
NeuroSketcher: Synthesizing Non-Differentiable Programs with
Non-Differentiable Loss Functions

by

Thirupathi Reddy Emireddy

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Thirupathi Reddy Emireddy, 2023

Abstract

Programmatic hypotheses offer valuable properties, such as generalizability and interpretability.

However, such hypotheses can be elusive, as one finds them by searching over large spaces of

programs. Recent work showed that neural networks can be used to guide the search in the pro-

grammatic space by filling in the “holes” of the program sketches considered in the search. Despite

its promising results, this approach requires that the synthesized programs and the loss function

be differentiable, which can severely limit its use in practice. In this dissertation, we overcome this

weakness with a two-step search. The first search uses an abstraction of the original language where

non-differentiable operations of the language are replaced with neural networks, thus resulting in a

language of differentiable programs. The second search, which is not neural-guided, completes the

promising sketches generated in the first search by searching in the original language space while

optimizing for any loss function, including non-differentiable ones. We use our approach to synthe-

size programmatic heuristic functions for two permutation sorting problems: the Pancake and the

Topspin puzzles. Our method discovered heuristic functions for the Pancake and Topspin puzzles

that outperform some of the best known heuristics for these domains. Due to their programmatic

representation, we can prove that search algorithms using our heuristic functions are guaranteed to

find bounded-suboptimal solutions.

ii

Preface

The author of this dissertation, in partnership with Levi Lelis, has produced original research. This
research is currently undergoing review for potential publication. Because of the collaborative aspect
of this endeavor, the term “we” is utilized in this document. Nevertheless, I bear full responsibility
for any technical inaccuracies or issues in presentation.

Thirupathi Reddy Emireddy
September, 2023

iii

To my spiritual master, parents, and teachers.

iv

Acknowledgements

I extend my heartfelt gratitude to my supervisor, Dr. Levi Lelis. This journey would not have been
as smooth without his constant support and enthusiasm. I hold deep respect for his tolerance of
my shortcomings, and I appreciate how he has filled those gaps with his experience and knowledge.
From his guidance, I’ve endeavored to adopt a never-give-up attitude that will serve me well in my
future endeavors, whatever they may be. Overall, my time with my supervisor has been a valuable
learning experience.

I also express my gratitude to my friends and research colleagues, listed in no particular order:
Saqib Ameen, Justin Stevens, Lucas N. Ferreira, Rubens O. Moraes, Tales Carvalho, Kenneth Tjhia,
Dr. Elham Parhizkar, Zaheen Farraz Ahmed, Mahdi Alikhasi, Zahra Bashir, Quazi Asif Sadmine,
Spyros Orfanos, and Mahdieh Mallahnezhad. Each of you has played a part in my journey, enriching
my experience in various ways.

Lastly, I am indebted to my parents and siblings for their unwavering support and patience.
To the University of Alberta, I owe a tremendous debt of gratitude for accepting me as a graduate
student. This acceptance has significantly altered my life’s trajectory and has given me a profound
understanding of life’s true essence.

v

Contents

Abstract ii

Preface iii

Acknowledgements v

List of Tables viii

List of Figures ix

List of Algorithms x

1 Introduction 1

1.1 Problem Formulation . 2

1.2 Contributions . 4

2 Background 6

2.1 Heuristic Search . 6

2.2 Iterative Deepening A* (IDA*) . 7

2.3 Problem Domains: Permutation Sorting Puzzles . 9

2.4 Program Synthesis . 10

2.4.1 Bottom-Up Search (Bus) . 10

3 Related Work 13

3.1 Symbolic Approaches . 13

vi

3.2 Neurosymbolic Approach . 13

3.3 Other Approaches . 14

4 NeuroSketcher 16

4.1 Neural Language Abstractions . 16

4.2 Using Neural Language Abstractions . 17

4.3 NeuroSketcher Algorithm . 18

5 Empirical Results 20

5.1 Experiment Details . 20

5.1.1 Domain-Specific Language and Its Abstraction 20

5.1.2 Loss Functions . 21

5.1.3 Baselines . 21

5.1.4 Training and Test Instances . 22

5.2 Discussion . 23

5.2.1 Analysis of hAG for the Pancake Puzzle . 26

5.2.2 Analysis of hOG for the Topspin Puzzle . 27

6 Conclusions 29

References 30

Appendix 34

A LSTM Implementation Details . 34

B Near with Multiple Seeds . 34

C Study on the Input Encoding for Neural Models . 34

vii

List of Tables

2.1 Illustration of Bottom-Up Search Synthesis . 12

viii

List of Figures

1.1 Program Synthesis Components . 3

1.2 Domain specific language (left) and the abstract syntax tree for sum(map(f(x):
x2, v)) (right). 4

2.1 5-Pancake puzzle (left) and the (10, 4)-Topspin puzzle (right). The state on the left
shows the goal for both domains, while the state on the right shows a random state. 9

2.2 DSL and AST for ((1+2)+3), which produces the output 6. 10

5.1 Language for permutation sorting problems. 21

5.2 Evaluation of the different heuristic functions on Pancake and Topspin puzzles of
different sizes. The y-axis shows the number of problems solved, while the x-axis
shows the number of nodes expanded per instance. 24

5.3 FeedForward (NN) and LSTM Study . 25

6.1 Study with multiple seeds for Near. 35

6.2 Data Representation Study . 35

ix

List of Algorithms

1 IDA* . 8
2 Bottom-Up Search (Bus) . 11
3 NeuroSketcher . 19

x

Chapter 1

Introduction

There has been a growing interest in using programmatic representations of hypotheses in machine
learning (Ellis, Ritchie, Solar-Lezama, & Tenenbaum, 2018; Valkov, Chaudhari, Srivastava, Sutton,
& Chaudhuri, 2018; Young, Bastani, & Naik, 2019). Such interest is justified since programmatic
representations allow the system designer to inject a strong inductive bias through the domain-
specific language used to define the space of hypotheses. Moreover, depending on the language
used, the learned hypotheses are easier to understand and verify (Bastani, Pu, & Solar-Lezama,
2018).

What limits the use of programmatic hypotheses in practice is that they are often difficult
to derive because they require one to search in large spaces of programs. A common approach
found in the literature is to use a self-supervised approach in which the learning system exploits
the structure of the language to generate training data (Balog, Gaunt, Brockschmidt, Nowozin, &
Tarlow, 2016; Odena, Shi, Bieber, Singh, Sutton, & Dai, 2021; Barke, Peleg, & Polikarpova, 2020;
Ellis, Wong, Nye, Sablé-Meyer, Cary, Morales, Hewitt, Solar-Lezama, & Tenenbaum, 2020; Ameen
& Lelis, 2023). For example, in program synthesis, one needs to find a program that maps a set
of inputs to the correct outputs. One can sample programs from the language and generate a set
of input values that, when given to the sampled programs, form a set of training problems. These
problems are used to learn a function to guide the search in the programmatic space.

This self-supervised approach is feasible only when it is possible to provide the problem spec-
ification as input to the guiding function. For example, in the case of program synthesis, the set
of input-output pairs is given as input to the guiding function, which is trained to be helpful for
a range of different problems (different input-output sets). However, it is not clear how to use
this approach to find a program that optimizes loss functions in general. Shah et al. (2020) in-
troduced an alternative approach to guide the search in the programmatic space for differentiable
loss functions. Instead of training a guiding function ahead of time, Near trains one model for

1

each sketch (Solar-Lezama, 2009) considered in the search. A sketch is an incomplete program, e.g.,
sum(map(?)), where the ? is a “hole” representing what needs to be finished. Near fills holes
in programs with neural networks, which are trained with gradient descent. The loss value of a
neurosymbolic program provides guidance for the search for symbolic programs.

Near requires a differentiable loss function and a language of differentiable programs. This
is because the gradients need to flow through the sketches to train their neural networks. In this
dissertation, we show how to use neural networks to guide the search in problem domains with non-
differentiable programs and loss functions. This is achieved with a two-step search. The first search
is performed in an abstract version of the original space where all non-differentiable operations are
replaced with neural networks, thus resulting in a language of differentiable programs. Similarly to
Near, the loss function used in the first search must be differentiable. One then obtains a sketch
by removing the neural networks from the program the first search returns.

The holes in the sketch are filled with programs in the second search, which is performed in the
original programmatic space. Since this second search is not guided with a neural network, we are
able to use even non-differentiable loss functions. We call our approach NeuroSketcher, as it uses
the guidance of neural networks to learn sketches that are then filled with an uninformed search
algorithm. We apply NeuroSketcher to the problem of synthesizing programmatic heuristic
functions to guide the IDA* search (Korf, 1985), where the objective is to minimize the size of the
search tree—a non-differentiable loss function. NeuroSketcher discovered provably bounded-
suboptimal heuristic functions that outperform some of the best known heuristics for the Pancake
and Topspin puzzles.

1.1 Problem Formulation

We consider supervised learning tasks where a training set T = (Xi, yi)i=1···b, with Xi ∈ Rn and
yi ∈ R, is sampled from a distribution D and a hypothesis ρ(·) must be learned that maps the
vectors Xi to their corresponding yi in T . The hypothesis ρ is chosen from a (possibly infinite)
pool of options H, such that it minimizes a loss function L. The learned hypothesis ρ is expected
to generalize to test sets with pairs (X ′

i, y
′
i), with X ′

i ∈ Rm and y′i ∈ R, sampled from similar but
different distribution D′. We consider problems where n and m might be different. We say that
ρ generalizes strongly if it is trained on data sampled from D and presents a similar loss value on
data sampled from D′.

In order to achieve strong generalization, we consider programmatic hypotheses. Program Syn-
thesis corresponds to the search for such programmatic hypotheses that satisfy the given specifica-
tion. It consists of three principal components, namely Domain-Specific Language (DSL), Specifica-
tion, and Synthesizer, as described in Figure 1.1. The user’s intent that a programmatic hypothesis

2

Figure 1.1: Program Synthesis Components

must satisfy is provided in the form of a specification. There are various ways to provide a specifi-
cation, such as input-output examples, logical constraints, textual descriptions, and loss functions
to optimize. Specification in the form of loss functions fits our problem formulation.

Similarly, the Synthesizer corresponds to any search technique that finds the programmatic
hypotheses in the program space defined by the DSL, which satisfy the given specification. Enu-
merative search methods, constraint solvers, etc., are some of the well-known synthesizer techniques.

The DSL is defined as a context-free grammar G = (Σ, V,R, I), where Σ and V are sets of
terminal and non-terminal symbols. We denote terminals with lowcase letters and non-terminals
with uppercase letters. R defines the set of production rules that can be used to transform a non-
terminal symbol into a sequence of terminal and non-terminal ones. Finally, I is the initial symbol
of G.

Figure 1.2 shows an example of a DSL (left), where I and B are the only non-terminal symbols,
sum and map are the usual functions for summing all values of a vector and for defining a function
that is applied to all values of a vector, respectively. v is a vector and x is a scalar, and f(x) is
a lambda function defined by I. The language also allows for if-then-else (ITE) instructions, where
the Boolean expression is handled with the non-terminal B.

The program sum(map(f(x): x2, v)), which is accepted by this language, sums the
squared values of the elements of v. The language defines a space of programs that allows for
operations that involve squaring and adding values of a vector. For a given language G, we denote
by JGK the possibly infinite set of programs that the language accepts.

We represent programs as abstract syntax trees (AST). Figure 1.2 (right) shows the AST for the

3

I→sum(I) |map(I,I)
|if(B) then I else I

|f(x):I |I2 |I+I |x |v
B→I > 0 |I < 0 |I == 0

sum

map

x2 v

Figure 1.2: Domain specific language (left) and the abstract syntax tree for sum(map(f(x): x2,
v)) (right).

program sum (map (f(x): x2, v)). Each node represents a production rule (e.g., the root
node represents the rule I → sum(I)); the number of children of a node is equal to the number
of non-terminal symbols on the right-hand side of the rule the node represents. For example,
I→ sum(I) has only one non-terminal, therefore the root has a single child.

A solution to argminp∈JGK L(p, T) provides a programmatic hypothesis for the supervised learn-
ing problem specified by T . In the next sections, we describe different approaches for approximating
a solution for this equation.

Thesis Statement In this dissertation, we aim to determine whether the two-step search process
adopted by the NeuroSketcher algorithm mitigates the search space explosion problem faced
by enumerative search techniques like Bus and the inability of Near to guide the search in cases
involving non-differentiable grammars and loss functions.

1.2 Contributions

The dissertation introduces the “NeuroSketcher” algorithm, a novel two-step search approach.
This algorithm employs neural networks to tackle the challenge of filling gaps in programs. Its
purpose is to guide the search within programmatic spaces, even when dealing with non-differentiable
programs and loss functions.

NeuroSketcher has been successfully applied to synthesize heuristic functions. These synthe-
sized heuristics demonstrated superior performance when compared to some of the most effective
known heuristics for problems such as the Pancake and Topspin puzzles. The algorithm’s syn-
thesized heuristics were compared with those learned using baseline systems. NeuroSketcher’s
heuristics displayed improved effectiveness and efficiency.

The dissertation illustrates how certain heuristics synthesized by NeuroSketcher can be
proven to be bounded-suboptimal. This contribution enhances the understanding of the quality of

4

these heuristics.

5

Chapter 2

Background

In this chapter, we delve into the subjects of Heuristic Search, with a particular focus on IDA*. We
delve into the problem domains employed in our experimentation, Program Synthesis, and one of its
enumerative search algorithms, specifically BUS. Furthermore, we explore the concept of generating
hierarchical training data tailored to our problem setting.

2.1 Heuristic Search

A state space search problem is defined by a tuple (s0, sg, G,C), where G = (V,E) is a graph with
V denoting the set of vertices, which represent the states, and E the set of edges, which represent
actions an agent can take from a given state; s0 and sg, both in V , define the initial and goal states;
C defines a cost function that receives an edge (n1, n2) in E and returns the cost of transitioning
from n1 to n2. The state space, represented by G, does not have to be explicitly defined. That is,
an agent knows that it is currently in a state s, and it has access to a successor function that returns
all edges that connect s to other states in G. In this way, parts of the graph can be constructed as
needed. A solution to a state space search problem is a path (s0, s1, · · · , sg) such that (si, sj) is in
E for any adjacent states si and sj on the path. The cost of a path is the sum of the costs of all the
edges connecting states on the path. A solution path π is optimal if there is no other path whose
cost is less than π’s.

As the search space grows, solving state space search problems becomes computationally infea-
sible. To address this, heuristic search is a well-known technique used to find solutions in such large
search spaces. It involves making informed decisions about which paths or options to explore first,
based on heuristic functions. In this context, a ‘heuristic’ refers to a guiding principle that assists
in making decisions when faced with uncertainty or incomplete information. Heuristic functions
provide estimates of the cost associated with different choices, enabling the search algorithm to pri-

6

oritize promising paths and avoid unproductive ones. Therefore, the quality of the heuristic function
used plays a crucial role in determining the efficiency and effectiveness of the heuristic search. In
our work, we focused on synthesizing heuristic functions for the state space search problems known
as Pancake and Topspin. Among the many heuristic search algorithms, notable ones are A* (Hart
et al., 1968) and IDA* (Korf, 1985). In our experiments, we utilized the IDA* algorithm.

2.2 Iterative Deepening A* (IDA*)

Let h(n) be a heuristic function that estimates the cost-to-go from a state n to the goal sg. In
addition, g(n) is the cost of the path a search algorithm encounters that connects s0 to n. IDA*
uses the cost function f(n) = g(n) + h(n) to guide its search. IDA* performs a sequence of cost-
bounded depth-first searches until it finds a solution path. The first search is performed with the
cost value of h(s0) and all states encountered in the search whose f -value is larger than h(s0) are
pruned. If a solution path is not retrieved, IDA* performs a new cost-bounded search, where the
cost of the next iteration is set to the smallest f -value pruned in the previous iteration. This
search strategy allows IDA* to find optimal solutions if the heuristic function is admissible, that
is, h(n) ≤ h∗(n), where h∗(n) is the optimal cost to reach the goal from n. Moreover, IDA* is
guaranteed to find bounded-suboptimal solutions, i.e., solutions that are not more expensive than
k · h∗(s0) as long as h(n) ≤ k · h∗(n) for all n.

Algorithm 1 illustrates the functioning of the IDA* search algorithm. The algorithm starts by
estimating the cost of the solution path, applying the heuristic function h to the start state root

in Line 1 of the IDA* procedure. The IDA* procedure then utilizes the Search procedure to find
the solution cost within the bound. If the solution is not present within the bound, the Search

procedure returns the next minimal bound to expand the search tree, and the IDA* procedure
continues the search with the new bound

The Search procedure calculates the estimated cost of the path with the current state by
adding the current cost g with the heuristic estimate of the current state in Line 1. If the estimated
cost exceeds the bound, it prevents further expansion of the current path and returns the estimated
cost f of the node as a candidate for calculating the next search bound. Line 4 checks if the current
state is the goal state of the problem and returns its cost g. The Search procedure expands the
tree in a depth-first fashion, considering each successor state of the current state, and attempts to
calculate the next minimal bound value by calling Search with the successor node in Line 8. The
procedure returns if it finds a solution within the bound; otherwise, it returns the next minimal
search bound.

7

Algorithm 1 IDA*
Procedure: IDA*(root, h)
Require: start state root, heuristic function h
Ensure: Solution cost or ⊥
1: bound← Heuristic(root,h)
2: while not timeout do
3: t← Search(root, 0, bound, h)
4: if t.result equals Solution then
5: return t.bound
6: bound← t.bound
7: return ⊥

Procedure: Search(node, g, bound, h)
Require: current state node, path cost g, cost bound bound, heuristic function h
Ensure: Search result and new bound (t.result, t.bound)
1: f ← g+ Heuristic(node, h)
2: if f > bound then
3: return (⊥, f)
4: if GoalTest(node) then ▷ Check if goal state is reached
5: return (Solution, g)
6: min←∞
7: for all successor in GenerateSuccessors(node) do
8: t← Search(successor, g + 1, bound, h)
9: if t.result equals Solution then

10: return t
11: if t.bound < min then
12: min← t.bound
13: return (⊥,min)

8

1
2

3

4

5
6

7

8

9

10

7

3
10

1

5

8

2
6

9

4

Figure 2.1: 5-Pancake puzzle (left) and the (10, 4)-Topspin puzzle (right). The state on the left
shows the goal for both domains, while the state on the right shows a random state.

2.3 Problem Domains: Permutation Sorting Puzzles

We consider the Pancake and Topspin puzzles, two permutation sorting puzzles (Lippi, Ernandes,
& Felner, 2016), as problem domains. We chose these domains because they have a similar repre-
sentation, which allows us to use a single DSL for both problems. Second, the Pancake puzzle has
a powerful programmatic heuristic function known as the GAP heuristic (Helmert, 2010) that is
effective in state spaces of various sizes. Finally, one can easily change the size of a puzzle to make
it arbitrarily easy or arbitrarily hard, which allows us to use easy instances during the synthesis of
the heuristics and evaluating them in hard instances.

The Pancake puzzle is represented by a stack of pancakes of different sizes that need to be sorted
from largest (bottom) to smallest (top). Figure 2.1 (left) shows the goal state and a scrambled state
of the 5-Pancake puzzle. The states can be represented with a vector with integers from 1 to N ;
the scrambled state shown in Figure 2.1 is [5, 2, 4, 1, 3]. In this domain, the agent can flip any top
k pancakes of the pile. For example, flipping the top 2 pancakes of the scrambled state, we obtain
[2, 5, 4, 1, 3]. The state space with N pancakes has N ! states and N − 1 actions available in each
state, which can result in challenging problems for large N .

Topspin is represented by a circle of tokens, which are numbers ranging from 1 to N . The puzzle
has a spinning wheel that allows one to flip K adjacent tokens in the circle. We denote by (N,K)-
Topspin the version with N tokens and with a spinning wheel of size K. Figure 2.1 (right) shows the
goal state, where the numbers are sorted clockwise, and a scrambled version of (10, 4) -Topsin. The
spinning wheel is represented by the semicircles around the numbers [2, . . . , 5] in the goal state. The
scrambled state is represented by the vector [10, 3, 7, 4, 9, 6, 2, 8, 5, 1]. If we rotate the spinning wheel
in the position shown in the figure, then we obtain [10, 9, 4, 7, 3, 6, 2, 8, 5, 1]. Rotating the numbers
to fit the spinning wheel does not count as an action; thus, the agent can rotate any subsequence
of size K. We consider puzzles where both N and K are even, so that all N ! states are reachable
from the goal (Wilbur, 2001). In all experiments, we use random permutations as initial states.

9

I → I + I | 1 | 2 | 3

+

+

1 2

3

Figure 2.2: DSL and AST for ((1+2)+3), which produces the output 6.

2.4 Program Synthesis

Program synthesis is an active area of research in Artificial Intelligence. It can be considered as
a search in the program space to find programs that satisfy a specification λ. The program space
is defined by a Domain-Specific Language (DSL). There are different classes of program synthesis
search algorithms, and enumerative search algorithms are one category among them. Enumerative
search algorithms systematically explore the program space by generating and evaluating all possible
programs according to a certain order. In our study, we considered Bus (Albarghouthi et al., 2013),
which is one of the enumerative search algorithms for generating programs.

2.4.1 Bottom-Up Search (Bus)

Bottom-up search (Bus) (Albarghouthi et al., 2013; Udupa, Raghavan, Deshmukh, Mador-Haim,
Martin, & Alur, 2013) iteratively constructs programs of increasing number of nodes in the AST.
The search starts by generating all programs defined by terminal symbols of the language that have
an AST size of 1. Using the programs of size 1, Bus generates the programs of size 2 with the
combination of the programs generated thus far and the production rules of the language. The
search continues using programs of sizes 1 and 2 to generate programs of sizes 3, etc. In case of
optimization problems, the search stops when it reaches a time and memory limit and returns the
program found that best optimizes the loss.

The advantage of bottom-up over other enumerative approaches such as top-down (Lee, Heo,
Alur, & Naik, 2018a; Alur, Radhakrishna, & Udupa, 2017) is that all the programs encountered in
the search are complete and can be evaluated. This is in contrast to the programs in the top-down
search, which can represent partial programs. Partial programs can contain non-terminal symbols
in them and for that they might not be executable (e.g., I+1, from Figure 2.2).

The ability to execute the programs allows us to perform observational equivalence checks: if
programs p1 and p2 produce the same output for the specification λ, then the search can discard
p1 or p2. Observational equivalence checks can drastically reduce the search space and thus justify
the popularity of Bus (Odena et al., 2021; Shi, Dai, Ellis, & Sutton, 2022; Ameen & Lelis, 2023)
and our choice of Bus in our experiments.

10

Algorithm 2 Bottom-Up Search (Bus)

Procedure: Bus(G, λ)
Require: Grammar G = (V,

∑︁
, R, I), a specification λ

Ensure: Solution program p or ⊥, program bank B
1: s← 1
2: B ← ∅
3: H ← ∅
4: while not timeout do
5: for p in Grow(G, B, s) do
6: o← Execute(p)
7: if (p, o) satisfies λ then
8: return p,B

9: if o /∈ H then
10: B[s].add({p, o})
11: H ← H∪ {o}
12: s← s+ 1

13: return ⊥, B

Procedure: Grow(G, B, s)
Require: Grammar G = (V,

∑︁
, R, I), program bank B, and size s

Ensure: program p of size s
1: for r in R do
2: if arity(r) = 0 and size(r) = s then
3: yield r
4: else
5: for (p1, p2, . . . , pk) in B ×B × · · · ×B do ▷ Operation over values of dictionary B
6: p← r(p1, p2, . . . pk)
7: if size(p) = s and type(pi) = type(r.argi) for i in {1, 2, · · · , k} then
8: yield r(p1, · · · , pk)

11

Size of Programs Set of Programs

1 1,2,3
2 1+3, 2+3, 3+3
3 1+3+3, 2+3+3, 3+3+3
· · · · · ·

Table 2.1: Illustration of Bottom-Up Search Synthesis

Algorithm 2 illustrates the pseudocode of Bus. It begins with an empty program bank, B (Line
2), and an empty program execution map, H (Line 3). Subsequently, it employs the procedure
Grow (Line 5) to synthesize programs in ascending order of size, which is denoted as s. If it
encounters a program, p, that satisfies the provided specification, λ, it returns the solution program
along with the program bank. Line 10 executes the observational equivalence check, where it
compares the output, o, of the execution with the pre-existing execution outputs stored in H. If p is
not observatially equivalent to another program seen in the search, Bus adds it to the program bank
and o to H. The procedure Execute on Line 6 runs the program, which in our context represents
the result of employing p as a heuristic function in IDA* to solve state-space search problems.

The Grow procedure is given the grammar G, a collection of programs B, and a specified
program size s. In the context of Grow, it generates programs of size s using the production
rules denoted by r ∈ R (Lines 1-8). If the production rule r is a terminal rule and the resulting
program matches the size s, it is returned (Line 3). On the contrary, if r is not a terminal rule, the
procedure performs a Cartesian product on all previously observed programs within the program
bank B by utilizing the arity of r. This product results in programs of size s, while ensuring that
each subprogram pi type aligns with the type of arguments argi specified by the production rule r,
i.e., type(pi) = type(r.argi), for i in {1, 2, · · · , k}. For example, the production rule I → I + I in
Figure 2.2 accepts only subprograms of integer type (type(I) = integer) to be combined into a new
program. Function size(·) indicates the number of nodes in the program’s Abstract Syntax Tree
(AST) (Line 7), k represents the arity of the production rule r, and the type check guarantees that
the types of the subprograms (p1, · · · , pk) correspond to the required argument types of r.

Table 2.1 illustrates an example of programs generated using the DSL in Figure 2.2 with Bus.
The set of programs starts with size 1, listing all terminal rules. Subsequently, it combines size 1

programs to create programs of larger sizes through the non-terminal rule I → I + I. Notably,
the program (1 + 1), while potentially generatable, is absent from the program set due to its
observational equivalence with the program 2 (they both produce the same output for any input
value). Consequently, the observational equivalence check significantly decreases the search space
by eliminating potentially redundant programs.

12

Chapter 3

Related Work

Program synthesis has been applied to various domains, including the synthesis of database transac-
tions (Qian, 1990, 1993), bit manipulation tasks (Solar-Lezama et al., 2005; Gulwani & Venkatesan,
2009), string manipulation tasks (Gulwani, 2011), and logic programming (Kodratoff et al., 1990;
Deville & Lau, 1994). Alongside the application to various domains, the search algorithms have
evolved to counter various new challenges that arise and to adapt to different domains. In our work,
we applied program synthesis techniques to find heuristic functions for the puzzles Pancake and Top-
spin. In this chapter, we aim to discuss different search algorithms and various other approaches
that focus on synthesizing improved heuristic functions.

3.1 Symbolic Approaches

There are different categories of program synthesis algorithms. Constraint-based search algorithms
navigate the search space using constraint solving techniques (Solar-Lezama, 2009). In enumerative
search algorithms (Albarghouthi et al., 2013; Lee et al., 2018b; Alur et al., 2017), the search space
is explored systematically by generating programs according to a specific order. Bottom-Up Search
(BUS) (Udupa et al., 2013) and Top-Down Search (Lee et al., 2018a) belong to this category. We
consider the enumerative search algorithms as relevant to the application domain considered for our
work. However, both bottom-up and top-down approaches suffer from an explosion in the size of
the program space for problems of practical interest.

3.2 Neurosymbolic Approach

Shah et al. (2020) introduced a powerful method known as Near, which uses neural networks to
guide the search for programmatic hypotheses. Near performs an A* search (Hart et al., 1968)

13

in a top-down fashion, while guided by a heuristic function that estimates, for each node n in the
tree, a lower bound on the loss value of the best program in the subtree rooted at n.

The heuristic function Near uses is individually trained for each node in the tree during the
search. Near replaces each non-terminal symbol in the partial program that a node represents
with a neural network. Then, it uses a gradient descent algorithm to solve argminΘ L(pΘ, T) (from
1.1), where Θ is the set of weights of the neural networks used to replace the non-terminals of the
program p and pΘ is the resulting neural relaxation of p. The value of L(pΘ, T) after training the
models in pΘ is assumed to be a lower bound on the value of L(p′, T) for all complete programs p′

that can be derived by continuing searching from the partial program p.

Near uses gradient descent to solve argminΘ L(pΘ, T), which requires that the programs in
JGK are differentiable or have a suitable differentiable approximation that can be used in training
and that L is also differentiable. ITE structures are discontinuous, since small changes to the
Boolean expression of the structure are unlikely to change the result of the computation. One can
approximate ITE structures such as if B then A else C with σ(B) · A+ (1− σ(B)) · C, where
σ(·) is the sigmoid function. Although this approximation is suitable when A and B are of the
same type and can be added, it is unclear how to approximate ITE structures when A and B are
semantically different, e.g., A writes in an entry of an array, while B returns an integer. Therefore,
Near fails when G and L are non-differentiable. NeuroSketcher overcomes this issue through
neural language abstraction and two-step search procedure.

3.3 Other Approaches

Nye et al. (2019) use neural networks to generate the sketches. They consider program synthesis
tasks where one can learn in a self-supervised manner. Similarly to Shah et al. (2020), we consider
the more general case where the problem does not necessarily allow for self-supervised training.
Medeiros et al. (2022) also learn sketches, but with imitation learning and in a multi-agent setting;
we learn sketches with the guidance of neural networks.

Neural networks can also be used to learn a latent space with helpful properties such as locality
(i.e., programs near each other have similar “behavior”) for the search for programs (Trivedi, Zhang,
Sun, & Lim, 2022; Liu, Hu, Cheng, yi Lee, & Sun, 2023). This idea was applied in the context of
finding programmatic policies, and locality in the latent space is defined in terms of the behavior of
the policies. It is not clear how to transfer the notion of behavior to problems such as the heuristic
synthesis we tackle.

Previous work on learning heuristic functions collects labeled training instances to learn a heuris-
tic function in a bootstrap procedure, where one learns from the easy instances in the data set, which
allows the search to solve the harder instances that are added to the training set (Jabbari Arfaee,

14

Zilles, & Holte, 2011). The programmatic representation of heuristics allows us to follow a very
different approach, where we learn from small versions of the problems with the goal of generalizing
to larger versions of the problem. The synthesis of programmatic heuristic functions has been ap-
plied to polynomial state spaces, where the generalization to exponentially larger spaces cannot be
tested (Bulitko, Wang, Stevens, & Lelis, 2022). Furthermore, the search in the programmatic space
was not guided, which is similar to our Bus baseline. To our knowledge, this is the first time that
synthesized programmatic heuristics are used to guide the search in exponential spaces. Generalized
planning uses programs to solve shortest-path problems in the context of classical planning (Bonet,
Palacios, & Geffner, 2010; Hu & De Giacomo, 2013; Aguas, Jiménez, & Jonsson, 2018), while we
use programmatic solutions to guide the search.

15

Chapter 4

NeuroSketcher

We present a method that uses neural networks as part of the programs to guide the search even
when the language contains non-differentiable operations and the loss is non-differentiable. We
create a neural abstraction of the original language where the non-differentiable operators of the
language are replaced with neural networks. Similarly to Near, we assume that the neural models
are powerful enough to be used in lieu of fully symbolic sub-programs of a program. Unlike Near,
we do so not only to guide the search but also to achieve a fully differentiable language. Another
difference from Near is that the output of our search in the neural-abstracted language space is
possibly a program with neural networks as sub-programs. Since we are interested in fully symbolic
programs that are interpretable, we treat the output of this search as a program sketch, where the
neural sub-programs are treated as holes (Solar-Lezama, 2009) that need to be replaced with fully
symbolic programs in a second step. This second step searches in the space of the original language,
which contains non-differentiable symbols. Unlike the first search, this second search is not guided
by neural networks.

4.1 Neural Language Abstractions

A key component of our approach is a neural language abstraction, which we define below and
provide an example.

Definition 1 (Neural Language Abstraction). Let G = (Σ, V,R, I) be a context-free grammar defin-
ing a programming language. Also, let δΣ ⊆ Σ be symbols related to all differential operators of the
language. We define a neural abstraction δG = (Σ′, V ′, R′, I) of G where Σ′ = δΣ ∪ FΘ. Here,
FΘ is a set of neural models with trainable parameters Θ, with one model for each combination of
input and output types of non-differentiable operators in G. The set of production rules R′ ⊆ R and
non-terminal symbols V ′ ⊆ V account for all rules and symbols that can be reached from I after

16

removing the rules that are not related to Σ′.

Consider the following example for the grammar described in Figure 1.2, which is provided again
below for convenience.

I→sum(I) |map(I,I)

|if(B) then I else I

|f(x):I |I2 |I+I |x |v

B→I > 0 |I < 0 |I == 0

Example 1. The neural language abstraction δG of the language shown in Figure 1.2 is the follow-
ing.

I→sum(I) |map(I,I)|f(x):I |I2 |I+I |x |v

|fΘ(I) |gΘ(I) |zΘ(I)

Here, the ITE structure of the original language is replaced with three trainable model architectures:
fΘ(I), gΘ(I), and zΘ(I). We have one model architecture for each possible combination of input-
output values. Architecture fΘ : Ru → R is recurrent as it receives a sequence of values as input
and returns a scalar. This architecture handles programs using the sum symbol. Architecture gΘ :

Ru → Ru is a sequence-to-sequence architecture handling program with the map operation. Finally,
zΘ : R → R handles programs that receive a scalar and return a scalar to handle operations with
variable x. The non-terminal B and all production rules related to it are not present in δG because
they are no longer reachable from I once the ITE is removed from it.

Neural language abstractions can only be helpful if they do not reduce the original language to a
trivial language where the initial symbol can only be transformed into neural models. For example,
an abstraction would not be helpful for a language of the form I → if(B) then C else C,
with non-terminals B and C, as the initial symbol I would only be transformed into a set of neural
models. The result of the synthesis would be a trained neural network, as opposed to a neurosymbolic
program that represents a sketch that can be completed without neural guidance.

4.2 Using Neural Language Abstractions

We call our approach NeuroSketcher for it uses neural networks to synthesize a sketch that is
later completed with a fully symbolic search. NeuroSketcher receives as input a base synthesizer

17

S, a DSL G and its neural abstraction δG, a training set T , and a loss function L; NeuroSketcher

returns a program p ∈ JGK that minimizes L(p, T).

NeuroSketcher uses S to search in the space of δG, which returns a possibly neurosymbolic
program pθ that also represents a sketch once the neural networks in pθ are removed. S evaluates
each program p′θ it encounters in this neurosymbolic search by computing its loss L with respect
to the training data T . If p′θ contains one or more neural networks, S employs a gradient descent
algorithm to train the neural models in p′θ. S returns the program pθ encountered in the search in
the space JδGK that minimizes L(pθ, T). NeuroSketcher then uses S to search in the space of
the original language G for programs to fill the holes of pθ. The best program p with respect to L
encountered in this second search is returned as the output of NeuroSketcher.

NeuroSketcher works with any base synthesizer that is able to explore the spaces of δG and
G. For example, if using Bus, NeuroSketcher runs the search for a given time and/or memory
limit and returns the neurosymbolic program seen in the search that better optimizes the loss.
Then, it can rerun the Bus algorithm while using the programs encountered to fill in the holes of
the sketch. Similarly, NeuroSketcher can use top-down search algorithms, exactly as described
for Bus. NeuroSketcher is able to obtain guidance from neural models for any search algorithm,
including bottom-up approaches, because it divides the search into two parts: neural networks
determine the most promising sketch, which is completed with a second search. In practice, one
might choose to return the top k sketches and try to fill all of them in the second step; we used
k = 1.

4.3 NeuroSketcher Algorithm

The pseudocode of the NeuroSketcher algorithm is presented in Algorithm 3. It begins by
initializing the sketch bank Qk, which holds the top k sketches on Line 1. Line 2 initializes the
bank of best programs, which holds the top n programs for the entire search. The search for the
best k sketches proceeds until a timeout is reached on Line 3. NextSketch on Line 4 generates
the neurosymbolic program, which acts as a sketch using the base synthesizer S. The sketch is
then trained and evaluated using loss function L1 on Line 5, employing the grammar δG. Line 6
inserts the newly found sketch into Qk, which contains the top k sketches based on the calculated
loss l. Line 7 iterates over all the selected best k sketches and fills the neural holes with symbolic
programs. The symbolic programs are generated using the grammar G with the base synthesizer S
on Line 9. The newly generated programs are evaluated on Line 10 with respect to loss function
L2. Line 11 inserts the newly generated program into Hn, which contains the top n programs based
on loss l′. Finally, Line 12 returns the top n programs produced using NeuroSketcher. The loss
function L1 must be differentiable, where as the loss function L2 need not be differentiable.

18

Algorithm 3 NeuroSketcher

Procedure: NeuroSketcher(S,G, T, δG,L1,L2, n, k)
Require: Base synthesizer S, Grammar G, Training set T , Neural abstraction δG, Sketch loss

function L1, Program loss function L2, number of best programs n, number of sketches k
Ensure: Best n programs, Hn

1: Qk ← ∅
2: Hn ← ∅
3: while not timeout do
4: pθ ← NextSketch(S, δG)
5: l← TrainEvaluate(pθ, T,L1)
6: Qk.insert({l, pθ})
7: for sketch in Qk do
8: while not timeout do
9: p← NextProgram(S,G, sketch)

10: l′ ← Evaluate(p, T,L2)
11: Hn.insert({l′, p})
12: return Hn

19

Chapter 5

Empirical Results

5.1 Experiment Details

In this section, we discuss the Domain-Specific Language used for generating heuristics for both
Pancake and Topspin puzzles, the loss functions employed for synthesizing sketches and fully sym-
bolic heuristics, the baselines used for comparing the efficacy of our method, and details about the
training and test data used for our experiments.

5.1.1 Domain-Specific Language and Its Abstraction

Figure 5.1 shows the DSL we use in our experiments. The language assumes that the program
receives a state as input (e.g., [5, 2, 4, 1, 3]). The function neighbor receives a vector v and an
integer d and returns a vector where the numbers in v are shifted to the right by d positions. For
example, neighbor(state, 1) returns [3, 5, 2, 4, 1] for our state [5, 2, 4, 1, 3]. The language also
has discontinuous operations, such as if-then-else structures and modulo (%).

The neural language abstraction we consider replaces all production rules for non-terminal F
with neural networks that receive a real value and output another real value; the networks replace
the operations one can derive with the production rules for F in the language. Note that this implies
that the non-terminal symbols ITE and B are no longer reachable and are thus removed from the
language. With this, all discontinuous operations of the original language are removed, and the
abstraction only accepts strings representing differentiable programs.

20

I →sum(L) |P+P |M-M
P →sum(L) |M |C
M →sum(L) |P |C
L →state |A+A |A-A |mapk(F,K)
K →state |A+A |A-A |N
A →state |N |mapk(F,K)
C →-1 |0...9 |len |var1 |var2 |var3
D →C+C |C-C |C
N →neighbor(state,D)

F →F+F |F-F |F%F |F*F |F/F |min(F,F) |
max(F,F) |abs(F) |ITE |C

ITE →IF(B) THEN (F) ELSE (F)

B →F<F |F<=F

Figure 5.1: Language for permutation sorting problems.

5.1.2 Loss Functions

We synthesize programmatic heuristic functions with the goal of reducing the size of the IDA* search
tree. However, the size of the search tree is not a suitable loss function for training neural models
in NeuroSketcher’s neurosymbolic programs. This is because the computation of the size of the
tree requires one to run IDA*, and the gradients do not flow through IDA*’s execution. Instead,
we use the mean squared error (MSE) used in previous work (Jabbari Arfaee et al., 2011), which
measures the squared difference between the h∗-value and the predicted h-value.

Since the second search NeuroSketcher performs is not guided by neural networks, the loss
used in this search does not have to be differentiable. Therefore, we can use the size of the IDA*
search tree as the loss. For each programmatic heuristic function h NeuroSketcher considers in
its second search, we run IDA* with h with a limit of expansions of 4, 000 nodes for each initial
state in a set of training problems T . NeuroSketcher returns the h that expands fewer states
while trying to solve the problems in T . Here, we did not aim to optimize any abstract metric, as
is the case in the work of Wilt and Ruml (2016), which results in finding better heuristic functions
that minimize the mean node expansion. Instead, we considered the mean node expansion itself
as the loss function. Additionally, we employed IDA* as the search algorithm rather than greedy
best-first search algorithms.

5.1.3 Baselines

The two core baselines we consider are: (i) Bus searching in the original programmatic space
while evaluating the programs in terms of the IDA* search tree size and (ii) Bus searching in

21

NeuroSketcher’s neural abstraction space while optimizing for MSE. Our goal with the first
baseline is to measure the importance of the guidance the neural networks provide, while our
goal with the second baseline is to measure the importance of the second search handling non-
differentiable loss functions and languages. Since Near also searches in differentiable spaces and
uses differentiable loss functions, we call the second baseline Near.

We also use heuristic functions as baselines in our experiments. In particular, we use the
admissible GAP heuristic for the Pancake domain (Helmert, 2010). We also adapt the GAP heuristic
to Topspin by dividing the GAP value by 2, so that it remains admissible (in Topspin, each action
can fix two gaps at once). A gap refers to a pair of adjacent tokens or numbers in the puzzle that
differ by more than 1. For both domains, we train an LSTM (Hochreiter & Schmidhuber, 1997) that
encodes a heuristic function. We use a recurrent architecture because it accepts inputs of varied
length, so we could use the learned model in puzzles that are larger than those used in training.
The details of the parameters used with the LSTMs are provided in the Appendix.

In our experiments, we did not consider heuristic functions that do not generalize strongly. For
example, we did not consider fully connected neural networks, as they only generalize to states of
the same space used in training. For the same reason, we also did not consider pattern database
heuristics (Culberson & Schaeffer, 1998).

We used five seeds for all methods that use neural networks and present the average results and
standard deviation, which was zero for NeuroSketcher and LSTMs. For the former because it
always finds the same sketches and for the latter because it could not learn effective heuristics.

The Bus search generates a potentially large number of programs in batches. Once the programs
are generated, we evaluate them in parallel. For NeuroSketcher and Near, we use 100 CPUs
for 0.5 hours of computation for NeuroSketcher’s first search and for Near’s search; we then
use 1000 CPUs for 1.5 hours for NeuroSketcher’s second search. For the baseline Bus, we
use 500 CPUs for 4 hours of computation. In total, we give the Bus baseline an advantage since
NeuroSketcher uses 1550 CPU hours of computation, while the baseline Bus uses 2000 CPU
hours. All experiments were run with 12GB of RAM.

5.1.4 Training and Test Instances

NeuroSketcher synthesizes functions for small versions of the problem domain for which the
labels (the h∗-values) are readily available by solving instances with uninformed algorithms such
as breadth-first search. We do not use training instances from the state space for which we are
interested in solving instances. We use training instances of sizes 10, 11, 12, and 14 for the Pancake
domain and of sizes (10, 4), (11, 4), (12, 4), and (14, 4) for Topspin.

In our experiments, for both domains, we used 20,000 instances of size 10, 10,000 instances

22

of size 11, and 8,000 instances of size 12 to train the neural networks in the first search of Neu-

roSketcher, the neural networks in the Near search, and also the LSTMs. These training
instances are generated by performing a breadth-first search from the goal state, which is limited to
1 million expansions. The instances are randomly selected from the last layer of this search. Since
the search is performed from the goal, the h∗-values of the states are readily available.

In the second search of NeuroSketcher, as the loss function, we perform IDA* searches in
10 randomly generated instances of size 10, with a limit of 4,000 node expansions, to select the
best 100 programs encountered in the search. We then select the 5 programs out of the 100 that
minimize the size of the IDA* search tree on 1000 random instances of puzzles of size 14. We use
the computationally cheaper IDA* evaluation (size 10) to select a set of promising programs that
are evaluated with the computationally more expensive IDA* evaluation (size 14). We perform this
step, where we select the most promising programs according to the size of the IDA* search tree in
puzzles of size 14, for all baselines: Bus, Near, and LSTMs.

To evaluate how well the programmatic heuristic functions generalize, we test them in much
larger state spaces. For the Pancake domain we experiment with problems of size 70 and 90, while
for the topspin domain we experiment with problems of sizes (18, 4) and (20, 4).

5.2 Discussion

We hypothesize that NeuroSketcher synthesizes more effective heuristic functions than both
the Bus search in the original programmatic space and the Near search in the neural language
abstraction space. This is because NeuroSketcher leverages both the guidance that neural
networks provide, which Bus misses, and the guidance of the non-differentiable loss function, which
Near misses.

Figure 5.2 shows the results for Pancake (top) and Topspin (bottom). We present the best 5
heuristic functions NeuroSketcher returns. They are indicated as NSx, where x is the number
of the heuristic. For example, NS1 is the heuristic function that minimizes the IDA* search tree in
the 1000 instances of size 14. We only show the best heuristic function obtained with Bus, Near,
and LSTM for clarity and because the best 5 heuristics of these methods were all very similar to
each other across all domain sizes. The y-axis of the plots shows the number of instances solved
from a pool of 1,000 randomly generated instances. The x-axis shows the number of expansions
IDA* performs to solve a number of instances. For example, the point y where a line intersects with
x = 250 tells how many problems IDA* can solve while expanding at most 250 nodes per instance.

We include inflated versions of the GAP heuristic for Pancake and of the adapted GAP for
Topspin, which we also refer to as “GAP” in the plots. For example, 2×GAP means that we
multiply the h-values by 2. We acknowledge the availability of a simple programmatic policy

23

Figure 5.2: Evaluation of the different heuristic functions on Pancake and Topspin puzzles of dif-
ferent sizes. The y-axis shows the number of problems solved, while the x-axis shows the number
of nodes expanded per instance.

24

Figure 5.3: FeedForward (NN) and LSTM Study

that can solve any N-Pancake puzzle within 2×N actions. This policy operates by sequentially
arranging the largest pancake that is not in its original order, flipping it to the top of the puzzle,
and then flipping the remaining pancakes to position it in its corresponding goal state position.
We did not include it in our evaluation because our goal was to produce programmatic heuristic
functions for IDA* rather than programmatic policies. Moreover, the language we consider does not
include the heuristic function that would allow IDA* to simulate such a programmatic policy. Since
finding effective programmatic heuristic functions is still challenging for existing program synthesis
approaches, the Pancake puzzle is still a relevant benchmark problem to our research question.

The results shown in Figure 5.2 support our hypothesis as the heuristics NeuroSketcher

synthesizes outperform the other heuristics. While IDA* can solve a reasonable number of instances
of the smaller 14-Pancake puzzle with some of the baseline heuristics, it can solve only a few instances
of the larger 70- and 90-Pancake puzzles. The 5 heuristic functions NeuroSketcher synthesized
for the Pancake domain allowed IDA* to solve almost all instances in the three sizes tested. It
is remarkable that our heuristics outperform even the inflated version of GAP, which prior to our
work was the best bounded-suboptimal heuristic function for this domain. Since not all baselines
could solve all instances of the puzzles, we did not compare the solution quality the search algorithm
returns with a given heuristic function. It would be uncertain to yield any meaningful comparison
if there are no common instances solved across all the baselines.

The results in Topspin also support our hypothesis, but not all heuristics NeuroSketcher

synthesized generalized to larger puzzles. For example, while NS3 performs well in the (14, 4)-
Topspin puzzle, IDA* with it failed to solve any instances of the (20, 4)-Topspin. NS2 and NS5
generalized strongly as it allows IDA* to perform well on all sizes of Topspin tested. In particular,
these two heuristics outperform all evaluated baselines.

Our results suggest that, while our programmatic representation allows for strong generalization,
the neural networks we considered in our experiment could not learn strong heuristics, let alone

25

generalize. We also attempted to train fully connected neural networks for puzzles of size 10 in
Figure 5.3. In this case, we could learn good heuristic functions. The negative LSTM results can
be explained by a mixture of recurrent models being harder to train with their inability to consider
non-differentiable loss functions. The latter can also explain the results of Near. It is also possible
that the neural heuristic functions represented by LSTM and Near are causing IDA* to suffer from
the problem of quadratic re-expansions with respect to the expansions in its last iteration. This
occurs when IDA* expands only one new node at each iteration (Helmert, Lattimore, Lelis, Orseau,
& Sturtevant, 2019). This could also place LSTM and Near at a disadvantage compared to other
heuristic functions.

We conjecture that any system that does not account for the size of the IDA* search tree will
not generalize strongly, as MSE might be a poor proxy for the tree size. Although Bus accounts for
the right loss, it lacks search guidance and only synthesizes small programs, which result in weak
heuristics. The intuition for NeuroSketcher’s success is that it uses the guidance of the neural
networks to learn sketches whose holes are easy to fill, as the sketches are in “promising regions” of
the programmatic space.

5.2.1 Analysis of hAG for the Pancake Puzzle

Due to the programmatic representation of our heuristics, we can formally analyze them. We prove
that one of our best performing heuristics (NS3 in Figure 5.2) in terms of number of expansions to
solve large instances of the Pancake puzzle is bounded suboptimal. We call it the absolute bounded
gap (hAG):

sum(map(min(5,(2 * (abs(var1 - var2)))),

state, neighbor(state, 1)) .

This heuristic function sums the absolute difference between adjacent tokens multiplied by 2 and
bounded by 5. For example, the hAG-value for state [5, 2, 4, 1, 3] is computed as follows: min(5, 2×
|5 − 2|) + min(5, 2 × |2 − 4|) + min(5, 2 × |1 − 4|) + min(5, 2 × |1 − 3|) + min(5, 2 × |3 − 5|) =

5 + 4 + 5 + 4 + 4 = 22. We can show the following about hAG.

Property 1. For any state n we have hAG(n) < 5(h∗(n)+N+1), where N is the number of tokens
in a Pancake puzzle.

Proof. Let G(n) be the number of gaps in the state n, i.e., the number of adjacent tokens in n that
differ by more than 1. Also, n[i] be the i-th token in n and the first token is at index 0. G(n)

also counts the difference between n[0] and n[N − 1] as a possible gap. Since each action in the
Pancake puzzle can fix one gap and G(n) counts the gap between the first and last tokens, we have

26

G(n) − 1 ≤ h∗(n). We also have hAG(n) ≤ 5G(n) + 2N < 5(G(n) +N) because the value hAG(n)

adds for each gap is at most 5 and for each non-gap position is 2. Rewriting the last inequality, we
obtain

G(n) >
hAG(n)

5
−N =⇒ h∗(n) >

hAG(n)

5
−N − 1 ,

which gives hAG(n) < 5(h∗(n) +N + 1).

Since N ≈ h∗(n) for many instances, this property guarantees that IDA* searching with hAG does
not return solutions for states n with a cost much higher than 10 × h∗(n). The GAP heuristic
multiplied by 10 gives a similar property and, as we showed in Figure 5.2 for 90-Pancake, IDA*
with hAG solved all 1,000 instances with at most 12,000 expansions per instance, while IDA* with
GAP multiplied by 10 did not solve any instances with the same number of expansions.

5.2.2 Analysis of hOG for the Topspin Puzzle

We also prove that one of our best performing heuristics (NS5 in Figure 5.2) in terms of number
of expansions to solve large instances of the Topspin puzzle is bounded suboptimal. We call it the
ordered gap (hOG) because it penalizes the state based on the number of pairs of tokens that are
unordered:1

sum(map(min(5, abs(var2 % (-1 - var1))

state, neighbor(state, 1)) .

This heuristic function sums the absolute value of the modulo between each of the i-th token and
the negative value of the (i− 1)-th token added to 1; this operation is bounded by 5. For example,
the hOG-value for state [5, 2, 4, 1, 3] is computed as follows:

min(5, abs(5%(−1− 3))) + min(5, abs(2%(−1− 5)))+

min(5, abs(4%(−1− 2))) + min(5, abs(1%(−1− 4)))+

min(5, abs(3%(−1− 1))) = 3 + 4 + 4 + 4 + 1 = 16

We have the following about hOG.

1The number of unordered tokens is different from the number of gaps, as defined in the GAP heuristic. For
example, the number of gaps in [5, 4, 3, 2, 1] is one, which is given by the difference between token 1 and an imaginary
table. The number of unordered tokens is five, one for each adjacent token, including 1 and 5.

27

Property 2. For any state n we have hOG(n) ≤ 10 · h∗(n) + 5, where N is the number of tokens
in a (N, 4)-Topspin.

Proof. Let G(n) be the number of unordered pairs in the state n, i.e., the number of adjacent tokens
in n that does not resemble their final order in goal state. Since each action in the Topspin puzzle
can fix at most 2 unordered pairs, we have G(n) ≤ 2h∗(n). We also have hOG(n) ≤ 5(G(n) + 1)

because hOG(n) evaluates to at most 5 for each unordered pair and 0 for each ordered pair except
for the pair of tokens [N, 1]. For every ordered pair (x, y), we have y = x + 1, except for the pair
[N, 1]. Therefore hOG(n) evaluates each ordered pair to 0 as shown below

|y%(−1− x)| = |y%(−1− (y − 1))|

= |y%(−1− y + 1)|

= |y%(−y)| = 0

Rewriting the last inequality, we obtain

G(n) ≥ hOG(n)

5
− 5 =⇒ 2h∗(n) ≥ hOG(n)

5
− 5 ,

which gives hOG(n) ≤ 10 · h∗(n) + 5.

28

Chapter 6

Conclusions

In this dissertation, we presented NeuroSketcher, a two-step search algorithm that uses neural
networks to fill the holes of programs as a means of guiding the search in programmatic spaces
even for non-differentiable programs and loss functions. The first search uses an abstraction of the
language where the non-differentiable operations are replaced with neural networks, thus resulting
in a language of differentiable programs. This first search must optimize for a differentiable loss
function. The program the first search returns can be seen as a sketch, as one creates holes in it
by removing its neural models. The holes are filled in a second uninformed search in the original
programmatic space. Since the second search does not use neural networks, it can use any loss
function, even non-differentiable ones. NeuroSketcher synthesized heuristic functions that out-
performed some of the best heuristics known for the Pancake and Topspin puzzles, as well as the
heuristics learned with the baseline systems. Finally, we showed how we can prove that some of
these heuristics are bounded-suboptimal.

29

References

Aguas, J. S., Jiménez, S., & Jonsson, A. (2018). Computing hierarchical finite state controllers with
classical planning. Journal of Artificial Intelligence Research, 62, 755–797.

Albarghouthi, A., Gulwani, S., & Kincaid, Z. (2013). Recursive program synthesis. In International
Conference Computer Aided Verification, CAV, pp. 934–950.

Alur, R., Radhakrishna, A., & Udupa, A. (2017). Scaling enumerative program synthesis via divide
and conquer. In Proceedings of the Tools and Algorithms for the Construction and Analysis
of Systems conference, pp. 319–336. Springer Berlin Heidelberg.

Ameen, S., & Lelis, L. H. (2023). Program synthesis with best-first bottom-up search. Journal of
Artificial Intelligence Research.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2016). Deepcoder: Learning
to write programs. arXiv preprint arXiv:1611.01989.

Barke, S., Peleg, H., & Polikarpova, N. (2020). Just-in-time learning for bottom-up enumerative
synthesis. Proceedings of the ACM on Programming Languages, 4 (OOPSLA), 1–29.

Bastani, O., Pu, Y., & Solar-Lezama, A. (2018). Verifiable reinforcement learning via policy ex-
traction. In Proceedings of the International Conference on Neural Information Processing
Systems, pp. 2499–2509. Curran Associates Inc.

Bonet, B., Palacios, H., & Geffner, H. (2010). Automatic derivation of finite-state machines for be-
havior control. In Proceedings of the AAAI Conference on Artificial Intelligence, p. 1656–1659.
AAAI Press.

Bulitko, V., Wang, S., Stevens, J., & Lelis, L. H. (2022). Portability and explainability of synthesized
formula-based heuristics. In Proceedings of the International Symposium on Combinatorial
Search, Vol. 15, pp. 29–37.

Culberson, J. C., & Schaeffer, J. (1998). Pattern databases. Computational Intelligence, 14 (3),
318–334.

Deville, Y., & Lau, K.-K. (1994). Logic program synthesis. The Journal of Logic Programming,
19-20, 321–350. Special Issue: Ten Years of Logic Programming.

30

Ellis, K., Ritchie, D., Solar-Lezama, A., & Tenenbaum, J. (2018). Learning to infer graphics pro-
grams from hand-drawn images. In Advances in Neural Information Processing Systems, pp.
6059–6068.

Ellis, K., Wong, C., Nye, M. I., Sablé-Meyer, M., Cary, L., Morales, L., Hewitt, L. B., Solar-Lezama,
A., & Tenenbaum, J. B. (2020). Dreamcoder: Growing generalizable, interpretable knowledge
with wake-sleep bayesian program learning. CoRR, abs/2006.08381.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, Vol. 9 of Proceedings of Machine Learning Research, pp. 249–256. PMLR.

Gulwani, S. (2011). Automating string processing in spreadsheets using input-output examples.
ACM Sigplan Notices, 46 (1), 317–330.

Gulwani, S., & Venkatesan, R. (2009). Component based synthesis applied to bitvector circuits.
Tech. rep. MSR-TR-2010-12.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4 (2), 100–107.

Helmert, M. (2010). Landmark heuristics for the pancake problem. In Proceedings of the Interna-
tional Symposium on Combinatorial Search.

Helmert, M., Lattimore, T., Lelis, L. H. S., Orseau, L., & Sturtevant, N. R. (2019). Iterative
budgeted exponential search. CoRR, abs/1907.13062.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9 (8),
1735–1780.

Hu, Y., & De Giacomo, G. (2013). A generic technique for synthesizing bounded finite-state con-
trollers. Proceedings of the International Conference on Automated Planning and Scheduling,
23 (1), 109–116.

Jabbari Arfaee, S., Zilles, S., & Holte, R. C. (2011). Learning heuristic functions for large state
spaces. Artificial Intelligence, 175 (16), 2075–2098.

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA.

Kodratoff, Y., Franova, M., & Partridge, D. (1990). Logic programming and program synthesis. In
Systems Integration ’90. Proceedings of the First International Conference on Systems Inte-
gration, pp. 346–355.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27 (1), 97–109.

31

Lee, W., Heo, K., Alur, R., & Naik, M. (2018a). Accelerating search-based program synthesis
using learned probabilistic models. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 436–449. Association for Computing
Machinery.

Lee, W., Heo, K., Alur, R., & Naik, M. (2018b). Accelerating search-based program synthesis using
learned probabilistic models. ACM SIGPLAN Notices, 53 (4), 436–449.

Lippi, M., Ernandes, M., & Felner, A. (2016). Optimally solving permutation sorting problems with
efficient partial expansion bidirectional heuristic search. AI Communications, 29 (4), 513–536.

Liu, G.-T., Hu, E.-P., Cheng, P.-J., yi Lee, H., & Sun, S.-H. (2023). Hierarchical programmatic
reinforcement learning via learning to compose programs..

Medeiros, L. C., Aleixo, D. S., & Lelis, L. H. S. (2022). What can we learn even from the weakest?
Learning sketches for programmatic strategies. In Proceedings of the AAAI Conference on
Artificial Intelligence. AAAI Press.

Nye, M., Hewitt, L., Tenenbaum, J., & Solar-Lezama, A. (2019). Learning to infer program sketches.
In Chaudhuri, K., & Salakhutdinov, R. (Eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, pp. 4861–
4870. PMLR.

Odena, A., Shi, K., Bieber, D., Singh, R., Sutton, C., & Dai, H. (2021). BUSTLE: Bottom-up pro-
gram synthesis through learning-guided exploration. In International Conference on Learning
Representations.

Qian, X. (1990). Synthesizing database transactions. In Proceedings of the 16th International
Conference on Very Large Data Bases, VLDB ’90, p. 552–565, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Qian, X. (1993). The deductive synthesis of database transactions. ACM Trans. Database Syst.,
18 (4), 626–677.

Shah, A., Zhan, E., Sun, J. J., Verma, A., Yue, Y., & Chaudhuri, S. (2020). Learning differentiable
programs with admissible neural heuristics..

Shi, K., Dai, H., Ellis, K., & Sutton, C. (2022). Crossbeam: Learning to search in bottom-up
program synthesis. In International Conference on Learning Representations.

Solar-Lezama, A. (2009). The sketching approach to program synthesis. In APLAS.

Solar-Lezama, A., Rabbah, R., Bodík, R., & Ebcioğlu, K. (2005). Programming by sketching for bit-
streaming programs. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, p. 281–294, New York, NY, USA. Association
for Computing Machinery.

32

Trivedi, D., Zhang, J., Sun, S.-H., & Lim, J. J. (2022). Learning to synthesize programs as inter-
pretable and generalizable policies..

Udupa, A., Raghavan, A., Deshmukh, J. V., Mador-Haim, S., Martin, M. M., & Alur, R. (2013).
Transit: specifying protocols with concolic snippets. ACM SIGPLAN Notices, 48 (6), 287–296.

Valkov, L., Chaudhari, D., Srivastava, A., Sutton, C. A., & Chaudhuri, S. (2018). Houdini: life-
long learning as program synthesis. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 8701–8712.

Wilbur, E. (2001). Topspin: Solvability of sliding number games. Rose-Hulman Undergraduate
Mathematics Journal, 2.

Wilt, C., & Ruml, W. (2016). Effective heuristics for suboptimal best-first search. The Journal of
Artificial Intelligence Research, 57, 274–306. 2016.

Young, H., Bastani, O., & Naik, M. (2019). Learning neurosymbolic generative models via program
synthesis. In International Conference on Machine Learning (ICML).

33

Appendix

A LSTM Implementation Details

The LSTM uses a fully connected unit with two layers of 128 units with ReLU activation functions.
The weights are randomly initialized with the method of Glorot and Bengio (2010) and the model
is trained with Adam’s optimizer (Kingma & Ba, 2015) with a learning rate of 0.001 for 20 epochs.
Similarly to the neurosymbolic models trained in the first search of NeuroSketcher, we use the
numbers from 1 to N as input, as a one-hot encoding would require a variable size for puzzles of
different sizes.

B Near with Multiple Seeds

We trained the Near program with 5 different random seeds to study the effect of weight initializa-
tion on the performance of Near in guiding the IDA* with 1000 random instances of 14-Pancake
and (14,4)-Topspin puzzles and no substantial deviation in performance is observed, as shown in
Figure 6.1. The standard deviation is almost zero, as the error bands do not appear around the line
representing Near.

C Study on the Input Encoding for Neural Models

We trained the LSTM and FeedForward (NN) networks on Pancake data of size 10 and used them
to guide IDA* on 1000 random instances of 10-Pancake with integer data input (LSTM, NN)
as well as one-hot encoding of the training data (LSTM_E, NN_E). From Figure 6.2, we note
that LSTM performed better with the integer representation compared to the one-hot encoding
representation. This possibly happens because the input size of the one-hot encoding is longer,
making it more difficult for the model to learn. For example, the 3-Pancake state [2, 3, 1], which is
given in the integer representation used in our experiments in the dissertation, can be represented
as [0, 1, 0, 1, 0, 0, 0, 0, 1] with a one-hot encoding. The one-hot encoding is a factor N longer than

34

Figure 6.1: Study with multiple seeds for Near.

Figure 6.2: Data Representation Study

our integer encoding. These results justified our choice of data representation for our experiments.
Although NN_E performed slightly better than NN, NN cannot be used in our experiments because
we learn from a small input size and attempt to generalize to larger input sizes, and NN cannot
deal with a change in input size.

35

	Abstract
	Preface
	Acknowledgements
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Problem Formulation
	Contributions

	Background
	Heuristic Search
	Iterative Deepening A* (IDA*)
	Problem Domains: Permutation Sorting Puzzles
	Program Synthesis
	Bottom-Up Search (Bus)

	Related Work
	Symbolic Approaches
	Neurosymbolic Approach
	Other Approaches

	NeuroSketcher
	Neural Language Abstractions
	Using Neural Language Abstractions
	NeuroSketcher Algorithm

	Empirical Results
	Experiment Details
	Domain-Specific Language and Its Abstraction
	Loss Functions
	Baselines
	Training and Test Instances

	Discussion
	Analysis of hAG for the Pancake Puzzle
	Analysis of hOG for the Topspin Puzzle

	Conclusions
	References
	Appendix
	LSTM Implementation Details
	Near with Multiple Seeds
	Study on the Input Encoding for Neural Models

