided in Modula-2 while allowing the user to

view and modify all visible variables. The imported variables and constants are

made distinct by qualifying them with the imported module name.

The menu provided in this pane has only one item, view, which will open a
separate window for the selected variable or constant. This new 'window. the
inspector window, has two panes: the left pane shows the variable name and the
right pane shows the value of the variable, as shown in Figure 5.5. The right pane
has a vertical scroll bar as well as a horizontal scroll bar since the data display is
two-dimensional. If the user holds down the left shift key and press the left mouse
button, the cursor will change into a cross as shown. This indicates that grab mode

isin effect: the user can grab the picture and move it two-dimensionally.

“aninteger

Figure 5.5 Example of an inspector view.

In the case of a more complex data structure, such as an array, the left pane also
lists all the sub-components of the data structure, and the right pane will display the
value of the sub-component if one is selected. Figure 5.6 shows the window

opened for a one-dimensional array. The left pane lists the array name and all the
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clements of the array. When the array name is selected, the entire array is displayed
in the right pane as shown in Figure 5.6a. When an element is selected, only the

value of the element is displayed (see Figure 5.6b).

The left pane of the window has the same menu as that of the variablp pane in the
debugger view and it works exactly the same way. Thus the user may open more
inspector windows for the subcomponents of a variable. For example, Figure 5.6
shows several overlapping inspector windows opened for different elements of the
array. Each window can be reduced to a smaller size to eliminate overlapping. In
the case of a multi-dimensional array or any complicated data structure, this feature

allows the user to trace the data in the data structure to any degree of detail.

When the program under examination is being executed, al! the inspector windows,
if affected, are updated dynamically. For example, during the debugging session of
a sorting program, the user may open an inspector window on the array being

sorted, and "see" the sorting process taking place.

anArray - 10
snArreyi 1] 8
anArray(2] > i
enArreyl3)
snArrayl( 4] 5
anArray(S] 1
(a) Displaying the entire array

Figure 5.6 An inspector view on an array.
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avArTay

anArray
enArrey( 1]
anArrayl 2]

anArrayl 4
enArrey(S]

(b) Display element anArray[3]

anArreyl 1)

anArray[ 3] enArray(1])

(c) Inspector views on individual elements
Figure 5.6 An inspector view on an array. (cont.)
Pictorial display of data structures

Instead of displaying the data struciures in a textual manner, the debugger displays
them pictorially in this data display pane. There are two major considerations in a
pictorial display scheme: the appearance of the display and the location of the

display. Currently, all data structures are displayed in a predefined format. Figure
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5.7 shows the default formats for all of the basic types and the formats for the

composite data structures.!

The menu in this pane provides an editing featre. When a data display of a
variable is selected, the menu can be invoked to edit the data. A dialog box is
opened for the user to enter the new value for the variable as shown 'in Figure 5.8
and a complete assignment compatibility check is done before the debugger accepts

the new value.

A debugging session is ended by closing the debugger view. The user may abort the
debugging session any time before the execution of the program is completed. Any
inspector window opened during the debugging session is also closed automatically when

the debugger view is closed.

1 Currently, pointers are not supported yet.
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Figure 5.7 Display format of data structures.
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Figure 5.8 A dialog box for editing a variable.
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CHAPTER 6
IMPLEMENTATION OF THE GUIDE DEBUGGER

This chapter describes the implemensation of the GUIDE debugger. Besides the functions
provided by a conventional debugger, the GUIDE debugger is able to track the history of
execution and to display the data gguctures pictorially. We will first present the
implementation of the pictorial display of data structures. Then we will show how single
stepping is performed by the debugger and how execution history is recorded. Following
this is a description of the user interface of the GUIDE debugger. Lastly, we will present

how testing was performed on the debugger.
6.1 Pictorial Display of Data Structures

We have discussed how GuideStorage allocates storage space in Sectic:n 4.6. GuideStorage
also has the ability to display itself graphically. It implements the display method:

displayOn: aDisplayMedium at: aDisplayPoint clippingBox: clipRectangle

rule: ruleinteger mask: aForm

This is a standard Smalltalk display message understood by all graphical objects in the
system. It displays the receiver on the display medium, aDisplayMedium, positioned at
aDisplayPoint within the rectangle clipRectangle and with the rule, ruleinteger, and mask,
aForm. Pixels that fall outside of the clipping rectangle are not displayed. The display
message is usually sent by the inspector view. In which case aDisplayMedium would be
the screen, clipRectangle would be the rectangular area of the view, aDisplayPoint is
computed so that the picture would be centered within clipRectangle, rulelnteger would

overwrite whatever is on the screen and aForm would use a black outline for the display.



87
6.1.1 Display of Primitive Data Structures

Guidel.iteralStorage's method is very simple:

GuideliteralStorage
displayOn: aDisplayMedium at: aDisplayPoaint clippingBox: clipRectangle
rule: ruielnteger mask: aForm
"Display the pictorial representation of myself.”
self form
displayOn: aDisplayMedium
at: aDisplayPoint
clippingBox: clipRectangle
rule: ruleinteger
mask: aForm
The message self form returns a graphical object that is a representation of the content of
GuideliteralStorage. Currently, the display is simply some text within a box as shown in
Figure 5.7. Future implementation may allow the user to define his own display routine.
The instance variable display inherited from GuideStorage is used to cache this graphical
object so that it does not have to be re-created every time. When the content of the storage

is modified, the display is updated to reflect the changes.
6.1.2 Display of Composite Data Structures

The subcomponents of a composite data structure are also instances of GuideStorage. The
display is determined by two pieces of information:
. the graphical representation of each subcomponent, and

. the relative location of the subcomponents.

GuideCompositeStorage provides the abstraction to display the entire data structure and its
subclasses implement the methods for creating the pictures and specifying the display

locations for the subcomponents.
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GuideCompositeStorage

displayOn: aDisplayMedium at: aDisplayPoint clippingBox: clipRectangle
ruie: ruleinteger mask: aForm
*Display the pictorial representation of myself."
1 to: elements size do:
[sindex |
{self displayElement: index)
displayOn: aDisplayMedium
at: aDisplayPoint + (elementBox~s at: index) origin
clippingBox: clipRestangle
rule: rulelnteger
mask: aForm]
The message (self dispiayElement: index) returns the graphical objects which represent
the subcomponents and elementBoxes is an array of rectangles specifying the locations and

sizes of the subcompornent displays.

For example, GuideRecordStorage implements the method displayElement: by appending
the field name with the graphical representation of the field. The elementBoxes also specify

that the fields are to be displayed in a stack format as shown in Figure 5.7,

The graphical representation of a subcomponent is provided by the subcomponent itself. It
is up to each individual subcomponent to decide how to display itself as part of the picture
of a composite data structure. Therefore it is not required to know what are the types of the
subcomponents in order to display them. Because the subcomponent may be another
composite data structure, subclasses of GuideCompositeStorage must convert its more
complicated display into a form that is appropriate to be displayed within another composite

data structure.

Limited workspace is often a problem when displaying large data structures. The data
display pane provides a vertical scroll bar and a horizontal scroll bar. Unlike a paragraph

of text which can be wrapped around, a pictorial dispiay is two-dimensional and therefore
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the scrolling must also be two-dimensional. This scrolling mechanism provides an

unlimited workspace for data structure display.
6.1.3 Display of Pointers

The most difficult displays are data structures that involve pointers such as linked lists and
trees. In other data structures such as records and arrays, the locations of the
subcornponents are fixed relative to the location of the aggregate structure. With pointers
however, that is not the case. There are two decisions to be made. First, how the arrows
should be drawn from the pointer to the referent and secondly, where the referent should be
displayed relative to the location of the pointer. The decisions arz both technical and
psychological. For example, consider trees. The user may view the tres as an inverted tree
or as a doubly linked list (Figure 6.1). The debugger has no way of knowing which way
is preferred by the user unless explicit instructions are given. Furthermore, as the tree
grows, the locations of the existing nodes must be adjusted to allow more room for new
nodes. This operation can be both complicated and time consuming. Since the current
implementation of GUIDE does niot support POINTER types, the GUIDE debugger is not
able to incorporate the display of pointers.

— i

-

(a) Doubly linked list (b) Inverted tree

Figure 6.1 Two display methods of tree.
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Myers [80, p.40 - 43] has devised a simple and efficient algorithm to display pointers. His
algorithm may be used as a starting point for GUIDE. Incense uses layouts to specify
where pointer-containing data structures should place their child nodes. Basically, a layout
divides a rectangular area into several smaller ones. One subarea is for the pointer-
containing data structure, and one subarea for each object pointed to. For example, fora
record containing 2 pointers, a layout would divide the display area into 3 pieces: one for

the record and one for each of the two referents (see Figure 6.2).

Figure 6.2 Layout with 3 fields: one for record: (f0), and one for each referent: (f1) and
(f2). Dotted lines are added to show the area of each field. Adopted from [Myers 80].
In a recursive data structure such as tree, there are layouts at each level of nesting. They
get progressively smaller since the area provided for them is reduced at each level. This
theoreticaily would allow the display of an arbitrary number of levels, but, in fact, after a
threshold is reached and the nodes are too small to see, displaying terminates (see Figure
6.2). Pointers to data structures that are already displayed do not cause an infinite cycle,

since an arrow is simply drawn to the original occurrence as shown in Figure 6.4. Splines
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are used to display the arrow lines rather than using straight lines so that they do not cause

confusion with other lines in the pictures (Figure 6.5).

This figure has been removed due to copyright restrictions.

Figure 6.3 Deep recursive tree display demonstrating how elements get smaller. Overall
structure, however, is easily understood [Myers 80].

This figure has been removed due to copyright restrictions.

Figure 6.4 Pointer to previously displayed object does not generate a new copy. The
second arrow is drawn to the first occurrence [Myers 80].
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This figure has been removed due to copyright restrictions.

Figure 6.5 Demonstration of the advantage of curved lines used in Incense (a) over straight
lines (b)éOThe knots used in drawing the spline are shown as black squares in (a)
[Myers 80].

6.1.4 User-defined Display Routines

The current implementation of GUIDE does not allow for user-definable display routines.
However, this is a desirable feature because the default display format may not suit
individual nezd. When defining a datz type, the user may specify a display method for that
type. All variables declared for that type would then be displayed according to the
instructions given by the user. To make provision for this, an inc ‘nce variable, say
userMethod, should be added to GuideDeclarationSymbol, which is the superclass of all
data type symbols. The userMethod specifies the name of a user-defined display method.
The display method must be implemented under the appropriate subclass of GuideStorage
for the data type. GUIDE must provide an interface to do this so that the user does not
have to find out which subclass to use. This can be done easily because all subclasses of
GuideDeclarationSymbol have already implemented the method storageClass which
returns the name of the appropriate storage class. Also, Smalltalk provides a way to
"spawn" an editing window which contains all the methods defined under a specified
category and allows the user to define new ones. The original display method must be
changed. For exampie, GuideLiteralStorage's display method may be changed to
something like this:



93

GuideliteralStorage

displayOn: aDisplayMedium at: aDisplayPoint clippingBox: clipRectangle
rule: ruleinteger mask: sForm
*Display a graphical representation of myself."
| displayMethod picture |
displayMethod « type userMethod.
displayMethod == nil
ifTrue: [picture « self form]
ifFaise: [picture « self perform: displayMethod].
picture displayOn: aDisplayMedium
at: aDisplayPoint
clippingBox: clipRectangle
rule: rulelnteger
mask: aForm
It first obtains the name of the user-defined routine from the type of the data structure. If
the user did not specify any display method, then the default (form) is used. The Smalltalk
system message perform: is sent to GuideLiteralStorage to execute the user defined
method which should return a graphical object to be displayed. GuideCompositeStorage

can follow the same idea to accommodate for user-defined routines.

This approach has a drawback. The user is required to learn Smalltalk in order to define
his own display routines. A better way is to allow the user to define the routine in the same
source language, i.e. Modula-2. A set of Modula-2 callable routines must be provided to
create and manipulate graphical objects. To improve performance, GUIDE may translate
the Modula-2 code into equivalent Smalltalk code. This placés heavy demand on GUIDE
but achieves a better user interface without speed degradation.

6.2 Single Stepping of Execution

The debugger provides four ways to step forward: step expression, step statement,
step procedure and step return. The actions performed by each function are fully

explained in Section 5.4. Figure 6.6 shows the flow charts of these functions.
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In all cases, the primitive execution routine is called to perform the stepping. The primitive
execution routine is implemented by ActivationRecord as discussed in Section 4.7. It
should be noted that history recording is initiated by the debugger and is done before
stepping is carried out. During the actual execution, there is no recording of any statement
being executed. Therefore it allows the user to reverse the execution to a Mws stepping

point.

Except for step procedure, all othe stepping functions do not trace into a procedure when a
procedure call statement is encountered, but will complete the execution of the call.
However, during execution of the procedure call, the activation recor<: can be placed into a
suspended state. This can happen in three situations: 1) a runtime error has occurred, 2) a
vreakpoint is encountered, and 3) the user has pressed the left shift key to pause the
execution. When suspension occurs, the debugger view must be updated to display the
new environment where execution is stopped. After the debugger returns control to the

user, he may correct the runtime error or specify a debugging action.

Step expression simply calls the primitive execution routine once and then returns. It
stops after each parse node is executed and therefore allows the user to trace into the
evaluation of expressions. Step statement keeps calling the primitive routine until the
next parse node is a statement. Every parse node understands the message isStatement and
answers whether it is a statement or not. GuideExpressionNode and its subclasses return
false since they do not represent Modula-2 statements; all other parse nodes answer true.
Therefore, step statement does not stop at places such as binary expressions, but stops
before a statement is to be executed. Step procedure continues the execution until a
procedure call is encountered or until the current activation record is about to return to its

caller. Step return keeps executing until the context is about to return to its caller.



6.3 Execution History

A unique feature of the GUIDE debugger is its ability to step backward and to replay. This
is accomplished by keeping a history of ihe execution. Every activation record has its own
history. The instance variable history of ActivationRecord is an instance of class History.
Class History has several instance variables as listed below. History provides two stacks

to record any changes in the environment and two index pointers to replay the execution

history.

activationRecord a back pointer to the activation record whose
execution is recorded.

historyStack a stack to record changes in the environment.

valueStack a stack to record the contents of the evaluation stack.

index an integer index pointing to an clement on
historyStack to be replayed.

valueindex an integer index pointing to an element on valueStack
to be restored on the evaluation stack.

A snapshot of the state of the activation record is taken whenever the user chooses to step
forward. The next statement to be executed is saved on the historyStack and the contents
of the evaluation stack are saved on the valueStack. Then the execution is stepped
forward. During the execution, a number of statements may have been executed but only
the first statement is recorded when stepping forward is initiated. When the user wants to
step backward, the last statement being recorded is restored from historyStack and the
contents of the evaluation stack are restored from valueStack. In effect, the activation
record is restored to its previous state just before the stepping occurs. Since the user
usually performs stepping forward and backward around. a section of code that is of

particular interest, the debugger essentially records "points of interest” rather than the entire
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execution history. This will reduce the memory requirements significantly. Because
history recording is initiated by the debugger view, it is possible for the debugger to disable
any recording if the user decided not to step backward. This disabling feature is not
impleny- 7 in the current version but can be incorporated easily.

Thea  .xni statement, the FOR statement and the user all have the ability to modify the
state of meiuory storage. Modifications by the user can occur at any time and are not
controlled by the flow of execution. Therefore keeping a history of the flow of execution
alone cannot determine when memory modifications have taken place. Only a memory
storage cell (an instance of GuideStorage) knows when it is being modified. The best way
to resolve this problem is to have each storage cell keeps a history of its modifications.
When a storage cell is modified, it saves its old value on an internal stack and also sends a
message to the current active activation record to record the change. The cusrent activation
record in turn passes the message to its history and history saves a pointer 1 the storage
cell on its historyStack. The current activation record is the one at the top of the dynamic
chain. It may not be the same one that contains the storage cell. By keeping the changes in
the current activation record, the order of events that have taken place is properly recorded.
To step backward, the history removes an item from its historyStack. If the item is an
instance of GuideStorage, the storage cell is requested to restore its previous value. The
history continues to remove items from the historyStack until the item removed is an
instance of GuideParseNode. At this time the comtents of the evaluation stack are also
restored from the valueStack. Thus, the state of the environment is completely restored to

the last execution break point.

Finally, the historyStack also contains instances of History itself. When a procedure call
is made, the procedure call statement is first saved on the historyStack. The procedure is

then activated. Before control is passed to the new activation record, the caller's history
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also saves the history of the new activation record on the historyStack. Then the new
activation record takes over control and saves changes on its own history nntil it completes
execution and retums to the caller. The caller then continues execution. During backward
stepping, if the top item on historyStack is an instance of History, restoration is passed to

that history.

If historyStack becomes empty, then the restoration process must be passed to the caller’s
history. If the activation record's caller is undefined, it means the environment has been

restored to the point where it started and no further backward stepping is possibie.

The implementation of history replay is straightforward. All memory clis have to be reset
to their uninitialized state before replay starts. History uses two instance variables; index
and valusindex, to keep track of the replay process. They are initialized to point to the first
elements on the historyStack and the valueStack. The histery then replays each item on
the historyStack and increments index until such time as ingex reaches the top of the
historyStack. At the same time, if the item on the historyStack is an instance of
GuideParseNode, the valueStack is also restored and valuelndex is incremented. If the item
is an instance of GuideStorage, the storage cell is requested to replay itself. GuideStorage
also uses a stack index to identify which value on its internal stack is being replayed. The
storage cell is set to that value and then the stack index is incremented to point to the next

value for the next replay.

6.4 The User Interface of the GUIDE Debugger

The GUIDE debugger adopts the MVC paradigm from Smalltalk-80, just like the rest of
GUIME. The browser class in this case is the debugger itself and the internal structure is
the &..ivation of a procedure. Recall that a procedure has two components: a code segment
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and an activation record. Therefore the debugger must previde functions to view and

manipulate both components.

The debugger has a code pane used for editing the code (Figure 5.2). This is exactly what
the code browser does. Defining the debugger to be a subclass of the code browser allows
the debugger to inherit all the code editing functions. All that is required is to implement
the functions to manipulate the activation record. During execution, the instance variable
currentStructure inherited from StructureView is set to point at nextStatement of the
active activation record. Since the code pane will always highlight currentStructure, the

effect is a moving highlight bar on the executing statement.

The execution stack pane displays the list of activation records along the dynamic chain. It
is constructed by following the caller instanc * variable of the activation record. When the
user selects an activation record from this pane for inspection, the debugger broadcasts an
update message to all the other panes. Each pane receives the update message and displays

the appropriate information for the current selected activation record.

The evaluation stack pane displays the contents of the instance variable stack of the selected
activation record. In the static link pane, the static chain for the selected activation record is
listed. The static chain is found by recursively following the instance variable scope.
Selecting an activation record in this static link pane displays the list of local constants and
variables declared within that activation record in the variable pane. This list is in fact the
keys of the dictionary valueTable of the activation record. Finally, the data pane displays a
picture of the data structure selected in the variable pane. The pictorial display is obtained
from the storage of the data structure as described previously.
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6.5 Testing of Debugger

To test the runtime environment and debugger, four Modula-2 programs were written to be
executed by the debugger. Each performed test on a different aspect:
. variable updates and data structure display,

. execution flow control,
. context switch, and
. import and export capabilities.

In the first program, we declared variables for every Modula-2 type including some
complicated ones such as two-dimensional array and array of records. The program
consists of assignment statements to every declared variables and also expressions that
made references to variables and their subcomponents, such as array elements and record
fields. A debugging session was started on this test program to observe variable updates

and data structure displays.

The second program wazs written to test the flow control. It has every Modula-2 statements
and a variety of combinations such as IF statement within a WHILE loop. This allows us

to test the zxecution and flow control implemented by each parse node.

The third program was the classic recursive function that returns the factorial of an integer.
Because the program made references to the same variabl in different activation records of

the same function, it checked whether context switching was done properly.

The last program actually composed of two procedures declared in two modules. The first
module exported its test procedure along with some variables and constants. The variables
weze injtalized in the main body of the module. The other module imported these symbols

and made references to them. This test program tested whether the main bodies of the
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modules have been initialized properly and also tested the implementation of the import and

export features.
6.6 Summary

The GUIDE debugger is implemented as a subclass of the code browser so that it inherits
all the code editing meihods. It adds the methods to control the flow of execution and to
display the data structures pictorially. Pictorial display of data structures is performed by
the storage cells which are instances of the subclasses of GuideStorage. Each type of data
structure has a corresponding storage class so that each will be displayed differently.
Stepping forward of execution is implemented by repeatedly requesting the activation
record to execute its primitive executioﬁ routine. The class History is used to record the
changes in the environment including the flow of executicn and storage locations. The
modification history of the storage cells is maintained by the storage cells themselves so

that modifications by the user are recorded properly.
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CHAPTER 7

RECOMMENDATIONS, SUMMARY AND
CONCLUSION

7.1 Recommendations
1. Standardization of data type display

There is no universal standard as to how a particular data type should be displayed.
A standard would help the user to quickly identify the type of a data structure from
the shape of its display. The lack of a standard will confuse users as they move
from one graphical display system to another.

2. Debugging Concurrent Processes

Modula-2 provides a module called Processes which offers the necessary facilities
for multiprogramming at a high level of abstraction. Because of the time-dependent
property of concurrent processes, it is difficult to debug concurrent programs.
Often, the errors cannot be reproduced because of timing differences. "Difficulty in
reproducing events makes it hard to determine the sequence of events that produced
the error — debugging is a serious problem!" [Gehani 84]. However, the
execution history kept by the detugger can easily reproduce and locate the errors.
Currently the debugger does not support concurrent processes. Extending the
capability of the GUIDE debugger to include concurrent processes would be of

great value in such situations.
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3. Moving to Production

The current version of GUIDE is implemented in Smalltalk-80. To put GUIDE and
its debugger into production, it should be implemented in som = other more efficient
language. In recent years, object-oriented programming has received more attention
and is becoming more popular especiaily in the world of personal computers. Two
of the most popular languages, C and Pascal, already have object-oriented concepts
built on top of them. Object-oriented languages appear suitable for implementing
GUI environments. Rewriting GUIDE in a compiled object-oriented language has
obvious advantages. Much of the design and architecture can be retained and the

speed could greatly improve.
7.3 Summary and Conclusion

We have described the runtime environment and debugging in GUIDE. GUIDE uses two
structures to simulate the runtime behavior of Modula-2 — the statement trees and the
activation records. The activation record controls the execution by repeatedly sending
messages to each parse node to execute itself and to determine the flow of execution. The
object-oriented implementation of GUIDE eliminates the need for a separate code

interpreter.

The debugger animates the flow of exccution by highlighting the statements during
execution. Users can step through the code, even stepping into the components of an
expression. The effective use of windows and menus allow users to manipulate an
executing program without using a complicated command language. Furthermore, the
debugger provides some innovative features — the ability to step backward, to replay the

execution history and to display the data structures pictorially.
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Pictorial display of data structures is a useful feature. For example, an array is displayed in
the way as a programmer perceives it. This form of display is more acceptable to human
comprehension than textual information. The user is allowed to modify the values of the
data structure directly in the display. Also, when the data structure is assigneq anew value
during exccution, the display is updated immediately, creating an animation effect. The
user can see the effect of execution, such as the sorting of an array. This can be an

effective educational tool.

Integrating the debugger with a syntax directed editor that supports incremental compilation
is found to be a powerful debugging feature. There are several implications as a result of

this:

1. Single-tool environment
It presents to the user as a single tool to develop programs. Usually, different tools
are used for program modification, compilation and debugging. The user is often
required to learn different command languages and perform mental context switches
to use these tools when writing a program. Providing these functions within one
environment eliminates the barrier that typically exists between different software

development tools.

2. Syntax error elimination
The syntax directed editor prevents the user from entering code that contains syntax
error. By inspecting the statement tree, GUIDE generates context sensitive menus
that consist of allowable items only. Therefore it is not possible fo the user to insert

illegal expressions or statements into the program.
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3. Immediate feedback of semantic error
Incremental semantic analysis is performed as the user is coding the program. Any
semantic error can be detected immediately and reported to the user. Only

semantically correct information is allowed in the program.

4. Immediate execution
Because the code is guaranteed to be free of static errors and the statement tree is
already generated through incremental compilation, the program can be executed
immediately. Many test procedures can be eliminated because procedures can be
invoked directly by the debugger without a calling program. Individual procedure
can be fully tested before it is integrated into a larger program.

s. Elimination of a separate compilation process

Incremental compilation modifies the statement tree as the user is editing the
program. The changes take effect immediately and therefore the user does not need
to recompile the program after modifications are made. Because the values of the
variables in the context being debugged remain unchanged, the debugging activity

can be continued without having to restart the debugger.

Debugging is often considered as a separate process from coding. Programmers usually
code a substantial part of a program first, then compile and test it. If errors are found, the
program is modified, recompile and test again. This cycle continues until the observed
behavior and expected behavior of the program match closely enough. The features
provided by the GUIDE debugger change this traditional way of mogMng. It
combines coding and debugging into one process and eliminates a separate compilation
process. When coding a program, debugging activities can be carried out simultaneously.
The user is also encouraged to develop and test the procedures first before integrating them
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into a program. The reverse execution feature of the debugger is useful for analyzing a
section of code and locating errors. Users can step forward and backward around the code
and make corrections until the desired effect is achieved. This new philosophy of

debugging is much more efficient.

The GUIDE debugger has demonstrated the effective use of GUI in software development.
It combines many innovative features while maintaining a simple user interface. A
software development tool like the GUIDE debugger will certainly help to reduce

developrent and maintenance costs.
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