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Abstract.   Most species that are negatively impacted when their densities are low aggregate 
to minimize this effect. Aggregation has the potential to change how Allee effects are expressed 
at the population level. We studied the interplay between aggregation and Allee effects in the 
mountain pine beetle (Dendroctonus ponderosae Hopkins), an irruptive bark beetle that aggre-
gates to overcome tree defenses. By cooperating to surpass a critical number of attacks per tree, 
the mountain pine beetle is able to breach host defenses, oviposit, and reproduce. Mountain 
pine beetles and Hymenopteran parasitoids share some biological features, the most notable of 
which is obligatory host death as a consequence of parasitoid attack and development. We 
developed spatiotemporal models of mountain pine beetle dynamics that were based on the 
Nicholson–Bailey framework but which featured beetle aggregation and a tree-level attack 
threshold. By fitting our models to data from a local mountain pine beetle outbreak, we demon-
strate that due to aggregation, attack thresholds at the tree level can be overcome by a surpris-
ingly low ratio of beetles per susceptible tree at the stand level. This results confirms the 
importance of considering aggregation in models of organisms that are subject to strong Allee 
effects.

Key words:   Allee; Dendroctonus ponderosae Hopkins; dispersal; insect; integrodifference; management; 
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introDuction

Allee effects, in which the fitness of individuals increases 
with the density or number of conspecifics (Allee 1931, 
Stephens et al. 1999), underlie irruptive dynamics in 
many insects (Heavilin and Powell 2008, Liebhold and 
Tobin 2008). These can be further subdivided into strong 
Allee effects, characterized by the presence of an 
extinction threshold, and weak Allee effects, which lack 
such a threshold (Courchamp et al. 2008). Strong Allee 
effects can be exploited by managers to control pest 
species because populations need only be pushed below 
the strong Allee threshold to ensure extirpation (Liebhold 
and Tobin 2008, Tobin et al. 2011). Dispersal can also 
increase the extinction-proneness of populations 
impacted by strong Allee effects, because it decreases 
population density, which can push populations below 
extinction thresholds (Taylor and Hastings 2005, Robinet 
et al. 2008). Thus, dispersal and Allee effects are intercon-
nected and an adequate representation of dispersal is 
required to predict the impacts of strong Allee thresholds 
on populations.

Many dispersing organisms that are impacted by Allee 
effects, however, have evolved mechanisms that enable 

aggregation in order to avoid extinction (Gascoigne et al. 
2009). Aggregation may ensure population persistence 
even under heavy management or wide dispersal. Due to 
dispersal and aggregation, Allee effects that are expressed 
at the individual level (Courchamp et al. 2008) may not 
translate directly to demographic Allee effects observable 
at the population level. It is therefore important to under-
stand how Allee thresholds, dispersal, and aggregation 
interact.

The mountain pine beetle (Dendroctonus ponderosae 
Hopkins) system is ideal for exploring interactions 
between dispersal, aggregation, and Allee effects. In the 
late summer, beetles disperse locally underneath the 
canopy in search of new host trees (Safranyik et al. 1992), 
but they also immigrate due to long-distance dispersal via 
the atmospheric boundary layer (Jackson et al. 2008). 
After dispersing, female mountain pine beetles lead the 
attack by flying to potential host trees and chewing 
through their bark. Trees respond to attacking female 
beetles by exuding resin laden with defense chemicals. 
Chemicals in the resin interact synergistically with pher-
omones released by female beetles to draw in other beetles 
to help with the attack (Conn et al. 1983). By mass- 
attacking, beetles are sometimes able to subdue trees 
 sufficiently to begin excavating galleries without being 
pitched out of entrance holes by resin flow (Raffa and 
Berryman 1983, Boone et al. 2011). If, however, the 
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number of attacking beetles in the mass-attack is insuffi-
cient, beetles will be pitched out or killed inside the tree 
(Raffa and Berryman 1983). Thus, tree defenses lead to a 
highly nonlinear strong Allee relationship governing 
beetle attack success at the individual tree-level (Boone 
et al. 2011).

There are phenomenological Allee effect models of the 
mountain pine beetle system (Heavilin and Powell 2008) 
which contain minimal biological detail, but also some 
mechanistic models that have incorporated pheromone 
communication and aggregation (Biesinger et al. 2000, 
Strohm et al. 2013). Detailed mechanistic models such as 
these are complex and difficult to simulate and fit to data. 
On the other hand, the use of simple phenomenological 
models that do not account for dispersal, aggregation, 
and immigration may give managers false confidence in 
population suppression strategies.

To explore the interplay between dispersal, aggregation, 
and Allee effects, we constructed integrodifference 
equation models of mountain pine beetle dynamics based 
on the Nicholson–Bailey framework (Nicholson 1933, 
Nicholson and Bailey 1935). Nicholson–Bailey models 
typically represent the population dynamics of Hymeno-
pteran parasitoids and their hosts (Hassell 1978). 
Parasitoids are distinguished from parasites because they 
kill their host in order to develop, a trait they share with 
mountain pine beetles. Nicholson–Bailey models in their 
original form, however, are not appropriate for mountain 
pine beetle–tree systems because many mountain pine 
beetles emerge from a single host tree, which succumbs to 
attack only if a critical number of attacks is surpassed 
through aggregation (Raffa and Berryman 1983).

The attack threshold may result in a demographic 
Allee threshold at the stand level such that the mountain 

pine beetle population grows if it is above the Allee 
threshold and goes extinct otherwise. The demographic 
Allee threshold will equal the attack threshold (measured 
in beetles/tree) if a mountain pine beetle population 
spreads attacks evenly among all susceptible host trees in 
the stand. In this unrealistic scenario, either all trees in 
the stand will be successfully attacked or none will. 
Because mountain pine beetles are known to aggregate 
their attacks (Raffa and Berryman 1983), we hypothe-
sized that the ratio of beetles/susceptible tree required to 
overcome the demographic Allee threshold would be 
considerably smaller than number of beetles required to 
kill a single tree (Fig. 1). We fitted our models to data 
to estimate aggregation and threshold parameters and to 
gain insight into how they impact mountain pine beetle 
dynamics.

Data

An objective of this modeling study was to synthesize 
biologically relevant data on the location and density of 
attacked trees, forest stand inventory, and mountain pine 
beetle productivity.

Study area and infested tree data

The mountain pine beetle attacks trees in the summer, 
but foliage of successfully attacked trees typically takes a 
year to turn from green to red. Red attacked trees can be 
detected by aerial surveyors, whereas recently attacked 
green trees must be discovered and confirmed with 
ground surveys. Our infestation data were recorded by 
aerial surveyors as point data that represented the centre 
of clusters of between one and 30 red attacked trees.

FiG. 1. A graphical depiction of a hypothesis that describes how aggregation changes the way in which host attack thresholds 
scale up to the population level. In a hypothetical host in which the number of parasitoid attacks required for attack is 10 attacks 
per host (large gray circles) and in which each parasitoid (small black circles) can only attack a single host. No hosts can be colonized 
(A) in the absence of aggregation if there are a total of 16 parasitoids and four hosts in the population because the parasitoids 
distribute their attacks evenly among the hosts. However, (B) with aggregation, the same ratio of parasitoids to hosts can result in 
one host being successfully colonized. In fact, if aggregation is extreme such that all parasitoids attack a single host, the population 
level threshold for one host to be successfully attacked is 10 parasitoids divided by four hosts (2.5 parasitoids per host), a number 
much smaller than the host-level threshold for successful attack of 10 attacks per host.
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To obtain data that represent natural mountain pine 
beetle dispersal and infestation processes, we selected a 
study region inside Willmore Wilderness Park, a park 
where no motorized vehicle access or commercial forestry 
activity is permitted (Fig. 2A). Willmore Wilderness Park 
borders British Columbia, Canada, and is located in the 
Rocky Mountain natural region in which the lower sub-
alpine is characterized by lodgepole pine, sub-alpine fir, 
or Engelmann spruce forests, and the foothills and upper 
foothills are dominated by lodgepole pine.

After intensively managing all areas in 2006 by spot 
removal of clusters of infested trees, Alberta Agriculture 
and Forestry designated a region that encompassed our 
study area as an unmanaged containment zone in 2007 
(Ranasinghe et al. 2007), leading to a management free 
window from 2007 until the collapse of the local outbreak 
(Fig. 2B). Therefore, any red-attacked tree detected in 
2007 by aerial surveyors would have produced a cohort 
of beetles that would subsequently colonize new host 
trees that would be detected in 2008. Thus, we were able 
to use infestations that were detected in 2007 and 2008 to 
elucidate natural dispersal and attack processes. Because 
the local outbreak collapsed in 2009, only two unmanaged 
years were available for model fitting (infestations 
detected in 2007 and 2008).

For model fitting purposes, we superimposed a grid 
with square 250 × 250 m (6.25 ha) cells over the study 
area and summed the number of infested trees within 
each grid cell. We chose 250 × 250 m grid cells because 
our tree inventory data (estimates of pine volume on the 
landscape) were at this resolution.

Tree inventory

Tree inventory data for the Willmore Wilderness Park 
were unavailable so we obtained pine volume/ha data 
from Beaudoin et al. (2014) and converted this to an 

estimate of the number of stems/grid cell in our study 
area. Pine volume/ha data were spatial raster layers con-
structed by combining information on the relative pro-
portion of various tree species and the total volume/ha of 
biomass estimated with Moderate Resolution Imaging 
Spectroradiometer (MODIS) imagery (Beaudoin et al. 
2014). These data were at a spatial resolution of 
250 × 250 m (6.25 ha grid cells).

With information on stand age and site productivity, 
we constructed a tree model to convert data on pine 
volume/ha to the number of susceptible pine stems/ha in 
our study area. Most forested areas in the Willmore 
Wilderness Park that were susceptible were between 60 
and 200 years old in 2006 (Graham and Quintilio 2006). 
However, knowledge of stand age and pine volume/ha 
was not enough to allow us to determine the number of 
susceptible pine stems/ha because site productivity varies 
across the province and will have a large influence on 
stem counts. To quantify site productivity, we used site 
index, a measure of site productivity commonly used by 
forest managers in government and industry (Monserud 
et al. 2006). Site index quantifies site productivity based 
on the height of an average tree that is 50 yr old when it’s 
age is measured at breast height (1.3 m). Based on data in 
Monserud et al. (2006), we assumed that the site index in 
our study region was between 12 and 15 m at 50 yr breast 
height age. This corresponds to a medium site as defined 
by the Alberta Phase 3 Forest Inventory (Alberta 
Forestry, Lands and Wildlife Department 1985) which 
has a site index of 14 m at 50 yr breast height age.

Stand age and site index information were used in com-
bination with Alberta Phase 3 Forest Inventory (Alberta 
Forestry, Lands and Wildlife Department 1985) tables to 
construct a nonlinear regression to estimate the number of 
stems/ha that corresponded to each volume/ha (Appendix 
S1). We only estimated the number of stems/ha that were 
larger than 10 cm diameter at breast height as mountain 

FiG. 2. A map of (A) the study area relative to the extent of mountain pine beetle infestation in Alberta by 2010 (mountain pine 
beetle infestation extends beyond the northern and eastern edges of the map), and (B) a plot of the progression of the local mountain 
pine beetle outbreak in the study area from 2004 to 2010. The infested stems turned red and were detected by aerial surveyors one 
year later (2005–2011).
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pine beetles do not usually attack trees of lesser diameter 
(Safranyik and Carroll 2006). As each grid cell in our tree 
volume data and in our rasterized infested tree data was 
250 × 250 m (6.25 ha), we multiplied the stem/ha estimates 
by 6.25 to obtain an estimate of the number of stems of 
diameter greater than 10 cm at 1.3 m in each grid cell. Note 
that an important assumption of our conversion of den-
sities in the data of Beaudoin et al. (2014) to stem counts is 
that variability in density, and therefore also in stem counts 
was due to variation in stand age and not in site quality. 
Using the data of Beaudoin et al. (2014) in this way, 
we were able to account for spatial heterogeneity in 
tree density across the landscape. We were not, however, 
able to resolve clustering of trees within grid cells in our 
study area.

Beetle productivity

Managers also collected data on mountain pine beetle 
productivity within trees in our study area. Surveyors 
randomly selected 10–20 trees per site, ensuring that 
mountain pine beetle populations were not disrupted by 
woodpecker predation. Two samples were collected from 
the north and south sides near breast height (1.3 m) on 
each selected tree (four samples total) with a drill fitted 
with a 10.16 cm (4 inch) diameter hole saw bit. Samples 
contained a circular bark sample within which mountain 
pine beetle progeny could be found, as well as a small 
amount of xylem. Samples were taken back to a labo-
ratory where the total number of live beetle life stages/
sample and number of entrance holes were counted. A 
measure of mountain pine beetle productivity called the 
r-value was then computed by summing the total number 
of live beetles/tree divided by the total number of entrance 
holes.

These data were available for spring of 2007 and were, 
therefore, useful for the parameterization of models that 
predicted numbers of infested trees attacked in 2007 but 
detected in 2008. We summarized the r-value data by 
averaging all tree-level r-value data collected for the 
spring of 2007 in our study region (1.33 beetle progeny/
attack).

Estimation of the number of adult beetles produced 
per successfully attacked tree required us to scale beetle 
productivity statistics per female up to the tree level using 
estimates and data available in the mountain pine beetle 
literature (Klein et al. 1978). Raffa and Berryman (1983) 
estimated that the optimum attack density for beetle pro-
ductivity in lodgepole pine trees (Pinus contorta var. lati-
folia) is 62 attacks/m at breast height (1.3 m) . However, 
mountain pine beetle attacks are not distributed uni-
formly along pine stems (Klein et al. 1978). Rather, 
attacks are most frequent at approximately 3 m and 
decrease above and below this height (Klein et al. 1978). 
Klein et al. (1978) sampled 105 mountain pine beetle 
attacked trees by dividing their stems into six 1.524 m 
long sections plus two 0.762 m long sections. Using these 
data we computed the proportion of attacks that occurred 

in each section of the stem as well as its bark surface area 
(data reproduced in Appendix S2: Table S1).

The distribution of diameter classes of attacked trees in 
our study area was very similar that in the Klein et al. 
(1978) study (Appendix S2: Fig. S1). Therefore, we com-
puted the total number of attacks that would have occurred 
in the corresponding section sampled by Klein et al. (1978) 
assuming that attack density at breast height was 62 
attacks/m. We then used data from Klein et al. (1978) on 
the proportion of attacks in each section to compute the 
corresponding number of attacks that would likely have 
occurred in the other tree sections. Using these data we 
estimated that an average sized tree that was mass- attacked 
by mountain pine beetles in our study area was attacked 
606 times by female mountain pine beetles.

To estimate mountain pine beetle productivity on the 
tree-level we multiplied 606 by the estimate of within-tree 
productivity based on the r-value data. This multipli-
cation gives an estimate of the total number of beetles 
produced per successfully attacked tree. However, only 
female beetles initiate attacks, and sex ratios tend to be 
skewed (Safranyik and Carroll 2006). Beetles reared in 
bolts cut from trees in Grande Prairie, Alberta, north of 
our study areas produced two females for every three 
beetles (Mory, B, unpublished data). Therefore, we multi-
plied our beetle productivity estimates by two-thirds to 
obtain an estimate for the number of female beetles pro-
duced per successfully attacked tree (606 attacks/tree × 
1.33 beetles/attack × 2/3 females/beetles ≈ 537 females/
tree).

moDeLs

We derived spatiotemporal models of mountain pine 
beetle dynamics by modifying the Nicholson–Bailey par-
asitoid–host models (Nicholson 1933, Nicholson and 
Bailey 1935) to include aggregation, mass-attack, a 
critical attack threshold, and beetle dispersal. Due to the 
inclusion of the critical attack threshold, our modified 
Nicholson–Bailey models exhibit a strong Allee effect for 
beetles (the parasitoids). These Nicholson–Bailey-based 
models are simpler than the most mechanistic mountain 
pine beetle models in the literature, but nonetheless 
mechanistically incorporate beetle aggregation and 
critical attack thresholds created by tree defenses.

Nicholson–Bailey-based model

If Pt is the number of female parasitoids and Nt is the 
number of hosts in a given area at time t, then the evo-
lution of the Nicholson–Bailey system over time is 
described by

in which c and λ are geometric growth factors for the 
parasitoid and host, respectively. More accurately, c 

(1a)Pt+1 = cNt(1−F(j;mt)),

(1b)Nt+1 =λNtF(j;mt),
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controls the geometric growth of parasitoid females. For 
most solitary parasitoids, c = 1. The function F(j,mt) is 
the survival function for the host. Typically 
F(j;mt)=

∑j

i=0
f(i;mt =aPt), where f(i;mt =aPt) is the 

Poisson probability mass function that gives the proba-
bility of i attacks per host when the mean number of 
attacks per host is mt =aPt . The a parameter is the para-
sitoid attack rate (Hassell 1978), and j = 0 is the number 
of attacks per host that it can sustain and still avoid para-
sitism in the Nicholson–Bailey model.

Mountain pine beetle attacks are aggregated in some 
hosts and not in others. A standard way to incorporate 
aggregation in parasitoid–host models is to assume that 
f(i;mt) is a negative binomial probability mass function 
(May 1978):

in which k is the overdispersion parameter (inversely 
related to aggregation), mt is the mean number of attacks 
per host in generation t.

Mountain pine beetles also differ from parasitoids in 
that females typically do not oviposit in multiple host trees 
because the female beetle becomes embedded in the tree 
during the attack process. Although exceptions occur 
(Reid 1958), we assume that each female beetle attacks and 
oviposits in only one host tree. A simple starting assumption 
is that beetles distribute their attacks evenly over all sus-
ceptible hosts in a forested area, Let Bt be the number of 
attacking female beetles and St be the number of suscep-
tible host trees in a given area at time t. We assume that the 
expected number of attacks per tree is

With aggregation, variability around the expected 
number of attacks per tree in the stand will be larger than 
if attacks were randomly distributed. Thus, with aggre-
gation, a few trees will experience mass attack while most 
will not be attacked or will be attacked infrequently.

In the mountain pine beetle system, attack success is a 
function of the density of attacking beetles/bark surface 
area (Raffa and Berryman 1983). When there were 40 
attacks/m2 of bark or more, Raffa and Berryman (1983) 
noted that the defensive capabilities of their study trees 
were exhausted and they succumbed to attack. When the 
attack density was below this threshold, trees successfully 
repelled attacks. By computing an average vulnerable 
bark surface area per tree, and with knowledge of how 
beetle attacks are distributed along pine stems (Klein 
et al. 1978), this 40 attacks/m2 threshold can be scaled up 
so that it describes the average number of attacks per tree 
required for tree death. Thus, unlike traditional para-
sitoid hosts systems a minimum number of attacks per 
tree that is much larger than one attack per host is 
required for mountain pine beetles to colonize a host tree 
and reproduce.

When adjusted to account for aggregation and the 
critical attack threshold, the survival function for host 
trees in the mountain pine beetle system becomes

where f(i;mt) is given in (Eq. 2) and mt is given in (Eq. 3). 
This survival function represents the probability that a 
susceptible tree is attacked ϕ or fewer times. An implicit 
assumption in our model is that any tree that was unsuc-
cessfully mass attacked in a previous generation recovers 
its full vigor by the next generation. Recasting the neg-
ative binomial distribution in terms of the incomplete 
beta function (Pearson 1968) facilitates simulation and 
model fitting by eliminating the need to compute large 
sums (details in Appendix S3). To illustrate how mountain 
pine beetle attack success probability changes as a 
function of aggregation (k) and the critical attack 
threshold (ϕ) we define the attack function as 1−F(ϕ;mt). 
As aggregation increases (k decreases), the inflection 
point in the attack function curve shifts towards zero 
(Fig. 3).

Using (Eq. 4), we can write the following system that is 
analogous to (Eq. 1), but which is more representative of 
the mountain pine beetle:

Mountain pine beetle outbreaks occur on much shorter 
time scales than are required for tree regrowth and so we 
assume λ = 1 (trees do not self-replace).

The survival function described previously (Eq. 4) 
assumes that the system is closed and therefore no beetles 
immigrate from outside the study area, an unrealistic 
assumption for most ecological scenarios. However, it 
can be modified by making the mean number of attacks 
depend on the density of immigrating beetles,

where ζt represents the density of female beetles that 
immigrate in year t.

Integrodifference equation model

Due to localized dispersal, mountain pine beetles as well 
as their host trees were clustered and not well-mixed or 
uniformly distributed in space. Thus, the Nicholson–
Bailey-based model described in the previous section 
required a spatial component to be relevant to patterns of 
mountain pine beetle infestation that occur over large and 
spatially heterogeneous landscapes. We used integrodif-
ference equations to integrate local mountain pine beetle 
dispersal and population dynamics. Integro difference 
equation models are discrete-time continuous-space 

(2)f(i;mt)=

(
k

k+mt

)k
Γ(k+ i)

i!Γ(k)

(
mt

k+mt

)i

,

(3)mt =Bt∕St.

(4)F(ϕ;mt)=

ϕ∑

i=0

f(i;mt).

(5a)Bt+1 = cSt(1−F(ϕ;mt)),

(5b)St+1 =λStF(ϕ;mt).

(6)mt =
Bt+ζt

St

,
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models that are suitable for organisms with synchronized 
dispersal (Kot et al. 1996). Our Nicholson–Bailey-based 
integrodifference equation was

where Bt(x) is the density of attacking (female) beetles at 
location x and generation t, It(x) is the density of beetle 
infested trees, and St(x) is the density of susceptible trees. 
The dispersal kernel, k(x;y), describes the probability 
density associated with an individual beetle starting at 
location y = (y1,y2) and moving to location x = (x1,x2).

To simulate and fit integrodifference equation models to 
data, we discretized them in space. Thus, our state vari-
ables became Bg;t, Sg;t, and Ig;t, in which the index g desig-
nates a grid cell in the discretized spatial domain. We used 
fast Fourier transforms (Singleton 1969) on the discretized 
spatial domain to efficiently compute the convolution 
integral (Eq. 7a). The method we used to simulate our inte-
grodifference equation models was based on a tutorial by 
Jim Powell as well as the appendix of Andersen (1991).6

For our model simulations, we used reflecting boundary 
conditions on all four sides of the spatial domain. No 
known beetle infested trees were observed near the 
boundary inside and outside our study area on the west 
(left), east (right), and south (bottom) edges of our spatial 

domain. An outbreak similar to the one inside our study 
area occurred on the north side of our study area. This 
northern outbreak, however, was managed by Alberta 
Agriculture and Forestry and so was excluded from the 
present study. We chose reflecting boundaries because we 
assumed that the number of beetles dispersing into and 
out of our study area across the northern boundary was 
roughly equivalent. Note also that in our model fitting, 
we excluded observations in areas inside the study 
area that were managed. As a result, observations 
within 250 m of the edge of our spatial domain were 
usually excluded. This exclusion minimized the effect of 
bound ary conditions on maximum likelihood parameter 
estimates.

Dispersal models

We incorporated two models of beetle dispersal in the 
integrodifference equation model described in the pre-
vious section. Our first dispersal model assumes that 
beetles stop flying at a constant rate. The following kernel 
can be derived from a system of partial differential equa-
tions that describes changes in the density of flying and 
settled beetles over time under the assumption that their 
flight paths resemble random walks in a two spatial 
dimensions (Van Kirk 1995):

where 0 is the modified Bessel function of the second 
kind and zeroth order. In (Eq. 8) η=

√
(a∕D), where a is 

the constant settling rate and D is the diffusion coeffi-
cient. The dispersal kernel describes the probability 
density associated with individual that starts at location 
y=(y1,y2) and moves to location x=(x1,x2). Laboratory 
flight mill experiments confirm that a constant settling 
rate accurately describes the stopping rate of mountain 

(7a)
Bt(x)
⏟⏟⏟

dispersed beetles

= c ∫Ω k(x,y)
⏟⏟⏟

dispersal

It(y)dy,

(7b)
It+1(x)
⏟⏟⏟

infested trees

=St(x)
(
1−F(ϕ,mt =(Bt+ζt)∕St)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

attack function

,

(7c)
St+1(x)
⏟⏟⏟

susceptible trees

=St(x)−It+1(x),

(8)k(x,y)=
η2

2π
0(η||x−y||),

FiG. 3. The attack function (1−F(S
t
,B

t
)), where F(S

t
,B

t
) is given in (Eq. 4) with varying (A) attack thresholds at which the 

mountain pine beetle is able to colonize trees (ϕ) with aggregation held constant (k = 0.005) and (B) levels of aggregation (k) where 
aggregation increases as k decreases, when the attack threshold is constant (ϕ = 500). Note the difference in scale in the probability 
of successful attack along the y-axis between the two figures. In all cases the density of susceptible trees was 3,000 stems/6.25 ha.
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pine beetles flying on flight mills (see Appendix S4: Fig. 
S1). In reality, beetles that settle will usually land on 
potential host trees. In (Eq. 8), however, beetle settling 
does not depend on the presence of host trees. As a result, 
simulated beetle dispersal will result in some beetles set-
tling in locations that have no susceptible host trees.

An alternative insect flight hypothesis is that insects 
disperse diffusively and settle instantaneously and syn-
chronously. This can be represented using the Gaussian 
dispersal kernel

in which D is the diffusion constant and τs is the instan-
taneous settling time. We compared models that featured 
(Eq. 8) and (Eq. 9) to determine which dispersal hypothesis 
is more accurate for the mountain pine beetle.

Parameterization of both dispersal models required 
that we fit one parameter per model. For the diffusion 
with settling model (Eq. 8), we needed to estimate η, and 
for the Gaussian dispersal kernel (Eq. 9) we had to 
estimate the product of the diffusion parameter and the 
stopping time (Dτs) as there was no way to estimate them 
separately.

To estimate the dispersal parameters, we used infor-
mation from a mountain pine beetle mark–recapture 
study (Safranyik et al. 1992). In their study Safranyik 
et al. (1992) found that 93% of beetles were recaptured 
within 30 m of where they were released in 1982 (Safranyik 
et al. 1992). In a later trial in 1983 that was part of the 
same study, only 86% beetles were recaptured within 
30 m of where they were released (Safranyik et al. 1992). 
We used the first statistic to parameterize the models in 
the current study rather than the second because by 1983 
mountain pine beetle had depleted many of the trees in 
the experimental stands and so the statistic from the 
second year likely does not reflect dispersal in fully 
stocked stands (Safranyik et al. 1992). As we had only 
one parameter to fit for each dispersal model, we com-
puted the empirical cumulative density functions for each 
kernel with respect to distance and then chose the 
parameter (η or Dτs) that made the statistic true (93% of 
beetles remained within 30 m of release points).

Probabilistic models

In the previous sections we have developed mechanistic 
mathematical models that describe the spatiotemporal 
dynamics of the mountain pine beetle. These models 
predict the expected density of infested stems per grid cell, 
but to fit them to data, requires that we assume that the 
infested tree data have some probabilistic distribution. The 
distribution should be chosen based on an understanding 
of the nature of the data as well as the biology of the 
system. The data available for model fitting consisted of 
aerially surveyed counts of red-attack mountain pine 
beetle infested trees per 250 × 250 m grid cell.

One appropriate model for the counts of infested trees 
in a cell is the binomial distribution with a number of 
trials given by the number of susceptible trees, and the 
probability of infestation (mortality) given by the attack 
function in (Eq. 7b). If, however, the count of susceptible 
trees is also a Poisson random variable with a mean given 
by the expected number of susceptible trees, then the 
binomial model for tree infestation becomes a Poisson 
model with a mean equal to the attack function multi-
plied by the expected number of susceptible host trees,

This probabilistic model for counts of infested trees 
can easily be modified so that it classifies cells as infested 
or uninfested as follows:

in which Yg,t+1 is an indicator variable for the presence of 
mountain pine beetle infested trees and is therefore either 
a zero (absent) or a one (present).

All of components of integrodifference models of 
mountain pine beetle dynamics are synthesized in 
Appendix S5.

moDeL FittinG, seLection anD assessment

The within-tree beetle productivity parameter (c) was 
estimated as described in the beetle productivity data 
section and the dispersal parameters were estimated as 
described in the section on dispersal models. The 
remaining three parameters to be estimated for the pop-
ulation dynamics model were the beetle immigration 
parameter (ζt), the aggregation parameter (k), and the 
critical attack threshold (ϕ).

To fit the remaining free parameters, we assumed that 
the expected number of infested trees was given by the 
discretized version of (Eq. 7b) and the distribution of 
observations around the expectation was given by the 
Poisson distribution as described in the probabilistic 
model section. We then used the Nelder-Mead algorithm 
(Nelder and Mead 1965) to maximize the likelihood of 
our mathematical and statistical model. Parameter esti-
mation, however, was difficult as the minimization algo-
rithm frequently found local rather than global minimums 
of the negative log-likelihood.

To minimize the chances of failing to discover the 
global minimum negative log-likelihood that corre-
sponded to the maximum likelihood, we performed an 
exhaustive grid search of the parameter space in which we 
computed the negative log likelihood for 1.25e5 combi-
nations of the parameters. We chose the parameter set 
from the 1.25e5 long list of parameter combinations that 
minimized the negative log-likelihood and then used the 
Nelder–Mead simplex algorithm (Nelder and Mead 
1965) to further minimize the negative log-likelihood 
starting the minimization algorithm at the optimal 
parameter set discovered using the grid search.

(9)k(x,y)=
1

4πDτs

exp

(
−(||x−y||2)

4Dτs

)
,

(10)Xg,t+1 ∼Poiss(μ=Sg,t(1−F(ϕ;mt))).

(11)Pr(Yg,t+1 =1)=1−exp(−Sg,t(1−F(ϕ;mt))),
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Model selection and assessment

Because all of our models had the same number of 
fitted parameters, we selected the best model based on the 
negative log-likelihood (lower is better) from the inte-
grodifference equation models featuring each of the two 
dispersal kernels. The negative log-likelihood used in 
model selection was the same one computed when fitting 
the parameters as we had no external data to validate our 
models. We evaluated our best model based its ability to 
correctly classify grid cells as infested or not infested as 
well as on it’s performance as a predictor of the density 
of mountain pine beetle infested trees. We assessed the 
model's ability to predict the density of red-attacked trees 
by fitting a Poisson generalized linear model to the 
observed number of infestations as a function of the pre-
dictions of the fitted model and computing the pseudo-R2 
statistic for the model (Dobson 2002).

Error analysis

In order to make inferences on the confidence bounds 
of parameter estimates, it is necessary to have identical 
and independently distributed errors. Thus, errors should 
not be highly correlated in space or time. We tested our 
errors by computing spatial autocorrelation of our neg-
ative log-likelihood estimates at each location in space. 
We then estimated correlograms (variation in the corre-
lation of errors with distance) using nonparametric 
covariance functions (Bjornstad 2013).

Using an error analysis technique, we propagated 
uncertainty in parameter estimates to uncertainty in the 
predictions of the population growth component of our 
model (Eq. 12). Our method of error analysis follows that 
of Pacala et al. (1996). During maximum likelihood 
parameter estimation, in addition to maximum like-
lihood estimates of parameters, we obtained an estimate 
of the Hessian matrix. We inverted the negative Hessian 
matrix to obtain an asymptotic estimate of the covar-
iance matrix. We then sampled from a multivariate 
normal distribution with means given by our vector of 
parameter estimates and variance and covariance given 
by the estimated covariance matrix. Using 1,000 samples 
from this multivariate normal distribution, we con-
structed quantile-based 95% confidence intervals around 
the predictions of (Eq. 12) for each value of Zt. This 
method is a numerical equivalent to analytically 

computing confidence estimates on model predictions 
using the delta method. An important caveat of these 
error analyses is that, due to spatial autocorrelation in the 
errors of our original model, they likely underestimate 
uncertainty in model predictions.

All simulations and analyses were run using R software 
(R Core Team 2015) with the Rcpp package (Eddelbuettel 
and Romain 2011, Eddelbuettel 2013) to speed up com-
putation. We evaluated spatial autocorrelation of errors 
using the ncf (Bjornstad 2013) package in R and used the 
raster (Hijmans 2015) package to visualize and manip-
ulate raster files. We used the pROC R package (Robin 
et al. 2011) to compute ROC curves to evaluate the per-
formance of our best model as a classifier and the root-
Solve (Soetaert 2009, Soetaert and Herman 2009) R 
package to compute the roots of nonlinear difference 
equations.

resuLts anD anaLysis

Our best model based on negative log-likelihood esti-
mates of integrodifference models obtained during model 
fitting featured the diffusion with settling dispersal kernel 
(fitted parameters in Table 1). The negative log-like-
lihood of the integrodifference equation model with a 
kernel based on diffusion and settling was 13,204 com-
pared to 13,738 for the model that featured the Gaussian 
kernel.

The integrodifference model with the diffusion and set-
tling kernel fitted the data adequately given the fine reso-
lution of our spatial grid (Fig. 4). Fitted model predictions 
for the density of beetle infested trees increased with the 
observed density, and the model explained approximately 
29% of the variation in the density of infested trees (Fig. 
5A) in addition to accurately predicting the locations of 
infestations. However, our model did not account for all 
of the spatial covariation between locations as there was 
some spatial autocorrelation in model errors over dis-
tances of up to 5 km (Fig. 5B).

The accuracy of the model as a predictor of the loca-
tions of infestations can be assessed more easily when the 
model is used to classify cells as infected or uninfected. 
The area under the curve (AUC) of the receiver operator 
characteristic curve of the fitted model when it was used 
to classify observations in the training set was 0.88, which 
indicates a good fit (Fig. 6). However, two distinct 

taBLe 1. Parameter estimates for the integrodifference equation model with diffusion and settling type dispersal.

Parameter Significance Estimate Units

η Dispersal parameter 0.677 km
ϕ Attack threshold 545 (515, 575) Attacks
k Aggregation 3.40e-03 (3.22e-3, 3.57e-3) Beetles/tree
ζ Immigration 900 (851, 949) Beetles
c Beetle productivity 537 Beetles/tree

Notes: Lower and upper Wald type 95% confidence intervals are included in brackets next to estimates obtained by maximum 
likelihood estimation. Confidence intervals, however, are likely overly narrow as our model error was spatially auto correlated and 
therefore, our observations were not independent given our model.
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probability cutoff thresholds for the classifier were 
evident (vertical lines in Fig. 6). These represent a trade 
off between model sensitivity (true positive rate) and 
model specificity (one minus false positive rate). The 

sensitivity-specificity trade-off is also evident in the clas-
sification maps, with the low-specificity threshold (0.045) 
showing a high number of false positives (Fig. 7A) rel-
ative to the high specificity threshold (0.376) map (Fig. 
7B).

To better understand the ramifications of the nonlinear 
population dynamics, we analyzed the difference equation 
component (Eq. 5) of the integrodifference equation 
model (Eq. 7). Let Zt =Bt∕St be the ratio of beetles to 
susceptible trees at time t. Thus, (Eq. 5) can be rewritten 
as a single difference equation

As the system of two coupled difference equations 
reduces to a single difference equation, the discrete time 
map is amenable to graphical analysis (Fig. 8A). The 
population dynamics component of the model predicts 
population collapse in our study area with no outbreak 
threshold (solid line in Fig. 8A) because of low  within-tree 
beetle recruitment (r-value). However, assuming that the 
model correctly represents mountain pine beetle 
dynamics, we can extrapolate to the situation where 
beetle recruitment is sufficient to sustain an outbreak 
(dashed and dotted lines in Fig. 8A). For example, when 
within tree recruitment is 5.32 beetles produced per 
female beetle, the Allee threshold is approximately 2.41 
(±0.14) beetles per susceptible tree where the number in 
brackets is the 95% CI based on our error analysis. When 
within tree recruitment is 6.65 beetles produced per 
female beetle, the Allee threshold is approximately 1.66 
(±0.08) beetles per susceptible tree (Fig. 8A). Thus, 
increased within tree recruitment results in lower Allee 
thresholds at the stand level.

By plotting a bifurcation plot as a function of female 
beetle productivity (Fig. 8B), we can see that the threshold 

(12)Zt+1 =
c(1−F(ϕ,mt =Zt))

F(ϕ,mt =Zt)
,

FiG. 4. Maps of (A) observed counts of mountain pine beetle infested trees vs. (B) spatial model fits of modeled counts of 
mountain pine beetle infested trees. The color bar represents the density of mountain pine beetle infested pine trees (stems/6.25 ha) 
where 6.25 ha is the size of the grid cells (250 × 250 m) dictated by the resolution of tree inventory data.

FiG. 5. Model fit assessment plots of (A) observed counts of 
mountain pine beetle infested pine stems per grid cell vs. 
estimated numbers of mountain pine beetle infested trees per 
grid cell based on the fitted model where a Poisson generalized 
linear model was fitted to enable assessment of model quality 
using pseudo-R2, and (B) the estimated spatial autocorrelation 
of negative log-likelihoods at each grid location in the study 
area. Estimates of spatial autocorrelation of negative log-
likelihoods were obtained using nonparametric covariance 
functions (Bjornstad 2013).
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productivity per female required for eruptive dynamics is 
approximately 4.79 female beetles produced per attacking 
female. As female beetle productivity increases beyond 
this threshold productivity level, the unstable strong 
Allee threshold decreases and the stable ratio equilibrium 
(outbreak equilibrium) increases (Fig. 8B).

The meaning of the stable outbreak equilibrium is 
subtle as without host tree reproduction, no stable coex-
istence equilibrium can exist because the beetle either 
goes extinct or it drives its host extinct and then vanishes 

given that it must kill and colonize hosts to survive. The 
correct interpretation of the stable outbreak equilibrium 
for the ratio variable (Z) is elucidated by plotting the 
phase plane for the system of difference equations (Eq. 5). 
The stable and unstable outbreak equilibria in Fig. 8B 
are, in fact, lines on the phase portrait (Fig. 8C). 
Population trajectories move away from the unstable 
ratio equilibrium and towards the stable ratio equilibrium 
if the initial beetle population is above the strong Allee 
threshold (Fig. 8C). As the trajectory moves parallel to 
the stable ratio equilibrium both the beetle population 
and the susceptible tree density approach zero at a con-
stant rate. Thus, the stable outbreak equilibrium results 
in the extinction of both species in the absence of tree 
reproduction. If initial population densities are below the 
strong Allee threshold (below the dashed line in Fig. 8C), 
then beetle populations go quickly to zero and tree pop-
ulations persist.

Aggregation reduces the demographic strong Allee 
threshold as well as the stable outbreak equilibrium (Fig. 
9). As aggregation increases (k decreases), the strong 
Allee threshold approaches zero nearly linearly (Fig. 9) 
and the strong Allee threshold and the outbreak equi-
librium approach one another.

Discussion

The Allee threshold that dictates whether mountain 
pine beetle infestations outbreak arises because of the 
interaction between beetle recruitment, aggregation, and 
tree-level attack thresholds driven by tree defenses. 
Whether an Allee threshold for mountain pine beetles 
exists, and the density of beetles per tree above which the 
Allee threshold is exceeded, depend on beetle recruitment. 
For example, beetle recruitment of 5.32 beetles per 
attacking female, produces an Allee threshold of 2.41 
(±0.14) beetles per tree. This is lower than the tree-level 

FiG. 7. Maps of (A) observed infested cells vs. predicted infested cells using the best fitted model and a probability threshold of 
0.045 and (B) using a probability threshold of 0.376. Each cell is 6.25 ha and the size of the grid cells (250 × 250 m) is dictated by the 
resolution of tree inventory data.
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FiG. 6. The Receiver Operating Characteristic (ROC) curve 
for the best model when used as a classifier (categorizing cells as 
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attack threshold of about 545 (±30) beetles per tree pre-
cisely because of the ability of the mountain pine beetle 
to aggregate. Our small k parameter estimate provides 
evidence for efficient aggregation by pheromone commu-
nication in the mountain pine beetle. When beetle den-
sities per host tree are above the strong Allee threshold at 
the stand level, aggregation enables them to successfully 

attack host trees even though the beetle to tree ratio at the 
stand level is below the tree-level attack threshold. 
Evidently in a stand with only one susceptible tree, this 
strong Allee threshold will not be applicable, as four 
beetles cannot overcome a well-defended host. Our 
results apply to stands with a minimum of a few hundred 
susceptible host trees per 6.25 ha.

Model selection indicated that the diffusion and con-
stant settling hypothesis better reflected beetle dispersal 
patterns in our data than the diffusion and instantaneous 
settling hypothesis embodied in the Gaussian kernel. 
Heavilin and Powell (2008) found that for the mountain 
pine beetle, the Gaussian dispersal kernel outperformed 
the exponential dispersal kernel in two spatial dimen-
sions. The difference between our diffusion with settling 
kernel and the exponential kernel of Heavilin and Powell 
(2008) is that the latter assumes directed rather than dif-
fusive movement. Turchin and Thoeny (1993) derived a 
dispersal kernel for the southern pine beetle (Dendroctonus 
frontalis Zimmermann) that is similar to our diffusion 
and settling kernel. Like our kernel, the derivation of 
Turchin and Thoeny (1993) is based on a partial differ-
ential equation model of diffusion and constant settling. 
Unlike our version of the diffusion with settling kernel, 
which assumes settled beetles attack trees, Turchin and 
Thoeny (1993) assumed mortality of settled beetles.

In this study we have focused on the interaction 
between aggregation and Allee thresholds. Although it is 
difficult to separate aggregation from dispersal, we have 
done so by assuming that aggregation occurs at a smaller 
spatial scale than that of local dispersal. Most mountain 
pine beetles dispersing under the canopy appear to dis-
perse less than 30–50 m (Safranyik et al. 1992) and so 
aggregative behavior would likely occur at spatial scales 
much smaller than our grid cell (250 × 250 m). Thus, we FiG. 8. Dynamics of a nonspatial system of mountain pine 

beetles and susceptible pine trees (Eq. 5) and (Eq. 12). The 
discrete time map of (12) when (A) female mountain pine beetle 
productivity (r-value) increases. As female productivity 
increases an unstable and a stable population equilibrium for 
the ratio of beetles to susceptible trees (Z) appear. The equilibria 
(Z∗) occur where the discrete time map curve intersects the one-
to-one line shown in grey. The pink and blue shaded regions 
represent the upper and lower 95% confidence intervals for the 
discrete-time map. From the bifurcation plot (B), the appearance 
of stable and unstable equilibria occurs when the per female 
productivity is approximately 4.79 beetles per female beetle. The 
dynamics of the system can be succinctly portrayed in a phase 
diagram (C) on which several hypothetical trajectories for the 
density of beetles and susceptible host trees are drawn (blue 
lines). For all analyses, the ϕ and k parameters were fixed the 
maximum likelihood estimates given in Table 1. For the 
simulations shown in the phase diagram, the per female 
productivity was fixed at five beetles per female and the starting 
populations of beetle and host trees were varied.
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represent the distribution of beetles within grid cells using 
a spatially implicit model that features the negative 
binomial probability mass function (Eq. 2). Clustering in 
beetles results in clustering of infested trees as not all trees 
have the same probability of being mass attacked. 
Assuming, as we have done, that aggregation occurs only 
within grid cells, however, would be problematic if the 
resolution of our model were increased (decreased grid 
cell size) because our estimate of aggregation (k) depends 
on the spatial scale of grid cells.

In the dispersal model of Powell and Bentz (2014), 
beetles are more likely to disperse from an area when 
local host density is low. Unlike in our models, aggre-
gation is a consequence of beetle dispersal in their model. 
As we could not resolve the spatial clustering of trees 
within grid cells, we were unable to test the hypothesis 
that beetles aggregate in areas of high host density (Powell 
and Bentz 2014). The present study did incorporate 
spatial heterogeneity in the density of host trees from one 
grid cell to another but we assumed that this variation 
was due to variation in stand age. When stands are of 
different age, high density can be an indicator of young 
stands which are initially dense before they reach the self-
thinning stage of stand development and become suscep-
tible to mountain pine beetle attack (Anhold and Jenkins 
1987). For this reason, stands of intermediate density 
have been found to be more susceptible to mountain pine 
beetle damage than stands of high density (Anhold and 
Jenkins 1987). Assuming that the mountain pine beetles 
move towards the densest aggregations of trees may be 
risky when applied across the different aged stands in the 
present study.

Aggregation in the mountain pine beetle system is 
more complex than the simple representation in our 
models. Attacking female beetles release aggregation 
pheromones until the host tree succumbs to attack, 
whereupon they switch to anti-aggregation pheromones 
to prevent overcrowding (Hunt et al. 1989, Hunt and 
Borden 1990, Lindgren and Miller 2002). Anti-
aggregation pheromones encourage beetles to attack 
trees other than those that have already been successfully 
mass-attacked (Hunt et al. 1989). Thus, when population 
densities are high, beetles will tend to be less aggregated 
than when populations densities are low as a (Conn et al. 
1983, Borden et al. 1987).

Aggregation levels in the mountain pine beetle depend 
not only on beetle density, but also on the phase of the 
outbreak (Safranyik and Carroll 2006, Boone et al. 2011). 
Safranyik and Carroll (2006) categorized beetle popula-
tions into four regimes according to their behavior. 
Mountain pine beetle population in their endemic phase 
attack primarily weakened hosts (Safranyik and Carroll 
2006). Populations in the incipient-epidemic phase begin 
to colonize more vigorous hosts (Safranyik and Carroll 
2006, Boone et al. 2011). It is during the transition from 
endemic and incipient-epidemic stages that aggregation 
is the most critical for the growth of mountain pine beetle 
populations because population densities tend to be low 

compared to in the epidemic stage. In the epidemic stage, 
the mountain pine beetle population outbreaks beetle 
will focus their attacks on the most vigorous trees stands 
which also tend to be the most nutritious (Safranyik and 
Carroll 2006). Finally in the post-epidemic phase, popu-
lations collapse due to host depletion or inclement 
weather. The mountain pine beetle population that gen-
erated the data used in this study was in the epidemic 
stage, but it was transitioning to the post-epidemic phase. 
Thus, the level of aggregation given by the k parameter 
that we measured in our study was for an epidemic 
mountain pine beetle population.

There has been recent interest in the possibility of bivol-
tinism as a result of climate change in bark beetles that are 
typically univoltine (Jönsson et al. 2009, Bentz and Powell 
2014). A weakness of the integrodifference equation 
framework for modeling insect dynamics under climate 
change is that it is difficult to incorporate temperature- 
dependent variation in the timing of development and dis-
persal stages. This difficulty was overcome by Powell and 
Bentz (2014) using a temperature-dependent continu-
ous-time model of mountain pine beetle dispersal and devel-
opment. As the focus of our study was on the interaction of 
aggregation and Allee effects created by tree defenses, our 
model does not account for variation in beetle emergence in 
response to temperature. Because synchronization in the life 
cycles in organisms subject to Allee thresholds (Friedenberg 
et al. 2007) can create population peaks and troughs, aggre-
gation likely plays an important role in enabling population 
persistence in spite of low population densities that occur 
between population cycles. Therefore, future studies that 
account for population phenology and aggregation in the 
face of Allee effects are needed.

Below a critical per female productivity level (approx-
imately 4.75 beetles produced per attack in this study), 
outbreak dynamics are impossible and population col-
lapse is inevitable. As a result, when within-tree beetle 
productivity is low, managers can safely prioritize stands 
where beetle productivity is higher. Prioritizing in this 
way will minimize the wasteful management of low pro-
ductivity mountain pine beetle populations that would 
collapse on their own even in the absence of management. 
The exact level of female beetle productivity within hosts 
at which it is safe to do nothing, however, is uncertain as 
we have fitted our model to a single pair of years in a 
small study area, and all of the parameters in our model 
likely vary from year to year. Thus, using mountain pine 
beetle productivity within trees to triage infested stands 
is preferable to basing management decisions on a hard 
mountain pine beetle productivity cut-off.

Aggregation was an integral component of Allee's 
thinking about Allee effects (Allee 1931) because 
organisms whose fitness suffers when their densities are 
low generally evolve characteristics that enable them to 
aggregate (Stephens et al. 1999, Stephens and Sutherland 
1999, Wertheim , et al. 2002, 2005, Gascoigne et al. 2009). 
In gregarious parasitoid host systems, for example, the 
immune system of the host sometimes encapsulates and 
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incapacitates parasitoid eggs when their numbers are low 
(Ikawa and Okabe 1985, Takagi 1985). This incentivises 
superparasitism (Takagi 1985), in which hosts are 
repeatedly parasitized by the same species of parasitoid. 
In the mountain pine beetle system, the defensive capac-
ities of host trees are analogous to the immune defenses 
of the larval hosts of gregarious parasitoids. In organisms, 
such as these, that are impacted by an Allee effect at the 
individual level, it is critical to consider how aggregation 
may change the way in which the Allee effect is expressed 
when scaled up to the population level.
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