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Abstract

Surprisal estimated by language models is predictive of reading time in first-language

(L1) reading. Research is emerging to determine whether this observation extends

to reading in a second language (L2). Current attempts to characterize differences

in the predictive power of surprisal for L1 and L2 reading times lack exploration of

the reader’s language background. As such, this thesis aims to evaluate the per-

formance of surprisals derived from various language models for predicting English

reading times of people with different L1s. To this end, we trained nine language

models that varied in the extent of syntactic information, lexical information, and

preceding context they used to compute surprisal. Next, we developed generalized

additive mixed models to predict the English reading times of L1 speakers of English,

Chinese, Korean, and Spanish using surprisal. Our results showed several common-

alities. First, the best-performing surprisal for all language backgrounds was derived

from a standard n-gram or an n-gram with added part-of-speech tags. Second, the

lexical portion of total surprisal from a probabilistic context-free grammar performed

more poorly than the syntactic portion. Last, out of the surprisals estimated us-

ing only syntactic information, those that accounted for the hierarchical structure of

sentences outperformed the one based purely on sequential representations. Apart

from these similarities, we observed differences by language background. It appears

that surprisal computed using richer context performed better for L1 speakers of left-

branching languages. It also seems that surprisals derived using hierarchical syntactic

information performed better for languages with a different word order than English.

Further research is needed to fully characterize these differences in performance in
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terms of the linguistic features of the reader’s L1 and the way each language model

computes surprisal. Our work shows that a variety of language models produce sur-

prisals predictive of L1 and L2 reading times in English. Since the performance of

these surprisals varied by the reader’s L1, our work suggests that it is important to

consider language background when using language models in the study of L2 reading.
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The online program used to collect the reading time data used in this thesis was

made by Max Helfrich. He collected the data with approval from the University of
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and retrained these models.
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in the repository with reference to the code’s original source.
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Chapter 1

Introduction

Reading is often taken for granted, but the process of constructing meaning from

written text is complex and remarkable. Just as astonishing is the vast array of

languages and the variety of their writing systems and syntactic structures. These

differences influence the mechanisms by which readers understand written texts. Yet

many aspects of reading are fundamentally the same across languages (Li et al.,

2014). One such example is the anticipation of upcoming words during reading. This

capacity for prediction plays a key role in first-language (L1) reading (Huettig, 2015;

Kuperberg & Jaeger, 2016; F. Smith, 1975). As observed across a variety of languages,

highly predictable words are read more quickly (Ehrlich & Rayner, 1981; Fernández

et al., 2014; Kliegl et al., 2004; Rayner & Well, 1996; Yun et al., 2017). However, less

is understood about the extent to which prediction plays a role during reading in a

second or additional language (L2) (Berzak & Levy, 2022; Chun, 2020; Grüter et al.,

2014). Furthermore, the impact of language background when reading in an L2 has

not yet been adequately explored. Apart from gaining a deeper understanding of how

we process written language, understanding differences in L1 and L2 reading is also

critical for informing instructional strategies to support language acquisition.

The predictability of a word can be quantified using surprisal, a measure of the

unexpectedness of a word given its context. Surprisal can be computed by language

models, of which there are many. Each model has a different way of computing sur-
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prisal based on the amount of preceding context used and the degree of syntactic and

lexical information included in the training data. In agreement with research on word

predictability and reading, surprisal has been found to predict reading times, with

low surprisal words (i.e., more predictable words) being read more quickly (Goodkind

& Bicknell, 2018; Hale, 2001; Hale et al., 2018; N. J. Smith & Levy, 2013). Although

some research has been done regarding the utility of surprisal for predicting L2 reading

times (de Varda & Marelli, 2022), there still lacks exploration of language background.

One avenue to explore the relationship between language background and L2 reading

is to understand how surprisal derived from different language models differentially

predicts reading times for people with different language backgrounds. As such, we

set out to answer the question: What language models produce surprisals that best

predict reading times of English speakers from various language backgrounds?

In the coming chapters, we will provide background about how several language

models compute surprisal values and the differences in writing systems and syntactic

structures of languages. Next, we will provide more context to explain where our

work is situated on the horizons of understanding surprisal’s predictive capability in

L2 reading. We will describe the data collection procedure of the self-paced reading

time data we used, the details of our language model training, and the development

of generalized additive mixed models (GAMMs) that use surprisal to predict reading

times. We will share our results and discuss our findings in the context of existing

knowledge about differences and similarities between L1 and L2 reading as well as

language background. Finally, we will conclude by sharing the key insights that

answer our research question.
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Chapter 2

Background

Language models assign probabilities to sequences of words. These sequences can

include phrases, sentences, paragraphs, essays, and longer texts. Language models

are useful in natural language processing tasks such as machine translation, speech

recognition, question answering systems, and spam detection. They have also been

used in psycholinguistics to help us understand sentence processing during reading.

To this end, language models can be used to compute surprisal, a measure of how

unexpected a word is given its context. The surprisal si of a word wi in a sentence

is defined as si = −loge(P (wi|w1, w2, ...wi−1)). Although this definition remains the

same, the surprisals produced from different language models can vary because of the

way they estimate the probabilities. The breadth of language models is vast. Here

we will describe only those that are relevant to this thesis.

2.1 N-Grams

N-grams are a type of language model that assigns a probability to a word based on

the n− 1 preceding words (Shannon, 1948). In their simplest form, probabilities are

calculated based on the occurrence of sequences of words in a training corpus. Several

smoothing techniques can be used to account for sequences that do not occur in the

training corpus and would otherwise be assigned a probability of zero.

A strength of n-gram language models is interpretability; their simplicity makes
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them easy to understand. A weakness is their loss of left context; words early in

a sequence bear no weight on the probabilities of words that occur late in the se-

quence (i.e., more than n − 1 words later). In other words, n-grams make use of

the Markov assumption which states that probabilities can be estimated using only

recent information and without making use of information from further in the past.

N-grams compute surprisals based on sequential representations of sentences and

do not have access to explicit phrase structure. As such, surprisal values derived from

n-grams are primarily informed by lexical information, along with implicit syntactic

information. As a variation, syntactic information can be isolated by replacing words

with their part-of-speech (POS) tags when training the n-gram model.

2.2 Probabilistic Context-Free Grammars

Probabilistic context-free grammars (PCFGs) were conceptualized in search of a way

to appropriately assign probabilities to the words of a language (Booth & Thompson,

1973). They work by assigning probabilities to the production rules of a context-free

grammar. Production rules define how the sentences of a language can be constructed.

For example, to capture the noun phrase “the cat”, a PCFG of English would include

a production rule NP → DT NN and further rules DT → the and NN → cat. In this

example, NP, DT, and NN are non-terminal symbols while the and cat are terminal

symbols. Non-terminal symbols can be broken down into other non-terminals or a

terminal symbol, whereas terminal symbols are final. Of course, there are many other

ways to construct a noun phrase in English so the non-terminal NP would be involved

in several different productions rules. Likewise, DT could map to other determiners

like “a” and NN could map to any singular noun. The complete set of rules of a

PCFG can be used to derive a phrase structure tree for a given sentence. From there,

the probabilities of the production rules used to construct the tree can be multiplied

together to compute the overall probability of the sentence. The probabilities of the

production rules are learned by training the PCFG on a large dataset of annotated
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phrase structure trees.

Several techniques have been explored for using PCFGs to parse sentences and

compute surprisal values. Roark et al. (2009) devised a method to use an incremen-

tal top-down parser (Roark, 2001) to derive separate syntactic and lexical surprisal

values from a PCFG. The syntactic surprisal is calculated based upon the history of

derivation including all steps except the final step that maps a POS tag to a word.

In this way, the surprisal value does not reflect any lexical information about the up-

coming word. The lexical surprisal is defined in such a way that lexical and syntactic

surprisal sum to the total surprisal. The total surprisal is calculated based on the

entire derivation history, which contrasts the limited context used by n-grams. Beam

search is used during parsing to try and obtain the most probable parse and avoid

deriving improbable structures.

2.3 Recurrent Neural Network Grammars

Recurrent neural network grammars (RNNGs) were introduced by Dyer et al. (2016)

to rectify the incongruity between the purely sequential nature of recurrent neural

networks (RNNs) and the inherent hierarchical phrase structure of language. RNNGs

can be used to parse an existing sentence into a tree structure or to generate a new

sentence along with its tree structure. An RNNG consists of a set of non-terminal

symbols, a set of terminal symbols, and a group of neural network parameters that

implicitly define the rules of the grammar. These parameters are used by an RNN to

select actions based on the current state of the input buffer and stack, which contain

the sentence yet to be parsed and the current tree structure, respectively. At each

step during parsing, one of the following actions is selected: add a new non-terminal

symbol to the stack (NT), shift the next terminal symbol from the input buffer to the

stack (SHIFT), or close the newest open non-terminal symbol on the stack to form

a completed constituent (REDUCE). The RNN continues to select actions until the

input buffer is empty and there is a single completed constituent on the stack. Table
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Table 2.1: RNNG parsing example for the input “Forests are disappearing .”

Stack Buffer Action

Forests | are | disappearing | . NT(S)

(S Forests | are | disappearing | . NT(NP)

(S | (NP Forests | are | disappearing | . NT(NNS)

(S | (NP | (NNS Forests | are | disappearing | . SHIFT

(S | (NP | (NNS | Forests are | disappearing | . REDUCE

(S | (NP | (NNS Forests) are | disappearing | . REDUCE

(S | (NP (NNS Forests)) are | disappearing | . NT(VP)

(S | (NP (NNS Forests)) | (VP are | disappearing | . NT(VBP)

(S | (NP (NNS Forests)) | (VP | (VBP are | disappearing | . SHIFT

(S | (NP (NNS Forests)) | (VP | (VBP | are disappearing | . REDUCE

(S | (NP (NNS Forests)) | (VP | (VBP are) disappearing | . NT(VBG)

(S | (NP (NNS Forests)) | (VP | (VBP are) | (VBG disappearing | . SHIFT

(S | (NP (NNS Forests)) | (VP | (VBP are) | (VBG | disappearing . REDUCE

(S | (NP (NNS Forests)) | (VP | (VBP are) | (VBG disappearing) . REDUCE

(S | (NP (NNS Forests)) | (VP (VBP are) (VBG disappearing)) . SHIFT

(S | (NP (NNS Forests)) | (VP (VBP are) (VBG disappearing)) | . REDUCE

(S (NP (NNS Forests)) (VP (VBP are) (VBG disappearing)) .)

The pipe (|) symbol is used to separate elements of the stack and buffer.

2.1 shows a parsing example. As mentioned, the current state of the stack influences

which action is chosen at any given parsing step. This means that actions are chosen

based on the entire derivation history of the preceding context. RNNGs are trained

on large datasets of phrase structure trees.

RNNGs parse sentences incrementally, which means they are prone to choose ac-

tions that seem sensible at the time but are later discovered to be nonsensical upon

encountering future words. This risk can be mitigated by using beam search to ex-

plore several promising parse options further down the line. However, standard beam

search does not work well for RNNGs because structural parse actions are preferred

over lexical ones since they are assigned higher probabilities. As such, the RNNG suc-

cumbs to complicating the phrase structure of the parse and rarely progresses onward

to the next word. Word-synchronous beam search (Stern et al., 2017) addresses this

problem by searching through structural actions until a lexical action is eventually

chosen. From here, all possible parses have at least reached the next word before
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beam search proceeds further. This set of parses is pruned based on a given threshold

and the resulting set is referred to as the word beam.

Surprisal is calculated over the word beam during the beam search process (Hale

et al., 2018). It is computed as the log-ratio of summed forward probabilities. These

surprisal values are based on the entire derivation history. As such, they reflect both

syntactic and lexical information.

2.4 Transformers

The transformer architecture was first introduced by Vaswani et al. (2017) as a way to

overcome the limitations of recurrence and convolution for sequence transformation

tasks. They replaced the recurrent and convolutional layers of the best-performing

neural network architectures of the time with self-attention mechanisms (Luong et al.,

2015) and feed-forward layers. This allows for further parallelization of computation,

typically reduces the computational complexity of each layer, and makes it easier to

learn long-range dependencies in the sequence. These achievements are due in part to

the fact that self-attention layers have direct access to all preceding inputs, whereas

recurrent neural networks are limited to the information contained in the current

hidden state.

When a transformer is used for computing surprisals, a decoder mask is used to

ensure that it does not have access to future items in the sequence. Effectively, this

means that the transformer has direct access to all preceding words and the current

word but no future words. For example, a transformer would directly use the first,

second, and third words of a sentence to compute the surprisal of the fourth word.

Transformers do not explicitly model the hierarchical nature of language since

they are trained on sequences of words rather than phrase structure trees. However,

attention visualization shows that different attention heads learn to perform different

tasks, some related to syntax and some to semantics (Vaswani et al., 2017). As

such, the surprisal values computed by a transformer are based on a combination of
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syntactic and lexical information.

2.5 Language Model Comparison

Table 2.2 outlines the characteristics of each model in a way that is easy to compare

and contrast. Of the language models used, the n-gram is the only one that does not

use the entire preceding context of a sentence to compute surprisal values. Trans-

formers have the capability to use context spanning multiple sentences, but we train

the models such that they only have access to one sentence at a time. The language

models also differ by the type of training data they use. N-grams and transformers

use sequences of tokens whereas PCFGs and RNNGs use tree structures. Because of

this, n-grams and transformers are limited to implicit syntactic information whereas

PCFGs and RNNGs have direct access to explicit syntactic information. Because

these language models use different amounts of preceding context and are trained on

different representations of sentences, the surprisals they produce are informed by

different linguistic information.

Table 2.2: Comparison of language models.

N-Gram PCFG RNNG Transformer

Sentence
Context

n− 1 preceding
words

All preceding
words

All preceding
words

All preceding
words

Training Data Sequences Tree structures Tree structures Sequences

Computational
Intensity

Low Low High High

Relative
Interpretability

High High Low Low

Apart from these differences in linguistic information, language models differ in

resource intensity and interpretability. The computational intensity of training an n-

gram or a PCFG is much lower than that required to train an RNNG or transformer.

Additionally, understanding exactly how surprisal values are computed is simpler for

n-grams and PCFGs whereas it is not as straightforward for RNNGs and transformers.
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Chapter 3

Related Work

3.1 Differences in Reading across Languages

Reading is a complex process that involves the incorporation of linguistic knowledge

and visually perceived symbols to comprehend text (Woolley, 2011). Many reading

mechanisms are universal across languages but others differ based on writing system

(Li et al., 2022). Languages are broadly classified as alphabetic, syllabic, or logo-

graphic depending on how written symbols correspond to sounds (Anatole, 1997). In

alphabetic languages, such as English, symbols often map to the smallest units of

sound called phones. Typically each phone is represented by a letter or two. In con-

trast, syllabic writing systems, use a single symbol to represent a complete syllable.

Different yet are logographic languages, such as Chinese, where symbols correspond to

morphemes, the smallest units of sound that contain meaning. Beyond the symbolic

representation of sounds, writing systems can vary in other ways, such as the direction

in which texts are read. Furthermore, some languages mark word boundaries with a

space, while others write words contiguously with no explicit demarcation.

Because of these differences, reading in different writing systems is not entirely the

same. In alphabetic and syllabic writing systems, the meaning of a word is accessed

either directly from orthography or by first accessing the phonology before mapping

to meaning (Coltheart et al., 2001; Seidenberg & McClelland, 1989). In contrast,

logographic reading appears to rely primarily on the direct link between orthogra-
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phy and meaning, with minimal involvement of phonology (Law et al., 2006; Tan &

Perfetti, 1997). There are also processing differences in languages with explicit word

boundaries and those without. Readers of spaced scripts tend to fixate on the center

of words during reading, but readers of unspaced scripts, such as Chinese, do not

exhibit this preference (Li et al., 2011; Rayner, 1979). Furthermore, word bound-

ary ambiguity is sometimes encountered when reading in unspaced scripts and this

requires word segmentation, which is not needed for spaced scripts (Li & Pollatsek,

2020).

Beyond writing systems, languages also differ in syntactic structure. For exam-

ple, the typical sequence that the subject, verb, and object appear in a sentence

varies amongst languages and is known as word order. Approximately 80% of lan-

guages are subject-verb-object (SVO) or subject-object-verb (SOV) (Dryer, 2013;

Hammarström, 2016). English is an SVO language and other examples are Spanish

and Chinese. Examples of SOV languages include Korean, Japanese, and Turkish.

In addition to word order, languages vary based on branching patterns. In right-

branching languages, the head of the sentence usually comes first and is followed by

modifiers. Conversely, in left-branching languages, modifiers typically precede the

head of the sentence. SVO languages tend to be right branching (e.g., English) while

SOV languages tend to left branching (e.g., Korean). Left-branching structures are

often more ambiguous since modifiers come first and the meaning may not become

clear until the head is encountered. Therefore readers of left-branching languages may

need to delay parsing decisions whereas readers of right-branching languages take less

risk when making parsing decisions early (Amici et al., 2019). In this way, the word

order and branching pattern of a language also play a role in the reading process.

Our discussion so far has focused on how first language reading differs amongst

languages, but how do these differences translate to reading in a second language?

Research suggests that that previous linguistic knowledge from a person’s L1 can

transfer to their L2 (Gass, 1979). Further support for this phenomenon can be found
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in studies showing that L1 and L2 reading skills are positively correlated (Cummins,

1979; Jeon & Yamashita, 2014). As mentioned, individuals develop reading strategies

that are specific to the characteristics of their L1 (McNeill et al., 1971). It seems that

these strategies are applied to an extent when reading in their L2 (Koda, 1990). This

implies that L1 and L2 speakers may employ different reading strategies for the same

language depending on their linguistic background.

3.2 Similarities in Reading across Languages

Despite differences between writing systems, there are shared fundamentals of read-

ing across languages (Li et al., 2014). Evidence suggests that words are the basic

unit of processing even in writing systems that do not explicitly mark word bound-

aries. Reading appears to be incremental, with readers immediately incorporating

each word as it is encountered to construct the complete meaning of a sentence. It

has been observed that higher frequency and shorter words are read more quickly and

that prediction plays an important role during reading (Huettig, 2015; Kuperberg &

Jaeger, 2016; F. Smith, 1975). Experiments by Ehrlich and Rayner (1981) showed

that highly predictable words are less likely to be fixated on during reading and less

time is spent reading them when they are fixated. These results have been corrobo-

rated by other studies that also observed reduced fixation time for predictable words

(Rayner & Well, 1996). Although much of the existing research that investigates the

influence of word predictability on reading focuses on English, there have been several

studies that observe a similar phenomenon in other languages, e.g., Arabic (AlJassmi

et al., 2022); Chinese (Rayner et al., 2005); German (Kliegl et al., 2004); Korean

(Yun et al., 2017); and Spanish (Fernández et al., 2014).
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3.3 Language Models for Predicting Reading Times

Aligned with research on word predictability and reading, there is an abundance

of research showing that surprisal is a strong predictor of reading time for English

(Goodkind & Bicknell, 2018; Hale, 2001; Hale et al., 2018; N. J. Smith & Levy,

2013). Surprisal is a measure of how unexpected a word is given its context and can

be computed by language models. More formally, surprisal is the negative logarithm

of the probability of a word’s occurrence conditioned on the preceding words. A low

surprisal value corresponds with high predictability. Thus, words with low surprisal

values are generally read more quickly whereas words with high surprisal are read

more slowly. There are many language models and each has a different approach for

computing surprisal. Refer back to Chapter 2 for a discussion about how surprisals

are calculated by n-gram, PCFG, RNNG, and transformer language models.

Although the relationship between surprisal and reading time is well established for

L1 reading, the role of prediction in L2 reading is less conclusive. Grüter et al. (2014)

found that even the most proficient L2 readers have a reduced capacity to predict

upcoming words during sentence processing compared to their L1 counterparts. They

reasoned that L2 processing is exhausted by reactive processing, leaving little room

for prediction. However, other researchers (Berzak & Levy, 2022) found that the

degree to which L2 processing relies on prediction is dependent on proficiency, with

the most proficient L2 readers using similar strategies to L1 speakers. Other research

corroborates that L2 readers incorporate prediction into processing and also suggests

that previous linguistic knowledge impacts the predictions these readers make (Chun,

2020).

Despite interest in the role of prediction in L2 reading, limited research has been

conducted on whether surprisal predicts L2 reading times. A study by de Varda and

Marelli (2022) explored this open question using the recently released Multilingual

Eye-Movements Corpus (Kuperman et al., 2023; Siegelman et al., 2022). Using a
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linear mixed effects model, they found that an effect of surprisal on L2 reading times

is present but to a lesser extent than for L1 reading. However, several questions

regarding the relationship between surprisal and L2 reading times remain unanswered.

In particular, research lacks an investigation of the relationship between language

background and the predictive capability of surprisal. Additionally, the wide variety of

language models available for computing surprisal have not been adequately explored

for predicting reading times. Given these research avenues, we set forth to determine

what language models produce surprisals that best predict reading times for people

with different language backgrounds. In this pursuit, we hope to better understand

the relationship between language background and reading by drawing insights from

the ways in which the best performing surprisals were calculated.

13



Chapter 4

Methods

We trained nine different language models that varied in the amount of syntactic

information, lexical information, and preceding context they used to compute sur-

prisal. We used these surprisal values to predict the English reading times of people

with different language backgrounds. For each language background, we developed a

GAMM containing covariates other than surprisal that are known to predict reading

time. We then developed nine more GAMMs for each participant group containing

these covariates plus terms for surprisal derived from one of the language models.

We compared the models with surprisal to the one without on the basis of Akaike

information criterion (AIC) to determine which surprisal provided the most useful

information for predicting English reading times of people with different L1s.

4.1 Reading Time Data

The reading time data used in this work were collected by collaborators from the

University of Pittsburgh. Max Helfrich collected the data for a project led by Lin

Chen and Charles Perfetti. Participants from various language backgrounds were

asked to read a series of passages in a self-paced moving window paradigm where

reading time was recorded as the time between key presses. The following sections

detail the participants, stimuli, and data collection procedure of the study.
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4.1.1 Participants

Participants included adults with different first languages (English, n = 34; Chinese,

n = 35; Korean, n = 28; Spanish, n = 44) who speak English. It is possible that the

participants speak additional languages other than English and their first language;

this information was not collected.

Table 4.1: Gender and age of participants by first language.

English Chinese Korean Spanish

Gender (M:F:O) 3:30:1 19:16:0 11:17:0 15:32:2

Age

Range 17-28 18-22 18-25 18-32

Average 18.6 19.4 19.6 19.2

(SD = 2.0) (SD = 1.4) (SD = 2.2) (SD = 2.5)

Options for gender included male (M), female (F), and other (O).

4.1.2 Participants’ First Languages

Our research focuses on evaluating the performance of surprisals produced by various

language models for the predicting reading times of people with different language

backgrounds. To be able to glean meaningful insights from the interplay between the

characteristics of the reader’s first language and how the best performing surprisals

were computed, it would be desirable to consider a wide array of languages with varied

linguistic features. Participants of this study were native speakers of English, Chi-

nese, Korean, or Spanish. Although only four language backgrounds were explored,

these four languages have features distinct from one another. Table 4.2 outlines the

differences in language family, writing system, word boundary marking, word order,

and branching tendency amongst these languages. Some of these differences will be

relevant to the discussion of our results later on.
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Table 4.2: Comparison of English, Chinese, Korean, and Spanish.

English Chinese Korean Spanish

Language
Family

Germanic Sino-Tibetan Altaic Romance

Writing
System

Alphabet Logography Alphabetic
Syllabary

Alphabet

Word
Boundaries

Marked Unmarked Marked Marked

Word Order SVO SVO SOV SVO

Branching Right Left Left Right

4.1.3 Measures of Participants’ English Language Skills

The participants’ English language skills were measured by the Nelson-Denny vocab-

ulary and reading comprehension tests (Brown et al., 1993). The vocabulary test had

100 multiple-choice items and the reading comprehension test had 36 multiple-choice

items. The L1 English speakers were given 7.5 minutes to complete the vocabulary

test and 15 minutes to complete the reading comprehension test. The L2 English

speakers were given extended time with 15 minutes for the vocabulary test and 30

minutes for the reading comprehension test.

The test scores were reported as performance and adjusted performance. Perfor-

mance was the score out of all questions on the test whereas adjusted performance

was the score out of only the questions that were attempted.

4.1.4 Stimuli

The stimuli consisted of 63 two-sentence passages from articles of the New York Times

published in 2018 and 2019. As a popular newspaper, the New York Times is a source

for texts with style and content likely familiar to the participants. When selecting

the passages, politically and culturally sensitive topics were avoided. As a whole,

the chosen topics were intended to appeal to a wide variety of people and relate to

general knowledge, avoiding niches and jargon. The passage length was limited to
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two sentences to prevent participant fatigue.

The passages were 11 to 30 words long with an average length of 22.4 (SD =

5.2). The sentences making up these passages ranged in length from 3 to 22 words

with an average length of 11.2 (SD = 4.5). An example of a passage is “Forests

are disappearing. Maps show shrinking woodlands all over the world.” Appendix A

provides a full list of the stimuli.

4.1.5 Data Collection

The study was conducted using PCIbex (Zehr & Schwarz, 2018) where the stimuli

were presented in a self-paced moving window paradigm (see Figure 4.1). Each pas-

sage appeared as a series of black dashes on a white background that indicated the

length and position of each word in the passage. When the participants were ready,

they pressed the space bar to reveal the first word. Once they had read that word,

they pressed the space bar again to reveal the next word and revert the first one back

to a dash. The reading time for each word was recorded as the time between these

keystrokes. This process was repeated until the entire passage had been read.

At this point, participants were presented with a true or false reading comprehen-

sion question (if the passage had one) to check their attentiveness. Two-thirds of

the passages had an associated question and half the answers were true. Participants

answered these questions by clicking a button and were given feedback on screen that

let them know whether their answer was correct. After each passage, participants

had the option to take a break or directly move on to the next passage. Participants

received reminders if they did not respond within 30 s during the passage reading

phase or within 10 s during the question answering phase. The order of the passages

was random for each participant. Commas and periods were presented with the pre-

ceding word. Before data collection began, each participant had six practice passages

and four of these had a reading comprehension question.
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Figure 4.1: Self-paced moving window setup.

4.1.6 Data Cleaning

We prepared the reading time data for statistical modelling. We removed data for

which the reading comprehension question was answered incorrectly (English, 4.6%;
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Chinese, 10.9%; Korean, 9.5%; Spanish, 8.0%). Following standard practice in the

field (Tremblay et al., 2011), reading times outside of ±2.5 SD for each participant

were removed (English, 2.1%; Chinese, 1.9%; Korean, 1.9%; Spanish, 1.9%). Follow-

ing Monsalve et al. (2012), reading times less than 50 ms or greater than 2,000 ms

were removed (English, 3.1%; Chinese, 0.5%; Korean, 0.4%; Spanish, 0.3%).

We performed a log transform on the reading times to make the data more normally

distributed. After this, we checked the distributions by participant and removed any

that had unusual patterns that suggested there was some sort of error during data

collection. We removed one participant’s data based on this check. This participant

was a Korean native speaker; their data was also excluded from the demographic

information reported in Table 4.1.

4.2 WikiText-2 Data

4.2.1 Dataset Description

We trained the language models using the WikiText-2 dataset (Merity et al., 2017),

which contains articles from Wikipedia. The dataset only includes articles that have

been verified as Good or Featured by the editors of Wikipedia. The articles cover a

wide variety of topics ranging from geography and history to pop culture and games.

The dataset includes a train split with 600 articles along with validation and test splits

with 60 articles each. We used the version that did not have any tokens replaced with

<unk>. It can be downloaded from https://huggingface.co/datasets/wikitext.

4.2.2 Preprocessing

We preprocessed these splits to prepare the data for training. The articles were split

into sentences using NLTK sent tokenizer (Bird et al., 2009). Since the transformer

requires a maximum sentence length to be specified, sentences longer than 52 tokens

were removed from the data. Before removal, sentences containing semicolons were

split into two separate sentences in an effort to preserve as much data as possible.
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The maximum length was chosen to be 52 since it balanced the computational cost of

training the transformer with the preservation of training data. This value preserved

98% of the data. Additionally, the longest sentence in the stimuli had a length of 22

tokens, so excluding sentences longer than 52 tokens does not limit the training data

from being representative of the stimuli.

Most other preprocessing decisions were made on the basis of aligning the WikiText-

2 data more closely with the stimuli. First, article headings and subheadings were

removed from the data. We excluded these because they were typically phrases, but

the stimuli only contained full sentences. Instances of “can not” were replaced with

“cannot” to match what participants saw in the stimuli. Along the same lines, con-

tractions were split into full words using the contractions Python library (van Kooten,

2022) since the stimuli do not contain any contractions. All tokens containing punc-

tuation or symbols other than commas, periods, and the apostrophe for the possessive

“s” were removed since the stimuli only contain commas and periods.

Five versions of the data were required for the various language models: word, POS,

combined word and POS, lexicalized tree, and unlexicalized tree. The POS version

was generated by POS tagging the sentences using the fine-grained tag set of spaCy

(Honnibal & Montani, 2017). Sentences containing the POS tags :, ‘, and -LRB-,

-RRB- were manually inspected as these should not have been present since such

punctuation was removed. This led the the removal of one sentence which appeared

to be a chemical equation and the correction of the POS tags for another sentence.

The word version was created by lowercasing all words to match the stimuli and

replacing a word with its POS tag if it was CD (i.e., the POS tag for numerals and

cardinals in written and numerical form). We did this to avoid a sparse representation

of numbers in the model and because we were not interested in the number itself but

rather the fact that it is a number. The combined word and POS version was created

by simply conjoining each word with its POS tag separated by a forward slash (e.g.,

exercise/NN).
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The lexicalized tree version was constructed using the Stanford Parser version 4.2.0

(Klein & Manning, 2003) with the tags from the spaCy tagger provided alongside the

words as input. The unlexicalized trees were constructed from these trees by simply

replacing the words with their POS tags. Table 4.3 shows the descriptive statistics

for the data splits of the WikiText-2 dataset after preprocessing.

Table 4.3: Data splits after preprocessing the WikiText-2 dataset.

Train Validation Test

Articles 600 60 60

Sentences 79,109 8,219 9,716

Tokens 1,812,933 189,795 215,346

4.3 Language Models

4.3.1 N-Gram

We used KenLM (Heafield, 2011) to train n-gram language models on the preprocessed

WikiText-2 data. We trained three models using different versions of the dataset:

word only, POS only, and combined word and POS. We performed hyperparameter

tuning for each of the models on the value of n in the range of 2 to 6, which is the

full range that is supported by KenLM. We selected the values of n that minimized

the word perplexity on the validation set. This resulted in values of 6, 5, and 6

for the word only, POS only, and combined word and POS versions of the dataset,

respectively. We evaluated the models on the test set using word perplexity. Training

was performed on an Apple M1 Pro chip. The hyperparameter tuning process required

training and evaluating 15 models (5 values of n × 3 dataset versions). This entire

process took 41 seconds total of computation time.
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4.3.2 PCFG

We used the incremental top-down parser of Roark et al. (2009) to train a PCFG lan-

guage model on the preprocessed WikiText-2 data. Similarly to Demberg and Keller

(2008), we trained two models: one using the lexicalized trees and one using the

unlexicalized trees. We performed hyperparameter tuning on the threshold, testing

values of 0.02, 0.04, 0.05, 0.06, and 0.08. We selected the threshold that minimized

the word perplexity on the validation set. This was found to be 0.02 for both the lex-

icalized and unlexicalized treees. We evaluated the models on the test set using word

perplexity. Training was performed on an Apple M1 Pro chip. The hyperparameter

process required training and evaluating ten models (5 values for the threshold × 2

dataset versions). This entire process took one hour total of computation time.

4.3.3 RNNG

We trained an RNNG on the lexicalized tree version of the preprocessed WikiText-

2 data using the pyTorch implementation of Noji and Oseki (2021). We used this

implementation to exploit GPU parallel computing to reduce the training time. We

did not train an RNNG using an unlexicalized version of the data because training is

resource intensive.

We performed tuning on several hyperparameters including learning rate, dropout

rate, batch size, and batch composition. Due to the number of hyperparameters,

the search space was quite expansive and it was not feasible to test all combinations

of all hyperparameters. As such, the hyperparameter tuning process was split into

two rounds (see Table 4.4). The first round was a coarse-grained search of the four

hyperparameters covering a large range of potential values. The hyperparameter

values that minimized the perplexity on the validation set for this round informed the

refinement of the search space for the second round. The final hyperparameter values

for the RNNG were based on the results of the second round. The final values were a

learning rate of 0.002, dropout rate of 0.2, batch size of 256, and batch composition of
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random length sentences. Training was performed using an Intel Silver 4216 Cascade

Lake CPU, NVIDIA V100 Volta GPU, and 32 GB of memory. Training for the

complete hyperparameter tuning procedure was completed in just under 7 days.

Table 4.4: Values included in the hyperparameter tuning process for the RNNG.

Learning Rate Dropout Rate Batch Size Batch Composition

Round 1 0.0001 0.1 256 similar length

0.001 0.5 512 random length

0.01 0.9 1024

Round 2 0.002 0 128 random length

0.01 0.1 256

0.05 0.2

0.3

0.4

All combinations of the listed parameter values were tested for each round. Bold text indicates the parameters
that minimized the validation word perplexity for each round.

The configuration of the RNNG after hyperparameter tuning was as follows. The

RNNG employed a two-layer LSTM with hidden dimensions of 256. The input and

output word dimensions were also 256. A dropout rate of 0.2 was applied. The

parameters were initialized to zero before training and the training sentences were

randomly grouped into batches of 256. During training for 18 epochs, the parameters

were optimized using Adam and cross-entropy loss with a constant learning rate of

0.002. Gradient clipping was used to prevent the problem of exploding gradients

and a maximum gradient norm of 5 was used. The random seed was set to 3435 for

reproducibility. The total number of model parameters was 18,119,759.

Figure 4.2 shows the training and validation word perplexity over the training

epochs. Note that the lines for training and validation perplexity overlap at some

points and in these cases they appear as a single grey line. Epoch 0 is before train-

ing. The validation word perplexity plateaus by the ninth epoch, indicating that

the number of epochs was adequate. Additionally, the model does not appear to be
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overfitting to the training data since the validation perplexity does not increase with

further training after the plateau.
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Figure 4.2: Training and validation word perplexity over training epochs for the
RNNG with the selected hyperparameters.

The settings for beam search were also tuned. In particular, block sizes of 50, 100,

and 200 were tested in combination with beam sizes of 100, 200, 400, 600, and 800.

Batch size was set to be the block size divided by 10, word beam size was set to be

the beam size divided by 10, and shift size was set to be the beam size divided by

100, following previous research (Hale et al., 2018; Noji & Oseki, 2021; Stern et al.,

2017). Validation perplexity plateaued at a beam size of 400 while block size had

a very minimal effect on performance. As such, the surprisal for the stimuli were

computed using a block size of 100, batch size of 10, beam size of 400, word beam

size of 40, and shift size of 4. Beam search was performed using an Intel Silver 4216

Cascade Lake CPU, NVIDIA V100 Volta GPU, and 64 GB of memory. It took 2.5

days to complete the hyperparameter tuning and an additional maximum of 2 days

to obtain the surprisal values for the stimuli and test set.1

1This was the maximum time allowed but the actual time to complete the job was likely less. An
exact duration cannot be provided since the job ID was lost.
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4.3.4 Transformer

We trained a transformer following Merkx and Frank (2021). This model used the

word only version of the preprocessed WikiText-2 data. We did not train the model

using the POS version nor the combined word and POS version due to resource

intensity. Merkx and Frank (2021) tested two configurations for the transformer

and found that the two-layer architecture was better at explaining human reading

data. As such, we trained a two-layer transformer. We performed hyperparameter

tuning on the learning rate and batch size (see Table 4.5). A learning rate of 0.005

and a batch size of 5 were selected. Hyperparameter tuning was performed using

an Intel Silver 4216 Cascade Lake CPU, NVIDIA V100 Volta GPU, and 32 GB of

memory. Training for the complete tuning procedure was completed in approximately

7 hours.2 Evaluating the models on the validation set was performed using an Intel

Silver 4216 Cascade Lake CPU, NVIDIA V100 Volta GPU, and 64 GB of memory.

The validation set was split into six equally sized subsections for evaluation with each

portion evaluated within 3 days.3

Table 4.5: Values included in the hyperparameter tuning process for the transformer.

Learning Rate Batch Size

0.0002 5

0.001 10

0.005 20

0.025 40

0.125 80

All combinations of the listed parameter values were
tested. Bold text indicates the values that minimized
the validation word perplexity.

The configuration of the transformer after hyperparameter tuning was as follows.

The model had an embedding layer with 400 dimensions per word, followed by two

2Training with the selected hyperparameters took 16.5 minutes and 25 models were trained.
3This was the maximum time allowed but the actual time to complete the job was likely less. An

exact duration cannot be provided since the job IDs were lost.
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transformer layers with 8 attention heads and a fully connected layer with 1024 units

each. The maximum length was set to 54, which accommodates a sentence with 52

tokens, allowing two tokens for sentence start and end markers. A dropout rate of 0.1

was used. The transformer parameters were randomly initialized with the random

seed set to 745546129 for reproducibility. Training sentences were randomly grouped

into batches of size 5. Stochastic gradient descent was used to optimize the parameters

over 8 training epochs based on cross-entropy loss and using a learning rate of 0.005.

The total number of model parameters was 11,952,006.

Figure 4.3 shows the training and validation word perplexity over the training

epochs. Note that the lines for training and validation perplexity overlap at some

points and in these cases they appear as a single grey line. Epoch 0 is before training.

The number of training epochs seems suitable since the validation perplexity plateaus

after four epochs and does not increase afterward.
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Figure 4.3: Training and validation word perplexity over training epochs for the
transformer with the selected hyperparameters.
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4.4 Evaluation

All language models were evaluated on the test split of the preprocessed WikiText-2

dataset in terms of perplexity. Perplexity is defined as ppl = e
1
n

∑︁n
i=1 s(wi), where n

is the number of words and s(wi) is the surprisal of word i. Note that the direct

mathematical relationship between surprisal and perplexity indicates that perplexity

could be used in place of surprisal for predicting reading times, at least when using

statistical models that can capture non-linear relationships between variables. De-

spite this observation, and the fact that language models and perplexity are highly

associated, we chose to use surprisal as the predictor of reading time for consistency

with previous work.

4.5 Generalized Additive Mixed Models

We used GAMMs to predict reading time from a variety of covariates and surprisal.

GAMMs allow us to model complex non-linear relationships between the independent

variables and the dependent variable. They balance the predictive power of black-

box machine learning models with the interpretability of statistical models (S. Wood,

2006).

4.5.1 Base Models

For each language background, we trained a base model that included factors other

than surprisal that are known to affect reading time. In particular, the covariates

included in the base model were:

• A random effect for participant.

• A random effect for trial. Trial refers to how many passages the participant has

read (e.g., the first passage that a participant read is trial 1).
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• A random effect for word. Word refers to the lowercase version of the word as

a factor.

• A smooth fixed effect for adjusted performance on the vocabulary test.

• A smooth fixed effect for adjusted performance on the reading comprehension

test.

• A linear fixed effect for sentence position. Sentence position indicates whether

the word was in the first or second sentence of a passage.

• A smooth fixed effect for word position. Word position indicates the position

of the word in a sentence (e.g. the first word of a sentence has a word position

of 1).

• A smooth fixed effect for log word frequency. Log word frequency was computed

from the preprocessed WikiText-2 training data using a base 10 logarithm.

• A smooth fixed effect for word length. Word length refers to the number of

letters in a word.

• A tensor product interaction term between log word frequency and word length.

The random effect for participant was included to take into account the fact that

each participant has a different mean reading time for reasons that cannot be easily

measured. Including trial accounted for effects on reading time stemming from fatigue

or increasing familiarity with the task. The random effect for word accounted for

differences in the time it takes to read a particular word that cannot be explained by

the other features of a word like word length and word frequency.

Vocabulary and reading comprehension adjusted performance scores were included

in the model to account for the effect of English language proficiency on reading time.

Sentence position was included to account for differences across sentences. This is
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important considering that the word surprisals were calculated using only the current

sentence as context. However, the participants read two sentences consecutively, so

the content of the first sentence would influence their expectations for the second

sentence. In this way, there was a disconnect between the computed surprisals and

human-like expectation. Including an effect for sentence position was intended to

account for this incongruity. Word position was included because previous research

has shown that it impacts reading time (Kuperman et al., 2010). Effects for log word

frequency, word length, and the interaction between them were included following

previous research (Goodkind & Bicknell, 2018; N. J. Smith & Levy, 2013). Log word

frequency is correlated with surprisal, but differs from surprisal in that it is context

independent. Words that are more frequent would be expected to be more familiar to

the reader, and therefore take less time to read. Word length affects reading time due

to the additional time needed to visually process longer words. Since these features

were expected to affect reading time, they must be included in the model to avoid

omitted variable bias.

The models were fit using the bam() function in mgcv (S. N. Wood, 2004) with the

maximum likelihood method for finding the smoothing parameter. All of the random

effects listed above were modeled using a factor smooth basis (i.e., bs=“fs” in the

bam() function call). This smooth is intended to be used for modelling random effects

for factors with many levels, making it appropriate for our data. All of the smooth

fixed effects were modeled using thin-plate regression splines, the default basis for

smooths in mgcv. The tensor product interaction term was modeled separately from

the main effects (i.e., using ti() rather than te()) to allow log word frequency and word

length to be used in multiple interactions without the main effects being duplicated.

We fit the models using the default number of basis functions for the smooth terms

and then used the k.check() function to confirm that it was adequate for capturing

the true pattern of the data. The four base models were fit simultaneously using four

CPU cores of an Apple M1 Pro chip in approximately 25 minutes.
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4.5.2 Full Models

For each participant group, nine more GAMMs were created in addition to the base

model: one for each of the surprisal types derived from the different language models.

Each full GAMM consisted of the base model plus these additional terms including

surprisal:

• A smooth fixed effect for surprisal.

• A linear interaction effect between surprisal and sentence position.

• A tensor product interaction term between surprisal and word position.

• A tensor product interaction term between surprisal and log word frequency.

• A tensor product interaction term between surprisal and word length.

In addition to the smooth term for surprisal, we included several terms for in-

teractions between other features of the word and surprisal. Since surprisals were

computed per sentence, the context of the first sentence was not reflected by the

surprisal values of words in the second sentence. As such, we included an interaction

term between surprisal and sentence position to account for words in the second sen-

tence being more predictable than what was captured by their surprisal values. We

similarly included an interaction between surprisal and word position to account for

increased predictability towards the end of a sentence that is not captured by lan-

guage models that use limited preceding context, such as n-grams. Since we included

an interaction between log word frequency and word length in the base model, we

also included interactions between these factors and surprisal since log word frequency

and surprisal are correlated.

We followed the same fitting procedure as for the base model. In particular, we fit

these models using the bam() function in mgcv (S. N. Wood, 2004) with the maximum

likelihood method for finding the smoothing parameter. The smooth fixed effects
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were modeled using thin-plate regression splines and the tensor product interactions

were modeled separately from the main effects. We used the default number of basis

functions for fitting and verified this was enough using k.check(). The full models

were fit using six CPU cores of an Apple M1 Pro chip and the entire fitting process

was completed in 3.5 hours. During this time, a total of 36 full models (9 surprisal

types × 4 language backgrounds) were trained.

4.5.3 Model Comparison

We used AIC to compare the full models with surprisal terms to the base model

for each participant group. AIC is an estimate of prediction error so the lower

the value, the better. It also takes into account model complexity, with complex

models penalized over simpler models. The absolute value of AIC is not informa-

tive, but the difference in AIC values between models is. We defined ∆AIC =

AICbase model − AICfull model to measure the increase in model performance with the

addition of surprisal terms. There is no test to determine if there is a statistically

significant difference in ∆AIC values. However, a difference in AIC of 2 or more is

typically considered significant following a guideline (Burnham & Anderson, 2003).

Although this guideline is empirically based, Burnham and Anderson (2003) provided

further support for it by deriving the guidelines using three different approaches. We

used ∆AIC to compare the various surprisals to determine which are best at predict-

ing reading times of people with different language backgrounds.
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Chapter 5

Results

First we will present the participants’ lengths of residence in the U.S. followed by their

scores on the vocabulary and reading comprehension tests. Then we will report the

performance of each language model on the test set in terms of perplexity. Next we

will illustrate the differences in distributions among the surprisal values for the stimuli

by language model. Finally, we will report the significance of the terms included in

the GAMMs and compare the performance of the various surprisals for predicting

reading times of people with different language backgrounds.

5.1 Participant Length of Residence in U.S.

Figure 5.1 shows the participants’ lengths of residence in the U.S. by first language.

A Kruskal-Wallis test found a significant difference in length of residency for partic-

ipant’s from different language backgrounds (H = 26.23, p < .001, η2 = .23). Table

5.1 shows the results of post-hoc pairwise Mann-Whitney tests with Holm correction.

Holm correction was used to limit the probability of false positives due to multiple

comparisons. These results indicate significant differences in length of residence in the

U.S. between the participants who are L1 speakers of Chinese, Korean, and Spanish.
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Figure 5.1: Length of residence in the U.S. by first language.

Table 5.1: Two-tailed Mann-Whitney test results comparing length of residence in
the U.S. between participants with different first languages.

n1 n2 U p r

Chinese Korean 35 28 204 < .001 .50

Chinese Spanish 35 44 316 < .001 .51

Korean Spanish 28 44 443 .044 .24

5.2 Participant English Proficiency

Figure 5.2 shows the English proficiency scores of the participants as measured by the

Nelson-Denny reading comprehension test and vocabulary test (Brown et al., 1993).

Performance was the score out of all questions on the test and adjusted performance

was the score out of the questions that were attempted.

A Kruskal-Wallis test found a significant difference in English reading comprehen-

sion test adjusted performance of participants from different language backgrounds

(H = 10.39, p = .016, η2 = .05). Table 5.2 shows the results of post-hoc pairwise

Mann-Whitney tests with Holm correction. These results indicate significant differ-
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ences between the participants who are L1 speakers of English and Chinese. No other

differences were found.

Table 5.2: Two-tailed Mann-Whitney test results comparing English reading compre-
hension test performance between participants with different first languages.

n1 n2 U p r

English Chinese 34 25 856 .010 .38

English Korean 34 28 530 1.000 .10

English Spanish 34 44 833 1.000 .10

Chinese Korean 35 28 350 .210 .25

Chinese Spanish 35 44 530 .089 .27

Korean Spanish 28 44 624 1.000 .01

A Kruskal-Wallis test found a significant difference in English vocabulary test ad-

justed performance of participant’s from different language backgrounds (H = 13.24,

p = .004, η2 = .07). Table 5.3 shows the results of post-hoc pairwise Mann-Whitney

tests with Holm correction. These results indicate a significant difference between

the participants who are L1 speakers of English and Chinese as well as L1 speakers

of Korean and Chinese. No other differences were found.

Table 5.3: Two-tailed Mann-Whitney test results comparing English vocabulary test
performance between participants with different first languages.

n1 n2 U p r

English Chinese 34 25 874 .005 .40

English Korean 34 28 501 1.000 .04

English Spanish 34 44 873 .629 .14

Chinese Korean 35 28 299 .042 .33

Chinese Spanish 35 44 520 .055 .28

Korean Spanish 28 44 672 1.000 .08
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Figure 5.2: English proficiency scores by first language.

5.3 Language Model Perplexities on Test Set

Table 5.4 shows each language model’s perplexity on the WikiText-2 preprocessed test

set. Direct comparisons should not be made between models that differ by training

data type (i.e., word, POS, word/POS, lexicalized trees, and unlexicalized trees).

Additionally, the PCFG syntactic and lexical perplexities should not be compared

with other models because the surprisals from these models are broken down from

the PCFG total surprisal. Between the two sequential models, the transformer better
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captured the training data as evidenced by its low perplexity in comparison to the

n-gram word model. For the hierarchical models, the PCFG had a lower perplexity

than the RNNG.

Table 5.4: Perplexities of the various language models on the test set.

Language Model Perplexity

N-Gram Word 398.6

Transformer 310.5

PCFG Total 341.7

RNNG 402.8

N-Gram POS 7.7

N-Gram Word/POS 451.5

PCFG Syntactic 4.5

PCFG Lexical 76.0

PCFG POS 7.6

Language models within the same division were trained
on identical versions of the data.

5.4 Stimuli Surprisals

Figure 5.3 shows violin plots of the surprisals derived from each of the language models

for the stimuli. The models that use only syntactic information to compute surprisal

were plotted separately from those that explicitly include lexical information due to

the difference in scale that made it difficult to see the shapes of all plots when plotted

together.

A Kruskal–Wallis test found a significant difference in surprisal values computed

by various language models (H = 4936.80, p < .001, η2 = .39). Table 5.5 shows the

results of post-hoc pairwise Mann-Whitney tests with Holm correction. All groups

have a sample size of 1409.
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Table 5.5: Two-tailed Mann-Whitney test results comparing stimuli surprisal values
computed by different language models.

U p r

N-Gram Word N-Gram POS 1737121 < .001 .65

N-Gram Word N-Gram Word/POS 969229 .985 .02

N-Gram Word PCFG Total 1020506 .985 .02

N-Gram Word PCFG Lexical 1265676 < .001 .24

N-Gram Word PCFG Syntactic 1834123 < .001 .73

N-Gram Word PCFG POS 1731763 < .001 .64

N-Gram Word RNNG 1062201 .013 .06

N-Gram Word Transformer 1038688 .200 .04

N-Gram POS N-Gram Word/POS 255780 < .001 .64

N-Gram POS PCFG Total 192440 < .001 .70

N-Gram POS PCFG Lexical 460501 < .001 .46

N-Gram POS PCFG Syntactic 1289034 < .001 .26

N-Gram POS PCFG POS 975256 .985 .02

N-Gram POS RNNG 288160 < .001 .61

N-Gram POS Transformer 297433 < .001 .61

N-Gram Word/POS PCFG Total 1042151 .175 .04

N-Gram Word/POS PCFG Lexical 1278196 < .001 .25

N-Gram Word/POS PCFG Syntactic 1824790 < .001 .73

N-Gram Word/POS PCFG POS 1724892 < .001 .64

N-Gram Word/POS RNNG 1081320 < .001 .08

N-Gram Word/POS Transformer 1058508 .023 .06

PCFG Total PCFG Lexical 1260934 < .001 .23

PCFG Total PCFG Syntactic 1894848 < .001 .79

PCFG Total PCFG POS 1788116 < .001 .69

PCFG Total RNNG 1041841 .175 .04

PCFG Total Transformer 1018956 .985 .02

PCFG Lexical PCFG Syntactic 1653328 < .001 .58

PCFG Lexical PCFG POS 1516045 < .001 .46

PCFG Lexical RNNG 786684 < .001 .18

PCFG Lexical Transformer 773722 < .001 .19

PCFG Syntactic PCFG POS 679616 < .001 .27

PCFG Syntactic RNNG 181541 < .001 .71

PCFG Syntactic Transformer 195108 < .001 .70

PCFG POS RNNG 294300 < .001 .61

PCFG POS Transformer 303060 < .001 .60

RNNG Transformer 973081 .985 .02

All groups have n = 1409.
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Figure 5.3: Distributions of stimuli surprisals produced by the language models.

5.5 Predicting Reading Times

5.5.1 Model Checking

The residuals of a GAMM should be inspected to check that model assumptions are

not violated. The residuals should be approximately normally distributed. Inspection

of Q-Q plots, histograms, and scatter plots showed that the residuals were approx-

imately normally distributed for all GAMMs. Appendix B shows the plots for the

base model for each participant group. Plots for the full models were omitted because

they were visually indistinguishable from those for the base models for each language

background.

5.5.2 Significance of Smooth Terms

Figure 5.4 shows the significance of the smooth and linear terms of the GAMMs de-

veloped for each surprisal type and participant group. The word order (SVO or SOV)

and branching tendency (left or right) of each language are indicated on the figure.

These disinctions will be relevant in our discussion. Note that s() is used to denote
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smooth terms fitted with thin-plate regression splines while ti() is used to denote ten-

sor product interaction terms. A covariate’s smooth term is significant if there is an

association between that covariate and reading time. The complete statistical infor-

mation for the models can be found in Appendix C. The participant, trial, word, and

word position smooths were significant across all models for all participant groups.

That is, there was an association between these covariates and reading time regardless

of the reader’s L1 and what surprisal type is included in the model. Measures of En-

glish language proficiency were not significant for the GAMMs developed using data

from Chinese and Korean native speakers. In contrast, adjusted performance on the

vocabulary test was a significant predictor of reading time for English native speak-

ers for all models while reading comprehension adjusted performance was significant

for Spanish native speakers for all models. Word length was generally a significant

predictor of reading time for all participant groups, but especially for Chinese native

speakers for whom it was significant across all models.

At least one of the terms including surprisal were significant for all models for

all participant groups. Which surprisal term was significant differed between the

reader’s L1 and surprisal type. Some trends emerged. In particular, the sentence

position and surprisal interaction term was significant for all surprisals derived from

language models that explicitly used lexical information for all participant groups,

with the exception of the RNNG surprisal for Chinese native speakers. Furthermore,

this interaction term was non-significant for surprisals computed using only syntac-

tic information, with the exception of the PCFG POS surprisal for Spanish native

speakers. For English native speakers, it was also observed that the word position and

surprisal interaction term was significant across all surprisal types except for PCFG

POS surprisal.
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Figure 5.4: Term significance for each GAMM by first language.

5.5.3 Model Comparison

Figure 5.5 shows the ∆AIC values for each participant group. The word order (SVO

or SOV) and branching tendency (left or right) of each language are indicated on the

figure. These disinctions will be relevant in our discussion. Higher values of ∆AIC
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indicate better full model fit to the data in terms of capacity for prediction. The

surprisals are organized from highest to lowest ∆AIC for each participant group. This

organization was chosen to draw focus to the difference in ∆AIC values within each

participant group and discourage comparison of ∆AIC values amongst participant

groups. This is important since AIC values should not be compared amongst models

that were trained on different data.

Following a guideline, we considered that a ∆AIC < 2 meant that the full model

and base model were indistinguishable (Burnham & Anderson, 2003). That is, the

addition of the surprisal terms did not improve the prediction of reading time to an

extent that the added terms were justified. Based on this guideline, n-gram POS

surprisal did not improve the base model for Korean native speakers. All other

surprisals for all other first languages improved the base model for predicting reading

time.

The best-performing surprisal for predicting reading times of English, Chinese, and

Korean native speakers was the n-gram word surprisal, whereas for Spanish native

speakers it was the n-gram word/POS surprisal. N-gram word surprisal and n-gram

word/POS surprisal occupied two of the three highest-ranking positions for all par-

ticipant groups. The remaining position in the top three was filled by a different

surprisal for participants of each first language. For English native speakers, it was

the PCFG POS surprisal, while, for Spanish native speakers, it was the PCFG syn-

tactic surprisal. These two surprisal types both represent syntactic information in

a hierarchical way. For Korean native speakers, it was the RNNG surprisal, which

performed well especially in comparison to its relative performance for the other par-

ticipant groups. For Chinese native speakers, the third best-performing surprisal was

the transformer surprisal. Generally speaking, the PCFG lexical surprisal performed

more poorly than the PCFG syntactic surprisal across all participant groups.

Several surprisal types performed essentially the same for Korean native speakers.

These included all variations of the PCFG as well as the n-gram word/POS surprisal.
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This contrasts the trend for other languages where the performance of most surprisals

was distinguishable by ∆AIC.
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Figure 5.5: ∆AIC for each GAMM by first language.
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Chapter 6

Discussion

Table 6.1 classifies the different surprisals by language model and training data. This

terminology will be used to facilitate discussion throughout this section.

6.1 Differences in Surprisal Distributions by Lan-

guage Model

Let us first consider the total surprisals. Our results showed that the distributions of

n-gram word and n-gram word/POS surprisals differed from RNNG surprisals. This

was to be expected considering that n-grams and RNNGs differ in both training data

(sequential vs. hierarchical) and language model type (statistical vs. neural). The

n-gram word/POS surprisals also differed from the transformer surprisals, but the n-

gram word surprisals did not. It is reasonable that the n-gram word and transformer

surprisals were not significantly different because they share the same sequential train-

ing data. When considering total surprisal, we saw that the PCFG surprisals were

somewhere between those produced by an n-gram and those produced by a neural

model. This was evidenced by the lack of significance in pairwise difference between

the PCFG total surprisal and the n-gram word, n-gram word/POS, RNNG, and trans-

former surprisals. We also observed that adding explicit syntactic information when

training the n-gram model did not significantly alter the distribution of surprisals

produced, as shown by the lack of statistical difference between the n-gram word and
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Table 6.1: Classification of surprisals.

Language Model Surprisal Type Training Data Surprisal Classification

N-gram N-gram Word Word Total

N-gram POS POS Syntactic

N-gram Word/POS Word/POS Total

PCFG PCFG Total Lexicalized Trees Total

PCFG Lexical Lexicalized Trees Lexical

PCFG Syntactic Lexicalized Trees Syntactic

PCFG POS Unlexicalized Trees Syntactic

RNNG RNNG Lexicalized Trees Total

Transformer Transformer Word Total

n-gram word/POS surprisals. This result was to be expected, considering our stim-

uli set had just 126 sentences and was not representative of English as a whole. In

particular, 70% of the words in our stimuli occurred only once. As such, these words

only occurred as one POS so their word representations were essentially equivalent

to their word/POS representations. Additionally, the words that do occur more fre-

quently in the stimuli were mostly words that only have one POS (e.g., the is always

a determiner). Due to this, a large majority of word representations were the same

in the word model and the word/POS model. As such, we cannot be certain that the

distributions of n-gram word surprisals and n-gram word/POS surprisals would be

similar for all corpora, especially for ones where words occur more frequently and as

different parts of speech.

Now let us consider the syntactic surprisals. We saw that the n-gram and PCFG

models that computed syntactic surprisal by using POS tags in place of words when

training produced similar surprisal values. The PCFG syntactic surprisal values were

distinct from these which may be explained by the fact that preceding lexical infor-

mation was used to compute the syntactic surprisal of the current word. In contrast,

the n-gram POS surprisals and PCFG POS surprisals were not informed by any lexi-
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cal information. All syntactic surprisals were statistically different from all total and

lexical surprisals, suggesting that they reflect different linguistic information.

6.2 Commonalities in Significance of GAMM terms

across First Languages

The random effects for participant, trial, and word as well as the fixed effect for

word position were significant predictors of reading time across first languages and

surprisal types. This makes sense for the included random effects since the individual

differences among participants, familiarity and fatigue with the task, and what word

was read would be expected to be significant regardless of language background. Aside

from the random effects, word position was the only fixed effect that was consistently

significant across all language backgrounds and surprisal types. Previous research

has found that word position has an effect on reading time independent of lexical and

contextual predictors, such as word predictability, for L1 reading in English, Dutch,

and German (Kuperman et al., 2010). Our results provide further evidence that the

effect of word position on reading time is independent of other predictors, including

surprisal derived from various language models, since word position is significant for

all GAMMs. Considering that this is the case across all four language backgrounds, it

may also suggest that this observation holds more broadly for both L1 and L2 reading

in English.

6.3 Commonalities in Surprisal Performance across

First Languages

The best-performing surprisals for all participant groups were derived from variations

of n-gram language models that included lexical information along with either implicit

or explicit syntactic information. The strong performance of n-grams here contrasts

previous research findings that language models with low perplexity tend to produce

45



surprisals that better predict reading times (Goodkind & Bicknell, 2018). As seen

in Table 5.4, the n-gram word language model had a higher perplexity on the test

set than the transformer, so it would have been expected that the transformer would

perform better for predicting reading times. Other research suggests that there is an

upper bound to the correlation between perplexity and predictive power of surprisal

for reading times with very large language models being outperformed by some of

their smaller counterparts that have higher perplexities (de Varda & Marelli, 2023;

Shain et al., 2022). There are differences among these studies and ours in terms of

the datasets used to train the language models, the type of reading-time data used

(e.g., eye-tracking or self-paced), and the covariates included in the predictive model

of reading time. Considering these methodological differences and the differences

in results, it seems that the sometimes observed trend of lower perplexity language

models producing surprisals that better predict reading times does not hold generally.

Our results showed that PCFG lexical surprisal performed more poorly than PCFG

syntactic and PCFG POS surprisal for predicting reading time, regardless of the

readers’ first language. This seems to indicate that lexical information separated

from syntactic is not particularly good at predicting reading times. Furthermore,

the n-gram POS surprisal performed more poorly than the PCFG POS surprisal

across all participant groups, which seems to suggest that capturing the hierarchical

aspect of syntax is important when syntactic information is separated from lexical

information. However, the top-two-performing surprisals for all participant groups

used a combination of lexical and syntactic information. This makes sense since both

lexical and syntactic knowledge are important for reading and there are interactions

between them for both L1 and L2 reading (Barnett, 1986).
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6.4 Differences in Surprisal Performance by First

Language

Table 6.2 compares the top-performing surprisals for L1 speakers of left-branching and

right-branching languages. Both of the right-branching languages have a syntactic

surprisal derived using the full preceding context with hierarchical data performing

in the top three. Conversely, surprisals computed using the full preceding context

with both syntactic and lexical information are present in the top three for the left-

branching languages. Amici et al. (2019) found that word order of first language can

predict a person’s working memory, with native speakers of left-branching languages

able to recall initial stimuli more easily. It is possible that this observation is relevant

to our findings. Due to higher working memory capacity, perhaps native speakers of

left-branching languages use more context when predicting upcoming words during

reading. In this case, it would make sense that surprisals computed using richer

context performed more strongly for speakers of left-branching languages since the

surprisals would better approximate the reader’s predictions.

Table 6.2: Comparison of surprisal performance for left-branching and right-branching
languages.

Left-branching Right-branching

Languages Chinese
Korean

English
Spanish

Commonalities in Top 3 N-gram Word
N-gram Word/POS

N-gram Word
N-gram Word/POS

Differences in Top 3 Transformer
RNNG

PCFG POS
PCFG Syntactic

Both use the full context with
syntactic and lexical informa-
tion

Both use the full context with
only syntactic information

Although English and Spanish are both right-branching SVO languages, word order

in Spanish is somewhat more flexible than in English. In particular, the placement

of adjectives is more flexible and the typical SVO word order of Spanish is more
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frequently modified to change the emphasis of a sentence (Butt & Benjamin, 1994).

This difference might help explain why different versions of syntactic surprisal are in

the top performers for English and Spanish. For English, the PCFG POS surprisal

was the third best performer while, for Spanish, it was the PCFG syntactic surprisal.

These two surprisals are similar in many ways, reflecting the similarities of English

and Spanish. However, PCFG POS surprisal used only syntactic information from

the preceding context and current word to compute surprisal. In contrast, the PCFG

syntactic surprisal used both syntactic and lexical information from the preceding

context but only syntactic information from the current word. In this way, the PCFG

syntactic surprisal uses a richer context. Perhaps this richer context is important for

predicting English reading times of L1 speakers of languages that have more flexible

word orders than English. Chinese and Korean also have more word order flexibility

(Kim, 2018; Sun & Givon, 1985), and the prediction of English reading times for

L1 speakers of these languages is also better supported by surprisals computed using

richer context.

Chinese and Korean are both left branching but Chinese has SVO word order while

Korean has SOV. In this way, Korean is more syntactically distinct from English

than Chinese is. Perhaps this could explain why the RNNG surprisal was in the

top three for Korean native speakers while the transformer surprisal was in the top

three for Chinese native speakers. The RNNG uses explicit hierarchical syntactic

information when computing surprisal whereas the transformer only has access to

sequential information. Furthermore, the performance of all PCFG surprisals, which

were informed by explicit syntactic information, was also strong for Korean native

speakers (moreso than for Chinese and Spanish native speakers). It could be the case

that explicit syntactic information is important for predicting the English reading

times of people whose first languages have a different word order than English.
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6.5 Limitations

Computations of surprisal are dependent on the data used to train the language

model. Our language models were trained on the WikiText-2 dataset, a corpus of

Wikipedia articles. This training data was appropriate for our use case since the

articles were written in a style of English similar to the passages participants read

from the New York Times. However, Wikipedia articles do not cover the wide variety

of genres that an English speaker would typically be exposed to. As such, surprisals

computed from the WikiText-2 corpus likely differ from a person’s internal represen-

tation of word predictability. Using a larger corpus for training that includes more

genres would likely help the computed surprisal values better approximate human-like

expectation.

Our results are also tied to the implementations of each language model that we

used to compute surprisals. It is possible that there could be undiscovered errors or

bugs in the implementations we used. In such a case, our findings could change if we

were to use different implementations.

Our results are based on a sample of L1 speakers of English, Chinese, Korean, and

Spanish. Participants had somewhat varied levels of English language proficiency,

but there was little variety in participant age and gender. Although English language

skills varied by participant, they still represented a certain ability range and beginning

learners of English were not represented. Accordingly, making generalizations to the

complete populations of L1 speakers from these language backgrounds is not possible.

Our work involved English speakers with different language backgrounds. The four

different first languages of the participants have differences in writing system, word

order, and branching. However, there are over 7,000 living languages spoken across

the world, each unique in some way (Ebherhard et al., 2023). Accordingly, our results

cannot be generalized to all L1 speakers of SOV languages, for example, based on

the results for L1 speakers of Korean alone. However, we have studied widely spoken
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languages; there are 1.35 billion L1 speakers of Chinese, 485 million L1 speakers of

Spanish, and 82 million L1 speakers of Korean (Ebherhard et al., 2023). As such, our

work is relevant for a large number of people.

6.6 Ethical Considerations

Participants in our study read texts written in American standard English. Partici-

pants may have varying degrees of familiarity with American standard English since

many different varieties of English exist around the world. Our work involved par-

ticipants who had lived in the U.S. for some time so the use of American standard

English was justifiable. However, future work involving L2 English speakers with

diverse language backgrounds should also consider the diversity of English spoken

around the world.

6.7 Future Work

Future work could include a wider variety of language backgrounds. Studying several

SVO languages and SOV languages could allow for stronger conclusions to be drawn

about the relationship between L1 word order and the surprisals that best predict L2

reading times in English. Another avenue to pursue would be training the language

models on a larger and more varied corpus to better estimate surprisal. Future studies

could also explore the relationship between English proficiency and the surprisals

that best predict reading times. This work also presents the opportunity to better

understand large language models that operate effectively as black boxes by evaluating

their performance for predicting human reading times.
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Chapter 7

Conclusion

Prediction is key in L1 reading (Huettig, 2015; Kuperberg & Jaeger, 2016; F. Smith,

1975). This claim is supported by the ability of surprisal derived from language

models to predict reading time (Goodkind & Bicknell, 2018; Hale, 2001; Hale et

al., 2018; N. J. Smith & Levy, 2013). Prediction also appears to play a role in L2

reading (Berzak & Levy, 2022; Chun, 2020) but perhaps to a lesser extent (Grüter

et al., 2014). Attention is now being directed to exploring the utility of surprisal

for predicting L2 reading times (de Varda & Marelli, 2022). However, much is still

unknown about the relationship between language background and the performance

of surprisal for predicting L2 reading times.

To narrow this gap in knowledge, we trained nine language models that varied in

the extent of syntactic information, lexical information, and preceding context they

used to compute surprisal. We developed GAMMs to predict reading times of English

speakers with various first languages (English, Chinese, Korean, and Spanish) using

these different surprisals. For each participant group, we compared the performance

of the different surprisals for predicting reading time using AIC.

We found several similarities in performance of the different surprisals for predict-

ing English reading times across language backgrounds. Surprisals derived from a

standard n-gram and an n-gram with added POS tags were among the top three

performers for all language backgrounds. For PCFG surprisals, the lexical portion
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of the total surprisal performed worse than the syntactic portion. For the syntactic

surprisals, those derived from language models trained on hierarchical data performed

better than those trained on sequences.

Apart from these commonalities, we observed several differences. We found that

the prediction of English reading times of L1 speakers of left-branching languages

benefited from the inclusion of surprisal with richer context. We also found that

surprisals computed using hierarchical syntactic information performed better for L1

speakers of Korean (an SOV language) as opposed to L1 speakers of languages with

the same word order as English (SVO). Further research involving more language

backgrounds and participants is needed to better understand these differences.

Our work furthers the emerging research on using language model-derived surprisal

for predicting L2 reading times. Our findings contribute to this area by showing that

surprisals computed by different language models perform differently for predicting

English reading times based on the language background of the reader. Our work

indicates that a one-size-fits-all approach would leave some groups with sub-optimal

performance for L2 English reading time prediction. As such, it is important to

consider language background when using language models in the study of L2 reading.
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A., Lõo, K., Marelli, M., . . . Usal, K. A. (2023). Text reading in English as
a second language: Evidence from the Multilingual Eye-movements Corpus.
Studies in Second Language Acquisition, 45 (1), 3–37. https ://doi . org/10 .
1017/S0272263121000954

Law, S., Wong, W., & Kong, A. (2006). Direct access from meaning to orthography in
Chinese: A case study of superior written to oral naming. Aphasiology, 20 (6),
565–578. https://doi.org/10.1080/02687030600591799

Li, X., Bicknell, K., Liu, P., Wei, W., & Rayner, K. (2014). Reading is fundamentally
similar across disparate writing systems: A systematic characterization of how
words and characters influence eye movements in Chinese reading. Journal of

55

https://doi.org/10.1093/jole/lzw002
https://aclanthology.org/W11-2123/
https://aclanthology.org/W11-2123/
https://doi.org/10.1016/j.brainres.2015.02.014
https://doi.org/10.1111/lang.12034
https://doi.org/10.1111/lang.12034
https://doi.org/10.3115/1075096.1075150
https://doi.org/10.1080/09541440340000213
https://doi.org/10.1080/09541440340000213
https://doi.org/10.1017/S0272263100009499
https://doi.org/10.1017/S0272263100009499
https://doi.org/10.1080/23273798.2015.1102299
https://doi.org/10.1080/23273798.2015.1102299
https://doi.org/10.1080/17470211003602412
https://doi.org/10.1080/17470211003602412
https://doi.org/10.1017/S0272263121000954
https://doi.org/10.1017/S0272263121000954
https://doi.org/10.1080/02687030600591799


Experimental Psychology: General, 143 (2), 895–913. https://doi.org/10.1037/
a0033580
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. . . Kuperman, V. (2022). Expanding horizons of cross-linguistic research on
reading: The Multilingual Eye-movement Corpus (MECO). Behavior Research
Methods, 54 (6), 2843–2863. https://doi.org/10.3758/s13428-021-01772-6

Smith, F. (1975). The role of prediction in reading. Elementary English, 52 (3), 305–
311. https://www.jstor.org/stable/41592609

Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is
logarithmic. Cognition, 128 (3), 302–319. https://doi.org/10.1016/j.cognition.
2013.02.013

Stern, M., Fried, D., & Klein, D. (2017). Effective inference for generative neural
parsing. Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, 1695–1700. https://doi.org/10.18653/v1/D17-1178

Sun, C., & Givon, T. (1985). On the so-called SOV word order in Mandarin Chinese:
A quantified text study and its implications. Language, 61 (2), 329–351. https:
//doi.org/10.2307/414148

Tan, L. H., & Perfetti, C. A. (1997). Visual Chinese character recognition: Does
phonological information mediate access to meaning? Journal of Memory and
Language, 37 (1), 41–57. https://doi.org/10.1006/jmla.1997.2508

Tremblay, A., Derwing, B., Libben, G., & Westbury, C. (2011). Processing advantages
of lexical bundles: Evidence from self-paced reading and sentence recall tasks.
Language Learning, 61 (2), 569–613. https://doi.org/10.1111/j.1467-9922.
2010.00622.x

van Kooten, P. (2022). Contractions. https://pypi.org/project/contractions/
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

L., & Polosukhin, I. (2017). Attention is all you need. NIPS ’17: Proceedings
of the 31st Conference on Neural Information Processing Systems.

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for
generalized additive models. Journal of the American Statistical Association,
99 (467), 673–686. https://doi.org/10.1198/016214504000000980

Wood, S. (2006). Generalized additive models: An introduction with R. CRC Press.
Woolley, G. (2011). Reading comprehension: Assisting children with learning difficul-

ties. Springer, Netherlands. https://doi.org/10.1007/978-94-007-1174-7
Yun, H., Lee, D., Nam, Y., & Hong, U. (2017). The predictability effect on eye move-

ment in reading Korean dative sentences. Language and Information, 21 (1),
73–99. https://doi.org/10.29403/LI.21.1.4

Zehr, J., & Schwarz, F. (2018). PennController for Internet Based Experiments (IBEX).
https://doi.org/10.17605/OSF.IO/MD832

57

https://doi.org/10.31234/osf.io/4hyna
https://doi.org/10.3758/s13428-021-01772-6
https://www.jstor.org/stable/41592609
https://doi.org/10.1016/j.cognition.2013.02.013
https://doi.org/10.1016/j.cognition.2013.02.013
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.2307/414148
https://doi.org/10.2307/414148
https://doi.org/10.1006/jmla.1997.2508
https://doi.org/10.1111/j.1467-9922.2010.00622.x
https://doi.org/10.1111/j.1467-9922.2010.00622.x
https://pypi.org/project/contractions/
https://doi.org/10.1198/016214504000000980
https://doi.org/10.1007/978-94-007-1174-7
https://doi.org/10.29403/LI.21.1.4
https://doi.org/10.17605/OSF.IO/MD832


Appendix A: Stimuli

Here is a complete list of the stimuli used in the study.

• Very few issues can bring together lawmakers of both parties. Animal cruelty

is one of them.

• Koalas have been running into hard times. They have suffered for years from

habitat destruction, dog attacks, automobile accidents.

• Pancreatic cancer has a bad reputation. It is a terrible disease, but most people

do not realize there are ways that early detection can help.

• Some nutrition experts say eggs are good for you, even though they are high in

cholesterol. Others are sure they are bad.

• Experts generally agree that watching a lot of television is bad for children.

Now a new study suggests it may not be very good for adults, either.

• Legislators and gun safety advocates often focus on how guns are purchased.

But many lives could be saved, especially among children, if they looked more

at how they are stored.

• In general, any exercise improves our health. But a wealth of recent science

and personal experience indicate that different people can respond to similar

exercise routines in different ways.

• When new breast cancer drugs come to market, there is little data to indicate

whether they are safe or effective in men. Some new drugs are approved only

for women.

• An extensive study confirms that red meat might not be that bad for you. But

it is bad for the planet, with chicken and pork less harmful than beef.
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• The ground around the building slopes away. That allows the classroom win-

dows to be low enough for children to see out while still being high above the

ground.

• Farmers and plant breeders are in a race against time. The world population is

growing rapidly, requiring ever more food, but the amount of cultivable land is

limited.

• One benefit of discovery is that you get to name the things you discovered.

Astronomy is blessed in this regard.

• The overwhelming majority of snails live in shells that coil to the right. But

occasionally some are born with shells that turn the other way.

• California has positioned itself as a leader in the fight against climate change.

It leads the nation by far in solar power.

• Climate change will inevitably transform the way the world produces goods.

Farmers who produce wine grapes, an especially sensitive crop, are already

feeling those effects.

• The many whiskeys of Japan are complex and often expensive. Learning about

them can be a challenge.

• Great snow conditions can make a ski trip magical. Skiers can weight the odds

in their favor by picking their destinations according to the time of winter.

• Earth is warming, and we know why. Light is reflected and absorbed by clouds,

air, oceans, ice and land.

• Nobody ever really tells you how to breathe. You just know how to do it.

• Imagine an animal that looks like a dinosaur, and you probably will not imagine

a bat. But that may change.

• Video games work hard to hook players. Designers use predictive algorithms

and principles of behavioral economics to keep fans engaged.

• Americans are feeling better about the economy. Or at least republicans are.

• Parasites are a huge force in the natural world. For the most part they simply

feed on their hosts.
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• There should be no question that autistic people need and value social connec-

tions. We all do.

• Once upon a time, the sky was everything above the earth, which lay at the

center of human experience. The sky was the place of gods.

• The abundance of uncontrolled case studies can give an impression that a single

dietary item, like juice, is linked with obesity. But they cannot determine cause

and effect.

• Americans are having fewer babies. At first, researchers thought the declining

fertility rate was because of the recession, but it kept falling even as the economy

recovered.

• New research suggests that more money really does lead to a more satisfying

life. Surveys of thousands of Swedish lottery winners have provided persuasive

evidence of this truth.

• Milan has no sea. It has no river or lake, just a few ebbing canals.

• Morality exists only because we evolved the capacity to empathize. And empa-

thy provides the best guide to moral action.

• Story creates culture. It teaches us to feel, think and behave in ways generally

approved of by those around us.

• Hospitals are often thought of as the hubs of our health care system. But

hospital closings are rising, particularly in some types of communities.

• Two sexes have never been enough to describe human variety. Not in biblical

times and not now.

• The biggest racial preferences in this country have nothing to do with college

admissions or job offers. They have to do with political power.

• Businesses can deliver everything on demand, from dinner to dry cleaning. Some

will even show up at your door to give you cupcakes or walk your dog.

• Planning for vacation is fun. We make lists of clothes to pack and museums to

visit, anticipating the relaxation and fun to come.

• Certain types of wine seem incapable of winning popular acceptance. Riesling

is one, particularly in its moderately sweet form.
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• Bankers kept their name tags obscured behind ties. Many tried to keep a low

profile and avoided talking to the news media.

• Hollywood executives are not so different from the stars they employ. They

want to be seen in the right booths at the right restaurants.

• The more we learn about how people really think, the more we must rethink

economic theory. Changes in fundamental beliefs play a major role in the fluc-

tuations of the economy.

• History suggests that the world is about due for another financial crisis. One of

the places it might start, according to a growing number of indicators, is Italy.

• Few doubt that energy has improved lives and enabled human progress. Yet

one of the biggest challenges facing the world is the polarized debate over the

future of energy.

• Dance is about change. The body keeps altering its shape while we watch it

move.

• Plants have no eyes, no ears, no mouth and no hands. They do not have a brain

or a nervous system.

• There are many more gorillas and chimpanzees than previously believed, new

research finds. Nonetheless, their numbers are rapidly declining.

• Forests are disappearing. Maps show shrinking woodlands all over the world.

• A cowboy walks into a bar. Or more specifically, a Nigerian immigrant grad

student in a cowboy hat walks into a bar in Oklahoma.

• One man vanished diving at midnight. Another was attacked by a great white

shark in deep water.

• Student loans are central to financing college educations, yet millions of bor-

rowers are in default. That is clear evidence that the system is in dire need of

improvement.

• People seem to be more worried than ever about stress. We hear that stress

can lead to everything from depression to cancer.

• Music can transport us back in time or help usher in new ways of thinking. It

can capture a historical moment or offer an escape from the world around us.
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• The laws that authorize medical aid in dying have worked exactly as intended,

the evidence shows. They have benefited dying patients and their families

without causing any harm to anyone.

• Israel cannot define a Jew. And the more it attempts to do so, the more obvious

that becomes.

• Corporate tax cuts will put billions of dollars back in the hands of businesses

this year. Naturally, people want to know how those businesses will spend it.

• Florida, it seems, has always been a popular destination. Even the first known

Americans gravitated to the state.

• When early humans discovered how to build fires, life became much easier in

many regards. They huddled around fire for warmth, light and protection.

• For most of human history, nobody ate a vegetable for pleasure. After all,

vegetables have no evolutionary imperative to be delicious.

• Animals around the world are on the move. So are their parasites.

• Gifts are often left on front row seats at fashion shows for guests. Rarely,

however, are they placed on every seat.

• Trying to figure out why humans cry is exhausting. We cry about death, vi-

olence, breakups, abandoned puppies, sweet kisses and words charged with all

kinds of meanings.

• The most popular movie in India this summer is about a toilet. It nearly causes

a divorce.

• Bargain hunters have begun to pay close attention to emerging market stocks.

They are a little late to the game.

• One new drug promises to stop cancer from spreading to other organs. Another

would treat blood cancer.

62



Appendix B: Model Checking

Figures B.1–B.4 show four plots of the residuals for the GAMM base models for each

participant group. The plots show that the residuals are approximately normally

distributed with some deviation from normality at the tails of the distributions.

Figure B.1: Residual plots for the GAMM base model for English native speakers.
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Figure B.2: Residual plots for the GAMM base model for Chinese native speakers.

Figure B.3: Residual plots for the GAMM base model for Korean native speakers.
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Figure B.4: Residual plots for the GAMM base model for Spanish native speakers.
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Appendix C: GAMM Statistics

Tables C.1–C.10 provide statistical summaries of the terms in the GAMMs. Eff. df

refers to effective degrees of freedom. Ref. df refers to reference degrees of freedom.

Table C.1: Statistical summary of the terms in the base models.

English Chinese

Estimate SE t p Estimate SE t p

Intercept 5.741 0.035 165.07 < .001 5.907 0.050 118.83 < .001

SentPos 0.023 0.003 7.67 < .001 -0.033 0.004 -9.31 < .001

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 30.0 30.0 1083.21 < .001 32.0 32.0 1724.68 < .001

s(Trial) 61.4 62.0 233.89 < .001 61.1 62.0 178.45 < .001

s(Word) 508.9 687.0 4.03 < .001 455.2 687.0 2.72 < .001

s(VocabAdjPerf) 1.0 1.0 6.69 .010 1.0 1.0 0.04 .852

s(ReadingCompAdjPerf) 1.0 1.0 0.01 .935 1.0 1.0 0.45 .505

s(WordPos) 7.9 8.5 16.77 < .001 6.3 7.2 52.77 < .001

s(LogWordFreq) 1.0 1.0 2.03 .154 1.0 1.0 3.00 .083

s(WordLength) 1.0 1.0 12.23 < .001 1.0 1.0 41.25 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 0.70 .403 3.5 3.9 2.18 .066

Korean Spanish

Estimate SE t p Estimate SE t p

Intercept 5.717 0.053 107.87 < .001 5.771 0.050 115.65 < .001

SentPos -0.006 0.004 -1.52 .128 0.009 0.003 3.05 .002

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 25.0 25.0 1392.44 < .001 41.0 41.0 2783.95 < .001

s(Trial) 54.9 62.0 21.48 < .001 61.5 62.0 532.86 < .001

s(Word) 317.8 687.0 1.34 < .001 494.7 687.0 3.35 < .001

s(VocabAdjPerf) 1.0 1.0 0.00 .964 1.0 1.0 0.00 .980

s(ReadingCompAdjPerf) 1.0 1.0 0.20 .655 1.0 1.0 7.94 .005

s(WordPos) 6.2 7.1 17.93 < .001 7.9 8.5 41.77 < .001

s(LogWordFreq) 1.0 1.0 0.19 .661 1.0 1.0 4.76 .029

s(WordLength) 1.0 1.0 22.34 < .001 1.0 1.0 18.79 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 0.02 .882 1.0 1.0 0.06 .810
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Table C.2: Statistical summary of the terms in the full model with n-gram word
surprisal.

English Chinese

Estimate SE t p Estimate SE t p

Intercept 5.735 0.035 164.67 < .001 5.903 0.050 118.71 < .001

SentPos 0.006 0.006 1.06 .291 -0.049 0.007 -6.88 < .001

SentPos:NgramWordSurp 0.003 0.001 3.11 .002 0.002 0.001 2.41 .016

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 30.0 30.0 1075.31 < .001 32.0 32.0 1724.65 < .001

s(Trial) 61.4 62.0 230.79 < .001 61.1 62.0 184.59 < .001

s(Word) 495.9 687.0 3.64 < .001 447.4 687.0 2.60 < .001

s(VocabAdjPerf) 1.0 1.0 6.69 .010 1.0 1.0 0.04 .852

s(ReadingCompAdjPerf) 1.0 1.0 0.01 .936 1.0 1.0 0.44 .505

s(WordPos) 7.9 8.5 17.96 < .001 6.1 7.0 51.71 < .001

s(LogWordFreq) 1.0 1.0 2.11 .146 1.0 1.0 0.06 .811

s(WordLength) 1.0 1.0 0.57 .451 1.0 1.0 30.92 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 13.25 < .001 2.5 2.9 1.62 .182

s(NgramWordSurp) 1.0 1.0 0.15 .698 1.0 1.0 0.05 .826

ti(NgramWordSurp,WordLength) 7.4 8.6 3.33 .001 3.7 3.9 7.85 < .001

ti(NgramWordSurp,LogWordFreq) 1.0 1.0 2.00 .157 1.0 1.0 0.60 .440

ti(NgramWordSurp,WordPos) 8.7 10.4 1.94 .018 1.0 1.0 0.00 1.000

Korean Spanish

Estimate SE t p Estimate SE t p

Intercept 5.714 0.053 107.77 < .001 5.764 0.050 115.44 < .001

SentPos -0.029 0.007 -3.87 < .001 -0.010 0.006 -1.72 .086

SentPos:NgramWordSurp 0.003 0.001 3.52 < .001 0.003 0.001 3.59 < .001

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 25.0 25.0 1391.40 < .001 41.0 41.0 2803.52 < .001

s(Trial) 54.9 62.0 20.65 < .001 61.5 62.0 671.88 < .001

s(Word) 309.5 687.0 1.26 < .001 489.3 687.0 3.35 < .001

s(VocabAdjPerf) 1.0 1.0 0.00 .963 1.0 1.0 0.00 .978

s(ReadingCompAdjPerf) 1.0 1.0 0.20 .655 1.0 1.0 7.95 .005

s(WordPos) 6.1 7.0 18.04 < .001 7.9 8.5 41.97 < .001

s(LogWordFreq) 1.0 1.0 0.14 .710 1.0 1.0 3.24 .072

s(WordLength) 1.0 1.0 5.19 .023 1.0 1.0 1.81 .178

ti(LogWordFreq,WordLength) 1.0 1.0 0.07 .794 1.0 1.0 2.98 .084

s(NgramWordSurp) 1.0 1.0 3.41 .065 1.0 1.0 0.72 .398

ti(NgramWordSurp,WordLength) 2.9 3.3 2.09 .092 3.5 3.7 3.64 .004

ti(NgramWordSurp,LogWordFreq) 1.0 1.0 1.47 .225 1.0 1.0 2.89 .089

ti(NgramWordSurp,WordPos) 1.0 1.0 0.08 .778 3.6 4.7 0.61 .659
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Table C.3: Statistical summary of the terms in the full model with n-gram POS
surprisal.

English Chinese

Estimate SE t p Estimate SE t p

Intercept 5.743 0.035 165.06 < .001 5.908 0.050 118.84 < .001

SentPos 0.026 0.006 4.60 < .001 -0.031 0.007 -4.50 < .001

SentPos:NgramPOSSurp -0.002 0.002 -0.90 .369 -0.001 0.002 -0.51 .609

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 30.0 30.0 1079.31 < .001 32.0 32.0 1722.91 < .001

s(Trial) 61.4 62.0 230.01 < .001 61.1 62.0 207.48 < .001

s(Word) 508.9 687.0 3.96 < .001 451.5 687.0 2.66 < .001

s(VocabAdjPerf) 1.0 1.0 6.69 .010 1.0 1.0 0.04 .852

s(ReadingCompAdjPerf) 1.0 1.0 0.01 .935 1.0 1.0 0.45 .505

s(WordPos) 8.0 8.5 16.38 < .001 6.5 7.3 48.35 < .001

s(LogWordFreq) 1.0 1.0 2.47 .116 1.0 1.0 4.12 .042

s(WordLength) 1.0 1.0 11.69 .001 1.0 1.0 35.50 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 0.71 .400 3.5 3.9 2.34 .059

s(NgramPOSSurp) 1.0 1.0 1.63 .202 1.0 1.0 1.47 .225

ti(NgramPOSSurp,WordLength) 1.3 1.4 0.09 .796 1.0 1.0 2.27 .132

ti(NgramPOSSurp,LogWordFreq) 2.8 3.5 1.09 .293 5.5 6.4 2.77 .009

ti(NgramPOSSurp,WordPos) 3.7 4.4 4.65 .001 2.1 2.7 1.85 .108

Korean Spanish

Estimate SE t p Estimate SE t p

Intercept 5.718 0.053 107.87 < .001 5.772 0.050 115.69 <2e-16

SentPos -0.004 0.007 -0.59 .558 0.019 0.005 3.47 .001

SentPos:NgramPOSSurp -0.001 0.002 -0.27 .784 -0.005 0.002 -2.30 .022

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 25.0 25.0 1395.11 < .001 41.0 41.0 2782.87 < .001

s(Trial) 54.9 62.0 21.91 < .001 61.5 62.0 555.38 < .001

s(Word) 315.7 687.0 1.31 < .001 492.7 687.0 3.31 < .001

s(VocabAdjPerf) 1.0 1.0 0.00 .963 1.0 1.0 0.00 .979

s(ReadingCompAdjPerf) 1.0 1.0 0.20 .655 1.0 1.0 7.95 .005

s(WordPos) 6.3 7.2 17.92 < .001 7.9 8.5 39.88 < .001

s(LogWordFreq) 1.0 1.0 0.13 .720 1.0 1.0 3.64 .056

s(WordLength) 1.0 1.0 22.27 < .001 1.0 1.0 19.29 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 0.04 .842 1.0 1.0 0.05 .833

s(NgramPOSSurp) 1.0 1.0 0.18 .672 1.0 1.0 10.94 .001

ti(NgramPOSSurp,WordLength) 1.9 2.4 1.25 .398 2.0 2.6 0.88 .537

ti(NgramPOSSurp,LogWordFreq) 1.0 1.0 0.65 .422 3.8 4.8 0.77 .551

ti(NgramPOSSurp,WordPos) 1.0 1.0 7.14 .008 1.0 1.0 1.41 .235
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Table C.4: Statistical summary of the terms in the full model with n-gram word/POS
surprisal.

English Chinese

Estimate SE t p Estimate SE t p

Intercept 5.730 0.035 164.23 < .001 5.902 0.050 118.69 < .001

SentPos 0.008 0.006 1.33 .185 -0.047 0.007 -6.70 < .001

SentPos:NgramWordPOSSurp 0.002 0.001 2.97 .003 0.002 0.001 2.17 .030

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 30.0 30.0 1077.80 < .001 32.0 32.0 1725.55 < .001

s(Trial) 61.4 62.0 231.48 < .001 61.1 62.0 208.33 < .001

s(Word) 492.5 687.0 3.54 < .001 445.9 687.0 2.57 < .001

s(VocabAdjPerf) 1.0 1.0 6.69 .010 1.0 1.0 0.04 .852

s(ReadingCompAdjPerf) 1.0 1.0 0.01 .936 1.0 1.0 0.45 .505

s(WordPos) 7.9 8.5 18.96 < .001 6.1 7.0 52.60 < .001

s(LogWordFreq) 1.0 1.0 4.53 .033 1.0 1.0 0.11 .745

s(WordLength) 1.0 1.0 1.99 .159 1.0 1.0 31.55 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 4.38 .036 2.8 3.2 1.99 .131

s(NgramWordPOSSurp) 3.6 4.3 1.39 .194 1.0 1.0 0.00 .979

ti(NgramWordPOSSurp,WordLength) 7.2 8.5 1.83 .053 4.1 4.4 8.36 < .001

ti(NgramWordPOSSurp,LogWordFreq) 4.2 4.8 1.71 .131 1.0 1.0 1.44 .231

ti(NgramWordPOSSurp,WordPos) 3.7 3.9 4.97 .001 1.9 2.3 0.85 .440

Korean Spanish

Estimate SE t p Estimate SE t p

Intercept 5.712 0.053 107.72 < .001 5.755 0.050 115.14 < .001

SentPos -0.029 0.007 -3.97 .000 -0.009 0.006 -1.52 .128

SentPos:NgramWordPOSSurp 0.003 0.001 3.65 .000 0.003 0.001 3.43 .001

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 25.0 25.0 1395.29 < .001 41.0 41.0 2792.20 < .001

s(Trial) 55.0 62.0 21.52 < .001 61.5 62.0 584.53 < .001

s(Word) 308.3 687.0 1.24 < .001 486.3 687.0 3.21 < .001

s(VocabAdjPerf) 1.0 1.0 0.00 .963 1.0 1.0 0.00 .979

s(ReadingCompAdjPerf) 1.0 1.0 0.20 .655 1.0 1.0 7.95 .005

s(WordPos) 6.2 7.1 18.29 < .001 7.9 8.5 42.29 < .001

s(LogWordFreq) 1.0 1.0 0.25 .615 1.0 1.0 5.33 .021

s(WordLength) 1.0 1.0 5.11 .024 1.0 1.0 6.54 .011

ti(LogWordFreq,WordLength) 1.0 1.0 0.01 .944 1.0 1.0 0.01 .939

s(NgramWordPOSSurp) 1.0 1.0 5.37 .021 6.8 7.6 4.89 .000

ti(NgramWordPOSSurp,WordLength) 1.3 1.5 1.62 .335 1.9 2.2 0.75 .370

ti(NgramWordPOSSurp,LogWordFreq) 3.1 3.5 3.50 .009 3.8 4.7 1.61 .158

ti(NgramWordPOSSurp,WordPos) 1.1 1.2 0.02 .948 3.8 5.0 0.98 .456
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Table C.5: Statistical summary of the terms in the full model with PCFG total
surprisal.

English Chinese

Estimate SE t p Estimate SE t p

Intercept 5.733 0.035 164.49 < .001 5.903 0.050 118.71 < .001

SentPos 0.000 0.007 -0.07 .944 -0.052 0.008 -6.54 < .001

SentPos:PCFGTotalSurp 0.004 0.001 3.91 < .001 0.003 0.001 2.52 .012

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 30.0 30.0 1078.12 < .001 32.0 32.0 1723.94 < .001

s(Trial) 61.4 62.0 232.81 < .001 61.1 62.0 210.49 < .001

s(Word) 500.3 687.0 3.79 < .001 448.0 687.0 2.62 < .001

s(VocabAdjPerf) 1.0 1.0 6.69 .010 1.0 1.0 0.04 .852

s(ReadingCompAdjPerf) 1.0 1.0 0.01 .936 1.0 1.0 0.44 .505

s(WordPos) 8.0 8.5 16.02 < .001 6.0 6.9 50.54 < .001

s(LogWordFreq) 1.0 1.0 0.00 .971 1.0 1.0 0.01 .918

s(WordLength) 1.0 1.0 2.39 .122 1.0 1.0 32.47 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 5.72 .017 1.7 1.8 2.82 .080

s(PCFGTotalSurp) 1.0 1.0 0.36 .548 1.0 1.0 0.21 .649

ti(PCFGTotalSurp,WordLength) 2.5 2.8 1.29 .176 5.8 7.1 1.74 .089

ti(PCFGTotalSurp,LogWordFreq) 1.0 1.0 1.43 .231 1.0 1.0 0.00 .992

ti(PCFGTotalSurp,WordPos) 5.7 7.1 2.83 .006 1.0 1.0 0.31 .576

Korean Spanish

Estimate SE t p Estimate SE t p

Intercept 5.712 0.053 107.69 < .001 5.763 0.050 115.39 < .001

SentPos -0.031 0.008 -3.84 < .001 -0.014 0.006 -2.24 .025

SentPos:PCFGTotalSurp 0.004 0.001 3.45 .001 0.004 0.001 3.96 .000

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 25.0 25.0 1394.68 < .001 41.0 41.0 2781.12 < .001

s(Trial) 54.9 62.0 21.42 < .001 61.5 62.0 525.41 < .001

s(Word) 307.8 687.0 1.24 < .001 489.1 687.0 3.25 < .001

s(VocabAdjPerf) 1.0 1.0 0.00 .963 1.0 1.0 0.00 .981

s(ReadingCompAdjPerf) 1.0 1.0 0.20 .655 1.0 1.0 7.94 .005

s(WordPos) 6.0 6.9 17.75 < .001 7.8 8.4 40.14 < .001

s(LogWordFreq) 1.0 1.0 0.31 .578 1.0 1.0 2.09 .148

s(WordLength) 1.0 1.0 2.77 .096 1.0 1.0 2.91 .088

ti(LogWordFreq,WordLength) 1.0 1.0 0.00 .994 1.0 1.0 0.43 .515

s(PCFGTotalSurp) 1.0 1.0 1.73 .188 1.0 1.0 0.60 .437

ti(PCFGTotalSurp,WordLength) 2.8 3.2 2.39 .047 1.0 1.0 3.10 .078

ti(PCFGTotalSurp,LogWordFreq) 1.2 1.3 0.75 .498 2.8 3.2 3.51 .047

ti(PCFGTotalSurp,WordPos) 1.0 1.0 1.60 .206 1.0 1.0 0.19 .664
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Table C.6: Statistical summary of the terms in the full model with PCFG lexical
surprisal.

English Chinese

Estimate SE t p Estimate SE t p

Intercept 5.730 0.035 164.39 < .001 5.899 0.050 118.58 < .001

SentPos 0.003 0.005 0.66 .512 -0.050 0.006 -7.96 < .001

SentPos:PCFGLexSurp 0.005 0.001 4.60 < .001 0.004 0.001 3.21 .001

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 30.0 30.0 1078.34 < .001 32.0 32.0 1723.74 < .001

s(Trial) 61.4 62.0 233.67 < .001 61.1 62.0 196.64 < .001

s(Word) 499.0 687.0 3.74 < .001 452.0 687.0 2.67 < .001

s(VocabAdjPerf) 1.0 1.0 6.69 .010 1.0 1.0 0.04 .852

s(ReadingCompAdjPerf) 1.0 1.0 0.01 .936 1.0 1.0 0.45 .505

s(WordPos) 8.0 8.5 16.88 < .001 6.1 7.0 51.80 < .001

s(LogWordFreq) 1.0 1.0 0.14 .710 1.0 1.0 1.21 .271

s(WordLength) 1.0 1.0 4.11 .043 1.0 1.0 39.46 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 3.88 .049 2.1 2.4 0.65 .552

s(PCFGLexSurp) 1.0 1.0 4.04 .044 1.0 1.0 1.57 .210

ti(PCFGLexSurp,WordLength) 3.6 4.4 1.74 .178 3.4 4.1 1.81 .122

ti(PCFGLexSurp,LogWordFreq) 1.0 1.0 0.00 .974 1.0 1.0 2.09 .149

ti(PCFGLexSurp,WordPos) 6.3 8.0 2.59 .009 1.0 1.0 0.13 .723

Korean Spanish

Estimate SE t p Estimate SE t p

Intercept 5.712 0.053 107.71 < .001 5.760 0.050 115.33 < .001

SentPos -0.024 0.007 -3.68 < .001 -0.010 0.005 -1.92 .055

SentPos:PCFGLexSurp 0.004 0.001 3.38 .001 0.004 0.001 4.41 < .001

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 25.0 25.0 1392.04 < .001 41.0 41.0 2783.72 < .001

s(Trial) 54.9 62.0 21.19 < .001 61.5 62.0 541.06 < .001

s(Word) 311.3 687.0 1.30 < .001 489.2 687.0 3.26 < .001

s(VocabAdjPerf) 1.0 1.0 0.00 .963 1.0 1.0 0.00 .980

s(ReadingCompAdjPerf) 1.0 1.0 0.20 .655 1.0 1.0 7.95 .005

s(WordPos) 6.1 7.0 17.94 < .001 7.8 8.4 40.98 < .001

s(LogWordFreq) 1.0 1.0 0.16 .693 1.0 1.0 3.02 .082

s(WordLength) 1.0 1.0 7.94 .005 1.0 1.0 5.65 .017

ti(LogWordFreq,WordLength) 1.0 1.0 0.80 .371 1.0 1.0 0.00 .994

s(PCFGLexSurp) 1.0 1.0 3.20 .073 1.0 1.0 3.28 .070

ti(PCFGLexSurp,WordLength) 1.0 1.0 3.20 .073 1.0 1.0 2.39 .122

ti(PCFGLexSurp,LogWordFreq) 2.0 2.3 0.91 .312 3.2 3.5 3.64 .049

ti(PCFGLexSurp,WordPos) 1.0 1.0 0.73 .391 1.7 2.0 1.10 .357
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Table C.7: Statistical summary of the terms in the full model with PCFG syntactic
surprisal.

English Chinese

Estimate SE t p Estimate SE t p

Intercept 5.743 0.035 165.11 < .001 5.909 0.050 118.88 < .001

SentPos 0.029 0.006 5.24 < .001 -0.024 0.007 -3.61 < .001

SentPos:PCFGSynSurp -0.004 0.003 -1.47 .141 -0.006 0.003 -1.74 .082

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 30.0 30.0 1082.83 < .001 32.0 32.0 1726.00 < .001

s(Trial) 61.4 62.0 232.98 < .001 61.1 62.0 196.77 < .001

s(Word) 508.7 687.0 3.94 < .001 451.7 687.0 2.69 < .001

s(VocabAdjPerf) 1.0 1.0 6.69 .010 1.0 1.0 0.04 .852

s(ReadingCompAdjPerf) 1.0 1.0 0.01 .935 1.0 1.0 0.45 .505

s(WordPos) 7.9 8.5 16.73 < .001 6.1 7.0 53.27 < .001

s(LogWordFreq) 1.0 1.0 1.74 .187 1.0 1.0 2.70 .100

s(WordLength) 1.0 1.0 12.20 < .001 1.0 1.0 43.78 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 0.29 .591 3.3 3.6 1.62 .173

s(PCFGSynSurp) 1.0 1.0 5.97 .015 1.0 1.0 9.66 .002

ti(PCFGSynSurp,WordLength) 1.8 2.1 1.06 .389 1.0 1.0 0.07 .788

ti(PCFGSynSurp,LogWordFreq) 1.0 1.0 2.85 .091 1.0 1.0 0.42 .519

ti(PCFGSynSurp,WordPos) 3.1 3.5 6.46 < .001 1.7 2.1 3.21 .035

Korean Spanish

Estimate SE t p Estimate SE t p

Intercept 5.718 0.053 107.88 < .001 5.772 0.050 115.67 < .001

SentPos -0.005 0.007 -0.82 .413 0.014 0.005 2.65 .008

SentPos:PCFGSynSurp 0.000 0.003 -0.09 .932 -0.004 0.003 -1.30 .193

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 25.0 25.0 1395.06 < .001 41.0 41.0 2789.86 < .001

s(Trial) 54.9 62.0 21.71 < .001 61.5 62.0 571.90 < .001

s(Word) 311.3 687.0 1.27 < .001 492.4 687.0 3.32 < .001

s(VocabAdjPerf) 1.0 1.0 0.00 .963 1.0 1.0 0.00 .979

s(ReadingCompAdjPerf) 1.0 1.0 0.20 .655 1.0 1.0 7.94 .005

s(WordPos) 6.1 7.0 18.06 < .001 7.8 8.4 39.16 < .001

s(LogWordFreq) 1.0 1.0 0.18 .674 1.0 1.0 3.75 .053

s(WordLength) 1.0 1.0 21.70 < .001 1.0 1.0 18.48 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 0.00 .996 1.0 1.0 0.07 .792

s(PCFGSynSurp) 1.0 1.0 1.43 .233 1.0 1.0 7.50 .006

ti(PCFGSynSurp,WordLength) 2.3 2.7 1.42 .168 1.0 1.0 0.23 .630

ti(PCFGSynSurp,LogWordFreq) 2.3 2.6 2.76 .039 6.5 7.6 2.81 .004

ti(PCFGSynSurp,WordPos) 2.5 2.9 2.54 .038 6.7 8.2 4.23 < .001
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Table C.8: Statistical summary of the terms in the full model with PCFG POS
surprisal.

English Chinese

Estimate SE t p Estimate SE t p

Intercept 5.742 0.035 165.04 < .001 5.906 0.050 118.77 < .001

SentPos 0.025 0.006 4.42 < .001 -0.030 0.007 -4.34 < .001

SentPos:PCFG POSSurp -0.001 0.002 -0.54 .591 -0.001 0.002 -0.56 .573

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 30.0 30.0 1078.43 < .001 32.0 32.0 1718.02 < .001

s(Trial) 61.4 62.0 229.88 < .001 61.1 62.0 208.74 < .001

s(Word) 503.2 687.0 3.83 < .001 449.1 687.0 2.62 < .001

s(VocabAdjPerf) 1.0 1.0 6.69 .010 1.0 1.0 0.04 .852

s(ReadingCompAdjPerf) 1.0 1.0 0.01 .936 1.0 1.0 0.45 .505

s(WordPos) 8.0 8.5 15.88 < .001 6.1 7.0 43.06 < .001

s(LogWordFreq) 1.0 1.0 2.75 .097 1.0 1.0 3.67 .055

s(WordLength) 1.0 1.0 14.23 < .001 1.0 1.0 39.11 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 0.14 .706 3.6 4.0 2.44 .054

s(PCFG POSSurp) 1.0 1.0 0.34 .563 3.1 3.7 1.83 .107

ti(PCFG POSSurp,WordLength) 8.4 9.5 2.75 .003 1.0 1.0 0.02 .882

ti(PCFG POSSurp,LogWordFreq) 9.4 10.6 3.93 < .001 8.4 9.6 2.90 .002

ti(PCFG POSSurp,WordPos) 3.4 3.7 3.84 .051 4.7 6.0 1.67 .142

Korean Spanish

Estimate SE t p Estimate SE t p

Intercept 5.719 0.053 107.90 < .001 5.773 0.050 115.68 < .001

SentPos -0.007 0.007 -0.99 .324 0.018 0.006 3.30 .001

SentPos:PCFG POSSurp 0.000 0.002 0.17 .865 -0.004 0.002 -2.08 .038

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 25.0 25.0 1394.57 < .001 41.0 41.0 2770.81 < .001

s(Trial) 54.8 62.0 21.88 < .001 61.5 62.0 531.48 < .001

s(Word) 310.7 687.0 1.26 < .001 487.5 687.0 3.20 < .001

s(VocabAdjPerf) 1.0 1.0 0.00 .963 1.0 1.0 0.00 .980

s(ReadingCompAdjPerf) 1.0 1.0 0.20 .655 1.0 1.0 7.94 .005

s(WordPos) 6.2 7.1 17.34 < .001 7.9 8.5 35.39 < .001

s(LogWordFreq) 1.0 1.0 0.25 .619 1.0 1.0 3.99 .046

s(WordLength) 1.0 1.0 24.27 < .001 1.0 1.0 20.00 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 0.20 .654 1.0 1.0 0.03 .860

s(PCFG POSSurp) 1.6 2.0 1.14 .296 1.0 1.0 4.68 .030

ti(PCFG POSSurp,WordLength) 1.0 1.0 2.65 .103 4.0 5.0 1.57 .172

ti(PCFG POSSurp,LogWordFreq) 6.6 8.0 1.90 .050 8.1 9.4 2.54 .006

ti(PCFG POSSurp,WordPos) 1.0 1.0 4.71 .030 9.5 10.8 2.19 .008
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Table C.9: Statistical summary of the terms in the full model with RNNG surprisal.

English Chinese

Estimate SE t p Estimate SE t p

Intercept 5.736 0.035 164.45 < .001 5.904 0.050 118.73 < .001

SentPos 0.009 0.005 1.66 .097 -0.042 0.007 -6.33 < .001

SentPos:RNNGSurp 0.002 0.001 3.00 .003 0.002 0.001 1.61 .108

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 30.0 30.0 1078.24 < .001 32.0 32.0 1726.24 < .001

s(Trial) 61.4 62.0 232.51 < .001 61.1 62.0 196.48 < .001

s(Word) 500.3 687.0 3.75 < .001 448.3 687.0 2.60 < .001

s(VocabAdjPerf) 1.0 1.0 6.69 .010 1.0 1.0 0.04 .852

s(ReadingCompAdjPerf) 1.0 1.0 0.01 .935 1.0 1.0 0.45 .505

s(WordPos) 7.9 8.5 17.19 < .001 6.1 6.9 49.49 < .001

s(LogWordFreq) 1.0 1.0 0.03 .868 1.0 1.0 0.06 .802

s(WordLength) 1.0 1.0 5.86 .015 1.0 1.0 38.85 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 3.46 .063 1.0 1.0 9.54 .002

s(RNNGSurp) 1.0 1.0 0.70 .402 1.0 1.0 0.20 .659

ti(RNNGSurp,WordLength) 2.6 3.2 1.31 .252 5.5 6.5 3.73 .001

ti(RNNGSurp,LogWordFreq) 3.7 4.4 2.11 .069 1.7 2.0 0.10 .888

ti(RNNGSurp,WordPos) 4.5 5.5 2.95 .006 1.0 1.0 0.37 .546

Korean Spanish

Estimate SE t p Estimate SE t p

Intercept 5.714 0.053 107.80 < .001 5.765 0.050 115.42 < .001

SentPos -0.022 0.007 -3.20 .001 -0.007 0.005 -1.39 .166

SentPos:RNNGSurp 0.003 0.001 2.87 .004 0.003 0.001 3.61 < .001

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 25.0 25.0 1394.53 < .001 41.0 41.0 2794.45 < .001

s(Trial) 54.8 62.0 21.97 < .001 61.5 62.0 594.77 < .001

s(Word) 310.7 687.0 1.29 < .001 487.8 687.0 3.23 < .001

s(VocabAdjPerf) 1.0 1.0 0.00 .963 1.0 1.0 0.00 .979

s(ReadingCompAdjPerf) 1.0 1.0 0.20 .655 1.0 1.0 7.95 .005

s(WordPos) 6.1 7.0 16.96 < .001 7.9 8.4 38.97 < .001

s(LogWordFreq) 1.0 1.0 1.45 .228 1.0 1.0 0.74 .388

s(WordLength) 1.0 1.0 7.47 .006 1.0 1.0 7.11 .008

ti(LogWordFreq,WordLength) 1.0 1.0 0.02 .902 1.0 1.0 1.27 .260

s(RNNGSurp) 1.0 1.0 0.07 .790 1.0 1.0 1.94 .164

ti(RNNGSurp,WordLength) 1.0 1.0 0.73 .392 2.3 2.8 0.37 .693

ti(RNNGSurp,LogWordFreq) 1.0 1.0 4.79 .029 3.2 3.8 2.44 .107

ti(RNNGSurp,WordPos) 1.0 1.0 3.66 .056 1.0 1.0 0.79 .375
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Table C.10: Statistical summary of the terms in the full model with transformer
surprisal.

English Chinese

Estimate SE t p Estimate SE t p

Intercept 5.738 0.035 164.54 < .001 5.903 0.050 118.70 < .001

SentPos 0.008 0.006 1.48 .138 -0.046 0.007 -6.87 < .001

SentPos:TransformerSurp 0.003 0.001 3.06 .002 0.002 0.001 2.33 .020

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 30.0 30.0 1076.87 < .001 32.0 32.0 1724.18 < .001

s(Trial) 61.4 62.0 229.52 < .001 61.1 62.0 207.68 < .001

s(Word) 501.4 687.0 3.73 < .001 447.5 687.0 2.59 < .001

s(VocabAdjPerf) 1.0 1.0 6.69 .010 1.0 1.0 0.04 .852

s(ReadingCompAdjPerf) 1.0 1.0 0.01 .936 1.0 1.0 0.45 .505

s(WordPos) 7.9 8.5 16.85 < .001 6.0 6.9 49.64 < .001

s(LogWordFreq) 1.0 1.0 0.13 .718 1.0 1.0 0.10 .749

s(WordLength) 1.0 1.0 5.69 .017 1.0 1.0 47.46 < .001

ti(LogWordFreq,WordLength) 1.0 1.0 1.89 .169 1.0 1.0 3.62 .057

s(TransformerSurp) 1.0 1.0 0.75 .388 1.0 1.0 0.00 .957

ti(TransformerSurp,WordLength) 1.0 1.0 0.39 .532 6.4 7.8 3.03 .003

ti(TransformerSurp,LogWordFreq) 3.7 4.6 2.43 .050 2.2 2.4 2.31 .248

ti(TransformerSurp,WordPos) 6.0 7.4 3.04 .003 1.0 1.0 0.00 .987

Korean Spanish

Estimate SE t p Estimate SE t p

Intercept 5.714 0.053 107.76 < .001 5.766 0.050 115.49 < .001

SentPos -0.024 0.007 -3.44 .001 -0.004 0.005 -0.74 .461

SentPos:TransformerSurp 0.003 0.001 3.12 .002 0.002 0.001 2.87 .004

Eff. df Ref. df F p Eff. df Ref. df F p

s(Participant) 25.0 25.0 1392.99 < .001 41.0 41.0 2795.95 < .001

s(Trial) 54.8 62.0 20.78 < .001 61.5 62.0 607.40 < .001

s(Word) 307.5 687.0 1.22 < .001 490.3 687.0 3.30 < .001

s(VocabAdjPerf) 1.0 1.0 0.00 .963 1.0 1.0 0.00 .978

s(ReadingCompAdjPerf) 1.0 1.0 0.20 .655 1.0 1.0 7.95 .005

s(WordPos) 6.1 7.0 17.14 < .001 7.9 8.5 40.54 < .001

s(LogWordFreq) 1.0 1.0 1.03 .310 1.0 1.0 1.41 .235

s(WordLength) 1.0 1.0 4.69 .030 1.0 1.0 7.88 .005

ti(LogWordFreq,WordLength) 1.0 1.0 0.01 .926 1.0 1.0 1.56 .211

s(TransformerSurp) 1.0 1.0 0.93 .335 1.0 1.0 0.36 .551

ti(TransformerSurp,WordLength) 4.3 5.6 1.06 .343 1.0 1.0 0.26 .609

ti(TransformerSurp,LogWordFreq) 1.0 1.0 0.37 .546 1.5 1.7 1.82 .251

ti(TransformerSurp,WordPos) 1.0 1.0 1.50 .221 2.7 3.1 2.30 .154
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